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Abstract
Active learning is a branch of machine learning that deals with problems where unlabeled data is
abundant yet obtaining labels is expensive. The learning algorithm has the possibility of querying
a limited number of samples to obtain the corresponding labels, subsequently used for supervised
learning. In this work, we consider the task of choosing the subset of samples to be labeled from a
fixed finite pool of samples. We assume the pool of samples to be a random matrix and the ground
truth labels to be generated by a single-layer teacher random neural network. We employ replica
methods to analyze the large deviations for the accuracy achieved after supervised learning on a
subset of the original pool. These large deviations then provide optimal achievable performance
boundaries for any active learning algorithm. We show that the optimal learning performance can
be efficiently approached by simple message-passing active learning algorithms. We also provide
a comparison with the performance of some other popular active learning strategies.
Keywords: Active learning, Large Deviations, perceptron Model, Message-passing algorithms

1. Introduction

Supervised learning consists in presenting a parametric function (often a neural network) with a
series of samples (samples) and labels, and adjusting (training) the parameters (network weights)
so as to match the network output with the labels as closely as possible. Active learning (AL)
is concerned with choosing the most informative samples so that the training requires the least
number of labeled samples to reach the same test accuracy. Active learning is relevant in situations
where the potential set of samples is large, but obtaining the labels is expensive (computationally
or otherwise). There exist many strategies for active learning, see e.g. Settles (2009) for a review.
In membership-based active learning Angluin (1988), Cohn et al. (1994), Seung et al. (1992) the
algorithm is allowed to query the label of any sample, most often one it generates itself. In stream-
based active learning Atlas et al. (1990) an infinite sequence of samples is presented to the learner
which can decide whether or not to query its label. In pool-based active learning, which is the object
of the present work, the learner can only query samples that belong to a pre-existing, fixed pool of
samples. It therefore needs to choose according to some strategy which samples to query so as to
have the best possible test accuracy.
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Pool-based active learning is relevant for many machine learning applications, e.g. because
not every possible input vector is of relevance. A beautiful recent application of active learning is
in computational chemistry Zhang et al. (2019) where a neural network is trained to predict inter-
atomic potentials. In this case the pool of data is large and consists in all possible alloys, but not
of arbitrary input vectors, and labelling is extremely expensive, as it demands resource-intensive
ab-initio simulations. Consequently, only a limited number of samples can be labeled, i.e. one only
possesses a certain budget for the cardinal of the training set. Another setting where a cheap large
pool of input data is readily available but labelling is expensive is drug discovery Warmuth et al.
(2001), where given a target molecule one aims to find new compounds among the pool able to bind
it. Another example would be on text classification McCallum and Nigam (1998), Tong and Koller
(2000), Hoi et al. (2006), where labelling a text requires non-negligible human input, while a large
pool of texts is readily available on the internet. Establishing efficient pool-based active learning
procedures in this case implies to select a priori the most informative data samples for labelling.

Main-stream works on active learning focus on designing heuristic algorithmic strategies in a
variety of settings, and analyzing the performance thereof. It is very rarely known what are the
information-theoretic limitations an active learning algorithm can face and hence evaluating the dis-
tance from optimality is mostly an open question. The main contribution of the present work is to
provide a toy model that is at the one hand challenging for active learning, and at the same time
where the optimal performance of pool-based active learning can be computed and heuristic algo-
rithms hence evaluated and bench-marked against the optimal solution. To our knowledge, this is the
first work to derive optimal performance results for pool-based active learning procedures are com-
puted. More specifically we study the random perceptron model Gardner and Derrida (1988). The
available pool of samples is assumed to be i.i.d. normal vectors, the teacher generating the labels is
taken to be also a perceptron with the vector of teacher-weights having i.i.d. normal components.
We compute the large deviation function for how likely one is to find a subset of the samples that
leads to a given learning accuracy. Our results are based on the replica method computation of this
large deviation function, that is an exact method (modulo the possibility of the so-called replica
symmetry breaking that we are not evaluating in the present work) originating in theoretical statis-
tical physics Parisi (1979); Parisi (1983); Mézard et al. (1986). Providing a rigorous proof of the
obtained results or turning them into rigorous bounds would be a natural, and rather challenging,
next step. In the algorithmic part of this work we benchmark several existing algorithms and also
propose two new algorithms relying on the approximate-message-passing algorithm for estimation
of the label uncertainty for yet unlabeled sample, showing that they closely achieve, in the studied
cases, the relevant information-theoretic limitations.

The paper is organized as follows: the problem is defined and related work discussed in sec-
tion 2. In section 3, we propose a measure to quantify the informativeness of given subsets of
samples. In section 4, we derive the large deviation function over all possible subset choices and de-
duce performance boundaries that apply to any pool-based active learning strategy. In section 5, we
then compare these theoretical results with the performance of existing active learning algorithms
and propose two new ones, based on approximate-message-passing.

2. Definition of the problem and related work

A natural modeling framework for analyzing learning processes and generalization properties is the
so-called teacher-student (or planted) perceptron model Zdeborová and Krzakala (2016), where the
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input samples are assumed to be random i.i.d. vectors, and the ground truth labels are assumed to be
generated by a neural network (denoted as the teacher) belonging to the same hypothesis class as the
student-neural-network. In this work we will restrict to single-layer neural networks (without hidden
units) for which this setting was defined and studied in Gardner and Derrida (1989). Specifically
we collect the input vectors into a matrix F ∈ RP×N where N is the dimension of the input space
and P is the number of samples. The teacher generating the labels, called teacher perceptron, is
characterized by a teacher-vector of weights x0 and produces the label vector Y ∈ RP according
to Y = sign(F · x0). Learning is then done using a student perceptron and consists in finding
a vector x so that for the training set F we have as closely as possible Y = sign(F · x). The
relevant notion of error is the test accuracy (generalization error) measuring the agreement between
the teacher and the student on a new sample not presented in the training set. Since both teacher
and student possess the same architecture, the training process can be rephrased in terms of an
inference problem (as discussed for instance in Zdeborová and Krzakala (2016)): the student aims
to infer the teacher weights, used to generate the labels, from the knowledge of a set of input-
output associations. This scenario allows for nice geometrical insights (see for example Engels and
van den Broeck (2001)), as the generalization properties are linked to the distance in weight space
between teacher and student functions. Note that, in the case of a noiseless labelling process, the
teacher-student scenario guarantees that perfect training is always possible.

Active learning was previously studied in the context of the teacher-student perceptron problem.
Best known is the line of work on Query by Committee Seung et al. (1992); Freund et al. (1992);
Zhou (2019), dealing with the membership based active learning setting, i.e. where the samples are
picked one by one into the training set and can be absolutely arbitrary N -dimensional vectors. The
active learning is in that case more a strategy for designing the samples rather than one for selecting
them smartly from an predefined set. In the original work Seung et al. (1992) the new samples
are chosen so that a committee of several student-neural-networks has the maximum possible dis-
agreement on the new sample. The paper shows that in this way one can reach a generalization
error that decreases exponentially with the size of the training set, while for a random training set
the generalization error can decrease only inversely proportionally to the size of the set Engels and
van den Broeck (2001). However, in many practical applications the possible set of samples to be
picked into the training set is not arbitrarily big, e.g. not every input vector represents an encod-
ing of a molecular structure. We hence argue that the pool-based active learning, studied in the
present paper, where the samples are selected from a pre-defined set is of larger relevance to many
applications.

The theoretical part of this paper is presented for a generalization of the perceptron model,
specifically the for the random teacher-student Generalized Linear Models (GLM), see e.g. Barbier
et al. (2019). An instance of a GLM is specified by a prior measure on the weights PX(·), from
which the true generative model is assumed to be sampled, and an output channel measure Pout(·|·),
defining the generative process for the labels given the pre-activations. In the part where results of
this work are presented we focus on the prototypical case of the noiseless continuous perceptron,

where PX(x) = e−
x2

2 /
√

2π and Pout(y|h) = δ(y − sign(h)) where for example µ we have hµ =
Fµ ·x. Moreover, we will consider the setting where the learning model is matched to the generative
model and thus the student has perfect knowledge on the correct form of the two above defined
measures.

The pool-based active learning task can now be more formally stated as follows: given a set
of N−dimensional samples S = {F µ} of cardinality |S| = P = αN , the goal is to select and
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query the labels of a subset S ∈ S of cardinality |S| = nN , 0 < n ≤ α, according to some
active learning criterion. We will refer to n as the budget of the student. The true labels are then
obtained through yµ ∼ Pout(y

µ|F µ · x0), x0 ∼ PX(x0). Henceforth measures with vector
arguments are understood to be products over the coordinates of the corresponding scalar measures.
For technical reasons, we rely on the strong (but customary) assumption that the samples are i.i.d.
Gaussian distributed, Fµi ∼ N (0, 1), ∀i ∈ {1, ..., N}, ∀µ ∈ {1, ..., P}. Note that, while this
assumption implies that the full set S of input data is generally unstructured and uncorrelated, it
does not prevent non-trivial correlations to appear in any smaller labeled subset S, selected through
an active learning procedure.

In pool-based active learning settings, it is assumed that the student has a fixed budget n for
building its training set, i.e. that only up to nN labels can be queried for training. The active
learning goal is to select, among the pool S of available samples, the nN most informative labels, to
present to the student so that the latter achieves the best possible generalization performance. While
many criteria of informativeness have been considered in the literature, see e. g. Settles (2009), in
the teacher-student setting there exist a natural measure of informativeness, which we shall define
in the next section.

3. The Gardner volume as a measure of optimality

A natural strategy for ranking the possible subset selections is to evaluate the mutual information
between the teacher vector x0 and each subset of labels Y , conditioned on the corresponding inputs
F . Good selections contain larger amounts of information about the ground truth, encoded in the
labels, and make the associated inference problem for the student easier. Conversely, bad selections
are characterized by less informative labels. In the case of the teacher-student perceptron, where
the output channel Pout(·|·) is completely deterministic and binary, the mutual information can be
rewritten (following Barbier et al. (2019)) as

I(x0;Y |F ) = H(Y |F )−H(Y |F ,x0) = H(Y |F )

= −
∫
dY

∫
dx0 PX(x0)Pout(Y |F · x0)ln

∫
dxPX(x)Pout(Y |F · x) . (1)

Equation (1) allows a connection with a quantity well-known in statistical physics, the so-called
Gardner volume Gardner and Derrida (1988), Nishimori (2001), Engels and van den Broeck (2001),
denoted in the following by v

ln v ≡ 1

N
Ex0,Y ln

∫
dxPX(x)Pout(Y |F · x) . (2)

The Gardner volume v represents the extent of the version space Mitchell (1982), i.e. the entropy
of hypotheses in the model class consistent with the labeled training set. This provides a natural
measure of the quality of the student training. A narrower volume implies less uncertainty about the
ground truth x0 and is thus a desirable objective in an active learning framework. We shall focus
the rest of our discussion on the large deviation properties of the Gardner volume, but we invite the
reader to keep in mind that this is equivalent to studying the above defined mutual information.

There exist other natural measures of informativeness, e.g. the student generalization error εg
and the magnetization (or teacher/student overlap) m = x · x0/N . In the thermodynamic limit
N ↑ ∞, εg is a decreasing function of m (see the appendix E for more details). Moreover we
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will show analytical and numerical evidence that all these measures co-vary, at least in the simple
teacher-student setting studied in this work. A numerical check at finiteN of the correlation between
v and m can also be found in appendix F.

