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Abstract. Nuclear magnetic resonance (NMR) provides a variety of tools for
the structural characterization of porous solids. In this paper, we discuss a
relatively novel approach called NMR cryodiffusometry, which is based on a
simultaneous assessment of both the phase state of intraporous liquids at low
temperatures, using NMR cryoporometry, and their transport properties, using
NMR diffusometry. Choosing two model porous materials with ordered and
disordered pore structures as the host systems, we discuss the methodological
and fundamental aspects of the method. Thus, with the use of an intentionally
micro-structured mesoporous silicon, we demonstrate how its structural features
give rise to specific patterns in the effective molecular diffusivities measured
upon progressive melting of a frozen liquid in the mesopores. We then present
the results of a detailed study of the transport properties of the same liquid during
both melting and freezing processes in Vycor porous glass, a material with a
random pore structure.
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1. Introduction

Porous solids have always been a focus of scientific research due to their extreme importance in
diverse applications, such as catalysis, mass separation, pharmaceuticals and chromatography.
To meet specific application-oriented purposes, a wide variety of porous materials have been
synthesized, including microporous zeolites [1], mesoporous glasses [2] and macroporous
silicon [3] as representative examples. In recent years, chemical synthesis has further progressed
to provide various means to tailor the structural properties of porous solids [4]–[6] and to
design complex, hierarchically organized porous matrices in a well-defined way. In this respect,
one may refer to newly emerging classes of porous host materials, such as metal–organic
frameworks [7] and porous coordination polymers [8]. In turn, such rapid growth of various
types of porous materials consisting of several structural units with different internal porosities
and pore morphologies, different spatial arrangements that may themselves give rise to quite
different textural polymorphs, demands the appropriate development of experimental techniques
for their structural characterization on different lengthscales.

Among a number of analytical methods serving this purpose, such as gas adsorption,
mercury intrusion and x-ray diffraction, nuclear magnetic resonance (NMR) has long been
recognized as a powerful tool non-invasively yielding information on various structural
properties of porous host systems [9]–[11]. Thus, NMR relaxometry has been used to access
specific surface area S/V and pore size distribution (PSD) [12], NMR cryoporometry to
determine PSD [13] and pore shape [14], and NMR diffusometry to measure the S/V and
tortuosity τ of porous solids [15] as well as pore shape [16]. One may further mention
magnetic resonance imaging, revealing textural properties of materials on the macroscopic
length scale [17].

One of the important properties of porous materials is the connectivity of the pore space.
Some attempts at its quantification have earlier been made, based on analyses of gas sorption
behavior [18, 19] and, in particular, desorption scanning behavior [20]. Alternatively, some
information on interpore connectivity may be extracted from the tortuosity factor τ , a parameter
accessible by pulsed field gradient (PFG) NMR. The tortuosity factor is defined as the ratio of
the molecular diffusivity of a bulk fluid to the effective long-time diffusivity Deff of the same
fluid in a porous solid. Because Deff is assessed by tracing the molecular displacements much
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exceeding the typical pore size of the porous medium, τ does provide a value averaged over
the whole structure. In this respect, new experimental approaches that can provide more local
information, e.g. the degree to which different modes of a PSD function are connected to each
other, are highly welcome.

Over the last few years, a few NMR-based approaches aimed at probing the local pore
connectivities have been suggested. Among them, two-dimensional (2D) 129Xe NMR exchange
spectroscopy has successfully been employed to resolve different exchange pathways between
pores of different sizes in electrochemically etched mesoporous silicon [21]. Similarly, but
employing 2D NMR transverse relaxation exchange experiments, access to the pore–pore
exchange properties of water in sandstone has been demonstrated [22]. In analogy to the work
of Mason on gas desorption [20], NMR cryoporometry has also been shown to reveal similar
details of pore space organization when the freezing pathways of liquids in mesopores are
monitored [23].

Additionally, alternative approaches based on correlative studies of phase state and trans-
port of fluids in mesopores have emerged [24]–[32]. In particular, NMR cryodiffusometry has
been shown to potentially provide information on pore interconnectivity [24]–[26], [28, 30, 31].
The key idea of these types of experiments is continuous modification of the pore space of a
porous solid via freezing or melting of the liquid in a certain subpopulation of the pores and
tracing the diffusion behavior of the rest of the probe intrapore liquid. In the above-cited case
studies, different aspects related to the overall phenomenon have been covered and the potential
of this approach has been demonstrated. However, detailed experimental studies and respective
theoretical descriptions are still lacking. In this paper, we present the results of our systematic
experimental studies of two model porous systems providing an experimental basis for further
theoretical analysis. By choosing materials with ordered and disordered pore structures, we
offer instructive examples highlighting methodological aspects of the method, and discuss in
more detail its applicability for material characterization.

