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Abstract
The Brownian motion of colloidal particles in quasi-two-dimensional (q2D)
confinement displays a distinct kinetic character from that in bulk. Here we
experimentally report dynamic coupling motion of Brownian particles in a
relatively long process (∼100 h), which displays a quasi-equilibrium state in the
q2D system. In the quasi-equilibrium state, the q2D confinement results in the
coupling of particle motions, which slowly damps the motion and interaction of
particles until the final equilibrium state is reached. The process of approaching
the equilibrium is a random relaxation of a many-body interaction system of
Brownian particles. As the relaxation proceeds for ∼100 h, the system reaches
the equilibrium state in which the energy gained by the particles from the
stochastic collision in the whole system is counteracted by the dissipative energy
resulting from the collision. The relaxation time of this stochastic q2D system is
17.7 h. The theory is developed to explain coupling motions of Brownian par-
ticles in q2D confinement.
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1. Introduction

Particles performing Brownian motion in quasi-two-dimensional (q2D) space ubiquitously exist
in diverse systems in nature. These particles exhibit fundamentally different characteristics from
ones in bulk because of the effects of the confinement and coupling interaction. Great potential
applications have recently stimulated extensive theoretical and experimental studies in various
fields: self-propelled protein swimming in lipid bilayers of biological membranes [1],
hydrodynamic diffusion of elastic capsules in bounded suspension [2], hydrodynamic
interactions between particles [3–5] and particles flowing [6] in a suspension confined in a
q2D channel, colloidal suspension transition to glass between two quasiparallel plates [7], etc.

When a colloidal suspension is confined between two quasiparallel glass surfaces, particle
diffusion slows down for the reason that the regions of cooperative motion of particles in the
confined space are qualitatively different from those in the unconfined one [8]. The lower
mobility mainly results from the confinement, with the dynamics of particles reducing
dramatically as the separation distance (w) of the two surfaces decreases [9, 10]. The reduction
of one dimension causes stronger hydrodynamic interaction between particles, the decreasing of
the diffusion coefficient [10]. However, interestingly, this interaction declines with the
separation (l) of the pair of particles as −l 2, decaying much faster than that decreasing with −l 1 in
the unconfined suspension [11].

The confinement leads to interaction among particles much greater than that in the bulk.
On the other hand, the interaction and hydrodynamic coupling between Brownian particles and
confined plates results in reduction of the mean squared displacement of the particles [10]. The
confinement also produces translational symmetry breaking of the suspension, thus the
momentum of the suspension is not conserved where the distance is larger than w. The
transverse momentum is a dominant contribution to the hydrodynamic interaction between the
pair of particles in the bulk suspension, but is restrained in the confined one [12]. The rich
distinct phenomena of particle suspension in confined geometries are however complicated and
far from well understood.

The previous studies of the confinement mainly reveal the ‘direct’ effect of the dimension
reduction from 3D to q2D (e.g. the suspension in bulk being confined in q2D) on the particle
motion. Other than this ‘direct’ effect, here we study the dynamic coupling of particle motions
in q2D. The motivation of this study is the fact that for suspensions with the same particle
fraction the collision rate of particles in q2D is much larger than that in 3D. In this work, we
report an experimental finding on the existence of a quasi-equilibrium state of Brownian
particles in a q2D system. Furthermore, we show the coupling motions for the particles, and
develop the theory to describe their effect on Brownian motion.

2. Experiment and theoretical model

A dilute colloidal suspension (volume fraction 1%) with a particle diameter of μ1.39 m is
confined between two parallel quartz plates whose separation distance w is μ7.75 m. Heavy
water is mixed into the suspension to eliminate the gravity effect. The motions of particles are
observed and recorded by using optical microscopy under ambient conditions. The trajectories
of particles are analyzed from the video by particle-tracking techniques [13] (see appendix A for
more experimental details).
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Brownian motion of a free particle in the Ornstein–Uhlenbeck process is analyzed from the
Langevin equation [14],

β+ =v

t
v A t

d
d

( ) (1)

in which the friction coefficient β πη= r m6 /
s

(η
s
, viscosity of the suspension; r, particle radius;

m, inertial mass of particle), v is the particle velocity, t time, and =A t F m( ) / . F is the
stochastic force with zero mean, =F t( ) 0, and its values are uncorrelated at different times
( ′t t, ), πη δ′ = − ′F t F t rk T t t( ) ( ) 12 ( )

s B , kB is the Boltzmann constant, T temperature, and

δ t( ) the Dirac delta function.
Particles performing Brownian motion in the suspension under an external force are

described by Uhlenbeck and Ornstein as [14]

β+ = +v

t
v A t

K x

m

d
d

( )
( )

, (2)

where K(x) is the external force.
Considering that colloidal particles (figure 1(a)) keep performing Brownian motion

(figure 1(b)) in the present q2D cell, the coupling interaction among particles results from
significantly increasing collision rate (number of collisions/unit time) in q2D confinement
compared with that in the bulk (see appendix B). Carbajal-Tinoco et al also indicated that the
hydrodynamic interaction among particles in the confinement is much stronger than that in the
bulk [10]. When a particle with a velocity v is approaching another one, the interaction force Fx

between them varies inversely as their distance l, i.e., ∝F l1/x [15]. Batchelor and Green further
indicated that, as the two particles are nearly touching, a thin fluidic layer is produced between
the two particle surfaces. The strong interaction between the two particles is enacted by stresses
of large magnitude within a thin layer [15].

