
“fonc-02-00102” — 2012/8/23 — 19:07 — page 1 — #1

REVIEW ARTICLE
published: 24 August 2012

doi: 10.3389/fonc.2012.00102

Effects of ionizing radiation on the immune system
with special emphasis on the interaction of
dendritic and T cells
Katrin Manda1 |--

, Annegret Glasow2 |--
, Daniel Paape1 and Guido Hildebrandt1*

1 Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
2 Department of Radiotherapy and Radiation Oncology, University of Leipzig, Leipzig, Germany

Edited by:

Udo S. Gaipl, University Hospital
Erlangen, Germany

Reviewed by:

Stephan Von Gunten, University of
Bern, Switzerland
Franz Rödel, Johann Wolfgang
Goethe-University Frankfurt am Main,
Germany

*Correspondence:

Guido Hildebrandt, Department of
Radiotherapy and Radiation Oncology,
University of Rostock, Südring 75,
18059 Rostock, Germany.
e-mail: guido.hildebrandt@uni-
rostock.de
|-Katrin Manda and Annegret Glasow
have contributed equally to this work.

Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate
immune system and function as key players during the induction phase of adaptive immune
responses. Uptake, processing, and presentation of antigens direct the outcome toward
either tolerance or immunity. The cells of the immune system are among the most highly
radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-
suppressive effects after whole body irradiation and possible immune activation during
tumor therapy were observed. On the other hand, the effects of low doses of ionizing
radiation (LD-IR) on the immune system are controversial and seem to show high variability
among different individuals and species. There are reports revealing that protracted LD-IR
can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also
reported, including the killing or sensitizing of certain cell types. This article shall review
the current knowledge of radiation-induced effects on the immune system, paying special
attention to the interaction of DCs and T cells.
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INTRODUCTION
The interactions of dendritic cells (DCs) and T lymphocytes
are a link between the innate and adaptive cell-mediated immu-
nity. Therefore, radiation-induced disturbances may have serious
consequences on the whole immune system. This article pro-
vides an overview of DC and T cell function and particularly
reviews the effects of low-dose ionizing radiation (LD-IR; <1 Gy)
and high-dose ionizing radiation (HD-IR; ≥1 Gy) exposure on
the interrelationship of both cell types. Controversial data on
the immune-modulatory effects of LD-IR and current knowl-
edge about the immune-suppressive and pro-inflammatory effects
of HD-IR are discussed in detail, together with the putative
mechanisms behind them. Clinically relevant immunological
aspects of ionizing radiation (IR) are presented and the pos-
sibility of their exploitation in combined immunotherapy are
elucidated.

Abbreviations: Ag, antigens; APC, antigen-presenting cell; CCL, chemokine lig-
and; CCR, chemokine receptor; CD, cluster of differentiation; CTL, cytotoxic T
cell; CTLA, cytotoxic T lymphocyte antigen; DC, dendritic cell; dLN, draining
lymph node; HD-IR, high-dose ionizing radiation; ICAM, intercellular adhesion
molecule; IFN, interferon; IG, immunoglobulin; IL, interleukin; IR, ionizing radi-
ation; LD-IR, low-dose ionizing radiation; LD-RT, low-dose radiotherapy; LNT,
linear, no-threshold; MCP, monocyte chemoattractant protein; MHC, major his-
tocompatibility complex; MIP, macrophage inflammatory protein; NK cell, natural
killer cell; TCM, central memory T cells; TCR, T cell antigen receptor; TEM, effec-
tor memory T cells; TGF, transforming growth factor; Th cell, helper T cell; TNF,
tumor necrosis factor; Treg , regulatory T cell; STAT, signal transducer and activa-
tor of transcription; VEGF, vascular endothelial growth factor; WBI, whole-body
irradiation.

