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Abstract

Variational Bayes (VB) is a popular scalable alternative to Markov chain Monte
Carlo for Bayesian inference. We study a mean-field spike and slab VB approxima-
tion of widely used Bayesian model selection priors in sparse high-dimensional
logistic regression. We provide non-asymptotic theoretical guarantees for the VB
posterior in both `2 and prediction loss for a sparse truth, giving optimal (minimax)
convergence rates. Since the VB algorithm does not depend on the unknown
truth to achieve optimality, our results shed light on effective prior choices. We
confirm the improved performance of our VB algorithm over common sparse VB
approaches in a numerical study.

1 Introduction

Let x ∈ Rp denote a feature vector and Y ∈ {0, 1} an associated binary label to be predicted. In
logistic regression, one of the most widely used methods in classification, we model

P (Y = 1|X = x) = 1− P (Y = 0|X = x) = Ψ(xT θ) =
ex
T θ

1 + exT θ
, (1)

where θ ∈ Rp is an unknown regression parameter and Ψ(t) = et/(1 + et) is the logistic function.
Suppose we observe n training examples {(x1, y1), . . . , (xn, yn)}.
We study the sparse high-dimensional setting, where n ≤ p and typically n� p, and many of the
coefficients of θ are (close to) zero. This setting has been studied by many authors, notably using
`1-regularized M -estimators (e.g. the LASSO), see for instance [3, 22, 30, 31] and the references
therein. In Bayesian logistic regression, one assigns a prior distribution to θ, giving a probabilistic
model. An especially natural Bayesian way to model sparsity is via a model selection prior, which
assigns probabilistic weights to every potential model, i.e. every subset of {1, . . . , p} corresponding
to selecting the non-zero coordinates of θ ∈ Rp. This is a widely used Bayesian approach and
includes the hugely popular spike and slab prior [16, 28].

Such priors work well in many settings for estimation and prediction [2, 12, 14], uncertainty quan-
tification [37, 13] and multiple hypothesis testing [11], see [4] for a recent review. An especially
attractive property is their interpretability, particularly for variable selection, compared to many
other black-box machine learning methods. For example, such methods provide posterior inclusion
probabilities of particular features, and their credible sets, which are often important in practice.

However, the discrete nature of such priors makes scalable computation hugely challenging. Under a
model selection prior, posterior exploration typically involves searching over all 2p possible models,
making standard Markov chain Monte Carlo (MCMC) methods infeasible for moderate p unless the
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feature vectors {x1, . . . , xn} satisfy strong structural conditions like orthogonality [14, 46]. There
has been recent progress on adapting MCMC methods to sparse high-dimensional logistic regression
[29], while another common alternative is to instead use continuous shrinkage-type priors [10, 52].

A popular scalable alternative is variational Bayes (VB), which approximates the posterior by solving
an optimization problem. One proposes an approximating family of tractable distributions, called the
variational family, and finds the member of this family that is closest to the computationally intractable
posterior in Kullback-Leibler (KL) sense. This member is taken as a substitute for the posterior. An
especially popular family consists of factorizable distributions, called mean-field variational Bayes.
VB scales to large data sets and works empirically well in many models, see [7] for a recent review.

In this work, we study the theoretical properties of a mean-field VB approach to sparsity-inducing
priors with variational family the set of factorizable spike and slab distributions. This is a natural
approximation since it keeps the discrete model selection aspect and many of the interpretable features
of the original posterior, while reducing the full O(2p) model complexity to a much more manageable
O(p). The procedure is adaptive in that it does not depend on the typically unknown sparsity level,
which avoids delicate issues about tuning hyperparameters. This sparse variational family has been
employed in various settings [20, 25, 33, 38, 44], including logistic regression [9, 56]. VB is natural
in model (1) since in even the simplest low-dimensional setting (p� n) using Gaussian priors, the
posterior is intractable and VB is widely used [6, 21, 34, 43, 49].

However, VB generally comes with few theoretical guarantees, with none currently available in
high-dimensional logistic regression. Our main contribution is to show that the sparse VB posterior
converges to the true sparse vector at the optimal (minimax) rate in both `2 and prediction loss. We
prove this under the same conditions for which the true (computationally infeasible) posterior is known
to converge [2], showing that one does not necessarily need to sacrifice theoretical guarantees when
using sparse VB, at least for estimation and prediction. Our convergence bounds are non-asymptotic
and thus reflect relevant finite-sample situations.

