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Abstract. The use of interference microscopy has enabled the direct
observation of transient concentration profiles generated by intracrystalline
transport diffusion in nanoporous materials. The thus accessible intracrystalline
concentration profiles contain a wealth of information which cannot be deduced
by any macroscopic method. In this paper, we illustrate five different ways for
determining the concentration-dependent diffusivity in one-dimensional systems
and two for the surface permeability. These methods are discussed by application
to concentration profiles evolving during the uptake of methanol by the zeolite
ferrierite and of methanol by the metal organic framework (MOF) manganese(II)
formate. We show that the diffusivity can be calculated most precisely by means
of Fick’s 1st law. As the circumstances permit, Boltzmann’s integration method
also yields very precise results. Furthermore, we present a simple procedure that
enables the estimation of the influence of the surface barrier on the overall uptake
process by plotting the boundary concentration versus the overall uptake.
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1. Introduction

Diffusion is one of the most fundamental, omnipresent phenomena in nature and technology.
It is especially relevant for nanoporous host particles [1] where the transport properties of the
guest molecules are among the crucial features. This is primarily related to their application in
separation [2] and catalysis [3] since it is the rate of mass transfer which often decides their
technological performance [4, 5].

Many phenomena of (anomalous) mass transfer are caused by the peculiarities of
molecules under confinement [6]–[10]. Furthermore, the discrepancies between the results of
different measuring techniques [11]–[14] contribute to the continuously increasing interest. The
introduction of interference microscopy to study mass transport in nanoporous host systems [15,
16] meant a significant breakthrough because no other technique enables such a detailed view
of the concentrations evolving in the crystals.

There exists a large spectrum of techniques able to monitor concentration profiles (e.g.
magnetic resonance imaging [17]–[19], positron emission profiling [20] and IR imaging [21]),
but only interference microscopy has a spatial resolution in the range of a micrometre. This high
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resolution, however, is essential for the observation of intracrystalline concentration profiles
within nanoporous crystals with a size of typically 50µm. Only these transient intracrystalline
concentration profiles enable a thorough analysis of mass transport of the guest molecules.

Since the mobility of molecules depends on their mutual interaction, in general, the
transport parameters depend on the loading. Under these conditions, macroscopic techniques
that are based on an analysis of the time-dependent overall uptake (like gravimetric uptake and
release experiments) would fail to provide detailed information on the diffusivity if very large
concentration ranges are covered.

In this paper, we present several methods for determining the mass transport parameters,
i.e. the transport diffusivity and the surface permeability, from transient intracrystalline
concentration profiles. Furthermore, we discuss their application to two different guest–host
systems, namely to methanol in the zeolite ferrierite and methanol in the metal organic
framework (MOF) manganese(II) formate. Although these systems are fairly different, the
efficiency of the respective methods is similar.

2. Experimental

The experimental set-up consists of an optical cell which contains the studied zeolite crystals.
The cell is connected to a vacuum system with a vacuum pump and a stock volume of about
2 litres to execute pressure step changes at the beginning of the experiment and to keep the
pressure constant at the desired value. The concentration profiles evolving in one single crystal
are observed by the interference microscope (section2.1).

The analysed concentration profiles are monitored during the uptake of pure methanol at
room temperature (298 K). In all the experiments considered here, the pressure step is from
0 to 10 mbar.

2.1. Interference microscopy

Figure 1 illustrates the application of interference microscopy to diffusion studies within
nanoporous materials. It is based on an analysis of the interference pattern generated by
superimposing light beams passing through the nanoporous crystal and the surrounding
atmosphere. Since the optical density of the crystal is a function of the concentration of the
guest molecules, changes in local concentration directly appear in corresponding changes in the
interference pattern (figures1(b) and (c)). Vice versa, from the interference patterns one may
deduce the corresponding concentration profiles (figure1(d)). The quantity directly accessible is
thus the integral over the intracrystalline concentration in the observation direction (thex-axis in
figure1(a)) with a spatial resolution of1y × 1z ≈ 0.5× 0.5µm2. If—due to a corresponding
blockage of the relevant crystal faces or by the architecture of the pore system—diffusion in the
x-direction is excluded, there is also no concentration variation in thex-direction. In this case,
interference microscopy directly yields the local concentrationsc(x, y, z).

Interference microscopy cannot provide the absolute values of adsorbate concentration.
The absolute concentrations may be calculated with the isotherm available from the literature
or measured, for instance, by infrared microscopy. Since the equations describing the transport
processes (and therewith the determined transport parameters) are independent of the absolute
value of the concentration, in this paper the concentrationc is presented in normalized values.
This means that the initial concentration is 0 and the final concentration is 1.
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Figure 1. Schematics of interference microscopy. (a) Light beams passing
through the crystal and through the surrounding atmosphere. (b) The interference
microscope. (c) Interference pattern caused by different optical path lengths.
(d) Evolution of the concentration profiles calculated from the interference
pattern.