2. Materials and methods

2.1. Porous materials

In this paper, two model porous materials with different morphologies of the pore space have
been used to provide instructive examples and deeper insights into the method used. One
of them, mesoporous silicon (PSi), has been chosen as a model material with ordered pore
structure. It is typically prepared by electrochemical etching of silicon crystals [33]. By a proper
choice of the etching conditions (etching current, temperature and electrolyte composition)
and the initial material properties (dopant type and its concentration), PSi tablets (in our case
with a diameter of a few cm and a thickness of a few tens of µm) with linear pores can be
obtained [34]. In the present work, single-crystalline (100)-oriented p-type Si wafers with a
resistivity of 2–5 m� cm were used. The electrolyte contained HF (48%) and C2H5OH in the
ratio of 1 : 1. Micro-structuring was performed by a temporal modulation of the etching current
density j during the fabrication between the three values of j = 20 mA cm−2, j = 60 mA cm−2

and j = 120 mA cm−2 [35]. Note that etching steps with larger currents lead to larger pores.
Two etching time schemes were used to produce the two structures shown in figure 1 (more
information about the fabrication procedure may be found in [36]). For both materials, the
overall PSi film thickness was about 48 µm. As a final step, to remove the PSi films from
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a

b

Figure 1. Schematic structure of the wo ordered mesoporous silicon samples
used. The first material consisting of 12 repeating unit cells shown in (a) is
referred to as the structured porous silicon. The unit cell is designed to have four
sections of equal length of 1 µm and to have tubular pores with different average
pore diameters. The pore diameters indicated in the figure were obtained using
NMR cryoporometry as described in the text. The overall sample thickness of the
thus prepared porous silicon film is 48 µm. Panel (b) shows a material referred
to as the reference sample. It is designed to consist of the same pore volumes of
the sections with a given pore structure as in the structured material in (a), but
arranged to have only three large continuous sections with different structural
properties.

the substrates, an electropolishing step with a current density of 700 mA cm−2 was applied
for 2–3 s.

The second material studied was Vycor porous glass [37]. This is a classical representative
of mesoporous materials with disordered pore structure. Structural characterization of Vycor
porous glass is the subject of numerous previous studies [19, 20, 38, 39] and therefore this glass
is often considered as a suitable, standard material for the comparison of experimental results
obtained by different techniques and for validating theoretical models. For the purposes of this
paper, it is sufficient to mention that it has a relatively low porosity of about 27% and a mean
pore diameter of about 5–6 nm.

2.2. NMR measurements

1H NMR studies were performed on a home-built spectrometer operating at 400 MHz for
protons and equipped with a PFG unit [40]. All measurements, including measurements of
both NMR signal intensities and molecular diffusivities, were carried out using the Hahn spin-
echo pulse sequence [41]. The use of this pulse sequence for diffusion measurements under
the conditions of our experiments is preferred due to the fact that the results obtained with the
pulse sequences having, as a part, longitudinal magnetization-storage time periods, such as the
stimulated or 13-interval sequences, can be distorted by nuclear cross-relaxation effects [42].
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For NMR measurements, PSi chips have been stacked in a glass tube in such a way that
the pore axes were aligned in the direction of the tube axis. This axis also coincided with the
direction of the externally applied magnetic field gradient, ensuring, therefore, that the diffusion
process of probe molecules along the main pore axis (recall their tubular morphology) is probed.
Vycor porous glass was used in the form of a rod with a diameter of 6 mm and a length of 12 mm.
The samples were initially outgassed and nitrobenzene, the probe liquid used in this study, was
added at an amount to result in filling of all mesopores, with some excess amount covering the
porous materials.

The protocol of the measurements was as follows. First, the temperature was slowly
decreased to completely freeze nitrobenzene in the bulk state as well as in the pores. Notably, a
strong supercooling, as compared to the bulk equilibrium transition temperature T0 ' 278.8 K
for nitrobenzene, was observed. Thereafter, the temperature was increased in small steps,
15 minutes were given for the equilibration after each temperature increment and the spin-
echo signal intensity was measured to compile the so-called melting curve. Upon reaching a
temperature slightly below T0, the direction of the temperature change was reverted to measure
the freezing curve. In this way, one ensures that the frozen bulk nitrobenzene is present at the
pore openings throughout all experiments and undesired supercooling effects leading to a delay
of the homogeneous nucleation of the very first nuclei of the frozen phase in the mesopores can
be avoided.

The freezing and melting processes were monitored via the spin-echo signal intensity
measured with a typical interpulse delay τ = 3 ms between the radiofrequency pulses in the
Hahn echo pulse sequence. This delay, which is chosen to be sufficiently longer than the
transverse relaxation times in the frozen nitrobenzene phase (tens of microseconds), ensures
almost complete suppression of the NMR signal from the frozen phase. It is worth noting that
the data were corrected for both nuclear relaxation (dependence of the transverse relaxation
rates T −1

2 on temperature) and Curie (dependence of the nuclear magnetization on temperature)
effects [23].

