
Ultraviolet divergences, repulsive forces and a

spherical plasma shell

M Bordag
Institute for Theoretical Physics, Leipzig University, Vor dem Hospitaltore 1, D-04103 Leipzig

E-mail: Michael.Bordag@itp.uni-leipzig.de

Abstract. We discuss the vacuum energy of the electromagnetic field interacting with a
spherical plasma shell together with a model for the classical motion of the shell. We discuss
the ultraviolet divergences in terms of the heat kernel coefficients. Using these, we carry out
the renormalization by redefining the parameters of the classical model. It turns out that this is
possible and that the resulting model has a vacuum energy which changes sign in dependence on
the parameters of the plasma shell. In the limit of the plasma shell becoming an ideal conductor
the vacuum energy found by Boyer in 1968 is reproduced.

1. Introduction
In general, the repulsive forces found for the Casimir energy of a conducting sphere and a
conducting cube remain a still not finally understood problem. It was a quite big surprise for
the community when Boyer in 1968 [1] found the Casimir effect for the conducting sphere to
be repulsive. Not only that this invalidated Casimir’s electron model [2], this result was to
some extend also counterintuitive. The background for that is in the relation between Casimir
and van der Waals forces. From the one hand side, the Casimir forces follow from the zero
point energy of the electromagnetic field confined between material bodies and on the other
hand side the same formula emerges as a limiting case for becoming ideal conductors from the
Lifshitz formula for the same material bodies. It is common understanding that this limiting
case where the surfaces become ideal conductors is just the bridge between quantum field theory
with its vacuum energy and the dispersion forces in many particle theory represented by the
Lifshitz formula. These forces generalize the interaction between two molecules, which is given
by the Casimir-Polder potential and which is always attractive. For this attraction there exists
even a very general reason; it is a second order perturbation to a ground state energy which in
quantum mechanics is always negative. Because of this deep connection Casimir’s assumption
that the attractive force he found for parallel planes should keep its sign when considering a
sphere instead, was so very natural. For basically the same reasons the repulsive character of
the force for the sphere was so unexpected.

During the last years with the development of nanotechnology, the discussion of repulsive
forces became actual again. The reason is in the stickyness of the attractive forces. Because
their increase at small separations any configuration of closely nearby located nanoobjects is
potentially instable with respect to these bodies sticking together. This is a limitation in a
number of applications. The question was discussed whether it is possible to use the repulsive
force on a sphere for reducing the stickyness. Here one must remember that this repulsive
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force was found for an ideal configuration, namely an infinitely thin conducting spherical shell.
This thinness is necessary because otherwise the ultraviolet divergences do not go away. In
fact these cancel each other when taking the vacuum energies from inside the sphere and from
outside together. But this compensation does not work for any finite thickness. In this sense
the repulsive force must be considered a pure theoretical phenomenon. In this connection it
must also be mentioned that recently in [3] quite general arguments were given in favor of the
statement that the forces between separated bodies areattractive.

There is another situation with a repulsive force which makes the puzzle even worse. This
is a dielectric ball. In general, this is nothing else than a macroscopic body characterized by a
permittivity and one should expect the vacuum energy of the electromagnetic field in its presence
to be finite. This is, however, not the case, except for the dilute approximation [4]. This means
that the permittivity ε of the ball is close to its vacuum value such that ε− 1 = 4πNα, where N
is the density and α is the static polarizability of the molecules, is small. Then the expansion of
the vacuum energy up to second order in this small parameter is called the dilute approximation.
There are two remarkable facts. The first is that in this approximation the vacuum energy is
always finite in zetafunctional regularization or can be made finite in a unique manner. This
was found for the first time in the beginning of the 80ies and mathematically confirmed in the
end of the 90ies (see [4] and the citations therein). The second fact is that this vacuum energy
can be calculated in two ways. The first way is the standard one by calculating the zero point
energy of the electromagnetic field in the presence of the ball, see [5]. The second one is to sum
up the pairwise Casimir-Polder potential

