
ar
X

iv
:1

70
7.

04
51

9v
2

 [
cs

.D
S]

 1
7

Ju
l 2

01
7

Competitive Algorithms for Generalized k-Server in Uniform

Metrics∗

Nikhil Bansal† Marek Eliáš† Grigorios Koumoutsos†

Jesper Nederlof†

TU Eindhoven, Netherlands

July 18, 2017

Abstract

The generalized k-server problem is a far-reaching extension of the k-server problem with
several applications. Here, each server si lies in its own metric space Mi. A request is a
k-tuple r = (r1, r2, . . . , rk) and to serve it, we need to move some server si to the point
ri ∈ Mi, and the goal is to minimize the total distance traveled by the servers. Despite
much work, no f(k)-competitive algorithm is known for the problem for k > 2 servers, even
for special cases such as uniform metrics and lines.

Here, we consider the problem in uniform metrics and give the first f(k)-competitive
algorithms for general k. In particular, we obtain deterministic and randomized algorithms
with competitive ratio O(k2k) and O(k3 log k) respectively. Our deterministic bound is
based on a novel application of the polynomial method to online algorithms, and essentially

matches the long-known lower bound of 2k − 1. We also give a 22
O(k)

-competitive deter-
ministic algorithm for weighted uniform metrics, which also essentially matches the recent
doubly exponential lower bound for the problem.

∗This work was supported by NWO grant 639.022.211, ERC consolidator grant 617951, and NWO Veni project
639.021.438

†TU Eindhoven, Netherlands. {n.bansal,m.elias,g.koumoutsos,j.nederlof}@tue.nl

http://arxiv.org/abs/1707.04519v2

1 Introduction

The k-server problem was proposed by Manasse et al. [24] as a far-reaching generalization of
many online problems, and its study has led to various remarkable developments [6, 20, 21, 3].
In this problem, we are given k-servers s1, . . . , sk located at points of a metric space M . At
each time step a request arrives at some point of M and must be served by moving some server
there. The goal is to minimize the total distance traveled by the servers.

Koutsoupias and Taylor [23] introduced a substantial generalization of the k-server problem,
called the generalized k-server problem. Here, each server si lies in its own metric space Mi,
with its own distance function di. A request is a k-tuple r = (r1, r2, . . . , rk) and must be served
by moving some server si to the point ri ∈ Mi. Note that the standard k-server problem
corresponds to the special case when all the metrics are identical, M1 = . . . = Mk = M , and
the requests are of the form (r, r, . . . , r), i.e., the k-tuple is identical in each coordinate.

The generalized k-server problem can model a rich class of online problems, for which the
techniques developed for the standard k-server problem do not apply, see e.g. [23]. For that
reason, it is widely believed that a deeper understanding of this problem should lead to powerful
new techniques for designing online algorithms [23, 27]. According to Koutsoupias and Taylor
[23], this problem “may act as a stepping stone towards building a robust (and less ad hoc)
theory of online computation”.

1.1 Previous Work

The k-server problem. The k-server problem has been extensively studied (an excellent
reference is [6]). The initial work focused on special metrics such as uniform metrics and
lines, and optimum competitive ratios were obtained in many cases [10, 11, 22]. A particularly
interesting case is that of uniform metrics, which corresponds to the very well-studied paging
problem, where tight k-competitive deterministic [30] and O(log k)-competitive randomized
algorithms [14, 26, 1] are known.

For general metrics, Koutsoupias and Papadimitriou [21] showed in a breakthrough result
that the Work Function Algorithm (WFA) is (2k − 1)-competitive in any metric space. This
essentially matches the lower bound of k for any deterministic algorithm [24]. More recently,
a polylog(k, n) randomized competitive algorithm was obtained [3] where n in the number of
points in M .

The generalized k-server problem. This problem is much less understood. In their seminal
paper, Koutsoupias and Taylor [23] studied the special case where k = 2 and both the metrics
M1 and M2 are lines. This is called CNN problem and it has attracted a lot of attention
[2, 9, 18, 17]. They showed that, even for this special case, many successful k-server algorithms
or their natural generalizations are not competitive.

Lower Bounds: For uniform metrics, Koutsoupias and Taylor [23] showed that even when
each Mi contains n = 2 points, the competitive ratio is at least 2k − 1. For general metrics,
the best known lower bound is 22

Ω(k)
[4], and comes from the weighted k-server problem (the

weighted variant of the standard k-server problem). This problem corresponds to generalized-
k-server where the metric spaces are scaled copies of each other, i.e. Mi = wiM for some fixed
M , and the requests have the form (r, . . . , r).

1

Upper Bounds: Despite considerable efforts, competitive algorithms1 are known only for the
case of k = 2 servers [29, 27, 28]. In a breakthrough result, Sitters and Stougie [29] obtained a
O(1)-competitive algorithm for k = 2 in any metric space. Recently, Sitters [27] showed that
the generalized WFA is also O(1)-competitive for k = 2 by a careful and subtle analysis of the
structure of work functions. Despite this progress, no f(k)-competitive algorithms are known
for k > 2, even for special cases such as uniform metrics and lines.

1.2 Our Results

We consider the generalized k-server problem on uniform metrics and obtain the first f(k)-
competitive algorithms for general k, whose competitive ratios almost match the known lower
bounds.

Perhaps surprisingly, there turn out to be two very different settings for uniform metrics:

1. When all the metric spaces M1, . . . ,Mk are uniform (possibly with different number of
points) with identical pairwise distance, say 1. We call this the uniform metric case.