After the collision, the two particles move apart (figure 1(c)). The fluidic layer between the
two particles thickens and then a liquid zone forms as the two particles are pushed further apart.
The force driving the particles apart gradually decreases to zero until it makes the particles reach
the final velocity of ′v (figure 1(c)). As this collision is an inelastic collision, some of the kinetic
energy of the particles is converted into thermal energy, resulting in damping the motion of the
particles. The corresponding momentum change is Δ = ′ −P mv mv. The motion damping
results from the energy loss of particles during the collision process. Here, we suppose that a

virtual damping force acts in a collision process as ∫ = ′ − = −f t mv mv m k vd ( 1) , where

′ =v kv and k is the velocity conversion ratio. Thus the damping force is
= − −f m k v t( 1) ( d /d ) (the minus sign represents the velocity damping). In the process of

approaching the equilibrium, since the velocity of the particles decays with time, the energy loss
in the collision process gradually decreases, i.e. the damping force continually reduces as

= − γ−f m k v t(1 ) (d /d ) e t
d

; γ is the damping coefficient. Substituting =K x f( )
d

into
equation (2), we get the governing equation for the damping motion of a Brownian particle
in q2D confinement,

β+ − + =γ−[ ]k
v

t
v A t1 ( 1) e

d
d

( ). (3)t
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The mean-square velocity v2 and the mean-square displacement Δx( )2 can be derived from

equation (3) as (appendix D)

α
ω= − +β β− −( )v

t k T

m
t v

( )
1 e ( ) e (4)t t2 B 2

0
2 2

Figure 1. Particles in the suspension performing Brownian motion and colliding to
produce coupling interaction. (a) Optical micrograph of the particle suspension confined
in the q2D cell; the scale bar is μ50 m. (b) Typical trajectories of particle motions
produced in a 16.7 ms time interval. The picture is cropped from the upper left corner of
(a) with a scale bar of μ10 m. (c) Sketch of the interaction of the particles depending on
their distance changing with time in the whole collision process. d continually changes
to be much larger than, comparable to and equal to the particle size, which corresponds
to weak, moderate and strong interaction, respectively. This is a simplified sketch of the
force change between two particles during the collision process. The actual force
change is much more complex. Thus the sketch does not describe the actual force but
reflects the general changing tendency of the force. To qualitatively estimate the
collision rate in the statistically homogenous distribution of particles in the suspension
(see appendix B), a particle passing through a q2D area and 3D volume is illustrated in
the left-hand and right-hand insets, respectively. The purple colour represents the
scanned area and volume after the particle has passed through the q2D area and 3D
volume, respectively.
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in which σ β= k T m2 /B . For long time t, equations (4) and (5) turn into the equations

α
=v

t k T

m

( )
(6)2 B

Δ α σ
β

=x
t

t( )
( )

. (7)2
2

For long time t, comparing the mean-square velocity vou
2 and the mean-square

displacement Δx( )ou
2 derived from equation (1) in the Ornstein–Uhlenbeck process without

external force [14], v2 and Δx( )2 in equations (6) and (7) have an extra coefficient α t( ). α t( )

is considered as a damping factor, reflecting the damping effect resulting from coupling
interaction of the particle motions. The damping factor α t( ) decreases with increasing time t. It

produces the damping effect on the double aspects: v2 decreases with increasing time; Δx( )2

increases with increasing time (t in equation (7)), but the damping factor α t( ) lessens the

increasing rate. As → ∞t , α →t( ) 1, =∞v k T m/2
B and Δ σ β=∞x t( ) /2 2, indicating that the

damping effect finally vanishes and the coupling system of Brownian particles reaches an
equilibrium.

3. Analysis of coupling motion of particles

In the present q2D cell, particles are approximately treated as a monolayer, because a particle
has not been observed to pass by another particle above/beneath; instead, a collision always
happens (see the videos in the supplementary material, available online at stacks.iop.org/njp/16/
073025/mmedia). Particle motion is considered as lying in the X–Y plane (parallel to the two
plates) due to the dimension reduction on the Z direction (perpendicular to X–Y plane). For a
q2D system with the separation distance of the two plates being several times the particle
diameter, the particle motion is restricted along the direction Z normal to the plates, and the
particle is in a relatively ‘static’ state along the Z direction compared with its random motion in
the 2D plane. As the particle locates close to the plate surface, the hydrodynamic stress field is
asymmetric for the whole particle sphere, fields being different for the semisphere near the plate
surface and the semisphere away from it. The stress field tends to bring the particle to the
middle zone between the two plates for the force balance. Therefore, in the case of having no
gravity effect in our system, the middle zone between the two plates is an equilibrium position
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where the monolayer of particles lies. Actually, this distribution of the particles is approaching a
true 2D system.

