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Abstract
Transfer learning can significantly improve the sample efficiency of neural networks, by exploiting
the relatedness between a data-scarce target task and a data-abundant source task. Despite years of
successful applications, transfer learning practice often relies on ad-hoc solutions, while theoretical
understanding of these procedures is still limited. In the present work, we re-think a solvable model
of synthetic data as a framework for modeling correlation between data-sets. This setup allows for
an analytic characterization of the generalization performance obtained when transferring the
learned feature map from the source to the target task. Focusing on the problem of training
two-layer networks in a binary classification setting, we show that our model can capture a range of
salient features of transfer learning with real data. Moreover, by exploiting parametric control over
the correlation between the two data-sets, we systematically investigate under which conditions the
transfer of features is beneficial for generalization.

1. Introduction

The incredible successes of deep learning originate from years of developments on network architectures and
learning algorithms, but also from increasing amounts of data available for training. In many deep learning
applications, data abundance allows for an extensive empirically-driven exploration of models and
hyper-parameter tuning to fit billions of model parameters [1–3]. Despite efforts in building data-efficient
pipe-lines [4, 5], deep networks remain intrinsically data-hungry [6]. In some settings, however, this
procedure is impractical, due to the limited size of the dataset. For instance, the bureaucracy behind the
acquisition of medical data and the lack of automated systems for their labelling complicate the deployment
of deep learning models in medical imaging [7–9].

A solution that can drastically reduce the need for new labelled data is transfer learning [10–12]. This
technique aims to improve the generalization performance of a network trained on a data-scarce target task,
by leveraging the information that a second network has acquired on a related and data-abundant ‘source’
task. The idea is that the network does not need to learn to recognize the relevant features of data from
scratch, but can start from an advanced, yet imperfect, stage of learning. In the simplest formulation of
transfer learning, the first layers of a neural network–those that perform feature extraction–are transferred
and kept fixed, and only the last segment of the network is retrained on the new dataset. In practice, an
additional end-to-end fine-tuning stage is often added [13], to adapt the learned features to the target task.

Despite its great success and its extensive use in deep learning applications, theoretical understanding of
transfer learning is still limited and many practical questions remain open. For instance: ‘How related do the
source and target tasks need to be? Is it better to transfer from complex to simpler datasets or vice versa? How
much data is necessary in the source dataset to make the transfer effective? How does the size of the
transferred feature map impact performance? And when is the fine-tuning stage beneficial?’
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A key ingredient for gaining theoretical insight on these questions is to obtain a generative model for
structured data able to produce non-trivial correlations between different tasks. The influence of the
structure of data on learning has been an active research topic in recent years [14–17]. An important step
forward was taken in [14], where it was shown that a simple generative model called the hidden manifold
model (HMM) induces learning behaviors that more closely resemble those observed on real data. The
HMM is built on the idea that real-world datasets are intrinsically low dimensional, as recent studies have
shown for some of the most widely used benchmarks. For instance, the intrinsic dimensions [18] of MNIST
and CIFAR10 were estimated to be L≈ 15 and L≈ 35 [19], compared to the actual number of pixels D= 784
and D= 1024. This concept is also demonstrated in modern generative models [20, 21], where
high-dimensional data is produced starting from lower-dimensional random vectors.

1.1. Contributions
In the present work, we propose a framework for better understanding transfer learning, where the many
variables at play can be isolated in controlled experiments.

• In section 2, we introduce the correlated hidden manifold model (CHMM), a tractable setting where the
correlation between datasets becomes explicit and tunable.

• By employingmethods developed in [22], in section 3, we analytically characterize the asymptotic generaliz-
ation error of transfer learning (without fine-tuning) on the CHMM, where learned features are transferred
from source to target task and are kept fixed while training on the second task.

• We demonstrate similar behavior of transfer learning in the CHMM and in experiments on real data, in
figures 2 and 4.

• In section 4 we compare the performance of transfer learning with the generalization error obtained by three
alternative learning models: a random feature model; a network trained from scratch on the target task; and
transfer learning with an additional stage of fine-tuning.

• In figures 3 and 5 we leverage parametric control over the correlation between source and target datasets
to extensively explore different transfer learning scenarios and delineate the boundaries of effectiveness of
the feature transfer. We also trace possible ‘negative transfer’ effects observed on real data, such as over-
specialization and overfitting [23, 24] in figure 3.

1.2. Further related work
Starting from the seminal work of [25], the statistical learning community has produced a number of
theoretical results bounding the performance of transfer learning, often approaching the problem from
closely related settings like multi-task learning, few-shot learning, domain adaptation and hypothesis
transfer learning (see [26–28] for surveys). Most of these results rely on standard proof techniques based on
the Vapnik-Chervonenkis dimension, covering number, stability, and Rademacher complexity. A recent
notable example of this type of approach can be found in [29]. Another recent work considers a two-stage
setting similar to the one analyzed in the present paper, where the feature map learned on a first source task is
transferred but not fine-tuned on a target task [30]. However, these works focus on worst-case analyses,
whereas our work has a complementary focus on characterizing average-case behavior, i.e. typical transfer
learning performance that we believe may be closer to observations in practice.

An alternative—yet less explored—approach is to accept stronger modeling assumptions in order to
obtain descriptions of typical learning scenarios. Three recent works rely on the teacher-student paradigm
[31], exploring transfer learning in deep linear networks [32] and in single-layer networks [33, 34]. Despite
many differences, these works confirm the intuitive finding that fewer examples are needed to achieve good
generalization when the teachers of source and target tasks are more aligned. While these studies provide a
careful characterization of the effect of initialization inherited from the source task, they do not address other
crucial aspects of transfer learning, especially the role played by feature extraction and feature sharing among
different tasks. In modern applications feature reuse is key in the transfer learning boost [35] and it is lacking
in the current modeling effort. This is precisely what we investigate in the present work.

2. Definition of the CHMM

We propose the CHMM as a high-dimensional tractable model of transfer learning, sketched in figure 1. To
capture the phenomenology of transfer learning, two key ingredients are necessary. First, we need to express
the relationship between source and target tasks, by defining a ‘generative model’ for correlated and
structured datasets. Second, we need to specify the ‘learning model’ and the associated protocol through
which the feature map is transferred over the two tasks. In the following, we describe both parts in detail.
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Figure 1. Diagram of the CHMM. Left panel: the generative model consists of two hidden manifold models that share features
(orange) and teacher weights (light blue), with some perturbations (lightning icons). Right panel: a two-layer network is trained
on the source dataset, and the learned feature map (dark blue) is transferred to the second architecture—the transferred feature
model. The loading symbols indicate which layer is trained in each phase.

2.1. Generative model
The relationship between classification tasks can take different forms. Two tasks could rely on different
features of the input, but these features could be read-out identically to produce the label; or two tasks could
use the same features, but require these to be read-out according to different labeling rules. In the HMM
[14], explicit access to a set of generative features and to the classification rule producing the data allows us to
model and combine correlations of both kinds.

