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Abstract. The restiction to the class of Jordan - Schwinger representations of sℓ(n+1) results
in simple relations for the L matrices and in explicit expressions for the general Yang-Baxter
operators as products of two parameter permutation operators. Limits are studied which are
related to the finite dimensional representations and to degenerate Yangians. The analogy to
the sℓ(2) case leads to analogous forms of global spin chain operators.

1. Introduction

The algebra generated by n + 1 Heisenberg pairs xs, ∂s, s = 1, ..., n + 1 contains a gℓ(n + 1)
subalgebra. This was noticed early in the context of angular momentum [1, 2, 3]. Representations
of gℓ(n + 1) can be constructed by combining a representation of gℓ(n) with such an algebra
[4, 5, 6, 7, 8]. This iteration in rank can be conveniently formulated in terms of L matrices [9]
and used in constructing Yang-Baxter operators [10].

In this contribution we focus on the gℓ(n + 1) algebra built merely from n + 1 Heisenberg
pairs and consider representations spanned by monomials in xs. One encounters therein lowest
weight representations, called Jordan-Schwinger representations, which are characterised by just
one representation parameter, to be compared with n+1 parameters for generic representations.
The complete iteration would take 1

2n(n + 1) + 1 Heisenberg pairs to construct the generic
generators, whereas n+ 1 are sufficient for the first elementary building block.

This means that the restriction to the Jordan-Schwinger class of representations allows the
restriction to n+ 1 degrees of freedom (per site of a spin chain), and this restriction goes along
with simplicity in structure, which we would like to emphasize here.

In physical applications of higher rank symmetries and related integrable structures the
Jordan-Schwinger case plays an important role, because the composition of the symmetry
generators by more elementary operators related to canonical variables is natural.

The studies of the generalised chiral Potts model provides an example where the features of
factorisation and permutations have been observed in the construction of Yang-Baxter solutions
[11, 12, 13, 14]. The context and the formulation differs much from our discussion and involves
deformation at roots of unity, which is avoided here.

The example having attracted much interest recently is the observation of Yangian symmetry
based on the superalgebra sℓ(4|4) in the calculation of N = 4 super Yang-Mills amplitudes [15].

The generators of gℓ(n+ 1) representations can be written in terms of the n+ 1 Heisenberg
pairs in several ways. We select two versions, write the related L matrices and study relations
for their products. This provides an easy way to operators obeying Yang-Baxter RLL relations.
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We obtain explicit expressions of the two R operators permuting the first and the second
representation parameters in the product of two L matrices. Then the R operator intertwining
two Jordan-Schwinger representations is obtained as the product of these two parameter
permutation operators. We study the limit, where the representation parameter 2ℓ1 of the
first tensor factor approaches a non-negative integer value and a finite-dimensional invariant
subspace emerges. We study also the asymptotics of large representation parameters, where
degenerate Yangian algebra representations appear.

The various R operators as well as the L matrices provide building units of global operators of
integrable spin chains. The relations between the building units imply relations of factorisation
and commutativity between the global chain operators.

In this way we review some basic points of [16] and previous work by presenting the non-
trivial extension of the sℓ(2) case discussed there to the Jordan-Schwinger restricted higher
rank case. In these papers the results on the R operators have been used to construct Baxter
operators, prove Baxter relations and analyse the relations between different approaches to
Baxter operators [17].

Baxter relations for the generic higher rank case have been considered recently in [18,
19]. They are not compatible in a simple way with the restriction to Jordan-Schwinger
representations; the tensor product of such restricted representations does not decompose into
restricted ones only.

2. Jordan-Schwinger representations of gℓ(n + 1)
Choosing n + 1 canonical pairs xs, ∂s, s = 1, ..., n + 1 one can construct operators obeying the
gℓ(n + 1) algebra relations. The straightforward form Eij = xi∂j can be modified in several
ways:

EJ
ij =

xi

xj
(Nj + δj), E−J

ij = −
xj

xi
(Nj + δj), ETJ

ij = −(Ni + δi)
xj

xi
, E−TJ

ij = (Ni + δi)
xi

xj
, (1)

for i, j = 1, ..., n + 1. Ni = xi∂i acts as infinitesimal dilatation operator on the coordinate
operator xi. In each case the algebra relations are

[EC
ij , E

C
jk] = EC

ik, i 6= k, [EC
ij , E

C
ji ] = Ni + δi −Nj − δj (2)

The L matrix with the matrix elements

LC
ij = uδij +EC

ji (3)

obeys the fundamental RLL relation with Yang’s (n+1)2×(n+1)2 R-matrix R12(u) = uI+P12,
where P12 denotes the the permutation matrix.