The persistent collisions inevitably result in the damping of particle motion. The ratio of
the distance between the two quartz plates and particle size (w r/2 ) is 5.6, thus the viscosity of
the dilute suspension is the same as that of the bulk, in terms of the experimental study of
Peyla et al [16]. In the present system, during the slow process for approaching the equilibrium
in a q2D cell, many collisions have been experienced by an individual particle. In each collision
process, the energy dissipation of the particle is very small. Therefore, the coupling interaction
is weak damping, so k is close to unity and γ is small. We get the root-mean-square (rms)
velocity from equation (6) for the long damping process,

= = + − γ− −[ ]v v k k T m1 ( 1) e . (8)t
rms

2 1

B

As Einstein pointed out, the velocity and direction of particle motion change in an
extremely short time, so the instant velocity can hardly be measured [17]. Here the motion of
particles is measured with the absolute value of its displacement in a time interval of 16.7 ms
instead. To describe the damping in the dynamic process, theoretically, a damping parameter
with the character of velocity is chosen as the root-mean-square velocity shown in equation (8).
Experimentally, as shown in figure 2(a), the mean (absolute value of) displacement occurs in
16.7ms, corresponding to the velocity Δ= | |V x /16.7 ms. Thus the reduction of the mean
displacement can reflect the velocity decreasing in the damping process. Here, the
displacements of all the particles of interest are counted. For simplicity, the counted number
is normalized by the maximum value to get the value Q. The statistical result of huge quantities
of trajectories displays a broad spectrum of the particle displacement Δx (figure 2(a) inset). The
fitted curve in figure 2(a) reaches a plateau at about 95 h. No increasing or reducing tendency
appears, but only a small fluctuation of the mean displacement. This indicates that the system
reaches an equilibrium state.

The mean square displacement of particles is slowly damped with time over the very long
time scale (figure 2(b)). On the other hand, on a relatively short time scale, the mean square
displacement is linearly proportional to the time (figure 2(c)). This is consistent with Einsteinʼs

theory on Brownian motion, Δ =x Dt22 , where D is the diffusion constant. The slope of the

linear lines in figure 2(c) corresponds to the diffusion constant, which indicates the diffusion

constant at 1 h is larger than that at 100 h. Figure 2(c) also indicates that Δx2 at 1 h is larger

than that at 100 h, which is consistent with the damping of particle motion displayed in
figure 2(b). As shown in figure 2(d), a distribution centering around 80 nm consists of huge
numbers of displacements and can be fitted with a Gaussian function, which is maintained
during the coupling (damping) process.

Figure 2(a) indicates that the coupling interaction between particles leads to damping of
particle motion. The mean displacement Δx decreases from 139 nm at the beginning (1 h) to
131 nm at equilibrium (∼100 h), with a 6% reduction. Since huge numbers of trajectory steps
(e.g. ∼104) are considered here, this total reduction is a great amount, which is significant in the
dynamic system. The dynamic change (fluctuation) of Δx reflected by the average of a few
trajectory steps is more obvious than that done by the huge quantities of steps in figure 2(a). For
the details of the analysis, see appendix C. The result of the damping is reliable for the
following reasons. First, the result is based on the statistics of large numbers (e.g. ∼104
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trajectory steps of nearly 500 particles at 1 h) of the measurement. Second, from 1 h to ∼100 h,
the results at all times point to damping. This indicates that the damping is not a fluctuation at a
special time but a determined changing tendency. The average displacement Δx in a time
interval 16.7ms, i.e. average velocity Δv , gradually decreases with the time, but the reduction
rate decreases (figure 2(a)). This is consistent with the prediction from equation (8) shown in

Figure 2. The dynamic change of the parameters in the coupling process. (a) The mean
displacement and (b) the mean square displacement are slowly damped. Δx is
calculated by dividing the sum of all displacements (absolute value) in a 16.7 ms
interval by the total number of steps of all particles of interest. The starting data point is
chosen at 1 h because at this time the stability is established after the suspension is
sealed into the q2D cell. The red dotted line is an exponential fit. Inset is the survey
spectrum of the displacement of particles at 1 h. In (a) and (d), Q is the normalized
quantity. (c) The mean square displacement is linearly proportional to the time. (d)
Huge numbers of displacements displays a normal distribution centering around 80 nm,
showing a statistical maximum probability at a certain value. The normal distribution
has been kept in the whole coupling process, which can be fitted with a Gaussian
function (pink lines). (e) Theoretical predication of the velocity damping. k = 0.9995,
γ = 0.000025.
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figure 2(e). Therefore, the damping factor α t( ) in equation (6) can describe particle motion
slowly damping into the final equilibrium.

Because the instant velocity of Brownian motion is not available in the present work, here
the discussion of the velocity is made on a qualitative assessment. vrms in figure 2(e) refers to the

instant velocity on a typical time scale, ∼ −10 6 s. However, the time scale of the average velocity
corresponding to figure 2(a) is ∼ −10 2 s. The consistency in the dynamic tendency of these two
velocities is manifested once the conceptions of the different time scales are reconciled.
Consider a particle moving 104 steps with each step of time interval −10 6 s; the total duration is

−10 2 s. Suppose that a 6% reduction of displacement (δ Δ =x 139–131 nm) has been achieved

by accumulation of the reduction over 104 steps, with the decrease of each step by × −8 10 10

mm. Thus the velocity reduction is × − −8 10 mm10 s10 6 , namely, the velocity damping from 1 h
to ∼100 h is of the order of magnitude of ∼ − −10 mms4 1, which agrees with the result derived
from equation (8) shown in figure 2(e).