V (r1, r2) = − 23
(4π)3N2

(ε1 − 1)2

|r1 − r2|7 , (1)

where r1 and r2 are the locations of these molecules, over all pairs of molecules constituting the
ball. This was done in [6] carrying out the integrations in

E = − 23
8π

(ε1 − 1)2

(4π)2

∫

V
dr1

∫

V
dr2

1
|r1 − r2|γ . (2)

Here the power in the denominator was changed to γ in order to make the integrations
convergent. This is a regularization and to make the integrals convergent one needs to have
γ < 3. In the end one has to perform the continuation to γ = 7. One arrives at

E = − 23
22+γπ

(ε1 − 1)2
Γ

(
2− γ

2

)

Γ
(
4− γ

2

)
(3− γ)

1
Rγ−6

. (3)

This expression has a unique analytic continuation to γ = 7 where it takes a finite value and
one comes the the known result

E0 =
23

384πR
(c1 − c2)

2 + O
[
(c1 − c2)

3
]
. (4)

As seen it is repulsive despite the fact that the pairwise potential is attractive. A deeper
physical understanding of this fact is missing. Of course one can trace back mathematically the
sign change, but the answer that it happens during an analytic continuation which is necessary
to do in order to work with correct defined quantities, is not especially illuminating.

Besides the puzzle with the sign, another motivation for the present talk is to contribute to
the discussion of the renormalization of vacuum energy in the presence of boundaries or singular
background fields in application to the Casimir effect.

As it was pointed out in [7], there is a gap between the two well understood situations. These
are, on the one side, the Casimir force between distinct objects which is always finite and, on
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the other side, the vacuum energy in smooth background fields which can be renormalized by
standard methods of quantum field theory. In between these two, the situation is not finally
settled. The mentioned paper, it was questioned whether boundaries can be incorporated at
all into a well posed renormalization program. For instance, it was argued that the process of
making the background field concentrated on a surface is not physical.

The aim of the present contribution is to discuss an example of a background field
concentrated on a surface having both, a well posed renormalization procedure for the vacuum
energy and a meaningful physical interpretation. As model we take a spherical plasma shell
interacting with the electromagnetic field and we allow for a classical vibrational motion of the
shell. The investigation of the plasma shell model was pioneered by Barton [8] and it is aimed
to describe the π-electrons in a C60-molecule.

2. The plasma shell model and its renormalization
In the plasma shell model the electrons are described by an electrically charged fluid whose
motion is confined the shell. Further, the model contains an immobile, overall electrically
neutralizing background aimed to describe the carbon atoms and the remaining electrons. The
fluid is allowed a non-relativistic motion. Of course, this model is a quite crude simplification,
especially because the motion of the electrons should rather follow a relativistic dispersion
relation [9, 10]. On the other hand side it appears to be physically meaningful and should
therefore result in physically meaningful results for the vacuum energy. For instance, it should
allow for a treatment of the vacuum fluctuation of the electromagnetic field coupled to the
plasma shell.

The interaction of the plasma shell with the electromagnetic field results in matching
conditions on the electromagnetic field across the shell as shown in [8] (and earlier, for a plane
sheet, in [11]). These conditions do not depend on the state of the excitations of the fluid. The
vacuum energy can be calculated from the fluctuations of the electromagnetic field whereas the
fluctuations of the fluid must not be taken into account as shown in [12] (or vice verse). In this
setup, the polarizations of the electromagnetic field separate into TE- and TM-modes. For the
corresponding amplitudes the following matching conditions hold ([8], [13]),

lim
r→R+0

fl,m(kr)− lim
r→R−0

fl,m(kr) = 0,

lim
r→R+0

(rfl,m(k, r))′ − lim
r→R−0

(rfl,m(k, r))′ = ΩRfl,m(kR), (5)