4. Large deviations of the Gardner volume

We consider the problem of sampling labeled subsets of cardinality nN , 0 < n ≤ α, from a fixed
pool of data of cardinality αN , α ∼ O(1), and study the variations in the associated Gardner
volumes. We will hereby consider that, for any fixed pool and subset size, the Gardner volume
probability distribution follows a large deviation principle, i.e. that there exist an exponential num-
ber eNΣ(n,v) of subsets choices that produce Gardner volumes equal to v. Employing a statistical
physics terminology, we will refer to the rate function, Σ(n, v), as the complexity of labeled subsets
associated to a budget n and a volume v.

In the largeN limit, the overwhelming majority of subsets will thus realize a Gardner volume v?,
such that v? = argmaxv Σ(n, v). This means that, since the fluctuations around this typical value
are exponentially rare, random sampling will almost certainly yield Gardner volumes extremely
close to v?. However, the aim of active learning is to find strategies for accessing the atypically
informative subsets (i.e., the atypically small volumes v < v?), whence the necessity of analyzing
the large deviations properties of the subset selection process.

We will here give a brief outline of the analytic computation, based on standard methods from
physics of disordered systems Parisi (1979), Parisi (1983), Mézard et al. (1986), and refer the reader
to appendices A, B and C for a more detailed derivation. It is convenient to introduce a vector of
selection variables {σµ}0≤µ≤αN ∈ {0, 1}αN , such that σµ = 1 when the sample Fµ ∈ S is selected
(and added to the labeled training set), while σµ = 0 otherwise. In this notation the selected subset
S ⊂ S is easily defined as S = {Fµ ∈ S|σµ = 1}.

Since a direct computation of the complexity is not straightforward, as customary in this type of
analyses Dotsenko et al. (1994) we derive it by first evaluating its Legendre transform. We introduce
the (unnormalized) measure over the selection variables

Pβ,φ({σµ}) =

∫ dxPX(x)
αN∏
µ=1

Pout(y
µ|F µ · x)σµ

β eφ∑µ σµ (3)

and the associated free entropy

Φ(β, φ) = EF ,x0
1

N
lnΞ = EF ,x0

1

N
ln
∑
σµ

Pβ,φ({σµ}). (4)

From a statistical physics perspective, Ξ can be regarded as a grand-canonical partition function,
with β playing the role of an inverse temperature, the Gardner volume being the associated energy
function, and where φ is an effective chemical potential controlling the cardinality of the selection
subset, |S|. In the thermodynamic limitN ↑ ∞, by applying the saddle-point method one can easily
see that Φ(β, φ) will be dominated by a subset of selection vectors {σµ} whose budget and energy,
n? and v?, are given by

Φ(β, φ) = extr
v,n
{Σ(n, v) + β lnv + φn} . (5)
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Thus, inverting the Legendre transform yields the sought complexity

Σ(n, v) = Φ(β, φ)− β ln v − nφ|∂βΦ=lnv,∂φΦ=n. (6)

At fixed budget n, the range of values of the volume v associated to positive complexities, i.e.
with Σ(n, v) > 0, effectively spans all the achievable Gardner volumes for subsets of that given
cardinality, agnostic of the actual strategy for selecting them. In particular, infv{v|Σ(n, v) > 0}
and supv{v|Σ(n, v) > 0} define the minimal and maximal Gardner volumes and provide theoretical
algorithmic boundaries for all realizable active learning strategies. Note that this means that our
prototypical model, albeit being idealized, constitutes a nice benchmark for comparing known pool-
based active learning heuristics.

4.1. Replica symmetric formula for the large deviations

In practice, the analytic evaluation of Φ(β, φ) involves the computation of a quenched average of a
log-partition function and is not feasible via rigorous methods. In order to perform the computation,
we resort to the replica method from statistical physics Parisi (1979), Parisi (1983), Mézard et al.
(1986), based on the identity

Φ(β, φ) = EF ,x0
1

N
ln Ξ = EF ,x0

1

N

1

s
lim
s→0

Ξs, (7)

and the fact that for integer values s the EF ,x0Ξs can be computed. We refer the interested reader
to appendix B, where the computation is explicited in the more general case of a generalized linear
model Krzakala et al. (2012), Barbier et al. (2019), and then specialized to the case of interest of
a teacher-student perceptron. The final analytic expression for the replica symmetric free entropy
ΦRS in this special case reads

ΦRS(β, φ) = extr
m̂,r̂,q̂,Q̂,m,r,q,Q

{
β

2
rr̂ − βmm̂− β(β − 1)

2
QQ̂+

β2

2
qq̂ − β − 1

2
ln(1 + r̂ + Q̂)

− 1

2
ln(1 + r̂ − (β − 1)Q̂+ βq̂) +

β

2

q̂ + m̂2

1 + r̂ − (β − 1)Q̂+ βq̂
(8)

+ 2α

∫
DηH

(
−

√
m2

q −m2
η

)
ln

[
1 + eφ

∫
DζH

(
− 1√

r −Q
(
√
Q− qζ +

√
qη)

)β]}
,

where we introduced the definitions
∫
Dx =

∫
dx√
2π
e−x

2/2 and H(x) =
∫∞
x Dx. The extremum

operation entailed in the free entropy computation is performed over a set of overlap order parame-
ters, amenable of the following geometric interpretation

• q = 1
N

∑
i

〈
〈xi〉x|S

〉2

S
, typical overlap between students with different labeled subsets.

• Q = 1
N

∑
i

〈
〈xi〉2x|S

〉
S

, typical overlap between students with the same labeled subset.

• r = 1
N

∑
i

〈〈
x2
i

〉
x|S

〉
S

, typical norm of a student.

• m = 1
N

∑
i

〈〈
xix

0
i

〉
x|S

〉
S

, typical magnetization of a student.
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Figure 1: (Left) Complexity-volume curves Σ(n, v) for various budgets n, at pool size α = 3 ex-
tracted from the large deviation computations. These curves reach their maxima at a point
with coordinates corresponding to the Gardner volume of randomly chosen nN samples,
and log-number of choices of nN elements among αN ones. (Right) The magnetiza-
tion order parameter m (in other words the teacher-student overlap) as a function of the
Gardner volume v for a pool of cardinality α = 3, as extracted from the large deviation
computations. As is physically intuitive, smaller Gardner volumes imply larger values of
the magnetization.

Once the free entropy is evaluated, the complexity can be obtained via a numerical implementation
of the extremization prescribed by the inverse Legendre transform (6).

We remark at this point that the presented replica calculation was obtained in the so-called
replica symmetric ansatz. In general, it is possible for the replica symmetric result not to be exact,
requiring replica symmetry breaking (RSB) in order to evaluate the correct free entropy Φ(β, φ)
Mézard et al. (1986). In this model, while RSB is surely not needed close to the maximum of the
complexity curves as implied by results in Barbier et al. (2019)), it conversely has to be taken into
account away from typical volumes, as is detailed in appendix D. At the same time, the presence
of RSB usually entails corrections that are very small in magnitude. We hence believe the error
bounds here reported under the assumption of replica symmetry to achieve a rather good degree of
accuracy.

4.2. Large deviation results

In Fig. 1, we show the results of the large deviation analysis at α = 3. Note that the qualitative pic-
ture is unaltered when α is varied (e.g., equivalent results for α = 10 are shown in appendix C). The
different curves, obtained at fixed values of the budget n, show the complexity (i.e., the exponential
rate of the number) of possible subset choices, Σ, that realize the corresponding Gardner volumes v.
As expected, the maximum of each curve is observed at β = 0, and yields the typical Garner vol-
ume of a teacher-student perceptron that has learned to correctly classify nN i.i.d. Gaussian input
patterns. The associated complexity is simply given by the binomial distribution.

The cases where the extremum in equation (6) is realized for positive values of β describe
choices of the labeled subsets that induce atypically large Gardner volumes: these correspond to
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Figure 2: Typical Gardner volume (purple, decreasing linearly at large α) and information theoreti-
cally smallest achievable one (orange, yellow and blue) extracted from the large deviation
computation for α ∈ {3, 10, 100}. The horizontal lines depict the value of the Gardner
volume corresponding to the whole pool, we see the fast saturation of the lowest volumes
at these lines. The information-theoretic volume-halving limit 2−n for label-agnostic ac-
tive learning procedures is plotted in a dotted line. We notice that the qualitative picture
is essentially unchanged when α is varied.

active learning scenarios where the student query is worse than random sampling. The number of
possible realizations of these scenarios decreases exponentially as one approaches the right-hand
extremum of where the complexity curve is positive, describing the largest possible volume at that
given budget n. An important remark is that as soon as β > 0, the statistics of the input patterns in
the labeled set is no longer i.i.d., but has increasing correlations for larger β.

On the other side, negative β induces atypically small Gardner volumes and labeled subsets
with high information content. Again, as one spans smaller and smaller volumes the associated
complexity drops, making the problem of finding these desirable subsets harder and harder. The
left positive-complexity extremum of the curves in the left plot of Fig. 1 corresponds to the smallest
reachable Gardner volumes. We observe in the figure that for larger values of budgets the complexity
curves saturate fast very close to the smallest possible Garner volume corresponding to the Gardner
volume for entire pool of samples v(α), suggesting that past a certain budget querying additional
examples does not add much information.

In the right plot of Fig. 1, we also show the prediction for the typical value of the magnetization,
i.e. the overlap between teacher and students, as the Gardner volume is varied. As mentioned in
section 3, small Gardner volumes induce high magnetizations and thus low generalization errors.

In Fig. 2 the typical (purple) and corresponding minimum (orange, yellow, cyan) Gardner vol-
umes are depicted as a function of the budget n for various pool sizes α = 3, 10, 100. Note that
the qualitative picture is unaltered when α is varied. We further observe that the minimum volume
becomes very close to the Gardner volume of the entire pool of samples v(α) already for very small
budgets n.
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5. Algorithmic implications

5.1. Generic considerations

The setting investigated in this paper provides a unique chance to benchmark the algorithmic per-
formance of any given pool-based active learning algorithm against the optimal achievable perfor-
mance, and to measure how closely are the large deviations results approached. The aim of the
present section is hence to illustrate how the results on Gardner volumes reported above may serve
to evaluate existing active learning procedures. Before moving to such algorithmic performance we
should make a distinction between two possible classes of active learning scenarios:

• Label-agnostic settings, where the student has no prior knowledge on the ground truth labels.
In other words, the active learning selection must be based solely on the knowledge of the
input patterns {x}, and make no use of the true labels {y}. In this case, for binary labels there
is a simple lower bound on the Gardner volume reachable with nN samples, v ≥ 2−n, which
is obtained by the argument that every new sample can at best divide the current volume
by a factor two, see Seung et al. (1992). This strategy is explored in the famous query by
committee active learning strategy, and the classical work Seung et al. (1992) argues that
the volume halving can be actually achieved when an unlimited set of samples is available.
Plotting this volume-halving bound in Fig. 2 we see that even though there exist subsets of
the pool that would lead to smaller Gardner volumes, they cannot be found in a label-agnostic
way.

• Label-informed settings, where external knowledge on the true labels is available and can
be used for extracting more information during the selection process. In many real-world
applications the structure in the input data could be exploited (e.g., through clustering, transfer
learning, etc) for making unsupervised guesses of the labels and for bootstrapping an active
learning strategy. A concrete example where external insight is available is drug discovery
Warmuth et al. (2001), where additional information can be inferred from the presence of
chemical functional groups (or absence thereof) on the molecules in the data pool. In the
present work, we study whether it is possible, with full access to the labels, to devise an
efficient method for finding a subset of samples that achieves close to the minimal Gardner
volume bound (note that this is still an algorithmically non-trivial problem).

In this section we will investigate both the label-agnostic and label-informed strategies. We will
benchmark several well known active learning algorithms on the model studied in the present paper
as well as design and test a new message passing based active learning algorithm. Before doing that
let us describe the general strategy.