2. When the metric spaces Mi are all uniform, but have different scales, i.e. all pairwise
distances in Mi are wi. We call this the weighted uniform metric case.

Our first result is the following.

Theorem 1.1. There is a O(k2k) competitive deterministic algorithm for the generalized k-
server problem in the uniform metric case.

This almost matches the 2k − 1 lower bound due to [23] (we describe this instructive and
simple lower bound instance in the Appendix for completeness).

The proof of Theorem 1.1 is based on a general combinatorial argument about how the set of
feasible states evolves as requests arrive. Specifically, we divide the execution of the algorithm
in phases, and consider the beginning of a phase when all the MSS states are feasible (e.g. the
cost is 0 and not ∞). As requests arrive, the set of states that remain valid for all requests
during this phase can only reduce. In particular, for this problem we show that any sequence
of requests that causes the feasible state space to strictly reduce at each step, can have length
at most 2k until all states becomes infeasible.

Interestingly, this argument is based on a novel application of the polynomial or the rank
method from linear algebra [19, 25, 16]. While the rank method has led to some spectacular
recent successes in combinatorics and computer science [12, 13], we are not aware of any previous
applications to online algorithms. We feel our approach could be useful for other online problems
that can be modeled as Metrical Service Systems by analyzing the combinatorial structure in a
similar way.

Next, we consider randomized algorithms against oblivious adversaries.

Theorem 1.2. There is a randomized algorithm for the generalized k-server problem on uniform
metrics with competitive ratio O(k3 log k).

The rank method above does not seem to be useful in the randomized setting as it only
bounds the number of requests until the set of feasible states becomes empty, and does not
give any structural information about how the set of states evolves over time. As we observe in
Section 3, a o(2k) guarantee cannot be obtained without using such structural information. So

1Those with competitive ratio f(k) that only depends on k. Note that an nk−1 competitive algorithm follows
trivially, as the problem can be viewed as Metrical Service System (MSS) on nk states, where n = maxk

i=1 |Mi|.

2

we explore the properties of this evolution more carefully and use it to design the randomized
algorithm in Theorem 1.2.

In the Appendix, we also give a related lower bound. In particular, we note that an
Ω(k/ ln2 k) lower bound on the competitive ratio of any randomized algorithm follows directly
by combining the lower bound instance of [23] with the results of [5].

Finally, we consider the weighted uniform metric case.

Theorem 1.3. There is a 22
k+3

competitive algorithm for generalized k-server on weighted
uniform metrics.

Theorem 1.3 follows by observing that a natural modification of an algorithm due to Fiat
and Ricklin [15] for weighted k-server on uniform metrics also works for the more general gen-
eralized k-server setting. Our proof is essentially the same as that of [15], with some arguments

streamlined and an improved competitive ratio2. Finally, note that the 22
Ω(k)

lower bound [4]
for weighted k-server on uniform metrics implies that Theorem 1.3 is essentially optimal.

2 Deterministic algorithm for uniform metrics

In this section we prove Theorem 1.1. Recall that each Mi is the uniform metric with unit
distance. We assume that all metrics have n = maxk

i=1 |Mi| points (if for some metric |Mi| < n,
we can add some extra points that are never requested). We use [n] to denote {1, . . . , n}. As
the requests are arbitrary k-tuples and each metric Mi is uniform, we can relabel the points
arbitrarily and hence assume that the set of points in each Mi is [n]. At any time t, the state
of an algorithm can be described by the k-tuple qt = (qt1, . . . , q

t
k
) where for each i ∈ [k], qt

i
∈ [n]

denotes the location of server i. Let rt = (rt1, . . . , r
t
k
) denote the request vector at time t. We

need to find a state with the following property:

Definition 2.1. A state qt satisfies (or is feasible for) the request rt if qt
i
= rt

i
for some i ∈ [k].

Moreover, if the state changes from qt to qt+1, the algorithm pays the Hamming distance

d(qt+1, qt) = |{i : qt+1
i
6= qti}|,

between qt and qt+1.
We describe a generic algorithm below that works in phases in Algorithm 1. We will show

that during each phase the offline moves at least once and hence pays at least 1, while the
online algorithm changes its state at most 2k times and hence pays at most k2k as the Hamming
distance between any two states is at most k. This will be sufficient as the offline optimum will
need to change its state at least once as no state satisfies all requests, and it follows that our
algorithm pays at most (c∗ + 1)k2k, where c∗ denotes the optimal cost. Here the +1 accounts
for the last (possible unfinished) phase.

We call this algorithm generic as it can pick any arbitrary point q as long as it is feasible
for r1, . . . , rt. Note that this algorithm captures a wide variety of natural algorithms including
(variants) of the Work Function Algorithm.

Fix some phase that we wish to analyze, and let ℓ denote its length. Without loss of
generality, we can assume that rt always causes qt to move (removing such requests does not
reduce the online cost, and can only help the offline adversary). So the online algorithm moves

2It was first pointed out to us by Chiplunkar [8] that the competitive ratio 22
4k

claimed in [15] can be improved

to 22
k+O(1)

.

3

Algorithm 1: A deterministic O(k2k) competitive algorithm.

If a phase begins, the algorithm starts in some arbitrary q1.
At each time t when a request rt arrives do the following.
if the current state qt does not satisfy the current request rt then

if there exists a state q that satisfies all requests r1, . . . , rt then
Set qt+1 = q.

else

Set qt+1 to be an arbitrary location satisfying (only) rt.
End the current phase.

else

Set qt+1 = qt.

exactly ℓ times. Moreover, the adversary must move at least once during the phase as no
location exists that satisfies all the requests r1, . . . , rℓ that arrive during the phase.