2.2. The investigated nanoporous crystals

The silica–ferrierite zeolite is a cation-free zeolite with two perpendicular channel systems that
intersect each other [22]. One channel system is adjusted along they-direction and is framed
by an 8-membered ring; this means that they are formed by 8 oxygen and 8 silicon atoms. The
other channel system is along thez-direction and is formed by 10-membered ring channels. The
outer geometry is like a cuboid with its long-side lengths in they- andz-directions (l y = 25µm
and lz = 100µm; l denotes the half-edge length) and a short-side length in thex-direction
(lx = 10µm). On both big side faces of the crystal (parallel toy–z), there are small roof-like
parts (figure2). In previous studies [23, 24] it was found that, due to pore blocking at the channel
entrance in thez-direction, mass transport essentially proceeds one-dimensionally (1D) (in the
y-direction). The ferrierite crystals are activated under high vacuum at a temperature of 673 K for
12 h. The activation was preceded by exposing the sample to oxygen at 973 K for 4 h to ensure
that there are no organic residues. A gas pressure of 10 mbar causes an equilibrium loading
of approximately 1.2 mmol methanol in 1 g zeolite. This corresponds to a relative loading of
30% [24].

The other nanoporous crystal under consideration is manganese(II) formate (Mn(HCO2)2),
a member of the large family of the so-called MOFs [25]. The crystal contains a 1D channel
system which is based upon internal cages with a diameter of 0.55 nm (figure3). The cages are
connected by windows with a diameter of 0.45 nm. The crystals are activated under high vacuum
at a temperature of 423 K for 24 h. A methanol gas pressure of 10 mbar causes an equilibrium
loading of 77 mg methanol in 1 g MOF, which equals a relative loading of 57% [25].
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Figure 2. A ferrierite crystal with a 2D pore structure. The scheme shows
blocked channels in thez-direction in the main body of the crystal, open channels
in thez-direction in the roof section and open channels in they-direction.

Figure 3. (a) SEM image of a typical MOF manganese(II) formate crystal with
they-direction indicated. (b) Scheme of the 1D channel structure. (c) Photograph
of the studied crystal, with a dotted line which indicates the crystal part where
the analysed profiles have been measured.

3. Mass transport in nanoporous materials

The mass transport of a single-component fluid in a nanoporous host material is already
precisely described by the equations derived by Adolf Fick, who observed the proportionality
between the flux densityj and the gradient of the concentrationc. This is known as Fick’s 1st
law [26, 27] with the transport diffusivityD as a constant of proportionality,

j = −D
∂c

∂y
. (1)

Since there are no sources or sinks of molecules, conservation of matter,
∂c

∂t
+

∂ j

∂y
= 0, (2)
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is assumed during the diffusion process. The combination of Fick’s 1st law with the conservation
of matter results in Fick’s 2nd law [26],

∂c

∂t
=

∂

∂y

(
D

∂c

∂y

)
= D

∂2c

∂y2
+

∂ D

∂c

(
∂c

∂y

)2

. (3)

For 3D mass transport, the spatial derivative has to be replaced by the gradient.
Most observed nanoporous crystals [16, 24, 25, 28, 29] exhibit a transport resistance at the

surface which hinders the molecules entering the crystal. This effect can be described by [30]

j = α(ceq− csurf), (4)

introducing the surface permeabilityα as a proportionality factor between the flux density into
the crystal and the difference between the actual concentration in the crystal boundarycsurf and
the equilibrium concentrationceq.

It has been shown [31] that the observed adsorption and desorption processes are essentially
isothermal. Therefore, the transport resistance at the crystal surface cannot be explained by non-
isothermal effects.

4. Ways of determining the transport diffusivity from intracrystalline
concentration profiles

With the obtained concentration profiles and the equations describing the transport process,
in principle, the transport diffusivity becomes directly accessible. However, as we will discuss
later, the accuracy of the results depends significantly on the method to determine the diffusivity.
Furthermore, some methods are subjected to special constraints for their application.

If the mass transport takes place along three directions, the intracrystalline concentration
cannot be directly determined from the integrated profiles obtained by interference microscopy.
Therefore, a careful recalculation of the intracrystalline concentration profiles needs to be
conducted [28]. In general, the non-isotropic mass transport can be best analysed by considering
small times when the concentration fronts, which penetrate into the crystal, do not overlap.
Therefore, these profiles can be considered as (quasi-) 1D.

In our analysis, we consider the concentration profiles evolving during an adsorption
process from 0 to 1. In principle, the following derivations are also valid for desorption
(i.e. release) processes.

4.1. Determining the transport diffusivity by Fick’s 1st law

The flux densityj through an areaA corresponds to the amount of molecules diffusing through
this area during a time dt , divided by dt and A. Due to the conservation of matter, the flux
density can be calculated by

j =
∂

∂t

∞∫
y

c(y′, t) dy′. (5)

This can be combined with Fick’s 1st law for calculating the transport diffusivity,

D(c(y, t)) = −

∂

∂t

∫
∞

y c(y′, t) dy′

∂c/∂y
≈ −

∫
∞

y c(y′, t +1t) dy′
−
∫

∞

y c(y′, t) dy′

1t · ∂c/∂y
. (6)
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Figure 4. Draft of the application of Fick’s 1st law. The change in the
overall uptake and the spatial derivative are shown. Furthermore, the boundary
concentrationcsurf and the equilibrium concentrationceq are marked.

In 1D systems wherein the uptake or release proceeds from two opposite faces (y = −l and
y = l ), due to symmetry, the upper limit of integration is replaced by they-value in the centre
(y = 0).

Consequently, two succeeding concentration profiles enable the calculation of the
concentration-dependent transport diffusivity for the entire concentration range covered by the
concentration profiles. The application is sketched in figure4.