As presented in figure 2(a), the displacement tends to approach a saturated plateau, i.e. the
dynamics of particles reaches the equilibrium state at ∼100 h. The ratio of the relative value of
Δx (Q) at various times to that at ∼100 h is represented by the value Qr (figure 3(a)), which is
obtained from Q divided by the reference Q100 (the Q at 100 h in figure 3(b)). At the beginning
(1 h), large numbers of displacements form a spectrum possessing many spike-like peaks.
Thereafter (10 h), these quantities decrease, with the whole spectrum lowering towards the
baseline ( =Q 1r , corresponding value displayed in figure 3(b)). With the time proceeding (40 h,
80 h), the numbers of displacements larger than 200 nm continually decrease. Some fluctuation
of quantities around the baseline appears at 80 h.

Most of the reduction of the numbers of displacements (>80 nm) occurs in the first 10 h,
whereas a small amount of reduction is produced in the subsequent process. In fact, decreasing
numbers of displacements (>80 nm) in figure 3(a) lead to the average displacement decreasing
in figure 2(a). Both figures indicate that relatively quick damping occurs in the first 10 h,
followed by slow damping in the subsequent coupling process.

The above description indicates the existence of a long quasi-equilibrium of Brownian
particles in the q2D confinement, in which the dynamic system slowly proceeds toward the
equilibrium. The stochastic force originates from the thermal fluctuation, whose effect may be
considered invariant. For particles of damping motion, the friction force and coupling
interaction of particles reduce as velocity decreases. In figure 2(a), the time corresponding to1/e
of the initial mean displacement is the relaxation time of 17.7 h. At the equilibrium state, on the
statistical meaning for the whole q2D system of Brownian particles, the energy gained by the
particles from the collision is offset by the dissipative energy resulting from the collision.

4. Trajectory analysis of particle coupling motion

In the case of a particle performing random motion in a stochastic process, Gaveau et al derived
the equation from the statistical mechanics describing the probability density of the particle
[18]. We find it is feasible to modify this equation by incorporating the damping effect, i.e.,
adding λ−e t (λ, damping coefficient) on both sides of the equation (for the derivation see
appendix E),
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where P x t( , ) is the probability density of a particle appearing at position x at time t, a0 the
initial probability for the change of motion direction in unit time, and v0 the initial velocity of
the particle. Solving the equation above, we get (appendix appendix E)

= + − = …ρ ζ− − −[ ]P v v v v k x n( ) e e cos , 0, 1, 2 (10)n
t t

n0
1

e 0 e

in which = π+kn
n

L

(2 1)

2
(L is the moving distance of the particle without changing direction), ve the

velocity at equilibrium, ρ = −a k v2 n0
2 2

0
2 , ζ = − − λ−( )a a k v en

t
0 0

2 2
0
2 .

Figure 3. Distribution of the displacement (in 16.7 ms) of particles at various times. (a)
Decreasing the relative number of various Δx values reflects the damping of particle
motion in the coupling process. The horizontal pinkish line locating at unit value
indicates the value at equilibrium. Qr is the relative quantity, corresponding to Q at
different times divided by that at 100 h in (b). The first spectrum at 1 h is acquired from
figure 2(a) inset divided by figure 3(b). (b) The spectrum of the displacement of
particles at equilibrium at 100 h. Q is the normalized quantity.
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Equation (10) indicates that the probability density of the particle fluctuates in the spatial
distribution. In Brownian motion, particles move in random directions. The superposition of
many density fluctuations with random directions leads to the fluctuation (inhomogeneity) of
particle distribution, as shown in figure 1(a). This is analogous to the works of Cahn and Vrij in
spinodal decomposition [19] and spinodal dewetting [20], respectively. Cahn and Vrij showed
that the superposition of fluctuations (of composition/film thickness) with random directions
forms the inhomogeneous distribution of concentration [19] and thickness [20]. Particle
trajectories are produced by the positions of particles accumulated in a time interval which are
keeping in an inhomogeneous distribution (figures 4(a) and (b)).

A particle with a larger velocity appears in more locations in unit time, thus corresponding
to the larger probability density here. Equation (10) indicates that the probability density of a
particle decreases with time due to the damping, corresponding to the reduction of velocity. The
damping factor ζ exponentially decreases with time, meaning that the damping effect lessens
with time, which is consistent with the experimental results in figures 2(a) and 3(a).