It suffices to show the following.

Theorem 2.2. For any phase as defined above, its length satisfies ℓ ≤ 2k.

Proof. We use the rank method. Let x = (x1, . . . , xk), y = (y1, . . . , yk) be points in R
k, and

consider the 2k-variate degree k polynomial p : R2k → R,

p(x, y) :=
∏

i∈[k]

(xi − yi).

The key property of p is that a state q ∈ [n]k satisfies a request r ∈ [n]k iff p(q, r) = 0.
We now construct a matrix M that captures the dynamics of the online algorithm during

a phase. Let M ∈ R
ℓ×ℓ be an ℓ × ℓ matrix, where columns correspond to the states and rows

to the requests, with entries M [t, t′] = p(qt, rt
′
), i.e., the [t, t′] entry of M corresponds to the

evaluation of p on qt and rt
′

Claim 2.3. M is an upper triangular matrix with non-zero diagonal.

Proof. At any time t = 1, . . . , ℓ, as the current state qt does not satisfy the request rt, it must
be that p(qt, rt) 6= 0.

On the other hand, for t = 2, . . . , ℓ, the state qt was chosen such that it satisfied all the
previous requests t′ for t′ < t. This gives that M [t, t′] = 0 for t′ < t and hence all the entries
below the diagonal are 0.

As the determinant of any upper-triangular matrix is the product of its diagonal entries,
this implies that M has non-zero determinant and has full rank, rk(M) = ℓ.

However, we can use the structure of p to show that the rank of M is at most 2k in a fairly
straight manner3. In particular, we give an explicit factorization of M as M = AB, where A
is ℓ × 2k matrix and M is a 2k × ℓ matrix. Clearly, as any m × n matrix has rank at most
min(m,n), both A and B have rank at most 2k. Moreover, as rk(AB) ≤ min(rk(A), rk(B)),
this implies rk(M) ≤ 2k. It remains to show the factorization.

3Curiously, this particular rank upper bound was used in a previous work for answering a question the a
completely different setting about the parameterized complexity of graph coloring parameterized by cutwidth [31].

4

Indeed, if we express p(x, y) in terms of its 2k monomials, we can write

p(x, y) =
∑

S⊆[k]

(−1)k−|S|XSY[k]\S,

where XS =
∏

i∈S xi with X∅ = 1, and YS is defined analogously.

Now, let A be the ℓ×2k matrix with rows indexed by time t and columns by subsets S ∈ 2[k],
with the entries

A[t, S] = qtS :=
∏

i∈S

qti .

Similarly, let B be the 2k× ℓ matrix with rows indexed by subsets S ∈ 2[k] and columns indexed
by time t′. We define

B[S, t′] = (−1)k−|S| rt
′

[k]\S := (−1)k−|S|
∏

i∈[k]\S

rt
′

i .

Then, for any t, t′ ∈ [ℓ],

M [t, t′] = p(qt, rt
′

) =
∑

S⊆[k]

(−1)k−|S| qtS rt
′

[k]\S =
∑

S⊆[k]

A[t, S]B[S, t′] = (AB)[t, t′].

and hence M = AB as claimed.

We remark that an alternate way to view this result is that the length of any request sequence
that causes the set of feasible states to strictly decrease at each step can be at most 2k.

3 Randomized algorithm for uniform metrics

A natural way to randomize the algorithm above would be to pick a state uniformly at random
among all the states that are feasible for all the requests thus far in the current phase. The
standard randomized uniform MTS analysis [7] implies that this online algorithm would move
O(log(nk)) = O(k log n) times. However, this guarantee is not useful if n≫ exp(exp(k)).

Perhaps surprisingly, even if we use the fact from Section 2 that the set of feasible states
can shrink at most 2k times, this does not suffice to give a randomized o(2k) guarantee. Indeed,
consider the algorithm that picks a random state among the feasible ones in the current phase.
If, at each step t = 1, . . . , ℓ, half of the feasible states become infeasible (expect the last step
when all states become infeasible), then the algorithm must move with probability at least 1/2
at each step, and hence incur an expected Ω(ℓ) = Ω(2k) cost during the phase.

So proving a better guarantee would require showing that the scenario above cannot happen.
In particular, we need a more precise understanding of how the set of feasible states evolves
over time, rather than simply a bound on the number of requests in a phase.

To this end, in Lemmas 3.1 and 3.3 below, we impose some stronger subspace-like structure
over the set of feasible states. Then, we use this structure to design a variant of the natural
randomized algorithm above, that directly works with these subspaces.

Spaces of configurations. Let Ui denote the set of points in Mi. We can think of Ui = [n],
but Ui makes the notation clear. We call state in

∏

k

i=1 Ui = [n]k a configuration. Here we
slightly abuse notation by letting

∏

denote the generalized Cartesian product. It will be useful

5

to consider sets of configurations where some server locations are fixed at some particular
location. For a vector v ∈

∏

k

i=1(Ui ∪ {∗}), we define the space

S(v) :=

{

c ∈
k
∏

i=1

Ui

∣

∣

∣

∣

∣

ci = vi ∀i s.t. vi 6= ∗

}

.

A coordinate i with vi = ∗ is called free and the corresponding server can be located at an
arbitrary point of Ui. The number of free coordinates in the space S(v) we call dimension and
denote it with dim(S(v)).

Let us consider a d-dimensional space S and a request r such that some configuration c ∈ S
is not feasible for r. Then, we claim that a vast majority of configurations from S are infeasible
for r, as stated in the following lemma. We denote F (r) the set of configuration satisfying r.