Many of the commonly used active learning criteria rely on some form of label-uncertainty
measure. Uncertainty sampling Settles (2009), Lewis and Gale (1994) is an active learning scheme
based on the idea of iteratively selecting and labelling data-points where the prediction of the avail-
able trained model is the least confident. In general, the computational complexity associated to this
type of scheme is of order O(N3), requiring an extensive number of runs of a training algorithm
(which can scale as O(N2) at best). Since even training a single model per pattern addition can be-
come expensive in the large N setting, in all our numerical tests we opted for adding to the labeled
set batches of k = 20 samples instead of a single sample per iteration. We remark that, despite the
k-fold speed-up, the observed performance deterioration is negligible. The structure of this type of
algorithm is sketched in Algorithm 1.
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Algorithm 1 Uncertainty sampling
Select heuristic strategy from Table 1
Define batch size k
Initialize S ⊂ S = {Fµ}1≤µ≤αN (|S| > 0)
while |S| < nN do

Obtain required estimates given S
Obtain model predictions at data-points in Sc

Sort predictions according to sorting criterion
Add first k elements in the sorting permutation to S

end while

5.2. Approximate message passing for active learning (AL-AMP)

In general, estimating the Gardner volume on a given training set or the label-uncertainty of a
new sample is a computationally hard problem. However, in perceptrons (or more general GLMs)
with i.i.d. Gaussian input data F , at large system size N one can rely on the estimate provided
by a well known algorithm for approximate inference, Approximate Message Passing (AMP) (his-
torically also referred to as the Thouless-Anderson-Palmer (TAP) equations, see Thouless et al.
(1977)). AMP is a standard iterative procedure used for Bayesian inference on a factor graph asso-
ciated to a probability measure. We refer the interested reader to the ample literature dedicated to
message-passing algorithms (Mézard and Montanari (2002), Bayati and Montanari (2011), Krza-
kala et al. (2012) for example) for more detailed discussion thereon. The AMP algorithm Donoho
et al. (2009); Rangan (2011), Zdeborová and Krzakala (2016) yields (at convergence) an estimator
of the posterior means, x̂, and variances, ∆̂, thus accounting for uncertainty in the inference pro-
cess including the label of a new sample. The Gardner volume v (corresponding to the so-called
Bethe free entropy) can then be expressed as a simple function of the AMP fixed-point messages
(see Krzakala et al. (2014) for an example). We provide a pseudo-code of AMP in the case of the
perceptron in Algorithm 2. An important remark is that when the training set is not sampled ran-
domly from the pool, as in the active learning context, correlations can arise and AMP is no longer
rigorously guaranteed to converge nor to provide a consistent estimate of the Gardner volume. In
the present work, we can only argue that its employment seems to be justified a posteriori by ob-
serving the agreement between theoretical predictions and numerical experiments for instance for
the generalization error.

We use the AMP algorithm to introduce a new uncertainty sampling procedure relying on the
information contained in the AMP messages, denoted as AL-AMP in the following. At each it-
eration, the single-instance AMP equations are run on the current training subset to yield posterior
mean estimate x̂ and variance ∆̂. These quantities can then be used to evaluate, for all the unlabeled
samples, the output magnetization (i.e. the Bayesian prediction) defined as

mµ
out = erf(ωµ/

√
2Γµ) ∀µ|σµ = 0, (9)

where we introduced the output overlaps ω = F ′ · x̂ and variances Γ = (F ′ � F ′) · ∆̂, where
� is the component-wise product. The output magnetizations correspond to the weighted output
average over all the estimators contained in the current version space, and their magnitude represents
the overall confidence in the classification of the still unlabeled samples. This means that AMP
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Algorithm 2 single-instance AMP for the perceptron
Initialize x̂← 0
Initialize ∆̂← 1
Initialize gout ← 0
while Convergence criterion not satisfied do

Γtµ ←
∑
i

(Fµi )2∆̂t−1
i

ωtµ ←
∑
i
Fµi x̂

t−1
i − Γtµg

t−1
out

gtout,µ ←
yµ√
2πΓtµ

e
−

(ωtµ)2

2Γtµ

H

(
− y

µωtµ√
Γtµ

)
(Σt

i)
−1 ← −

∑
µ

(Fµi )2(− ωt

V t g
t
out − (gtout)

2)

Rti ← x̂t−1
i + Σt

i

∑
µ
Fµi g

t
out

x̂ti ←
Rti

1+Σti

∆̂t
i ←

Σti
1+Σti

end while

Uncertainty sampling strategies

Heuristic Required estimates Sorting criterion

Agnostic AL-AMP x̂AMP, ∆̂AMP arg minµ

∣∣∣∣erf

(
F ′µx̂AMP√

2(F ′µ)2∆̂AMP

)∣∣∣∣
Informed AL-AMP x̂AMP, ∆̂AMP arg maxµ

∣∣∣∣yµ − erf

(
F ′µx̂AMP√

2(F ′µ)2∆̂AMP

)∣∣∣∣
Query by committee {xkSGD}Kk=1 arg minµ |

∑K
k=1 sign

(
F ′µ · xkSGD

)
|

Logistic regression xlog arg minµ
∣∣F ′µ · xlog

∣∣
Perceptron learning xperc arg minµ

∣∣F ′µ · xperc
∣∣

Table 1: Table summarizing the specifics of the uncertainty sampling strategies considered in this
paper.

provides an extremely efficient way of obtaining the information on uncertainty. The specifics of
the algorithm can be found in Tab. 1.

We also explore numerically the label-informed active learning regime introduced in the previ-
ous section. We consider its limiting case by introducing the informed AL-AMP strategy, which
can fully access the true labels Y in order to query the samples F µ whose output magnetisation
mµ

out (9) is maximally distant from the correct classification yµ. This selection process can itera-
tively reduce the Gardner volume of factors larger than 2. Again, the relevant specifics of informed
AL-AMP algorithm are detailed in Tab. 1.
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5.3. Other tested measures of uncertainty

One of the widely used uncertainty sampling procedure is the so-called Query by Committee (QBC)
strategy Seung et al. (1992), Freund et al. (1992). In QBC, at each time step, a committee of K stu-
dents is to be sampled from the version space (e.g., via the Gibbs algorithm). The committee is then
employed to choose the labels to be queried, by identifying the samples where maximum disagree-
ment in the committee members outputs is observed. The QBC algorithm was introduced as a proxy
for doing bisection, i.e. cutting version space into two equal-volume halves. As already mentioned,
this constitutes the optimal information gain in an label-agnostic setting Dasgupta (2005). Note that,
however, the QBC procedure can achieve volume-halving only in the infinite-size committee limit,
K ↑ ∞, with uniform version space sampling and with availability of infinitely many samples.
Obviously, running a large number K of ergodic Gibbs sampling procedures quickly becomes com-
putationally unfeasible. Moreover in the pool-based active learning the pool of samples is limited.
In order to allow comparison with other strategies at finite sizes, we approximated the uniform sam-
pling with a set of greedy optimization procedures (e.g., stochastic gradient descent) from random
initialization conditions, checking numerically that this yields a committee of students reasonably
spread out in version space. It is possible to ensure a greater coverage of the version space by per-
forming a short Monte-Carlo random walk for each committee member. The effect has been found
to be small for computationally reasonable lengths of walk.

We also implemented an alternative uncertainty sampling strategy, relying on a single training
procedure (e.g., training with the perceptron algorithm or logistic regression) per iteration: in this
case, the uncertainty information is extracted from the magnitude of the pre-activations measured
at the unlabeled samples after each training cycle. This strategy implements the intuitive geometric
idea of looking for the samples that are most orthogonal to the available updated estimator, which
are more likely to halve the version space independently of the value of the true label.

All the tested procedures, with the exception of QBC, display a complexity of approximately
O(N3), possibly to be corrected by a factor accounting for the number of iterations required at
each training step. The adapted QBC algorithm similarly has complexity O(KN3), as it involves
a committee of K models. Ideally, the original QBC algorithm (Seung et al. (1992)) would require
at each step to sample uniformly the current version space, thus implying an exponentially costly
Monte Carlo step.

5.4. Algorithmic results

In Fig. 3, we compare the minimum Gardner volume obtained from the large deviation calculation
with the algorithmic performance obtained on synthetic data at finite size, N = 2 · 103, by the
AL-AMP algorithms detailed in Algorithm 1 and Tab. 1. The data-pool size is fixed to α = 3. The
large deviation analysis yields values for the minimum and maximum achievable Gardner volumes
at any budget n. We compare the algorithmic results also with the prediction for the typical case and
with the volume-halving curve 2−n. Since in the considered pool-based setting the volume-halving
performance cannot be achieved for volumes smaller than the Gardner volume corresponding to
the entire pool v(α), the relevant volume-halving bound should be more precisely max(2−n, v(α)).
Random sampling displays good agreement with the expected typical volumes. Most notably, the
label-agnostic AL-AMP algorithm tightly follows the volume-halving bound max(2−n, v(α)), thus
reaching close to optimal possible performance. Since for large α the behaviour of v(α) = const./α
Engels and van den Broeck (2001) we conclude that the AL-AMP algorithm will reach close to
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Figure 3: (Left) Performance of the label-agnostic (yellow circles) and label-informed (blue circles)
AL-AMP, plotted together with the minimum and maximum values of the Gardner vol-
ume extracted from the large deviation computation (purple and green) and the volume-
halving curve (dotted black). For comparison we also plot the typical Gardner volume
(cyan) and the one obtained by random sampling (orange squares). Numerical experi-
ments were run for system size N = 2 · 103 and pool size α = 3. For each algorithmic
performance curve the average over 10 samples is presented. Fluctuations were found
to be negligible around the average and are not shown. (Right) The same plot with the
Gardner volume replaced by the Bayesian test accuracy, derived in Appendix E. For the
AL-AMP algorithm the accuracy is evaluated using a test set of size Ptest = 5 · 104. The
qualitative picture is very similar to the one for the Gardner volume curves (left), once
more confirming that Gardner volumes and generalization errors both constitute good
measures for informativeness.

minimum possible Gardner volumes for a budget n ∼ O[log(α)]. Theoretical justification of this
very good performance is however yet to be established. We thus obtain an exponential reduction
in the number of samples even in the pool-based active learning similarly to the original Query by
Committee work Seung et al. (1992).

The label-informed AL-AMP also approaches the theoretically minimal volume but not as
closely. We remark that an important limit of the AL-AMP algorithm comes from the fact that
AMP is not guaranteed to provide good estimators (or converge at all) with correlated data. For
example, in the numerical experiments for obtaining the informed AL-AMP curve, we had to resort
to mild damping schemes in the message-passing to allow fixed-points being reached. This effect
was stronger for the label-informed algorithm than for the label-agnostic one.

In Fig. 4, we provide a numerical comparison of the performance of the agnostic AL-AMP and
the other above mentioned label-agnostic active learning algorithms. The finite size experiments
were run at N = 2.103, while here we set α = 10. Note that, while the mentioned different
active learning strategies where employed for selecting the labeled subset, in all cases supervised
learning and the related performance estimates were obtained by running AMP. In the plot, we
can see that, while AL-AMP is able to extract very close to the maximum amount of information
from each query (one bit per pattern, until the volume v(α) is saturated), other heuristics with the
same computational complexity are sub-optimal. In particular, in the simplified query by committee
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Figure 4: (Left) Performance of the label-agnostic algorithms presented in Tab. 1 is plotted against
the budget n and compared to the volume-halving lower bound. Experiments were per-
formed at system size N = 2 · 103, and pool size α = 10. For each algorithm the average
over 10 samples is presented. Note that error bars are smaller than marker size. (Left)
(Bayesian) test accuracy of the same heuristics for various budgets n. The test set size
was chosen to be Ptest = 5 · 104. In blue the Bayesian test accuracy for a typical sub-
set, see appendix E. Again, the qualitative picture is unchanged going from the Gardner
volume to the test accuracy.

procedure we observe that increasing the size K of the committee does not yield very noticeable
change in its performance, most probably because the committee cannot cover a sufficient portion
of the version space if the computational cost is to be kept reasonable. On the other hand, using
the information of the magnitude pre-activations allows better performance while being also more
time-efficient, since only a single perceptron, rather than a committee thereof, has to be trained at
each step. The logistic loss allows a rather good performance, close to that of AL-AMP, while the
uncertainty sampling with the perceptron algorithm yields a mitigated performance.