for the TE-mode, and

lim
r→R+0

(rgl,m(k, r))′ − lim
r→R−0

(rgl,m(k, r))′ = 0,

lim
r→R+0

gl,m(kr)− lim
r→R−0

gl,m(kr) = − Ω
k2R

(Rgl,m(k, R))′, (6)

for the TM mode. The parameter

Ω =
4πne2

mc2
(7)

carries information on the properties of the fluid like its density n and mass m.
Considered as a scalar problem, the matching conditions (5) of the TE mode are equivalent

to a delta function potential Ωδ(r −R) in the wave equation and the conditions (6) of the TM
mode loosely speaking correspond to the derivative of a delta function. A difference is that in the
scalar problems the zeroth orbital momentum, l = 0, or s-wave contribution is present whereas
in the electromagnetic case it is absent and the sum over l in the vacuum energy starts from
l = 1. In the limit Ω →∞ which is formally the ideal conductor limit the boundary conditions

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012018 doi:10.1088/1742-6596/161/1/012018

3



(5) and (6) became Dirichlet boundary conditions for TE polarization and Neumann for TM
polarization.

We extend this model by allowing for radial vibrations (breathing mode) of the plasma shell.
In C60 these are determined by the elastic forces acting between the carbon atoms. Without
going here in any detail we describe these vibrations phenomenologically by a Hamilton function

Hclass =
p2

2m
+

m

2
ω2

b (R−R0)
2 + Erest (8)

with a momentum p = mṘ. Here m is the mass of the shell, ωb is the frequency of the breathing
mode, R0 is the radius at rest and Erest is the energy which is required to bring the pieces of
the shell apart, i.e., it is some kind of ionization energy.

Now we consider a system consisting of the classical motion of the shell as described by
Hclass and the vacuum energy Evac of the electromagnetic field interacting with the shell by
means of the matching conditions (5) and (6). We assume the classical motion adiabatically
slow such that the vacuum energy can be taken as a function of the momentarily radius of the
shell, Evac = Evac(R), and we neglect the backreaction of the electromagnetic field on the shell.
Under these assumptions the energy of the classical system, Eclass(R) = Hclass, and the vacuum
energy add up to the total energy of the considered system,

Etot = Eclass(R) + Evac(R). (9)

Next we consider the ultraviolet divergences of the vacuum energy. These are given in general
terms by the heat kernel coefficients an (we use the notations of [14] and we can define a
’divergent part’ of the vacuum energy which is, as known, not uniquely defined. It depends on
the kind of regularization one has to introduce. For instance, in zeta functional regularization,
the regularized vacuum energy reads

Evac(s) =
µ2s

2

∑
n

ω1−2s
n , (10)

where µ is an arbitrary parameter with the dimension of a mass and with a frequency damping
function it is,

Evac(δ) =
1
2

∑
n

ωn e−δωn , (11)

where ωn are the frequencies of the quantum fluctuations of the electromagnetic field. In our
problem the spectrum is continuous, but for the moment it is more instructive to keep the
notations of a discrete spectrum. In zeta functional regularization, the divergent part reads

Ediv
vac(s) = − a2

32π2

(
1
s

+ lnµ2
)

, (12)

where we used the notations of [14] in which the heat kernel expansion reads

K(t) ∼ 1
(4πt)3/2

(
a0 + a 1

2

√
t + a1 t + . . .

)
. (13)

In the scheme with the frequency damping we have

Ediv
vac(δ) =

3a0

2π2

1
δ4

+
a1/2

4π3/2

1
δ3

+
a1

8π2

1
δ2

+
a2

16π2
ln δ. (14)
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The regularizations are removed by s → 0 resp. δ → 0. These formulas follow, for example,
from section 3.4 in [14] for m = 0.

