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Abstract. We present a model for exciton-mediated first-order Raman
scattering by longitudinal optical phonons in the presence of surfaces and point
defects. It is consistent with the experimental data for all wurtzite structure
materials investigated and reviewed here (GaN, InN, ZnO and CdS) and also
explains not yet understood observations in the literature. We distinguish
between the involvement of elastic scattering by the surface and by point defects
in the scattering process. Surface scattering causes the dependence of the line
position on the crystal orientation of the excited surface in pure crystals. Point
defect scattering is independent of the crystal orientation and appears as an
additional contribution in defect-rich crystals. We postulate the polarization
properties of these distinct processes which are in good agreement with the
experiments and allow us to identify and separate the contributions of these two
effects from the polarized spectra.
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1. Introduction

Raman scattering is an experimental optical technique that is widely applied for the non-
destructive investigation of structural properties like strain, disorder and defects. Defects
particularly play an important role for Raman spectra excited above the band gap. In the case
of polar crystals such as wurtzites, such spectra primarily show a series of lines from multiple
scattering by longitudinal optical (LO) phonons. The dominating physical process causing the
observation of the first-order LO peak (1LO) is substantially different from the sole inelastic
exciton–phonon scattering causing the higher order peaks, because it requires an additional
scattering step breaking the momentum conservation, which leads to an experimentally
observed redshift of the 1LO line in the order of several cm−1 relative to the respective 0-point
mode. This step can be provided by elastic scattering by defects (cf figure 1). Based on this
picture, models were developed to describe the resonance profile of cubic semiconductors for
energies around the band gap and also well above it [1–3] by considering an elastic scattering
process. Commonly, such elastic scattering has been assumed to be induced by impurities in the
samples. Contrary to the isotropic materials studied in these publications, in uniaxial wurtzites
the energy of the involved phonons, and thus the spectral position of the 1LO peak, is linked to
the direction of the phonon wave vector relative to the crystal axis. The phonon wave vector in
turn is determined by the elastic scattering step. Thus, the investigation of the spectral position
of the 1LO line in wurtzites, when excited above the band gap, allows us to investigate the
properties of this defect-induced elastic scattering.
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Figure 1. Cascade model for inelastic scattering by phonons only (right hand
side) and the extended cascade model which additionally includes an elastic
scattering process leading to 1LO emission (left hand side). K is the exciton
centre-of-mass wave vector, the parabola depicts the dispersion of the discrete
exciton states. Blue arrows depict inelastic exciton–phonon scattering, the red
(horizontal) arrow depicts elastic scattering of the exciton.

The state of the literature on this topic differs between indium nitride (InN) on the one hand,
which is always excited above its small band gap, and wide band gap materials like zinc oxide
(ZnO) and gallium nitride (GaN) on the other hand, for which in most publications an excitation
below the band gap was chosen. However, for the latter ultraviolet (UV) Raman measurements
are also available [4–8] allowing for a comparison between both types of excitation. In the
case of InN, the lack of Raman spectra excited below the band gap, accompanied by the fact
that samples with sufficiently low charge carrier densities are hard to produce, resulted in a
controversy on the actual energy of the two zone centre LO phonons [9–11], because only
phonons with large wave vectors are observed. For ZnO and InN, it was demonstrated that the
1LO peak position depends on the crystallographic orientation of the excited surface [6, 10, 12].
This dependence cannot be caused by scattering at the commonly assumed isotropic impurities.
The change of the photon propagation direction by varying the excited surface can also be
ruled out as an explanation as the wave vector of the photons is negligibly small compared
with that of the involved phonons. We discuss this contradiction below in detail and present
further additional experiments ruling out the influence of the light wave vector. To solve this
problem, we introduce a model generalizing the elastic scattering process to be induced by any
crystal defect that is localized in real space and can therefore break the Ek-conservation. Starting
from this, we show that, in addition to the established scattering mechanism at the impurities
(i.e. point defects), elastic scattering at the surface (i.e. planar defects) can be observed and
that these two processes can be distinguished experimentally. This can be used to gain access
to surface properties as well as incorporated impurities of the sample, from which especially
material scientists may greatly benefit.

Polarization resolved Raman spectra of InN in the literature show changes of the 1LO peak
position with the polarization configuration [9, 13, 14], which have not been discussed so far.
For the wide band gap materials, no polarization resolved UV Raman measurements have been
published yet. In this paper, we demonstrate that the 1LO peak of ZnO and GaN exhibits similar
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polarization behaviour as already observed for InN. We show that this phenomenon can also be
understood in terms of the two distinct elastic scattering paths introduced above by postulating
the polarization properties for them.

This paper is structured as follows: in section 2, we introduce our extended model
and derive predictions for the Raman spectra. Subsequent to introducing our experimental
conditions in section 3, we present our measurements on GaN, ZnO and CdS in section 4 to
verify these predictions and discuss the results in section 5.

2. Theory

First, we recall the bases of Raman scattering in wurtztite crystals in general. In the second
subsection, we explain the peculiarities in the case of resonant excitation above the band gap
and elaborate the discrepancies between the experimental data and their interpretation in the
literature. In section 2.3, we propose our model of 1LO Raman scattering due to the defects and
then give a list of predictions resulting from it in section 2.4.