The effect of particle interaction in the coupling process is indicated in the experimental
results shown in figure 4. Analysis of the details (not obvious in figures 4(a) and (b)), shows that
more trajectories of different particles (displayed by different colors) intertwine together in

Figure 4. Coupling the motions of particles and overlapping the trajectories of motions.
(a), (b) The entanglement of the trajectories of particles at 1 h and 100 h, respectively.
Different colors are used to identify the trajectories for different particles. The scale bar
shows the field of view of 256 × 256 pixels. (c), (d) Overlapping trajectories represented
by the peaks. The higher peak corresponds to the strong overlapping of more
trajectories, depicted with warm colors (yellow and even red at the peaks). The insets in
(c) and (d) are the active area of an individual particle and the illustrative overlapping,
respectively.
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figures 4(a) than in (b), indicating stronger particle interaction at 1 h than at 100 h. To
quantitatively evaluate the interaction, in figures 4(c) and (d), overlapping trajectories of
different particles are represented by the height. A higher peak means that more trajectories are
overlapped (i.e. stronger intensity of overlapping). The heights of the peaks have reduced after a
long coupling process, implying that the intensity of trajectory overlapping decreases, i.e.,
particle interaction is damped with time. We denote the active area of the particle as the area S
enclosing the trajectories of the individual particle for a time interval Δt indicated by the dashed
circle (figure 4(c) inset). The reduction of the heights of peaks results from the overlapping
active area (figure 4(d) inset) decreasing, corresponding to the active area shrinking. Thus the
probability of finding the particle in unit area decreases, i.e. the probability density of the
particle reduces, as corroborated by equation (10). Therefore, the reduction of overlapped areas
means that the intensity of particle interaction has decayed.

The changing character of particle trajectories in the solid–liquid phase transition was
displayed in the pioneering work of Pierański et al [21]. Pierański et al showed that particle
trajectories turned from regularity to irregularity as the solid–liquid phase transition occurred. In
the solid phase, the trajectories of each particle made up a circular shape (a trajectory disc). Like
atoms in a crystal, trajectory discs located on the lattice position, indicating no overlapping
trajectories between particles. In contrast, the configuration of trajectories was irregular, random
and overlapped in the liquid phase. Recently, Türkcan et al corroborated that the force acting on
a Brownian particle can be derived from statistical analysis of particle trajectories [22]. The
variation of the force on the particles corresponds to the different circular (or elliptical)
configurations of particle trajectories.

5. Conclusion

In summary, we report the existence of a quasi-equilibrium state of Brownian particles in q2D
confinement. In the quasi-equilibrium state, the confinement results in coupling particle
motions, which slowly damps the mean displacement and interaction of particles. The change of
the mean displacement is terminated after a relatively long process (∼100 h), indicating that the
quasi-equilibrium state has transited into the equilibrium one. This transition process is a
random relaxation of the q2D system with Brownian particles. The relaxation time of the
system is 17.7 h. In the equilibrium state, for the whole system with statistical meaning, the
energy acquired by the particles from the stochastic collision is equal to the dissipative energy
resulting from the collision. The theory developed here predicts the dynamic coupling motions
of Brownian particles, which are consistent with the experimental result.
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Appendix A. Experiment

Materials. A colloidal suspension of polystyrene microspheres (microParticles, Germany) was
used as received. Particles were monodispersed in aqueous solution with the weight percent
10wt%. The diameter of the particles is μ1.39 m, with a standard deviation (SD) of μ0.04 m.

The suspension is further diluted to1wt% with deionized (DI) water ( −1.0 g ml 1) with a standard
resistivity of 18.29 Ωcm. To exclude the gravity effect of particles, heavy water (D O2 : density,

−1.107 g ml 1; purity, 99.9%; Sigma-Aldrich) and DI water are mixed to make an aqueous

solution with a density of −1.05 g ml 1, the same as the density of the polystyrene microspheres.
Experimental setup. Two parallel fused quartz plates (UQG Optics, UK) with the

dimensions of × ×25 25 1 mm are placed horizontally as a q2D cell. The quartz plates are
polished into a high level of uniformity of roughness and flatness by the product supplier. The
root mean square roughness of both sides of the plates is characterized by atomic force
microscopy (Dimension Icon, Veeco) as 0.6 nm in μ×10 10 m area. The flatness and
parallelism are better than five optical fringes and less than a 3 minute arc (1/20 degree),
respectively. The quartz plates are washed subsequently by acetone, ethanol and DI water, then
dried by dry nitrogen flow.

Thanks to the hydrophobic property of the plates, μ0.4 l polystyrene suspension is dropped
on the bottom substrate. Silicone oil is coated on the outer area of the droplet to form a ‘corral’.
Silica microspheres (diameter μ7.75 m, SD = μ0.29 m, 5wt% aqueous suspension,
MicroParticles, Germany) are used as the spacers on the plate edges to separate the two plates.

To prevent the evaporation and the leaking of water throughout the observation, optical
adhesive (NOA 63, Norland Products, USA) is useful to seal the cell. The adhesive is exposed
by 365 nm ultraviolet light with 3 W power for 3 min. The cell then cools down for about 1 min.

Optical observation. Long working distance optical microcopy (Eclipse LV100, Nikon)
with the transition mode and objective lens ( ×50 , CFI, ELWD, NA = 0.55, WD = 9.8mm) is
employed to image the particle motion. A Marlin AVT CCD camera is operating at

−60 frames s 1 and a resolution of −475 nm pixel 1. The depth of field for the optical system is
about μ1 m, which is smaller than the diameter of the particle devoted to good focus on one
layer of the particles in the solution. A monolayer of particles located in the middle zone
between the two plates has been assured by moving the focal plane of the microscope back and
forth between these two plates. As the size of the video file recorded in 100 h far exceeds the
storage of the computer disk, and the mean square displacement changes very little in one h due
to the system evolving very slowly in 100 h, thus particle motion has been recorded for ten
minutes at the beginning of each h, then the illumination is turned off to avoid thermal
perturbation on the q2D cell. The temperature during the observation is relatively stable (with
the variation less than °2 C).