4.2. Determining the transport diffusivity by Fick’s 2nd law

In the centre of the concentration profile, the first spatial derivative of the concentration is 0
due to symmetry. Therefore, Fick’s 2nd law (equation (3)) can be directly used for determining
the transport diffusivity in the centre [23] (figure5),

Dcentre=
∂c/∂t

∂2c/∂y2
. (7)

The thus determined diffusivity can be used in equation (3) for calculating the diffusivity outside
of the centre,

D =
∂c/∂t

∂2c/∂y2
−

(∂ D′/∂c) (∂c/∂y)2

∂2c/∂y2
. (8)

If the concentration profiles are very precise, equation (8) can also be used in an iterative way.
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Figure 5. Draft of the application of Fick’s 2nd law. The temporal and the second
spatial derivative are shown in the centre. The first spatial derivative is shown
beyond the centre.

4.3. Determining the transport diffusivity by means of Boltzmann’s integration method

A particularly elegant means to deduce diffusivities from transient 1D concentration profiles is
presented by Boltzmann’s integration method [32, 33]. However, for applying this method, the
following conditions must be fulfilled:

(i) the initial concentration is uniform all over the crystal (c(y, t = 0) = c0);

(ii) the evolution of the transient concentration profiles is initiated by a step change in the
boundary concentration which, later on, remains constant (c(y = 0, t) = ceq); and

(iii) the time interval considered is small enough so that the diffusion front evolving from one
side has not yet reached the opposite one. Therefore, the systems may be considered to be
semi-infinitely extended (c(y = ∞, t) = c0).

By introducing a new variableη = y/
√

t , Fick’s 2nd law (equation (3)) transforms to

d

dη

(
D

dc

dη

)
= −

η

2

dc

dη
. (9)

Integration over this equation overη from ∞ to η(c) with dc/dη|η=∞ = 0 yields

D(c) = −
1

2

dη

dc

c∫
c=c0

η dc = −
1

2t

dy

dc

c∫
c=c0

y dc. (10)

In this way, the diffusivity at any concentrationc0 < c < ceq covered during the whole process
of uptake or release may simply be determined from the respective integral

∫ c
c=c0

y dc and its
slope dy/dc at the given concentration (figure6). Therefore, one concentration profile obtained
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Figure 6. Draft of the application of Boltzmann’s integration method. The spatial
derivative of the concentration and the concentration integral are shown.

at one single point in time is sufficient to analyse the whole concentration dependence of the
diffusivity.

In most applications a surface barrier is found [24, 25, 28, 29] which hinders the mass
transport at the crystal margins; this means that condition (ii) is not fulfilled. If the influence of
the surface barrier is not too large, this means that if the concentration at the crystal boundary
is not too small (cbound& 0.5ceq), this influence can be corrected by a virtual enlargement of the
concentration profiles [34, 35].

4.4. Solving Fick’s 2nd law as a first-order linear differential equation

By dividing equation (3) by (∂c/∂y)2, Fick’s 2nd law can be transformed to

a(c) = D(c) · b(c) +
∂ D

∂c
(11)

with

a(c) =
∂c/∂t

(∂c/∂y)2
and b(c) =

∂2c/∂y2

(∂c/∂y)2
. (12)

Equation (11) is a first-order linear differential equation which can be generally
solved [36] to

D(c) = exp

(
−

∫
bdx

)[∫
a exp

(∫
bdx

)
dx + C

]
(13)

with C as a constant of integration. Equation (13) can be rewritten as

D(c) = exp

(
−

∫
∂2c/∂y2

(∂c/∂y)2
dx

)[∫
∂c/∂t

(∂c/∂y)2
exp

(∫
∂2c/∂y2

(∂c/∂y)2
dx

)
dx + D(c0)

]
. (14)
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Thus, the diffusivity may be calculated from the spatial and temporal dependence of the
concentration profiles (see figure5). As a significant drawback the diffusivity at the initial
concentration,D(c0), has to be known as an integration constant [37].

4.5. Fitting the concentration profiles with a finite difference solution of Fick’s
2nd law

A very general method is the calculation of the concentration profiles evolving during the
uptake or release process with given transport parameters. The calculation can be performed
by a finite difference solution of Fick’s 2nd law [30] (see the supplement). Beginning with the
initial conditions att = 0, this algorithm successively calculates the concentration profiles for
every time step1t (1t is typically much smaller than 1 s). By varying the assumed diffusivity
and calculating the standard deviation between the calculated and the measured concentration
profiles, the diffusivity describing the transport process can be determined.

This method is not limited to 1D. Therefore, concentration profiles evolving during 2D
or 3D mass transport can also be analysed [28, 38]. However, this method requires a lot of
computing time (roughly 1 min for a 1D uptake process, depending on the resolution).

5. Determining the surface permeability of the crystal

The surface permeabilityα can be determined with equation (4),

α =
j

ceq− csurf
. (15)

The flux densityj may be determined most powerfully by considering the number of molecules
that have penetrated through the surface by using equation (5) (see figure4, with integration
limits at the centre and at the crystal boundary). In principle, the flux density can also
be approximated by equation (1) near the surface. However, to achieve reasonable results,
this method requires an extremely high accuracy of the measured concentration profiles.
The sticking probability, which gives the probability that a gas molecule hitting the surface
continues its trajectory into the crystal, can be calculated from the thus determined surface
permeability [41].

6. Estimating the influence of the surface resistance on the overall uptake
or release process

A powerful tool for determining the influence of the surface resistance on the overall transport
process is provided by plotting the concentration at the crystal boundarycsurf(t) versus the
overall uptakem(t) [39] (figure7).