2.1. Non-resonant Raman scattering in wurtzite crystals

The wurtzite crystal structure belongs to the space group P63mc in international and C4
6v in

Schönflies notation. Its elementary unit cell consists of four atoms resulting in 12 phonon modes
of which 9 are optically active. According to group theory, the optical phonon modes belong to
the irreducible representation [15]

0opt = A1 + 2B1 + E1 + 2E2 (1)

at the 0-point of the reciprocal space. The atomic motion is parallel to the c-axis for the
A1 and B1 modes and perpendicular for the modes with E-symmetry. The A1 and E1 modes
are polar and therefore split into transversal optical (TO) and longitudinal (LO) modes at the
0-point. They are infrared and Raman active. The B1 and E2 modes are non-polar. While the E2

modes are Raman active only, the B1 modes are silent, i.e. neither Raman nor infrared active.
Exemplarily, Raman spectra for GaN, ZnO and CdS excited below the band gap are shown in
figure 2. These spectra were measured in two backscattering geometries, one with the light beam
parallel (z(xx)z̄) and one perpendicular (x(y + z, y + z)x̄) to the crystal axis c, depicting the
typical features of the wurtzite structure. Scattering geometries are given in Porto notation [15]
ki(eies)ks where k means the direction of the light wave vector within the sample and e the
direction of the polarization while the indices denote the incident (i) and scattered (s) beam,
respectively. The direction z is set parallel to the c-axis of the crystal, the notation y + z denotes
the direction (011).

The selection rules of the zone centre modes for selected scattering geometries as
determined by the according Raman tensors [16] are summarized in table 1. They are only valid
for deformation potential scattering which is the scattering mechanism for all nonpolar as well as
polar TO modes while for the polar LO modes Eq-dependent Fröhlich scattering can also occur.
In the latter case, the selection rules of table 1 are no longer valid and ‘forbidden’ scattering
can be observed. This might explain the observation of the weak E1(LO) peak in figure 2 for
GaN and CdS. As in the experiments typically focusing optics with high numerical apertures are
used, the selection rules might also be softened by the non-ideal normal incidence causing the
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Figure 2. Representative Raman spectra of (a) GaN, (b) ZnO and (c) CdS
excited on surfaces perpendicular (z(xx)z̄, black) and parallel (x(y + zy + z)x̄ ,
blue) to the c-axis at λexc = 532 nm showing all expected Raman active modes
of the wurtzite crystals. The peaks marked with an arrow are situated at the
spectral position of the E1(LO), which is however symmetrically forbidden in
this scattering geometry (see the text). Peaks which are not labelled result from
multi-phonon scattering processes.

Table 1. Selection rules for first-order Raman scattering by 0-point phonons in
the wurtzite structure.

Scattering geometry Allowed phonon modes

z(xx)z̄ A1(LO), E (2)
2

z(xy)z̄ E (2)
2

x(yy)x̄ A1(TO), E (2)
2

x(zz)x̄ A1(TO)
x(yz)x̄ E1(TO)
x(yz)y E1(TO), E1(LO)

appearance of the E1(LO) peak. For ZnO, we do not observe E1(LO) in backscattering geometry
due to its small scattering cross section at λexc = 532 nm.

In Raman scattering excited below the band gap, i.e. without the creation of real
intermediate states, only three quasi-particles are involved: the incident and the scattered photon
as well as the created (Stokes) or annihilated (anti-Stokes) phonon. For these, conservation of
energy and momentum need to be fulfilled, i.e.

h̄ωi = h̄ωs ± h̄ωp, (2)

Eki = Eks ± Eq (3)

for the Stokes (+) and anti-Stokes (−) process, respectively. Here, ωi, ωs and ωp are the
frequencies of the incident and scattered light and of the phonon, respectively, and Eq is the
phonon wave vector. In the case of backscattering Eq ≈ 2Eki is small enough, when compared
with the extension of the Brillouin zone, that we can treat the phonons as 0-point phonons. If
the resulting Eq is neither parallel nor perpendicular to the c-axis, the strict distinction between
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the A1 and E1 modes is no longer possible because the electrostatic forces causing the LO–TO-
splitting dominate over the crystal anisotropy. This results in quasi-TO (qTO) and quasi-LO
(qLO) modes situated energetically between A1 and E1. In the present paper, we deal only with
LO phonons, the frequency of their respective qLO modes can be approximated by [16]

ωqLO = ωA1(LO) cos2 β + ωE1(LO) sin2 β, (4)

where β is the angle between the Eq and the c-axis.

2.2. Resonant Raman scattering

In the present paper, we investigate the case of the excitation energy above the band gap of the
semiconductor. In this case, the Raman spectra of the wurtzite crystals typically exhibit a series
of almost equidistantly spaced emission lines which are assigned to multiple scattering from LO
phonons (nLO) [4, 17, 18]. An explanation for these high order processes is given in terms of
the so-called cascade model [19] as depicted on the right hand side of figure 1. In a simplified
excitonic picture, the incident photon creates a correlated electron–hole pair occupying a state
in the exciton continuum. This can scatter by one LO phonon into a discrete exciton state which
couples much stronger to the LO phonons via Fröhlich interaction than photons do. From such
an intermediate discrete state the exciton can either scatter by another LO phonon into a lower
energy (discrete) state or into a state near the 0-point where it recombines by emitting the
nLO Raman photon. Consequently, the spacing between the nLO lines is energetically slightly
smaller than the 0-point energy of the LO phonons.

