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Abstract. The physical reasons why the Drude dielectric function is not compatible with
the Lifshitz formula, as opposed to the generalized plasma-like permittivity, are presented.
Essentially, the problem is connected with the applicability conditions of the Lifshitz theory.
It is shown that the Lifshitz theory combined with the generalized plasma-like permittivity is
thermodynamically consistent.

1. Introduction: Casimir free energy and different models of dielectric permittivity
The Casimir effect [1], arising due to the alteration of the spectrum of electromagnetic zero-point
oscillations by material boundaries, is one of the most important subjects of interdisciplinary
interest. Recent trends go toward complex experimental settings for real materials, including
applications to nanotechnology, and their consistent theoretical explanation on the framework of
quantum electrodynamics (see, e.g., monographs [2, 3], proceedings [4] and more recent papers
[5, 6, 7]) appropriately adapted to real material bodies.

The basic theory of the van der Waals and Casimir forces between dielectric materials in
terms of their frequency-dependent dielectric permittivities ε(ω) was proposed by Lifshitz [8]
for the most simple configuration (two parallel plates/semispaces) and ideal surfaces. In the
Lifshitz theory the free energy of the fluctuating field between two infinite, electrically neutral
plane parallel plates of thickness d at temperature T in thermal equilibrium is given by [8, 9]

F(a, T ) =
kBT

2π

∞∑
l=0

(
1− 1

2δ0l

)∫ ∞
0

k⊥dk⊥

{
ln
[
1− r2

TM(ξl, k⊥)e−2aql

]
+ ln

[
1− r2

TE(ξl, k⊥)e−2aql

]}
. (1)

Here, a is the separation distance between the plates, kB is the Boltzmann constant, ξl =
2πkBT l/h̄ are the Matsubara frequencies defined for any l = 0, 1, 2, . . . , and k⊥ = |k⊥| is the
magnitude of the wave vector projection onto the plane of the plates. The reflection coefficients
for the two independent polarizations of the electromagnetic field (transverse magnetic, TM,
and transverse electric, TE) are expressed [10] in terms of the frequency-dependent dielectric
permittivity, ε(ω), along the imaginary frequency axis:
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l q
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where
ql =

√
k2
⊥ + ξ2

l /c2, kl =
√

k2
⊥ + εlξ

2
l /c2, εl = ε(iξl). (3)
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The Lifshitz theory remains the basis also for real metals and dielectrics and more complicated
experimental settings, usually ignoring the finite extension of the material probes under
appropriate conditions. However, depending on theoretical model for their dielectric permittivity
this theory meets problems and paradoxes.

Especially, the application of the Drude model for metals,

εD(ω) = 1−
ω2

p

ω(ω + iγ)
, (4)

where ωp is the plasma frequency and γ is the relaxation parameter, led to conflict with
Nernst’s heat theorem for plates with perfect crystal lattice [11, 12], see also [13, 14, 15, 16]. In
addition, recent precision measurements of the Casimir force [17, 18, 19, 20] excluded the Drude
model at a 99.9% confidence level. Also the application of the Lifshitz theory to dielectrics
or semiconductors with not too high density of free charge carriers results in a violation of
the Nernst heat theorem if the nonzero dc-conductivity at zero frequency is taken into account
[21, 22, 23, 24]. Its inclusion also leads to a contradiction with experiment [25, 26, 27].

On the other hand the usual, non-dissipative plasma model

εp(ω) = 1−
ω2

p

ω2
, (5)

resulting from (4) for γ = 0, is in agreement with thermodynamics and longer separation
experiments [17, 18, 19, 20], but is in contradiction with the experiment performed at short
separations [28, 29]. Also the Leontovich surface impedance approach [35] was found to be in
agreement with the longer separation experiments just mentioned but, unfortunately, is simply
not applicable at shorter separations.