Assuming a constant transport diffusivityD and a constant surface permeabilityα, during
molecular uptake the normalized concentration profile within a host particle of length 2l is given
by the relation [30]

c(y, t) = 1−

∞∑
n=1

2L cos(βny/ l ) exp
(
−β2

n Dt/ l 2
)(

β2
n + L2 + L

)
cosβn

, (16)
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Figure 7. Correlation between the actual boundary concentrationcsurf and the
uptakem at the corresponding instant of time. Three different cases are shown:
the mass transport is essentially limited by intracrystalline diffusion (lα/D =

100), by surface barriers (lα/D = 0.01) and both by intracrystalline diffusion
and surface resistance (lα/D = 1).

where theβns are the positive roots of

L =
lα

D
= βn tanβn. (17)

Integration over the system in the diffusion (i.e.y-) direction from−l to l yields

m(t) = 1−

∞∑
n=1

2L2 exp
(
−β2

n Dt/ l 2
)(

β2
n + L2 + L

)
β2

n

(18)

for the overall uptake at timet . In the long-time limit (i.e. only considering the first summand),
the combination of equation (18) with (16) at y = −l or l yields

csurf(t) = c(y = l , t) = 1−
β2

1

L
+

β2
1

L
· m(t). (19)

Thus, the interceptw of the asymptote of thecsurf–m correlation plot to the ordinate is found to
be given by the relation

w = 1−
β2

1

L
. (20)

In a qualitative way, the reciprocal value of this intercept,w−1, is expected to indicate the
relevance of surface barriers to the overall process of molecular exchange.

The time constant of an uptake process [30] controlled only by diffusion is

τdiff =

∞∫
0

(1− m(t)) dt =
l 2

3D
. (21)

If there is an additional surface barrier, the time constant can be calculated to be

τsurf+diff =

∞∫
0

(1− m(t)) dt =
l 2

3D
+

l

α
. (22)
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Therefore, the ratio of the quotient of the exchange times (equations (21) and (22)) to the
reciprocal value ofw can be reformulated as

τsurf+diff/τdiff

w−1
=

(
1 +

3

L

)(
1−

β2
1

L

)
= 1 +

3 · tanβ1/β1 − β1 · tanβ1 − 3

tan2 β1
, (23)

which comes out to be between 1 and 1.052 forβ1 varying in the range of 0 toπ/2
(corresponding to a variation ofL = lα/D = β1 · tanβ1 between 0 and∞, i.e. over all possible
values). Therefore, the reciprocal value of the intercept of the extrapolated linear part of the
csurf–m correlation plot may be taken as an estimate of the factor by which the presence of the
surface barrier leads to a prolongation of molecular uptake.

The demonstrated equivalence of the ratio of the exchange timesτsurf+diff/τdiff and
the reciprocal value of the interceptw−1 (equation (23)) implies concentration-independent
transport parameters. In real systems, however, the transport diffusivity as well as the surface
permeability may depend on concentration. It is shown in [40] that even for concentration-
dependent transport diffusion and surface permeation as well as for 3D mass transport in a
cuboid,τsurf+diff/τdiff equalsw−1.

7. Determining the transport parameters from profiles measured by
interference microscopy

The methods explained in sections4 and5 can be applied to concentration profiles obtained by
interference microscopy. To average the inherent scattering of every single concentration value,
a concentration profile obtained at timet is fitted by the following term:

cfit;t(x) =

nmax∑
n=0

an cos

(
n

x − l

l

)
. (24)

This term, which perfectly fits every single concentration profile, is used for further analyses
(nmax is generally set as 10).

This smoothing method and the imperfections of the data may cause an oscillation of the
results. However, this oscillation has a much smaller magnitude than the scattering from the
unsmoothed data.

For quantization of the accuracy of the corresponding method, we calculate the relative
standard deviation referring to the mean concentration dependence,

σrel =

√
1
n

∑
n(Dmean− D)2

Dmean
=

√
1

n

∑
n

(
1−

D(c)

Dmean(c)

)2

. (25)

Dmean(c) denotes the mean diffusivity (n is the number of data points).

7.1. Methanol in ferrierite

We studied the adsorption of methanol in the zeolite ferrierite [24]. Due to the blocking of the
entrances to the pores along thez-direction, the mass transport proceeds essentially along the
y-direction. As shown in [24], the influence of the diffusion along thez-direction increases with
increasing pressure step. Hence, we analyse the uptake process for a gas-phase pressure step
from 0 to 10 mbar which (almost completely) proceeds one dimensionally. The concentration
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Figure 8. Normalized concentration profiles of methanol in the crystal body of
ferrierite (along they-direction) [24]. The gas pressure step is from 0 to 10 mbar.

Figure 9. Diffusivity of methanol in ferrierite determined by means of Fick’s 1st
law. The results can be described withD = 1.5exp(1.8c) × 10−13 m2 s−1 (thin
line) with a relative standard deviation of 17%.

profiles evolving in the body of the crystal are pictured in figure8. These profiles are curved,
which shows the important influence of the transport diffusion resistance. Furthermore, the
concentration at the crystal boundary has not immediately reached the equilibrium value due
to the transport resistance at the crystal surface.

The transport diffusivities calculated with Fick’s 1st law (equation (6)) are shown in
figure 9. The results determined from different profile branches and determined at different
times show very good agreement. The transport diffusivity was found to be approximately
1.5 exp(1.8c) × 10−13 m2 s−1 with a relative standard deviation of 17%.