DENDRITIC CELLS
Dendritic cells are antigen-presenting cells (APCs) which play a
crucial role not only in inducing adaptive immune response to
foreign antigens (Ags), but also in maintaining T cell tolerance
to self-Ags, thus minimizing autoimmune reactions (Banchereau
and Steinman, 1998). All DCs are derived from hematopoietic
stem and progenitor cells in the bone marrow and give rise to
distinct progenitors, which can be found in the blood, lymph,
thymus, and most visceral organs. Their further development
comprises differentiation into DC subsets, activation and mat-
uration finally resulting in Ag presentation (Alvarez et al., 2008).
Newly differentiated DCs are responsible for efficient Ag capture
via a variety of mechanisms including macropinocytosis, endo-
cytosis (Lim and Gleeson, 2011), or phagocytosis (Matsuno et al.,
1996); these DCs are considered to be immature. To initiate immu-
nity, immature DCs migrate throughout the body in order to take
up several Ags, but expression of major histocompatibility com-
plex (MHC) gene products and co-stimulatory molecules such
as cluster of differentiation (CD) 80 and CD86, and thus pre-
sentation to T cells, is initially weak (Mellman and Steinman,
2001). Upon arrival at secondary lymphoid organs, such as drain-
ing lymph nodes (dLN) and the spleen, they have to undergo a
maturation process initiated by several environmental stimuli or
danger signals including bacterial DNA (Sparwasser et al., 1998)
or viral products and proinflammatory cytokines (Mellman and
Steinman, 2001). Maturation is characterized by an increase in
surface marker expression responsible for co-stimulation, includ-
ing CD40, CD54, CD58, CD80, CD83, and CD86 (Banchereau

www.frontiersin.org August 2012 | Volume 2 | Article 102 | 1

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/10.3389/fonc.2012.00102/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KatrinManda&UID=55344
http://community.frontiersin.org/people/DanielPaape/46591
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GuidoHildebrandt&UID=55334
mailto:guido.hildebrandt@uni-rostock.de
mailto:guido.hildebrandt@uni-rostock.de
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


“fonc-02-00102” — 2012/8/23 — 19:07 — page 2 — #2

Manda et al. Radiation-effects on dendritic and T cells

and Steinman, 1998; Faries et al., 2001; Würtzen et al., 2001) along
with the ability to present Ag more effectively to T cells. As a con-
sequence of maturation, Ag uptake of DCs is reduced through
a loss of Ag receptors and down-regulation of phagocytosis
(Albert et al., 1998).

T CELLS
T lymphocytes are main player in the cell-mediated adaptive
immune response. After migration of progenitor T cells from the
bone marrow to the thymus T cells differentiate, resulting in the
expression of the typical co-receptors CD4, CD8 and the assembly
of functional T cell Ag receptors (TCRs). T cells then undergo a
positive and negative selection process based on MHC receptor
restriction and on the affinity threshold of their TCR to self-
peptides presented by MHC molecules on the thymic epithelial
cortical cells (Starr et al., 2003; Arens and Schoenberger, 2010).
Naive, but mature T cells migrate to the secondary lymphoid
organs where they survey the Ags presented by APCs. The TCRs
recognize Ag fragments bound to MHC molecules on the surface
of an APC. As a consequence of Ag binding and interaction with
cytokines and co-stimulatory molecules, naive CD4+ or CD8+
T cells become activated, proliferate, and differentiate into effector
T cells (Lee et al., 2012).

Whereas the majority of CD4+ T cells are helper T (Th) cells
selectively binding to MHC class II proteins, the majority of CD8+
T cells are cytotoxic T cells (CTLs) restricted to binding to MHC
class I proteins (Banchereau and Steinman, 1998). Th cells assist
other cells of the immune system such as B cells and macrophages
and can be further categorized into Th1, Th2, and Th17 subsets
(Reiner, 2007). Th1 cells are primarily involved in cell-mediated
inflammatory reactions including activation of macrophages and
CTLs. Th2 cells aid the humoral and allergic arms of the immune
response and are associated with eosinophilia (Kimber and Sel-
grade, 1998). Th17 cells are important for attacking extracellular
microorganisms by activating neutrophils with interleukin (IL)-
17. In addition to Th cells, CD4+ T cell also comprise subsets which
have the ability to regulate inflammatory immune responses and
are therefore termed regulatory T cells (Tregs; Lee et al., 2012).
These cells express CD25, the IL-2 receptor and play a major role
in maintaining immunological self-tolerance (Sakaguchi, 2004).
Subsets of Treg have also been demonstrated to inhibit both Th1
and Th2 functions, crucial to the outcome of infections and
inflammatory diseases (Xu et al., 2003).