To take into account the transverse relaxation weighting, we have used a strong
supercooling observed on the cooling branch. This leads to a sufficiently broad temperature
range where the intra-pore fluid is found in the supercooled liquid state. Thus, by measuring
T2-relaxation times of the supercooled nitrobenzene, one may use them to respectively
normalize the spin-echo signal intensities measured during melting. Note, however, that such
a correction is not strictly valid concerning liquid-like non-frozen layers, in which nuclear
transverse relaxation times may have different behavior. Therefore, the low liquid fraction data
have to be analyzed with care. The dependence of the nuclear magnetization on temperature
was simply accounted for by multiplying the measured signal intensities by temperature. The
corrected data, therefore, represent the signal intensity being proportional to the number of
molecules in the liquid phase in the pores. The thus measured quantity may further be converted
to a respective PSD, as described elsewhere [43, 44].

In addition to the NMR signal intensity, the diffusivities in the liquid phase were also
measured after each temperature change. As mentioned, the measurements were carried out
using the Hahn echo pulse sequence incorporating pulses of the magnetic field gradient with a
typical duration δ of 500 µs and a strength g ranging from g = 0 T m−1 to g = 10 T m−1. In most
cases, the thus measured spin-echo diffusion attenuation functions, i.e. the spin-echo intensity
S versus the product g2δ2, were of exponential shape. This dependence usually accompanies
normal diffusion processes (diffusion propagator of Gaussian form) that, therefore, may be
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Figure 2. NMR signal intensities measured using the Hahn echo pulse sequence
with τ = 3 ms in the reference (filled circles) and structured (crossed circles) PSi
samples as a function of temperature on the warming branch (melting curves).

described using a well-defined diffusivity. In this paper, we denote this diffusivity by Deff

and refer to it as an effective diffusivity. In the case of deviations of the spin-echo diffusion
attenuations from the exponential shape, Deff was obtained from the low g2δ2 limit (for more
details, see e.g. [29]).

3. Experimental results and discussion

3.1. Ordered porous solids

3.1.1. Phase transitions. We start our consideration with the seemingly most simple samples
of PSi, containing pores of cylindrical morphology with intentionally varied pore diameters
along the pore axis, as shown in figure 1. It has to be noted, however, that these drawings
are, of course, idealized ones and it has recently been recognized that PSi materials obtained
by electrochemical etching possess a substantial degree of pore-wall roughness. Consequently,
it may have a considerable effect upon phase transitions. In fact, it was shown to result
in, e.g., capillary condensation or evaporation transitions occurring in a way qualitatively
similar to materials with disordered pore structure [45]–[47]. Despite the existence of such
a disorder, the pores are still linear with a negligible number of interconnections between
adjacent pores [46]. Also, the intentionally created structural patterns are not smeared out and
are well observable [35]. In particular, they are clearly discernable in the melting curves shown
in figure 2.

Upon warming the PSi samples, starting from the completely frozen state of nitrobenzene,
a few steps in the melting curves are observed. The very last one, occurring at about 279 K,
is associated with the melting of the bulk nitrobenzene surrounding the PSi chips (recall the
presence of excess nitrobenzene). The three steps at about 255 , 263 and 268 K are formed due
to the melting of nitrobenzene in the pore sections of PSi with different average pore diameters.
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Figure 3. Pore size distributions of the reference (filled circles) and structured
(open symbols) PSi samples obtained using NMR cryoporometry. To obtain
these functions, the data of figure 2 were used. The lines shown are a guide
to the eye.

According to the Gibbs–Thomson equation [48],

T0 − Tm = K/dc, (1)

the melting temperature Tm of a crystal of a finite size dc is inversely proportional to the crystal
size and, therefore, to the pore diameter by which the dimension of the confined phase is
limited. For liquids completely wetting the pore walls, the proportionality factor K is, in the
first approximation, determined only by the physico-chemical properties of the confined liquid.
Using this relationship, the data of figure 2 can readily be converted to the PSD functions that
are presented in figure 3. The relevant details of this transformation can be found elsewhere
[13, 43, 44]. Here we only note that we have used T0 = 278.8 K and K = 125 K nm for
nitrobenzene [35] and assumed that, between the frozen core and the pore walls of PSi, there
exists one monolayer of nitrobenzene in a liquid-like state.

The thus obtained PSDs show three peaks, in full agreement with the structure expected
from the fabrication procedure. Although both PSi samples, the reference and the structured
ones, were designed to have identical relative volumes of different pore sections, some minor
deviations are revealed by the measured PSDs. This can be caused either by some effects during
etching (recall contact of the pore walls with the electrolyte during the fabrication and possible
changes of the electrolyte concentration with etching time [36]) or by peculiarities of the melting
transition due to a coupling between adjacent pore sections with pores of different dimensions.