The correlated-HMM combines two HMMs—representing source and target datasets—in order to
introduce correlations at the level of the generative-features and the labels. The key element in the modeling
is thus the relation between the two datasets. On a formal level, we construct source and target datasets,
Ds = {xµs ,yµs }

Ms
µ=1 andDt = {xµt ,y

µ
t }Mt

µ=1, as follows: let D denote the input dimension of the problem (e.g.
the number of pixels), and Ls the latent (intrinsic) dimension of the source dataset. First, we generate a pair
(Fs,θs), where Fs ∈ RLs×D is a matrix of D-dimensional Gaussian generative features, (Fs)ij ∼N (0,1), and
θs ∈ RLs denotes the parameters of a single-layer teacher network, (θs)i ∼N (0,1). The input data points for
the source task, xµs ∈ RD, are then obtained as a combination of the generative features with Gaussian
coefficients cµs ∈ RLs , (cµs )i ∼N (0,1), while the binary labels yµ ∈ {−1,1} are obtained as the output of the
teacher network, acting directly on the coefficients:

xµs = ReLU

(
cµs Fs√
Ls

)
; yµs = sign

(
cµs θs√
Ls

)
. (1)

Thus, starting from a typically lower-dimensional latent vector cµs the model produces structured inputs
embedded in a high-dimensional space, as in many modern generative models [20, 21]. Note that the choice
of the ReLU non-linearity is not a necessary requirement of the proposed modeling framework (which would
allow any choice of common activation functions), and that sparse inputs are found in many standard
benchmarks (e.g. MNIST-like datasets [36–38]). On the other hand, the Gaussianity of the generative
features and coefficients, and of the teacher vector, is a customary but strong modeling assumption which is
crucial for the theoretical treatment described in the following sections.

In order to construct the pair (Ft,θt) for the target task, we directly manipulate both the features and the
teacher network of the source task. To this end, we consider three families of transformations:

• Feature perturbation and substitution. This type of transformation can be used to model correlated datasets
that may differ in style, geometric structure, etc. In the CHMM, we regulate these correlations with two
independent parameters: the parameter η, measuring the amount of noise injected in each feature, and the
parameter ρ, representing the fraction of substituted features:
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(Ft)ij =

{
(F̃)ij for i= 1, . . . ,ρLs

η(Fs)ij +
√
1− η2(F̃)ij for i= ρLs + 1, . . . ,Ls

, (F̃)ij ∼N (0,1); (2)

• Teacher network perturbation. This type of transformation can be used to model datasets with the same set
of inputs but grouped into different categories. In the CHMM, we represent this kind of task misalignment
through a perturbation of the teacher network with parameter q:

(θt)i = q(θs)i +
√
1− q2(θ̃)i , (θ̃)i ∼N (0,1); (3)

• Feature addition or deletion. This type of transformation can be used tomodel datasets with different degrees
of complexity and thus different intrinsic dimensions. In the CHMM, we alter the latent space dimension
Lt ̸= Ls, adding or subtracting some features from the generative model:

(Ft)ij =

{
(Fs)ij for i= 1, . . . ,min(Ls,Lt)

(F̃)ij for i=min(Ls,Lt)+ 1, . . . ,Lt
, (F̃)ij ∼N (0,1). (4)

Moreover, the target teacher vector will also have a different number of components:

(θt)i =

{
(θs)i for i= 1, . . . ,min(Ls,Lt)

(θ̃)i for i=min(Ls,Lt)+ 1, . . . ,Lt
, (θ̃)i ∼N (0,1). (5)

The target dataset is again produced according to equation (1), with the pair (Ft,θt) and starting from i.i.d.
Gaussian latent vectors cµt ∈ RLt , (cµt )i ∼N (0,1).

We can easily identify counterparts of these types of transformations in real world data. For example, a
simple instance of datasets that slightly differ in style but share the same labeling (as modeled through
feature perturbation/substitution in the CHMM) can be obtained by applying a data-augmentation
transformation like elastic distortions on a given dataset. Another typical transfer learning setting is one
where the same data is clustered according to different labeling rules (teacher perturbation in the CHMM),
e.g. even–odd digits vs digits greater-smaller than 5 in the MNIST dataset. Finally, one could obtain two
datasets that only differ in the complexity level (and thus in the latent space dimension) by selecting a slice of
a given dataset that only contains a subset of the original categories. In this way some of the recognizable
traits of the images in the full dataset will no longer appear in the reduced one (as in the feature deletion case
in the CHMM). In section 4, we provide evidence of the qualitative agreement between the phenomenology
observed in the CHMM of task correlation and in real-world datasets.

2.2. Learning model
We specialize our analysis to the case of two-layer neural networks. This is the simplest architecture able to
perform feature extraction and develop non-trivial representations of the inputs through learning. Note that
the learning problem created through the HMM construction could also be tackled with a single layer
network [15], but the absence of a transferable feature map would not allow for the present study. We will
denote with H the number of hidden units in the network and focus on the case of ReLU activation
functions (again, this choice is purely arbitrary). To train the network, we employ a standard binary
cross-entropy loss with L2-regularization on the second layer.

We define the transfer protocol as follows. First, we randomly initialize a two-layer network with i.i.d.
∼N (0,1) weights and train it on the source classification task (following [24], early stopping is employed in
this first training step). Then, we transfer the learned feature map, i.e. the first-layer weights, ŵ1 ∈ RH×D, to
a second two-layer network. Finally, we only train the last layer of the second network, w2 ∈ RH, while
keeping the first layer frozen, on the target task with loss:

ŵ2 = argmin
w2

[
Mt∑
µ=1

ℓ

(
yµ,

vµt ·w2√
H

)
+

λ

2
||w2||22

]
, vµt = ReLU

(
xµt · ŵ1

D

)
, (6)

where ℓ(y,x) = log(1+ exp(−yx)) is the binary cross-entropy. We refer to this learning pipeline as the
transferred feature model (TF). This notation puts the TF in contrast to the well-studied random feature
model (RF) [39, 40], where the first-layer weights w1 are again fixed but random, i.e. sampled i.i.d.
∼N (0,1). Of course, when the correlation between source and target tasks is sufficient, TF is expected to
outperform RF.

Throughout this work, we will generally assume the hidden-layer dimension H to be of the same order of
the input size D. Note that, when the width of the hidden layer diverges, different limiting behaviors could be
observed [41].
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3. Theoretical framework

One of the main points of the CHMM is that the typical generalization performance associated with the
above described transfer learning protocol can be characterized analytically in high-dimensions by means of
the replica approach. This tool is a non-rigorous analytical method from statistical physics [42], used to
characterize high-dimensional optimization problems through a narrow set of scalar fixed-point equations.
In this reduced asymptotic description, the original dependence on the microscopic details of the model is
captured through a set of overlap parameters, which are assumed to concentrate around their typical values
in high dimensions. Note that, although the replica approach is heuristic in general settings, there is
overwhelming numerical evidence of the exactness of the yielded results, and a rigorous proof has been
derived in several models.