We leave a more systematic bench-marking of the many existing strategies for future work,
stressing the fact that, while there certainly exist more involved procedures that can yield better
performance than the presented heuristics, the absolute performance bounds still apply, agnostic
of the implemented active learning strategy. Future investigations should also be concerned with
extending the AL-AMP procedure to real-word datasets, as opposed to the synthetic data used in
the present work, and observe whether the good performance generalizes. It should be stressed that
such endeavour would likely require to use a variant of AMP, namely vectorial AMP (Rangan et al.
(2019)), more robust to mismatches between data and model assumptions.

6. Conclusions

Using the replica method for large deviation calculation of the Gardner volume, we computed for
the teacher-student perceptron model the minimum Gardner volume (equivalently, maximum mu-
tual information) achievable by selecting a subset with fixed cardinality from a pre-existing pool of
i.i.d. normal samples. We evaluated the large deviation function based on the replica symmetric
assumption; checking for replica symmetry breaking and evaluating the eventual corrections to the
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presented results is left for future work, as well as rigorous establishment of the presented results.
Our result for the information-theoretic limit of pool-based active learning in this setting comple-
ments the already known volume-halving bound for label-agnostic strategies. We hope our result
may serve as a guideline to benchmark future heuristic algorithms on the present model, while our
modus operandi regarding the derivation of the large deviations may help for future endeavour in
theoretical analysis of active learning in more realistic settings. We presented the performance of
some known heuristics, plus we suggested the AL-AMP algorithms to perform the uncertainty based
active learning. We show numerically that on the present model the label-agnostic AL-AMP algo-
rithm performs very close to the optimal bound, thus being able to achieve accuracy corresponding
to the entire pool of samples with exponentially fewer samples.
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Marc Mézard and A. Montanari. Information,Physics and computation. Oxford University Press,
2002.
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Appendix A. Notations and Large-Deviation (LD) measure for GLMs

In this appendix we set the replica calculation in the more general setting of a generalized linear
model (GLM) with arbitrary teacher/student prior/posterior. We allow the inference to be mis-
matched, i.e. we allow the teacher and student measures to be different. The specialization to the
particular case of the teacher-student perceptron with no mismatch (Bayes-optimal) will be carried
out in appendix C. Our computation borrows from Krzakala et al. (2012) and Barbier et al. (2019)
which study the simple measure. Because we study large deviations, our formalism has some sem-
blance with one-step Replica Breaking (1RSB) equations, a discussion of which can be found for
example in Antenucci et al. (2019), Mézard et al. (1984), Mézard et al. (1986).

A.1. Definition of the problem

We consider a student GLM (Krzakala et al. (2012)) withN -dimensional weights learning from αN
samples F µ ∈ RN stacked in a matrix F ∈ MαN,N (R) and the corresponding labels yµ stacked
into Y ∈ RαN . We assume the student-teacher (or planted) setting (Zdeborová and Krzakala
(2016)), where the labels are generated by the ground truth (teacher weights) x0 with the channel
measure Pout(y

µ|F µ ·x0). The teacher weight itself is drawn with prior PX(·). Given F and Y , the
student perceptron is trained so that its own weight vector x tries to match the ground truth x0. The
inference is carried out with the student prior PX(·) and posterior Pout(Y |F ·x). Note that the cases
where PX(·) 6= PX(·) or Pout(·) 6= Pout(·) mean that the student ignores the precise Markov chain
wherefrom the labels are generated, as discussed in section 2, see also Zdeborová and Krzakala
(2016). The likelihood that a vector x is the ground truth vector is then PX(x)Pout(Y |F · x).
A reasonable measure of the average lack of accuracy of the student’s guess is then given by the
Gardner volume, viz. the partition function associated with the likelihood

v =

(∫
dxPX(x)Pout(Y |F · x)

) 1
N

. (10)

The smaller v, the easier the student inference, see section 2 in the main text. The validity of the
Gardner volume as a measure of informativeness is justified for the Bayes-optimal perceptron in
section 3 of the main text.

We consider here pool-based active learning, where only a subset S of the pool S = {F µ}1≤µ≤αN
is used for training. The choice of subset can be conveniently parametrized by the Boolean σµ ∈
{0, 1}, where σµ = 1 means sample Fµ is used, while σµ = 0 means Fµ is not selected. For a

given budget 0 ≤ n = 1
N |S| = 1

N

αN∑
µ=1

σµ ≤ α, we intend to find the selection S that minimizes

the Gardner volume v(σµ), viz. that allows the best student guess. To do this we shall compute the
complexity Σ(n, v), with eNΣ(n,v) the number of ways to select nN samples so that the Gardner
volume associated with the training of the student is v, as in section 4 of the main text.

A.2. Assumption

To simplify, the samples are taken to be identically and independently distributed according to a
normal distribution ∀(i, µ), Fµi

d
= N (0, 1√

N
). Moreover all measures over vectors are assumed to
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be separable, that is factorizable as a product of identical measures over the components. Notation-

wise PX(x) for example is therefore understood to mean
N∏
i=1

PX(xi).

A.3. LD measure

The goal is to compute the averaged log partition function (free entropy in statistical physics terms)

Φ(β, φ) = EF ,Y ,x0
1

N
lnΞ = EF ,Y ,x0

1

N
ln
∑
σµ

∫ dxPX(x)
αN∏
µ=1

Pout(y
µ|F µ · x)σµ

β eφ∑µ σµ .
(11)

β can be seen as an inverse temperature and φ as a chemical potential, see section 4 in the main
text. The reason why we compute Φ(β, φ) is that this quantity is the Legendre transform of the
complexity Σ(n, v)

Φ(β, φ) = extr
v,n
{Σ(n, v) + βlnv + φn} . (12)

Inverting the Legendre transform is then straightforward and yields Σ(n, v)

Σ(n, v) = Φ(β, φ)− βlnv − nφ|∂βΦ=lnv,∂φΦ=n. (13)

The spectrum of values of v such that Σ(n, v) > 0 for any given fixed n corresponds to all achiev-
able Gardner volumes for a budget n. In particular, inf

v
{v|Σ(n, v) > 0} is the minimal Gardner

volume when the nN samples are chosen in an optimal way. Contrariwise, sup
v
{v|Σ(n, v) > 0} is

the maximal Gardner volume when the nN samples are chosen in the least informative way for the
student, so that the student inference problem is hardest. Finally note that the selection variables
{σµ} play in the grand-canonical partition function (11) the role of an annealed disorder in disor-
dered systems terminology Mézard et al. (1986), and shall be sometimes referred to as such in the
following.

Appendix B. Replica computation

B.1. Replica trick

The standard way of taking care of the logarithm in equation (11) is the replica trick (Parisi (1979),
Parisi (1983), Mézard et al. (1986)),

Φ(β, φ) = lim
s→0

1

s
EF ,Y ,x0Ξs. (14)
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To compute EF ,Y ,x0Ξs, one needs to further replicate β times to care for the power β involved in
the summand in equation (11)

EF ,x0Ξs = EF
∫
dx0PX(x0)

∫
dy

αN∏
µ=1

Pout(y
µ|F µ · x0)

∑
Sµa

∫ s∏
a=1

β∏
α=1

(dxaαPX(xaα))
∏
aα

∏
µ

Pout(y
µ|F µ · xaα)σ

a
µeφσ

a
µ

= EF
∑
Sµa

∫ ∏
aα

(dxaαPX(xaα))e−φ
∏
aα

∏
µ

Pout(y
µ|F µ · xaα)σ

a
µeφσ

a
µ . (15)

In the present problem we thus introduced two replication levels. Each replica is hence characterized
by a set of two indices: the first a index runs from 1 to s and specifies the disorder replica, the second
α index, running from 1 to β is related to the replication in β. In total there are therefore s × β
replicas. The teacher is set as replica 0. Implicitly henceforth aαwhen summed over will be running
over [1, s]× [1, β] ∪ 0. But

EF
∏
aα

∏
µ

Pout(y
µ|F µ · xaα)σ

a
µ =

∫ ∏
µ

∏
aα

dhµaα(det2πQ)−
αN
2 e
− 1

2

∑
µ

∑
aα,cγhµaα(Q−1)aα cγhµcγ

∫ ∏
aα6=cγ

dqaα,cγ

∫ ∏
aα6=cγ

dq̂aα,cγe

∑
aα6=cγ

q̂aα,cγ(xaα·xcγ−Nqaα,cγ

∏
aα

∏
µ

Pout(y
µ|hµaα)σ

a
µ , (16)

where we defined hµaα ≡ F µ · xaα Gaussian because of the central limit theorem and enforced the
definition of its covariance matrix Q with integral representations of Dirac deltas. The conjugate
matrix is Q̂. Matrix elements are noted with small q. Then

EF ,x0Ξs =

∫
dQ̂dQe−NTrQ̂Q

(∫ ∏
aα

dxaαPX(xaα)e

∑
aα6=cγ

xaαq̂aα,cγxcγ
)N

(∑
Sa

e
φ(
∑
a
Sa −1)

∫
dy
∏
aα

dhaα(det2πQ)−
1
2 e
− 1

2

∑
aα,cγ

haα(Q−1)aα cγhcγ∏
aα

Pout(y
µ|haα)S

a

)αN
,

(17)

where we factorized both in i indices (first parenthesis) and in µ indices (second parenthesis). The
free entropy defined in (11) then reads

Φ(β, φ) = lim
s→0

1

s
extr
Q̂,Q

{
−TrQ̂Q + lnIX(Q̂) + αlnIY (Q)

}
, (18)
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with

IX =

∫ ∏
aα

dxaαPX(xaα)e

∑
aα6=cγ

xaαq̂aα,cγxcγ

, (19)

IY =
∑
Sa

e
φ(
∑
a
Sa −1)

∫
dy
∏
aα

dhaα(det2πQ)−
1
2 e
− 1

2

∑
aα,cγ

haα(Q−1)aα cγhcγ∏
aα

Pout(y
µ|haα)S

a
.

(20)

B.2. Replica Symmetric (RS) ansatz

The extremization in equation (18) is hard to carry out. As is now standard in the disordered systems
literature we can reduce the number of parameters to be extremized over by enforcing the so-called
Replica Symmetric (RS) ansatz (Mézard et al. (1986)) on both replication levels

q0,0 = r0, q̂0,0 = r̂0 (21)

qaα,0 = m, q̂aα,0 = m̂ (22)

qaα,aα = r, q̂aα,aα = −1

2
r̂ (23)

qaα,aγ = Q, q̂aα,aγ = Q̂ (24)

qaα,cγ = q, q̂aα,cγ = q̂, (25)

where q < Q. Physically, the ansatz (21)-(25) means that two replicas seeing the same realisation
of disorder (i.e., possessing the same first index) have an overlapQ greater than the overlap between
students seeing different realisations (an thus possessing different a-index). The−1

2 in the definition
of r̂ (23) is just introduced for latter convenience.

Note finally that while the ansatz (21) to (25) is replica-symmetric for both replications, it gives
a set of equations that are formally those of a 1RSB problem (Mézard et al. (1984)). This is also
a reason why taking 1RSB ansatz (Mézard et al. (1986)) in the present large deviation calculation
would be rather involved as it would lead to equations in the usual 2RSB form that are numerically
involved to be solved.