R12(u− v)L1(u)⊗ L2(v) = L2(v)⊗ L1(u)R12(u− v) (4)

We shall use matrix notation. The canonical pairs are put into diagonal matrices, X =
diag(x1, ..., xn+1), ∂

x = diag(∂1, ..., ∂n+1). M is the matrix with all elements equal to 1. In the
first relations to be discussed the latter matrix is relevant and also its relation involving diagonal
matrices,

M XY M = M (X · Y ), (5)

where X · Y = tr(XY ). Y, ∂y stand for the diagonal matrices involving another set of n + 1
canonical pairs.

We restrict to a special case in the shifts δ and write the L matrices in matrix notation

LJ(u) = I(u− 1) + ∂̂MX̂, LTJ(v) = Iv − Ŷ M∂̂y. (6)

XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012018 doi:10.1088/1742-6596/411/1/012018

2



Now we write down products of these matrices

LJ
x(u)L

TJ
y (v) = I(u− 1)v + v∂xMX − uYM∂y − (X · Y )∂xM∂y,

LTJ
y (v)LJ

x(u) = I(u− 1)v + v∂xMX − uYM∂y − YMX(∂y · ∂x),

and study the similarity transformation by (X · Y )λ leading to the extension ∂x → ∂x +
λ Y
Y X , ∂y → ∂y + λ X

YX . We notice that the result can be written in terms of L matrix products
again as

(X · Y )−λLJ
x(u)L

TJ
y (v)(X · Y )λ = LJ

x(u+ λ)LTJ
y (v − λ)− λ(1− λ+ v − u)(I −

YMX

Y ·X
), (7)

(X · Y )−λLTJ
y (v)LJ

x(u)(X · Y )λ = LJS
y (v)LJ

x(u)−
YMX

Y ·X
λ(λ− 1 + u− v +Ny +Nx), (8)

Nx = X · ∂x, Ny = ∂y ·Y . Corresponding relations for the product of L matrices of one and the
same representation can be obtained by noticing that (6) implies

LTJ(u;x, ∂x) = LJ(u− 1; ∂x,−x)

and performing the canonical transformation interchanging the canonical pairs

K0(xs, ∂s)K0 = (∂s,−xs).

The interesting particular case appears at λ = u− v − 1 where the second term of one relation
vanishes. With a simple parameter substitution we obtain the Yang-Baxter relation

(X · ∂y)
u−vLJ

x(u)L
J
y (v) = LJ

x(v)L
J
y (u)(X · ∂y)

u−v, (9)

(∂x · Y )u−vLTJ
x (u)LTJ

y (v) = LTJ
x (v)LTJ

y (u)(∂x · Y )u−v.

The vanishing of the remainder in the other relation can happen at λ 6= 0 only if the
representation space is restricted to eigenfunctions of Nx +Ny.

The simple explicit expressions of the L matrices allows to write an explicit expression for the
ordinary transfer matrix for a corresponding spin chain. The definition of the general transfer
matrix as a trace of a product of e.g. with Ri0(u) = (∂iX0)

u can be given only after specifying
the representation space labelled by 0.

As suggested by the notation one may consider representations on functions of xi, i =
1, ..., n + 1 spanned by

∏

xαi+mi

i with mi running over all integers and α1, ..., αn+1 fixed.
Such a representation decomposes into ones where the U(1) representation generated by
Nx =

∑n+1
1 xs∂s is irreducible. In the particular case where for a distinguished index value

i we set αi = 2ℓ,
∑

sms = 0 and αs = 0, s 6= i it can be reduced to the subspace spanned
by the monomials with non-negative integer ms, s 6= i, which has the lowest weight vector x2ℓi .
Regarding the general labelling of gℓ(n+ 1) representations of lowest weight by the eigenvalues
of EJ

rr in their action on the lowest weight vector the considered Jordan-Schwinger case has
the feature of all these labels vanishing but one. The involved representation of sℓ(n + 1) is
irreducible for a generic value of 2ℓ but contains a 2ℓ + 1 dimensional invariant subspace for
non-negative integer values of 2ℓ, just as in the rank n = 1 case. This known fact can be checked
easily. The separation of the sℓ(n + 1) subalgebra representation will be done explicitly in the
next section by transformation to x′s, ∂

′
s, s 6= i, where the new coordinates are defined by the

ratios x′s =
xs

xi
.
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3. Restriction to sℓ(n+ 1)
As the first step towards the reduction to sℓ(n+1) we rewrite the L matrices and their relations
in coordinate ratios and separate the dilatation operators Nx =

∑n+1
1 xs∂

x
s , Ñ

y =
∑n+1

1 ∂
y
s ys.