A crucial aspect of the transfer learning setting analyzed in this paper, allowing the replica analysis
described below, is that the TF model only learns the second layer weights w2 on the target task, while the
feature map is kept fixed through training. In fact, it has been recently conjectured and empirically
demonstrated in [22] that there exists a broad universality class, featuring diverse learning models with fixed
feature maps that asymptotically behave as simpler Gaussian covariate models, and that can be successfully
studied by means of the replica approach. According to the generalized Gaussian equivalence theorem (GET)
[43], in the high-dimensional limit L,D,H,M→∞ (defined in the previous paragraphs), with γ = L/H and
α=M/H ofO(1), the generalization error of the two-layer network can be expressed as an easy-to-evaluate
two-dimensional integral:

lim
D→∞

ϵg = Eδ,ν

[
(sign(ν)− sign(δ))2

]
, (7)

where (δ,ν) are jointly Gaussian random variables, with zero mean and covariance matrix[
ν
δ

]
∈ R2 ∼N

(
0,

[
ρ m⋆

m⋆ q⋆

])
. (8)

The parameters ρ= ∥θt∥22 /D and (m⋆,q⋆) are extremizers of the quenched free-entropy potential:

ϕ= extr
q,V,m,q̂,V̂,m̂

{
1

2

(
qV̂− q̂V

)
−√

γmm̂+αgE (q,V,m)+ gS
(
q̂, V̂,m̂

)}
, (9)

where q,V,m and q̂, V̂,m̂ are the overlap parameters and their conjugates respectively. The two functions gS
and gE in equation (9) can be interpreted as competing entropic and energetic contributions. The entropic
potential,

gS = lim
H→∞

1

2H
tr
(
m̂2 ΦTθtθ

T
t Φ+ q̂Ω

)(
λ11D×D + V̂Ω

)−1
, (10)

depends on the spectral properties of two matrices, Ω ∈ RD×D and Φ ∈ RL×D, that encode—through the
generative coefficients c and the activations v (below) – the non-trivial dependency on the correlations
between training samples and the non-linear feature maps:[

c
v

]
∈ RL+D ∼N

(
0,

[
11L×L Φ
ΦT Ω

])
. (11)

From equations (10) and (11) we can notice that, applying the GET, the non-linear learning problem with a
fixed but generic feature map is mapped onto a simple Gaussian covariate model.

The energetic potential gE is instead defined as

gE =

ˆ
DzH

(
− mz√

ρq−m2

)
1

2
(ME(1)+ME(−1)), (12)

ME(y) =max
u

[
−u2

2
− ℓ
(
y,
√
Vu+

√
q
)]

; (13)

withH(x) =
´∞
−∞ dz e

−z2/2
√
2π

and ℓ(y,x) = log(1+ exp(−yx)) the binary cross-entropy loss.
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The extremizers of equation (9) have a precise physical meaning, since they correspond to the typical
values of practically measurable overlaps:

q=
1

D
ŵT
2Ωŵ2; m=

1√
LD

θT
t Φŵ2 (14)

over different possible realizations of the training set. Given the values ofm⋆ and q⋆, one can finally compute
the two-dimensional Gaussian integral in equation equation (7), yielding the generalization error achieved at
the end of training in closed-form expression:

ϵg =
1

π
arccos

(
m⋆√
ρq⋆

)
. (15)

An important consideration is that these results are obtained in the so-called replica symmetric ansatz.
Despite being the simplest possible ansatz for these kind of calculations, it is also known to be the correct one
for convex problems like the logistic regression setting under study. We also remark that the equations above
are already in the zero-temperature limit, which is the relevant one for studying optimization problems. This
limit is non-trivial and requires the introduction of appropriate scaling laws. We refer the reader to [22] for
further details on the derivation.

In this work, we employ this set of equations to predict the generalization performance of the TF model,
described in section 3. We accept the validity of the Gaussian equivalence as a working assumption, setting
up to verify its viability a posteriori through comparison with numerical simulations. To analyze the transfer
learning setting proposed in section 2, the pipeline is thus the following:

(a) We generate a finite-size CHMM, (Fs,θs) and (Ft,θt).
(b) We obtain the weights to be transferred, ŵ1, via numerical optimization on the source task. This first

computational step is the most demanding in the pipeline.
(c) We estimate throughMonte Carlo sampling the population covariancesΩ andΦ that serve as inputs to the

asymptotic formulas in equation (9). Note that the computational cost of the MC sampling is minimal.
(d) Finally, we iterate the set of saddle-point equations derived in [22] from the extremum operation in

equation (9), in order to get an analytic prediction for the associated test error.

Altogether, the steps require small computational power and can be performed in an ordinary laptop in less
then three minutes, more precisely the second step takes 1–2 min, the third 5–10 s, and the forth some
fractions of a second.

Note that, to the best of our knowledge, it is not possible to circumvent the numerical optimization
entailed in step 2 and obtain a fully analytical description of this simple transfer learning setting. This type of
analysis would require an analytical characterization of batch-learning settings in two-layer networks, in
high-dimensions (both input and hidden-layer dimensions) and in the feature learning regime. This is a
highly sought after but still missing piece in the current theory of deep learning.

A further thing to notice is that the replica results are valid in the high-dimensional limit. However, the
pipeline proposed in [22] and employed in our work, starts from finite-size correlation matrices estimated
through Monte Carlo sampling. The justification is the following: the final replica expressions only depend
on the traces of the correlation matrices. In high dimensions, the traces translate into expectations over the
corresponding spectral distributions. However, these expectations can be well approximated by empirical
averages over the finite dimensional spectra, provided the dimension is large enough (we employ H∼ 1e3 in
our simulations).

We employ the same analytic framework also for the characterization of the performance of RF, for which
the GET assumption was recently proven rigorously [44]. In the following, we use the performance of the RF
as a baseline for evaluating the effect of transfer learning in the CHMMmodel. For further comparisons, in
the following we also consider: the performance of a two-layer network (2L) trained from scratch on the
target task; and the effect of transfer learning combined with an additional fine-tuning stage of the entire
network (ft-TF). Both these performances are obtained numerically. The details on the hyper-parameters
employed in the learning protocols are provided in appendix D.

4. Results

We now employ the CHMM and the analytic description of the TF performance to explore the effectiveness
of transfer learning in a controlled setting. For simplicity, we focus our presentation on two key variables that
can impact the generalization of TF. We first consider the effect of different correlation levels between source

6
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Figure 2. Role of feature perturbation: test error as a function of the number of samples per hidden unit for both (a) Transfer
between two subsets of EMNIST-letters. (b) CHMM with 30% of substituted generative features in the target task. Full lines are
from the theoretical predictions for the CHMM, points refer to numerical simulations with connecting dashed lines. The
parameters of the networks are set to: H= 500, λ= 1e− 8 on real data and λ= 1e− 7 on synthetic data. The input sizes are set
to D= 784 for the experiments with real data and D= 1000 for those with the synthetic model. The parameters of the synthetic
data model are set to: Ls = Lt = 150, (η,ρ,q) = (1,0.3,1). The size of the source task isMs = 25600 on real data and
Ms = 51200 on synthetic data. All the experiments have been averaged over 50, 20 and 10 samples for low, intermediate and high
numbers of samples respectively. In all figures, the error bars are smaller than the size of the points.

and target tasks, and afterwards we examine the role played by the latent dimensions of the two datasets. In
both cases the starting point is an experiment on real data, followed by the identification of similar
phenomenology in the synthetic model. Legitimized by the observed qualitative agreement, we then use the
described toolbox of analytical and numerical methods to explore associated transfer learning scenarios and
draw corresponding phase diagrams.

4.1. Transfer between datasets with varying levels of correlation
A highly intuitive aspect of transfer learning is that the degree of task relatedness crucially affects the results
of the transfer protocol. As mentioned in section 2, many sources of correlation can relate different learning
tasks, creating a common ground for feature sharing among neural network models.

We start with a simple transfer learning experiment on real data. We consider the EMNIST-letters dataset
[37], containing centered 28× 28 images of hand-written letters. We construct the source dataset,Ds, by
selecting two groups of letters ({A,B,E,L} in the first group and {C,H, J,S} in the second) and assigning
them binary labels according to group membership. We then generate the target task,Dt, by substituting one
letter in each group (letter E with F for the first group and letter J with I for the second). In this way, a
portion of the input traits characterizing the source task is replaced by some new traits in the target.