The results of Fick’s 2nd law are shown in figure10. The diffusivity determined in the
centre can also be described with 1.5 exp(1.8c) × 10−13 m2 s−1; however, the scattering of the
single results is significant (σrel = 61%). This dependency can be used in equation (8) for
calculating the diffusivity in the entire concentration profile. These diffusivities, calculated
beyond the centre, also exhibit substantial scattering (σrel = 101%). It is noteworthy that the
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Figure 10. Diffusivity of methanol in ferrierite determined by Fick’s 2nd law ((a)
in the centre; (b) over the entire profile). The relative standard deviations appear
to be 61% (a) and 101% (b), respectively.

Figure 11. Application of Boltzmann’s integration method. (a) Concentration
profiles extended by a certain lengthl ∗ to eliminate the influence of the surface
barrier (t = 30–210 s). (b) The resulting diffusivity with a relative standard
deviation of 19% referring toD = 1.5 exp(1.8c) × 10−13 m2 s−1.

large value of the standard deviation is mainly caused by values larger than the mean diffusivity
and the distribution of the results is not symmetrical.

The application of Boltzmann’s integration method is limited to semi-infinite concentration
profiles. Therefore, only small times (t < 230 s) can be considered when the concentration fronts
penetrating from the opposing crystal faces do not yet overlap. Furthermore, the existence
of a surface barrier hinders the direct application of Boltzmann’s integration method to the
concentration profiles. Therefore, we have to extend the concentration profiles imaginarily
(by a certain lengthl ∗ to correct for the surface barrier (figure11(a))). This can be done
simply by extending the profiles with the slope at the margins. The extended profiles have
(approximately) the shape of only diffusion-controlled concentration profiles. These profiles
enable the calculation of the transport diffusivities with Boltzmann’s integration method
(figure 11(b)). The results are in very good agreement with previous ones and show a small
scattering (σrel = 19%). However, due to the reduced boundary concentration, the diffusivity
can be calculated only for concentrations smaller than 0.6.

For using the standard solution of a first-order linear differential equation, we have to
know the diffusivity at any concentration (best at the initial concentration). With the diffusivity
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Figure 12. Diffusivity of methanol in ferrierite determined with the standard
solution of a linear differential equation (equation (14); thin line: D =

1.5 exp(1.8c) × 10−13 m2 s−1, σrel = 160%).

li

Figure 13. Surface permeability determined with equation (15). The results
can be well described withα = 1.8 exp(2.246c− 6.4c6 + 7.47c8) × 10−8 m s−1

(black line).

determined by other methods (1.5 exp(1.8c) × 10−13 m2 s−1), this standard solution results in
transport diffusivities that scatter significantly (figure12; σrel = 160%).

The surface permeability can be determined very precisely with equation (15) (figure13).
Both sides of the concentration profiles yield essentially identical results. It is found that
the surface permeability increases by more than one order of magnitude in the considered
concentration range (α = 1.8 exp(2.246c− 6.4c6 + 7.47c8) × 10−8 m s−1).

If we plot the boundary concentration versus the overall uptake by the crystal, we can
determine the relative influence of the surface barrier (figure14). The intersection of the
asymptote and the ordinate results to be about 0.56 for both sides of the concentration profile.
This corresponds to a factor of 1.8 by which the transport process is retarded due to the transport
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Figure 14. Boundary concentration as a function of the overall uptake. The
intersection of the ordinate and the asymptote yields 0.56.

resistance at the surface. With a mean surface permeability of 7.5× 10−8 m s−1 and a mean
diffusivity of 4.2× 10−13 m2 s−1, we estimate that the transport process is retarded by a factor
of 1.7 due to the surface resistance. This is in good agreement with the value determined by the
csurf–m plot.

The validity of the above-determined transport parameters can be verified by means of the
numerical solution of Fick’s 2nd law. The measured profiles are approximated very well by
assuming a transport diffusivity of 1.5 exp(1.8c) × 10−13 m2 s−1 and a surface permeability of
1.8exp(2.246c− 6.4c6 + 7.47c8) × 10−8 m s−1. The standard deviation results to be 3.4%.

The other way around, the transport diffusivity and the surface permeability were
set as ninth-order polynomials. By varying the factors with a genetic algorithm, the pro-
files can be fitted very well (withD = (160 + 380.4c+ 11.3c2 + 8.8c3 + 6.1c4 + 5.5c5 + 6.7c6

+ 4.8c7 + 1.1c8 + 6.2c9) × 10−15 m2 s−1 and α = (2.442 + 0.123c+ 9.249c2 + 0.069c3 + 1.349c4

+ 0.314c5 + 1.252c6 + 0.903c7 + 0.113c8 + 4.044c9) × 10−8 m s−1). The standard deviation be-
tween the measured and the simulated concentration profiles results to be 2.9%. These values
resemble the values used above (diffusivity,σrel = 16%, and surface permeability,σrel = 22%).
This method consumes a lot of computing time since the genetic algorithm has to calculate the
concentration profiles for at least 1000 parameter sets to reach a reasonable accuracy. (Even
with a low resolution, a modern personal computer needs several hours or days!)

7.2. Methanol in the MOF manganese(II) formate

In the MOF manganese(II) formate, there exists only a 1D channel system. The monitored
concentration profiles, which are obtained at the dotted line in figure3(c) are shown in
figure15. These profiles are curved, indicating the important influence of the transport diffusion
resistance. Furthermore, due to the surface barrier, the concentration at the crystal boundary
does not immediately reach the equilibrium value. The concentration profiles do not show
perfect symmetry, which is caused by the complex outer geometry (additionally, maybe, by
some crystal defects).