For n > 2 the dominance of the cascade process described above is obvious because of
the resonance with discrete exciton states [20, 21], while for n = 1 (1LO) the direct scattering
processes near the 0-point might be preferred. Martin [21] showed that the enhancement of
the scattering intensity for excitation above the band gap for 1LO only occurs if at least one
of the following prerequisites is fulfilled: a steep dispersion of the exciton resulting in wave
vectors of the discrete exciton state at the excitation energy in the order of the light wave vector,
parallel valence and conduction bands or a breakdown of momentum conservation. Because we
treat the excitation well above the band gap and far below any other critical point, the first two
possibilities can be ruled out. The origin of the remaining process able to enhance the scattering
efficiency, i.e. the breakdown of momentum conservation, can be divided into two possibilities:
the broadening of the light wave vector by absorption and elastic scattering induced e.g. by fields
like the electric field due to a surface space charge region, or defects. In both cases, a redshift of
the 1LO line with respect to the 0-point phonon energy can be expected due to the contribution
of phonons with larger wave vectors. We checked whether the broadening of the photon wave
vector due to absorption could explain the magnitude of the experimentally observed redshift
(cf section 4.1). For this purpose, we carried out a calculation based on the equation for the
scattering cross section

σ = σ0
ωs

ωi

∫
dqz f (qz) × |R(q, 0, ωi, ωs)|

2
× δ(ωi − ωs − ω0(q)) (5)

adopted from [21]. Hereby, R is the wave-vector-dependent Raman tensor element and f (qz)

is a form factor representing the wave vector profile caused by the momentum conservation
breaking mechanism, σ0 is the Compton cross section and ωi and ωs the frequencies of the
incident and scattered light, respectively. The result of this equation is a simulated spectrum
which can be compared with the experimental data. Details of the calculation can be found in
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appendix A. In short, the results show that the redshift which can be expected due to absorption
is about one order of magnitude below the actually observed one. Therefore, the redshift cannot
be explained by only taking the photon absorption into account. Davydov et al [10] previously
showed experimentally that this redshift also depends on the energy of the exciting light. The
Raman shift of the 1LO line thereby followed roughly that of the phonon energy at the wave
vector of the discrete exciton states at the excitation energy. Conversely, the calculations show
that the dominating range of the phonon wave vectors participating in the scattering process for
the absorption case is mainly determined by the absorption coefficient and not by the exciton
dispersion (cf figure A.1(b)). Thus, we conclude that only the scattering mechanism including
elastic scattering by an inhomogeneity, i.e. defects of the perfect translational symmetric
crystal, similar to the cascade process for larger n, can explain these experimental observations.
This process is depicted on the left hand side of figure 1 and discussed in detail in the
following.

2.3. Influence of the dimensionality of defects

We group defects according to the dimensionality of their spatial localization: three-
dimensionally localized point defects, two-dimensionally localized line defects and one-
dimensionally localized planar defects. The breakdown of Ek-conservation, which is just a
consequence of Heisenberg’s uncertainty principle, only occurs in the directions of localization,
e.g. only perpendicular to a planar defect. Consequently, only phonons from the respective
directions of the Brillouin zone can cause the observation of 1LO emission. In the uniaxial
wurtzite crystal structure the phonon energies differ according to whether their propagation is
parallel or perpendicular to the crystal axis c, so their direction of propagation relative to the
c-axis affects their spectral position.

In the following, we want to restrict ourselves to the contributions we actually observe
experimentally, namely by the surface as a planar defect of the crystal and by point defects
caused by impurities, and assume that excitation and detection are carried out on the same
surface of the sample as is common for excitation above the band gap. We will call the
spectral features, and the respective scattering mechanisms, related to the surface s1LO and
those related to the impurities i1LO. According to the deliberations above, the spectral position
of the s1LO feature is dependent on the crystallographic orientation of the surface within the
excitation spot. For excitation on the c-plane, only scattering by phonons from the A1(LO)
phonon branch can lead to a 1LO emission while for excitation on the m- or a-plane, phonons
from the E1(LO) branch are required in the scattering process. We note that more precisely,
also a difference between the spectra from the m- and a-planes is to be expected because
of the slightly different phonon dispersions along the respective directions of the Brillouin
zone. However, these differences are too small to observe any influence and we will therefore
refrain from this distinction. These two excitation geometries represent the possible extrema
regarding the energetic position of the 1LO line and will be distinguished by us as s1LO(A)
and s1LO(E) according to the participating phonon mode branches. This process involving an
elastic scattering step at the surface is substantially different from the concept of quasi-LO
phonons observed for oblique Raman scattering geometries (see above) because of the large
phonon wave vectors |Eq| � |Eki − Eks| involved, i.e. the light wave vectors do not determine
the direction of the phonon propagation. In the scattering process involving elastic scattering
by point defects, phonons from all directions of the Brillouin zone participate because of the
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three-dimensional localization of the defect. As the s1LO(A) and s1LO(E) lines give the limits
for the 1LO peak position, the i1LO line must be situated inbetween.

For comparative measurements between samples with larger and smaller amounts of
incorporated impurities, the impurities need to be introduced intentionally. An obvious way
to do this is doping. However, we would like to point out that dopants do not necessarily cause
the i1LO contribution to the 1LO line except if the dopant creates an electric potential that
is sufficiently strongly localized in real space or if it introduces other point defects for which
this is true. The extension of a neutral shallow donor can be estimated from its Bohr radius
which is between about 2 nm (ZnO, m∗

≈ 0.25m0 [22]) and 10 nm (InN, m∗
≈ 0.06m0 [23])

for the materials studied here. The resulting spread in Ek-space is in case of ZnO near, but
still below, the wave vector of the exciton branch at the excitation energy of 3.81 eV used
in the experiments here. In contrast, nominally undoped crystals may contain a significant
concentration of point defects enabling the observation of the i1LO scattering process.

The introduction of point defects by doping typically leads to an increase of the free
charge carrier concentration which may also affect the energy of the polar phonon modes.
The arising electron plasma couples with the LO phonons resulting in so-called coupled
LO phonon-plasmon (LPP) modes which have two branches: LPP+ and LPP−. For the large
phonon wave vectors that we are dealing with here, the LPP+ mode becomes overdamped
while the LPP− mode shifts from the LO branch to the TO branch with increasing charge
carrier concentration [24, 25]. Therefore, a decrease of the Raman shift would be expected
with increasing doping. We actually observe this behaviour for higher-order LO lines, which
is however out of the scope of this text. Consequently, the introduction of additional charge
carriers might change the position of the observed i1LO line to lower energies. However, at
least in our samples discussed here, the charge carrier concentration is low enough that it does
not affect the qualitative shift between the i1LO line and the s1LO line.