Figure 2(a) displays the results. On the x-axis, we vary the number of samples in the target task (notice
the log-scale in the plot), while the size of the source dataset is large and fixed. A first finding is that TF (light
blue curve) consistently outperforms RF (orange curve), demonstrating the benefit of the feature map
transfer. More noticeably, at a low number of samples, TF substantially outperforms training with 2L (green
curve), with test performance gains of up to 15%. This gap closes at intermediate number of samples, and we
observe a transition to a regime where the 2L performs better. We also look at the effect of fine-tuning the
feature map in the TF, finding that at small numbers of samples it is not beneficial with respect to TF, while at
large numbers of samples it modestly helps generalization. Both the learning curves of TF and RF display an
interpolation peak, due to the low employed regularization. This type of phenomenon—connected with the
double-descent phenomenon—has sparked a lot of theoretical interest in recent years [45, 46]. The cusp is
delayed in the TF, signaling a shift in the linear separability threshold due to the transferred feature map. It is
also interesting that the fine-tuned TF retains the cusp while the 2L model does not. This is due to the
different initialization: while 2L starts from small random weights, ft-TF picks up the training from the TF,
where the second-layer weights can be very large. Further details are provided in section 4.3.

While the reported empirical observations are not too surprising, we can now see if similar behaviors can
be traced also in a synthetic setting. We can straightforwardly reproduce the type of dataset correlations
described above via feature substitution in the CHMM, as described in section 2. Figure 2(b) shows the
transfer learning phenomenology in the CHMM, displaying a remarkable similarity with the previous
experiment. In the plot, the full lines show the results of the theoretical analysis, corroborated by numerical
simulations in finite-size (points in the same color). The observed agreement between theoretical predictions
and numerical experiments validates the GET assumption behind the analytic approach, as described in
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Figure 3. Effect of the dataset correlation on transfer learning performance. The three phase diagrams characterize the learning
performance in the CHMM, comparing the transferred feature model (TF) with: (a) a two-layer network with both layers trained
on the target task (2L), (b) a random feature model trained on the same task (RF), and (c) the transferred feature model after an
additional stage of fine-tuning (ft-TF), as a function of the correlation parameter q and the target dataset sizeM. Blue indicates TF
performing better than the compared algorithm (conversely, red indicates TF performing worse). The results for TF and RF are
obtained from the theoretical solution of the CHMM, while 2L and ft-TF are purely numerical (10 samples per point). The
parameters of the model were set to L= 200, (η,ρ) = (1,0), D= 1000 and H= 500.

section 3. The 2L and ft-TF dashed lines are instead purely numerical, averaged over different realizations of
the CHMM. For low number of samples we observe rather clearly that the fine-tuning of TF actually
deteriorates the test error due to over-fitting, in accordance with empirical findings in [23]. This effect is also
seen in another real data experiment reported in appendix C.

The correspondence between the transfer learning behavior observed on real data and in the CHMM
motivates a more systematic exploration of the possible transfer learning regimes using the explicit
fine-grained control over the dataset correlations in the CHMM. The analytical pipeline presented in
section 3 is extremely efficient for deriving phase diagrams in the CHMM. In particular, with a single
numerical optimization for ŵ1 and a single MC sampling for the population covariance Ω, we can obtain an
entire slice of the phase diagram at fixed source dataset, via repeated iterations of the asymptotic equations.
As a result, an entire phase diagram (with about 1000 points, 10 samples per point) can be derived in 5–10 h
on a modern laptop (compared with order∼103 hours for obtaining the same diagram through pure
numerical optimization).

As a representative case, figure 3 shows three phase diagrams, comparing (a) TF with 2L, (b) TF with RF,
(c) and ft-TF with TF, and displaying the performance gain as the teacher network alignment q is varied.
High values of q indicate strongly correlated tasks, while low values indicate unrelated ones. Each point in the
diagrams represents a different source-target pair, with a variable number of samples in the target task. In
panel (a), we can see that TF can outperform 2L (blue shaded region) when the number of samples is low
enough, or when the level of correlation is sufficiently strong. In these regimes 2L is not able to extract
features of a comparable quality. Note that, at q= 1, the transferred features are received from a source task
that is identical to the target, so it is to be expected that at high numbers of samples the performance of TF is
equivalent to 2L. The darker red region (around numbers of samples per hidden unit of order 1) is connected
to the appearance of the interpolation peak, mentioned above and investigated further in section 4.3. In
panel (b), we see a corner of the phase diagram (red shaded region) where the performance of TF is
sub-obtimal with respect to learning with random features. This is a case of negative-transfer: the received
features are over-specialized to an unrelated task and hinder the learning capability of TF as in [47]. Finally,
in panel (c), we can see when adding a final stage of fine-tuning on the new data (adapting the weights in
both layers) can induce better generalization performance. The red shaded region, highlighting this
improvement, is found at lower correlations (where the transferred features are not effective without
fine-tuning) and higher number of training samples in the target dataset (where additional training does not
lead to over-fitting). At small number of samples, instead, this procedure leads to over-fitting [23].

We here reported on the effect of a teacher network perturbation, but we find surprisingly similar results
for the other families of transformations, perturbing the generative features with η and ρ (the corresponding
phase diagrams are shown in appendix A). Thus, at the level of the CHMM, all these manipulations have a
similar impact on dataset correlation and feature map transferability. Next, we asked whether these patterns
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held qualitatively on real world data. Remarkably, we trace similar trends in different transfer learning
settings on MNIST-like datasets, as documented in appendix C. We emphasize that obtaining almost
identical behavior in experiments on MNIST-like datasets and in a simple (fundamentally Gaussian)
synthetic model is non-trivial, and suggests that our setting captures important features of the real data
setting. The fact that transfer learning performance is largely insensitive to the minute details of source and
target datasets, and seems instead to be dominated by the intensity of the dataset correlations, hints at the
existence of a class of universality connecting apparently disparate learning problems. In this perspective,
although the obtained phase diagrams cannot be practically employed for predicting real data behavior, the
uncovered phases and lines between them are likely to delineate a picture which is robust to moderate
changes in the data-model. In sum, our systematic phase space analysis suggests the following conclusions:
transfer learning helps most in the limited target data, high task correlation regime; sufficiently dissimilar
tasks can cause negative transfer; and fine tuning is only beneficial given sufficient target task data.

4.1.1. Connection with related works
Several cross-domain transfer learning experiments have been carried out in the past decades. For example,
[24] transferred from the imagenet dataset to different target sets, but without investigating the relatedness
between target and source, while [48] extensively studied transfer learning from/to several sources/targets.
These experiments generally show that as the difference between source and target datasets increases the
benefit from transferring decreases, as observed in our study. Similar results are described in [49], where the
transfer is considered from imagenet [1] to different kind of images (medical [50], pictures, drawings [48]).
The negative transfer effect [47]—i.e. a disadvantage in employing transfer learning with respect to training
from scratch—found in a corner of figure 3 has also been observed in recent numerical works on transfer
learning. This phenomenon can be caused by problems in the architecture [23], or can be associated to
task-related difficulties. For example, [51] observed negative transfer from imagenet to tomography head
scans, imputing the poor performance to the datasets dissimilarity, while [52] reviewed negative transfer in
applications where the datasets belong to far-apart domains.

On a different note, there have been few proposals of viable metrics for evaluating similarity between real
datasets, with the goal of obtaining predictors of the associated transfer learning performance. Some of these
architecture agnostic metrics evaluate dataset distances based on information theory, information geometry
and optimal transport [53–57]. An interesting direction for future work would be to connect these distance
metrics with the parametric transformations in the CHMM.