This takes distinguishing one direction in the n + 1 dimensional space, e.g. the one related to
the index i or j respectively:

x′s =
xs

xi
, Nx

s = Nx
s
′ = x′s∂

′
s, s 6= i, Ni = Nx − m̂x, m̂x

∑

s 6=i

N ′
s.

y′s =
ys

yj
, Ñy

s = Ñy′
s = ∂

y
dy

′
s, s 6= j, Ñ

y
j = Ñy − m̂y, m̂y =

∑

s 6=j

Ñ ′
s

The distinguished component of the derivative has to be transformed with care:

∂i = x−1
i Ni = x−1

i (Nx − m̂x) = N x x−1
i , N x = Nx + 1− m̂x

∂j = Ñjy
−1
j = y−1

j N y, N y = Ñy − 1− m̂y

We introduce diagonal matrices X ′, N ′, ∂′x, ∂̃x with the corresponding components x′s, N
′
s,

∂′x
s , ∂̃x

s , s 6= i on the diagonal and with 1 as the ith diagonal element. Correpondingly, the
diagonal matrices Y ′, Ñ ′, ∂′y, ∂̃y are introduced. The definitions have been put in such a way to
have

X = X ′ · xi, ∂x = ∂̃x · N xx−1
i , Y = Y ′ · xj , ∂y = y−1

i N y∂̃y.

With these notations we write factorised forms of the L matrices

LJ
x(u) = LJ/i

x (u− 1, u+Nx) = X ′−1
m−1

i Ki(u− 1, u+Nx;N ′)miX
′ = (10)

∂̃xmt
iK

t
i (u− 1, u+Nx;N ′)mt−1

i ∂̃−1 x,

LTJ
y (v) = LTJ/j

y (v, v + 1− Ñy) = Y ′mt
jK

t
j(v, v + 1− Ñy;−Ñ ′)mt−1

j Y ′−1
= (11)

∂̃y −1m−1
j Kj(v, v + 1− Ñy;−Ñy)mj ∂̃

y,

Ki(u1, u2;N) = (I + Ii(u2 − 1)) (I +Nci) (Iu1 − Ii(u1 − 1)), mi = I + ri.

Auxiliary matrices Ii, ci, ri have been introduced here. ci, ri have most elements vanishing
besides of the elements on the column i or row i respectively. These elements are equal 1, but
the corresponding diagonal element is zero too. Further we denote Ii = êii. These standard
matrices obey the algebraic relations

cTi = ri, c2i = 0, Iici = 0, riIi = 0, ciIi = ci, Iiri = ri, (12)

rici = nIi, riẐci = Ii
∑

s 6=i

Zs, ciri = M − Ii − ri − ci = Mi.

Here Z stands for any diagonal matrix. The dependence on the U(1) or dilatation generators Nx

or Ny has been separated; it enters the coordinate factorized form only by the diagonal matrix
factor I + Ii(u2 − 1) or I + Ij(v2 − 1) via u2 = u+Nx or v2 = v+1− Ñy. These generators are

substituted by corresponding numbers Nx → 2ℓx or Ñy → −2ℓy upon restriction to irreducible
U(1) representations. In physical terms, only the n degrees of freedom expressed by the ratio
coordinates and their conjugate momenta are left active now. The ∂ factorised form plays an
auxiliary role in establishing the relation between the J and TJ forms of L matrices. Notice
that in the latter form the dilatation generator enters also via the definition of ∂̃.
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In this way we obtain the similarity transformations of the L matrix products with (X ′ ·Y ′)λ

by argument shift on the l.h.s. from the relations (7), (8),

(X ′ · Y ′)−λLJ/i
x (u− 1, u+Nx + λ)LTJ/j

y (v, v + 1− Ñy − λ)(X ′ · Y ′)λ = (13)

LJ/i
x (u− 1 + λ, u+Nx + λ)LTJ/j

y (v − λ, v + 1− Ñy − λ)− λ(1− λ+ v − u)(I −
Y ′MX ′

Y ′ ·X ′
),

(X ′ · Y ′)−λLTJ/j
y (v, v + 1− Ñy − λ)LJ/i

x (u− 1, u+Nx + λ)(X ′ · Y ′)λ = (14)

LTJ/j
y (v, v + 1− Ñy)LJ/i

x (u− 1, u+Nx)−
Y ′MX ′

Y ′ ·X ′
λ(λ− 1 + u− v + Ñy +Nx).