Lemma 3.1. Let S be a d-dimensional space and let r be a request which makes some configu-
ration c ∈ S infeasible. Then, there exist d subspaces S1, . . . , Sd, each of dimension d− 1, such
that we have S ∩ F (r) = S1 ∪ · · · ∪ Sd.

Note that if all the metric spaces Ui contain n points, then |Si| =
1
n
|S| for each i = 1, . . . , d.

Proof. By reordering the coordinates, we can assume that the first d coordinates of S are free and
S corresponds to the vector (∗, . . . , ∗, sd+1, . . . , sk), for some sd+1, . . . , sk. Let r = (r1, . . . , rk).

Consider the subspaces S(v1), . . . , S(vd), where

v1 = (r1, ∗, . . . , ∗, sd+1, . . . , sk), . . . , vd = (∗, . . . , ∗, rd, sd+1, . . . , sk).

Clearly, any configuration contained in S(v1)∪ . . .∪S(vd), is feasible for r. Conversely, as there
exists c ∈ S infeasible for r, we have si = ci 6= ri for each i = d+ 1, . . . , k. This already implies
that each configuration from S feasible for r must belong to S(v1)∪ . . .∪S(vd): whenever c

′ ∈ S
is feasible for r, it needs to have c′

i
= ri for some i ∈ {1, . . . , d} and therefore c′ ∈ S(vi).

Spaces of feasible configurations. During each phase, we maintain a set F t of spaces
containing configurations which were feasible with respect to the requests r1, . . . , rt. In the
beginning of the phase, we set F1 = {(r11 , ∗, . . . , ∗), . . . , (∗, . . . , ∗, r

1
k
)}, and, at time t, we update

it in the following way. We remove all spaces of dimension 0 whose single configuration is infea-
sible w.r.t. rt. In addition, we replace each S ∈ F t−1 of dimension s > 0 which contains some
infeasible configuration by S1, . . . , Sd according to the Lemma 3.1. The following observation
follows easily from Lemma 3.1.

Observation 3.2. Let us consider a phase with requests r1, . . . , rℓ. A configuration c is feasible
with respect to the requests r1, . . . , rt if and only if c belongs to some space in F t.

An alternative deterministic algorithm. Based on F t, we can design an alternative de-
terministic algorithm that has a competitive ratio of 3k!. This is worse than Algorithm 1 but
will be very useful to obtain our randomized algorithm. To serve a request at time t, it chooses
some space Qt ∈ F t and moves to an arbitrary qt ∈ Qt. Whenever Qt−1 no more belongs to F t,
it moves to another space Qt regardless whether qt−1 stayed feasible or not, see Algorithm 2 for
details. While, this is not an optimal behaviour, a primitive exploitation of the structure of F t

already gives a reasonably good algorithm.
The following lemma bounds the maximum number of distinct spaces which can appear in

F t during one phase. In fact, it already implies that the competitive ratio of Algorithm 2 is at
most k! ·

∑

k−1
d=0

1
d! ≤ 3k!.

6

Algorithm 2: Alternative deterministic algorithm.

at time t:
foreach S ∈ F t−1 containing some infeasible configuration do // update F t for rt

replace S by S1, . . . , Sd according to Lemma 3.1

if F t = ∅ then // start a new phase, if needed

Set F t = {S((rt1, ∗, . . . , ∗)), . . . , S((∗, . . . , ∗, r
t

k
))}

if Qt−1 ∈ F t then // serve the request

set Qt := Qt−1 and qt := qt−1

else

choose arbitrary Qt ∈ F t and move to an arbitrary qt ∈ Qt

Lemma 3.3. Let us consider a phase with requests r1, . . . , rℓ. Then
⋃

ℓ

t=1 F
t contains at most

k!/d! spaces of dimension d.

Proof. We proceed by induction on d. In the beginning, we have k = k!/(k − 1)! spaces of
dimension k− 1 in F1 and, by Lemma 3.1, all spaces added later have strictly lower dimension.

By the way F t is updated, each (d−1)-dimensional space is created from some d-dimensional
space already present in

⋃

ℓ

t=1 F
t. By the inductive hypothesis, there could be at most k!/d!

distinct d-dimensional spaces and Lemma 3.1 implies that each of them creates at most d distinct
(d − 1)-dimensional spaces. Therefore, there can be at most k!

d!d = k!
(d−1)! spaces of dimension

d− 1 in
⋃

ℓ

t=1 F
t.

Randomized algorithm. Now we transform Algorithm 2 into a randomized one. Let mt

denote the largest dimension among all the spaces in F t and letMt denote the set of spaces of
dimension mt in F

t.
The algorithm works as follows: Whenever moving, it picks a space Qt fromMt uniformly

at random, and moves to some arbitrary qt ∈ Qt. As the choice of qt is arbitrary, whenever
some configuration from Qt becomes infeasible, the algorithm assumes that qt is infeasible as
well4.

Algorithm 3: Randomized Algorithm for Uniform metrics.

at time t:
foreach S ∈ F t−1 containing some infeasible configuration do // update F t for rt

replace S by S1, . . . , Sd according to Lemma 3.1

if F t = ∅ then // start a new phase, if needed

Set F t = {S((rt1, ∗, . . . , ∗)), . . . , S((∗, . . . , ∗, r
t

k
))}

if Qt−1 ∈ Mt then // serve the request

set Qt := Qt−1 and qt := qt−1

else

Choose a space Qt fromMt uniformly at random
Move to an arbitrary qt ∈ Qt

At each time t, ALG is located at some configuration qt contained in some space in F t which

4This is done to keep the calculations simple, as the chance of Qt being removed from F and qt staying feasible
is negligible when k ≪ n.