4.2. Transfer between datasets of different complexity
So far, we discussed situations where the transfer occurs between tasks with similar degrees of complexity.
However, in deep learning applications, this is not the typical scenario. Depending on whether the source
task is simpler or harder than the target one, a different gain can be observed in the generalization
performance of TF. The two transfer directions, from hard to simple and vice-versa, are not symmetric. This
observation has been repeatedly reported for transfer learning applications on real data [49, 58, 59].

To isolate the asymmetric transfer effect, we propose again a simple design. Consider as a first
classification task,Dhard, the full EMNIST-letters dataset (including all classes) with binarized labels
(even/odd categories). As a second task,Deasy, consider instead a filtered EMNIST dataset (containing only
some of the letters) with the same binarized labels. As denoted by the subscript, the learning problem
associated to the first task is harder, given the richness of the dataset, while the second classification task is
expected to be easier. Figure 4(a) shows the outcome of this experiment. In the top sub-plot, we display the
transfer fromDhard toDeasy, while in the lower sub-plot the transfer fromDeasy toDhard. A first remark is on
the different difficulty of the two learning problems: as expected, the test error is smaller in the top figure
than in the bottom one, especially when the number of samples is small (difference of about 10% asymptotic
test accuracy for all learning models). However, a more surprising observation is that, with few target
samples, the performance gain of TF over the two base-lines is not symmetric in the two transfer directions:
the gain is large when the transfer goes fromDhard toDeasy (top figure, about 10%), while it is smaller in the
opposite transfer direction (bottom figure, about 5%).

As mentioned in section 2, dataset complexity is captured in our modeling framework through the latent
dimension of the two HMMs. In particular, we can respectively assign a higher Lhard and a smaller Leasy to the
two tasks. Correspondingly, the harder HMM will comprise a larger number of generative features.
Figure 4(b) shows the asymmetric transfer effect in the setting of the CHMM. Again, the top sub-plot shows
the transfer from Lhard to Leasy, while the bottom sub-plot the converse. The different task complexity is
reflected in the lower test scores recorded when the target task is the easier one. Moreover, as above, we
observe a different gain between the two transfer directions for TF (above 10% in transfer from hard to easy,
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Figure 4. Asymmetric transfer: test error as a function of the number of samples per hidden unit for both (a) real and (b)
synthetic data. Top plots show the hard-to-easy transfer direction, bottom plots the easy-to-hard transfer direction. (a) Full
EMNIST-letters vs. filtered EMNIST-letters. (b) CHMM with different latent dimensions of the source and target model. Full
lines refer to theoretical predictions for the CHMM, points refer to numerical simulations with dashed lines being a guide to the
eye. The parameters of the networks are set to: λ= 1e− 6, H= 500. The input size is D= 784 for the experiments on real data
and D= 1000 for the synthetic model. The parameters of the synthetic data model are set to: Leasy = 100 and Lhard = 400,
(η,ρ,q) = (0.8,0,0.9). The size of the source task isMs = 24000 for real data andMs = 51200 for synthetic data in both
transferring directions (hard-easy and easy-hard). All the experiments have been averaged over 50, 20 and 10 samples for low,
intermediate and high numbers of samples respectively. In all figures, the error bars are smaller than the size of the points.

about 5% in the other direction). Thus, the difference in the intrinsic dimension of the two datasets seems to
be the key ingredient for tracing this phenomenon.

We can now exploit our modeling framework and further explore the asymmetric transfer effect as a
function of the latent dimension discrepancy. We consider source and target HMMs with variable latent
dimensions, Ls and Lt, while keeping Ls + Lt = 500 fixed. This allows us to probe cases where the target task
is simpler and cases where it is more complex than the source. By comparing the performance of TF to RF,
we identify the regimes where transfer learning produces the largest gains.

Figure 5(a) shows the resulting phase diagram, highlighting a stark asymmetry when transferring
between datasets with different latent dimensions. In the plot, the x-axis shows the latent dimension of the
target task, therefore the hard to easy regime is found on the left, while the easy to hard regime is found on
the right. The vertical axis at Lt = 250, represents the symmetry line of the phase diagram and corresponds to
the case where Ls = Lt, namely when the two HMMs share the same generative features. By moving to the
right or to the left of the axis by the same amount, the number of generative features common to both
datasets is identical. However, on the right, the target dataset is more complex than the source dataset. As a
result, on this side of the phase diagram, the performance gain of TF is smaller. When instead the target task
is simpler, the test performance of TF is highly improved, especially at low numbers of samples.

Figure 5(b) displays a horizontal cut of the phase diagram, atM/H= 0.4. In the low number of samples
regime transfer learning is highly beneficial, and indeed we observe that TF greatly outperforms RF and 2L.
Again, note that at Lt = 250 the latent dimensions of source and target tasks are equal. However, as we move
away from the symmetry line at Lt = 250, we see the asymmetric transfer effect coming into play. When the
target latent dimension increases, the gap in performance closes faster. This is due to the lack of learned
features, affecting the test error of TF. If we look at the effect of fine-tuning the transferred features, we see a
different behavior at small/large target latent dimension. When Lt is small, ft-TF is detrimental. When Lt is
instead large, ft-TF can slightly improve performance. The fully trained 2L network is over-fitting due to the
small dataset.

4.2.1. Connection with related works
Although in practice it is common to transfer from non-target-specific datasets to the target dataset (e.g.
[23, 60]), to the best of our knowledge, a systematic exploration of the generalization performance from
complex (feature rich) to simple (few features) has not being carried out. However, we can obtain an
indication of this effect in the already cited works [48, 49] on generalization performance with different
source and target sets, by carefully comparing the reported scores (for instance in [48] table 3 we see that
transferring from real images to paintings achieve better performance than black and white sketches to
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Figure 5. Effect of a latent dimension asymmetry. (a) Phase diagram comparing the performance of the transferred feature model
(TF) to that of a random feature model (RF), as a function of the latent dimension of the target task Lt (larger L implies higher
dataset complexity) and of the number of samples in the target dataset. In the source task we fix Ls = 500− Lt, therefore the
vertical axis at Lt = 250 indicates the case of symmetric latent spaces. The displayed results are obtained from the theoretical
solution of the CHMM. (b) Horizontal slice of the phase diagram, atM/H= 0.4, in which also the performance of the two-layer
network (2L) and the fine-tuned TF are shown. Full lines are obtained from the theoretical solution of the CHMM, points from
numerical simulations, dashed lines are guide to the eye (10 seeds per point). The parameters of the generative model are set to
(η,ρ,q) = (1,0,1), D= 1000 and H= 500, λ= 1e− 6.

paintings). Our results help systematize numerous observations of the value of adapting large models trained
in rich settings, a strategy which has proven useful in a range of settings.

4.3. Separability threshold and double descent
Conventional wisdom in machine learning and statistical learning theory says that the generalization
performance of learning models is affected by the so-called bias-variance tradeoff. When the number of
parameters in the learning model is too small, the resulting estimator may underfit the training set, thus
failing in correctly predicting the correct input-target relationship (high bias-low variance regime). On the
contrary, when the functional space of possible predictors is too large, the selected estimator may overfit the
training set, ending up to interpolate the noise in the data samples (low bias-high variance regime). The
generalization error then follows the classical U-shaped curve, whose minimum coincides with the ‘sweet
spot’ balancing these two regimes.

