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Abstract

We investigate and compare the fundamental performance of several distributed learning
methods that have been proposed recently. We do this in the context of a distributed version
of the classical signal-in-Gaussian-white-noise model, which serves as a benchmark model
for studying performance in this setting. The results show how the design and tuning of a
distributed method can have great impact on convergence rates and validity of uncertainty
quantification. Moreover, we highlight the difficulty of designing nonparametric distributed
procedures that automatically adapt to smoothness.
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1. Introduction

Both in statistics and machine learning there has been substantial interest in the design and
study of distributed statistical or learning methods in recent years. One driving reason is the
fact that in certain applications datasets have become so large that it is often unfeasible, or
computationally undesirable, to carry out the analysis on a single machine. In a distributed
method the data are divided over a cluster consisting of several machines and/or cores.
The machines in the cluster then process their data locally, after which the local results
are somehow aggregated on a central machine to finally produce the overall outcome of the
statistical analysis. Distributed methods are not only used for computational reasons, but
are for instance also of interest in situations where privacy is important and it is undesirable
that all data are handled at a single location. Moreover, there are applications in which
data are by construction gathered at multiple locations and first processed locally, before
being combined at a central location.
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Over the last years a variety of distributed methods have been proposed. Recent exam-
ples include Consensus Monte Carlo (Scott et al. (2016)), WASP (Srivastava et al. (2015)),
distributed GP’s (Deisenroth and Ng (2015)), and methods proposed in Shang and Cheng
(2015), Jordan et al. (2016), Lee et al. (2015), Volgushev et al. (2017), to mention but a few.
Most papers on distributed methods do extensive experiments on simulated, benchmark and
real data to numerically assess and compare the performance of the various methods. Some
papers also derive a number of theoretical properties. Theoretical results on the perfor-
mance of distributed methods are not yet widely available however and there is certainly
no common theoretical framework in place that allows a clear theoretical comparison of
methods and the development of an understanding of fundamental performance guarantees
and limitations. Clearly we can not consider the complete list of all existing methods in
this paper. We limit ourselves to a number of representative methods that are Bayesian in
nature, allowing for a meaningful comparison.

Since a better theoretical understanding of distributed methods can help to pinpoint
fundamental difficulties and opportunities, we develop a framework in this paper which
allows us to study and compare the performance of various methods. We are in particular
interested in high-dimensional, or nonparametric problems. It is by now well known that the
performance of learning or statistical methods in such settings depends crucially on wether
or not a method succeeds in realizing the correct bias-variance trade-off, or, in different
terminology, succeeds in balancing under- and overfitting. For classical, non-distributed
settings we have a rather well-developed understanding of how methods should be tuned to
achieve a proper bias-variance trade-off. For distributed methods however, such theory is
currently not yet available.

To be able to develop relevant theory we study an idealized model, which is a distributed
version of the canonical “signal-in-white-noise” model that serves as an important bench-
mark model in mathematical statistics (see for instance Tsybakov (2009); Johnstone (2017);
Giné and Nickl (2016)). The model is on the one hand rich enough to be interesting, in
the sense that it is really distributed in nature and the unknown object that needs to be
learned is truly infinite-dimensional. On the other hand it is tractable enough to allow
detailed mathematical analysis. In the non-distributed case the signal-in-white-noise model
is well known to be very closely related to other nonparametric models, such as nonpara-
metric regression and density estimation. (This can be made very precise in the context
of Le Cam’s theory of limits of experiments (e.g. Le Cam (2012), Brown and Low (1996),
Nussbaum (1996)).) Similarly, the distributed signal-in-white-noise model that we consider
in this paper provides a unified framework to compare methods that were originally intro-
duced in different settings. Therefore, although our theoretical results are all obtained in
the context of this relatively simple “benchmark model” and we consider only a number
of representative distributed methods, we believe that the conclusions that we draw are
relevant more generally. We introduce the model in Section 2.

It is not difficult to see that if the number of machines m is relatively large with respect
to the total sample size, or signal-to-noise-ratio n, then doing things completely naively in
the distributed case leads to a sub-optimal bias-variance trade-off (see also the simulation
example in Section 2). In particular, just computing the “usual” estimators on every local
machine and then averaging them on the central machine typically leads to a global esti-
mator with a bias that is too large. To achieve good performance, the trade-off has to be
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adjusted somehow. This can in principle be done in various ways. For instance by locally
choosing the “wrong” settings for tuning parameters on purpose, or, in a Bayesian setting,
by adjusting the likelihood (e.g. raising it to some power) or by adjusting the prior. In
Section 3 we study to what degree various methods that have been proposed in the liter-
ature succeed in ultimately achieving the right trade-off. We will see that some are more
successful than others in this respect.

An important observation that we make is that the methods that are shown to work
well in Section 3 all use information on aspects of the true signal that are in principle
unknown, such as its degree of regularity. A key question is whether in distributed settings
it is fundamentally possible to set tuning parameters correctly in a purely data-driven way,
without using such information. In the non-distributed setting it is well known that such
adaptive methods indeed exist (e.g. Tsybakov (2009) or Giné and Nickl (2016)). In the
distributed case that we study here however, this is much less clear. In Section 4 we show
that using a distributed version of a standard adaptation method that is known to work
in the non-distributed case, such as maximum marginal likelihood empirical Bayes, can
lead to sub-optimal results in the distributed setting. We will argue that this seems to be a
fundamental issue and that we expect that correct automatic setting of tuning parameters in
distributed methods is fundamentally more challenging than in the classical, non-distributed
case. We believe this is an important issue and want to highlight it as an important and
interesting topic for future research.

To further study the fundamental potential and limitations of distributed methods, one
should also take into account that there are typically computational and/or communication
cost restrictions in such settings. In fact, without such restrictions the matter of obtaining
good strategies is essentially non-existent, since we could simply communicate all data
to a central machine and then apply an existing optimal non-distributed method. The
main goal of this paper, however, is to study and compare the theoretical performance of
a number of existing distributed methods. The methods we consider are all divide-and-
conquer algorithms in which computational or communication limitations are not explicitly
imposed, however such restrictions do motivate the methods and all methods implicitly
or explicitly consider situations in which simply aggregating and handling all data in one
machine is not an option. Formally taking into account communication restrictions in the
theoretical analysis is an important next step, but turns out to be rather delicate. We
recently obtained some first results in the follow-up paper Szabo and van Zanten (2019),
see also Zhu and Lafferty (2018) for related work.

The remainder of the paper is organized as follows. In the next section we introduce
the distributed version of the signal-in-white-noise model and provide a simple simulation
example to show that in a distributed setting, naively combining inferences from local
machines into a global estimator may produce misleading results. In Section 3 we study the
performance of a number of Bayesian procedures for signal reconstruction in the distributed
signal-in-white-noise model introduced in Section 2. We include a number of methods that
have recently been proposed in the literature. We show that some succeed in obtaining the
appropriate bias-variance trade-off, but others do not. Moreover, the ones that do produce
good results are all non-adaptive, in the sense that they use knowledge of the smoothness
of the unkown signal to set their tuning parameters. In the final Section 4 we consider the
more realistic setting in which this smoothness is unknown. We study a distributed method
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that has been proposed for data-driven tuning of the hyperparameters and show that there
exist “difficult signals”, which this method can not recover in the distributed model at an
optimal rate. We argue that this appears to be a fundamental issue, and that designing
procedures that automatically adapt to smoothness is fundamentally more challenging in
the distributed framework. Mathematical proofs are collected in appendix Sections A and
B.

2. Distributed signal-in-white-noise model

Consider the problem of estimating a signal in Gaussian white noise. This is the continuous
regression-type problem in which we observe a signal X = (Xt : t ∈ [0, 1]) satisfying a
stochastic differential equation

Xt =

∫ t

0
f(s) ds+

σ√
n
Wt,

where W is a Brownian motion, modelling the “white noise”, and f is an unknown signal,
modelled by a square integrable function, that needs to be recovered from the data. The
natural number n is the signal-to-noise ratio. Its size affects the difficulty of the problem
and n can be seen as playing the role of sample size in this problem.