New Journal of Physics 10 (2008) 023035 (http://www.njp.org/)

http://www.njp.org/


17

Figure 15. Normalized concentration profiles of methanol in the MOF
manganese(II) formate determined at the dotted line in figure 3(c) [25]. The gas
pressure step is from 0 to 10 mbar.

Figure 16. Diffusivity of methanol in the MOF manganese(II) formate
determined by Fick’s 1st law. The results are constant, with a mean value of
1.45× 10−12 m2 s−1 and a relative standard deviation of 18%.

The results of the method directly derived from Fick’s 1st law (equation (6)) are shown
in figure 16. The diffusivities determined at several times in both sides of the concentration
profiles show very good agreement. The thus determined diffusivity is (approximately) constant
(D = 1.45× 10−12 m2 s−1; σrel = 18%).

Applying Fick’s 2nd law yields similar diffusivities (figure17). The diffusivities
determined in the centre of the concentration profiles (equation (7)) are essentially constant
(D = 1.75× 10−12 m2 s−1; σrel = 43%). This can be used in equation (8) for determining the
diffusivity in the entire crystal range (D = 1.77× 10−12 m2 s−1; σrel = 80%).
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Figure 17. Diffusivity of methanol in the MOF manganese(II) formate
determined by Fick’s 2nd law ((a) in the centre; (b) over the entire profile).
The mean values are 1.75× 10−12 m2 s−1 (a; with a relative standard deviation
of 43%) and 1.77× 10−12 m2 s−1 (b; with a relative standard deviation of 80%),
respectively.

Figure 18. Application of Boltzmann’s integration method. (a) Concentration
profiles of methanol in the MOF manganese(II) formate extended by a certain
length l ∗ to eliminate the influence of the surface barrier. (b) The resulting
diffusivity with a mean value of 1.38× 10−12 m2 s−1 and a relative standard
deviation of 15%. The uncorrected results (without correcting the surface barrier)
are plotted as thin lines.

The application of Boltzmann’s integration method is limited to concentration profiles
obtained at timest < 90 s, when the concentration fronts penetrating from the opposing crystal
faces do not yet overlap. Furthermore, we have to correct for the influence of the surface barrier
by extending the concentration profiles imaginarily (by lengthl ∗, figure18(a)). The extended
profiles enable the calculation of the transport diffusivities with Boltzmann’s integration method
(figure18(b)). These results are in very good agreement with the previous ones and show a very
small scattering (D = 1.38× 10−12 m2 s−1; σrel = 15%).
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Figure 19. Surface permeability determined with equation (15). The results
can be well described withα = 4.67exp(2.53c0.727+ 2.62c21.52) × 10−8 m s−1

(black line).

Figure 20. Boundary concentration as a function of the overall uptake. The
intersections of the ordinate and the asymptote yield 0.5 and 0.72, respectively.

Assuming D0 = 1.45× 10−12 m2 s−1, the standard solution of a first-order linear
differential equation yields a transport diffusivity which is approximately 1.5× 10−12 m2 s−1,
but shows a high scattering (σrel = 69%).

The surface permeabilityα (determined by equation (15)) increases significantly over the
considered concentration range (α = 4.67 exp(2.53c0.727+ 2.62c21.52) × 10−8 m s−1; figure19).

In the plot of the boundary concentration versus the overall uptake, the intersection of the
asymptote and the ordinate amounts to about 0.61. (This is the mean value of 0.50 at the left-
hand crystal side and 0.72 at the right-hand crystal side (figure20).) This corresponds to a factor
of 1.6 by which the transport process is retarded due to the transport resistance at the surface.
With a mean surface permeability of 4× 10−7 m s−1 (geometrical mean of all calculatedα) and a

New Journal of Physics 10 (2008) 023035 (http://www.njp.org/)

http://www.njp.org/


20

diffusivity of 1.45× 10−12 m2 s−1, we calculate that the transport process is retarded by a factor
of 1.45 due to the surface resistance. This is in good agreement with the value determined by
thecbound–m plot.

These transport parameters are verified by the numerical solution of Fick’s 2nd law.
With a transport diffusivityD = 1.45exp(1.8c) × 10−13 m2 s−1 and a surface permeabilityα =

4.67exp(2.53c0.727+ 2.62c21.52) × 10−8 m s−1, the standard deviation between the measured and
calculated profiles results to be 3.6%.

On the other hand, setting the diffusivity and the surface permeability as a ninth-order poly-
nomial, the standard deviation appears to be 3.4% (D = (148.4 + 0.01c+ 0.001c2 + 0.009c3 +
0.01c4 + 0.01c5 + 0.006c6 + 0.01c7

− 0.01c8
− 0.008c9) × 10−14 m2 s−1 andα = (9.88 + 3.49c−

5.16c2 + 79.14c3
− 42.04c4 + 85.30c5 + 48.61c6

− 323.04c7
− 49.7c8 + 351.2c9) × 10−8 m s−1).

These values are in good agreement with the transport parameters calculated above (diffusivity,
σrel = 2.5%, and surface permeability,σrel = 33%).