This picture is at odds with modern deep-learning applications, such as neural network models, for
which optimal generalization performances are often attained in the over-parametrized regime. In this case,
the generalization error follows the classical U-shaped curve only up to the interpolation threshold, namely
when the model can perfectly fit the training data. Beyond the interpolation threshold, the generalization
error decreases monotonically with the amount of parameters exploited in the learning model. Between these
two regimes, a peak occurs for vanishing regularization.

This double-descent behavior of the generalization error was first observed in [46, 61, 62] and has
recently risen a lot of theoretical interest. In particular, in [45] the authors established the existence of the
double-descent behavior for a wide-variety of learning models, including neural networks, random feature
models and decision trees. The double descent curve has been exemplified in [63] by means of the well-know
jamming phenomena in statistical physics literature, and it has been shown to be crucially affected by the
additive noise in the labels and the weights initialization in [64, 65]. The asymptotic expression of the
generalization error in the high-dimensional limit (see section 3) of random feature models has been derived
in [40] for ridge regression and in [15] for classification. In particular, [15] has shown that the
double-descent peak occurs at the linear separability threshold of the training data with logistic loss,
extending the results in [66].

Figure 6 displays the double-descent phenomenology in the CHMM for the transferred feature model
analyzed in the present work. As in the case of random features [15], a peak in the generalization error can be
observed in correspondence of the linear separability threshold. This threshold (dashed black vertical lines in
figure 6) signals the transition to the regime where the input data points can be perfectly separated, i.e. where
the training loss is exactly equal to zero. As can be observed in the plot, the interpolation threshold associated
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Figure 6. Generalization error (left) and training loss (right) as a function of the number of samples per hidden unit for both RF
(orange curve) and TF (blue curve). The parameters of the model are D= 1000,M= 1500, L= 200. The regularization strength
is fixed to λ= 1e− 8. In particular, for TF the parameters controlling the correlation between the source and the target task are
fixed to (η,ρ,q) = (1,0.2,0.8). The simulations are averaged over ten different realization of the CHMM.

to TF is shifted towards smaller model complexities. This is a direct consequence of the non-trivial
correlations learned from the source dataset and encoded in the feature map. The preprocessing induced by
the transferred features helps in the classification process, making data more easily separable with respect to
random Gaussian projections. Note that the sharpness of the transition is controlled by the regularization
strength: the smaller is the regularization, the sharper is the transition between the two regimes. Due to
numerical instabilities in the convergence of the saddle-point equations, we could not approach
regularization strengths smaller than λ= 1e− 8. We also note that, if the regularization strength was
optimized separately for each dataset size or if early stopping was employed, this would likely reduce or
remove the peak.

4.3.1. Connection with related works
In the context of transfer learning, [33, 67] have shown the presence of double descent peaks in simple
models. In particular [67] explores the difference between the effect induced by transfer learning and
standard regularization schemes.

4.4. Additional results
The modeling framework and the efficient pipeline proposed in this work can be used to investigate other
facets of transfer learning. In appendix A we provide some additional results, exploring the impact of the
network width H, and of the number of samples in the source task. In the first case, we find that the biggest
performance gaps between TF, RF and 2L are observed in the regime where H/L is smaller than one, while in
the opposite regime the gain is observed only at small sample-complexity. In the second case, we find that, at
fixed dataset correlation, the number of samples in the source task needs to be sufficiently large in order for
the transfer to be effective, as expected.

Finally, in appendix B we also challenge the one of the limitations of our modeling setup—the restriction
to the binary classification case—by exploring through numerical simulations the impact of considering
multiple classes on the transfer learning performance. To this end, we extend our model and introduce the
multi-label CHMM, where relational information among different classes can come into play, and repeat the
simulations presented in figures 3 and 5. Our numerical results show that the behavior is qualitatively
equivalent to the binary setting, confirming the robustness of the presented analysis.

5. Conclusions

We introduced the CHMM, a synthetic model of correlated datasets that allows a semi-analytical
characterization of the transfer learning performance for two layer neural networks. Despite the simplicity of
the model, we were able to show that transfer learning in the CHMM is completely aligned with the behavior
recorded in experiments on standard MNIST-derivative datasets. The uncovered universality motivated a
more extensive exploration of the possible transfer learning regimes in the CHMM by changing the
parametric control over the level of correlation between source and target datasets. We introduced an
efficient pipeline for obtaining the associated phase diagrams, which considerably amortizes the high cost of
numerical optimization of neural networks. The resulting phase diagrams delineate the transition lines
between the transfer learning regimes traced in the literature, and can be used to inspect the impact of the
many hyper-parameters at play. We find that transfer is most beneficial in the limited target data, high task
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correlation regime, and that fine-tuning is only worthwhile for larger target datasets. Further, we document a
striking asymmetry in transfer, such that transferring from richer tasks to simpler tasks is more beneficial
than vice versa. These results help motivate methods which make use of highly complex models trained on
diverse source tasks [60, 68].

Despite the remarkable adherence of the CHMM phenomenology to simple transfer learning
experiments on real data, there are several limitations to the presented approach. The main one is technical:
in high-dimensions we are not aware of any theoretical framework that captures feature learning in full
two-layer networks in a form that could then be used to study transfer learning. Therefore, even our analytic
curves are obtained on top of results from numerical learning of the features from the source task. The
description of learning processes in architectural variants, commonly used in deep learning practice, is even
further from the current reach of existing theoretical approaches. An interesting direction for future work
would be to find a method for quantifying the amount of correlation between real source and target datasets
and to locate the pair in the phase diagrams we obtained.
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Appendix A. Exploring different aspects of transfer learning in the CHMM

In the following paragraphs, we present some additional phase diagrams on the phenomenology of transfer
learning in the CHMM. These results complement the materials presented in the main text and give
additional insights on the role played by the various parameters in transfer learning problems.

A.1. Impact of transformations on the generative features
We first consider a similar experiment to the one presented in the first paragraph of section 4. In section 4 we
showed the phase diagrams for transfer learning when source and target HMMs are linked by a teacher
perturbation. Here we explore the effect of the other types of transformations that preserve the
dimensionality of the latent space, namely the feature perturbation and the feature substitution
transformations.

Figure A.1 shows two phase diagrams, comparing TF with 2L as a function of: (a) the feature
perturbation parameter η; (b) the feature substitution parameter ρ. High values of η (low values of ρ)
indicate strongly correlated tasks. Apart from the fact that the diagram associated to ρ is mirror image
compared to the others, it is evident that the obtained phase diagrams are non just qualitatively equivalent,
but also quantitatively similar to the phase diagram for the parameter q. At low numbers of samples and high
levels of feature correlation TF largely outperforms 2L. We also find again a region where TF overfits due to
the closeness to the separability threshold. More generally, 2L becomes the better algorithm when the size of
the target dataset is large enough.

The striking similarity of figure 3(a) and these phase diagrams might suggest some type of universality in
the effect of dataset correlation (of any type) on the quality of the transferred features.

A.2. Impact of the number of learned features
In this paragraph, we look at the effect of varying the the width of the two-layer neural network, H. Note that
H also corresponds to the number of learned features in a 2-layer network. In the plots, we rescale H by the
number of generative features (kept fixed to L= 200) to obtain a quantity that remainsO(1) even in the
high-dimensional setting of the replica computation.