Our results also provide practical insights on effective prior and VB calibrations, in particular the
choice of prior slab distribution. Many existing works employ Gaussian slabs for the underlying prior,
even though these cause excessive shrinkage and suboptimal parameter recovery in benchmark models
[14]. Our theoretical results show that optimal parameter recovery is possible if the VB posterior is
based on a prior with heavier-tailed Laplace slabs, corroborating findings in linear regression that one
should use prior slabs with exponential or heavier tails [12, 14], including for VB [38]. We confirm
in simulations that using Laplace prior slabs, as our theory suggests, indeed empirically outperforms
the usual VB choice of Gaussian prior slabs, demonstrating the practical importance of the prior
slab choice. We further demonstrate that our VB algorithm is empirically competitive with other
state-of-the-art Bayesian sparse variable selection methods for logistic regression.

Lastly, we provide conditions on the design matrix under which sparse VB can be expected to work
well. Together, these provide theoretical backing for using VB for estimation and prediction in the
widely used sparse high-dimensional Bayesian logistic regression model (1).

Related work. Theoretical guarantees for VB have been studied for specific models, including linear
models [33, 38], exponential family models [47, 48], stochastic block models [55], latent Gaussian
models [41] and topic models [17]. In low dimensional settings (p� n), some Bernstein-von Mises
results have also been obtained [26, 50, 51]. In high-dimensional and nonparametric settings, general
results have been derived [35, 57] based on the classic Bayesian prior mass and testing approach [18].
There has also been work on studying variational approximations to fractional posteriors [1, 53]. For
logistic regression, theoretical results have been established for the fully Bayesian spike and slab
approach [2, 29] and its continuous relaxation [52].

Theoretical guarantees for VB in sparse linear regression have recently been obtained in [38]. We
combine ideas from this paper with tools from high-dimensional and nonparametric Bayesian statistics
[2, 12, 32] to obtain theoretical results in the nonlinear logistic regression model (1). For our algorithm
derivation, we use ideas from VB for Bayesian logistic regression [9, 21].

Organization. In Section 2 we detail the problem setup, including the notation, prior, variational
family and conditions on the design matrix. Main results are found in Section 3, details of the VB
algorithm in Section 4, simulations in Section 5 and discussion in Section 6. In the supplement, we
present streamlined proofs for the asymptotic results (Section 7), additional simulations (Section 8),

2



discussion concerning the design matrix conditions (Section 9), full statements and proofs of the
non-asymptotic results (Section 10) and a derivation of the VB algorithm (Section 11).

2 Problem setup

Notation. Recall that we observe n training examples {(x1, y1), . . . , (xn, yn)} from model (1). For
u ∈ Rd, we write ‖u‖2 = (

∑d
i=1 |ui|2)1/2 for the usual Euclidean norm. Let X be the n× p matrix

with ith row equal to xTi = (xi1, . . . , xip) and for X·j the jth column of X , set

‖X‖ = max
1≤j≤p

‖X·j‖2 = max
1≤j≤p

(XTX)
1/2
jj .

We denote by Pθ the probability distribution of observing Y = (Y1, . . . , Yn) from model (1) with
parameter θ ∈ Rp and by Eθ the corresponding expectation. For two probability measures P,Q,
we write KL(P ||Q) =

∫
log dP

dQdP for the Kullback-Leibler divergence. Let ∇θf(y, θ) denote the
gradient of f with respect to θ. For θ ∈ Rp and a subset S ⊆ {1, . . . , p}, we write |S| for the
cardinality of S and θS for the vector (θi : i ∈ S) ∈ R|S|. We set Sθ = {1 ≤ i ≤ p : θi 6= 0} to be
the set of non-zero coefficients of θ and write s0 = |Sθ0 | for the sparsity level of the true parameter
θ0. Throughout the paper we work under the following frequentist assumption:
Assumption 1. There is a true s0-sparse parameter θ0 ∈ Rp generating the data Y ∼ Pθ0 .