The main function of Ag-specific CD8+ T cells (CTLs) is to
eradicate infected or tumor cells through the release of cytolytic
molecules and CD95 ligation, eventually leading to the pro-
gramed cell death (apoptosis) of the target cell. Besides antigenic
stimulation (signal 1) and co-stimulation by APCs (signal 2),
inflammatory cytokines such as IL-12 and type I interferons (IFNs)
are important for driving effector T cell expansion and function
(Arens and Schoenberger, 2010). CD4+ T cells effectively support
CTL response, especially during the secondary expansion phase,
and by generating long-term CTL immunity (Behrens et al., 2004).

As part of the adaptive immune response, both CD4+ and
CD8+ T cells comprise also memory T cell subsets which have
already encountered Ag during a prior infection and escaped
apoptosis. After a second encounter with Ag or pathogen, memory

T cells are able to work quickly without even requiring prolifer-
ation (Bevan, 2011). They are further categorized into effector
memory T cells (TEM) and central memory T cells (TCM) based on
their capacity to migrate to secondary lymphoid tissue (TCM) and
infected or inflamed peripheral sites (TEM). The main distinctive
feature of the two memory T cell subsets is the expression of
chemokine receptor 7 (CCR7), which exists on TCM but is lacking
on TEM cells (Sallusto et al., 1999).

INTERACTION OF DCs AND T CELLS
The presentation of Ags by DCs plays a crucial role in effective
T cell activation and initiation of an adaptive immune response.
Naive CD8+ cytotoxic and CD4+ Th cells circulate through sec-
ondary lymphoid tissues where they meet activated mature DCs
presenting processed Ags to them via MHC class I and II molecules,
respectively. Both cell types need to interact physically to induce
T cell activation and proliferation. The subsequent outcome of
T cell activation depends on the activation state of DCs. Activated,
mature DCs induce T cell priming, whereas resting, non-activated
but fully differentiated mature Ag-presenting DCs may induce
tolerance (Tan and O’Neill, 2005; Hugues, 2010). The latter is a
process which is required to eliminate self-reactive T cells in the
thymus during a process known as central tolerance. However,
some self-reactive T cells often bearing low affinity TCR for self-
Ags escape clonal deletion in the thymus. A number of tolerance
mechanisms have evolved in the periphery to prevent autoim-
mune disease. DCs capturing and presenting numerous self-Ags
to T cells in secondary lymphoid tissues are an important part of
this peripheral tolerance (Walker and Abbas, 2002).

The current model of T cell activation in general requires
three signals. The first signal is the establishment of a cellu-
lar contact between a T cell and a DC occurring through TCR
interactions with MHC complexes present on the DC surface.
In this process, CD4+ Th cells can effectively support the Ag-
specific CD8+ CTL responses via activation of CD40 on DCs when
both Th cells and CTLs recognize Ag on the same DCs. The sec-
ond signal comprises the engagement of different receptor–ligand
bindings such as those of co-stimulatory and intercellular adhe-
sion molecules (ICAMs). Important co-stimulatory molecules
are CD80 and CD86, expressed on activated but not on rest-
ing APCs, which need to bind to the cell surface receptor CD28
on T cells for effective T cell activation and to cytotoxic T
lymphocyte antigen 4 (CTLA-4) for suppression. These interac-
tions finally lead to the third signal consisting of the secretion
of mediators. The integration of all signals finally matches the
outcome of T cell activation, resulting in the clonal expansion
and differentiation of naive T cells into effector and memory T
cells (Sharpe and Abbas, 2006; Arens and Schoenberger, 2010;
Hugues, 2010).