Figure A.2 shows two phase diagrams, comparing (a) TF with 2L and (b) TF with a RF, as a function of H
and of the number of samples in the target task. Source and target tasks are linked through a fixed
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Figure A.1. Transfer learning performance with correlated generative features. The two phase diagrams characterize the learning
performance in the CHMM, comparing the transferred feature model to a two-layer network with both layers trained on the
target task (TF to 2L gain), as a function of: (a) the feature perturbation parameter η, (b) the feature substitution parameter ρ,
and the target dataset sizeM. The results for TF are obtained from the theoretical solution of the CHMM, while 2L is purely
numerical (10 samples per point). Parameters: L= 200, q= 1, D= 1000 and H= 500.

Figure A.2. Impact of the hidden layer width on transfer learning performance. The two phase diagrams compare the
performance of the transferred feature model (TF) to (a) a two-layer network with both layers trained on the target task (2L),
(b) a random feature model (RF), in the CHMM as a function of the number of hidden unitsH and the number of samples in the
target datasetM. The results for TF and RF are obtained from the theoretical solution of the CHMM, while 2L is purely numerical
(10 samples per point). Parameters: L= 200, (η,ρ,q) = (1,0.2,0.8), and D= 1000.

transformation with parameters (η,ρ,q) = (1,0.2,0.8). In both diagrams we can clearly see the diagonal line
corresponding to the separability threshold, which shifts to higher values asH (i.e. the number of parameters
in the second layer) is varied. TF is found to perform better in the low number of samples regime, as in all
other experimental settings. An interesting phenomenon appears in panel (b), where the behavior of RF
seems to change once the number of learned features becomes larger than the number of generative features
H > L. From this point on, the improvement obtained by TF over RF becomes less pronounced if the number
of samples is sufficient. Both diagrams also seem to show that at very large H, and starting from intermediate
values of the number of samples, the differences between TF, 2L and RF seem to narrow. This type of behavior
is expected, since by growing the width of the hidden layer one eventually approaches the kernel regime [19].

A.3. Impact of sample size of source dataset
Finally, we vary a parameter that was kept fixed throughout the above presented simulations, the number of
samples in the source task. Of course, in practice it does not make too much sense to use a small dataset as a
source task in a transfer learning procedure. The interest in this experiment is more theoretical, as it can be
used to understand when the learning model is able to start extracting features that could be helpful in a
different task.
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Figure A.3. Impact of the source dataset size on transfer learning performance. The two phase diagrams compare the
performance on the CHMM of the transferred feature model (TF) to (a) a two-layer network with both layers trained on the
target task (2L), (b) a random feature model (RF), as a function of the number of samples in the source datasetM1, and the
number of samples in the target datasetM2. The results for TF and RF are obtained from the theoretical solution of the CHMM,
while 2L is purely numerical (10 samples per point). Parameters: L= 200, (η,ρ,q) = (1,0.2,0.8), D= 1000 and H= 500.

Figure A.3 offers a comparison of (a) TF with 2L and (b) TF with a RF, as a function of source and target
dataset sizes,M1 andM2. The resulting phase diagram shows that the two-layer network trained on the
source dataset is unable to extract good features from the data below a critical value of the number of
samplesM1. In this regime the performance of TF in the target task is indistinguishable from RF, confirming
the key role played by the learned features (and not just initialization and scaling [34]) in the success of TF.
As expected, when the number of samples in the second task becomes larger, we reconnect with the typical
scenario already recorded in the previous experiments.

Appendix B. Numerical experiments onmulti-label learning

In the proposed CHMMmodel we focus on the case of binary classification. One of the main reasons for this
choice is that the asymptotic equations derived through our analysis can in this case be solved in reasonable
time, while adding extra dimensions in the output space would likely make their repeated solution too
computationally demanding. Although a majority of the related theoretical works is similarly limited to the
simplified binary case, intuitively the effect of cross-class correlation and feature similarity among multiple
classes could have a large impact on transfer learning performance. On the other hand, it has been recently
observed that multi-label classification shows similar phenomenology to the case of binary classification
[69], supporting the assumption that the study of the simpler case may also allow for a deeper understanding
of the general case.

In this section we test the robustness of our results in the multi-label classification settings making a
simple extension of the CHMMmodel. This test is performed numerically and does not have the purpose of
extending the theory presented in the main text (although that may be possible, in principle, by extending
our results in the spirit of [69]). Note that, because of the pure numerical nature of these experiments, the
computational cost of the associated simulations was greatly increased with respect to the experiments
presented in the main text, and required an implementation on a computational cluster.

The multi-label CHMMmodel can be again represented using the cartoon shown in figure 1 with the
difference that y and ŷ are K-dimensional arrays, with K the number of classes. The correct label is given by
the highest coordinate of y, while the output of the student is re-normalized using a softmax function.
Perturbations between source and target tasks can be defined likewise.

Figure B.1 is the multi-label counterpart of figure A.1(a) (and figure 3, given the quantitative and
qualitative similarity between the phase diagrams for the parameters η and q). The main result we report is
that, despite some quantitative disagreement, the salient features of the diagrams are still there, as expected.
The simulations were purposely evaluated with minimal changes with respect to the binary case. The
comparison between TF and RF shows again negative transfer for low η and low sample complexity in the
target, figure B.1(b). The different shape of the region may be due to poor feature extraction in the numerical
optimization, indicating that a larger number of learning steps may be needed. The phase diagrams on TF vs
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Figure B.1. Effect of the dataset correlation on transfer learning performance in multi-label classification. The three phase
diagrams characterize the learning performance in the CHMM as reported in figure 3 as η is varied. The gain is obtained after
averaging over ten realizations. Parameters: L= 200, (q,ρ) = (1,0), D= 1000, H= 500 and K= 4.

Figure B.2. Effect of a latent dimension asymmetry in multi-label classification. The three phase diagrams characterize the
learning performance in the CHMM as reported in figure 5. The plot in the multi-label setting shows qualitative agreement to the
binary case. Parameters: Ls + Lt = 500, (q,ρ,η) = (1,0,1), D= 1000, H= 500 and K= 4.

2L (figure B.1(a)) and TF vs ft-TF (figure B.1(c)) show the largest impact of transfer learning when the
number of samples in the target dataset is low and when the similarity between the two sets is large enough.

Let us consider the case of asymmetric transfer, where the target and source hidden dimensions (Ls and
Lt respectively) differ, extending the analysis of section 4.2 to the multi-label cases. Figure B.2 shows the same
features of figure 5, the most beneficial case occurs for low sample complexity and transferring from high
dimension to low dimension (Ls > Lt). This is consistent with the literature and correctly captured by the
model.

Finally, we again remark that the key advantage of the standard binary CHMM is that, because of its
simplicity and the existence of universality, it allows for a fast and exact characterization of the same
phenomena in a short time, without the need of computationally expensive simulations.

Appendix C. More experiments on real data

In the following paragraphs, we provide some additional transfer learning experiments on real data. The goal
of this section is to show that, despite different types of relationship between source and target tasks and
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Figure C.1. Feature perturbation: test error as a function of the number of samples per hidden unit. The source dataset is the
augmented even–odd MNIST, while the target dataset is the original even–odd MNIST. The employed augmentation is an
edge-enhancer transformation. The parameters of the networks are set to: D= 784, H= 500 and λ= 1e− 8. The size of the
source task isMs = 60000. All the experiments have been averaged over 50, 20 and 10 samples for low, intermediate and high
numbers of samples respectively.

different degrees of relatedness, the emerging qualitative behavior is similar to that presented in the main text
and reproduced by the CHMM. In paragraph 1 of section 4, we have considered an experiment
corresponding to a ‘feature substitution’ transformation in the context of the CHMM. In the following, we
will describe two experimental designs that instead correspond to ‘feature perturbation’ and ‘teacher
perturbation’ transformations (see section 2 for more details). Moreover, we will demonstrate a case of
‘orthogonal’ tasks, where the feature transfer is completely ineffective.