Image processing. A plugin [23] in ImageJ from NIH developed by the MOSAIC Group
at the Max Planck Institute of Molecular Cell Biology and Genetics is employed to detect the
particles and track their motion in the 2D surface. Specific parameters suitable for our system
are the following: image imported, 1000 frames; field of view, 256 × 256 pixels; time interval,
τ = 16.7ms; radius of particle, 3 pixels; cut-off, 0; percentile, 2; link-frame, 2 frames;
displacement, 1 pixel. By running the plugin, the trajectory for each particle is recognized and
recorded as x–y coordinates. The adjacent coordinates are used to calculate the mean

12

New J. Phys. 16 (2014) 073025 J Ma and G Jing



displacement Δx by summing the individual displacements ΔXi j, and taking the average of all

displacements,

Δ = − + −− −

⎡
⎣⎢

⎤
⎦⎥( )( )X x x y y , (A1)i j i j i j i j i j, , , 1

2

, , 1

2 0.5

where i is the trajectory sequence and j is the position sequence of one particle for its trajectory.
Trajectory overlapping is calculated as

∑ ∑= =
= =

C
n

x C
n

y
1

;
1

, (A2)x
i

j

n

i j y
i

j

n

i j
p 1

,
p 1

,

p p

where Cx
i andCy

i are the center coordinates of the ith trajectory and np is the number of positions

in a time duration. For example, when particles A and B are very close, their trajectories will
overlap as time proceeds, then the position of the center of trajectory A is apart from that of
trajectory B within a critical distance d0. We define

= − + −− −⎡⎣ ⎤⎦( )( )d C C C C (A3)x
i

x
i

y
i

y
i1 2 1 2 0.5

as the distance between the centroids of two trajectories. For each trajectory, we search all its
neighbors, and group them in a threshold distance to form a trajectory cluster with the center

( )x y zO , ,m m m m . The value of zm is the intensity of trajectory overlapping. Then the coordinate of

the trajectory cluster is

∑ ∑= =
= =

x
N

C y
N

C
1

;
1

, (A4)m
i

N

x
i

m
i

N

y
i

1 1

where N is the number of trajectories grouped in a trajectory cluster, m is the sequence number
of trajectory clusters.

∑= = − < = ⩾
=

( )z z z k d d d d z d d; , ; 0, . (A5)m
i

N

i i i
1

0 0 0

k is the interaction factor and is set to 10 in the present case, and d0 is the diameter of a particle,
which corresponds to the minimum distance between the centers of two adjacent particles.

Estimation of resolution for particle tracking. The tracking tools [23] employed in the
present work has been developed from the work of Croker and Grier [13]. The errors mainly
come from the following two aspects [13]. (a) The error resulting from clipping in the
displacement of particle position is

Δ ε≈ − − −ε

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

w

s

w

s

w

s

2
exp

2
1 exp

2
(A6)c

2

2

2

2

2

2

1

in which ε ε ε= +x y
2 2 is a number larger and smaller than the apparent radius (of the particle)

in pixels and the interparticle separation, respectively; s is the particle radius in the image. εx and
εy are the deviations from a particleʼs centroid in x and y directions, respectively,
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is the integrated brightness for a particle with + ⩽i j w2 2 2, i, j are integers, i j,m m
are the

maximum values of i, j, respectively, and A(x,y) is the brightness. (b) The error due to the noise
in the background brightness:

Δ Δ
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where ΔA is the deviation from m0 as the background brightness is changing. Thus the total
measurement error of the particle tracking is

Δ Δ Δ= +ε ε ε( ) ( ) . (A11)c 2 n 2

Taking the average value of three measurements, ≈w 3 pixels, s = 2.5 pixels. When the particle
has moved for the time of 16.7 ms, we get =m 3383, 2758, 26830 and

′ =m 3423, 2713, 26510 , respectively, that is =Δ 0.012, 0.016, 0.026A

m0
. Additionally, we get

ε ε ε= + = 0.073, 0.066, 0.160x y
2 2 , respectively. By using the equations (A6), (A10) and

(A11), we have Δ Δ≈ ≈ε ε0.011, 0.012, 0.02, 0.010, 0.014, 0.023c n , and
Δ =ε 0.02, 0.02, 0.03, respectively. Therefore, the precision of the particle tracking in the
present work, taking the mean value, is ∼10 nm.

Δε
c and Δε

n are random errors, thus the total error Δε is a random error. The uncertainties
caused by the random error have equal chances to be positive and negative, where these positive
and negative uncertainties would cancel each other [24], [25]. As a large number of
measurements are made, the average of the measurements would be very close to the true value
[24]. Since the measured numbers of particle trajectories are large, random error tends to cancel
out. Therefore, although the above calculation of Δε leads to an uncertainty of ∼10 nm, the
actual uncertainty could be less than this due to the character of random error for Δε.