By expanding the data in a fixed orthonormal basis of L2[0, 1] (for instance the classical
Fourier basis), it is seen that the statistical problem of recovering the signal f from the data
X is equivalent to the problem of recovering the sequence of (Fourier) coefficients θ ∈ `2
from noisy observations Y1, Y2, . . . , satisfying

Yi = θi +

√
σ2

n
Zi, i = 1, 2, . . . , (2.1)

where the Zi are independent standard normal variables. This is the usual setting in which
there is a single observer that observes every coefficient θi with additive Gaussian noise with
variance σ2/n. See for instance Tsybakov (2009); Johnstone (2017); Giné and Nickl (2016)
for more details on this classical model.

In the distributed version of the model we divide the “precision budget” n over m
different observers, so that each one observes the signal in Gaussian noise with variance
σ2m/n, independent of the others. In other words, observer j has data Y j

1 , Y
j

2 , . . . satisfying

Y j
i = θi +

√
σ2m

n
Zji , i = 1, 2, . . . , (2.2)

where the Zji are independent, standard Gaussian random variables. We call the m inde-
pendent sub-problems in which the signal-to-noise ratio is σ2m/n the “local” problems.

Note that the classical, non-distributed signal-in-white-noise model is obtained again
from the distributed model by aggregating all the local data. Indeed, if for j = 1, 2, . . . we
define Yi = m−1

∑m
j=1 Y

j
i , then (2.1) holds, with Zi = m−1/2

∑m
j=1 Z

j
i independent standard

normal variables. This model has been studied extensively in the literature, serving as a
canonical model for understanding the performance of high-dimensional or nonparametric
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Figure 1: True signal.

statistical procedures. It is well known for instance that if the true signal θ belongs to an
ellipsoid or a hyper rectangle of the form

{θ ∈ `2 :
∑

i2βθ2
i ≤M2} or {θ ∈ `2 : sup

i
(i1+2βθ2

i ) ≤M2}

for some β,M > 0, then the optimal rate of convergence of estimators (relative to the `2-
norm) is of the order n−β/(1+2β). Moreover, there exist so-called adaptive estimators, which
achieve this rate without using knowledge about the parameters β or M that describe the
complexity, or regularity of the true signal. See, for instance, Tsybakov (2009) or Giné and
Nickl (2016). Our central question is whether or not the same results can be obtained in the
distributed setting in which each of the m different observers first separately make inference
about the signal, and then the local estimates are aggregated into one joint estimator. For
technical convenience we will quantify regularity using hyper rectangles in the remainder of
the paper, but the analoguous results can be obtained for ellipsoids.

The specific examples of distributed procedures that we consider in this paper are about
distributed Bayesian methods. These methods have in common that each local observer
first chooses a prior distribution and computes the corresponding local posterior distribution
using the local data (or an appropriate modification). In the next step the m local posteriors
are somehow aggregated into a global posterior-type distribution, which is then used to
produce an estimate of the signal and/or a quantification of the associated uncertainty.
In general there is no guarantee that this “aggregated posterior” resembles the posterior
distribution that would be obtained in the non-distributed setting, using all the data at
once. In particular, it is not clear beforehand how a distributed Bayes method should be
constructed in order to have good theoretical properties, like optimal convergence rates,
reliable uncertainty quantification or adaptation properties. In this paper we investigate
various distributed methods that have been proposed from this point of view.

To see that interesting things can happen it is exemplifying to compare the results
of a distributed and a non-distributed (Bayesian) analysis of simulated data. Concretely,
we consider a true signal θ consisting of the Fourier coefficients of the function shown in
Figure 1. For this signal we simulate data according to (2.2), with σ = 1, m = 40 and
n = 120 × 40 = 4800. Then for every local observer a Bayesian procedure is carried
out with a Gaussian prior on θ, postulating that the coordinates θi are independent and
N(0, i−1−2α)-distributed. The hyperparameter α, which describes the regularity of the prior,
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Figure 2: Signal reconstruction using the distributed method (left) and the non-distributed
method (right).

is determined using a distributed version of maximum marginal likelihood, as described in
Section 4. This analysis leads to m = 40 local posterior distributions. These are then
combined to produce an overall posterior distribution for the signal. The precise procedure
is described in Section 4. The resulting estimator for the signal, together with pointwise 95%
credible intervals, is shown in the left plot in Figure 2. The corresponding non-distributed
result is obtained by first aggregating all local data as in (2.1) and then carrying out the same
Bayesian procedure on these complete data. The resulting non-distributed reconstruction
of the signal is shown on the right in Figure 2.

The non-distributed version of this method was studied theoretically for instance in
Knapik et al. (2016) and Szabó et al. (2015), where it was shown that the method is
adaptive and rate-optimal. The simulation suggests however that an apparently reasonable
distributed analogue of the method does not necessarily inherit these favourable properties.
The procedure seems to be underfitting and the credible intervals appear to be too narrow.
We will argue that this is in some sense a fundamental issue and in the next sections we
will study various proposed distributed methods to investigate to what degree they succeed
in avoiding or solving these problems.

3. Results for non-adaptive procedures

In this section we study the performance of a number of Bayesian procedures for signal
reconstruction in the distributed signal-in-white-noise model introduced in Section 2. All
methods involve putting a prior distribution on the unknown signal θ ∈ `2 in each local
problem and then combining the resulting local posteriors into one global posterior-type
distribution. To be able to compare the various methods we consider the same Gaussian
process (GP) prior in every case, namely the prior

Π(·|α) =

∞⊗
i=1

N(0, i−1−2α), (3.1)

which postulates that the coefficients θi of the signal θ are independent and N(0, i−1−2α)-
distributed. The hyper parameter α > 0 essentially controls the regularity of the prior, since
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it basically controls how fast the Fourier coefficients decrease. (Some of the methods we
consider use exactly this prior, others modify it in a certain way with the aim of achieving
better performance.) The global posterior-type distribution depends on all the data Y =
(Y j
i : j = 1, . . . ,m; i = 1, 2, . . .) and is denoted by Π(· |Y). It is generally some type

of average of the local posteriors, but its precise construction differs between proposed
methods. We will see that this can have a significant effect on the performance.

We take an asymptotic perspective and investigate in every case the rate at which the
global posterior contracts around the true signal as n → ∞ relative to the `2-norm, which
is as usual defined by ‖θ‖22 =

∑
θ2
i . For a sequence of positive numbers εn → 0 we say that

the global posterior contracts at the rate εn around the true signal θ0 if for all sequences
Mn →∞,

Eθ0Π(θ ∈ `2 : ‖θ − θ0‖2 > Mnεn |Y)→ 0

as n → ∞. This means that asymptotically, all posterior mass is concentrated in balls
around the true signal θ0 with `2-radius of the order εn.

Additionally, we study how well the posterior quantifies the remaining uncertainty.
Specifically, we consider the coverage probabilities of credible balls around the global poste-
rior mean. These credible sets are constructed by first computing the mean θ̂ of the global
“posterior” Π(· |Y). Then for a level γ ∈ (0, 1), the posterior is used to determine the
radius rγ such that the ball around θ̂ with radius rγ receives 1− γ posterior mass, i.e.

Π(θ : ‖θ − θ̂‖2 ≤ rγ |Y) = 1− γ.

For L > 0, the credible set Ĉ(L) is subsequently defined by

Ĉ(L) = {θ : ‖θ − θ̂n‖2 ≤ Lrγ}. (3.2)

(The extra constant L gives some added flexibility, for L = 1 we obtain an exact 1 − γ
credible set.) We are interested in the coverage probabilities Pθ0(θ0 ∈ Ĉ(L)). If this tends
to 0 as n → ∞, the credible sets are asymptotically not frequentist confidence sets, hence
give a misleading quantification of the uncertainty. Ideally, the coverage probabilities stay
bounded away from 0 as n→∞.