The idea of the renormalization is to have in the classical energy Eclass parameters which
can be changed in a way to absorb Ediv

vac. In the considered model such parameters are the
mass m of the shell, the frequency ωb of the breathing mode, the radius at rest R0, and the
energy Erest. Now, whether this is possible, is a matter of the dependence of the heat kernel
coefficients, especially of a2, on the radius R which is the dynamical variable of the classical
system. In the considered, very simple model we have only a polynomial dependence on R up
to second order in (8). Since we assumed adiabaticity for the motion of the shell we do not
have a time dependence in a2 so that it cannot contain Ṙ. Hence, the kinetic energy remains
unchanged and, together with it, the mass m. Only the remaining parameters, ωb, R0 and Erest

can be used to accommodate the divergent part. In fact, this turns out to be sufficient for the
considered model. As it will be seen below, the heat kernel coefficients a0, . . . , a2 entering the
divergent part, depend on the radius polynomial and at most quadratically. In this way this
model is renormalizable.

It should be mentioned that this scheme follows closely the corresponding one in quantum
field theory with Ediv

vac in place of the counterterms. Also the interpretation of the renormalization
is similar. Namely, we argue that the vacuum energy in fact cannot be switched off and
what we observe are parameters like, for example in QED, electron mass and charge, after
renormalization.

Within this scheme of renormalization, the specific form of the heat kernel coefficients is
insignificant. One has to bother of its dependence on R in order to fit into the freedom of
redefining the parameters in Eclass. If this is the case, one may define a renormalized vacuum
energy by means of

Eren
vac = lim

s→0

(
Evac(s)− Ediv

vac(s)
)

(15)

(and the same with δ in place of s) and one has now to consider

Etot = Eclass + Eren
vac (16)

in place of (9). In this way, the question on how to remove the ultraviolet divergences is answered.
It remains, however, the question about the uniqueness of his procedure which comes in from

the parameter µ in the zeta functional scheme or from the possibility of a redefinition δ → cδ,
where c is an arbitrary constant, in the other scheme.

In the case of QED at this place one imposes conditions on the analog of Eren
vac in a way, that

the mass and the charge take the values one observes experimentally.
In our case a similar scheme is conceivable too. A different scheme, suggested in [4], using the

large mass expansion to fix the ambiguity does not work here since the electromagnetic field is
massless. A way out could be to look for a minimum of the total energy, Etot, (9), which however
would imply to take the model (8) seriously. This is not the aim of the present paper. Instead, as
a normalization condition we demand that in the limit of the plasma frequency Ω →∞, where
the matching conditions (5) and (6) turn into that of an ideal conductor, we shall recover the
vacuum energy of a conducting spherical shell, i.e., just the quantity which was first calculated
by Boyer in [1]. Indeed, as we will see in the next section, this is possible using the freedom of
a finite renormalization.

3. The heat kernel coefficients and the renormalized vacuum energy
The electromagnetic field interacting with the plasma shell is defined in the whole space and
it has a continuous spectrum. In that case the vacuum energy, after the subtraction of the

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012018 doi:10.1088/1742-6596/161/1/012018

5



contribution of the empty space, can be represented in the form (see Eq.(3.43) in [14])

E0(s) = −cosπs

π
µ2s

∞∑

l=1

ν

∞∫

0

dk k1−2s ∂

∂k
ln fl(ik) (17)

with ν = l + 1/2. The arbitrary parameter µ has the dimension of a mass and fl(k) is the Jost
function of the corresponding scattering problem. With argument rotated to the imaginary axis
these read

fTE
l (ik) = 1 +

Ω
k

sl(kR)el(kR),

fTM
l (ik) = k2

(
1− Ω

k
s′l(kR)e′l(kR)

)
, (18)

where we used the modified Riccati-Bessel functions

sl(x) =
√

πx

2
Il+1/2(x), el(x) =

√
2x

π
Kl+1/2(x). (19)

By these formulas, the heat kernel coefficients, including that for double poles, which are
related to the vacuum energy by means of