2.1 Model selection priors and the variational approximation

A model selection prior first selects a dimension s ∈ {0, . . . , p} from a prior πp, then a subset
S ⊆ {1, . . . , p} uniformly at random from all

(
p
s

)
subsets of size |S| = s, and lastly selects a set

of non-zero values for θS = (θj)j∈S ∈ R|S| from a product of centered Laplace distributions with
density

∏
j∈S Lap(λ)(θj) = (λ/2)|S| exp(−λ

∑
j∈S |θj |), λ > 0. This prior is represented via the

following hierarchical scheme:

s ∼ πp(s),
S||S| = s ∼ Unifp,s,

θj
ind∼
{

Lap(λ), j ∈ S,
δ0, j 6∈ S,

(2)

where Unifp,s selects S from the
(
p
s

)
possible subsets of {1, . . . , p} of size s with equal probability

and δ0 denotes the Dirac mass at zero. We assume that there are constants A1, A2, A3, A4 > 0 with

A1p
−A3πp(s− 1) ≤ πp(s) ≤ A2p

−A4πp(s− 1), s = 1, . . . , p. (3)

Condition (3) is satisfied by a wide range of priors, such as complexity priors [14] and binomial
priors, including the widely used spike and slab prior θj ∼iid ρLap(λ) + (1 − ρ)δ0 by taking
πp = Binomial(p, ρ). Assigning a hyperprior ρ ∼ Beta(1, pt), t > 1, to the prior inclusion
probabilities also satisfies (3) ([14], Example 2.2), allows mixing over the sparsity level and most
importantly gives a spike and slab prior calibration that does not depend on unknown hyperparameters.

While most works use Gaussian slabs for the prior [9, 20, 25, 33, 44, 56], we instead use Laplace
slabs since using slab distributions with lighter than exponential tails can cause excessive shrinkage
and deteriorate estimation in linear regression [14, 38]. We illustrate numerically that the same
phenomenon can occur in logistic regression, where using Laplace rather than Gaussian prior slabs
improves estimation, see Section 5. This shows that our theoretical results in Section 3 are reflected in
practice and sheds light on suitable prior choices. Full details of the modified algorithm are provided
in Algorithm 1 below.

For our theoretical results, we suppose the regularization parameter λ of the slab satisfies

2‖X‖
√

log p ≤ λ ≤ α‖X‖
√

log p (4)

for some α ≥ 2. The choice λ � ‖X‖
√

log p is common for the regularization parameter of the
LASSO ([8], Chapter 6), which corresponds to the posterior mode based on a full product Laplace
prior θj ∼iid Lap(λ) with no extra model selection as in (2). We note additional model selection is
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necessary, since the pure Laplace prior can behave badly in sparse high-dimensional settings [14].
Specific values of ‖X‖ for some design matrices are given in Section 9, but one should typically
think of ‖X‖ ∼

√
n.

Bayesian inference about θ0, including reconstruction of the class probabilities Pθ0(Y = 1|X = x),
is carried out via the posterior distribution Π(·|Y ). Since computing the posterior is infeasible for
large p, we consider the following mean-field family of approximating distributions

Q =

Qµ,σ,γ =

p∏
j=1

[
γjN(µj , σ

2
j ) + (1− γj)δ0

]
: γj ∈ [0, 1], µj ∈ R, σ2

j > 0

 . (5)

The VB posterior is the element of Q that minimizes the KL divergence to the exact posterior

Q∗ = arg min
Q∈Q

KL(Q||Π(·|Y )). (6)

The family Q consists of all factorizable distributions of spike and slab form, which is a natural
approximation for sparse settings with variable selection. The (γj) correspond to the VB variable
inclusion probabilities, thereby keeping the interpretability of the original model selection prior.
While the prior may factorize like (5), the posterior does not, and we replace the full 2p posterior
model weights with the p probabilities (γj), greatly reducing the posterior dimension. Note that
while the prior has Laplace slabs, we can fit Gaussian distributions in the variational family since the
likelihood induces subgaussian tails in the posterior.

Computing the VB posterior Q∗ for the variational family Q in (5) is an optimization problem that
has been studied in the literature [20, 25, 33, 38, 44], including for logistic regression [9, 56], mainly
using coordinate ascent variational inference (CAVI). While these works mostly consider Gaussian
slabs for the prior, CAVI can be suitably modified to the Laplace case, see Algorithm 1.

2.2 Design matrix and sparsity assumptions

In the high-dimensional case p > n, the parameter θ in model (1) is not identifiable, let alone
estimable, without additional conditions on the design matrix X . In the sparse setting, a sufficient
condition for consistent estimation is ‘local invertibility’ of XTX when restricted to sparse vectors.
The following definitions are taken from [2] and make precise this notion of invertibility. Define the
diagonal matrix W ∈ Rn×n with ith diagonal entry

Wii = g′′(xTi θ0) = Ψ(xTi θ0)(1−Ψ(xTi θ0)) (7)

and the compatibility type constant

κ = inf

{
‖W 1/2Xθ‖22
‖X‖2‖θ‖22

: ‖θSc0‖1 ≤ 7‖θS0‖1, θ 6= 0

}
.