7

implies that its position is feasible with respect to the current request rt, see Lemma 3.2. Here
is the key property about the state of ALG.

Lemma 3.4. At each time t, the probability of Qt being equal to some fixed S ∈ Mt is 1/|Mt|.

Proof. If ALG moved at time t, the statement follows trivially, since Qt was chosen from Mt

uniformly at random. So, let us condition on the event that Qt = Qt−1.
Now, the algorithm does not change state if and only if Qt−1 ∈ Mt. Moreover, in this

case mt does not change, andM
t ⊂Mt−1. By induction, Qt−1 is distributed uniformly within

Mt−1, and hence conditioned on Qt−1 ∈ Mt, Qt is uniformly distributed withinMt.

Proof of Theorem 1.2. At the end of each phase (except possibly for the last unfinished
phase), the set of feasible states F t = ∅, and hence OPT must pay at least 1 during each of
those phases. Denoting N the number of phases needed to serve the entire request sequence,
we have cost(OPT) ≥ (N − 1). On the other hand, the expected online cost is at most,

E[cost(ALG)] ≤ c(N − 1) + c ≤ c cost(OPT) + c,

where c denotes the expected cost of ALG in one phase. This implies that ALG is c-competitive,
and strictly 2c-competitive (as the offline must move at least once, if the online algorithm pays
a non-zero cost).

Now we prove that c is at most O(k3 log k). To show this, we use a potential function

Φ(t) = H(|Mt|) +
mt−1
∑

d=0

H(k!/d!),

whereH(n) denotes the nth harmonic number. As the beginning of the phase, Φ(1) ≤ kH(k!) ≤
k(log k! + 1) = O(k2 log k) as |M1| ≤ k! and m1 ≤ k − 1. Moreover the phase ends whenever
Φ(t) decreases to 0. Therefore, it is enough to show that, at each time t, the expected cost
incurred by the algorithm is at most k times the decrease of the potential. We distinguish two
cases.

If mt = mt−1, let us denote b = |Mt−1| − |Mt|. If b > 0, the potential decreases, and its
change can be bounded as

∆Φ ≤ H(|Mt|)−H(|Mt−1|) = −
1

|Mt|+ 1
−

1

|Mt|+ 2
− · · · −

1

|Mt|+ b
≤ −b ·

1

|Mt−1|
.

On the other hand, the expected cost of ALG is at most k times the probability that it has to
move, which is exactly P [At ∈ M

t−1 \Mt] = b/|Mt−1| using Lemma 3.4. Thus the expected
cost of the algorithm is at most k · b/|Mt−1|, which is at most k · (−∆Φ).

In the second case, we have mt < mt−1. By Lemma 3.3, we know that |Mt| ≤ k!/mt! and
hence

∆Φ = Φ(t)− Φ(t− 1) = H(|Mt|)−H(|Mt−1|)−H(k!/mt!) ≤ −H(|Mt−1|) ≤ −1,

since |Mt−1| ≥ 1 and therefore H(|Mt−1|) ≥ 1. As the expected cost incurred by the algorithm
is at most k, this is at most k · (−∆Φ).

4 Algorithm for weighted uniform metrics

In this section we prove Theorem 1.3. Our algorithm is a natural extension of the algorithm of
Fiat and Ricklin [15] for the weighted k-server problem on uniform metrics.

8

High-level idea. The algorithm is defined by a recursive construction based on the following
idea. First, we can assume that the weights of the metric spaces are highly separated, i.e.,
w1 ≪ w2 ≪ . . .≪ wk (if they are not we can make them separated while losing some additional
factors). So in any reasonable solution, the server sk lying in metric Mk should move much
less often than the other servers. For that reason, the algorithm moves sk only when the
accumulated cost of the other k − 1 servers reaches wk. Choosing where to move sk turns out
to be a crucial decision. For that reason, (in each “level k-phase”) during the first part of the
request sequence when the algorithm only uses k − 1 servers, it counts how many times each
point of Mk is requested. We call this “learning subphase”. Intuitively, points of Mk which are
requested a lot are “good candidates” to place sk. Now, during the next c(k) (to be defined
later) subphases, sk visits the c(k) most requested points. This way, it visits all “important
locations” of Mk. A similar strategy is repeated recursively using k − 1 servers within each
subphase.

Notation and Preliminaries. We denote by sALG
i

and sADV
i

the server of the algorithm
(resp. adversary) that lies in metric space Mi. Sometimes we drop the superscript and simply

use si when the context is clear. We set Rk := 22
k+2

and c(k) := 22
k+1−3. Note that c(1) = 2

and that for all i,
4(c(i) + 1) · c(i) ≤ 8c(i)2 = c(i+ 1). (1)

Moreover, for all i ≥ 2, we have
Ri = 8 · c(i) ·Ri−1. (2)

We assume (by rounding the weights if necessary) that w1 = 1 and that for 2 ≤ i ≤ k, wi is
an integral multiple of 2(1 + c(i− 1)) ·wi−1. Let mi denote the ratio wi/(2(1 + c(i− 1)) ·wi−1).

The rounding can increase the weight of each server at most by a factor of 4k−1c(k − 1) ·
. . . · c(1) ≤ Rk−1. So, proving a competitive ratio Rk for an instance with rounded weights will
imply a competitive ratio Rk ·Rk−1 < (Rk)

2 for arbitrary weights.
Finally, we assume that in every request ALG needs to move a server. This is without loss

of generality: requests served by the algorithm without moving a server do not affect its cost
and can only increase the optimal cost. This assumption will play an important role in the
algorithm below.