Appendix B. Collision rate

The collision rate can be qualitatively analyzed by approximately considering the bulk and q2D
suspension as consisting of cube and square zones (with colloidal particles as vertices,
figure 1(c) inset), respectively. The number of particles in a cube is × =8 11

8
, thus the volume
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density of particles ϱ = πr

ab

4

3

3

3 , where a is lattice length. After a particle has passed a cube zone,

the volume of its path π≈V r ab
2 . So the possibility of the particle colliding with the other

particles (at vertices) in a cube, = ϱ = πp V

a

r

ab b

4

3
b
3

2 5

5 . The number of particles in a 2D square area is

× =4 11

4
, so the area density of particles ϱ = πr

aq

2

2 . The area of the path corresponding to a

particle passing through the square zone, s ≈S ra2q . Then the possibility of the particle

colliding with other particles (at vertices) in a square, = ϱ = πp
S

a

r

aq q

2q

2

3

3 . Thus

= ≫( )p p/ 0.5 1a

rq b

2
(for dilute suspension). Therefore, as the particle passes the same distance

in the suspension, the possibility of particle collision in the q2D confinement is much larger
than that in the bulk.

Appendix C. The damping effect

For the N measurements of particle displacement, the difference of the average displacement at
the different times is

δ Δ Δ Δ= − ′x x x (A12)t t

where t and ′t are different times. For the convenience of understanding the damping effect, here
we derive an alternative mathematical presentation for δ Δx :

Δ Δ− ′x xt t = −Σ Σ ′x

N

x

N
t t = Δ Δ Δ Δ− + −−

′ ′
⎡⎣( ) ( )N x x x xt t t t

1
1 1 2 2 + Δ Δ− ′( )x xt t3 3 +

Δ Δ… + − ′
⎤⎦( )x xtN t N = δΔ δΔ δΔ δΔ+ + + … +− [ ]N x x x xn

1
1 2 3 = ΣδΔ δΔ=−N x xk

1 , thus,

δ Δ δΔ=x x (A13)

Table 1 displays △x and δ Δx( ) produced by an arbitrary data sequence at 1 h and 95 h.
For table 1, the total sum Σδ Δ =x( ) 1872 nm. From equation (A13),
δ Δ δΔ Σδ Δ= = =x x x( )/20 94 nm. For one pair of Δx at different times, the maximum
δΔx in table 1 is 258 nm, whereas for 20 pairs of Δx, the corresponding δ Δx is 94 nm. Taking
into account the huge numbers of Δx in the experimental measurement, we reach the result of
Δx displayed in figure 2(a). As shown in figure 2(a), δ Δ =x 8 nm is produced from the
damping from the beginning (1 h) to the equilibrium (∼100 h). These results reflect the fact that

Table 1. Example of Δx and δ Δ Δ Δ= −x x x( ) 1 95.

Δx nm( )1 94 331 239 93 206 206 155
Δx nm( )95 128 73 254 254 88 3 91
δ Δx nm( ) ( ) −34 258 15 −161 118 203 64
Δx nm( )1 88 204 211 212 147 141 212
Δx nm( )95 91 90 0 14 181 155 2
δ Δx nm( ) ( ) −3 114 211 198 −34 −14 210
Δx nm( )1 147 142 71 331 350 76
Δx nm( )95 2 0 153 221 7 7
δ Δx nm( ) ( ) 145 142 −82 110 343 69
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the higher the values of the Δx measurement, the lower the value of δ Δx is. This means that a
reliable value of δ Δx can only be established on the basis of the statistics of large numbers of
δ Δx .

On the other hand, this indicates that, though the average value of large numbers of Δx is
small, one or the average of a few Δx is much larger, which reveals that the dynamic change is
more obvious than reflected by the average value of large numbers of Δx in figure 2(a). This is
well indicated from the above analysis of table 1 by using equation (A13). δ Δ =x 8 nm
shown in the main text is obtained by using equation (A12), because the total numbers of the Δx
at the different times are different and equation (A13) is based on the same numbers of Δx. For
the analysis of trajectories in 16.7ms, the software outputs results which show that the particle
number and valid trajectories are 492 and 10 232, 463 and 8508 for 1 h and 95 h, respectively.

Appendix D. Solution of equation (3)

Solving equation (3), we get

∫= − + + − +γ
β
γ γ

β
γ β− − −⎧⎨⎩

⎫⎬⎭[ ]( )v k k A t t C1 e 1 ( 1) e e ( ) d . (A14)t
t

t t

0

1

γ is far less than and k is very close to unity, thus − ≪γ−k( 1) e 1t . With series expansion,

∫ + − γ β− −β
γ⎡⎣ ⎤⎦k A t t1 ( 1) e e ( ) d

t t t

0

1 ∫≈ + − −β
γ

γ β−⎡⎣ ⎤⎦( ) k A t t1 1 ( 1) e e ( ) d
t t t

0

∫= + − −β β
γ

β γ−⎡⎣ ⎤⎦( ) k A t te 1 ( 1) e ( ) d
t t t

0

( ) , as =A t F m( ) ( / ) is not a function and β γ≫ , thus

+ − γ− −β
γ⎡⎣ ⎤⎦k1 ( 1) e t 1

can be moved outside the integral symbol with negligible error on the

integral value,

∫
∫

+ −

≈ + −

γ
β
γ β

γ
β
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t
t t

t
t

t

0

1

1

0

For initial conditions t = 0 and =v v(0) 0, from equation (A14), we obtain =
β
γC k v0.