3.1.2. Diffusion in the reference sample. The difference in the overall geometry of the samples,
however, becomes clearly notable by measuring the effective diffusivities of the liquid phase
along the melting curve. Figure 4 shows such data for both samples. For the reference sample,
three regimes in the diffusive behavior may be identified. The temperature ranges corresponding
to these regimes are well correlated with the features in the respective melting curves. Indeed,
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Figure 4. Effective diffusivities of nitrobenzene in (a) the reference and (b) the
structured PSi samples measured simultaneously with the NMR signal intensities
(figure 2) on the melting branch. The measurements have been carried out
using three different interpulse separation times τ in the Hahn spin-echo pulse
sequence, as indicated in the figures.

the stronger dependences of Deff on temperature are found to correlate with the stronger increase
in the signal intensity with temperature, i.e. where melting of the frozen phase does occur in the
pore sections with a certain pore size. Similarly, the shoulders in figure 2 give rise to a weaker
dependence of Deff on T , presumably accounted for solely by an increase in the diffusivity in
the liquid phase with increasing temperature (typically described by, e.g., the Arrhenius law).

The diffusivities of liquid nitrobenzene in PSi samples with tubular pores have previously
been measured as a function of the average pore diameter [31]. It was found that the diffusivities
increase with increasing pore diameter. One of the mechanisms leading to this behavior is the
interaction of liquid molecules with the pore walls, tending to slow down the molecules at
the surface. Thus, the overall diffusivity becomes a function of the surface-to-volume ratio,
which increases with decreasing pore diameter. Based on the data of [31], it is expected that
Deff for the pores with average pore diameters of 6 and 12 nm differ by a factor of about 3. This
finding satisfactorily explains a stronger increase in the diffusivities with increasing temperature
in the regimes of the progressive melting as compared to the situation expected solely due to
an increase in the kinetic energy with increasing temperature. Indeed, in agreement with the
Gibbs–Thompson relation, pores with smaller pore size and, therefore, with smaller diffusivities
of the intrapore liquids melt at lower temperatures.

In this material, the lengths (12 and 24 µm) of the sections containing pores with
uniform pore diameters notably exceed the molecular displacements

√
Deffτ traced in our NMR

experiments, which are found to be of the order of or below 1 µm. Hence, keeping in mind that
all channels in PSi are parallel to each other [46] and diffusion is probed along the channel axes,
the effects of restricted diffusion are not expected to play a role. This is further confirmed
by the data from diffusion experiments performed with different interpulse delays τ in the
Hahn echo pulse sequence, i.e. with different diffusion times, revealing only slight differences
(except temperatures above 270 K). Thus, we experimentally prove that the transport properties
of the molecular ensembles in the three different sections may be considered to be only slightly
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Figure 5. Normalized diffusivities for nitrobenzene in the structured PSi sample
(left axis). For the normalization, the respective data obtained for the reference
sample (the data of figure 4(a)) were used. The different symbols refer to the
measurements performed with different times τ . Additionally, the data of figure 2
on melting of nitrobenzene in the structured porous silicon are shown by the
crossed symbols (right axis). These data are normalized to the signal intensity
measured when all mesopores contained liquid nitrobenzene but the excess liquid
was frozen.

affected by the surrounding sections with differing structural characteristics. That is why we
have referred to this sample as the reference.

3.1.3. Diffusion in the structured sample. Figure 4(b) shows the results of diffusion
experiments performed with the structured PSi. It reveals additional features not observed for
the reference material. In order to discern the solely structural properties of this sample, we
normalize the data of figure 4(b) by those of figure 4(a). In this way, we may decouple the
effects of pore space morphology on transport from those determined by an increase in the
molecular kinetic energy (e.g. described by the Arrhenius law) and the dependence of Deff on
the pore size discussed in the preceding section. Notably, the latter two mechanisms contribute
to the diffusion behavior in both PSi samples and, therefore, their effects may be canceled upon
normalization. Thus the obtained data are shown in figure 5.