4.1 Algorithm Description

The algorithm is defined recursively, where ALGi denotes the algorithm using servers s1, . . . , si.
An execution of ALGi is divided into phases. The phases are independent of each other and
the overall algorithm is completely determined by describing how each phase works. We now
describe the phases.

ALG1 is very simple; given any request, ALG1 moves the server to the requested point. For
purposes of analysis, we divide the execution of ALG1 into phases, where each phase consists
of 2(c(1) + 1) = 6 requests.

Phase of ALG1:

for j = 1 to 2(c(1) + 1) do
Request arrives to point p: Move s1 to p.

Terminate Phase

We now define a phase of ALGi for i ≥ 2. Each phase of ALGi consists of exactly c(i) + 1
subphases. The first subphase within a phase is special and we call it the learning subphase.
During each subphase we execute ALGi−1 until the cost incurred is exactly wi.

9

During the learning subphase, for each point p ∈ Mi, ALGi maintains a count m(p) of the
number of requests r where p is requested in Mi, i.e. r(i) = p. Let us order the points of Mi

as p1, . . . , pn such that m(p1) ≥ . . . ≥ m(pn) (ties are broken arbitrarily). We assume that
|Mi| ≥ c(i) (if Mi has fewer points, we add some dummy points that are never requested). Let
P be the set of c(i) most requested points during the learning subphase, i.e. P = {p1, . . . , pc(i)}.

For the rest of the phase ALGi repeats the following c(i) times: it moves si to a point p ∈ P
that it has not visited during this phase, and starts the next subphase (i.e. it calls ALGi−1 until
its cost reaches wi). The figure below shows the algorithm.

Phase of ALGi, i ≥ 2:

Move si to an arbitrary point of Mi;
Run ALGi−1 until cost incurred equals wi ; // Learning subphase

For p ∈Mi, m(p)← # of requests such that r(i) = p; // Assume m(p1) ≥ . . . ≥ m(pn)
P ← {p1, . . . , pc(i)};

for j = 1 to c(i) do
Move si to an arbitrary point p ∈ P ;
P ← P − p;
Run ALGi−1 until cost incurred equals wi ; // (j + 1)th subphase

Terminate Phase

4.2 Analysis

We first note some basic properties that follow directly by the construction of the algorithm.
Call a phase of ALGi, i ≥ 2 complete, if all its subphases are finished. Similarly, a phase of
ALG1 is complete if it served exactly 6 requests.

Observation 4.1. For i ≥ 2, a complete phase of ALGi consists of (c(i) + 1) subphases.

Observation 4.2. For i ≥ 2, the cost incurred to serve all the requests of a subphase of ALGi

is wi.

These observations give the following corollary.

Corollary 4.3. For i ≥ 1, the cost incurred by ALGi to serve requests of a phase is 2(c(i)+1)wi.

Proof. For i = 1 this holds by definition of the phase. For i ≥ 2, a phase consists of (c(i) + 1)
subphases. Before each subphase ALGi moves server si, which costs wi, and moreover ALGi−1

also incurs cost wi.

Using this, we get the following two simple properties.

Lemma 4.4. By definition of ALG, the following properties hold:

1. A subphase of ALGi, i ≥ 2, consists of mi complete phases of ALGi−1.

2. All complete phases of ALGi, i ≥ 1, consist of the same number of requests.

Proof. The first property uses the rounding of the weights. By Corollary 4.3, each phase of
ALGi−1 costs 2(c(i− 1) + 1)wi−1 and, in each subphase of ALGi, the cost incurred by ALGi−1

is wi. So there are exactly wi/(2(c(i − 1) + 1)wi−1) = mi phases of ALGi−1.
The property above, combined with Observation 4.1 implies that a complete phase of ALGi

contains mi · (c(i) + 1) complete phases ALGi−1. Now, the second property follows directly by
induction: each phase of ALG1 consists of 2(c(1) + 1) = 6 requests, and each phase of ALGi

consists of mi(c(i) + 1) phases of ALGi−1.

10

Consider a phase of ALGi. The next lemma shows that, for any point p ∈Mi, there exists
a subphase where it is not requested too many times. This crucially uses the assumption that
ALGi has to move a server in every request.

Lemma 4.5. Consider a complete phase of ALGi, i ≥ 2. For any point p ∈Mi, there exists a
subphase such that at most 1/c(i) fraction of the requests have r(i) = p.

Proof. Let P be the set of c(i) most requested points of Mi during the learning subphase. We
consider two cases: if p ∈ P , there exists a subphase where sALG

i
is located at p. During this

subphase there are no requests such that r(i) = p, by our assumption that the algorithm moves
some server at every request. Otherwise, if p /∈ P , then during the learning subphase, the
fraction of requests such that r(i) = p is no more than 1/c(i).

To prove the competitiveness of ALGk with respect to the optimal offline solution ADVk,
the proof uses a subtle induction on k. Clearly, one cannot compare ALGi, for i < k against
ADVk, since the latter has more servers and its cost could be arbitrarily lower. So the idea is to
compare ALGi against ADVi, an adversary with servers s1, . . . , si, while ensuring that ADVi is
an accurate estimate of ADVk during time intervals when ALGi is called by ALGk. To achieve
this, the inductive hypothesis is required to satisfy certain properties described below. For a
fixed phase, let cost(ALGi) and cost(ADVi) denote the cost of ALGi and ADVi respectively.