2.4. Predictions of our model

From the considerations above, we derive several predictions for the exciton-mediated 1LO line
in the Raman spectra of wurtzite semiconductors which we will prove experimentally in the
following to verify our theory (the respective experimental section is given in parentheses):

• For crystals with a low concentration of point defects, the 1LO peak is dominated by
the s1LO. Consequently, the position of the 1LO peak depends on the crystallographic
orientation of the surface the excitation is carried out on (cf section 4.1).

• The position of the 1LO peak does not change with the angle of incidence on a particular
surface and consequently does not show quasi-mode behaviour as described by (4) (cf
section 4.1).

• A high concentration of point defects causes the additional i1LO contribution to the 1LO
line, hence the integrated 1LO intensity increases (cf section 4.2).

• The spectral position of the i1LO line does not depend on the crystal orientation of the
excited surface (cf section 4.2).

We further postulate properties for the polarization of the emitted light. It seems natural that, in
the case of backscattering geometry, elastic scattering from the surface not only conserves the
in-plane wave vector but also the polarization, which is in this case also in-plane. Therefore, we
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Table 2. Properties of the 1LO lines due to s1LO and i1LO processes.

s1LO i1LO

Peak position dependent on excited surface Yes No
Appears in ideal crystal Yes No
Appears in parallel polarized configuration Yes Yes
Appears in cross polarized configuration No Yes

expect emission from the s1LO process to be parallel polarized with respect to the incident laser
light. In contrast, we expect that the polarization is (partially) lost in the scattering process from
a point defect and therefore we postulate the emission from the i1LO process to be (partially)
depolarized. We thus predict for the expected spectra:

• the s1LO line is missing in the cross polarized spectrum, i.e. in the cross polarized spectrum
only the i1LO line can be detected (cf section 4.3);

• the relative integrated intensity between the cross and parallel polarized 1LO peak is
increased by the introduction of impurities (cf section 4.3).

The expected properties of the two contributions s1LO and i1LO are also summarized in table 2.

3. Experimental setup and samples

Excitation above the band gap was carried out by using the 325 nm line of an HeCd laser which
emits highly linear polarized light. For comparison measurements with the excitation below the
band gap a frequency doubled diode pumped solid state (DPSS) laser (λexc = 532 nm) was used.
In both cases, the incident light was focused and the scattered light collected by a microscope
objective (backscattering geometry) with a numerical aperture of 0.40 (λexc = 325 nm) and
0.42 (λexc = 532 nm), respectively. For measurements with tilted samples, a simple lens with
a focal length of 20 mm and a smaller numerical aperture of about 0.26 was used instead
of the objective. We checked for heating or high excitation effects by investigating the peak
positions for different excitation powers and by the comparison between Stokes and anti-Stokes
intensities of the E (2)

2 line. For the measurements presented here, such effects can be excluded.
All the measurements discussed here were carried out at room temperature. Measurements at
low temperatures (down to T ≈ 10 K) show principally identical results.

The scattered light was analysed for its linear polarization by means of a fixed
Glan–Thompson prism together with a zero-order quartz λ/2-waveplate in front of the polarizer.
The chromaticity of the waveplate can be neglected in the small spectral range examined here
resulting in a deviation of the phase shift of less than 3% at 800 cm−1.

Measurements at oblique incidence were carried out by simply tilting the sample, so still
in backscattering geometry. We strictly used s-polarization, i.e. perpendicular to the plane of
incidence, for excitation and detection in order to avoid a varying polarization component
parallel to the c-axis (cf appendix B).

A Jobin Yvon U1000 Raman double spectrometer equipped with two 2400 lines mm−1

gratings and a liquid nitrogen cooled charge coupled device with 2048 × 512 square pixels with
an edge length of 13.5 µm was used for spectrally resolved detection. The resolution of the
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spectrometer is 6 pm which corresponds to an energetic resolution of 0.6 cm−1 in the spectral
range near the HeCd laser line and 0.2 cm−1 near the DPSS laser line.

We investigated single crystals and films thick enough to exclude confinement effects in
this study. Representatively for pure crystals, we used single crystals of ZnO (hydrothermally
grown) from different commercial manufacturers (c-plane crystals from CrysTec, Eagle Picher,
Tokyo Denpa and an m-plane crystal from CrysTec) yielding essentially identical results; GaN
grown by hybrid vapour phase epitaxy (HVPE, by Freiberger Compound Materials); and CdS
(from Crystal GmbH). Since there are no InN single crystals available, we used an MBE-grown
thin film grown at Cornell University (sample Gs1768). The thickness of the InN layer is around
5.5 µm. It was grown on sapphire with subsequent AlN (130 nm) and GaN (175 nm) buffer
layers and has a charge carrier concentration of around 5 × 1018 cm−1.

For our comparative measurements between nominally doped and undoped crystals we
studied only ZnO films because of the availability of suitable samples. In addition, ZnO has the
benefit that its dopants usually cause the occurrence of defects breaking translational symmetry,
which e.g. can be deduced from the observation of normally silent modes in the Raman spectrum
excited below the band gap [26]. These ZnO films (thickness d > 500 nm) were grown by
pulsed laser deposition (PLD). We used a-plane sapphire as substrate for c-oriented films and
r -plane sapphire as substrate for a-oriented films [27]. A KrF excimer laser (λ = 248 nm, pulse
energy 600 mJ) was used for ablation of the ceramic targets. The targets were ball-milled and
subsequently sintered from ZnO powder with an addition of 1 at.% of Al2O3 for Al-doping
and without addition for nominally undoped reference samples. The atmosphere in the PLD
chamber was pure oxygen at a pressure of 0.02 mbar and the substrate holder was heated to
710 ◦C (a-sapphire) and 750 ◦C (r -sapphire), respectively. The films are of high quality and
show typical ZnO properties; for more details cf [26, 28]. According to Hall measurements, the
charge carrier concentration in the doped film is n = 5 × 1017 cm−3.