Recently, in order to overcome these difficulties, for real metals the generalized plasma-like
dielectric permittivity has been proposed [30] as follows

εgp(ω) = 1−
ω2

p

ω2
+

K∑
j=1

fj

ω2
j − ω2 − igjω

, (6)

where ωj 6= 0 are the resonant frequencies of oscillators describing the core electrons, gj are
the respective relaxation parameters, fj are the oscillator strengths and K is the number
of oscillators; the values of oscillator parameters for different materials can be found in [31].
That model includes dissipation processes due to the interband transitions of core electrons but
disregards dissipation due to scattering processes of free electrons. As was shown in [30], the
Lifshitz formula combined with the generalized plasma-like dielectric permittivity is consistent
with both short and long separation experiments. It also exactly satisfies the Kramers-Kronig
relations [30]. In [32] it has been shown that this model also satisfies the Nernst heat theorem
and, therefore, is compatible with thermodynamics.

Here, following the lines of Ref. [32] and adopting the point of view of Ref. [33], we first show
why the Drude dielectric function is incompatible with the Lifshitz formula. Then, we derive
an analytic asymptotic expression for the Casimir free energy in the limit of low temperatures.
Finally, we show the validity of the Nernst heat theorem in the Lifshitz theory combined with
the generalized plasma-like dielectric permittivity.

2. Incompatibility of Drude model with the Lifshitz formula for metallic plates
Despite originally derived for dielectric plates of infinite area, Eq. (1) is correctly used [9, 34] also
for both dielectric and ideal metal plates of finite area S under the condition a �

√
S. However,
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when plates of real metal are described by the Drude dielectric function (4), the appearance of
a drift current of conduction electrons leads to a crucially new physical situation.

To gain a better understanding of this statement, let us derive Eq. (4) starting from Maxwell
equations in an unbounded nonmagnetic metallic medium,

rotB =
1
c

∂E

∂t
+

4π

c
σ0E, divB = 0,

rotE = −1
c

∂B

∂t
, divE = 0. (7)

Here, the electric current density j = σ0E is induced in a metal under the influence of external
sources, and σ0 is the conductivity at zero frequency. Physically the demand that the medium
is unbounded means that it should be much larger than the extension of the wave fronts of
electromagnetic waves coming from external sources (i.e., of zero-point oscillations and thermal
photons).

Solving Eqs. (7) by monochromatic waves, E = Re
[
E0(r)e−iωt

]
and B = Re

[
B0(r)e−iωt

]
with E0(r) and B0(r) satisfying the well known wave equations, the wave vector k obeys,

k2 =
ω2

c2
+ i

4πσ0ω

c2
≡ εn(ω) ω2

c2
. (8)

Here, the dielectric permittivity of the normal skin effect is introduced being defined as

εn(ω) = 1 + i
4πσ0

ω
with σ0 = ω2

p/(4πγ) . (9)

This equation is applicable at not too high frequencies (the region of the normal skin effect)
where the relation j = σ0E is valid.

In order to extend the applicability of (9) to higher frequencies, up to the plasma frequency,
the following replacement is made,

σ0 → σD(ω) =
σ0

(
1 + iω

γ

)
1 + ω2

γ2

, (10)

herewith obtaining the (complex) conductivity of the Drude model; namely, substituting (10)
in (9) we recover the dielectric permittivity (4).

Obviously, in the limit ω � γ, in both the numerator and the denominator of (10), unity
dominates over ω/γ and ω2/γ2 leading back to the real conductivity of conduction electrons σ0.
This converts the dielectric permittivity of the Drude model (4) in the dielectric permittivity of
the normal skin effect (9). Contrary, at sufficiently high frequencies γ � ω < ωp (the region of
infrared optics) one can neglect unity as compared to ω/γ and ω2/γ2. Then (4) and (10) lead
to the plasma model with dielectric permittivity (5) and purely imaginary conductivity,

σP (ω) = i
σ0γ

ω
. (11)