2µ−2s(4π)3/2Γ
(

s− 1
2

)
E0(s) =

∑

k≥0

ak/2

s− 2 + k
2

+
∑

k≥3

a′k/2(
s− 2 + k

2

)2 + . . . , (20)

can be calculated. For the TE mode this repeats earlier calculations, for the TM mode is was
done for the first time in [13]. The result is shown in the table. It must be mentioned that for
the TM-mode double poles in s appear which were included in Eq. (20) and the corresponding
coefficients are marked with a prime. These result in logarithmic terms in the heat kernel
asymptotics. In fact, in our case these appear starting with k = 5/2. Therefore these do not
affect the renormalization.

k/2 TE-mode TM-mode
0 0 0

1/2 0 8π3/2R2

1 −4πΩR2 −4π
3 ΩR2

3/2 π3/2Ω2R2 −10
3 π3/2

2 −2
3πΩ3R2 + 4πΩ −4πΩ + 2π

15 Ω3R2

Table 1. The first few heat kernel coefficients for the plasma shell as defined in Eq. (20).

Using these heat kernel coefficients, the renormalization program discussed in the preceding
section was carried out in [13]. The vacuum energy can be divided into asymptotic and numeric
parts. The asymptotic parts were found to be

ETE, as
vac (s) = − aTE

2

32π2

[
1
s
− 2 ln

Ω
2µ

]
+

Ω3R2

72π
+

Ω
180π

+ ETE, an
vac + O(s),

ETM, as
vac (s) = − aTM

2

32π2

[
1
s
− 2 ln

Ω
2µ

]
+

7Ω3R2

1800π
− 29Ω

36π
+ ETM, an

vac + O(s). (21)
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These expressions are sums of a divergent part (it is proportional to the heat kernel coefficient
a2 as expected), two terms growing with Ω and an ’analytical’ part which has a finite limit for
s → 0.

All quantities entering ETE, an
vac and ETM, an

vac are defined in [13]. The analytical parts have a
limit for Ω →∞,

lim
Ω→∞

ETE, an
vac =

17
128R

,

lim
Ω→∞

ETM, an
vac = − 11

128R
(22)

which matches the corresponding expressions known from the conducting sphere.
With Eqs. (21) and the property (22) we have all information we need to complete the

renormalization. We remind the discussion the preceding section that all terms which are
proportional to R, R2 or which do not depend on R can be removed by a redefinition of the
parameters in the classical part. In (21) this concerns all except the last ones, ETE, an

vac and
ETM, an

vac . That means, that we not only can remove the contribution proportional to a2, but also
the terms growing with Ω. For this reasons we define the renormalized vacuum energies by

ETE, ren
vac = ETE, num

vac + ETE, an
vac ,

ETM, ren
vac = ETM, num

vac + ETM, an
vac . (23)

With these formulas we completed the model consisting of the classical energy and the vacuum
energy which is the sum of the two contributions in (23). The main merit of this vacuum
energy is that it turns for Ω → ∞ into the ideal conductor limit. Using the formulas for the
Jost functions and also the formulas given in [13], it is possible to evaluate this vacuum energy
numerically. The results are shown in the figures 1 and 2 for the dimensionless function E defined
by

Eren
vac =

E(ΩR)
R

(24)

as functions of their arguments x = ΩR.

2 4 6 8 10
WR

0.01

0.02

0.03

0.04

EHWRL

0.2 0.4 0.6 0.8 1
WR

-0.005

0.005

0.01

0.015

EHWRL

Figure 1. The function E(ΩR) = REren
vac plotted as function of Ω. For large Ω it tends to the

ideal conductor limit, limΩR→∞ = 0.0046 (left panel). For small Ω (right panel) it takes negative
values and decreases as E(ΩR) ∼ −0.0589

√
ΩR.
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WR

-0.01
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0.03

0.04

E
�������
W

Figure 2. The renormalized vacuum energy divided by Ω, Eren
vac/Ω, as a function of R. For large

R it approaches the ideal conductor limit and for small radii, R ≤ Ω−1, it becomes attractive.