We plug the RS ansatz (21)-(25) into the three contributions that make up equation (18). The
trace term is

− TrQ̂Q = −r̂0r0 − βsmm̂+
1

2
βsrr̂ − sβ(β − 1)

2
QQ̂− β2 s(s− 1)

2
qq̂ (26)

We can decompose the exponent in (19) according to the ansatz (21)-(25)

∑
aα6=cγ

xaαq̂aα,cγx
cγ =r̂0(x0)2 + m̂x0

∑
aα6=0

xaα − r̂ + Q̂

2

∑
aα6=0

(xaα)2 +
Q̂− q̂

2

∑
a6=0

∑
α,γ

xaαxaγ

+
q̂

2

∑
aα6=0,cγ 6=0

xaαxcγ . (27)
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In the last but one term index 0 does not intervene. Introducing Hubbard-Stratonovitch fields {λa}
for the last but one term and Hubbard-Stratonovith field ξ for the last, IX reads

IX =

∫
Dξ

∫
dx0PX(x0)er̂

0(x0)2

[∫
Dλ

(∫
dxPX(x)em̂x

0x− r̂+Q̂
2
x2+
√
Q̂−q̂λx+

√
q̂ξx

)β]s
.

(28)
To carry out the computation for IY (equation (20)) we need to explicitly compute the inverse

of the Parisi matrix Q involved in equation (20). This is done in the following subsection.

Some linear algebra for hierarchical matrices Name Q̃ ≡ Q−1 the inverse of the overlap
matrix Q. Since Q̃ is clearly of the same form as Q, we can parametrize its coefficient in an
identical fashion as those of Q r̃0, m̃, r̃, q̃, Q̃. Q̃Q = 1βs+1 means

r0r̃0 + βsmm̃ = 1 (29)

r0m̃+mr̃ + (β − 1)Q̃m+ β(s− 1)q̃m = 0 (30)

r̃0m+ m̃(r + (β − 1)Q+ β(s− 1)q) = 0 (31)

mm̃+ rr̃ + (β − 1)QQ̃+ β(s− 1)qq̃ = 1 (32)

mm̃+ rQ̃+ r̃Q+ (β − 2)QQ̃+ β(s− 1)qq̃ = 0 (33)

mm̃+ rq̃ + (β − 1)Qq̃ + qr̃ + (β − 1)qQ̃+ β(s− 2)qq̃ = 0, (34)

yielding

r̃0 =
r + (β − 1)Q+ β(s− 1)q

r0(r + (β − 1)Q+ β(s− 1)q)− βsm2
(35)

m̃ =
−m

r0(r + (β − 1)Q+ β(s− 1)q)− βsm2
(36)

r̃ =
βm2(q − 2Q+ r) + β((1− s)q2 +Q(3Q− 2r) + (s− 2)q(2Q− r))r0

(Q− r)(r + (β − 1)Q− βq)(r0(r + (β − 1)Q+ β(s− 1)q)− βsm2)

+
β2(q −Q)(−m2s+ ((−1 + s)q +Q)r0) + (Q− r)(m2 + (−2Q+ r)r0)

(Q− r)(r + (β − 1)Q− βq)(r0(r + (β − 1)Q+ β(s− 1)q)− βsm2)
(37)

Q̃ =
(Q− r)(m2 −Qr0) + β(q −Q)(m2s− ((s− 1)q +Q)r0

(Q− r)(r + (β − 1)Q− βq)(r0(r + (β − 1)Q+ β(s− 1)q)− βsm2)
(38)

q̃ =
−m2 + qr0

(r + (β − 1)Q− βq)(r0(r + (β − 1)Q+ β(s− 1)q)− βsm2)
. (39)

We’ll also need the determinant of Q. To do this, the simplest way is to guess the eigenvectors. For
(x, 1, 1, ...1)T we get two eigenvalues λ± whose product is

λ+λ− = r0(r + (β − 1)Q+ (s− 1)βq)− βsm2. (40)

Then come s(β − 1) eigenvectors ei − ei+1, i 6≡ 0[β] (we are indexing starting from 0), with

associated eigenvalues (r−Q). Then for 0 ≤ s ≤ s−2,
(s+1)β∑
k=sβ+1

ek−
(s+2)β∑

k=(s+1)β+1

ek is an eigenvector
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with eigenvalue r + (β − 1)Q− βq. Then

ln detQ = ln(r0(r+(β−1)Q+(s−1)βq)−βm2)+(s−1)ln(r+(β−1)Q−βq)+(β−1)sln(r−Q).
(41)

The same equality holds with tilde quantities in the right-hand side provided the signs are inverted,
since ln detQ = −ln detQ̃. Identifying term by term results straightforwardly in a set of relations
between tilde and non-tilde quantities (henceforth referred as determinant relations),

r0(r + (β − 1)Q+ (s− 1)βq)− βm2 = [r̃0(r̃ + (β − 1)Q̃+ (s− 1)βq̃)− βm̃2]−1 (42)

r + (β − 1)Q− βq = [r̃ + (β − 1)Q̃− βq̃]−1 (43)

r −Q = [r̃ − Q̃]−1. (44)

Now decomposing the exponent in IY (20)

−1

2

∑
aα,cγ

haαq̃aα,cγhcγ =− 1

2
r̃0(h0)2 − m̃h0

∑
aα6=0

haα −
r̃ − Q̃

2

∑
aα6=0

(haα)2

+ (q̃ − Q̃)
∑
a

∑
α,γ

haαhaγ − q̃
∑

aα6=0,cγ 6=0

haαhcγ . (45)

Introducing HS fields {ζa} and η for the last two sums of (45) and factorizing in the index a

IY =
1√

det2πQ

∫
dy

∫
Dη

∫
dh0Pout(y|h0)e−

1
2
r̃0(h0)2

 ∑
S=0,1

∫
DζeφS

(∫
dhPout(y|h)Se−m̃h

0h− r̃−Q̃
2
h2+
√
q̃−q̃ζh+

√
−q̃ηh

)βs . (46)

Now that all terms are computed the next step is then to divide by s and take the s → 0 limit
as prescribed by the replica trick (14). First, we need to enforce that all non-vanishing order 0
contribution cancel out, since the free entropy should not be diverging. Then, one needs to actually
compute first order terms that will contribute in Φ (18).

Order 0 At order 0, IY = 1 since

lim
s→0

ln det(2πQ) =
1

2
ln(2πr̃0)

= −ln

∫
dy

∫
Dη

∫
dh0Pout(y|h0)e−

1
2
r̃0(h0)2

. (47)

The cancellation of order 0 terms imposes

0 = r̂0r0 + ln

∫
dx0PX(x0)er̂

0(x0)2
, (48)

where the first term comes from the trace term (26). It follows that r̂0 = 0. Moreover, because of
the saddle point equality

qaα,cγ =

∫ ∏
dδ

(dxdδPX(xdδ))xaαxcγe

∑
dδ 6=eε

xdδ q̂dδ,eεx
eε

∫ ∏
dδ

(dxdδPX(xdδ))e

∑
dδ 6=eε

xdδ q̂dδ,eεxeε
, (49)
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derived straightforwardly from (18) we also have

r0 =

∫
dx0PX(x0)(x0)2. (50)

Order 1

IX Carrying out a change of variables ξ → ξ+q̂−
1
2 m̂x0 in equation (28), IX assumes the compact

form
lim
s→0

1

s
IX =

∫
DξI0

X(ξ)lnI1
X(ξ), (51)

where

I0
X(ξ) =

∫
dx0PX(x0)e

− m̂
2

2q̂
(x0)2+ m̂√

q̂
ξx0

(52)

I1
X(ξ) =

∫
Dλ

[∫
dxPX(x)e−

r̂+Q̂
2
x2+(
√
Q̂−q̂λ+

√
q̂ξ)x

]β
. (53)

IY Changing η → η − m̃√
−q̃h

0 in (46) yields

IY =
1√

det2πQ

∫
dy

∫
Dηg0(y, η)(g1(y, η))s, (54)

with

g0(y, η) =

∫
dh0Pout(y|h0)e

− 1
2

(r̃0− m̃
2

q̃
)(h0)2− m̃√

−q̃h
0η (55)

g1(y, η) =
∑
S=0,1

∫
DζeφS

(∫
dhPout(y|h)Se−

r̃−Q̃
2
h2+
√
q̃−Q̃ζh+

√
−q̃ηh

)β
. (56)

Expanding lnIY to O(s) (subscripts in parentheses standing for order in s) gives

1

s
lnIY = −1

2
ln(det2πQ)(1) +

1√
2πr0

∫
Dη

∫
dy
[
g0

(1)(y, η) + g0
(0)(y, η)lng1

(0)(y, η)
]
. (57)

We used the fact that at order 0 terms canceled, and the identity
∫
Dη
∫
dyg0(y, η) =

√
2πr0 +

O(s). But

1√
2πr0

∫
Dη

∫
dyg0

(1)(y, η) = lim
s→0

1√
2πr0

∂s

(∫
Dη

∫
dyg0(y, η)

)
= lim

s→0

1√
2πr0

∂s

√
2π

r̃0

=
−βm2

2r0(r + (β − 1)Q− βq)
, (58)

thus
1

s
lnIY =− 1

2

βq

r + (β − 1)Q− βq
− 1

2
ln(r + (β − 1)Q− βq)− 1

2
(β − 1)ln(r −Q)

+
1√

2πr0

∫
dy

∫
Dηg0

(0)(y, η)lng1
(0)(y, η). (59)
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It’s actually possible to proceed to Gaussian changes of variables in the last term so as to exactly
cancel the first three contributions in (59). To do this

h→
√
r −Qh+ (r −Q)(

√
q̃ − Q̃ζ +

√
−q̃η) (60)

ζ → 1√
1− β(r −Q)(q̃ − Q̃

ζ −
β
√
−q̃(q̃ − Q̃)(r −Q)

1− β(r −Q)(q̃ − Q̃
η, (61)

(we used the determinant relations (42)-(44)) allowing to rewrite the last term in (59) as

1√
2πr0

∫
dy

∫
Dηg0

(0)(y, η)lng1
(0)(y, η) =

β

2
ln(r −Q)− 1

2
ln(1− β(r −Q)(q̃ − Q̃))

+

∫
dy√
2πr0

∫
Dηg0

(0)(y, η)ln

(
1 + eφ

∫
Dζ

(∫
dhPout(y|∗)

)β)

+
1

2

(
−β(r −Q)q̃ +

β2(−q̃(q̃ − Q̃)(r −Q)2

1− β(r −Q)(q̃ − Q̃

)∫
Dηη2

∫
dy√
2πr0

g0
(0)(y, η),

(62)

with

∗ =
√
r −Qh+ (r −Q)

(√
q̃ − Q̃

1− β(r −Q)(q̃ − Q̃)
ζ +

√
−q̃

1− β(r −Q)(q̃ − Q̃)
η

)
. (63)

It is straightforward to see ∫
Dηη2

∫
dy√
2πr0

g0
(0)(y, η) =

r̃0q̃ − m̃2

r̃0q̃
, (64)

so the last term in (62) is

1

2

(
−β(r −Q)q̃ +

β2(−q̃(q̃ − Q̃)(r −Q)2

1− β(r −Q)(q̃ − Q̃

)∫
Dηη2

∫
dy√
2πr0

g0
(0)(y, η)

= −β
2

r̃0q̃ − m̃2

r̃0(r̃ + (β − 1)Q̃− βq̃)

=
1

2

βq

r + (β − 1)Q− βq
. (65)

Similarly the first terms in (62) are

β

2
ln(r −Q)− 1

2
ln(1− β(r −Q)(q̃ − Q̃)) = −β − 1

2
ln(r̃ − Q̃)− 1

2
ln(r̃ + (β − 1)Q̃− βq̃)

=
1

2
ln(r + (β − 1)Q− βq) +

1

2
(β − 1)ln(r −Q).