As a prominent feature of figure 5, the formation of minima and maxima may be noted.
The position of the first minimum Tmin,1, obtained at about 257 K, is nicely correlated with the
temperature around which melting in the smallest pores, with an average diameter of 6.3 nm,
is completed. We anticipate that the initial decrease in Deff with increasing temperature up to
Tmin,1 is caused by the progressive formation of spatially continuous domains (or pore sections)
containing liquid nitrobenzene. The pores in these sections, which are about 1 µm in length
(see figure 1), are surrounded by larger pores containing frozen cores. Thus, in the domains
containing molten nitrobenzene, diffusion will be restricted. As discussed in more detail in the
appendix, an increase in temperature (and therefore in molecular mobilities) in this case will
lead to a decrease in the normalized diffusivities.
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In the adjacent pores, containing the frozen cores, the molecules may diffuse within the
liquid-like layers of thickness lnfl at the pore walls [49]. Thus, the domains containing molten
nitrobenzene are connected to each other via such liquid-like layers. This may render the
completely restricted diffusion model not valid. We anticipate, however, that for the lnfl/dp

ratios sufficiently less than 1, which is presumably true in our experiments, the behavior will be
qualitatively identical (also, see the discussion in the appendix). It is also worth noting that, as
has been shown earlier, the adsorbing boundary conditions in this context have qualitatively
similar effects to the effects of restricted diffusion [50]. Hence, if the molecules start their
diffusion within the liquid domains and then, during the observation time, disappear from the
NMR signal due to fast relaxation of the nuclear spins in the non-frozen liquid-like layers, this
process will again result in a decrease in the measured diffusivities.

The increase in Deff upon further warming up to a temperature of about 262 K, at which
onset of melting is observed in pores of 8.5 nm diameter, may be associated with the increase of
the thickness of the non-frozen surface layers with increasing temperature [51]. If the domains
containing molten nitrobenzene stay intact, this process will lead to a respective increase in
the permeability and, therefore, in the effective, long-range diffusivity. By approaching the
porous medium as an arrangement of spherical cavities connected via cylindrical tubes with
a smaller diameter, the phenomenon discussed may be considered as the result of an increase in
the diameters of the connecting tubes, which is shown to lead to an increase in Deff [52].

The occurrence of the second minimum at Tmin,2 ≈ 265 K may be explained in a similar
way, but now involving the formation of longer domains (with a length of 3 µm, according
to figure 1) containing liquid nitrobenzene. This decrease, however, is less pronounced owing
to the increase in both the size of the domains and the thickness of the non-frozen layers.
Also, one may rationalize that the tortuosities of the two structures in figure 1 are different.
As a consequence, this may account for the final slight decrease in Deff during the melting of
nitrobenzene in the biggest pores, as observed at temperatures above 267 K.

To summarize, using PSi as a model porous medium, we have shown that the effective
diffusivities measured as a function of temperature during the melting of the intraporous frozen
phase bear information on the structural features of the host material. Indeed, it is found that,
upon proper normalization, well-resolved minima and maxima in the effective diffusivities are
observed, which may further be nicely correlated with the structural features of the pore space.
Because these features observed in the transport properties are closely interrelated with the
differences in phase states of the fluid in the adjacent pores, further theoretical analysis using
appropriate models is expected to yield unique information on the interconnectivity between
these pores.

3.2. Disordered porous solids

By establishing how the structural features of ordered porous materials give rise to specific
patterns in the diffusion behavior upon a continuous change in the pore space, it becomes
interesting to see whether these patterns are still preserved in materials with random pore
structures. To examine this, we have performed cryodiffusometry experiments with Vycor
porous glass. It has to be noted that for intentionally structured samples, such as PSi, one
can fabricate a ‘reference’ material related to it. As we have shown in the preceding section,
this reference material, consisting of a collection of pores independent from each other with
identical chemistries of the pore surface, may substantially help in singling out the structural
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Figure 6. Freezing and melting curves (a) and the effective diffusivities (b) for
nitrobenzene in Vycor porous glass as a function of temperature. The crossed
and filled circles refer to the cooling (starting from the initial state at which
all mesopores contain liquid nitrobenzene but excess nitrobenzene is frozen)
and warming (starting from all nitrobenzene in the frozen state) branches,
respectively. The open stars in panel (a) show the scanning freezing curve
obtained by reverting the warming branch to the cooling one at a temperature at
which still about 50% of the pore volume contains frozen nitrobenzene phase and
in panel (b) the respective effective diffusivities obtained along with the scanning
melting curve. In (a), the lines shown are a guide to the eye. In (b), the solid line
shows a best fit of the Speedy–Angell equation (see text) to the diffusivity data
measured on the cooling branch in the temperature range 218 –262 K.

properties of the material under study. To find such a reference material for porous solids, such
as random glasses, including Vycor porous glass, is hardly possible. Therefore, we have used an
alternative approach based on the consideration of the fluid properties in the pores during both
cooling and warming branches.