For dimension s ∈ {1, . . . , p}, set

κ(s) = sup

{
‖Xθ‖22
‖X‖2‖θ‖22

: 0 6= |Sθ| ≤ s
}
, κ(s) = inf

{
‖W 1/2Xθ‖22
‖X‖2‖θ‖22

: 0 6= |Sθ| ≤ s
}
.

For a given L > 0 and α defined in (4), we require the following bound on the design matrix

‖X‖ ≥ αmax

(
50(L+ 2)‖X‖∞
κ((L+ 1)s0)

,
64

3κ

)
s0

√
log p. (8)

These constants are widely used in the sparsity literature (e.g. [8]), including for high-dimensional
logistic regression [2, 31, 52]. Assuming such constants are bounded away from zero and infinity,
Atchadé [2] proves that the original posterior Π(·|Y ) converges to the truth at the optimal rate. We
show here that under no further assumptions on the design matrix X , the VB posterior Q∗ also
converges to the truth at the optimal rate. We thus provide theoretical guarantees for the scalable VB
approximation under the same conditions for which the true posterior is known to converge.

Many standard design matrices satisfy these compatibility conditions, such as orthogonal designs,
i.i.d. (including Gaussian) random matrices and matrices satisfying the ‘strong irrepresentability
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condition’ of [58]. Details of these examples and further discussion are provided in Section 9 in the
supplement (see also Chapter 6 of [8]).

For a normalized design matrix with entries of sizeO(1), one has ‖X‖ ∼
√
n, so that (8) is a minimal

sample size condition. For suitably bounded compatibility constants, this translates into the minimal
sample size n & s2

0 log p, as in [2]. The frequentist `1-regularized M -estimator is known to converge
at the same rate under similar assumptions to ours for a deterministic design matrix X [22] and
under slightly weaker sample size conditions for an i.i.d. subgaussian random design matrix X
(n & s0 log p) [31].

3 Main results

We now provide theoretical guarantees for the VB posterior Q∗ in (6). We present here our results
in a simpler asymptotic form as n, p→∞ for easier readability. More complicated, but practically
more relevant, finite sample guarantees are provided in Section 10 of the supplement. In particular,
one should keep in mind that the results here do indeed reflect finite-sample behaviour.

We investigate how well the VB posterior recovers the true underlying high-dimensional parameter θ0.
This is measured via the speed of posterior concentration, which studies the size of the smallest `2 or
prediction type neighbourhood around the true θ0 that contains most of the (VB) posterior probability
[18]. This is a frequentist assessment that describes the typical behaviour of the VB posterior under
the true generative model, see Assumption 1.

Posterior concentration rates are now entering the machine learning community as tools to gain
insights into (variational) Bayesian methods and assess the suitability of priors and their calibrations
(e.g. [35, 36, 42, 51]). Such results also quantify the typical distance between a point estimator θ̂
(posterior mean/median) and the truth ([18], Theorem 2.5), as well as the typical posterior spread
about the truth. Taken together, these quantities are crucial for the accuracy of Bayesian uncertainty
quantification and so good posterior concentration results are necessary conditions for ensuring the
latter. Ideally, most of the posterior probability should be concentrated in a ball centered around
the true θ0 with radius proportional to the optimal (minimax) rate. This is the case for the true
computationally infeasible posterior [2] and extends to the VB posterior Q∗, as we now show. This
provides a universal, objective guarantee for the VB posterior.

Theorem 1. Suppose the model selection prior (2) satisfies (3) and (4) and the design matrix X
satisfies assumption (8) for some sequence L = Mn. Then the VB posterior Q∗ satisfies

Eθ0Q
∗

(
θ ∈ Rp : ‖θ − θ0‖2 ≥

M
1/2
n

κ
(
Mns0

)√s0 log p

‖X‖

)
= O

(
Cκ/Mn

)
+ o(1),

where Cκ = L0

( κ̄(L0s0)
κ((1+4L0/A4)s0)2 + κ(L0s0)−1

)
and L0 = 2 max{A4/5, (1.1 + 4α2/κ + 2A4 +

log(4 + κ(s0)))/A4}. Define the mean-squared prediction error ‖pθ − p0‖2n = 1
n

∑n
i=1(Ψ(xTi θ)−

Ψ(xTi θ0))2, where we recall Pθ(Y = 1|X = x) = Ψ(xTi θ). Then the VB posterior Q∗ satisfies

Eθ0Q
∗

(
θ ∈ Rp : ‖pθ − p0‖n ≥

√
Mnκ(Mns0)

κ
(
Mns0

) √
s0 log p

n

)
= O

(
Cκ/Mn

)
+ o(1).