(66)
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We again used the determinant identity (42)-(44) in the last line. Then tilde quantities in the s = 0
limit can be accordingly be replaced by their expressions (35)-(39)

lim
s→0

r̃0 − m̃2

q̃
=

q

qr0 −m2
(67)

lim
s→0

m̃√
−q̃

=

√
m2

r0(qr0 −m2)
(68)

lim
s→0

√
q̃ − Q̃

1− β(r −Q)(q̃ − Q̃)
=

√
Q− q
r −Q

(69)

lim
s→0

√
−q̃

1− β(r −Q)(q̃ − Q̃)
=

√
qr0 −m2

r0(r −Q)2
(70)

Ultimately some changes of variables can be used to bring g0
(0) to a more compact form

h→

√
qr0 −m2

q
h0 +

√
m2(qr0 −m2)

qr0
, η →

√
qr0

qr0 −m2
η. (71)

Finally

lim
s→0

1

s
IY =

∫
Dη

∫
dyI0

Y (y, η)lnI1
Y (y, η), (72)

with

I0
Y (y, η) =

∫
Dh0Pout(y|

√
qr0 −m2

q
h0 +

√
m2

q
η), (73)

I1
Y (y, η) = 1 + eφ

∫
Dζ

(∫
dhPout(y|

√
r −Qh+

√
Q− qζ +

√
qη))

)β
. (74)

Replica symmetric free entropy for GLM Putting everything together the replica free entropy
(18) reads

ΦRS = extr
m̂,r̂,q̂,Q̂,r,q,Q

{
− βmm̂+

β

2
rr̂ − β(β − 1)

2
QQ̂+

β2

2
qq̂ +

∫
DξI0

X(ξ)lnI1
X(ξ)

+ α

∫
Dη

∫
dyI0

Y (y, η)lnI1
Y (y, η)

}
(75)
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r0 =

∫
dx0PX(x0)(x0)2 (76)

I0
X(ξ) =

∫
dx0PX(x0)e

− m̂
2

2q̂
(x0)2+ m̂√

q̂
ξx0

(77)

I1
X(ξ) =

∫
Dλ

[∫
dxPX(x)e−

r̂+Q̂
2
x2+(
√
Q̂−q̂λ+

√
q̂ξ)x

]β
(78)

I0
Y (y, η) =

∫
Dh0Pout(y|

√
qr0 −m2

q
h0 +

√
m2

q
η) (79)

I1
Y (y, η) = 1 + eφ

∫
Dζ

(∫
dhPout(y|

√
r −Qh+

√
Q− qζ +

√
qη))

)β
(80)

Appendix C. Specialization to perceptron

The Bayes-optimal teacher-student setting for the perceptron is defined by the following measures
(see section 2 in the main text)

PX(x) = PX(x) =
1√
2π
e
−1
2
x2

(81)

Pout(y|h) = Pout(y|h) = δ(y − sgn(h)) (82)

C.1. Replica symmetric free entropy for the perceptron

We shall simply plug into the generic GLM (75) expressions the particular priors and posteriors for
the perceptron (81)-(82). First,

I0
X(ξ) =

∫
1√
2π
dx0e

− 1
2

(1+ m̂2

q̂
)(x0)2+ m̂√

q̂
ξx0

(83)

=
1√

2π(1 + m̂2

q̂ )
e

1
2

m̂2

q̂+m̂2 ξ
2

, (84)

while two straightforward Gaussian integrals yield

I1
X(ξ) =

∫
Dλ

[∫
1√
2π
dxPX(x)e−

1
2

(r̂+Q̂)x2+(
√
Q̂−q̂λ+

√
q̂ξ)x

]β
(85)

=

∫
dλ

1

(1 + r̂ + Q̂)
β
2

e
− 1

2
(1−β Q̂−q̂

1+r̂+Q̂
)λ2+β

√
q̂(Q̂−q̂)

1+r̂+Q̂
ξλ+β

2
q̂

1+r̂+Q̂
ξ2

(86)

= (1 + r̂ + Q̂)
1−β

2 (1 + r̂ − (β − 1)Q̂+ βq̂)−
1
2 e

βq̂

2(1+r̂−(β−1)Q̂+βq̂)
ξ2

. (87)

Thus∫
DξI0

X(ξ)lnI1
X(ξ) = −β − 1

2
ln(1+r̂+Q̂)−1

2
ln(1+r̂−(β−1)Q̂+βq̂)+

β

2

q̂ + m̂2

1 + r̂ − (β − 1)Q̂+ βq̂
(88)

Now defining the special function H(x) ≡ 1√
2π

∞∫
x
Dt
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I0
Y (y, η) =

∫
Dh0δ(y − sgn(

√
q −m2

q
h0 +

√
m2

q
η)) = H

(
−y

√
m2

q −m2
η

)
. (89)

In writing so we took into account the fact that that y = ±1, which implies also to replace the
integral over y in the energetic part by a sum over {±1}. Furthermore

I1
Y (y, η) = 1 + eφ

∫
DζH

(
− y√

r −Q
(
√
Q− qζ +

√
qη)

)β
, (90)

from which it follows that the energetic term in equation (75) reads

α

∫
Dη

∑
y=±1

I0
Y (y, η)lnI1

Y (y, η) =2α

∫
DηH

(
−

√
m2

q −m2
η

)

ln

[
1 + eφ

∫
DζH

(
− 1√

r −Q
(
√
Q− qζ +

√
qη)

)β]
.

(91)

The y = 1 and y = −1 being equal modulo a double change of variable ζ, η → −ζ,−η whence the
factor 2. Thus for the perceptron

ΦRS = extr
m̂,r̂,q̂,Q̂,r,q,Q

{
β

2
rr̂ − βmm̂− β(β − 1)

2
QQ̂+

β2

2
qq̂ − β − 1

2
ln(1 + r̂ + Q̂)

− 1

2
ln(1 + r̂ − (β − 1)Q̂+ βq̂) +

β

2

q̂ + m̂2

1 + r̂ − (β − 1)Q̂+ βq̂

+ 2α

∫
DηH

(
−

√
m2

q −m2
η

)
ln

[
1 + eφ

∫
DζH

(
− 1√

r −Q
(
√
Q− qζ +

√
qη)

)β]}
(92)

C.2. Saddle-point equations for the perceptron

The canonical way of carrying out the extremization in equation (92) is to take the saddle-point
equations (zero-gradient conditions) and to solve them. The saddle point equations associated to
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Φ(β, φ) (equation (92)) read

mt =
m̂t

1 + r̂t − (β − 1)Q̂t + βq̂t
(93)

qt =
q̂t + (m̂t)2

(1 + r̂t − (β − 1)Q̂t + βq̂t)2
(94)

Qt =
q̂t + (m̂t)2

(1 + r̂t − (β − 1)Q̂t + βq̂t)2
+

1

β

1

1 + r̂t − (β − 1)Q̂t + βq̂t
− 1

β

1

1 + r̂t + Q̂t
(95)

rt =
q̂t + (m̂t)2

(1 + r̂t − (β − 1)Q̂t + βq̂t)2
+

1

β

1

1 + r̂t − (β − 1)Q̂t + βq̂t
+
β − 1

β

1

1 + r̂t +Qt
(96)

Xt = − 1√
rt −Qt

(
√
Qt − qtζ +

√
qtη) (97)

q̂t+1 = 2α

∫
DηH

(
−

√
(mt)2

qt − (mt)2
η

)
e2φ

2π(rt −Qt)

[∫
DζH(Xt)β−1e−

1
2

(Xt)2

1 + eφ
∫
DζH(Xt)β

]2

(98)

m̂t+1 = 2α

∫
dη

1

(2π)
3
2
√
r −Q

1√
1− (mt)2

qt

e

− 1
2

η2

1− (mt)2

qt
eφ
∫
DζH(Xt)β−1e−

1
2

(Xt)2

1 + eφ
∫
DζH(Xt)β

(99)

Q̂t+1 =
2α

rt −Qt

∫
DηH

(
−

√
(mt)2

qt − (mt)2
η

) ∫
DζH(Xt)β−2e−(Xt)2 1

2π

1 + eφ
∫
DζH(Xt)β

(100)

r̂t+1 = − 2α

rt −Qt

∫
DηH

(
−

√
(mt)2

qt − (mt)2
η

) ∫
DζH(Xt)β−1Xte−

1
2

(Xt)2 1√
2π

1 + eφ
∫
DζH(Xt)β

. (101)

In practice, equations (93)-(101) are iterated until convergence. The time indices are derived from
an independent computation using Approximate Message Passing (Zdeborová and Krzakala (2016),
Antenucci et al. (2019)), not shown here. They indicate in which order the equations ought to be
iterated in order to converge. Remark that the update schedule very simply consists in updating in
parallel all order parameters m, q,Q, r then all auxiliary (hatted) order parameters m̂, q̂, Q̂, r. After
convergence the order parameters can be used in equation (8) to evaluate the free entropy Φ and
subsequently evaluate the complexity Σ(n, v) by inverting the Legendre transform (6).

We present for illustration in Fig. 5 the complexity curves for α = 10 for some budgets n, and
refer the interested reader to Fig. 1 for the same plot at pool size α = 3. As the budget n is increased,
smaller values of Gardner volumes become accessible, provided sufficiently informative subset are
found. A detailed discussion can further be found in section 4 in the main text.

Appendix D. Stability of the replica symmetric ansatz

In this appendix we investigate the stability of the replica symmetric ansatz (21)-(25) under an
infinitesimal perturbation, which we choose to be of one-step replica symmetry breaking (1RSB)
form. This is tantamount to ascertaining whether the extremum in the optimization problem (18) is
reached outside of the subspace of replica symmetric matrices (21)-(25). We first give the expression
of the 1RSB free entropy in the general case of a generalized linear model, before specializing it
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Figure 5: Complexity Σ(n, v) as a function of the Gardner volume v for budgets n ≤ 2 at pool
size α = 10 extracted from the large deviation computations, see also Fig. 1 for the same
curves at different pool size. For any budget n the maximum complexity corresponds
to the volume reached by random subset selection (passive learning), see discussion in
section 4 in the main text. We invite the reader to notice that the qualitative allure of the
complexity curves remains significantly unchanged as the pool size α is varied (see Fig. 1
for α = 3.)
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to the perceptron. Eventually, we analyze the stability of the 1RSB saddle-point equations under
infinitesimal departure from the RS ansatz, and give a stability condition for the RS assumption to
be consistent.

D.1. 1RSB Ansatz

We depart from the RS setting and assume the disorder (selection variables σa) to be 1RSB, with
Parisi parameter noted τ Mézard et al. (1984)Mézard et al. (1986). For convenience we shall replace
1 ≤ a ≤ s by a double index (a′, a), with 1 ≤ a′ ≤ s

τ the 1RSB cluster index and 1 ≤ a ≤ τ
indexing the selection variables inside a same block. As a consequence the x variables will carry a
triple index (a′, a, α). We also need to differentiate the former q index into q1 (for students seeing
different disorders pertaining to the same 1RSB cluster) and q0 (for students seeing disorders from
different clusters).