Figure 6 shows the freezing and melting curves and the effective diffusivities of
nitrobenzene in Vycor porous glass measured upon cooling and warming the system. First,
we would like to point out the occurrence of a relatively broad freezing/melting hysteresis in
figure 6(a). All possible mechanisms contributing to its formation have already been discussed
in detail in our previous work [23]. In particular, the delayed metastable freezing has been
associated with a strong pore-blocking effect. The latter becomes evident, e.g., by comparing
the data on freezing obtained by cooling from the completely molten state and the state with only
half of the mesopores containing liquid phase (see figure 6(a)). Irrespective of specific details,
NMR cryodiffusometry experiments may profit from the occurrence of strong supercooling
in the mesopores. Indeed, the data on the diffusivities of the supercooled liquid recorded on
the cooling branch, resulting without any confinement by a frozen phase, may be used for the
normalization of the effective diffusivities measured during melting. In this way, the variation
in Deff with temperature due to the change in the molecular kinetic energy may be removed.

In line with the freezing/melting hysteresis, a hysteresis between the effective diffusivities
measured on cooling and warming is observed as expected. To further analyze these data, we
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Figure 7. Normalized diffusivities Deff,n for nitrobenzene in Vycor porous glass
as a function of the liquid fraction fl of nitrobenzene in the mesopores during
freezing (crossed circles) and melting (filled circles) from the completely molten
and frozen states, respectively, and during scanning freezing (open stars) from
the half-molten state (see figure 6 for a more detailed explanation). For the
normalization, the diffusivities of figure 6(b) were divided by the respective
diffusivities in the supercooled state (solid line in figure 6(b)). The solid line
shows the power-law function f 1/3

l . The inset shows a model structure explaining
the observation of the minimum in Deff,n at fl ≈ 0.06. In (a), only the non-frozen
surface layers (shown in white) are accessible for diffusion. In (b), the formation
of the domain containing liquid leads to increasing tortuosity and, therefore, to
decreasing effective diffusivity.

will normalize the diffusivities in a way discussed in the preceding paragraph and plot them
versus the relative fraction fl of the liquid phase. First, we fit the data on Deff measured on the
cooling branch in the temperature range from 260 to 220 K to some analytical equation and
then use it for the normalization. We found that the Speedy–Angell equation [53],

Dsl(T ) = Ds0

(
T

Ts
− 1

)k

, (2)

suits our purposes reasonably well. The best fit to the experimental data is found with Ds0 =

4.1 × 10−10 m2 s−1, Ts = 181.8 K and k = 2.85. The normalized diffusivities Deff,n are then
defined as Deff,n = Deff/Dsl . In figure 7, Deff,n are plotted as a function of fl, where for the
temperature–liquid fraction transformation the data of figure 6(a) were used.

The thus plotted data on Deff,n clearly reveal a few interesting features. First of all, a
notable hysteresis is still preserved between the data on freezing and melting. This phenomenon
has already been reported earlier for two-phase systems in porous solids, including both
liquid–gas [54, 55] and solid–liquid equilibrium [31]. A clue to understand it in our particular
case is provided by the data obtained upon cooling, showing almost no dependence of Deff,n on
the liquid fraction fl down to about fl = 0.3. This finding is most straightforwardly explained by
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the invasion-percolation character of the freezing process in Vycor porous glass, as established
in our previous work [23]. Indeed, in such small pores of less than 10 nm, the process of
homogeneous nucleation is strongly suppressed. On the other hand, at the pore openings, there
is a direct contact of the intrapore liquid with the frozen bulk nitrobenzene. This facilitates
freezing via the solid front penetration from the particle boundaries into the porous solid.
Recalling the macroscopic dimension of the Vycor porous glass particle used (a few mm), it
becomes clear that the liquid phase in the particle core forms a continuous domain with a size
notably exceeding the molecular displacements of up to 1 µm, as registered in the experiments.
Therefore, the diffusion process on the length scales as probed by PFG NMR appears to be
unaffected, i.e. not restricted by the frozen domains down to fl = 0.3.

In contrast to freezing, it is believed that melting occurs homogeneously over the entire
volume of the particle. Before the very first liquid domains could be formed, the measured
diffusivities may be associated with the mobility of nitrobenzene in the non-frozen surface
layers [49]. In figure 7, these are the data points for fl less than about 0.05. This conclusion
we draw solely based on the fact that for fl < 0.05, Deff,n( fl) behaves differently from the case
of higher liquid fractions. It has to be noted, however, that the normalization has been done
taking into account the temperature dependence of diffusion behavior in the supercooled liquid.
The respective behavior in the non-frozen layers may be different and, therefore, the data for the
region fl < 0.05 may have only qualitative meaning. In addition, in this region it is not trivial to
properly take into account nuclear relaxation effects, which shift the values of fl from the real
ones.

Upon further warming, spatially separated domains of the liquid phase appear
homogeneously distributed in the pore space, in agreement with the Gibbs–Thompson criterion
given by equation (1). Their typical dimension may be estimated to be about a few tens of
nm [38]. The occurrence of such domains is evidenced by the observation of a minimum in
Deff,n at fl ≈ 0.06–0.08. Here, we would like to mention that this is not just a scatter in the
data shown in the figure, but this phenomenon was systematically observed by repeating these
experiments. Because of nuclear relaxation effects, resulting in the apparent values of fl that
may deviate from the real ones, their direct comparison to fl obtained from calculations of
relative volumes occupied by the liquid phase based on the geometrical characteristics of the
pore space may not be correct in this region.