In particular, if Cκ/Mn → 0, then the posterior concentrates around the true sparse parameter θ0 at
the optimal (minimax) rate in both `2 and mean-squared prediction loss.

Remark. In Theorem 1, we keep track of the compatibility numbers in the rate. If κ(L0s0), κ((1 +
4L0/A4)s0) and κ(L0s0) are bounded away from zero and infinity, as is often the case, the right
hand side of both displays tends to zero for any Mn → ∞ growing arbitrary slowly. In this case,
the rates simplify to M1/2

n
√
s0 log p/‖X‖ and Mn

√
s0 log p/n, respectively. In Section 9 of the

supplement, we give sufficient conditions for this to happen.

Since
√
s0 log p/‖X‖ is the minimax rate, this result says that for estimating θ0, in either `2 or

prediction loss, the VB approximation behaves optimally from a theoretical frequentist perspective.
In fact, since these conditions are essentially the same as were used to study the true posterior [2], our
results suggest one does not lose much by using this computationally more efficient approximation, at
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least regarding estimation and prediction. This backs up the empirical evidence that VB can provide
excellent scalable estimation.For a non-asymptotic version of Theorem 1, see Theorem 4 in Section
10.

Since the prior and variational family do not depend on unknown parameters (e.g. sparsity level
s0 = |Sθ0 | of θ0), the procedure is adaptive, i.e. it can recover an s0-sparse truth nearly as well as if
we knew the exact true sparsity level beforehand. This avoids difficult issues about tuning parameter
selection. As mentioned above, posterior concentration results can be used to obtain guarantees for
point estimators, such as the VB posterior mean.

Theorem 2. Assume the conditions of Theorem 1 and that n ≥ 1.1+4α2/κ+2A4 +log(4+κ(s0))).
Then the VB predictive mean p̂∗(x) =

∫
Pθ(Y = 1|X = x)dQ∗(θ) =

∫
Ψ(xT θ)dQ∗(θ) and true

prediction function p0(x) = Pθ0(Y = 1|X = x) satisfy

Pθ0

(
‖p̂∗ − p0‖n ≥

M
1/2
n κ( 2n

A4 log p + s0)1/2

κ( 2n
A4 log p + (1− 2/A4)s0)

√
s0 log p

n

)
= O(Cκ/Mn) + o(1).

Remark. If ‖X‖ ∼
√
n, as is often the case, then the extra sample size condition in Theorem 2 is

automatically implied by (8), see Section 2.2. We have again kept track of the compatibility numbers;
if these are bounded away from zero and infinity, then the probability converges to zero and we
recover the rate M1/2

n

√
s0 log p/n for any Mn →∞ arbitrarily slowly.

We next show the VB posterior Q∗ does not provide overly conservative model selection in the
sense that it concentrates on models of size at most a constant multiple of the true model size
s0. This gives some guarantees for variable selection, in particular bounding the number of false
positives. It provides a first theoretical underpinning for interpretable inference when using this VB
approximation.

Theorem 3. Under the conditions of Theorem 1, the VB posterior satisfies

Eθ0Q
∗(θ ∈ Rp : |Sθ| ≥Mns0) = O

(
Cκ/Mn

)
+ o(1).

We have thus shown the VB posterior Q∗ (1) concentrates at the optimal rate around the sparse truth
in both `2 and prediction loss and (2) does not select overly large models, with the VB posterior mean
sharing property (1). These provide some reassuring theoretical guarantees regarding the behaviour of
this scalable and interpretable sparse VB approximation. Our results are reflected in practice, as our
VB algorithm performs better empirically than commonly used sparse VB approaches, see Section 5.

4 Variational algorithm

We present a coordinate-ascent variational inference (CAVI) algorithm to compute the VB posterior
Q∗ in (6). Consider the prior (2) with θj ∼iid (1−w)δ0 +wLap(λ) and hyperpriorw ∼ Beta(a0, b0).
Introducing binary latent variables (zj)

p
j=1, this spike and slab prior has hierarchical representation

w ∼ Beta(a0, b0),

zj |w ∼iid Bernoulli(w),

θj |zj ∼ind (1− zj)δ0 + zjLap(λ).