In the non-distributed case m = 1 it is well known that both the rate at which the
posterior contracts around the truth and the behaviour of the coverage probabilities of
credible sets depend crucially on how the hyper parameter α is tuned. The correct bias-
variance trade-off is achieved if α is in accordance with the regularity of the unknown signal.
To make this precise, we will consider signals belonging to hyper rectangles of the form

Hβ(M) =
{
θ ∈ `2 : sup

i
(i1+2βθ2

i ) ≤M2
}

(3.3)

for some β,M > 0. It is shown for instance in Knapik et al. (2011) for the non-distributed
case that if θ0 ∈ Hβ(M) and we set α = β, then the posterior contracts around θ0 at the
optimal rate n−β/(1+2β). Moreover, for L large enough it then holds that Pθ0(θ0 6∈ Ĉ(L)) ≤
γ. Hence, in the non-distributed case it is optimal to choose the hyper parameter α in such
a way that the regularity α of the prior matches the regularity β of the true signal.

In the remainder of this section we investigate distributed methods from this point of
view. We will see that the different proposed methods lead to different behaviours in terms
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of contraction rates and coverage. We stress that the results in this section are non-adaptive,
in the sense that we allow the tuning parameter α and other aspects of the constructions
to use knowledge of the regularity β of the true signal. This is of course not realistic. It
is however important to first understand for every method whether ideally, if the value of
β is given to us by an oracle, it is possible to tune the method optimally. Whether this is
also possible adaptively, without knowing β, is then the next natural question, which we
address in Section 4.

3.1. Naive averaging of local posterior draws

Recall that we have m local observers that each have a dataset Yj = (Y j
1 , Y

j
2 , . . .) of noisy

coefficients satisfying (2.2). The aim is to recover the true sequence of coefficients θ.
As a starting point, and to have a baseline case to compare the other methods to, we

analyse the naive distributed approach in which in every local problem we simply use the
prior Π(· |α) defined by (3.1), with α = β equal to the regularity of the true sequence θ,
in the sense of (3.3). Every local observer then computes its corresponding local posterior,
Πj(· |Yj). By Bayes’ formula this is given by

dΠj(θ |Yj) ∝ p(Yj | θ) dΠ(θ |β),

where the likelihood for the jth local problem is given by

p(Yj | θ) ∝
∏

e−
1
2

n(Y
j
i
−θi)

2

σ2m . (3.4)

Finally these local posteriors are combined into a global, “average posterior” ΠI(· |Y) by
postulating that a draw from this global posterior is generated by first drawing once from
each local posterior and then averaging these m independent draws. (Formally, this means
that the global “posterior” ΠI(· |Y) is the convolution of the rescaled local posteriors
Π1(m× · |Y1), . . . , Πm(m× · |Ym)).

This distributed method is conceptually very simple, but it turns out that neither from
the point of view of contraction rates, nor from the point of view of uncertainty quantifi-
cation it performs very well. The reason is basically that although the choice α = β of the
tuning parameter of the prior correctly matches squared bias, variance and posterior spread
in the local problems, the averaging procedure results in a global “posterior” for which
the spread and the variance of the mean are too small relative to the squared bias. The
following theorem asserts that for every smoothness level β > 0 there exist β-regular truths
for which the contraction rate of the posterior deteriorates substantially and for which the
uncertainty quantification by the credible sets (3.2) constructed from the global posterior
ΠI(· |Y) is useless, no matter how far they are blown up by a constant L > 0.

Theorem 1 (naive averaging) For every β,M > 0 there exists a θ0 ∈ Hβ(M) such that
for small enough c > 0,

Eθ0ΠI(θ : ‖θ − θ0‖2 ≤ cm
β

1+2β n
− β

1+2β |β,Y)→ 0

as m→∞ and n/m→∞. Furthermore, for all L > 0 it holds that

Pθ0
(
θ0 ∈ Ĉ(L)

)
→ 0.
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Proof The proof of the theorem is given in Section A.1.

In the literature several less naive distributed strategies have been proposed. These
methods either change the local likelihoods in a certain way, and/or the priors that are
locally used, and/or the way that the local posteriors are aggregated. In the next few
sections we investigate whether such strategies can improve the bad asymptotic performance
of the naive averaging method.

3.2. Adjusted local likelihoods and averaging

One perspective on the bad performance of the naive method is to say that since the “sample
size” n/m in the local problems is too small, the influence of the data on the local posterior
is too small, resulting in a variance (and spread) that is too small relative to the squared
bias in the global posterior. A possible way to remedy this that has been proposed in several
papers is to raise the local likelihoods to the power m, in order to mimic the situation that
we have sample size n in the local problems. This generalized Bayesian approach for the
local problems has for instance been considered in the distributed context by Srivastava
et al. (2015). They combine it with a different aggregation method however, which we
consider in Section 3.4. In this section we still consider the simple averaging scheme, in
order to isolate the effect of adjusting the local likelihoods.

So in method II all local observers use the prior Π(· |α) again, with α = β equal to the
regularity of the truth. They now each compute a generalized local posterior Π̃j(· |Yj),
defined by

dΠ̃j(θ |Yj) ∝
(
p(Yj | θ)

)m
dΠ(θ |β).

As before the global “posterior” ΠII(· |Y) is defined by postulating that a draw from this
global posterior is generated by first drawing once from each local generalized posterior and
then averaging these m independent draws.

The following theorem states that this method indeed improves the naive approach of
Section 3.1. The global posterior now contracts at the optimal rate for every β-regular
truth. Unfortunately, the bad behaviour of the credible sets has not been remedied. For
this approach the uncertainty quantification is in fact misleading for all β-regular truths.

Theorem 2 (adjusted likelihoods + averaging) For all β,M > 0 and all sequences
Mn →∞,

sup
θ0∈Hβ(M)

Eθ0ΠII(θ : ‖θ − θ0‖2 ≥Mnn
− β

1+2β |Y)→ 0

as n,m→∞. However, for all θ0 ∈ Hβ(M) and all L > 0 it holds that

Pθ0
(
θ0 ∈ Ĉ(L)

)
→ 0.

Proof The proof is given in Section A.2.
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3.3. Adjusted priors and averaging

Adjusting the likelihood as in the preceding section resulted in a correct trade-off between
the bias and the variance of the global posterior mean, yielding an optimal posterior contrac-
tion rate. The spread of the posterior remained too small in comparison however, resulting
in credible sets with zero asymptotic coverage. Instead of raising the local posteriors to the
power m, as considered in the preceding section, we could alternatively raise the prior den-
sity to the power 1/m. This has for instance been proposed in the context of the “Consensus
Monte Carlo” approach by Scott et al. (2016), in combination with simple averaging of the
local posteriors. In this section we investigate the performance of this method in terms of
posterior contraction and uncertainty quantification in our distributed signal-in-white-noise
model.

The prior Π(· |α) that we use in the local problems is again a product of centered
Gaussians with variance i−1−2α. Raising the corresponding densities to the power 1/m
has the effect of multiplying the ith prior variance by m. Hence, in our case raising the
prior density to the power 1/m is the same as multiplicative rescaling, postulating that θ
is a-priori distributed according to Π(· |α,m), where

Π(·|α, τ) =

∞⊗
i=1

N(0, τ i−1−2α) (3.5)

for α, τ > 0. Rescaled GPs have also been considered by Shang and Cheng (2015), who
have used them in the distributed setting to construct global credible sets from local ones.