D.2. Inverse & determinant of a 1RSB planted matrix

Let’s note as before Q̃ = Q−1 with elements r̃0, m̃, r̃, Q̃, q̃1, q̃0. Inverting the matrix is tantamount
to solving the equations

r0r̃0 + βsmm̃m = 1, (102)

r0m̃+mr̃ + (beta− 1)mQ̃+ β(τ − 1)mq̃1 + β(s− τ)mq̃0 = 0, (103)

mr̃0 + rm̃+ (β − 1)Qm̃+ β(τ − 1)q1m̃+ β(s− τ)q0m̃ = 0, (104)

mm̃+ rr̃ + (β − 1)QQ̃+ β(τ − 1)q1q̃1 + β(s− τ)q0q̃0 = 1, (105)

mm̃+ rQ̃+Qr̃ + (β − 2)QQ̃+ β(τ − 1)q1q̃1 + β(s− τ)q0q̃0 = 0, (106)

mm̃+ rq̃1 + (β − 1)Qq̃1 + q1r̃ + (β − 1)q1Q̃+ β(τ − 2)q1q̃1 + β(s− τ)q0q̃0 = 0, (107)

mm̃+ rq̃0 + (β − 1)Qq̃0 + β(τ − 1)q1q̃0 + q0r̃ + (β − 1)q0Q̃+ β(τ − 1)q0q̃1

+ β(s− 2τ)q0q̃1 + β(s− 2τ)q0q̃0 = 0. (108)

Solutions are :

r̃0 =
(1− β)Q− r + β(τ − s)q0 + β(1− τ)q1

−rr0 +Qr0(1− β) + βms2 + βr0(q1(1− τ) + q0(τ − s))
, (109)

m̃ =
m

−rr0 +Qr0(1− β) + βms2 + βr0(q1(1− τ) + q0(τ − s))
, (110)

r̃ =
1

β

(
β − 1

r −Q
+

1

(β − 1)Q− βq1 + r

)
+

r0

sβ[(β − 1)Qr0 + rr0 + β(−ms2 + q0(q1(τ − 1) + q0(s− τ)))]

+
1

β

Q(1− β)− r + β(q1(1− s) + q0s)

s((1− β)Q− βq1 + r)((1− β)Q+ r + βq1(τ − 1)− βq0τ)
, (111)

Q̃ =
r0

−βs(−rr0 +Qr0(1− β) + βms2 + βr0(q1(1− τ) + q0(τ − s)))

+
1

(β − 1)Q− βq1 + r

[
Q− q1

Q− r
+

Q(1− β)− r + β(q1(1− s) + q0s)

βs((β − 1)Q+ r + βq1(τ − 1)− βq0τ))

]
, (112)
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q̃1 =
r0

−βs(−rr0 +Qr0(1− β) + βms2 + βr0(1(1− τ) + q0(τ − s)))

+
Q(1− β)− r + β(q1(1− s) + q0s)

βs((β − 1)Q− βq1 + r)((β − 1)Q+ r + βq1(τ − 1)− βq0τ))
, (113)

q̃0 =
−q0r

0 +m2

(r0(Q(1− β)− r + β(q1(1− τ) + q0(τ − s))) + βms2)((β − 1)Q+ r + β(q1(τ − 1)− q0τ))
.

(114)

One can also compute detQ by finding the eigenvectors. There is a couple of eigenvectors with
product

r0(r + (β − 1)Q+ β(τ − 1)q1 + β(s− τ)q0)− βsm2, (115)

and s
τ eigenvectors with eigenvalue

r + (β − 1)Q− βτq0 + β(τ − 1)q1, (116)

and s
τ (τ − 1) eigenvectors with eigenvalue

r + (β − 1)Q− βq1. (117)

Thus

detQ = ln(r0(r + (β − 1)Q+ β(τ − 1)q1 + β(s− τ)q0)− βsm2)

+ (
s

τ
− 1)ln(r + (β − 1)Q− βτq0 + β(τ − 1)q1) +

s

τ
(βτ − 1)ln(r + (β − 1)Q− βq1).

(118)

D.3. Computing the 1RSB free entropy

The trace term TrQ̂Q in (18) now reads with the 1RSB ansatz

r0r̂0 + βsmm̂− rr̂

2
βs+

β(β − 1)

2
sQQ̂+

βs

2
β(τ − 1)q1q̂1 +

βs

2
β(s− τ)q0q̂0. (119)

For the IX term we proceed in very similar manner as in the RS case, see appendix B. The end
result is

IX =
1

τ

∫
DηI0

X lnI1
X , (120)

I0
X =

∫
dx0PX(x0)e

− m̂
2

2q̂0
(x0)2+ m̂√

q̂0
ηx0

, (121)

I1
X =

∫
Dξ

[∫
Dλ

(∫
dxPX(x)e−

r̂+Q̂
2
x2+(
√
Q̂−q̂1λ+

√
q̂1−q̂0ξ+

√
q̂0η)

)β]τ
. (122)

Note that the results

r̂0 = 0 (123)

r0 = Ex0(x0)2 (124)
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also carry through to the 1RSB case. The treatment of the IY term requires, as in the non-RSB
case, more care. The computation is very analogous (though more lengthy) and shall not be further
detailed presently. We report only the end result:

IY =
α

τ

∫
DρI0

Y lnI1
Y , (125)

I0
Y =

∫
Dh0Pout(y|

√
q0r0 −m2

q0
h0 +

√
m2

q0
), (126)

I1
Y =

∫
Dη

[
1 + eφ

∫
Dζ
(
Pout(y|

√
r −Qh+

√
Q− q1ζ +

√
q1 − q0 +

√
q0ρ)

)β]τ
. (127)

In summary the 1RSB free entropy reads

Φ1RSB = extr
r,m,Q,q1,q0,r̂,m̂,Q̂,q̂1,q̂0

− βmm̂+
β

2
rr̂ − β(β − 1)

2
QQ̂− βτ

2
β(τ − 1)q1q̂1 +

β2τ

2
q0q̂0

+
1

τ

∫
DηI0

X lnI1
X +

α

τ

∫
DρI0

Y lnI1
Y , (128)

I0
X =

∫
dx0PX(x0)e

− m̂
2

2q̂0
(x0)2+ m̂√

q̂0
ηx0

, (129)

I1
X =

∫
Dξ

[∫
Dλ

(∫
dxPX(x)e−

r̂+Q̂
2
x2+(
√
Q̂−q̂1λ+

√
q̂1−q̂0ξ+

√
q̂0η)

)β]τ
, (130)

I0
Y =

∫
Dh0Pout(y|

√
q0r0 −m2

q0
h0 +

√
m2

q0
), (131)

I1
Y =

∫
Dη

[
1 + eφ

∫
Dζ
(
Pout(y|

√
r −Qh+

√
Q− q1ζ +

√
q1 − q0 +

√
q0ρ)

)β]τ
. (132)

D.4. Specialization to the perceptron

We now proceed to specialize the 1RSB free entropy (128), derived above for a generic generalized
linear model, for the special case of a perceptron. The only term that differs non-trivially from the
RS specialization reported in appendix C is I1

X , for which one further (Gaussian) integration has to
be carried out. We give the final formula for the perceptron free entropy :

Φ1RSB =− βmm̂+
β

2
rr̂ − β(β − 1)

2
QQ̂− β

2
β(τ − 1)q1q̂1 +

β2τ

2
q0q̂0 −

β − 1

2
ln(1 + r̂ + Q̂)

+
1

2
(
1

τ
− 1)ln(1 + r̂ − (β − 1)Q̂+ βq̂1)− 1

2τ
ln(1 + r̂ − (β − 1)Q̂+ βq̂1 − βτ(q̂1 − q̂0))

+
β

2

q̂0 + m̂2

1 + r̂ − (β − 1)Q̂+ βq̂1 − βτ(q̂1 − q̂0)
+

2α

τ

∫
DρH

(
−

√
m2

q0 −m2
ρ

)

ln

{∫
Dη

[
1 + eφ

∫
DζH

(
−
√
Q− q1ζ +

√
q1 − q0η +

√
q0ρ√

r −Q

)β]τ}
(133)
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D.5. Stability analysis

Having derived the free entropy 133 in the 1RSB ansatz, we can now study the stability of the RS
solution with respect to an infinitesimal 1RSB perturbation. To that end we consider a 1RSB ansatz
departing infinitesimally from the RS form

q1 − q0 = ε = o(1), (134)

q̂1 − q̂0 = ε̂ = o(1). (135)

We name q, q̂ the common order 0 value for these overlaps. The entropic part (trace term and IX )
of the free entropy (133) then reads to first order in ε, ε̂

− βmm̂+
β

2
rr̂ − β(β − 1)

2
QQ̂− β − 1

2
ln(1 + r̂ + Q̂)− β2(τ − 1)

2
(qq̂ + εq̂ + ε̂q)

+
β2τ

2
qq̂ − 1

2
ln(1 + r̂ − (β − 1)Q̂+ βq̂) +

β

2

q̂ + m̂2

1 + r̂ − (β − 1)Q̂+ βq̂

− β

2

(q̂ + m̂2)β(1− τ)ε̂

(1 + r̂ − (β − 1)Q̂+ βq̂)2
. (136)

Prior to expanding the energetic part IY it is convenient to define the shorthand

X = − 1√
r −Q

(
√
Q− qζ +

√
qρ) (137)

as we did in the RS computations, see appendix C. Expanding the argument of
∗ = log

∫
Dη
[
1 + eφ

∫
DζH (...)β

]τ
∗ = log

{∫
Dη[1 + eφ

∫
DζH(X)β

+eφ
∫
Dζ(Hβ)′(X)

(
ζε

2
√
r −Q

√
Q− q

−
√
εη√

r −Q

)
+

1

2
(Hβ)′′(X)

εη2

r −Q
+ ...]τ

}
(138)

= log

{
(1 + eφ

∫
DζH(X)β)τ

∫
Dη [1+

+ ετ
eφ
∫
Dζ((Hβ)′(X) ζ

2
√
r−Q

√
Q−q + 1

2(Hβ)′′(X) η2

r−Q)

1 + eφ
∫
DζHβ(X)

+εη2 τ(τ − 1)

2

(
eφ

r−Q
∫
Dζ(Hβ)′(X)

1 + eφ
∫
DζHβ(X)

)2
 (139)

= τ log(1 + eφ
∫
DζH(X)β) + log

1 + ε
τ(τ − 1)

2

(
eφ

r−Q
∫
Dζ(Hβ)′(X)

1 + eφ
∫
DζHβ(X)

)2


= τ log(1 + eφ
∫
DζH(X)β) + ε

τ(τ − 1)

2

(
eφ

r−Q
∫
Dζ(Hβ)′(X)

1 + eφ
∫
DζHβ(X)

)2

. (140)
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In going from the first to the second line we used that the O(ε
1
2 ) term is killed by the integration

over η. The first fraction in the second line is found to be vanishing using an integration by parts.
The variables ε, ε̂ intervene in the saddle-point equations. If iterating the SP equations induce ε, ε̂
to become large, then the assumption that the RS fixed point is stable ceases to hold. To obtain the
dynamical equations for the pair ε, ε̂ one has to derive the SP equations associated to zero-gradient
conditions in the q and q̂ direction. Note that the derivatives of terms not involving ε or ε̂ shall
eventually sum to zero, since we assume to be at the RS (ε = ε̂ = 0) fixed points. The first
∂q̂Φ1RSB = 0 equation reads

ε = −

(
2β

q̂ + m̂2

(1 + r̂ − (β − 1)Q̂+ βq̂)3
− 1

(1 + r̂ − (β − 1)Q̂+ βq̂)2

)
ε̂, (141)

while the ∂qΦ1RSB = 0 implies

ε̂ =

−2α

β2

∂

∂q

∫
DρH

(
−

√
m2

q −m2
ρ

)(
eφ

r−Q
∫
Dζ(Hβ)′(X)

1 + eφ
∫
DζHβ(X)

)2
 ε (142)

= − ∂

∂q

(
2αe2φ

β2(r −Q)(Q− q)

∫
DρH

(
−

√
m2

q −m2
ρ

)( ∫
Dζ ζ Hβ(X)

1 + eφ
∫
DζHβ(X)

)2
)
ε. (143)

We choose not to explicit the q derivative as the expression is rather large. The stability condition,
expressing the fact that the dynamical system (141) and (142) converges to ε = ε̂ = 0, then reads∣∣∣∣∣
(

2β
q̂ + m̂2

(1 + r̂ − (β − 1)Q̂+ βq̂)3
− 1

(1 + r̂ − (β − 1)Q̂+ βq̂)2

)∣∣∣∣∣×∣∣∣∣∣− ∂

∂q

(
2αe2φ

β2(r −Q)(Q− q)

∫
DρH

(
−

√
m2

q −m2
ρ

)( ∫
Dζ ζ Hβ(X)

1 + eφ
∫
DζHβ(X)

)2
)∣∣∣∣∣ < 1. (144)

The stability condition (144) can be evaluated numerically using the values for the order pa-
rameters resulting from the convergence of the saddle-point equations (93)-(101). The results are
presented in Fig. 6. As the budget n increases, the region of validity of the replica symmetric as-
sumptions diminishes. This seems to suggest that the selections {σµ}1≤µ≤αN leading to atypical
enough volumes v are grouped into isolated clusters in configuration space, i.e. the landscape is
1RSB, this effect being more pronounced for larger values of budget. That the replica symmetric
assumption should break down away from typicality is expected. However, in most known settings,
this simple ansatz proves to be a very good approximation nonetheless, and taking into account
further steps of replica symmetric breaking usually yields only minor improvement Mézard and
Montanari (2002). We therefore believe that the error bounds here reported have a good degree
of accuracy, although they may certainly be improved if further symmetry breaking are taken into
account. The precise evaluation of these corrections is left for future investigation.