Substituting C and equation (A15) into equation (A14), we obtain

∫ ξ ξ

= + −

+
+ −

β
γ γ

β
γ

β

γ
βξ

−

−

−

( )v v k k

k
A

e 1

e
1 ( 1) e

e ( ) d . (A16)

t

t

t

t

0

0

Taking the square of equation (A16) and doing the calculation, we get the mean-square velocity

v2 as presented in equation (4). Integrating equation (A16) to get the displacement,
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Due to the slow damping process, γ <t 1,

γ γ γ= + + + … ≈ +γ t t te 1
1
2

( ) 1 . (A18)t 2
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t t

t t

t
t

0 0

We substitute equations (A18) and (A19) into the first and second terms of equation (A17),
respectively. Integrating the first term and performing integration by parts for the second term, it
reaches

∫ ∫

Δ
β γ γ β

ξ ξ ξ ξ

=
−

−
+

+
+ −

× − +

β
γ

γ

β βξ

−

−

−

⎡

⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

[ ]
x

kv k

t k k

A A

1
1

1 ( 1) e

e e ( ) d ( ) d . (A20)

t

t
t t

0

1

0 0

Squaring equation (A20) and performing the calculation (β γ≫ ), we have equation (5).

Appendix E. Derivation and solution of equation (9)

(a) Derivation. Gaveau et al derived the probability density of the particle performing the
motion in the stochastic process as [18]

∂
∂

+ ∂
∂

= ∂
∂

P

t
a

P

t
v

P

x
2 . (A21)

2

2
2

2

2

Here, we derive equation (9) by working out the coefficients a v, in the case of particle motion
damping. The velocity of the particle is slowly damped as = λ−v v e t

0 . Consider that a particle
has been persistently bombarded by liquid molecules, with the average number of collisions nc

per unit length of its trajectory. The particle changes the direction of motion after passing an
average length of trajectory L, i.e., after n Lc collisions with liquid molecules. The probability of

change of the direction of motion in unit time, = = =λ λ− −a v L v L a/ e / e .t t
0 0 Substituting v and a

into equation (A21), we get equation (9).
(b) Solution. Setting =P x t X x T t( , ) ( ) ( ) and using the method of separating variables,

we convert equation (9) into the following equations:
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″ + = = …X k X n0, 0, 1, 2 (A22)n
2

″ + ′ + = = …λ λ− −T a T k v T n2 e e 0, 0, 1, 2 . (A23)t
n

t
0

2
0
2 2

The general solution of equation (A22) is = +X c k x c k xcos sinn n1 2 . Using the initial
condition = =P X T(0, 0) (0) (0) 1, as =T (0) 1 (no damping at t = 0), =X (0) 1, we obtain

= =X c(0) 11 . Furthermore, | == 0X

x x
d

d 0 ; we have = =c k c0, 0n2 2 . In addition,

= = =P L X L T X L( , 0) ( ) (0) 0, ( ) 0, so = = = = …π+X L k L k n( ) cos 0, , 0, 1, 2n n
n

L

(2 1)

2
.

Thus we have

=X k xcos . (A24)n

We realize that = −T e st
1 can be a particular solution of equation (A23). Substituting T1 into the

equation we obtain = ± −λ− ( )s a a k ve t
n1,2 0 0

2 2
0
2 . In the case of the damping, we take

= − − =λ λ− −( )s a a k v ce et
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t
0 0

2 2
0
2

0 . The second linearly independent solution of

equation (A23) is ∫ ∫= =∫− +λ λ
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2 e d
1
2

1
2t t a

0
0

0 . As λ has similar character

to γ in equation (A18), ∫≈ =λ− +
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where ρ= = − = − −λ
−c a k v c a a k ve , 2 ,( )

c

c a

a

n n5 2

2 0

0
2 2

0
2

0 0 0
2 2

0
24

0 0
. The probability density in

an interval +x x x[ , d ] on a line of length L is proportional to the numbers counted for a particle
lying in +x x x[ , d ]. The higher the velocity is for the particle, the more counts it has in unit
time, i.e. ∝P v. The ratio of probability density for → ∞t to that for t = 0,

= = =∞ ∞ ∞P x

P x

X x T

X x T

T

T

v

v

( , )

( , 0)

( ) ( )

( ) (0)

( )

(0)
e

0
, where ve is the velocity at the final equilibrium state as → ∞t .

Since − = =λ

→∞

−

→∞

−
λc tlim e lim 0

t

t

t

c t
0 e t

0 , from equation (A25), ∞ = =T c v v( ) /3 e 0. For the initial

condition = + =T c c(0) 13 5 , = −c 1 v

v5
e

0
. We obtain

= + − ρ− − −λ− [ ]T t v v v v( ) e ( ) e . (A26)c t t
0

1 e
e 0 e

t
0

From equations (A24) and (A26), we thus arrive at the product solution equation (10).
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