Using rescaling we can actually obtain good results if the prior regularity α is not exactly
equal to the true regularity β. By using a scaling different from τ = m we can somehow
compensate for the mismatch between α and β, at least in the range β ≤ 1 + 2α. In the
non-distributed setting this is a well-known phenomenon, see for instance van der Vaart
and van Zanten (2007); Knapik et al. (2011); Szabó et al. (2013).

The distributed procedure that we consider in this section then takes the following form.
Every local observer uses the rescaled prior Π(·|α, τ) defined by (3.5), with α > 0 and

τ = mn
2(α−β)
1+2β ,

where β is the regularity of the truth. Next the (normal, unadjusted) corresponding pos-
teriors are computed and they are averaged into a global “posterior” ΠIII(· |Y) as in the
preceding sections. (Note that if in the local problems the prior regularity α = β is used,
then τ = m, so the method corresponds to raising the prior density to the power 1/m.)

The following theorem gives the posterior contraction and coverage results for this
method.

Theorem 3 (adjusted priors + averaging) Suppose β,M > 0 and β ≤ 1 + 2α. Then
for all sequences Mn →∞,

sup
θ0∈Hβ(M)

Eθ0ΠIII(θ : ‖θ − θ0‖2 > Mnn
− β

1+2β |Y)→ 0

10
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as n→∞. Moreover, for all γ ∈ (0, 1) it holds that

sup
θ0∈Hβ(M)

Pθ0

(
θ0 6∈ Ĉ(L)

)
≤ γ

for large enough L > 0.

Proof See Section A.3.

So adjusting the prior in this way actually works better than adjusting the likelihood.
Not only do we get optimal contraction rates, but the credible sets that this method produces
have asymptotic frequentist coverage too. The proof shows that the credible sets have
optimal radius of the order n−β/(1+2β) as well.

3.4. Adjusted local likelihoods and Wasserstein barycenters

In Section 3.2 we saw that raising the local likelihoods to the powerm and then averaging the
corresponding generalized posteriors yields optimal contraction rates, but can produce badly
performing credible sets. In this section we study the approach considered by Minsker et al.
(2014); Srivastava et al. (2015) in the context of their “WASP” method, which consists in
aggregating the local posteriors not by simple averaging, but by computing their Wasserstein
barycenter.

The generalized local posteriors Π̃j(· |Yj), as defined in Section 3.2, are (Gaussian)
measures on `2. The 2-Wasserstein distance W2(µ, ν) between two probability measures µ
and ν on `2 is defined by

W 2
2 (µ, ν) = inf

γ

∫ ∫
‖x− y‖22 γ(dx, dy),

where the infimum is over all measures γ on `2 × `2 with marginals µ and ν. The cor-
responding 2-Wasserstein barycenter of m probability measures µ1, . . . , µm on `2 is then
defined by

µ̄ = argmin
µ

1

m

m∑
j=1

W 2
2 (µ, µj),

where the minimum is over all probability measures on `2 with finite second moments.
There exist effective algorithms to compute Wasserstein barycenters in many cases, see for
instance Cuturi and Doucet (2014) and the references therein.

Having this notion at our disposal the distributed method we consider in this section
proceeds as follows. In every local problem the prior Π(· |α) is used, with α = β equal
to the regularity of the truth. Next, the corresponding generalized posteriors Π̃j(· |Yj)
are computed locally, which involves raising the likelihood to the power m as described in
Section 3.2. Finally, the global “posterior” ΠIV (· |Y) is constructed as the 2-Wasserstein
barycenter of the local measures Π̃1(· |Y1), . . . , Π̃m(· |Ym).

The following theorem asserts that this method results in optimal posterior contraction
rates and correct quantification of uncertainty.
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Theorem 4 (adjusted likelihoods + barycenters) For all β,M > 0 and all sequences
Mn →∞,

sup
θ0∈Hβ(M)

Eθ0ΠIV (θ : ‖θ − θ0‖2 > Mnn
− β

1+2β |Y)→ 0

as n→∞. Moreover, for all γ ∈ (0, 1) it holds that

sup
θ0∈Hβ(M)

Pθ0

(
θ0 6∈ Ĉ(L)

)
≤ γ

for large enough L > 0.

Proof See Section A.4.

3.5. Product of Gaussian process experts

The proofs of the theorems presented so far show that since in our context the global
“posterior” is always a Gaussian measure, the behaviour of the procedure can be understood
by analyzing three central quantities: the bias of the posterior mean, the variance of the
posterior mean, and the spread of the posterior. Depending on how these quantities are
related we have found different behaviours: sub-optimal posterior contraction and bad
coverage of credible sets (Section 3.1), optimal posterior contraction but bad coverage of
credible sets (Section 3.2), and optimal posterior contraction and also good coverage of
credible sets (Sections 3.3 and 3.4).

In principle it is now straightforward to analyze different methods as well, provided the
three central quantities can be controlled. As an illustration we consider in this section
the single-layer version of the product-of-Gaussian-process-expert (PoE) model, introduced
in Ng and Deisenroth (2014) and a generalization proposed in Cao and Fleet (2014). An
interesting fact is that we will encounter a combination of behaviours that we have not seen
yet: sub-optimal contraction rates, but good coverage of credible sets. These methods were
introduced to deal with the distributed non-parametric regression model, but for the sake of
comparison we analyze them in the context of our distributed signal-in-white-noise model,
which can be thought of as an idealized version of the regression model.

The idea of the basic version of the Gaussian PoE model is to employ a Gaussian prior
in every local machine, compute the corresponding posterior densities and approximate the
global posterior density by multiplying and normalizing these. In our infinite-dimensional
setting this does not make sense strictly speaking, since we can not express priors and
posteriors on `2 in terms of densities with respect to some generic dominating measure. We
could remedy this by considering a truncated version of our distributed model, where we
assume we only observe the first n noisy coefficients Y j

i in every machine, say, and focus on
making inference about the first n true coefficients θi. This would make the setting finite-
dimensional, allowing us to write prior and posterior densities with respect to the Lebesgue
measure. Alternatively, we can stay in the infinite-dimensional setting of the paper and
just reason formally and still arrive at a well-defined global PoE “posterior”. This is the
approach we follow here.

12
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Indeed, say that as before we use the prior Π(· |α) given by (3.1) in every local machine,
with α = β equal to the regularity of the true signal. This prior has formal “density”
proportional to

θ 7→
∏

e
−1

2
θ2i

i−1−2β .

By completing the square we see that the product of this expression with the local likelihood
given by (3.4) is, still formally, proportional to

θ 7→
∏

e
−1

2
θ2i

i−1−2β e−
1
2

n(Y
j
i
−θi)

2

σ2m ∝
∏

e−
1
2
θ2i (i1+2β+ n

mσ2
)+θi

nY
j
i

mσ2 .

Taking the product over j we then obtain the formal density of the PoE posterior, which is
proportional to

θ 7→
∏

e−
1
2
θ2i (mi1+2β+ n

σ2
)+θi

n
∑m
j=1 Y

j
i

mσ2 .

Now this last expression is, up to a constant, the density of a product of Gaussians with
means θ̂i and variances t2i given by

θ̂i =
nm−1

∑
Y j
i

n+ σ2mi1+2β
, t2i =

σ2

n+ σ2mi1+2β
.

The latter is in fact a well-defined Gaussian measure on `2, so we can now simply define
the global PoE “posterior” ΠV (· |Y) as the latter measure.

We see that the expressions for the global mean and spread are in fact the same as what
we found in Section A.1 for the naive averaging method. As a consequence, the negative
result of Theorem 1 holds for the basic version of the Gaussian PoE model as well.

Theorem 5 (product of Gaussian experts) For every β,M > 0 there exists a θ0 ∈
Hβ(M) such that for small enough c > 0,

Eθ0ΠV (θ : ‖θ − θ0‖2 ≤ cm
β

1+2β n
− β

1+2β |Y)→ 0

as m→∞ and n/m→∞. Furthermore, for all L > 0 it holds that

Pθ0
(
θ0 ∈ Ĉ(L)

)
→ 0.