Given the important role of DC and T cell interaction in
the adaptive immune responses, it is not surprising that many
pathogenic microorganisms exert immunomodulatory effects that
may impair the ability of DCs to initiate T cell responses. Virus-
induced interference with Ag presentation pathways, induction
of cytopathogenesis, Th1/Th2 cytokine shifts, and CD4 depletion
are examples of this (Clerici and Shearer, 1993; Arens and
Schoenberger, 2010).
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RADIATION-INDUCED EFFECTS ON THE IMMUNE SYSTEM
AND THE INTERACTION OF DCs AND T CELLS
Since the spleen is a very highly radiosensitive organ (Gridley et al.,
2009), cells of the immune system are considered to be among the
most highly radiosensitive cells. The biological effects of IR are
not completely understood, especially the effect of LD-IR. For a
long-time IR was assumed to act mostly on target cells. DCs are
one of the immune cells which have been studied the most. Nearly
all processes mediated by DCs depend on their differentiation and
maturation state. These processes involve migration to periph-
eral lymphoid organs as well as expression of MHC molecules,
co-stimulatory molecules and cytokines resulting in T cell stimula-
tion. Thus, IR-induced changes in the state of DC maturation and
activation would affect the whole immune system. Additionally,
the radiosensitivity of T cells generally depends on their state of
activation. Resting (non-activated) lymphocytes are much more
affected by IR than their activated counterparts (Anderson and
Warner, 1976). Apart from these targeted effects, in recent decades
the indirect (non-targeted) effects of IR such as bystander effects,
adaptive response, abscopal effect, and genomic instability, have
also been described. The reported non-targeted cellular responses
to IR were modulating inflammatory and immune responses
(Hildebrandt, 2010). The response of the immune system to IR
depends, however, on the dose and the dose rate (Amundson,
2008) as well as on the irradiation quality and the immune cell
types (Rödel et al., 2012).

EFFECTS OF HIGH-DOSE IRRADIATION
For this review HD-IR was defined as using single doses of 1 Gy or
more. The immunosuppressive effects of HD-IR on the immune
system are well known. Epidemiological and patient data show
that acute radiation syndrome occurs after whole-body irradi-
ation (WBI) of more than 1 Gy delivered at a high-dose rate
(Goans and Waselenko, 2005). Higher radiation doses (>2 Gy)
result in a massive killing of blood cells such as lymphocytes (Don-
nelly et al., 2010) and even in a halting of the proliferation of
hematopoietic progenitors, thereby causing hematological crisis
(Goans and Waselenko, 2005). Dainiak et al. (2003) stated that
the shortage of leukocytes finally leads to suppression of immune
function, increasing the risk of infections and impairing wound
healing following irradiation with doses more than 2–3 Gy. Besides
immunosuppression, one of the most common effects of HD-IR is
the induction of pro-inflammatory processes. Long-term studies
conducted on blood samples taken from survivors of the atomic
bombings of Hiroshima and collected between 1995 and 1997
showed altered tumor necrosis factor alpha (TNF-α), and INF-γ
levels which increased with rising doses (Hayashi et al., 2005).
Nevertheless, also anti-inflammatory cytokine levels, such as that
of IL-10, were increased with increasing dose.

Pecaut et al. (2001) published animal data which correlates with
the situation in humans; they showed that HD-IR led to a loss of
spleen and thymus mass. They observed decreasing leukocyte and
lymphocyte (CD4+ as well as CD8+ subpopulations) numbers in
the blood and spleen of mice treated with WBI, applying doses up
to 3 Gy.

In vitro investigations showed radiation-induced (20 Gy, 137Cs
source) alterations of human DC function, including a less

efficient Ag-presenting function (Anton et al., 1998) and a lower
capacity of induction of T cell proliferation (Cao et al., 2004).
There is evidence that very HD-IR (single dose of 30 Gy) reduces
the co-stimulatory receptor expression in immature DCs (Reuben
et al., 2004) and down-regulates the expression of CD86 and
CD80 on human DCs compromising their ability to capture
and present Ag (Cao et al., 2004). These results were supported
by Liao et al. (2004), who found, in murine DCs treated with
10 Gy, a down-regulation of proteasome activity which is respon-
sible for the processing of Ags for presentation. Also, alterations
in the cytokine release of T cells were found in a co-culture
with irradiated human DCs compared to naive (unirradiated)
DCs (Cao et al., 2004). These alterations include increased IL-2
and IL-4 levels resulting in a lower capacity of HD-IR treated
DCs to promote T cell proliferation efficiently. Liao et al. (2004)
found marginally decreased MHC class II and CD86 expres-
sion on murine DCs 24 h after HD-IR with 2 or 10 Gy. There
are also studies revealing a shift of Th cells toward Th2 instead
of Th1 differentiation after HD-IR, paralleled by changes in
the cytokine expression profile (Han et al., 2002; Park et al.,
2005). It has been suggested that gamma irradiation regulates
the level of cytokine-mediators through transcriptional modula-
tion, including signal transducer and activator of transcription
(STAT) phosphorylation (Han et al., 2002, 2006). Members of
the STAT proteins are involved in the activation of different
cytokines and mice with altered STAT genes were shown to have
enhanced Th2 response and consequently, a lack of Th1-type
cytokines. This shift toward Th2 differentiation after HD-IR may
be important – Westermann et al. (1999) suggest that Th2 cells
might play a critical role in the pathogenesis of radiation-induced
pneumonitis in rats. Furthermore, various organ-specific autoim-
mune diseases were reported after fractionated total lymphoid
HD-IR (2.5 Gy, 17 times) on mice, probably caused by modifica-
tion of T cell dependent control of self-reactive T cells (Sakaguchi
et al., 1994).