4. Experimental results

4.1. Surface-related first-order longitudinal optical (1LO) line

Representative parallel polarized Raman spectra of undoped GaN, ZnO and CdS single crystals
excited at λexc = 325 nm are shown in figure 3. The nonpolar E (2)

2 mode and the TO modes (also
the E1(TO) mode not shown here) can be observed, but their intensity is much weaker compared
with that typical for excitation below the band gap, which is caused by the small penetration
depth of the UV light into the materials in the order of 100 nm. Their spectral positions and line
broadenings are identical to measurements with excitation below the band gap and the selection
rules are obeyed for these modes. (To be precise, the increased Ek-vector of the UV light causes
scattering by phonons with larger Eq-vectors. However, even in the UV spectral region the light
wavelength is too long compared with the unit cell dimensions to cause significant line shifts.)

The dominant feature in these spectra is lines in the region of the LO phonons. Their
properties are different from the excitation below the band gap, but match our expectations
for the s1LO line. The line positions are redshifted with respect to the respective zone centre
phonons. The broadening is increased and the selection rules for the zone centre LO phonons
are not valid for these lines. For GaN and ZnO the 1LO peak position depends on the orientation
of the excited surface while for CdS only a very small difference is observed due to the
small anisotropy splitting between the A1(LO) and the E1(LO) modes (see figure 3). As a
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Figure 3. Raman spectra of nominally undoped (a) GaN, (b) ZnO and (c) CdS
single crystals excited on surfaces perpendicular (z(xx)z̄, black) and parallel
(x(zz)x̄ , blue) to the c-axis at λexc = 325 nm. The spectra have been shifted
vertically for clarity. In the GaN spectrum the photoluminescence background
has been subtracted. The solid lines indicate the spectral position of the denoted
zone centre LO phonons obtained with excitation below the band gap.

Table 3. Room temperature Raman shifts in cm−1 for the surface-related 1LO
lines of wurtzite semiconductors excited at λexc = 325nm. The energies of the
respective zone centre phonons are given in parentheses. All the cited literature
values coincide with our own measurements; values without a reference given are
based solely on our measurements. The given energies are the 1LO peak maxima
in the z(xx)z̄-configuration for the s1LO(A) line and in the x(yy)x̄-configuration
for the s1LO(E) line.

ZnO GaN CdS

s1LO(A) 570[6] (574[29]) 727 (734[30]) 298.5 (300)
s1LO(E) 579[6] (590[29]) 731 (741[30]) 298 (303)

consequence, the results for CdS cannot be used to corroborate our predictions given above
because a distinction between the different contributions from the spectral position is not
possible. The experimental results for CdS are nevertheless in agreement with our model.

We summarized the 1LO peak positions for these three materials for λexc = 325 nm in
table 3. Note that a dependence of the peak positions on the excitation energy is to be expected
as was shown experimentally by Davydov et al [10] for InN, who observed that the s1LO peak
position shifts towards lower energies with increasing excitation energy. Values for InN are not
included in table 3, but can be found in that publication for a variety of excitation energies.
Owing to the dependence of the peak position on the polarization relative to the c-axis (cf
appendix B), we indicate the values for the x(yy)x̄-configuration for our own measurements.

In order to further verify that the variation of the 1LO line position originates from the
surface itself and not from the directions of the incident and scattered light wave vectors, we
carried out oblique incidence measurements. For these, the samples were tilted by angles θ of
45◦ and 60◦. This results, in the case of ZnO, in angles β of the internal light wave propagation
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Figure 4. Raman spectra with varying sample tilt of ZnO in k(xx)k̄ configuration
with the external angle between Ek and the c-axis from 0 to 60◦ (from upper to
lower curve) given in the legend, (a) λexc = 532 nm and (b) λexc = 325 nm. The
dashed line indicates the peak position at θ = 45◦. Note the logarithmic intensity
scale for (a) and the linear intensity scale for (b). The spectra have been shifted
vertically for clarity.

relative to the c-axis of about 21◦ and 26◦ (coincidentally the refractive index is n ≈ 2 for both
325 and 532 nm as determined by spectroscopic ellipsometry), respectively. We will treat the
c-plane as an example and initially assume that the 1LO mode shows quasi-mode behaviour
while changing the angle of incidence, i.e. we describe its angular dependence by (4). According
to this equation and by using ωs1LO(A) = 570 cm−1 and ωs1LO(E) = 579 cm−1 (see table 3), we
would expect a blueshift of 1 and 1.5 cm−1 for θ of 45◦ and 60◦, respectively. This is significant
regarding the spectrometer’s resolution. We used the spectrally fixed E (2)

2 line (ZnO, GaN) and
an argon gas low pressure lamp (InN) to ensure relative accuracy of the Raman shifts of below
0.1 cm−1. While for λexc = 532 nm the expected blueshift is obvious at both angles, no shift can
be observed for λexc = 325 nm even at θ = 60◦ (see figure 4). We observed the same behaviour
for c-GaN (see figure 5) and for ZnO excited on the m-plane (see figure 6(a)). Also, the spectra
of the c-InN film (see figure 6(b)) do not show a shift of the 1LO line as far as this can be judged
despite the low intensity of the spectra. No comparative spectra are shown for ZnO because the
E1(LO) line is forbidden in backscattering geometry (cf figure 2(b)) and for InN because we
are not able to excite it below its band gap. As a consequence of these results, we verified that
the dependence of the 1LO line position on the excited surface is not a simple consequence of
quasi-LO mode behaviour and the direction of the photon wave vectors has no decisive influence
on the direction of the wave vectors of the phonons involved in the scattering process.