One can generalize the PoE model by raising the local posterior densities to some power
before multiplying and normalizing them, as proposed in Cao and Fleet (2014). In the
subsequent analysis we consider the choice 1/m for the power, as suggested in Deisenroth
and Ng (2015). Adapting the preceding analysis for the ordinary PoE model we see that
for this generalized PoE model the global “posterior” ΠV I(· |Y) is in our setting again a
product of Gaussians, but now with means and variances given by

θ̂i =
nm−1

∑
Y j
i

n+ σ2mi1+2β
, t2i =

σ2m

n+ σ2mi1+2β
.

So the global posterior mean is unaltered compared to the basic PoE model, but the global
posterior spread has been blown up by a factor m. As a result, there still exists the same

13
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Method Description Optimal rate Coverage

I naive averaging no no
II adjusted likelihoods, averaging yes no
III adjusted priors, averaging yes yes
IV adjusted likelihoods, barycenter yes yes
V product of experts no no
VI generalized product of experts no yes

Table 1: Performance of the various non-adaptive methods.

class of truths as in Section A.1 for which the squared bias and the variance of the posterior
mean will be incorrectly balanced, resulting in a sub-optimal rate of posterior contraction.
However, the larger posterior spread ensures that we do have asymptotic coverage of credible
sets. It should be noted however that these sets have a diameter that is sub-optimal, i.e.
they are too conservative.

Theorem 6 (generalized product of Gaussian experts) For every β,M > 0 there
exists a θ0 ∈ Hβ(M) such that for small enough c > 0,

Eθ0ΠV I(θ : ‖θ − θ0‖2 ≤ cm
β

1+2β n
− β

1+2β |Y)→ 0

as m→∞ and n/m→∞. However, for all γ ∈ (0, 1) it holds that

sup
θ0∈Hβ(M)

Pθ0

(
θ0 6∈ Ĉ(L)

)
≤ γ

for large enough L > 0.

Proof The proof of the theorem can be found in Section A.5.

3.6. Summary of results for non-adaptive methods

We have seen that the various methods for aggregation of the local posteriors can give quite
different results. The methods we considered produce different global “posterior” measures.
Depending on the relation between the bias and variance of the global posterior mean and
the spread of this global posterior, the posterior contraction rate and coverage probabilities
of credible sets can have different behaviours. We summarize our findings in Table 1. This
is certainly not meant to be an exhaustive list of methods, but rather an illustration of how
the design of distributed procedures can affect their fundamental performance.

Simulations further illustrate the theoretical results. We have considered a true signal θ
consisting of the Fourier coefficients of the function shown in the left panel of Figure 3. This
is a signal which has regularity β = 1 in the sense of (3.3). For this signal we simulated data
according to (2.2), with σ = 1, n = 4800 and m = 40, i.e. we considered a distributed setting
with m = 40 machines. For the sake of comparison, the right panel of Figure 3 shows the
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Figure 3: Left: true signal. Right: posterior mean (blue solid curve) and 95% pointwise
credible bands (dashed blue curves) for the non-distributed method.

signal reconstruction and uncertainty quantification for the non-distributed method which
first aggregates all data in a single machine and then computes the posterior corresponding
to the prior Π(· |α) defined by (3.1), with α = β. This is a method which is known to
have an optimal convergence rate and correct quantification of uncertainty. This classical,
non-distributed result should be compared to Figure 4, which visualizes the “posteriors”
generated by each of the distributed methods I–VI.

In accordance with our theoretical results, we see that the results of methods III and IV
are comparable with the non-distributed method. Methods I, V and VI have worse signal
reconstruction. The posterior mean of Method II is comparable to that of the optimal
methods, but the uncertainty is underestimated.

An important observation to make is that the methods that achieve the same optimal
performance as non-distributed methods, all use information about the regularity β of the
unkown signal, mostly through the setting of tuning parameters in the priors. In that
sense, they are non-adaptive. They serve as useful results that indicate what is possible in
principle if we have certain oracle knowledge about the truth we are trying to learn. To
understand what realistic procedures can achieve this has to be combined with insight into
what can be learned about this oracle knowledge from the data. In the next section we
address this issue in the context of our distributed signal-in-white-noise model.

4. Results for adaptive procedures

In the non-distributed case it is well known that there exist adaptive methods that achieve
the same optimal performance as non-adaptive procedures, without using knowledge of the
regularity β of the unkown signal. These methods somehow succeed in correctly trading
off bias, variance (and spread in Bayesian methods) in a purely data-driven manner. For
several such result in the context of the signal-in-white-noise model, see, for instance, Giné
and Nickl (2016) and the references therein. For distributed methods the issue of adaptation
appears to be a lot more subtle. In this paper we only have a first, negative result on adaptive
properties of distributed methods.

So now we do not assume that we know the true regularity β of the unknown signal. As
before we employ the prior Π(· |α) in the local machines. To tune the regularity parameter α
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Figure 4: Global posterior mean (solid red curve) and 95% pointwise credible bands (dashed
red curves) for each of the methods I–VI.
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of the prior we consider a distributed version of maximum marginal likelihood estimator, as
proposed by Deisenroth and Ng (2015). The usual, non-distributed version of that method
would use the maximizer of the map

α 7→ log

∫ ( m∏
j=1

p(Yj | θ)
)

Π(dθ |α)

as tuning parameter. Maximizing this function however requires having all data available
in a central machine. In the distributed setting, Deisenroth and Ng (2015) argue that this
map is well approximated by the map

α 7→
m∑
j=1

log
(∫

p(Yj | θ) Π(dθ |α)
)
.

Now every term in the sum just depends on one of the local machines and this function can
be maximized on the central machine by repeatedly asking the local machines for function
evaluations and gradients of the local log-marginal likelihoods

log

∫
p(Yj | θ) Π(dθ |α).

The resulting estimator is denoted by α̂, i.e.

α̂ = argmax
α∈[0,logn]

m∑
j=1

log
(∫

p(Yj | θ) Π(dθ |α)
)
.

(We maximize over a compact interval to ensure that the maximizer exists.)
It turns out that in the distributed setting, the local machines are in general not able

to learn enough about the true signal regularity β. The following lemma asserts that there
exist “difficult” signals for which the estimator α̂ overestimates the regularity.

Lemma 7 For β,M > 0, consider a signal θ0 ∈ `2 such that

θ2
0,i =

{
M2i−1−2β if i ≥ (n/(σ2√m))1/(1+2β),

0 else.
(4.1)

Then θ0 ∈ Hβ(M) and if M is small enough, then

Pθ0(α̂ ≥ β + 1/2)→ 1 (4.2)

if n/m→∞ and m→∞.

Proof The proof is given in Section B.1.

In view of Lemma 7 it is perhaps not surprising that if the approximated maximum
marginal likelihood estimator α̂ is used to tune the local prior that is used in every machine,
sub-optimal performance is obtained for certain truths. Intuitively this is because due to
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the smaller signal-to-noise ratio, or “sample size” in the local machines, certain truths
may appear more regular than they really are. It turns out that using the estimator α̂
in combination with any of the methods considered in the preceding section indeed leads
to sub-optimal rates and bad coverage probabilities for certain truths. As an illustration
we present a rigorous statement for the method of Section 3.4, but similar results can be
derived for the others methods as well.

So suppose that in every local problem the prior Π(· |α) is used, the corresponding gen-
eralized posterior Π̃j(· |Yj) is computed locally (which involves raising the local likelihood
to the power m), and then the tuning parameter α is substituted by the estimator α̂ de-
fined above. In the central machine, the global “posterior” ΠV II(· |Y) is constructed as the
2-Wasserstein barycenter of the local “posterior” measures Π̃1(· | α̂,Y1), . . . , Π̃m(· | α̂,Ym).