The total current in the framework of the Drude model (4) is given by

jtot(r, t) = Re
[
− iω

4π
εD(ω)E0(r)e−iωt

]
=

ω

4π

(
1−

ω2
p

ω2 + γ2

)
Im
[
E0(r)e−iωt

]
+

σ0γ
2

ω2 + γ2
Re
[
E0(r)e−iωt

]
. (12)
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The first term on the right-hand side of this equation has the meaning of the displacement
current, whereas the second term is proportional to the physical electric field E = E(r, t) and
describes the real current of conduction electrons. Under the condition γ � ω < ωp, i.e., in
the region of infrared optics, the first term on the right-hand side of (12), i.e., the displacement
current of the plasma model with pure imaginary conductivity dominates. Under the opposite
condition ω � γ, i.e., in the region of the normal skin effect, the second term, i.e., the real
physical current of conduction electrons dominates.

By the foregoing discussion we found that the Drude dielectric function (4) is obtained from
the Maxwell equations with, besides of the displacement current, also a real drift current of
conducting electrons initiated by the external electric field E. That current unavoidably leads
to a Joule heating of the Casimir plates and an irreversible process driving the system out of
thermal equilibrium [35]. In order to held the temperature constant it is necessary to admit an
unidirectional flux of heat from the system to the heat bath [36]. However, this is prohibited
by the definition of thermal equilibrium which requires not only that T = const, but also that
all irreversible processes of dissipation of energy into heat have been terminated [37, 38]. As
a consequence, this means that the substitution of the Drude dielectric permittivity into the
Lifshitz formula violates at least one of the suppositions of its derivation and, therefore, may
lead to a violation of Nernst’s theorem and to contradictions with experimental data.

On the other hand, the dielectric permittivity of the plasma model is connected with only
the displacement current which does not lead to Joule’s heating and, therefore, no violation of
thermodynamics should appear. Consequently, the free electron plasma model in combination
with the Lifshitz formula satisfies the Nernst heat theorem [11, 12]. However, since it is in
disagreement with the measurement of the Casimir force in short separation experiments it
should be extended in such a way that additional dispersion forces do not lead to real drift
currents of conducting electrons. This was achieved by the approach using the generalized
plasma-like permittivity [30].

3. Thermodynamic test for the generalized plasma-like dielectric permittivity
Now, we demonstrate that the generalized plasma-like permittivity (6), which is in agreement
with all experiments performed up to date also satisfies the requirements of thermodynamics.
The generalized plasma-like dielectric permittivity takes into account the interband transitions
of core electrons but does not include relaxation of the free conduction electrons. The latter are
described by an oscillator with zero resonant frequency, ω0 = 0, which is explicitly included in
by the second term of (6) with g0 = 0 and f0 = ω2

p. Thus, similar to the usual plasma model,
the generalized plasma-like permittivity admits only the displacement current and does not
allow for a heat transfer. Because of this, the generalized plasma-like permittivity is compatible
with the Lifshitz formula. Reviewing shortly the proof of Ref. [32] we show that the Lifshitz
formula combined with the generalized plasma-like permittivity is in agreement with Nernst’s
heat theorem and thus withstands the thermodynamic test.

To find the asymptotic behavior of the Casimir free energy and entropy at low temperature,
we first present equations (1), (2) and (6) in terms of the following dimensionless parameters:

ω̃p =
ωp

ωc
≡ 1

α
, ζl =

ξl

ωc
≡ τ l, y =

√
4a2k2

⊥ + ζ2
l ,

γj =
ω2

c

ω2
j

, δj =
ωcgj

ω2
j

, Cj =
fj

ω2
j

, (13)

where ωc ≡ c/(2a) is the so-called characteristic frequency of the Casimir effect and the
parameter τ is represented as τ = 2πT/Teff with kBTeff ≡ h̄c/2a; here, Teff is the so-called
effective temperature which, for example, at separation a = 1µm is equal Teff ≈ 1145 K.
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In terms of these new variables, the Lifshitz formula (1) takes the form

F(a, T ) =
h̄cτ

32π2a3

∞∑
l=0

(
1− 1

2 δ0l

) ∫ ∞
ζl

dy f(ζl, y) with (14)

f(ζl, y) = y
{
ln
[
1− r2

TM(ζl, y)e−y
]
+ ln

[
1− r2

TE(ζl, y)e−y
]}

. (15)