4.2. Impurity-related 1LO line

In order to investigate the influence of defects on the 1LO line, we compared the parallel
polarized Raman spectra of nominally doped and undoped samples in figure 7. According to
our predictions (see table 2), we expect both contributions s1LO and i1LO to be observable in
this configuration. We observe increased intensity as well as increased broadening of the 1LO
line for the doped samples for both crystallographic orientations of the excited surface. This
is in agreement with the concept of the i1LO as an additional contribution in the scattering

New Journal of Physics 15 (2013) 113048 (http://www.njp.org/)

http://www.njp.org/


13

Figure 5. Raman spectra of varying sample tilt of a c-GaN single crystal excited
at (a) λexc = 532 nm and (b) λexc = 325 nm in k(xx)k̄ configuration with the
external angle between Ek and the c-axes of 0◦ and 60◦, respectively. The dashed
lines indicate the respective peak positions at θ = 0◦. Note the logarithmic
intensity scale for (a) and the linear intensity scale for (b). The spectra have
been shifted vertically for clarity.

Figure 6. Raman spectra of varying sample tilt of (a) an m-ZnO single crystal
excited at λexc = 325 nm and (b) a c-InN thin film excited at λexc = 532 nm in
k(xx)k̄ configuration with the external angle between Ek and the (a) [11̄00]-
axis and (b) c-axes of 0◦ and 60◦, respectively. The spectra have been shifted
vertically for clarity. The dashed vertical lines in (a) indicate the respective peak
positions at θ = 0◦. In (b), the 1LO lines are fitted with Lorentzian functions with
identical spectral positions shown as dashed curves. Line fits of the argon lamp
spectrum are shown as dotted lines, the solid line represents the sum of these
fitted curves. Note that the relative intensity of the argon lines is stronger by a
factor of around 4 in the spectrum measured at 60◦. The spectral positions of the
argon lamp lines are marked by black bars at the bottom of the graph.

process at a slightly different spectral position (cf section 2.3). The intensity maximum of the
undoped samples is at the spectral position of the s1LO(A) for excitation on the c-plane and
at the spectral position of the s1LO(E) for excitation on the a-plane, respectively. We observe
that for the doped samples, the 1LO line is shifted to a position between these two extrema,
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Figure 7. Parallel polarized Raman spectra of the 1LO lines of aluminium doped
(1 at.% Al in the PLD target, black) and nominally undoped ZnO thin films (blue)
excited on (a) the c-plane and (b) the a-plane at λexc = 325 nm.

Figure 8. Raman spectra in cross polarized configuration for c- (z(xy)z̄, black)
and a-plane (x(yz)x̄ , blue) ZnO:Al thin films excited at λexc = 325 nm.

i.e. into the direction where we expect the i1LO line. The small deviation between the peak
positions of the two doped samples results from the still present s1LO contribution. Actually, in
the cross polarized spectra shown in figure 8, where the s1LO contribution is expected to vanish
according to table 2, the 1LO peak positions are identical for both doped samples.

4.3. Polarization dependence

We compared the parallel and cross polarized spectra of nominally undoped single crystals to
verify our postulated polarization properties. The polarization dependence of the 1LO line for
excitation on the c-plane of GaN and ZnO is depicted in figure 9. For both the materials, the
peak in the cross polarized spectrum is very weak and shifted to higher energies compared
with the parallel polarized spectrum. This agrees with our expectation that only the i1LO line,
which is supposed to be weak in pure single crystals, can be observed in the cross polarized
configuration.
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Figure 9. Raman spectra in parallel polarized (z(xx)z̄, black) and cross polarized
(z(xy)z̄, blue) configuration for c-plane (a) GaN and (b) ZnO single crystals
excited at λexc = 325 nm. In the GaN spectra, the photoluminescence background
has been subtracted and the spectra have been shifted vertically for clarity. The
dashed lines indicate the 1LO line positions in the parallel polarized spectra.

Figure 10. Cross polarized Raman spectra of the 1LO lines of aluminium
doped (1 at.% Al in the PLD target, black) and nominally undoped ZnO films
(blue) excited on the c-plane at λexc = 325 nm. The films are the same as
in figure 7(a), the intensity range is lower by a factor of 4 than for that of
the parallel polarized spectrum. For the spectrum of the undoped film, the
photoluminescence background has been subtracted. The dashed line indicates
the 1LO line positions for the doped crystal.

To further confirm that only the i1LO line is observed in the cross polarized spectra, we
compared the cross polarized spectra of nominally doped and undoped ZnO thin films as shown
in figure 10. While the parallel polarized 1LO peak is shifted in the doped sample as discussed
above (cf figure 7(a)), the spectral position and also the line shape of the cross polarized one
remain unchanged. This is again consistent with our model expecting only the i1LO contribution
in the cross polarized spectra which results in the same Raman shift for both the samples.
In addition, the intensity ratio between the doped and the undoped samples is larger in the cross
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polarized configuration than in the parallel polarized one. In the latter case, the s1LO process
equally contributes to the spectra of both samples and consequently reduces the intensity ratio.

5. Discussion

5.1. Surface-related 1LO line

We have shown in section 4.1 that the 1LO peak position in ideal wurtzites is exclusively
determined by the crystallographic orientation of the excited surface itself and not by the
scattering geometry. The peak position of the 1LO line stays constant for all tilting angles
(figure 4) proving its independence of the wave vectors of the incident and scattered photons.