The mechanism of the minimum formation is presumably identical to that discussed in
relation to figure 5, i.e. the restriction of diffusion in the liquid-filled domains, poorly connected
to each other via the non-frozen layers in the pores containing the frozen core. Alternatively, this
may be explained by noting that upon forming such molten domains, the tortuosity increases,
decreasing, in turn, the effective diffusivity. This may easily be rationalized by considering a
simple model, as shown in the inset of figure 7. Obviously, the tortuosity of the liquid phase in
model (a), modeling the existence of only non-frozen surface layers, is higher as compared to
that of the model (b), where the region of the frozen core is now accessible for diffusion.

Further growth of these domains with increasing temperature is, presumably, determined
by the probability of their statistical clustering. Keeping in mind our limited understanding of
the thermodynamics of mesoscalic systems, we cannot exclude growth of the initially formed
domains of the liquids phase by moving the solid–liquid interface in the direction of the
pore axis. Nevertheless, the domains of liquid phase formed during melting have mesoscalic
dimensions throughout the experiments, resulting in slower diffusivities as compared to those
obtained on the freezing branch at identical fl .
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It is very informative to compare the data on the effective diffusivities obtained along
the melting curve (filled circles in figure 7) and the scanning freezing curve (open stars in
figure 7), which are found to coincide within experimental error. This finding reveals that, upon
removing kinetic limitations for the nucleation processes, the phase composition in random
materials plays a decisive role in determining Deff. However, a particular functional dependency
of the diffusivities on fl still contains information on the pore space organization. Although
the fine details of the geometrical configuration of the phases remain screened in these types
of experiments, we anticipate that they can be assessed by performing 2D NMR transverse
relaxation exchange spectroscopy studies [22] during partial melting and freezing scans.

A better understanding of the overall behavior of Deff,n( fl) in the range of liquid fractions
0.1 < fl < 1 may be achieved upon considering theoretical models taking into account a
particular spatial distribution (random, in the first instance, or chosen according to some two-
point correlation function [56]) of pores with different pore sizes and their interconnectivity.
An alternative strategy might be an analysis based on the well-known Archie law, which was
often employed for the analysis of similar systems [57, 58]. The use of the Archie law may
be justified by noting that the data in figure 7 in the region of interest are well reproduced by
a power law. Taking into account, however, the limited range of normalized diffusivities over
which they vary, a reliable proof of the validity of this assumption is far from trivial.

4. Conclusions

Accessing the structural details of porous solids is an important task of material-characterization
sciences. Among a number of experimental techniques, NMR cryodiffusometry has recently
emerged as a powerful method yielding unique information on the pore-space organization,
including pore-space interconnectivity. It is essentially based on a simultaneous probing of the
processes of molecular diffusion and of freezing and/or melting using NMR.

In the present paper, by profiting from our ability to produce mesoporous material with
well-defined structured properties, we demonstrate and discuss in detail the correlation between
the details of molecular spatial propagation and the structural features of the pore space
where the diffusion does occur. Importantly, the porous space is continuously modified by
adding/removing rigid domains of the frozen phase accomplished on the basis of the size
dependence of first-order phase transitions. By the use of the most simple model pore structures,
we make it easily recognizable how the phenomenon of restricted diffusion gives rise to
such correlations. With all structural information known in advance, these results provide a
stimulating and elaborated compilation of experimental data which may be compared directly
to theoretical models.

As a step further, we present the results of a systematic study of transport and solid–liquid
phase equilibrium in Vycor mesoporous glass with random pore structure. The data obtained
for this material reveal a pronounced hysteresis between the diffusivities of the probe
liquid measured on cooling and warming branches and compared at the identical phase
compositions of the frozen and liquid phases in the mesopores. This finding contributes further
to a fundamental understanding of phase transition processes under confinement in random
mesopores and confirms the existence of different pathways of crystal growth and shrinking
during freezing and melting, respectively. The molecular diffusivities analyzed as a function of
the phase composition reveal two distinct regimes associated with the molecular propagation
within the non-frozen surface layers and an admixture of the diffusion processes in those layers
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Figure A.1. Normalized diffusivities Dcr/D0 (dotted lines) of a liquid in an
idealized model of the structured porous silicon as a function of molecular
displacements r = (2D0(T )t)1/2 calculated via equation (A.1). The dashed lines
show the long-time asymptotes given by Dcr/D0 = L2/6r . The variation in the
normalized diffusivities one would measure upon changing the temperature and
therefore r (due to temperature-dependent D0) and keeping t = 3 ms fixed is
visualized by the solid line (refer to the main text for more details). The vertical
arrow shows r corresponding to temperature T2. The inset depicts a model of
the structured porous silicon containing frozen liquid (shown in light gray) and
molten liquid (shown in white). The configurations (a) and (b) are attained at
temperatures T1 and T2 upon warming, respectively.