Theorem 8 For β,M > 0 and θ0 as in Lemma 7 we have, for some c > 0,

Eθ0ΠV II(θ : ‖θ − θ0‖2 ≤ c(n/
√
m)
− β

1+2β |Y)→ 0

as m→∞ and n/m→∞. Furthermore, for all L > 0 it holds that

Pθ0
(
θ0 ∈ Ĉ(L)

)
→ 0.

Proof See Section B.2.

A simulation illustrating the theoretical result of the theorem is given in Figure 2.
The left panel visualizes the “posterior” generated by method VII, in the same distributed
setting, and using the same simulated data as considered in Section 3.6.

So when combined with a data-driven tuning method like the distributed version of
maximum marginal likelihood considered here, even the distributed methods that perform
well in the non-adaptive setting loose their favourable properties. None of the methods
yields a procedure that automatically adapts to regularity and achieves the optimal non-
distributed rate. This does not imply of course that such an adaptive method does not exist.
We expect however that the matter is delicate and that fundamental limitations exist.

The issue appears to be similar to that of the existence of adaptive confidence sets.
To achieve adaptation in our distributed setting the local machines must be able to learn
the “global” regularity of the signal from the limited local data that they have available.
Analogous to the adaptive confidence problem we expect that this is in general only possible
under additional assumptions on the true signal, like the self-similarity or polished tail
conditions proposed for instance in Giné and Nickl (2010), Bull (2012), Szabó et al. (2015),
Nickl and Szabó (2016), Belitser et al. (2017). Making these admittedly somewhat loose
claims mathematically precise takes considerably more effort. Recent work shows that
in a distributed setting with communication restrictions, some degree of adaptation to
smoothness is in principle possible, but requires different kinds of algorithms (see Szabo
and van Zanten (2019)). Many open questions remain at the moment however. It is for
instance unclear how the possibility of adaptation, or purely data-driven tuning, is related
the degree of communication or the amount of central computation allowed. It would in
particular be interesting to better understand the theoretical performance of distributed
methods which allow multiple rounds of communication (e.g. Shamir et al. (2014), Heinze
et al. (2016), Wang et al. (2017a,b), Lu et al. (2016)).
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Appendix A. Proofs for Section 3

A.1. Proof of Theorem 1

By completing the square we see that under the local posterior Πj(· |Yj) the coefficients θi
are independent and Gaussian, with mean θ̂ji and variance s2

i given by

θ̂ji =
n

n+ σ2mi1+2β
Y j
i , s2

i =
σ2m

n+ σ2mi1+2β
.

Hence the global “posterior” ΠI(· |Y) is Gaussian as well, and under that measure the
coefficients θi are independent and have mean θ̂i and variance t2i given by

θ̂i =
1

m

m∑
j=1

θ̂ji , t2i =
s2
i

m
.

For the global posterior mean we have, for every θ0 ∈ `2,

Eθ0 θ̂i − θ0,i =
−σ2mi1+2β

n+ σ2mi1+2β
θ0,i, Varθ0 θ̂i =

σ2n

(n+ σ2mi1+2β)2
,

and hence,

Eθ0‖θ̂ − θ0‖22 =
∑ σ4m2i2+4β

(n+ σ2mi1+2β)2
θ2

0,i +
∑ σ2n

(n+ σ2mi1+2β)2
.

By Lemma 9 the second, variance term is of the order

m−1/(1+2β))n−2β/(1+2β),

as n/m → ∞. For θ2
0,i = Mi−1−2β, by the same lemma, the first, squared bias term is

proportional to (n/m)−2β/(1+2β). For the global spread, again in view of Lemma 9, we have∑
t2i =

∑ σ2

n+ σ2mi1+2β
� m−1/(1+2β))n−2β/(1+2β). (A.1)

By the triangle inequality we have

ΠI(‖θ − θ0‖2 ≤ cm
β

1+2β n
− β

1+2β |Y)

≤ ΠI(θ : ‖Eθ0 θ̂ − θ0‖2 − cm
β

1+2β n
− β

1+2β − ‖θ̂ − Eθ0 θ̂‖2 ≤ ‖θ − θ̂‖2|Y).

It follows from the bounds on the variance and squared bias of the posterior mean that for
θ0 as chosen above, the quantity

‖Eθ0 θ̂ − θ0‖2 − cm
β

1+2β n
− β

1+2β − ‖θ̂ − Eθ0 θ̂‖2

appearing in the posterior probability is with Pθ0-probability tending to one bounded from

below by cm
β

1+2β n
− β

1+2β for c > 0 small enough. Then by the upper bound for the posterior
spread and Chebyshev’s inequality we obtain the first statement of the theorem.
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Szabó and Van Zanten

For the coverage we note that the radius rγ of the credible set is a multiple ofm−1/(2+4β)n−β/(1+2β),
which follows from the Gaussianity of the posterior and (A.1). Then by similar computa-
tions as above we get that for the same truth θ0,

Pθ0(θ0 ∈ Ĉ(L)) = Pθ0(‖θ̂ − θ0‖2 ≤ Lrγ)

≤ Pθ0
(
‖θ̂ − Eθ0 θ̂‖2 ≥ ‖Eθ0 θ̂ − θ0‖2 − Lrγ

)
≤ Pθ0

(
‖θ̂ − Eθ0 θ̂‖2 ≥ cm

β
1+2β n

− β
1+2β

)
. m

−2β
1+2β n

2β
1+2β Eθ0‖θ̂ − Eθ0 θ̂‖22 . m−1 → 0.

This completes the proof of the theorem.

A.2. Proof of Theorem 2

Raising the local likelihood (3.4) to the power m makes it proportional to

∏
e−

1
2

n(Y
j
i
−θi)

2

σ2 ,

which is the likelihood for the case m = 1. It follows that under the generalized local
posterior Π̃j(· |Yj) the coefficients θi are independent and Gaussian, with mean θ̂ji and
variance s2

i given by

θ̂ji =
n

n+ σ2i1+2β
Y j
i , s2

i =
σ2

n+ σ2i1+2β
.

Hence the global “posterior” ΠII(· |Y) is again Gaussian, and under this global measure
the coefficients θi are independent and have mean θ̂i and variance t2i given by

θ̂i =
1

m

m∑
j=1

θ̂ji , t2i =
s2
i

m
.

For the global posterior mean we have in this case, for every θ0 ∈ `2,

Eθ0 θ̂i − θ0,i =
−σ2i1+2β

n+ σ2i1+2β
θ0,i, Varθ0 θ̂i =

σ2n

(n+ σ2i1+2β)2
,

and hence,

Eθ0‖θ̂ − θ0‖22 =
∑ σ4i2+4β

(n+ σ2i1+2β)2
θ2

0,i +
∑ σ2n

(n+ σ2i1+2β)2
.

For all θ0 ∈ Hβ(M), in view of Lemma 9, the squared bias term is bounded by

M2
∑ σ4i1+2β

(n+ σ2i1+2β)2
.M2n−2β/(1+2β)

for large n, and the variance term behaves like a constant times n−2β/(1+2β) as well. The
global spread

∑
t2i is of the order m−1n−2β/(1+2β) for large n, again following from Lemma

9.
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For Mn →∞ and θ0 ∈ Hβ(M) we now have, by the triangle inequality,

ΠII(θ : ‖θ − θ0‖2 ≥Mnn
−β/(1+2β) |Y)

≤ ΠII(θ : ‖θ − θ̂‖2 ≥Mnn
−β/(1+2β) − ‖θ̂ − Eθ0 θ̂‖2 − ‖θ0 − Eθ0 θ̂‖2 |Y).

By the bounds on the bias and the variance of the posterior mean derived above the quantity
on the right of the inequality in the last posterior probability is bounded from below by
(Mn/2)n−β/(1+2β) with Pθ0-probability tending to one as n,m → ∞, uniformly in θ0 ∈
Hβ(M). By Chebychev’s inequality, and the bound on the posterior spread, we conclude
that the first statement of the theorem holds.