Clinical aspects of high-dose radiation
High-dose ionizing radiation is applied in approximately 50% of
all cancer patients and represents a major component of standard
cancer therapy (Baskar et al., 2012). Recent investigations have
demonstrated that the success in cancer treatment is contingent
upon synergy of radiotherapy with the host’s immune response.
Whereas radioimmunotherapy uses antibodies directed against
specific tumor Ags labeled with radioisotopes to deliver the radia-
tion directly to the tumor, new combination approaches may use
the effects of local HD-IR alone or especially in combination with
further immune stimulation on the tumor cells or vasculature for
a more efficient immune response.

High-dose ionizing radiation has been shown to up-regulate
stress proteins which can function as neoantigens in target cells.
These then might attract APCs or NK cells which have the capac-
ity to recognize stress ligands and to selectively clear damaged
or stressed cells by phagocytosis or cytolytic activity (Hallahan
et al., 2001; Gastpar et al., 2005; Formenti, 2010). Also, radiation-
induced distinct forms of cell death have been shown to be highly
immunogenic and has already been suggested to improve the poor
inherent capacity of glioma cells to stimulate APC response in
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DC vaccination approaches (Ehtesham et al., 2004). It is thought
that the exposure of pro-apoptotic proteins like calreticulin
triggers the effective recognition and phagocytosis of tumor cells
by DCs, leading to CTL response. In the brain, an immunologi-
cally privileged area, HD-IR treatment of brain tumors contributes
toward the disruption of the blood–brain barrier (Nordal and
Wong, 2005) and might synergize with vaccination therapy by
facilitating the entry of immune cells. Radiation-induced “dan-
ger,” death and inflammatory signals as increased MHC class
I, Fas/CD95 expression and chemokine release can additionally
attract activated T cells (Demaria et al., 2005a; Formenti, 2010).

Clinical results show that standard radiotherapy alone is inad-
equate in converting the existing immune suppression/tolerance
of an established tumor. So far combination of radiotherapy with
immunotherapy remains understudied in the clinic, but promising
response rates have been achieved in preclinical settings includ-
ing melanoma, mammary, and colon carcinoma. First clinical
trials are underway (Formenti, 2010) and surely more will fol-
low as soon as the clinical application of immunotherapy for
cancer (Scott et al., 2004; Omay and Vogelbaum, 2009) moves
forward.

In a murine model irradiation of cutaneous melanomas prior
to resection led to a reduction in lung metastasis after systemic
challenge with untreated melanoma cells (Ma et al., 2011). Simi-
larly, immune-mediated inhibition of lung metastases after treat-
ment with local radiation was described in a murine metastatic
mammary carcinoma model using CTLA-4 blockade (Demaria
et al., 2005b). Therefore we may assume that the host’s immune
response against the irradiated tumor might be the central player
of the abscopal (outside the target) effects of radiotherapy if
negative regulators of immune response are inhibited and the
tumor-specific effector T cells target cancer cells at metastatic sites
(Formenti, 2010).