Appendix E. Optimal generalization error for the large deviation perceptron

We derive here the expression for the optimal generalization error εg (in the Bayesian sense) as-
sociated to a subset of volume v and of budget n as a function of the perceptron order parameters

424



LARGE DEVIATIONS AND ACTIVE LEARNING

 0

 0.5

 1

 1.5

 2

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Σ

v

n=0.3

n=0.6

n=0.9

n=1.2

n=1.2

n=1.8

n=2.1

n=2.4

n=2.7

Figure 6: Complexity vs volume curves for α = 3, and n ∈ {0.3, 0.6, 0.9, 2.7}, see also Fig. 1.
Solid lines corresponds to ranges of values for v where the replica symmetric ansatz is
consistent (stable). As n increases the window of validity of the ansatz shrinks, signaling
the emergence of non-trivial structures in the geometrical organization of the selection
vectors associated with atypical Gardner volumes.
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m and q, see appendix B and C. The Bayesian εg was introduced for example in Baldassi et al.
(2015) and, unlike the test error yielded by training the perceptron on some loss, is independent
of the training procedure and thus may serve as a nice measure of informativeness for subsets.
For the usual perceptron model, it is known that the optimal generalization error is achieved when
the student classification is performed by averaging the predicted label over the student measure
PX(·)Pout(Y |F ·) and taking the sign thereof. Note that the average predicted label is but the out-
put magnetization mout discussed in section 5 of the main text. Transposition to the large deviation
setting, which allows to fix the budget n and the volume v, is straightforward provided one aver-
ages over the large deviation measure (11). By definition the test error is the probability that a new
sample Fnew

d
= N (0, 1) is correctly classified by the student according to the output magnetization

Eβ,φx sgn(x · Fnew)

1− εg = Ex0,Y ,F ,Fnew
Θ[sgn(x0 · Fnew)Eβ,φx sgn(x · Fnew)], (145)

where Eβ,φx denote the average with respect to the large deviation posterior measure (11) with control
parameters β and φ. Introducing an integral representation for a Dirac delta and expanding the
resulting exponential

1− εg = Ex0,Y ,Fnew

∫
dvdv̂eivv̂Θ[sgn(x0 · Fnew)v]

∞∑
j=0

(iv̂)j

j!
EF (Eβ,φx sgn(x · Fnew))j (146)

= EFnew

∞∑
j=0

∫
dvdv̂eivv̂

(iv̂)j

j!
Ex0,Y Θ[sgn(x0 · Fnew)v]EF (Eβ,φx sgn(x · Fnew))j . (147)

For any fixed j, the computation of Ex0,Y Θ[sgn(x0 ·Fnew)v]EF (Eβ,φx )j is formally very similar to
the one detailed in appendix B and follows the same lines. First notice that using the replica trick
Eβ,φx sgn(x · Fnew) prescribes to introduce as precedently βs replicas

Eβ,φx sgn(x · Fnew) = lim
s→0

Ξs−1
∑
{σµ}

e
φ
∑
µ
Sµ
[∫

dxPX(x)
∏
µ

Pout(y
µ|F µx)σµ

]β−1

∫
dxPX(x)

∏
µ

Pout(y
µ|F µx)σµsgn(x · Fnew) (148)

= lim
s→0

∑
σ1,...,σn

∫ s∏
a=1

β∏
α=1

dxaαPX(x)
∏
µ

Pout(y
µ|F µxaα)σ

a
µe
φ
∑
a,µ

σaµ

sgn(x11 · Fnew). (149)

From which it follows that

(Eβ,φx sgn(x · Fnew))j = lim
s→0

∑
σla

1≤l≤j,1≤a≤s

∫ s∏
a=1

j∏
l=1

β∏
α=1

dxaαPX(xlaα)
∏
µ

Pout(y
µ|F µxlaα)σ

la
µ

e
φ
∑
l,a,µ

σlaµ
j∏
l=1

sgn(xl11 · Fnew). (150)
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The net effect is simply to transform the first index a into a double index (l, a), thereby introducing
a third level of replication. Pursuing equation (146),

1− εg = lim
s→0

∞∑
j=0

∫
dvdv̂eivv̂

(iv̂)j

j!
Ex0,Y ,F

∑
σla

1≤l≤j,1≤a≤s

∫ s∏
a=1

j∏
l=1

β∏
α=1

dxaαPX(xlaα)

∏
µ

Pout(y
µ|F µxlaα)σ

la
µ e

φ
∑
l,a,µ

σlaµ
EFnew

j∏
l=1

sgn(xl11 · Fnew)Θ[sgn(x0 · Fnew)v] (151)

= lim
s→0

∞∑
j=0

∫
dvdv̂eivv̂

(iv̂)j

j!
esjNΦ(β,φ)

∫
dh0

j∏
l=1

dhl
e−

1
2
hTQ−1h√

(2π)j+1detQ
Θ[sgn(h0)v]

j∏
l=1

sgn(hl).

(152)

In going from the second to the last line we introduced overlap variables h as in appendix B. The rest
of the large deviation measure in equation (150) factorize into eNsjΦ(β,φ), with Φ the free entropy
computed in appendices B and C, and goes to 1 as the s → 0 limit is taken. We also introduced an
overlap matrix Q of RS form

Q00 = r0 (153)

Q0l = m ∀1 ≤ l ≤ j (154)

Qll = r ∀1 ≤ l ≤ j (155)

Qlk = q ∀1 ≤ l 6= k ≤ j. (156)

The order parameters r0, r,m and q were defined in the replica ansatz equations (21)-(25). Note
that the relevant overlap is q, rather than Q, since the j-fold replication in equation (150) affects
also the selection variables σ and thus the variables xl11 see different disorders, see appendix B.
The inverse Q̃ = Q−1 is characterized by the coefficients

r̃0 =
r + (j − 1)q

r0(r + (j − 1)q)− jm2
(157)

r̃ =
r0(r + (j − 2)q)− (j − 1)m2

(r − q)(r0(r + (j − 1)q)− jm2)
(158)

m̃ =
−m

(r0(r + (j − 1)q)− jm2
(159)

r̃ =
m2 − r0q

(r − q)(r0(r + (j − 1)q)− jm2)
. (160)

(161)

The last integral in equation (152) can be taken care of in the usual manner, by decomposing the
exponent and introducing a Hubbard-Stratonovitch field η, see for example appendix B. Similarly
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the expression can then be factorized in l indices. The result is∫
dh0

j∏
l=1

dhle−
1
2
hTQ−1hΘ[sgn(h0)v]

j∏
l=1

sgn(hl) =

∫
Dηdh0√

(2π)j+1detQ
e−

1
2
r̃0(h0)2

e
j
2

(
√
−q̃
r̃−q̃ η−

m̃√
r̃−q̃h

0)2

[
1− 2H

(√
−q̃
r̃ − q̃

η − m̃√
r̃ − q̃

h0

)]j
(162)

=

∫
DηDh0

[
1− 2H

(√
m2 − qr0

r0(q − r)
η −

√
m2

r0(r − q)
h0

)]j
.

(163)

This terminates the computation of εg, since from equation (152)

1− εg =

∫
DηDh0Θ[h0(1− 2H

(√
m2 − qr0

r0(q − r)
η −

√
m2

r0(r − q)
h0

)
)] (164)

=

∫
DηDh0Θ[h0(

√
r0q −m2η −mh0)] (165)

= 1− 1

π
cos−1 m√

q
. (166)

We used the fact that x → 1 − 2H(x) was odd and the fact that r0 = 1 for the perceptron model
with Gaussian priors, see appendix C.

Appendix F. Additional numerical confirmation

We supply numerical evidence for some assumptions made in this work, in particular the replica
trick (14) and the use of the Gardner volume as a measure of informativeness (see section 3 in the
main text).

First, we sample numerically at random subsets of cardinalities n ∈ {0.3, 0.6, 0.9, 2.7} out of a
pool of cardinal given by α = 3, and plot the complexity extracted therefrom in Fig. 7. The volumes
were evaluated using the AMP algorithm 2, and simulations were performed at N = 20, with 107

draws. Because of computational limitations N has been kept small, while AMP is known to be
valid only in the N ↑ ∞ limit, hence inducing errors due to finite size. Nevertheless, the agreement
with the theoretical curves for Σ(n, v) is quite good.

We finally present a numerical check of the theoretical prediction for them(v) curves, see Fig. 1.
At large instance size, N = 2000, it is not computationally feasible to obtain sufficient statistics
for observing the large deviations of the volume through passive subset sampling, as it was done in
the previous experiment. Thus, we resorted to the label-informed AL-AMP active learning strategy
for biasing the subset selection towards more/less informative subsets. In particular, we constructed
each subset by mixing varying ratios of maximally informative samples (selected according to the
informed AL-AMP procedure, see algorithm 1 and Tab. 1) and minimally informative samples (se-
lected according to the same procedure but with the reversed sorting order). In the figure, the pool
size is α = 10 and the budget is fixed to n = 1.5. For each subset, the AMP algorithm 2 was
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Figure 7: Complexity vs volume curves for α = 3, and n ∈ {0.3, 0.6, 0.9, 2.7}. The dots are the
values extracted from numerical experiments performed at N = 20 by repeatedly sam-
pling passively 107 times a subset of cardinality n out of a fixed pool of size α = 3. Solid
lines are the theoretical complexities as predicted by the large deviation computations,
see also Fig. 1. Volumes were evaluated using the AMP Algorithm 2. The agreement is
rather good knowing the discrepancies that ought to be expected because of running AMP
Algorithm 2 at finite and small N .
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Figure 8: Magnetization m against Gardner volume v for various subsets. The experiments were
performed at system size N = 103, pool size α = 10 and budget n = 1.5. Subsets
covering a wide range of volumes were designed by varying the ratio of informative sam-
ples (using label-informed AL-AMP, see section 5) and uninformative samples (selected
using simple passive learning). Magnetizations and volumes were evaluated using the
AMP procedure 2. In solid line is the typical m(v) curve predicted by the large deviation
computations, which agrees quite well with the numerical simulations.

run to get the estimator x̂ and the magnetization m was deduced therefrom. This incidentally cor-
roborates once more that using the Gardner volume instead of the magnetization to judge for the
informativeness of a selection is coherent.
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