Notice that the exponent λ in the similarity operator may depend on Nx, Ñy since the latter
commute with the ratio coordinates. Therefore the case of the vanishing of the extra term can
be considered for both relations now and this results in parameter permutation relations.

4. Yang-Baxter relations

The similarity of the factorised representations of the Lax matrices (10), (11) of different types,
in particular the coordinate TJ and the derivative J forms lead to

LTJ/j(v, v + 1− Ñ ;Y ′, Ñ ′) = LJ/j(v, v + 1− Ñ , ∂̃ → Y ′, N ′ → −Ñ ′). (15)

The representation parameters coincide and the indicated substitutitons have to be done. As
pointed out above the derivative factorised expressions depend on the dilatation N =

∑n+1
1 Ns

not only via the representation parameter argument but also by the factor N involved in the
definition of ∂̃. In the case J

N = N + 1−
∑

N ′
s = û2 − u1 −

∑

N ′
s.

ThusN is connected to the representation parameter arguments of the Lmatrix, not in universal
way. In the substitution of the LTJ matrix (15) we have

N = v̂2 − v1 −
∑

N ′
s = 1− Ñy −

∑

N ′
s

One should be careful to read Ñ according to the TJ convention and N ′
s in the last term

according to the J convention.
The indicated substitution can be expressed as

(∂̃, N ′) = (Γ(N ))−1(∂′, N ′)Γ(N ),

and
(Y,−Ñ ′) = K ′

0(∂
′, N ′)K ′

0.

The latter denotes the elementary canonical transformation of the reduced n degrees of freedom.
Thus,

LTJ/j(v, v + 1− Ñ ;Y ′, Ñ ′) = K ′
0(Γ(N ))∂̃mt

jK
t
j(v, v + 1− Ñy;N ′)mt−1

j ∂̃−1(Γ(N ))−1K ′
0 =

K ′
0(Γ(N ))LJ/j(v, v + 1− Ñy;Y ′, N ′) (Γ(N ))−1K ′

0

This relation can be used to derive from the permutation relations (13), (14) involving Lmatrices
of different form (J and TJ) the ones with only J . Substituting LTJ the operator K ′

0 can be
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carried to the other operators leading to the substitution Y ′ → ∂′
y in the similarity operator

and the remainder. It is the important consequence of the above discussion that the substituted
similarity transformations Γ(N ) carry different arguments N on both sides.

R̃(λ)LJ/i
x (u− 1, u+Nx + λ)LJ/j

y (v, v + 1− Ñy − λ) =

LJ/i
x (u− 1 + λ, u+Nx + λ)LJ/j

y (v − λ, v + 1− Ñy − λ)R̃(λ)

−λ(1− λ+ v − u)(I −
∂′MX ′

∂′ ·X ′
)R̃(λ),

R̃(λ)LJ/j
y (v, v + 1− Ñy − λ)LJ/i

x (u− 1, u+Nx + λ) =

LJ/j
y (v, v + 1− Ñy)LJ/i

x (u− 1, u+Nx)R̃(λ)

−
∂′
yMX ′

∂′
y ·X

′
λ(λ− 1 + u− v + Ñy +Nx)R̃(λ),

with
R̃(λ) = Γ(1− Ñy −

∑

N ′
s)(X

′ · ∂′)−λΓ−1(1− Ñy − λ− m̂y).