The dependence of the 1LO line on the crystal orientation of the excited surface has also
been reported before for ZnO [6, 12] as well as for InN [10]. Bergmann et al [12] and Alarcón-
Lladó et al [6], the latter also presenting Raman spectra for excitation on two additional crystal
cuts not investigated here, ascribed this face dependence to the quasi-LO modes. This is in
disagreement with both the magnitude of the redshift of the 1LO line with respect to the
0-point phonon energy and the oblique incidence measurements we are presenting here.
Davydov et al [10] explained their observations based on the elastic scattering by the impurities
also considered here for the i1LO process, but did not give a reason for the face dependence
of the peak position. In none of these publications is a motivation given on how the small
photon wave vector shall determine the direction of the large phonon wave vector causing the
redshift of the 1LO line. In contrast, our model including a process breaking the translational
symmetry which involves the surface can conclusively explain all these experimental
observations.

5.2. Impurity-related 1LO line

The elastic scattering by the impurities can also be observed in the Raman spectra of wurtzites
excited above the band gap. Obviously, its influence increases with defect concentration.
Such an additional contribution of the i1LO process was observed for Mg-doped InN
[10, 31]. In particular, the doping series reported in [31] for InN:Mg nicely shows how the
i1LO peak increases in intensity until it dominates the s1LO peak. This observation was
attributed by the authors to increasing activation of the forbidden E1(LO) phonon by the
impurities. This description is to some extent comparable with our model for the i1LO line,
excluding the fact that we expect contributions from all directions of the Brillouin zone.
However, our model has the advantage that it does not suggest the occurrence of an impurity
induced A1(LO) line for a-InN:Mg, which was indeed not observed experimentally in these
papers.

Pastor et al [32] also observed an increase in the intensity of the 1LO line with increasing
Be-implantation in GaN as we expect from our model. Owing to the high charge carrier
concentrations in their samples, the 1LO lines are shifted to lower energies for higher
implementation doses as described in section 2. This superimposes the blueshift which we
would expect due to the dominance of the i1LO line. Therefore, it is not possible to compare
the peak positions observed by them with our values from table 3.
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5.3. Polarization dependence

We have further shown that our postulated polarization properties for the two different
contributions s1LO and i1LO are consistent with our experimental data. As we mentioned in the
introduction, polarization resolved Raman spectra excited above the band gap of ZnO and GaN
for comparison are missing in the literature. For InN, also a shift of the 1LO line between the
parallel and the cross polarized peak similar to our findings can be seen in previously published
spectra [9, 13, 14], but this shift was not discussed there. We conclude that the importance of the
polarization dependence of the 1LO line might have been underestimated until now, especially
for UV excitation of wide band gap materials, and it should be taken greater care of in the future.

6. Summary

We have introduced an extended model for the description of the exciton mediated 1LO
Raman scattering in wurtzite type semiconductors. It considers two different elastic scattering
mechanisms breaking Ek-conservation: one related to the surface, which we call s1LO, and one
related to the point defects, which we call i1LO. The decisive influence of the crystallographic
orientation of the surface on the 1LO peak position is evident as proven by our oblique
incidence measurements for ZnO and GaN. The wide analogues in the properties of the 1LO
line between all wurtzites under investigation (GaN, ZnO, CdS and InN) strongly suggest this
to be a universal feature of at least the wurtzite crystals. The observed dependence of the 1LO
peak position on the crystallographic orientation of the excited surface vanishes if only elastic
scattering by point-like defects is observed, either because of a high defect concentration or of
the polarization configuration. We have postulated that the s1LO contribution is only observed in
the parallel polarized scattering configuration while the i1LO contribution can also be observed
for cross polarization. These postulated polarization properties have been validated by several
experimental findings.
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Appendix A. Calculation of theoretical spectra

We modified (5) in two points. We substituted the delta-distribution in the equation by a
convolution with LO phonons with Lorentzian broadening by using the known linewidth of the
0-point phonons as constant broadening. The phonon dispersion was taken from the inelastic
neutron scattering data for ZnO [33] and from the theoretical calculations based on a modified
valence-force model [34]. It is in the nature of these methods that their accuracy is worse than
that of the Raman measurements. Consequently, the accuracy of our calculations based on these
data is in turn limited.
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Table A.1. Parameters for the calculation of the Raman tensor: lattice parameters
a0 and c0, band gap Eg, effective electron and hole masses m∗

e and m∗

h, exciton
lifetime broadening 0ex, exciton binding energy Eex, exciton Bohr radius aB,ex,
spin–orbit splitting 1SO, refractive index nr, low and high frequency dielectric
constants ε0 and ε∞, absorption coefficient α at λexc = 325 nm and phonon mode
broadening 0(A1(LO)) and 0(E1(LO)).

Parameter ZnO GaN

a0 3.25 Åa 3.19 Åb

c0 5.105 Åa 5.19 Åb

Eg 3.37 eVc 3.39 eVd

m∗
e 0.28 me

e 0.2 me
f

m∗

h 2.4 me
e 2.0 me

f

0ex 46 meVg 40 meVg

Eex 63 meVh 21 meVi

aB,ex 1.5 nmj 2.8 nmj

1SO −12 meVk
−8 meVl

nr 2.0m 2.6n

ε0 8.2m 10.9n

ε∞ 3.6m 5.35n

α 1.6 × 105 cm−1 o 1.2 × 105 cm−1 p

0(A1(LO)) 9.7 cm−1 q 5.7 cm−1 r

0(E1(LO)) 11.7 cm−1 q 6.7 cm−1 r

a Karzel et al [36].
b Lagerstedt and Monemar [37].
c Klingshirn [38].
d Maruska and Tietjen [39].
e Jang and Chichibu [22].
f Kim et al [40].
g Broadening of near band edge luminescence.
h Mang et al [41].
i Shan et al [42].
j Calculated.
k Lambrecht et al [43].
l Bougrov et al [44].
m Ellipsometry measurements.
n Benedict et al [45].
o Muth et al [46].
p Muth et al [47].
q Cuscó et al [29].
r Raman measurements at λexc = 532 nm.