(9)

Minimizing the objective (6) is intractable for Bayesian logistic regression, so we instead minimize
a surrogate objective obtained by maximizing a lower bound on the marginal likelihood following
the ideas of [21, 9], see Section 11 for details. This common approach is known to lead to improved
accuracy in approximation [21], see also Chapter 10.6 of [6]. The surrogate objective is non-convex,
as is typically the case in VB, so the CAVI algorithm can be sensitive to initialization [7] and
parameter updating order [38]. Introducing a free parameter η ∈ Rn, we can establish the upper
bound

KL(Qµ,σ,γ ||Π(·|Y )) ≤ KL(Qµ,σ,γ ||Π)− Eθ∼Qµ,σ,γ [f(θ, η)] (10)

for a suitable function f defined in (30). We minimize the right-hand side over the variational family
Qµ,σ,γ ∈ Q, i.e. over the parameters µ, σ, γ. Since we seek the tightest possible upper bound in (10),
we also minimize this over the free parameter η. In particular, CAVI alternates between updating
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η for fixed µ, σ, γ and then cycling through µj , σj , γj and updating these while keeping all other
parameters fixed. Keeping all other parameters fixed, one updates µj and σj by minimizing

µj 7→ λσj

√
2

π
e
−
µ2j

2σ2
j + λµjerf

(
µj√
2σj

)
+ µ2

j

n∑
i=1

1

4ηi
tanh(ηi/2)x2

ij

+ µj

( n∑
i=1

1

2ηi
tanh(ηi/2)xij

∑
k 6=j

γkxikµk −
n∑
i=1

(yi − 1/2)xij

)
, (11)

σj 7→ λσj

√
2

π
e
−
µ2j

2σ2
j + λµjerf

(
µj√
2σj

)
− log σj + σ2

j

n∑
i=1

1

4ηi
tanh(ηi/2)x2

ij ,

respectively, where erf(x) = 2/
√
π
∫ x

0
e−t

2

dt is the error function. One updates γj by solving

− log
γj

1− γj
= log

b0
a0

+ λσj

√
2

π
e
−
µ2j

2σ2
j + λµjerf

(
µj√
2σj

)
− µj

n∑
i=1

(yi − 1/2)xij −
1

2

+

n∑
i=1

1

4ηi
tanh(ηi/2)

(
x2
ij(µ

2
j + σ2

j ) + 2xijµj
∑
k 6=j

γkxikµk

)
− log(λσj) (12)

and updates η via

η2
i = Eµ,γ,σ(xTi θ)

2 =

p∑
k=1

γkx
2
ik(µ2

k + σ2
k) +

p∑
k=1

∑
l 6=k

(γkxikµk)(γlxilµl). (13)

A full derivation of (10)-(13) can be found in Section 11 In our implementation, we minimize
(11) using the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [24]. To
improve scalability, we also perform the parameter updates in parallel, updating the objective function
parameter values only at the end of each iteration. Details are provided in Algorithm 1.

Algorithm 1: Modified CAVI for variational Bayes with Laplace slabs

Input: X ∈ Rn×p, Y ∈ {0, 1}p
(µ, σ, γ)← init_param()
while !convergence do

η ← update_lower_bound(µ, σ, γ) ; // implements eq.(13)
obj_fun← generate_obj_fun(µ, σ, γ, η,X, Y )
for j ∈ [p] do

(µj , σj)← L_BFGS
(
obj_fun.at(j)

)
; // minimizes eq.(11)

end
γ ← update_alpha(µ, σ, γ, η,X, Y ) ; // implements eq.(12)

end
Output: µ ∈ Rp, σ2 ∈ Rp>0, γ ∈ [0, 1]p

5 Numerical study

We empirically compare the performance of our VB method VB (Lap) based on prior (9) with
parameters a0 = b0 = λ = 1, to other state-of-the-art Bayesian variable selection methods in a
simple simulation study. We implemented Algorithm 1 in C++ using the Rcpp interface and used the
Armadillo linear algebra library and ensmallen optimization library, see [5, 39]. Note that the VB
objective function is highly non-convex and so the local minimum returned by Algorithm 1 does not
necessarily equal the global minimizer to the VB optimzation problem (6). For comparison, we first
consider the usual VB approach VB (Gauss), where the same variational family (5) is used, but the
Laplace slabs are replaced by standard normal distributions in the prior (9) (e.g. [20, 25, 33, 44, 56]).
We also compare our approach with the varbvs [9], SkinnyGibbs [29], BinaryEMVS [27], BhGLM
[54] and rstanarm [19] packages. We provide a brief description of these methods in Section 8.1
in the supplement. Note that the choice of hyperparameters can affect each of these methods and

7



performance gains are possible from using good data-driven choices. For instance, our algorithm is
sensitive to the choice of λ, see Section 8.3 in the supplement.