(i) Initial Configuration of ADVi. Algorithm ALGi (for i < k), is called several times
during a phase of ALGk. As we don’t know the current configuration of ADVi each time
ALGi is called, we require that for every complete phase, cost(ALGi) ≤ Ri · cost(ADVi),
for any initial configuration of ADVi.

(ii) Adversary can ignore a fraction of requests. During a phase of ALGi, ADVk may
serve requests with servers si+1, . . . , sk, and hence the competitive ratio of ALGi against
ADVi may not give any meaningful guarantee. To get around this, we will require that
cost(ALGi) ≤ Ri · cost(ADVi), even if the ADVi ignores an f(i) := 4/c(i + 1) fraction of
requests. This will allow us to use the inductive hypothesis for the phases of ALGi where
ADVk uses servers si+1, . . . , sk to serve at most f(i) fraction of requests.

For a fixed phase, we say that ALGi is strictly Ri-competitive against ADVi, if cost(ALGi) ≤
Ri · cost(ADVi). The key result is the following.

Theorem 4.6. Consider a complete phase of ALGi. Let ADVi be an adversary with i servers
that is allowed to choose any initial configuration and to ignore any 4/c(i+1) fraction of requests.
Then, ALGi is strictly Ri-competitive against ADVi.

Before proving this, let us note that this directly implies Theorem 1.3. Indeed, for any
request sequence σ, all phases except possibly the last one, are complete, so cost(ALGk) ≤
Rk ·cost(ADVk). The cost of ALGk for the last phase, is at most 2(c(k)+1)wk , which is a fixed
additive term independent of the length of σ. So, ALGk(σ) ≤ Rk ·ADVk(σ)+2(c(k)+1)wk , and
ALGk is Rk-competitive. Together with loss in rounding the weights, this gives a competitive
ratio of at mot (Rk)

2 ≤ 22
k+3

for arbitrary weights.

We now prove Theorem 4.6.

Proof of Theorem 4.6. We prove the theorem by induction on k.

Base case (i = 1): As R1 > 6 and 4/c(2) = 1/8 ≤ 1/3, it suffices to show here that ALG1

is strictly 6-competitive in a phase where ADV1 can ignore at most 1/3 fraction of requests,

11

for any starting point of sADV1
1 . By Lemma 4.4, we have cost(ALG1) = 2(c(1) + 1) = 6. We

show that cost(ADV1) ≥ 1. Consider two consecutive requests rt−1, rt. By our assumption that
ALG1 has to move its server in every request, it must be that rt−1 6= rt. So, for any t if ADV1

does not ignore both rt−1 and rt, then it must pay 1 to serve rt. Moreover, as the adverary
can chose the initial server location, it may (only) serve the first request at zero cost. As a
phase consists of 6 requests, ADVi can ignore at most 6/3 = 2 of them, so there are at most
4 requests that are either ignored or appear immediately after an ignored request. So among
requests r2, . . . , r6, there is at least one request rt, such that both rt−1 and rt are not ignored.

Inductive step: Assume inductively that ALGi−1 is strictly Ri−1-competitive against any
adversary with i− 1 servers that can ignore up to 4/c(i) fraction of requests.

Let us consider some phase at level i, and let I denote the set of requests that ADVi chooses
to ignore during the phase. We will show that cost(ADVi) ≥ wi/(2Ri−1). This implies the
theorem, as cost(ALGi) = 2(c(i) + 1)wi by Lemma 4.4 and hence,

cost(ALGi)

cost(ADVi)
≤

2(c(i) + 1)wi

wi/(2Ri−1)
= 4(c(i) + 1)Ri−1 ≤ 8 · c(i) ·Ri−1 = Ri.

First, if ADVi moves server si during the phase, its cost is already at least wi and hence more
than wi/(2Ri−1). So we can assume that sADV

i
stays fixed at some point p ∈Mi during the entire

phase. So, ADVi is an adversary that uses i−1 servers and can ignore all requests with r(i) = p
and the requests of I. We will show that there is a subphase where cost(ADVi) ≥ wi/(2Ri−1).

By Lemma 4.5, there exists a subphase, call it j, such that at most 1/c(i) fraction of
the requests have r(i) = p. As all c(i) + 1 subphases have the same number of requests
(by Lemma 4.4), even if all the requests of I belong to subphase j, they make up at most
(4 · (c(i) + 1))/c(i + 1) ≤ 1/c(i) fraction of its requests, where the inequality follows from
equation (1). So overall during subphase j, ADVi uses servers s1, . . . , si−1 and ignores at most
2/c(i) fraction of requests.

We now apply the inductive hypothesis together with an averaging argument. As subphase
j consists of mi phases of ALGi−1, all of equal length, and ADVi ignores at most 2/c(i) fraction
of requests of the subphase, there are at most mi/2 phases of ALGi−1 where it can ignore more
than 4/c(i) fraction of requests. So, for at least mi/2 phases of ALGi−1, ADVi uses i−1 servers
and ignores no more than 4/c(i) fraction of requests. By the inductive hypothesis, ALGi−1 is
strictly Ri−1-competitive against ADVi in these phases. As the cost of ALGi−1 for each phase
is the same (by Lemma 4.4), overall ALGi is strictly 2Ri−1 competitive during subphase j. As
the cost of ALGi during subphase j is wi, we get that cost(ADVi) ≥ wi/2Ri−1, as claimed.

Acknowledgments

We would like to thank René Sitters for useful discussions on the generalized k-server problem.

References

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized paging
algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000.

[2] John Augustine and Nick Gravin. On the continuous CNN problem. In ISAAC, pages 254–265,
2010.

[3] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-competitive
algorithm for the k -server problem. J. ACM, 62(5):40, 2015.