We abbreviate m̂y =
∑

s 6=j Ñ
y′
s . In the first relation we choose λ = v − u + 1 to remove

the remainder and denote the second representation arguments on both sides by u2 and v2
and put finally u1 = u − 1, v1 = v. In this way the arguments of the Γ functions become
1 − Ñy = v2 − u1, 1 − Ñy − v + u − 1 = v2 − v1. We obtain the standard first parameter
permutation relation (compare [20])

R1
xy(u1|v1, v2)L

J
x(u1, u2)L

J
y (v1, v2) = LJ

x(v1, u2)L
J
y (u1, v2)R

1
xy(u1|v1, v2),

where
R1

xy(u1|v1, v2) = Γ−1(v2 − u1 − m̂y)(X
′ · ∂′)u1−v1Γ(v2 − v1 − m̂y). (16)

In the second relation we choose λ = v− u+1− Ñy −Nx to remove the remainder. We denote
now u2 = u+Nx, v2 = v + 1− Ñy, u1 = u− 1, v1 = v. Then the arguments of the Γ functions
are 1− Ñy = v2−v1, 1− Ñy−v+u−1 = u2−v2. However the first arguments in the L matrices
appear reversed compared to the standard parameter permutation (compare [20]). Renaming
v1, u1 by u1, v1 leads to the standard form of the second parameter permutation relation

R2
yx(u1, u2|v2)L

J
y (u1, u2)L

J
x(v1, v2) = LJ

y (u1, v2)L
J
x(v1, u2)R

2
yx(u1, u2|v2),

where
R2

yx(u1, u2|v2) = Γ−1(v2 − u1 − m̂y)(X
′ · ∂′)u2−v2Γ(u2 − u1 − m̂y). (17)

The general Yang-Baxter operator R12(u − v; ℓ1, ℓ2) = R12(u1, u2|v1, v2) acting on the tensor
product of sℓ(n + 1) representation modules of the considered JS type with weights ℓ1, ℓ2
U1,ℓ1⊗U2,ℓ2 → U1,ℓ2⊗U2,ℓ1 and obeying the RLL relation with Jordan-Schwinger type L matrices

R12(u1, u2|v1, v2)L
J/i
1 (u1, u2)L

J/j
2 (v1, v2) = L

J/i
1 (v1, v2)L

J/j
2 (u1, u2)R12(u1, u2|v1, v2),

u1 = u− 1, u2 = u+ 2ℓ1, factorises into the constructed parameter permutation operators,

R12(u1, u2|v1, v2) = R1
12(u1|v1, u2)R

2
12(u1, u2|v2) = R2

12(v1, u2|v2)R
1
12(u1|v1, v2). (18)

This factorisation is a specific feature of the considered Jordan-Schwinger type representations.
The general Yang-Baxter operator acting on generic sℓ(n+ 1) representations decomposes into
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n + 1 factors corresponding to the n + 1 representation labels of the L matrix of generic
representation (cf. [18] ).

In the case of coinciding distinguished directions i = j the obtained expressions for the factor
operators (16), (17) can be rewritten as

R1
12(u1|v1, v2) = U−1

2 (v2 − u1) D
(u1−v1)
21 U2(v2 − v1), (19)

R2
12(u1, u2|v2) = U−1

1 (v2 − u1) D
(u2−v2)
12 U1(u2 − u1),

where
D12 =

∏

s 6=i

x′1s −
∑

r 6=i

x′2r

∏

s 6=i,r

x′1s,

U1(α) = (
∏

s 6=i

x′1s)
−α

∏

s 6=i

Γ(N ′
1s + 1) Γ−1(1 +

∑

s 6=i

N ′
1s − α) = (

∏

s 6=i

x′1s)
−αV1(α).

In the case of rank n = 1 the expressions coincide with the ones in [20, 16].
The complete analogy of the factorisation and Yang Baxter relations between R12, R

1
12, R

2
12,

L in the Jordan-Schwinger sℓ(n + 1) case to the case of sℓ(2) implies in both cases the same
relations of factorisation and commutativity between the the corresponding operators describing
a spin chain: the ordinary transfer matrix, the general transfer matrix,

Ts(u) = tr0(P10R10(u)...PN0RN0(u))

and two Baxter operators

Q1(u) = tr0(P10R
1
10(u1|v1, 0)...PN0R

1
N0(u1|v1, 0)),

Q2(u) = tr0(P10R
2
10(u1, u2|0)...PN0R

2
N0(u1, u2|0)).

The trace in the representation space labelled by 0 with the weight denoted by spin s is well
defined for generic values of 2s. In particular we have

PTs(u) = Q2(u− s)Q1(u+ s+ 1) = Q1(u+ s+ 1)Q2(u− s).

P denotes the cyclic shift in the chain.
Starting with the second parameter permutation relation involving R2

12 and its explicit
expression (17) one can derive

(I + riX1)R
2
12(u1, u2|0)L

J
1 (u1, u2)(I − riX2) = {...}ci+ (20)

PX12R
2
12(u1 + 1, u2 + 1)|0) + u1u2IiR

2
12(u1 − 1, u2 − 1|0)+

{u1(I − Ii − PX12) + PX12B}R2
12(u1, u2|0).