For the second statement we first note that by Chebychev’s inequality and by the upper
bound on the posterior spread the radius rγ of the credible set is for large n bounded by
Cm−1/2n−β/(1+2β) for some C > 0. Hence, since the posterior mean is Gaussian and the
Gaussian measure of a ball of a fixed size is maximal if the ball is centered at the mean (a
consequence of Anderson’s inequality, e.g. Lifshits (1995), Section 11), we have

Pθ0
(
θ0 ∈ Ĉ(L)

)
≤ Pθ0

(
‖θ̂ − θ0‖2 ≤ CLm−1/2n−β/(1+2β)

)
≤ Pθ0

(
‖θ̂ − Eθ0 θ̂‖2 ≤ CLm−1/2n−β/(1+2β)

)
.

By Chebychev’s inequality,

Pθ0
(
‖θ̂ − Eθ0 θ̂‖22 ≤

∑
σ2
i − a

√
2
∑

σ4
i

)
≤ 1

a2

for all a > 0, where σ2
i = Varθ0 θ̂i. Above we saw that

∑
σ2
i � n−2β/(1+2β). Similarly, it is

easily seen that
∑
σ4
i � n(−1−4β)/(1+2β). Hence by taking a = n(1/4)/(1+2β), for instance,

we see that for c > 0 small enough,

Pθ0
(
‖θ̂ − Eθ0 θ̂‖2 ≤ cn−β/(1+2β)

)
→ 0

as n→∞. But then also

Pθ0
(
‖θ̂ − Eθ0 θ̂‖2 ≤ CLm−1/2n−β/(1+2β)

)
→ 0

as m,n→∞.

A.3. Proof of Theorem 3

In this case the jth local posterior is a product of Gaussians with means and variances given
by

θ̂ji =
n

n+ σ2mτ−1i1+2α
Y j
i , s2

i =
σ2m

n+ σ2mτ−1i1+2α
.

As before the global “posterior” is Gaussian as well, and under that measure the coefficients
θi are independent and have mean θ̂i and variance t2i given by

θ̂i =
1

m

m∑
j=1

θ̂ji , t2i =
s2
i

m
.
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For the global posterior mean we have, for every θ0 ∈ `2,

Eθ0 θ̂i − θ0,i =
−σ2mτ−1i1+2α

n+ σ2mτ−1i1+2α
θ0,i, Varθ0 θ̂i =

σ2n

(n+ σ2mτ−1i1+2α)2
,

and hence

Eθ0‖θ̂ − θ0‖22 =
∑ σ4m2τ−2i2+4α

(n+ σ2mτ−1i1+2α)2
θ2

0,i +
∑ σ2n

(n+ σ2mτ−1i1+2α)2
.

Then in view of Lemma 9, we see that for β < 1 + 2α and uniformly for θ0 ∈ Hβ(M), the
squared bias term is bounded by a constant times

M2(τn/m)−2β/(1+2α).

Similarly, the variance term and the posterior spread
∑
t2i both behave like a constant times

(τ/m)1/(1+2α)n−2α/(1+2α)

as n→∞. The choice τ = mn2(α−β)/(1+2β) balances these quantities, so that all three are
of the order n−2β/(1+2β).

By exactly the same reasoning as in Section A.2, the fact that the squared bias bound and
the variance and spread are of the same order implies the first statement of the theorem.
For the coverage statement we first note that the squared credible set radius r2

γ is the
1− γ quantile of the distribution of

∑
t2iZ

2
i , with t2i as above and Zi independent standard

normals. This distribution has mean
∑
t2i � n−2β/(1+2β) and variance

2
∑

t4i �
1

n
n−2β/(1+2β),

following from Lemma 9. As the standard deviation is of smaller order than the mean, it
follows from Chebychev’s inequality that rγ ≥ cn−β/(1+2β) for some c > 0. For the coverage
probability we then have

Pθ0

(
θ0 6∈ Ĉ(L)

)
≤ Pθ0

(
‖θ̂ − θ0‖2 ≥ cLn−β/(1+2β)

)
≤ n2β/(1+2β)

c2L2
Eθ0‖θ̂ − θ0‖22.

By the bounds on the bias and variance of the posterior mean the right-hand side is smaller
than γ for L large enough, uniformly for θ0 ∈ Hβ(L).

A.4. Proof of Theorem 4

As we saw in Section A.2, the jth local generalized posterior is a product of Gaussians with
means θ̂ji and variances s2

i given by

θ̂ji =
n

n+ σ2i1+2β
Y j
i , s2

i =
σ2

n+ σ2i1+2β
.

In other words, the jth local measure is a Gaussian measure on `2 with mean θ̂j = (θ̂ji )i
and (diagonal) covariance operator R : `2 → `2 given by (Rx)i = s2

ixi, which is the same for

22



An asymptotic analysis of distributed nonparametric methods

every local machine. The Wasserstein barycenter of a finite collection of Gaussian measures
is a Gaussian measure again (e.g. Agueh and Carlier (2011)). By Theorem 3.5 of Gelbrich
(1990) the squared 2-Wasserstein distance between the jth local measure and a Gaussian
measure on `2 with mean µ and covariance operator K is given by

‖θ̂j − µ‖22 + tr(R) + tr(K)− 2tr
√
R1/2KR1/2.

It follows that the barycenter ΠIV (· |Y) of the local generalized posteriors is the Gaussian
measure on `2 with mean θ̂ equal to the average of the local means θ̂j and covariance
operator equal to R. In other words, the global “posterior” is a product of Gaussians with
means and variances given by

θ̂i =
1

m

m∑
j=1

θ̂ji , t2i = s2
i .

So the global posterior mean is the same as in Section A.2 and the posterior spread
∑
t2i is

a factor m larger. It then follows from the considerations in Section A.2 that the squared
bias of the global posterior mean is bounded by a constant times M2n−2β/(1+2β), uniformly
for θ0 ∈ Hβ(M). Moreover, the variance term

∑
s2
i and the posterior spread

∑
t2i behave

like a multiple of n−2β/(1+2β) as well. As was explained in Section A.3, this leads to the
statement of the theorem.

A.5. Proof of Theorem 6

The proof of the first statement is the same as in Section A.1, since the mean of the global
“posterior” is the same as for the naive averaging method.

For the second statement, we observe that for θ0 ∈ Hβ(M), the squared bias term for
the posterior mean satisfies

∑ σ4m2i2+4β

(n+ σ2mi1+2β)2
θ2

0,i ≤M2
∑ σ4m2i1+2β

(n+ σ2mi1+2β)2
. M2(n/m)−2β/(1+2β).

for n/m → ∞. As was shown in Section A.1 the variance of the posterior mean behaves
as m−1/(1+2β)n−2β/(1+2β). Since the spread

∑
t2i of the posterior is a factor m larger than

in Section A.1, it is of the same order (n/m)−2β/(1+2β) as the squared bias term. Since
squared bias and spread are of the same order, the variance is of smaller order, and√∑

t4i �
( n
m

)−1/2
1+2β

∑
t2i

is of lower order than
∑
t2i , the coverage statement can be proved as in Section A.3.

A.6. Technical Lemma

Lemma 9 For s, t > 0 with st > 1 and r < st−1 consider the function f(x) = xr(xs+1)−t

and set fν =
∑∞

k=1 ν
−1f(k/ν). Then as ν →∞,

(i) If r > −1, then fν �
∫∞

0 f(x)dx.
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(ii) If r = −1, then fν � log ν.

(iii) If r < −1, then fν � νr−1
∑∞

k=1 k
−r.