C.1. Feature perturbation
We consider an experiment where the transfer is between the MNIST dataset and a perturbed version of
MNIST, obtained by applying a data-augmentation transformation to each image. In particular, we construct
the source dataset,Ds, by altering the MNIST dataset through an edge enhancer in the ‘imgaug’ library for
data augmentation (for more details see section appendix D). Instead, we use the original MNIST as the
target dataset,Dt. In both cases, we label the images according to even–odd digits. In this way, the target task
can be seen as a perturbed version of the source task.

Figure C.1 shows the outcome of this experiment. A first thing to notice is that TF always outperforms RF
for all numbers of samples in the range we considered. Moreover, both models show a double descent
behavior, with the peak occurring at the linear separability threshold (see section 4.3 for more details). As
seen in the main text, TF reveals to be more effective than 2L at small numbers of samples, with a gain of
about 5% in test error scores. This gap closes aboveM/H= 1, where the 2L starts performing better than
both TF and ft-TF. Concerning ft-TF, we can instead recognize two different regimes. At small number of
samples, ft-TF performs better than 2L but worse than TF, showing a larger over-fitting effect compared to
figure 2. With a higher number of samples, ft-TF joins 2L, thus outperforming TF, except in the small region
close to the separability threshold.

C.2. Teacher perturbation and orthogonal tasks
Additionally, we consider the following experiment on real data. As a source dataset,Ds, we use the
notMNIST dataset [38] grouped into even–odd classes. In the target task,Dt, we instead consider notMNIST
but labeled differently, based on whether the class labels are smaller or larger than 5. In this way, the only
difference in the two tasks is in the employed labeling rule.

Figure C.1(a) displays the outcome of this experiment. The observed phenomenology is identical to that
already described for the previous experiments. Note that, even though the two tasks share the same input
images, observing a benefit when transferring the feature map is not trivial. TF is here found to be effective
because the learned features carry information about the digit represented in each image, which induces a
useful representation regardless of the grouping of the digits.

It is in fact possible to construct effectively ‘orthogonal’ tasks even if the set of inputs is the same. In the
final experiment, we use even–odd MNIST as the target task,Dt, but we consider a source task where the
label assigned to each MNIST image is only dependent on its luminosity. In particular, we assign all the
images with average brightness less than 20 or in the interval (35,59) to one group and the remaining ones to
the other group. Thus, the resulting source task has nothing to do with digit recognition.
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Figure C.2. Perturbed teacher and orthogonal tasks: generalization error as function of the number of samples per hidden unit in
the target task. (a) teacher perturbation. (b) orthogonal tasks. In the left panel, the source dataset is the even–odd notMNIST,
while the target dataset is notMNIST grouped in digits smaller-greater than 5. The size of the source task isMs = 200000. In the
right panel, the source task is MNIST grouped according to image luminosity and the target task is even–odd MNIST. The size of
the source task isMs = 51200. Note that in panel (b), the light blue and the orange curves are overlapping. The parameters of the
networks are set to: D= 784, H= 500 and λ= 1e− 8. The simulations are averaged over 50, 20, and 10 samples at small,
intermediate and high numbers of samples respectively.

Figure C.2(b) shows the outcome of this last experiment. Contrary to the other cases, in this experiment
we can clearly see no advantage in transferring the feature map from the source to the target task: TF not
only does not improve over 2L, but it also overlaps with RF for any number of samples. Interestingly, we can
here identify three different regimes for ft-TF: a first regime at small numbers of samples where ft-TF actually
follows the trend of TF and RF, thus badly performing with respect to 2L; a second regime, at intermediate
numbers of samples, where ft-TF actually starts improving its test scores with respect to TF and RF (around
10%) but it still does not have enough data to perform as well as 2L; finally, a third regime when the number
of samples is high, where ft-TF equates the generalization performances of 2L.

Appendix D. Technical details on the numerical simulations

In this section, we provide additional details on the numerical simulations concerning the experiments on
both real and synthetic data.

D.1. Datasets
In the experiments with real data, we have used three different standard datasets: MNIST, EMNIST-letters
and notMNIST. MNIST is a database of images (28× 28 pixels in range 0− 255 in the experiments) of
handwritten digits with 10 classes, containing 60000 examples in the training set and 10000 examples in the
test set [36]. EMNIST-letters is a dataset of images (28× 28 pixels in range 0− 1 in the experiments) of
handwritten letters with 26 classes, containing 124800 examples in the training set and 20800 examples in
the test set [37]. Finally, notMnist is a dataset of images (28× 28 pixels in range 0− 1 in the experiments) of
letter fonts from A to J with 10 classes, containing 200000 examples in the training set and 10000 examples
in the test set [38]. Concerning the experiment on feature perturbation of figure C.1, we have used the
‘EdgeDetect’ function of the ‘imgaug’ library for data augmentation to enhance the contours of each digit
with respect to the background [70]. In the experiment, we set the parameter ‘alpha’ to (0.5,0.7). An
example of the three datasets is provided in figure D.1.

D.2. Hyper-parameter settings
In the source task, we consider a two-layer neural network with ReLU activation function and single
sigmoidal output unit. To train the two-layer network on the source, we implement mini-batch gradient
descent, using the end-to-end open source platform for Machine Learning Tensorflow 2.4 [71]. In particular,
we use the Adam optimizer with default Tensorflow hyper-parameters and the binary cross-entropy loss. We
then apply L2 regularization on the last layer and early-stopping with default Tensorflow hyper-parameters as
regularizers. The training is immediately stopped when an increase in the test loss is recorded (the patience
parameter in early stopping is set to zero). We set the maximum number of epochs to 200, the learning rate
to 1e− 3 and the batch size to 50.

In the target task, we train TF and RF via the scikit-learn open-source python library for Machine
Learning [72]. In particular, we use the module ‘linear_model.LogisticRegression’ which implements logistic
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Figure D.1. Examples from the real datasets: (a) examples of images in the MNIST dataset. (b) examples of images in the MNIST
dataset perturbed to enhance digit contours with respect to the background. (c) examples of images in the EMNIST-letters
dataset. (d) examples of images in the notMNIST dataset.

regression with L2 regularization when the ‘penalty’ parameter is set to ‘l2’. Note that, non-zero L2
regularization ensures that the optimization process is bounded even below the separability threshold for
both TF and RF. The training stops either because a maximum number of iterations (max iters= 104) has
been reached, or because the maximum component of the gradient is found to be below a certain threshold
(tol= 1e− 7). To train 2L, we have instead employed Tensorflow 2.4 once again, with Adam optimizer and
cross-entropy loss with L2-regularization on the last layer. In this case, we set the maximum number of
epochs to 200, the learning rate to 0.1 and the batch-size to 1000. The training stops when the maximum
number of epochs is reached. The choice of the learning hyper-parameters is made to ensure the two-layer
network to always reach zero-training error on the target task. Finally, to train ft-TF (from the TF
initialization), we use the Adam optimizer and the binary cross-entropy loss. Since we expect the pre-trained
weights on the source task to be already good enough to ensure good generalization performances, we set the
learning rate to 0.01 not to alter them too much or too quickly. We then keep the total number of epochs
equal to 200 and the batch-size equal to 1000).
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