One-dimensional matrix projectors Ii, PX12, PX12B are involved,

PX12 =
X−1

1 MiX2

(X−1
1 ·X2)

, B = (X−1
1 ·X2)[X

−1
1 MiX1N1 −N1X

−1
2 MiX2](X

−1
1 ·X2)

−1.

In the lowest rank case n = 1 this becomes the intermediate step towards the Baxter relation
for the product of Q2 with the ordinary transfer matrix [16]. Indeed, in this case B = 0 and
PX12 = I − Ii. The unspecified term proportional to ci is irrelevant for this purpose.

It is not clear whether this relation can be exploited for deriving relations for global chain
operators in the higher rank case in the framework of Jordan-Schwinger type representations.
This could be of interest because the known treatments of Baxter relations expand over generic
representations.
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5. Integer limits

We study the Yang-Baxter operator in the case u2 − u1 = 2ℓ1 + 1 = m + 1 + ε where m is a
non-negative integer. We shall see how the appearence of a m+1 dimensional invariant subspace
in the first tensor factor is reflected in the limiting behaviour of the Yang-Baxter operator and
shall obtain its restriction to the finite-dimensional invariant subspace for the first tensor factor
in the limit.

In the first factorised representation (18) we have the factors U−1
2 (2ℓ1 + 1), U1(2ℓ1 + 1). In

the limit two contributions appear naturally.

U1(2ℓ1 + 1) =
∏

x′−m−1
1s Γ(1 +N ′

1s)

{

Π(m ≥ m̂1)Γ(1 +m+ ε− m̂1)(−1)m+1−m̂1 ε+Π(m̂1 > m)
1

Γ(m̂1 −m− ε)

}

,

U−1
2 (2ℓ1 + 1) =

{

Π(m ≥ m̂2)
(−1)m+1−m̂2

Γ(1 +m+ ε− m̂2) ε
+Π(m̂2 > m)Γ(m̂2 −m− ε)

}

∏ 1

Γ(1 +N ′
2s)

x′m+1
1s .

Here we abbreviate m̂1 =
∑

s 6=iN
′
1s and Π(...) stand for projectors with the projection rule

indicated in the argument.
We obtain the Yang-Baxter operator R12 restricted to the finite dimensional subspace in the

first tensor factor at 2ℓ1 = m as

P12R12(u− v|
n

2
, ℓ2) = lim

ε→0
R12(u− v|

1

2
(m+ ε), ℓ2)Π

m
1 = (21)

Πm
2

(−1)m̂2

Γ(1 +m− m̂2)
∏

Γ(1 +N2s)
(1−

∑ x′1r

x′2r
)u1−v1V2(u2 − v1)

V −1
1 (v2u1)(1 −

∑ x2r

x1r
)u2−v2

∏

Γ(1 +N1s) Π
m
1 Γ(1 +m− m̂1)(−1)m̂1 .

Here Πm
1 denotes the projector on the subspace spanned by

∏

s 6=i x
′ms

1s with
∑

s 6=ims ≤ m.
In the case m = 1 we expect that R12 reproduces the L matrix in the symmetry basis,

R12(u− v|
1

2
, ℓ2) = C · L2(u− v +

1

2
|ℓ2), C = −

Γ(u− v − 1
2 − ℓ2)

Γ(12 − u+ v − ℓ2)
(22)

We calculate easily the matrix element of R12 with the lowest weight state 1 and identify the
coefficient C,

R12 · 1 =
Γ(u2 − v2 − 1

Γ(v1 − u1 − 1)
= (u1 − v1 + 1) C.

(22) can be checked by proceeding this calculation with the action on 1 ·xp2s and x1r ·x
p
2s. In the

calculation we notice that besides of the explicit projectors the factors
∏

Γ−1(1 + Ns) restrict
the powers of the monomials; negative powers are removed. The generalisation of the L matrix
to the case of other values of m can be obtained in the same way.

We have seen that the restriction to the finite-dimensional subspace at integer values of 2ℓ
goes in analogy to the rank n = 1 case. The analogy ends if regarding the complement to the
invariant finite-dimensional subspace. Unlike the rank 1 case it is not simply related to just
one Jordan-Schwinger type representation with ℓ = 1

2m replaced by another value. This implies
that the arguments for deriving Baxter relations cannot be copied from the rank 1 case in a
straightforward way.
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6. Degeneracy limits

Consider the Lax matrix (10) and identify LJ/i±.