12

[4] Nikhil Bansal, Marek Eliáš, and Grigorios Koumoutsos. Weighted k-server bounds via combinatorial
dichotomies. CoRR, abs/1704.03318, To appear in FOCS’17.

[5] Yair Bartal, Béla Bollobás, and Manor Mendel. Ramsey-type theorems for metric spaces with
applications to online problems. J. Comput. Syst. Sci., 72(5):890–921, 2006.

[6] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge Uni-
versity Press, 1998.

[7] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical task
system. J. ACM, 39(4):745–763, 1992.

[8] Ashish Chiplunkar. Personal Communication. Oct 2016.

[9] Marek Chrobak. SIGACT news online algorithms column 1. SIGACT News, 34(4):68–77, 2003.

[10] Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan. New results on
server problems. SIAM J. Discrete Math., 4(2):172–181, 1991.

[11] Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991.

[12] Z. Dvir. On the size of Kakeya sets in finite fields. J. Amer. Math. Soc., 22:1093–1097, 2009.

[13] J. S. Ellenberg and D. Gijswijt. On large subsets of Fn
q with no three-term arithmetic progression.

ArXiv e-prints, arXiv:1605.09223, 2016.

[14] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E.
Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.

[15] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem. Theor.
Comput. Sci., 130(1):85–99, 1994.

[16] L. Guth. Polynomial Methods in Combinatorics. University Lecture Series. American Mathematical
Society, 2016.

[17] Kazuo Iwama and Kouki Yonezawa. Axis-bound CNN problem. IEICE TRANS, pages 1–8, 2001.

[18] Kazuo Iwama and Kouki Yonezawa. The orthogonal CNN problem. Inf. Process. Lett., 90(3):115–
120, 2004.

[19] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2011.

[20] Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.

[21] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM, 42(5):971–
983, 1995.

[22] Elias Koutsoupias and Christos H. Papadimitriou. The 2-evader problem. Inf. Process. Lett.,
57(5):249–252, 1996.

[23] Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server variants. Theor.
Comput. Sci., 324(2-3):347–359, 2004.

[24] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for server
problems. J. ACM, 11(2):208–230, 1990.

[25] Jǐŕı Matoušek. Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Al-
gebra. American Mathematical Society, 2010.

[26] Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging algorithm.
Algorithmica, 6(6):816–825, 1991.

[27] René Sitters. The generalized work function algorithm is competitive for the generalized 2-server
problem. SIAM J. Comput., 43(1):96–125, 2014.

13

[28] René Sitters, Leen Stougie, and Willem de Paepe. A competitive algorithm for the general 2-server
problem. In ICALP, pages 624–636, 2003.

[29] René A. Sitters and Leen Stougie. The generalized two-server problem. J. ACM, 53(3):437–458,
2006.

[30] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and paging
rules. Commun. ACM, 28(2):202–208, 1985.

[31] Bas van Geffen, Bart Jansen, Noud de Kroon, Rolf Morel, and Jesper Nederlof. Optimal algorithms
on graphs of bounded width (and degree): Cutwidth sometimes beats treewidth, but planarity does
not help. Unpublished.

14

A Lower Bounds

We present simple lower bounds on the competitive ratio of deterministic and randomized
algorithms for the generalized k-server problem in uniform metrics.

Deterministic Algorithms. We show a simple construction due to [23] that directly implies
a (2k − 1)/k lower bound on the competitive ratio of deterministic algorithm. Using a more
careful argument, [23] also improve this to 2k − 1.

Assume that each metric space Mi has n = 2 points, labeled by 0,1. A configuration
of servers is a vector c ∈ {0, 1}k , so there are 2k possible configurations. Now, a request
r = (r1, . . . , rk) is unsatisfied if and only if the algorithm is in the antipodal configuration
r̄ = (1− r1, . . . , 1− rk). Let ALG be any online algorithm and ADV be the adversary. Initially,
ALG and ADV are in the same configuration. At each time step, if the current configuration
of ALG is a = (a1, . . . , ak), the adversary requests ā until ALG visits every configuration. If p
is the configuration that ALG visits last, the adversary can simply move to p at the beginning,
paying at most k, and satisfy all requests until ALG moves to p. On the other hand, ALG
pays at least 2k − 1 until it reaches p. Once ALG and ADV are in the same configuration, the
strategy repeats.

Randomized Algorithms. Viewing generalized k-server as a metrical service system (MSS),
we can get a non-trivial lower bound for randomized algorithms. In particular, we can apply
the Ω(logN

log2 logN
) lower bound due to Bartal et al. [5] on the competitive ratio of any randomized

online algorithm against oblivious adversaries, for any metrical task system on N states. Of
course, the MSS corresponding to a generalized k-server instance is restricted as the cost vectors
may not be completely arbitrary. However, we consider the case where all metrics Mi have n = 2
points. Let s be an arbitrary state among the N = 2k possible states. A request in the antipodal
point s only penalizes s and has cost 0 for every other state. So the space of cost vectors here
is rich enough to simulate any MSS on these N states5.

This implies a Ω(k

log2 k
) lower bound for generalized k-server problem on uniform metrics.

5Note that if there is a general MSS request that has infinite cost on some subset S of states, then decomposing
this into |S| sequential requests where each of them penalizes exactly one state of S, can only make the competitive
ratio worse.

15

	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Deterministic algorithm for uniform metrics
	3 Randomized algorithm for uniform metrics
	4 Algorithm for weighted uniform metrics
	4.1 Algorithm Description
	4.2 Analysis

	A Lower Bounds