The reflection coefficients (2) are given by

rTM(ζl, y) =
(ε2

l − 1)(y2 − ζ2
l )

(εl + 1)y2 + (εl − 1)ζ2
l + 2εlyhl(y) coth [(d/2a)hl(y)]

,

rTE(ζl, y) =
(εl − 1)ζ2

l

2y2 + (εl − 1)ζ2
l + 2yhl(y) coth [(d/2a)hl(y)]

, (16)

where
hl(y) =

√
y2 + (εl − 1)ζ2

l . (17)

The generalized plasma-like dielectric permittivity along the imaginary frequency axis can be
presented as

εl = ε(iζl) = 1 +
1

α2ζ2
l

+
K∑

j=1

Cj

1 + γjζ2
l + δjζl

. (18)

Using the Abel-Plana formula [2, 9]

∞∑
l=0

(
1− 1

2δ0l

)
F (l) =

∫ ∞
0

F (t)dt + i
∫ ∞
0

dt
F (it)− F (−it)

e2πt − 1
, (19)

where F (z) is an analytic function in the right half of the complex plane, we can rearrange (14)
to the form

F(a, T ) = E(a) + ∆F(a, t) . (20)

Here, the energy of the Casimir interaction at zero temperature is given by

E(a) =
h̄c

32π2a3

∫ ∞
0

dζ

∫ ∞
ζ

f(ζ, y)dy , (21)

and the thermal correction to the Casimir energy is expressed as follows:

∆F(a, T ) =
ih̄cτ

32π2a3

∫ ∞
0

dt
F (iτt)− F (−iτt)

e2πt − 1
, (22)

where
F (x) =

∫ ∞
x

dy f(x, y) . (23)

The behavior of the thermal correction (22), (23) at low temperature will be the subject of our
further consideration.

Perturbation expansion can be performed in analogy to papers [11, 12, 39, 40]. At first, we
expand the reflection coefficients rTM(ζ, y) and rTE(ζ, y) in powers of the parameter α preserving
all powers up to the fourth inclusive. Since α can be identically presented as α = λp/(4πa),
where λp is the plasma wavelength, this means that α � 1 at all separation distances between
the plates larger than λp. Furthermore, an expansion at low τ is performed up to fifth order.
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As is seen from (15), it is more convenient to expand the logarithmic functions containing the
reflection coefficients being multiplied by the variable y. The details of these expansion are
contained in Ref. [32] and will not repeated here.

It is remarkable that these expansions effectively do not depend on d, the thickness of the
plates, contained in (16). This is because asymptotically, when α goes to zero, the factor
containing the thickness d behaves as coth [(d/2a)hl(y)] ≈ 1+2 exp [−d/(aα)]. Thus, this factor
could only contribute exponentially small terms in these expansions providing the plate thickness
d is much larger than the penetration depth of electromagnetic oscillations into the metal [recall
that 2aα = λp/(2π)]. Under this condition the perturbation expansions are common for two
semispaces and for two plates of finite thickness.

In [32] it was shown that up to second power in α there appear no contributions of the core
electrons, i.e., that contributions coincide with those of the free electron plasma model [39, 40],

∆Fp(a, T ) = − h̄ c τ3

32π2 a3

{
ζ(3)
4π2

− τ

360
+ α

(
ζ(3)
π2

− τ

45

)
− α2 ζ(5)

2π4
τ2
}

, (24)

where ζ(z) is the Riemann zeta function. As was shown in [40], the terms in (24) of order α0

and α do not contain corrections of order τn with n ≥ 5 ; they contain only exponentially small
corrections of order exp(−2π/τ).