LJ/i(u1, u2) = LJ/i−)(u2)(Iu1−Ii(u1−1))(I+riX
′) = (I−riX

′)(I+Ii(u2−1)) LJ/i+(u1), (23)

LJ/i−(u2) = lim
u1→∞

L(i)(u1, u2)(Iu1 − Ii(u1 − 1))−1,

LJ/i+(u1) = lim
u2→∞

(I + Ii(u2 − 1))−1L(i)(u1, u2).

By the limit relations it is clear that LJ/i± obey the fundamental RLL relation (4) and thus their
matrix elements generate algebra representations of the Yangian different from the ordinary one
generated by the elements of LJ .

LJ/i− coincide with the elementary degenerate L matrices used by Bazhanov et al. [19] as
”partonic” building blocks. Their Baxter operator construction starts from the decomposition
of a generic sℓ(n+1) representation L matrix in terms of a product of n+1 Li− matrices. The
generic representation L matrix can be also obtained from the considered Jordan-Schwinger L
matrices by iteration as discussed in [9, 10]. The relation (23) of LJ to LJ− shows how the
connection of our approach to the one by Bazhanov et al. [17, 19] extends from the rank n = 1
case discussed in [16] to higher rank.

R operators intertwining the degenerate L± with L and among each other can be obtained
similar to the sℓ(2) case. Consider the first parameter permutation RLL relation (16 ) in the
case of coinciding distinguished directions in the asymptotics v1 → ∞.

R1
12(u1|v1, v2)L

J
1 (u1, u2)L

J
2 (v1, v2) = LJ

1 (v1, u2)L
J
2 (u1, v2)R

1
12(u1|v1, v2),

LJ/i(v1, v2) = LJ/i−(v2)(v1I − Ii(v1 − 1))(1 +O(v−1
1 ).

The symmetry of the L matrices implies

(v1I − Ii(v1 − 1))L2(u1, v2)(v1I − Ii(v1 − 1))−1 = v−m̂2

1 L2(u1, v2)v
m̂2

1 , m̂2 =
∑

s 6=i

N ′
2s.

In this way we obtain

r+12(u1 − v2)L
J/i
1 (u1, u2)L

J/i−
2 (v2) = L

J/i−
1 (u2)L

J
2 (u1, v2)r

+
12(u1 − v2),

where
vm̂2

1 R1
12(u1|v1, v2) → r+12(u1 − v2).

With the explicit expression (16) we obtain

r+12(u) = Γ(1 + m̂2 + u) exp(
∑

r 6=i

x1r∂2r). (24)

The result appears quite similar to the rank n = 1 case and this analogy extends to the other
degenracy limit Yang-Baxter operators and the relations among them.

R+
12(u1, u2|v2)L

J/i
1 (u1, u2)L

J/i−
2 (v2) = L

J/i−
1 (v2)L

J
2 (u1, u2)R

+
12(u1, u2|v2),

where
vm̂2

1 R12(u1, u2|v1, v2) → R+
12(u1, u2|v2) = r+12(u1 − u2)R

2
12(u1, u2|v2).

R−
12(u1, u2|v1)L

J/i
1 (u1, u2)L

J/i+
2 (v1) = L

J/i−
1 (v1)L

J
2 (u1, u2)R

−
12(u1, u2|v1),
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where
R12(u1, u2|v1, v2)v

−m̂1

2 → R−
12(u1, u2|v1) = R1

12(u1|v1, u2)r
−
12(u1 − u2),

r−12(u) = exp(−
∑

r 6=i

x2r∂1r)
(−1)m̂1

Γ(1 + m̂1 + u)
.

Operators describing a spin chain can be built from these Yang-Baxter operators as well. The
experience of the rank n = 1 case tells us that here the trace definition should include a
regularisation,

Q±(u) = tr0[q
m̂0P10R

±
10(u1, u2|0)...PN0R

±
N0(u1, u2|0)].

The commutativity and factorisation properties hold, in particular

1

1− qn
Ts(u|q) = Q+(u− s− 1)Q−(u+ s) = Q−(u+ s)Q+(u− s− 1)

where Ts(u|q) is the q regularised version of the general transfer operator.
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