Proof Assertions (ii) and (iii), along with (i) for −1 < r ≤ 0 are proved in Lemma A.1 of
Szabó et al. (2013), hence it remains to verify assertion (i) for 0 < r < st− 1. Note that

Nν∑
k=1

ν−1f(k/ν) < fν <

Nν∑
k=1

ν−1f(k/ν) +

∞∑
k=Nν+1

ν−1f(k/ν). (A.2)

Since the function f(x) is continuous on [0, N ] it is Riemann integrable (see for instance
Theorem 6.8 of Rudin (1976)), hence the right Riemann sum converges to the integral, i.e.∑Nν

k=1 ν
−1f(k/ν)→

∫ N
0 f(x)dx as ν →∞ (for simplicity assume that ν ∈ N). Furthermore,

for every ν > 0,

∞∑
k=Nν+1

ν−1f(k/ν) ≤ νst−r−1
∞∑

k=Nν+1

kr−st ≤ νst−r−1

∫ ∞
Nν

xr−stdx ≤ 1

st− r − 1
N r+1−st

and
∫∞
N+1 f(x)dx ≤

∫∞
N+1 x

r−stdx ≤ N−st+r+1/(st− r − 1). Therefore by choosing N suffi-

ciently large, both sides of (A.2) gets arbitrarily close to
∫∞

0 f(x)dx as ν →∞, concluding
the proof of the statement.

Appendix B. Proofs for Section 4

B.1. Proof of Lemma 7

The estimator α̂ is the maximizer of the random map α 7→
∑

j `j(α), where

`j(α) = log

∫
p(Yj | θ) Π(dθ |α).

The asymptotic behaviour of the local log-marginal likelihood `j has been studied in Knapik
et al. (2016). Denote the derivative of `j with respect to α by ˙̀

j and let k = n/(σ2m) be
the local “sample size”. Moreover, for l > 0, define

α = inf{α > 0 : hk(α) > l} ∧
√

log k,

where

hk(α) =
1 + 2α

k1/(1+2α) log k

∑
i

k2i1+2αθ2
0,i log i

(k + i1+2α)2
.

Note that the expectation Eθ0
˙̀
j(α) does not depend on j. It is proved in Section 5.3 of

Knapik et al. (2016) that if l is smaller than some universal threshold, then for every j

lim inf
k→∞

inf
α≤α

1 + 2α

k1/(1+2α) log k
Eθ0

˙̀
j(α) = δ > 0,
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Eθ0 sup
α≤α

1 + 2α

k1/(1+2α) log k
| ˙̀j(α)− Eθ0

˙̀
j(α)| . e−C

√
log k

for constants δ, C > 0. But then we also have

lim inf
k→∞

inf
α≤α

1 + 2α

k1/(1+2α) log k
Eθ0

∑
j

˙̀
j(α) > mδ

and

Eθ0 sup
α≤α

1 + 2α

k1/(1+2α) log k

∣∣∣∑
j

˙̀
j(α)− Eθ0

∑
j

˙̀
j(α)

∣∣∣ . me−C
√

log k.

By Markov’s inequality, it follows that with probability at least 1−C1 exp(−C2
√

log k) the
map α 7→

∑
j `j(α) is strictly increasing on the interval [0, α]. Hence, on that event we have

α̂ ≥ α.
It remains to show that α ≥ β + 1/2. To that end it suffices to prove that hk(α) ≤ l for

all α ≤ β + 1/2. To see this, suppose first that α < β. Define Nβ = (n/(σ2√m))1/(1+2β)

and Mα = k1/(1+2α). By definition of θ0 we then have

hk(α) =
M2

Mα logMα

∞∑
i=Nβ

k2i2α−2β log i

(i1+2α + k)2

≤ M2

Mα logMα

Mα∑
i=Nβ

i2α−2β log i+
M2k2

Mα logMα

∞∑
i=Mα

i−2−2α−2β log i

≤M2
MαN

2α−2β
β logMα

Mα logMα
+M2k

2M−1−2α−2β
α logMα

Mα logMα

. M2

for n,m large enough. Hence, if M is small enough, then hk ≤ l for α < β. For β ≤ α ≤
β + 1/2 we have

hk(α) ≤ M2k2

Mα logMα

∞∑
i=Nβ

i−2−2α−2β log i

≤
M2k2N−1−2α−2β

β logNβ

Mα logMα

= M2(n/σ2)
2α

1+2α
− 2α

1+2βm
−2+ 1

1+2α
+ 1+2α+2β

2(1+2β)
logNβ

logMα
. m−

2α
1+2α logm

for n/m large enough. Together, this shows that if both n/m and m are large enough, then
indeed hk(α) ≤ l for all α ≤ β + 1/2.

B.2. Proof of Theorem 8

In view of the proof of Theorem 4 the jth local generalized posterior is a product of Gaus-
sians with means θ̂ji and variances s2

i given by

θ̂ji =
n

n+ σ2i1+2α̂
Y j
i , s2

i =
σ2

n+ σ2i1+2α̂
.
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Using again that the Wasserstein barycenter of a finite collection of Gaussian measures
is a Gaussian measure in combination with the explicit expression for the 2-Wasserstein
distance between Gaussians (see Section A.4) we see that the global “posterior” is a product
of Gaussians with means θ̂i and variances t2i given by

θ̂i =
1

m

m∑
j=1

θ̂ji , t2i = s2
i .

The posterior mean can be written as θ̂ = θ̂(α̂), where θ̂(α) is the estimator with a fixed
choice α for the hyperparameter, i.e.

θ̂i(α) =
1

m

m∑
j=1

n

n+ σ2i1+2α
Y j
i .

For fixed α we also define the corresponding expectation E(α) = Eθ0 θ̂(α). Then by the
triangle inequality,

‖θ̂ − θ0‖2 ≥ ‖E(α̂)− θ0‖2 − ‖E(α̂)− θ̂(α̂)‖2.

We have the explicit expressions

‖E(α)− θ0‖22 =
∑
i

σ4i2+4αθ2
0,i

(n+ σ2i1+2α)2

and

‖E(α)− θ̂(α)‖22 =
∑
i

σ2n

(n+ σ2i1+2α)2

( 1√
m

m∑
j=1

Zji

)2
.

Since the first expression is increasing in α and the second one is decreasing, we see that
on the event A = {α̂ ≥ β + 1/2} it holds that

‖θ̂ − θ0‖2 ≥

√√√√∑
i

σ4θ2
0,ii

4+4β

(n+ σ2i2+2β)2
−

√√√√∑
i

σ2n

(n+ σ2i2+2β)2

( 1√
m

m∑
j=1

Zji

)2
.

By definition of θ0, the square of the first term on the right is bounded from below by

M2
∑

i≥
(

(n/(σ2
√
m))
)1/(1+2β)

σ4i3+2β

(n+ σ2i2+2β)2
.

In view of Lemma 9 we see that it is of the order M2(n/
√
m)−2β/(1+2β). The square of the

second term can be written as ∑
i

σ2n

(n+ σ2i2+2β)2
U2
i ,
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with the Ui independent and standard normal under Pθ0 . Again in view of Lemma 9
it is easily seen that the mean and variance of this sum behave as n−(1+2β)/(2+2β) and
n−(3+4β)/(2+2β), respectively. Hence the standard deviation is of smaller order than the
mean for large n, so that by Chebychev’s inequality the square of the second term is of
stochastic order n−(1+2β)/(2+2β). Since this is of smaller order than (n/

√
m)−2β/(1+2β), we

conclude that for the global “posterior” mean we have, for some constant c > 0,

Pθ0(‖θ̂ − θ0‖2 ≥ c(n/
√
m)−β/(1+2β))→ 1

as n/m → ∞ and m → ∞. The spread
∑
t2i of the global posterior is on the event A

bounded by ∑
i

1

n+ i2+2β
,

which is of the order n−(1+2β)/(2+2β) � (n/
√
m)−2β/(1+2β) as well, see Lemma 9. The

conclusions of the theorem now follow.
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