EFFECTS OF LOW-DOSE IRRADIATION/CHRONIC LOW-DOSE
IRRADIATION
The risk of cancer development or other effects of IR with low
doses (<1 Gy; LD-IR) is often extrapolated from the results of epi-
demiological studies on more highly exposed individuals using the
linear, no-threshold (LNT) hypothesis. The LNT model assumes
that the radiation-induced risk of cancer is proportional to dose,
with no threshold (Puskin, 2009). However, there are many stud-
ies indicating that dose–response curves for LD-IR are non-linear,
displaying discontinuous dose dependencies, and that they reflect
the hypersensitivity of cells to LD-IR not being predictable by
extrapolation of the HD-IR response (Kern et al., 1999; Zaichkina
et al., 2004; Rödel et al., 2007).

The underlying mechanisms of this discontinuous dose
response remain unclear and may result from various overlapping
individual processes (Rödel et al., 2010). One possible explanation
may be that DNA structures might not be affected as harmfully by
LD-IR, thus facilitating a better repair capacity (Rödel et al., 2002).
But also epigenetic mechanisms like DNA methylation (Ma et al.,
2010) or a differential protein expression (Rödel et al., 2012) may
be possible explanations.

Since there is no general definition of LD-IR, we categorized the
following paragraph into chronic IR with low-dose single fractions

resulting in high total doses (>1 Gy; see Chronic Low-dose
Irradiation with Total Doses of More Than 1 Gy) and chronic
IR as well as single fraction IR with low total doses (≤1 Gy; see
Single Low-dose Irradiation and Chronic Low-dose Irradiation
with Total Doses of 1 Gy or Less).

Chronic low-dose irradiation with total doses of more than 1 Gy
In contrast to HD-IR, reports on the effects of LD-IR on the
immune system are controversial. There are various animal stud-
ies showing that chronic low-dose irradiation with total doses of
more than 1 Gy may lead to immunosuppression. Underlying
mechanisms were revealed by Yagunov et al. (1998) and comprise
a deficiency of hematopoietic stem cells, accelerated cell cycling of
bone marrow precursors, or a decreased cell viability of mature
blood cells in rats leading to ineffective hemopoiesis. These data
were confirmed by studies of Seed et al. (2002) who found a sup-
pression of blood leukocyte levels in dogs. Investigations of the
blood samples of 50 radiology workers (age 21–57 years) exposed
to long-term LD-IR showed decreased immunological parame-
ters including lower levels of CD4+ T lymphocytes as well as
decreased total immunoglobulins (IgA, IgG, IgM) compared with
non-exposed volunteers (Godekmerdan et al., 2004).

Other reports reveal immune stimulatory effects of chronic LD-
IR in animals, including stimulation of growth rates in mice or rats
(summarized in Luckey, 1982) and prolongation of the life span
in MRL-lpr/lpr mice (Ina and Sakai, 2004). Ina and Sakai (2005)
found increased numbers of CD4+ cells as well as CD8 molecules
on the surfaces of CD8+ T cells after beginning with continuous
WBI of C57BL/6 mice with low doses (1.2 mGy/h). The authors
suggest that chronic LD-IR may be able to induce a moderate, but
not excessive activation of the immune system.

Single low-dose irradiation and chronic low-dose irradiation
with total doses of 1 Gy or less
Reports on single-fraction LD-IR or chronic LD-IR with total
doses of 1 Gy or less are also contradictory. Recently Jahns et al.
(2011) showed that LD-IR (0.5 and 1 Gy) of human DCs and T cells
in co-culture lead to a decrease of T cell proliferation, which may
suggest a suppressing effect on the immune system. In contrast, no
changes in T cell proliferation were induced by IR of DCs alone.
They also found no significant changes in DC cytokine release
and reported similar to Shigematsu et al. (2007) no modulation of
activation marker or co-stimulatory molecule expression, such as
CD1a, CD40, CD80, CD86, ICAM, or MHC class II in murine DCs
alone, treated with several irradiation doses (0.02–1 Gy). Hence,
the authors suggested that LD-IR has no effect on the maturation
of DCs.