Due to space constraints, we provide here only one test case and defer the remaining tests to Section
8.2 of the supplement. We take n = 250, p = 500 and X to be a standard Gaussian design matrix,
i.e. Xij ∼iid N(0, 1), and set the true signal θ0 = (2, 2, 0, . . . , 0)T to be s = 2 sparse. We ran the
experiment 200 times for each method and report the means and standard deviations of the following
performance measures: (i) true positive rate (TPR), (ii) false discovery rate (FDR), (iii) `2-loss of the
posterior mean θ̂, i.e. ‖θ̂−θ0‖2, (iv) mean-squared predictive error (MSPE) of the posterior mean, i.e.
( 1
n

∑n
i=1 |Ψ(xTi θ̂) − Ψ(xTi θ0)|2)1/2 and (v) run time in seconds. Since the BhGLM and rstanarm

packages do not have explicit model selection subroutines, the TPR and FDR are not applicable.
Similarly, SkinnyGibbs provides posterior model selection probabilities and not the posterior mean,
hence neither the `2-error or MSPE are applicable. The results are in Table 1.

Table 1: Comparing sparse Bayesian methods in high-dimensional logistic regression.

Algorithm TPR FDR `2-error MSPE Time

VB (Lap) 1.00 ± 0.00 0.03 ± 0.10 0.57 ± 0.37 0.04 ± 0.02 12.10± 0.49
VB (Gauss) 1.00 ± 0.00 0.84± 0.04 3.34± 0.46 0.25± 0.03 0.98± 0.51
varbvs 1.00 ± 0.00 0.92± 0.01 1.30± 0.15 0.16± 0.02 0.08 ± 0.01
SkinnyGibbs 1.00 ± 0.00 0.90± 0.01 00.00 –00.00 00.00 –00.00 22.58± 3.58
BinEMVS 1.00 ± 0.00 0.88± 0.03 4.25± 0.56 0.29± 0.02 31.04± 0.94
BhGLM 00.00 –00.00 00.00 –00.00 2.69± 0.88 0.21± 0.16 1.60± 0.37
rstanarm 00.00 –00.00 00.00 –00.00 0.74± 0.58 0.31± 0.24 197.20± 26.16

Results based on 200 runs for an i.i.d. standard Gaussian design matrix X ∈ R250×500 with Xij ∼iid

N(0, 1) and true signal θ0,1 = θ0,2 = 2, θ0,j = 0 for 3 ≤ j ≤ 500.

In Table 1 and the additional simulations in Section 8, we see that using Laplace slabs in the prior (9)
generally outperforms the commonly used Gaussian slabs in all statistical metrics (`2-loss, MPSE,
FDR), in some cases substantially so. This highlights the empirical advantages of using Laplace
rather than Gaussian slabs for the prior underlying the VB approximation and matches the theory
presented in Section 3, as well as similar observations in linear regression [38]. We also highlight the
excellent FDR of VB (Lap), which warrants further investigation given its importance in Bayesian
variable selection and multiple hypothesis testing.

However, the computational run-time is substantially slower for Laplace slabs due to the absence of
analytically tractable update formulas as in the Gaussian case. The optimization routines required in
Algorithm 1 mean a naive implementation can significantly increase the run-time; we are currently
working on a more efficient implementation as an R-package sparsevb [15] that should reduce the
run-time by at least an order of magnitude.

The other methods perform roughly similarly to our algorithm in terms of estimation (`2-error) and
prediction (MSPE) error, doing better in certain test cases and worse in others. It seems there is no
clearly dominant Bayesian approach regarding accuracy. However, our method provides the best
results concerning model selection, generally having the best FDR while maintaining a competitive
TPR, as suggested by Theorem 3. The other methods all perform comparably, with varbvs having the
best TPR but substantially higher FDR, meaning it identifies many coefficients to be significant, both
correctly and incorrectly.

We note that the two VB methods based on Gaussian prior slabs (VB (Gauss) and varbvs), which
use analytic update formulas, are all significantly faster than the other methods. All the VB methods
(including ours) scale much better with larger model sizes (e.g. p = 5000) than the other methods,
which did not finish running in a reasonable amount of time when p = 5000, see Section 8.2. As
expected, the MCMC methods generally performed slowest, though SkinnyGibbs, which is designed
to scale up MCMC to larger sparse models, is indeed an order of magnitude faster than rstanarm.