8. Discussion of the different methods

In the previous sections, we have considered five different ways to determine the transport
diffusivity from transient, intracrystalline concentration profiles. The most important features
of the methods are the requirements for their application and the precision of data analysis.
The latter may, potentially, compensate for shortcomings in the quality of the primary data,
i.e. for low signal-to-noise ratios of the measured concentrations. The highest data precision is
provided by the procedure based on Fick’s 1st law (equation (6)) and Boltzmann’s integration
method (equation (10)). The results of Fick’s 1st law show very low scattering (the relative
standard deviations are 17 and 18%, respectively). Furthermore, the application of equation (6)
does not require any boundary conditions. However, if the temporal resolution of the profiles is
rather poor, the quality of the results of this method dramatically declines. Since interference
microscopy enables a temporal resolution up to 10 s, transport processes with a time constant of
more than 100 s can be thoroughly analysed by Fick’s 1st law.

If there exist no surface barriers, Boltzmann’s integration method is also very powerful.
However, in most of the systems studied previously, such barriers were observed. Small
transport resistances at the surface can be corrected, however, by elongating the concentration
profiles. As the most significant advantage of this very precise method (σrel = 19 and 15%,
respectively), a single concentration profile obtained at a certain instant of time is sufficient for
calculating the whole concentration dependence of the diffusivity. However, due to the limitation
to semi-infinite profiles, only concentration profiles obtained at small times can be considered.
Thus, the determination of the whole concentration dependence is often hampered by the
existence of the surface barriers which retard the equilibration of the boundary concentration.
In both examples, the diffusivities can only be calculated up to a normalized concentration of
approximately 0.6 and 0.8, respectively.

The results of the direct (differential) application of Fick’s 2nd law (equations (7) and (8))
and the application of the standard solution of Fick’s 2nd law transformed to a first-order linear
differential equation (equation (14)) exhibit a poor accuracy compared to previous methods.
This is a consequence of the high uncertainty of the second spatial derivative of the concentra-
tion. As a further disadvantage, application of equation (14) implies knowledge of the diffusivity
at a certain concentration. The advantage of the direct application of Fick’s 2nd law is its
simplicity. No integration is needed, so it is very fast, without requiring much computing time.
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If there is enough computing time available, the transport parameter can also be very well
estimated indirectly by using the finite difference solution of Fick’s 2nd law. The thus obtained
functions for the transport diffusivity and the surface permeability were found to be in very
good agreement with the results of the other methods. Although this method is pretty slow, its
application is recommended to verify the validity of already determined transport diffusivities.
Furthermore, this procedure also enables the estimation of the surface permeability.

The surface permeability can also be calculated directly by considering the flux through
the surface and the difference between the actual and equilibrium surface concentrations. This
method is very precise and has similarities to the method based on Fick’s 1st law.

We determined the transport diffusivity of methanol in ferrierite in they-direction to
be 1.5 exp(1.8c) × 10−13 m2 s−1 and of methanol in the MOF manganese(II) formate to be
1.45× 10−12 m2 s−1. Thus, with increasing concentration, the transport diffusivity in ferrierite
increases by a factor of 6, whereas in the MOF crystal it is constant.

The determined surface resistances are strongly dependent on the concentration. In
both examples, the surface permeability (αFerr = 1.8exp(2.246c− 6.4c6 + 7.47c8) × 10−8 m s−1

and αMOF = 4.67exp(2.53c0.727+ 2.62c21.52) × 10−8 m s−1) increases by more than one order
of magnitude. This non-constant surface permeability prohibits analysis using the analytical
solutions of the diffusion equation [30], even if the diffusivity is constant.

The relevance of the surface resistances to the overall mass transfer may most easily be
revealed by plotting the boundary concentrationcsurf versus the overall uptakem. It is shown
that this novel procedure is in very good agreement with the detailed analysis of the transport
parameters.

Although the studied systems are fairly different, the efficiencies of the respective methods
in both cases are similar.

We have reviewed several methods that allow the determination of the transport
diffusivities and surface permeabilities from transient concentration profiles. All methods
exhibit similar average results with, however, significantly different accuracies as reflected
by the standard deviations. In general, the accuracy of the intracrystalline concentrations as
accessible by interference microscopy allows determination of the transport parameters with an
uncertainty not better than 20%. The highest accuracy is attained by application of Fick’s 1st
law or, if the prerequisites are fulfilled, by Boltzmann’s integration method. In any case, it is
recommended to verify the obtained dependencies by recalculating the measured concentration
profiles.

9. Conclusion

The technical application of nanoporous host materials for molecular sieving and catalysis is
often determined by the transport properties of the guest molecules. The transport diffusivity
as well as the surface permeability are therefore among the key properties for their practical
performance. Interference microscopy has been shown to allow direct monitoring of transient,
intracrystalline concentration profiles during molecular uptake and release. Thus, for the first
time, the direct determination of the transport parameter has become possible.

In the present work, five different ways of determining the transport diffusivity from the
concentration profiles are presented. If the prerequisites of Boltzmann’s integration method are
fulfilled, this method is very accurate and enables the analysis of the entire dependence of
diffusivity from one single profile. The method based on Fick’s 1st law is also very precise and
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can be generally used without any limitations to special constraints. However, two succeeding
concentration profiles (with a small time interval) are required to calculate the diffusivity. The
other investigated ways of determining the diffusivity (differential application of Fick’s 2nd law
and the standard solution of the linear differential equation of Fick’s 2nd law) show a significant
scattering of the results. Also the indirect procedure, namely varying the transport parameters
and searching for the best agreement between the calculated and the obtained concentration
profiles, works very well. However, it requires a lot of computing time.