In vivo studies demonstrated an increased tumor latency of
lymphomas in radiation-sensitive, cancer-prone heterozygous
TRP53 mice (Mitchel et al., 2003) and a reduction of leukocyte
adhesion (which was maximal at a dose of 0.3 Gy) in C75BL/6
mice (Arenas et al., 2006) were reported. Furthermore, suppres-
sion of metastasis could be confirmed in tumor-bearing rats after
0.2 Gy WBI; this was attended by an increased expression of
genes coding for TNF-α and IFN-γ and a decreased expression
of transforming growth factor beta (TGF-β; Hashimoto et al.,
1999). The authors suggested immune augmentation as a reason
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for the antitumor effect of LD-IR. Bogdándi et al. (2010) could
demonstrate in vivo that low-dose radiotherapy (LD-RT) has an
impact on the functional as well as quantitative parameters of
murine splenocytes. They found a moderate decrease in the apop-
tosis of murine DCs after WBI with low doses of 0.01–0.1 Gy.
These observations were likewise associated with alterations of the
cytokine milieu, including partial down-regulation of IL-4 and
IFN-γ. Molecular changes induced by LD-IR show a distinctly
different pattern from those caused by HD-IR (Liu, 2003). Liu
et al. (2001) showed stimulated expression of CD80 and CD86
on murine APCs after WBI with 0.075 Gy, and increased IL-12
secretion 4 h after IR. Additionally, they were able to demonstrate
that the expression of CD28 on T cells was up-regulated and that
of CTLA-4 was down-regulated in early time points after LD-
IR. Considering the work of these authors together, in reference
to suppressed production of IL-10 these findings indicate immu-
noenhancement by LD-IR. Since an increase of surface molecules
on macrophages and an increased secretion of IL-12 results at both
LD-IR and HD-IR, Liu (2003) suggests that the different immune
reactions resulting from LD-IR compared to HD-IR might pri-
marily depend on changes of T lymphocytes. This hypothesis is
supported by studies of Jahns et al. (2011) who found a decrease
of CD25, a typical marker for activated T cells, after IR of human
DCs and T cells in co-culture after 0.5 and 1 Gy, whereas they
reported no impact of LD-IR on DCs alone (see also above). The
authors assume that this is an effect of LD-IR on T cells rather
than on DCs.

The expression of leukocyte adhesion molecules such as L-
selectin (Kern et al., 2000) as well as that of chemokines such
as CCL20 (Rödel et al., 2008), all playing a fundamental role
in leukocyte trafficking and thus are involved in the induction
of inflammatory processes, is also reduced by LD-IR in vitro.
Shin et al. (2010) reported about elevated levels of IL-3, IL-
4, leptin, monocyte chemoattractant protein (MCP)-1, MCP-5,
macrophage inflammatory protein 1 alpha (MIP-1α), throm-
bopoietin, and vascular endothelial growth factor (VEGF) along
with slight reduction of IL-12p70, IL-13, IL-17, and IFN-γ in
murine peripheral blood sera after chronic LD-IR with a total
dose of 0.2 Gy (0.7 mGy/h). According to the authors, this pattern
of cytokine release maybe facilitates the differentiation of naive T
cells into Th2, but not into Th1 cell type.

Further LD-IR studies reported an increased in vitro prolifera-
tion response to mitogens such as Concanavalin A in lymphocytes,
isolated after WBI of mice with 0.02 or 0.75 Gy (Ibuki and Goto,
1994; Liu et al., 1994a). Liu et al. (1994b) also reported a temporary
stimulation of the protein kinase C activity of mouse splenic tissue
and lymphocyte subpopulations after WBI with 0.75 Gy X-rays.
In general, data indicate that immunoenhancement is restricted
to a very narrow range of doses and is dependent on investigated
endpoints (Safwat, 2000).

There also is evidence that exposure to LD-IR can result in
radio-adaptation (reviewed in Jolly and Meyer, 2009). As a con-
sequence of this process, known as “radiation hormesis,” cells are
more resistant to subsequent radiation events (Bhattacharjee and
Ito, 2001; Mitchel, 2006).

With the current knowledge no threshold dose can presently be
defined for the immune-enhancing effects of irradiation (Safwat,

2000). Variations due to the tested endpoints, animal species or
the radiation dose rates applied may additionally complicate those
investigations.