The second modification affects the Raman tensor for which we used the more complex
Fröhlich term taken from [35]. We restricted ourselves to a single exciton branch with parabolic
dispersion. We did not use any free parameter but only values taken from the literature or from
our own measurements. These are summarized in table A.1. The electronic system was treated
as being isotopic, but the uniaxiality was taken into account for the phonon mode energies.

New Journal of Physics 15 (2013) 113048 (http://www.njp.org/)

http://www.njp.org/


19

Figure A.1. (a) Squared absolute Raman tensor element |R|
2 (dashed line) and

form factor f (solid line) for the case of photon absorption and (b) differential
scattering cross section for photon absorption, mainly resembling the form factor
f and only showing a small influence of |R|

2. Calculated for λexc = 325 nm.

We compared two cases: breakdown of the wave vector conservation by photon absorption
as described by the function

f (qz) =
1

π

2α

(2k0 − qz)2 + (2α)2
(A.1)

adopted from [21] and elastic scattering of the exciton at the surface, which we ascribe to a
constant function f (qz). Here, α is the absorption coefficient of the material and k0 the wave
vector of the propagating excitation light.

The wave vector dependences of R and f are shown in figure A.1(a). The maximum
of the Raman tensor element R appears to be around 1.0 × 107 cm−1 for GaN and around
1.4 × 107 cm−1 for ZnO, which is, as expected, in the region of the wave vector of the
discrete exciton branch at the excitation energy. The maximum of the form factor f is below
1.0 × 106 cm−1 for both materials and decreasing rapidly with increasing wave vector. The
differential scattering cross section dσ/(dω dq), being the product of |R|

2 and f , shows
also a maximum around 1.0 × 106 cm−1 and only small contributions of phonons with larger
wave vectors (see figure A.1(b)). Obviously, the exciton dispersion influences the differential
scattering cross section only slightly. The differential scattering cross section for the case of
elastic scattering is identical to the curves for the squared Raman tensor element in figure A.1(a),
because we assumed a flat function f .

The convolution of the differential scattering cross section with Lorentzians with a centre
energy following the phonon dispersion of the two materials delivers the calculated spectra,
shown for ZnO in figure A.2. Already from these spectra it is obvious that the calculated
peak for the elastic scattering at the surface is closer to the experimental data than the result
for the photon absorption case. Table A.2 shows this even more clearly. The redshift which
can be expected due to the absorption of the incident light is by far insufficient to explain the
experimentally observed peak maxima, while for elastic scattering a good match is observed.
Only GaN excited on a surface perpendicular to the c-axis might be seen as an exception. Here,
the very small calculated shifts result from the theoretical phonon dispersion which is mainly flat
around the 0-point [34]. For ZnO, inelastic neutron scattering revealed a much steeper phonon
dispersion in this region than theoretically calculated, so this might also be the case for GaN,
possibly explaining the too small redshift determined by us.
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Figure A.2. Theoretically calculated spectra (solid lines) for ZnO excited on
a surface (a) perpendicular and (b) parallel to the surface, and respective
experimental data (scatter plot), all for λexc = 325 nm.

Table A.2. Calculated and experimental peak positions and redshifts relative to
the zone centre phonon energies of the 1LO line at λexc = 325 nm.

Theory Experiment

Photon absorption Elastic scattering

ZnO GaN ZnO GaN ZnO GaN

Peak position k‖c 572.8 733.5 570.8 730.0 570 727
Redshift to A1(LO) 1.2 0.5 3.2 4.0 4 7
Peak position k⊥c 588.1 740.8 582.1 739.5 579 731
Redshift to E1(LO) 2.9 0.2 7.9 1.5 12 10

Figure B.1. Raman spectra of GaN (a) and ZnO (b) in x(zz)x̄- (black) and
x(yy)x̄-configuration (blue) excited at λexc = 325 nm. The dashed line indicates
the peak maximum of the x(zz)x̄-spectra.
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Appendix B. Polarization relative to the c-axis

An additional effect can be observed for parallel polarized measurements excited on a surface
parallel to the c-axis: the dependence of the 1LO peak on the direction of the light polarization
relative to the c-axis. This is depicted in figure B.1. For ZnO (b), the Raman shift is larger
by approximately 1.5 cm−1 and the peak intensity is increased for the x(zz)x̄- compared
with the x(yy)x̄-configuration. The shifting of the 1LO peak is less pronounced for GaN
(a) showing a blueshift in the x(zz)x̄-configuration of 0.4 cm−1 with respect to the x(yy)x̄-
configuration. However, a similar change of the peak intensity as for ZnO is obvious also for
GaN. These observations would not be expected in the simple picture with only one exciton-
like branch as depicted in figure 1 which does not include a dependence on light polarization. In
wurtzite crystals however, light polarized perpendicular to the c-axis couples mainly to the two
exciton branches A and B while light polarized parallel to the c-axis couples mainly with the
C-excitons [48]. The differences in exciton dispersions possibly lead to different volumes in
Eq-space of phonons participating in the scattering process and therefore to different peak
positions. A close inspection of the previously published Raman spectra of InN [13] also shows
this very small deviation which was not discussed there.
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[29] Cuscó R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B and Callahan M J 2007 Phys. Rev. B

75 165202
[30] Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B,

Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899–907
[31] Davydov V Y, Klochikhin A A, Smirnov A N, Strashkova I Y, Krylov A S, Hai L, Schaff W J, Lee H M,

Hong Y L and Gwo S 2010 Semiconductors 44 161–70
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