With the measurement of transient concentration profiles, for the first time also transport
resistances on the surface of nanoporous materials may be measured directly. We present a
powerful way of estimating the influence of the surface resistance on the overall uptake. It is
shown that the factor by which the surface resistance retards the whole transport process can
be easily deduced from a representation of the actual boundary concentration versus the overall
uptake. The thus accessible information is shown to be in excellent agreement with the detailed
analysis of the intracrystalline diffusivity and the surface resistance.
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Supplement: The finite difference solution of Fick’s 2nd law

The numerical solution of Fick’s 2nd law (equation (S.26)) is based on Taylor expansions of
the temporal and spatial dependencies of the concentration [30].

∂c

∂t
=

∂

∂y

(
D

∂c

∂y

)
. (S.26)

The temporal dependency of the concentration is represented by

c(t +1t) = c(t) +1t ·

(
∂c

∂t

)
+

1t2

2
·

(
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)
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(
1t3

)
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Neglecting the terms of second and higher order, the first temporal derivative equals
∂c

∂t
=

c(t +1t) − c(t)

1t
. (S.28)

The Taylor expansions concerning the space yield
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(
∂u
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1y2

2
·

(
∂2u
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(S.29)

and

u(y − 1y) = u(y) − 1y ·

(
∂u

∂y

)
+

1y2

2
·

(
∂2u

∂y2

)
− O

(
1y3

)
. (S.30)

Neglecting the terms of third and higher order, the difference yields(
∂u

∂y

)
=

u(y +1y) − u(y − 1y)

21y
. (S.31)
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If we insertu(y) = c(y) andu(y) = D · (∂c/∂y), equation (S.26) can be expressed as

c(t +1t) − c(t)

1t
=

[
D (c(y +1y)) (c(y + 21y) − c(y))/(21y)

−D (c(y − 1y)) (c(y) − c(y − 21y))/(21y)

]
2 · 1y

. (S.32)

For the numerical calculation, we define a lattice for the concentration,ci, j , with i denoting the
space andj the time. By substituting1y by 21y, equation (S.32) can be transformed to

ci, j +1 = ci, j +
1t

(1y)2

(
D
(
ci +1, j

)
+ D

(
ci, j

)
2

(
ci +1, j − ci, j

)
+

D
(
ci −1, j

)
+ D

(
ci, j

)
2

(
ci −1, j − ci, j

))
.

(S.33)

The surface barrier, which occurs in many diffusion systems, is treated in a similar way.
Therefore, by using Fick’s 1st law, the boundary condition

j = −α(ceq− csurf) (S.34)

can be expressed by
cimax+1 − cimax−1

21y
=

α

D

(
ceq− cimax

)
. (S.35)

The point imax+ 1 is not a real lattice. However, the introduction of this fictive lattice point
increases the accuracy.

Inserting equation (S.35) in (S.33) yields the term to calculate the boundary concentration

cimax, j +1 = cimax, j +
21t

(1y)2

(
D
(
cimax−1, j

)
+ D

(
cimax, j

)
2

·
(
cimax−1, j − cimax, j

)
+α · 1y ·

(
c0 − cimax, j

))
.

(S.36)

With these equations (equations (S.33) and (S.36)), the profiles evolving during the
intracrystalline mass transport can be calculated. The following algorithm shows the calculation
of the profiles explicitly (the commands are valid in Mathematica 5.0).
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tmax=2500; (Set time range in seconds)
l=20*10∧-6; (Set half channel length in metre)
maxnx=20 (Set number of lattice places)
dx=l/maxnx; (Calculates size of lattice steps in metre)
ce=1; c0=0; (Set equilibrium and initial concentration)
diffusivity[c ]=Exp[c]*10∧-13; (Set the transport diffusivity in

m2 s−1)

alpha[c]=(1+4*c)/5*10∧-7; (Set the surface permeability in
m s−1)

diffmax=Max[Table[diffusivity[c],{c,c0,ce,0.01}]];
alphamax=Max[Table[alpha[c],{c,c0,ce,0.01}]];
dt=10;
While[dt*diffmax/dx∧2>0.25,dt=dt/2];
While[dt*alphamax/dx>0.25,dt=dt/2]; (Calculate size of time steps (in

seconds) to ensure convergence criteria)
For[nx=(-maxnx-1),nx<maxnx,nx=nx+1;c[nx]=c0]; (Set all initial concentrations)
maxnt=tmax/dt;
For[nt=0,nt<maxnt,nt=nt+1; (Start time loop)
c1[maxnx]=c[maxnx]+2*dt/(dx∧2)*((c[maxnx-1]-c[maxnx])*
(diffusivity[c[maxnx]]+diffusivity[c[maxnx-1]])/2
-alpha[c[maxnx]]*dx*(c[-maxnx]-ce)); (Calculate boundary concentration)
c[-1]=c[1]; (Symmetry condition in the centre)
For[nx=maxnx,nx>-1,nx=nx-1; (Start space loop)
c1[nx]=c[nx]+dt/dx∧2*((diffusivity[c[nx]]+diffusivity[c[nx+1]])/2*
(c[nx+1]-c[nx])+(diffusivity[c[nx]]+diffusivity[c[nx-1]])/2*
(c[nx-1]-c[nx])); (Calculate new concentration)
]; (End space loop)
For[nx=-maxnx-1,nx<maxnx,nx=nx+1;c[nx]=N[c1[Abs[nx]]]]; (Symmetry condition)
]; (End time loop)
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