Clinical aspects of low-dose radiation
The clinical acceptance of LD-RT varies worldwide (Seegen-
schmiedt et al., 2004). Because of reports from the 1960s and
epidemiological data about a possible carcinogenic late risk, espe-
cially of leukemia, the application of LD-RT is still a subject of
controversial debate and less accepted in many countries (Leer
et al., 1998). But in several European countries, LD-RT is practiced
for the treatment of a variety of inflammatory and painful joint
diseases (Hildebrandt et al., 2003; Seegenschmiedt et al., 2004),
such as heel spurs (Heyd et al., 2007), osteoarthritis (Hildebrandt
et al.,2000) or tendonitis (Adamietz et al.,2010). Total doses of LD-
RT comprise 5–10% of those given to tumor patients, assuming
different radiobiological mechanisms triggered by LD-RT com-
pared with high-dose radiotherapy (HD-RT; see remarks above).
In animal models it was demonstrated that repeated LD-RT can
attenuate the pathology of autoimmune diseases. In collagen-
induced arthritis mice, used as a model of rheumatoid arthritis, a
suppression of IL6 and IL17 production and up-regulation of Tregs

was demonstrated after repeated irradiation with 0.5 Gy (Nakat-
sukasa et al., 2010). LD-RT may also have a potential therapeutic
effect for the attenuation of the pathology of other autoim-
mune inflammatory diseases, such as multiple sclerosis (MS). In
experimental autoimmune encephalomyelitis mice, an established
animal model of human MS, suppression of pro-inflammatory
cytokines, reduction of CD8+ CTLs, and induction of Tregs could
be observed after repeated irradiation with 0.5 Gy (IR once per
week for 4 weeks; Tsukimoto et al., 2008).

However, as long as there is insufficient knowledge about the
precise biological effect of LD-IR, the old fears of tumor induction
will remain. Currently, it is intended to investigate the mechanisms
and biological impact of LD-IR on modulation of inflamma-
tory response in the context of a sub project of the European
project DoReMi (FP7-249689). Furthermore, several patterns of
care studies as well as clinical investigations of anti-inflammatory
and analgesic LD-RT in Germany are being conducted (summa-
rized in Rödel et al., 2012). The results of all these investigations
may help to gain reconsideration of LD-RT as an alternative option
for the treatment of benign diseases, also in the countries where
LD-RT is still less accepted.

CONCLUSION AND OUTLOOK
The effects of whole-body HD-IR on the immune system are
well characterized, leading in the end to substantial immuno-
suppression. Underlying molecular mechanisms are inhibition of
Ags-presenting function (Anton et al., 1998) by down-regulation
of co-stimulatory receptors such as CD80 and CD86 in immature
DCs (Reuben et al., 2004), alterations in cytokine release (Han
et al., 2006) and radiation-induced depletion or proliferation stop
of progenitor cells (Goans and Waselenko, 2005). A consolidated
overview of the interactions of DCs with T cells and the effect of
whole-body HD-IR on this is given in Figures 1A,B. A novel appli-
cation of IR has emerged in the partnership of localized HD-RT
with immunotherapy (Formenti, 2010). Further investigations
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FIGURE 1 | Dendritic cell–T cell interactions and its variations upon irradiation, (A) without irradiation (modified after Moser and Leo, 2010), (B) influence of
whole-body HD-IR, (C) influence of LD-IR.

regarding schedules, fractionation regimens, combination with
chemotherapy, and the contribution of the innate immune system
are urgently needed to achieve an optimal radiation-induced
immunogenicity.

Until now, no consistent position exists with reference to the
effects of LD-IR on the immune system. The observed effects are
strongly dependent on the range of dose and dose rate as well as on
the animal species and even the strain studied. The precise molec-
ular mechanisms underlying single or chronic LD-IR are still a
matter of contradictory discussion. As already mentioned above in
more detail, on the one hand there are studies indicating immuno-
suppression, on the other hand studies suggesting stimulation of
the immune system. The effect of LD-IR on the interactions of
DCs and T cells is summarized in Figure 1C. Since LD-RT seems

to have little or no effect on immune cells themselves, but rather
on the interactions of DCs and T cells, further investigations will
have to be made focusing on these findings. Due to several effects
interfering with each other, in vivo experimental data often show
very donor-specific results, necessitating the establishment of reli-
able in vitro models. These should consist of e.g. different immune
cell types, ideally in three-dimensional configuration, to reveal the
underlying mechanisms more precisely.
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