5.1 Coverage of marginal credible intervals

An advantage of Bayesian methods is their ability to perform uncertainty quantification via credible
sets. The present mean-field VB approximation provides access to marginal credible sets for individual
features, which can be more informative than just the VB posterior mean, and are often of interest to
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practitioners. However, VB is known to generally underestimate the posterior variance, which can
lead to bad uncertainty quantification. In view of the excellent FDR control of our VB method in
earlier simulations, we further investigate the performance of these marginal credible sets empirically.

We consider 4 tests cases, consisting of the above example (Test 0) and Tests 1-3 from Section 8.2.
In each case, we computed 95% marginal credible intervals for the coefficients, i.e. the intervals Ij ,
j = 1, . . . , p, of smallest length such that Q∗(θj ∈ Ij) ≥ 0.95. We ran each experiments 200 times
and report the mean and standard deviation of the coverage and length of these credible intervals for
both the (true) zero and non-zero coefficients in Table 2.

Table 2: Marginal VB credible intervals for individual features

Test 0 Test 1 Test 2 Test 3

Coverage (non-zero coefficients) 1.00± 0.00 0.82± 0.19 0.94± 0.11 0.38± 0.12
Length (non-zero coefficients) 2.87± 0.14 2.56± 0.20 2.27± 0.16 1.33± 0.32
Coverage (zero coefficients) 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.01
Length (zero coefficients) 0.00± 0.00 0.01± 0.01 0.00± 0.00 0.03± 0.01

X ∈ R250×500, Xij ∼iid N(0, σ2). (0) σ = 1, s = 2, θ0,1:s = 2; (1) σ = 0.25, s = 5, θ0,1:s = 4; (2)
σ = 2, s = 10, θ0,1:s = 6; (3) σ = 0.5, s = 15, θ0,1:s ∼iid Unif(−2, 2).

We see that for the true zero coefficients θ0,j = 0, the coverage is close to one with intervals of
nearly zero width, meaning the VB posterior sets γj = Q∗(θj 6= 0) < 0.05. This matches the
other evidence (Theorem 3 and the good FDR) that the VB posterior Q∗ does not include too many
spurious variables. For true non-zero coefficients θ0,j 6= 0, the coverage is moderate to excellent in
the first 3 experiments, which matches the good TPR seen above. However, coverage is low in Test
3, which is an especially difficult test typically containing several small non-zero coefficients (here
θ0,j ∼iid Unif(−2, 2)) that are hard to detect. The low coverage is not surprising, since it is known
that even in the full Bayes case, coefficients below a certain size cannot be consistently covered [45].

The very promising results here suggest our VB approach might be effective for uncertainty quantifi-
cation for individual features, however this requires further investigation. We lastly note that while it
may be reasonable to consider marginal credible intervals, one should be careful about using more
general VB credible sets due to the mean-field approximation.

6 Discussion

This paper investigates a scalable and interpretable mean-field variational approximation of the
popular spike and slab prior with Laplace slabs in high-dimensional logistic regression. We derive
theoretical guarantees for this approach, proving (1) optimal concentration rates for the VB posterior
in `2 and prediction loss around a sparse true parameter, (2) optimal convergence rates for the VB
posterior predictive mean and (3) that the VB posterior does not select overly large models, thereby
controlling the number of false discoveries.

We verify in a numerical study that the empirical performance of the proposed method reflects these
theoretical guarantees. In particular, using Laplace slabs in the prior underlying the variational
approximation can substantially outperform the same VB method with Gaussian prior slabs, as is
typically used in the literature, though at the expense of slower computation. The proposed approach
performs comparably with other state-of-the-art sparse high-dimensional Bayesian variable selection
methods for logistic regression, but scales substantially better to high-dimensional models where other
approaches based on the EM algorithm or MCMC are not computable. We are currently working on
a more efficient implementation as an R-package sparsevb [15] that should improve the run-time.

Based on the promising FDR control and coverage of our VB method in the simulations, we plan to
further investigate the theoretical and empirical performance of our algorithm for multiple hypothesis
testing and variable selection, see [11] for promising first results for the (unscalable) original posterior.
Furthermore, the results derived here are the first steps towards better understanding VB methods in
sparse high-dimensional nonlinear models. It opens up several interesting future lines of research for
applying scalable VB implementations of spike and slab priors in complex high-dimensional models,
including Bayesian neural networks [36], (causal) graphical models [23] and high-dimensional
Bayesian time series [40].
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