4. Conclusion
In the foregoing sections we considered the vacuum energy of the electromagnetic field interacting
with a spherical plasma shell. We considered the heat kernel coefficients for both polarizations.
It turned out that the vacuum energy in zeta functional regularization and, with it the
corresponding zeta function, have double poles. This implies that the corresponding spectral
problem is more complicated. On the other hand, at least based on the calculations carried out
in this paper, there is nothing which would diminish the reasonableness of this model.

A basic concern of this paper is to construct a model allowing for a physically meaningful
interpretation of the renormalization. We considered with the breathing mode of the shell the
simplest model for the classical motion of the shell. It turned out that this model is able to
accommodate all renormalizations which we were like to carry out. These are the removal of
the pole in s = 0, i.e., of the ultraviolet divergence, and the removal of all contributions growing
together with the plasma frequency Ω. It should be mentioned that this includes also the removal
of the arbitrary constant µ which came in with the regularization. The nontrivial statement
which allowed for doing so is that the dependence on the radius R of all these contributions is
polynomial not exceeding R2.

It should be mentioned that the same construction which we made in this paper for the
plasma shell model interacting with the electromagnetic field can be done along the same lines
also with a shell carrying a delta function and interacting with a scalar field which could be
considered as a kind of acoustic field. All calculations for such a system were done in literature,
the heat kernel coefficients were found in [4] and the renormalized vacuum energy was calculated
in [15]. However, these fragments were not assembled into a consistent renormalization scheme.

It would be interesting to investigate the question whether the presented here renormalization
procedure can be carried out also for more general deformations of the shell. In principle, most
ingredients for such a calculation are available. Especially, the heat kernel coefficients for the
TE modes can be taken from [16]. It would remain to calculate the coefficients for the TM
modes.

The renormalized vacuum energy within our model is represented in the Figures 1 and 2.
It smoothly interpolates between the limiting cases of large and small plasma frequency Ω. In
the limit of Ω → ∞, where we recover the known result for the conducting sphere, the energy
is positive, whereas for small Ω it becomes negative. This is in accordance with expectations
coming from the weak coupling limit where the forces should become like van der Waals forces
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which are attractive. It must be mentioned, however, that a simple perturbative expansion for
small Ω would fail since the behavior for Ω → 0 is nonanalytic.

Concerning the arbitrariness of the normalization procedure we would like to mention that
the removal of the contributions growing together with Ω can be considered as a normalization
condition. The motivation of such a condition is twofold. First of all the fact must be emphasized
that in this way a reasonable condition exists. This is nontrivial having in mind, for example,
the situation with the dielectric ball which shows beyond the dilute approximation inevitably a
divergence [4], even if dispersion is included [17] and no normalization condition was found so
far. A second motivation comes from the physical sense of the limit Ω → ∞. A plasma shell
becomes for growing Ω more and more like a conductor. If one starts for finite Ω from assuming
that a finite vacuum energy makes physically sense, then an unbounded increase with increasing
Ω would be unphysical. Hence a finite limit must be reached. From the calculations carried out
in this paper, especially, from Eqs.(22), it turns out that this is just the ideal conductor limit. It
should be underlined that there is no way to get any different finite value since all ambiguities in
(21), especially the logarithmic term which is proportional to a2, grow with powers of Ω. There
is a further reason for our choice of the normalization condition. It follows from dimensional
considerations suggesting the general form (24) of the vacuum energy. From these it follows,
that a function E(ΩR) growing with Ω would result in a vacuum energy which does not vanish
for R →∞ (at fixed Ω). This is clearly unphysical.

In this way, our normalization condition ensures the uniqueness of the renormalized vacuum
energy and makes this model physically meaningful. In addition, the gap between the
renormalization procedure in quantum field theory in smooth background fields and the removal
of divergences of the Casimir energy in the background of boundaries, as suggested for example
in [18] (section 6.5), is narrowed. At once, in this way, the much discussed vacuum energy of a
conducting spherical shell now appears as a limiting case of a slightly more physical model.
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