and in the progressively building up domains of the liquid phase. The results of a theoretical
modeling of these processes will be the subject of our forthcoming publication.
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Appendix. Restricted diffusion between plates

Let us consider an idealized pore structure, as shown in the inset of figure A.1, modeling the
geometry of the structured porous silicon sample used in the present study. Let us assume that at
low temperatures the liquid freezes completely, i.e. non-frozen, liquid-like layers adjacent to the
pore walls are not formed and also they do not form upon warming. With increasing temperature,
first the frozen liquid melts in the sections with smallest diameter d1 at a temperature T1 = K/d1.
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Figure A.2. Normalized diffusivities Dn = Dcr/D0 (dotted lines) of a liquid in
an idealized model of the structured porous silicon containing frozen domains, as
depicted in the inset (a) of figure A.1, as a function of molecular displacements.
The difference with the data on Dn of figure A.1 results from taking into account
the existence of non-frozen, liquid-like layers between the frozen core and the
pore walls: the higher the curve, the higher their thickness. The solid lines show
possible pathways of Dn with increasing temperature.

The corresponding situation is shown in the inset (a). Note that because we do not allow for non-
frozen, liquid-like layers, diffusion in the thus formed liquid domains will become completely
restricted at sufficiently long times. The respective time-dependent diffusion coefficient Dcr(t)
along the pore axis can in this case be readily found analytically [59],

Dcr(t) =
L2

2t

[
1

6
− 16

∞∑
m=0

1

(2m + 1)4π4
exp

{
−(2m + 1)2π 2 D0t

L2

}]
, (A.1)

where L is the length of the section where diffusion does occur and D0 is the diffusivity along
the pore axis in an infinitely long channel. With further increase in temperature, the middle
sections (as shown in the inset (b) of figure A.1) will melt at a temperature T2. Importantly,
the diffusion process in the thus formed liquid domains will be described by equation (A.1),
but with increased L . Thus, it appears that L in this particular problem might be considered
as a temperature-dependent, stepwise function. It has to be mentioned that we neglect a minor
change in D0 due to the modulation of the pore diameter along the pore axis.

Figure A.1 shows the normalized diffusivity Dn = Dcr/D0, as calculated using
equation (A.1) for two values of L = 1 µm and L = 3 µm, as a function of molecular
displacements. The latter is defined as r = (2D0(t))1/2 and is a function of both the diffusion
time t and the diffusivity D0. The diffusion time t , which is given in our experiments by τ , is
held constant. D0, however, changes with changing temperature and, therefore, gives rise to the
respective variation of r . Thus, according to figure 4(a), in the temperature interval studied from
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about 252 to 272 K, D0 varies from about 2 × 10−11 to 1.4 × 10−10 m2 s−1. Using τ = 3 ms, this
corresponds to molecular displacements r from about 0.3 to 0.9 µm.

Finally, to find the normalized diffusivities in this range of r , we can use equation (A.1),
explicitly taking into account the temperature-dependent behavior L . The result is shown in
figure A.1 by the solid line, which is reminiscent of the experimentally observed behavior in
figure 5. It is worth pointing out two opposite trends giving rise to this behavior: (i) the decrease
in Dn with increasing temperature is due to increasing molecular displacements, resulting in a
stronger effect of restrictions as given by equation (A.1), and (ii) the growth of liquid-containing
domains with increasing temperature leads, in contrast, to an increase in Dn. Altogether, the
analysis performed with this idealized model reveals that the combined effects of restricted
diffusion in regions with temperature-dependent dimensions and of temperature-dependent
variation of the molecular displacements may give rise to the formation of minima and maxima
in the normalized diffusivities probed with increasing temperature.

Modeling the impact of non-frozen, liquid-like layers on the effective diffusivities is not
trivial. Generally, their existence leads to the occurrence of finite diffusivities D∞ at molecular
diffusivities much exceeding typical sizes of the domains of the liquid phase. The thickness lnfl

of these layers evidently depends on temperature [51]. Thus, it is reasonable to expect that
D∞ will increase with increasing lnfl in other identical conditions. Such behavior is shown
schematically in figure A.2. It now becomes clear that with increasing temperature an interplay
of two mechanisms, namely of restricted diffusion, tending to decrease Dn, and of increasing
lnfl, tending to increase Dn, will determine a particular pathway of Dn. As an example, the solid
lines in figure A.2 show two such pathways.
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