Now, let us consider the contributions from the core electrons which are contained only in
the terms of order α3 and α4. Their contribution to the thermal correction is as follows:

∆Fg(a, T ) =
h̄c α3τ4

32π2a3

{[
ζ(3)
60

K∑
j=1

Cjδj + τ
3ζ(5)
2π4

(
K∑

j=1

Cj+ 2

)]
− α

[
4ζ(3)
15

K∑
j=1

Cjδj + τ
6ζ(5)
π4

]}
.(25)

The total Casimir free energy computed using the generalized plasma-like permittivity can
be now found from (20), (24) and (25) as follows:

F(a, T ) = E(a) + ∆Fp(a, T ) + ∆Fg(a, T ). (26)

Taking into account the definition of τ , it can be represented in the form

F(a, T ) = E(a)− h̄cζ(3)
16πa3

(
T

Teff

)3
{

1 + 4α

− π3

45ζ(3)
T

Teff

(
1 + 8α + 6ζ(3)α3

K∑
j=1

Cjδj − 96ζ(3)α4
K∑

j=1

Cjδj

)

−8ζ(5)
ζ(3)

(
T

Teff

)2

α2

[
1 + 3α

(
K∑

j=1

Cj + 2

)
− 12α2

]}
. (27)

Here one can see that the free energy calculated using the generalized plasma-like permittivity
contains the correction of order (T/Teff)4 not only in the terms of order α0 and α (as in the
usual plasma model) but also in the third and fourth order expansion terms in α. In the usual
plasma model the terms of order α3 and α4 contain the thermal corrections only of order of
(T/Teff)5 and higher [39].

To estimate the relative role of the additional terms arising due to the use of the generalized
plasma-like permittivity, one can use the parameters of oscillator terms in (18) for Au [20]. This
results in

6∑
j=1

Cj = 6.3175,
6∑

j=1

Cjδj =
{

0.272, a = 200 nm,
0.109, a = 500 nm.

(28)
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From (27) it is easy to find the asymptotic behavior of the Casimir entropy

S(a, T ) = −∂F(a, T )
∂T

(29)

at low temperature. Without performing the simple differentiation it is immediatly seen from
(27) that the entropy goes to zero (and remains positive) when the temperature vanishes,

S(a, T ) → 0 when T → 0 . (30)

This means that the Nernst heat theorem is satisfied and the Lifshitz theory combined with the
generalized plasma-like dielectric permittivity withstands the thermodynamic test.

4. Conclusions and discussion
In the foregoing we have discussed the physical reasons why the Drude dielectric function is not
applicable in the case of finite plates made of real metal. It was shown that for the validity
of the Drude model a nonzero current of conduction electrons exists, which leads to a Joule’s
heating of the Casimir plates. As a consequence, one of the suppositions for the derivation of the
Lishitz formula, namely, thermal equilibrium is violated. Of course, any dielectric permittivity
being related to a drift current of conducting electrons is ruled out by that consideration.

On the contrary, not only the free electron plasma dielectric permittivity but also the
generalized plasma-like permittivity leads to only a displacement current and does not result to
a dissipation of energy into heat. From this consideration it becomes clear why the generalized
plasma-like permittivity, which does not include the relaxation processes of conduction electrons,
is consistent with all available measurements of the Casimir force at both short and large
separations.

To conclusively establish the applicability of the generalized plasma-like permittivity in the
theory of the thermal Casimir force between real metals we reviewed the thermodynamic test of
this model. Studying the asymptotic behavior of both the Casimir free energy and Casimir
entropy at low temperature it is shown that the latter is positive and takes zero value at
zero temperature. Thus, the Nernst heat theorem is satisfied. Of course, when the oscillator
parameters describing the core electrons go to zero, the newly obtained expressions for the
Casimir free energy and entropy go into the ones found for the usual plasma model.

From this we conclude that no problems with the Lifshitz theory occur if it is applied under
observation of its region of applicability. Similar conclusion is made in Ref. [33] agreeing “with
the fact that the conductivity processes in real materials connected with the drift current of
conduction electrons violate the applicability conditions of the Lifshitz theory and, thus, are not
described by this theory.” Since these processes, however, exist in reality, one must ask if they
are to “be taken into account in some future general theory of dispersion forces.”
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