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Abstract

We introduce and study a mean-field model for a system of spatially distributed
players interacting through an evolutionary game driven by a replicator dynam-
ics. Strategies evolve by a replicator dynamics influenced by the position and the
interaction between different players and return a feedback on the velocity field
guiding their motion.

One of the main novelties of our approach concerns the description of the
whole system, which can be represent-dimensional state space (pairs .x; �/ of
position and distribution of strategies). We provide a Lagrangian and a Eulerian
description of the evolution, and we prove their equivalence, together with exis-
tence, uniqueness, and stability of the solution. As a byproduct of the stability
result, we also obtain convergence of the finite agents model to our mean-field
formulation, when the number N of the players goes to infinity, and the initial
discrete distribution of positions and strategies converge.

To this aim we develop some basic functional analytic tools to deal with in-
teraction dynamics and continuity equations in Banach spaces that could be of
independent interest. © 2021 The Authors. Communications on Pure and Ap-
plied Mathematics published by Wiley Periodicals LLC.
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1 Introduction
1.1 Evolutionary games

Physical systems naturally tend to minimize the potential energy. For this funda-
mental reason the study of steady states in physical systems is of utmost relevance,
given the expected frequency for such states to occur. This is also the rationale
according to which game theorists have focused on the characterization of game
equilibria. Very celebrated is in fact the work of John F. Nash [33], where a new no-
tion of noncooperative equilibrium is introduced. The main result of [33], building
on John von Neumann’s notion of mixed strategy (necessary to ensure existence
of saddle points in zero sum games with two players), is the existence of mixed
strategy equilibria for noncooperative games with any finite number of players.

However, already at the origin of game theory, Oskar Morgenstern and John von
Neumann pointed out in their classical treatise on game theory [42] the desirability
of a “dynamical” approach to complement their “static” game solution concept. In
fact, while in physical systems evolutions towards minima of the potential energy
are explained according to Newton’s law (for which evolutions are, for conserva-
tive forces, the gradient flows of the potential energy), it is not at all clear whether
and how in dynamical games equilibria can emerge. Certainly John Nash had an-
ticipated this issue, when (in an unpublished section of his thesis [33]) he sketched
a “mass action approach” to his equilibrium notion, which was rediscovered in the
mid 1990s by Weibull [44]. Additionally, while Nash equilibria are natural “good”
states for noncooperative games, often in cooperative games, such as the one of
the prisoner’s dilemma, Nash equilibria are not necessarily the most interesting or
favorable states. For this reason, it would be very desirable for a proper concept of
dynamical game to be able to select either Nash equilibria or other type of steady
states, according to which is more convenient. Evolutionary games are dynamical
processes describing how the distribution of strategies changes in time according
to their individual success.

1.2 Spatially homogeneous replicator dynamics
One of most advocated mechanisms of dynamical choice of strategies is based

on a selection principle, inspired by Darwinian evolution concepts. The main idea
is to reinterpret the probability of picking a certain strategy with the distribution of
a population of players adopting those strategies. The emergence of steady mixed
strategies would be the result of an evolutionary selection: at discrete times play-
ers meet randomly, interact according to their strategies, and obtain a payoff. This
payoff determines how the frequencies in the strategies will evolve. As it is also
observed in [44, 45], the view that games are played over and over again by indi-
viduals who are randomly drawn from large populations was later independently
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taken up after Nash by evolutionary biologists, namely Smith and Price [40] and
Taylor and Jonker [41]. The discrete time stochastic evolution described above has
been formalized in [9] and yields, as an appropriate limit is considered, a contin-
uous time dynamics as follows: In games where players can adopt pure strategies
out of a finite set of N choices, we may describe those as u1; : : : ; uN 2 U , where
U is the set of strategies. We may denote with �i the frequency with which players
pick the strategy ui . The payoff of playing strategy ui against uj will be denoted
by J.ui ; uj /, where J W U � U ! R. The relative success of the strategy ui with
respect to the strategies played by the population is measured by

(1.1) �N .ui / D
NX

jD1

J.ui ; uj /�j �
NX
`D1

NX
jD1

�`J.u`; uj /�j ; i D 1; : : : ; N:

The relative rate of change of usage of the strategy ui is then described by

P�i
�i

D �N .ui / D
NX

jD1

J.ui ; uj /�j �
NX
`D1

NX
jD1

�`J.u`; uj /�j ; i D 1; : : : ; N;

or

(1.2) P�i D
0
@ NX
jD1

J.ui ; uj /�j �
NX
`D1

NX
jD1

�`J.u`; uj /�j

1
A�i ; i D 1; : : : ; N:

The system of ordinary differential equations (1.2) is known as replicator dynam-
ics, as introduced first by Taylor and Jonker [41], which is the best known model
in the class of imitative adaptation models (see [44, 45]); we also refer to the re-
cent book [25]. It is one of the most popular dynamical game models, because
its !-limit (the set of accumulation points of the dynamics) and steady states are
closely related to the Nash equilibria of the game described by the payoff matrix
A D .J.ui ; uj //ij [25, theorem 7.2.1] (the so-called “folk theorem of evolution-
ary game theory”). Moreover, as discussed in [26], adopting an equilibrium-based
viewpoint is often unable to account for the long-term behaviour of realistic play-
ers, who adjust their behaviour to maximise their payoff. The replicator dynamics
aims at being a more robust model.

1.3 Mean-field replicator dynamics
There is by now a large body of literature addressing the replicator dynamics for

infinite or continuous strategies [8, 18, 20, 23, 24, 34–36, 38], which can be viewed
as a natural limit for N ! 1 of system (1.2). The way of deducing this limit is
by defining the probability measure

�Nt WD
NX

jD1

�j;t�uj 2 P.U /
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and its evolution according to

P�Nt D
�Z

U

J.�; u0/d�Nt .u0/ �
Z
U�U

J.w; u0/d�Nt .w/d�
N
t .u

0/

�
�Nt ;

or, in weak form,
d
dt

Z
U

'.u/d�Nt .u/ D
Z
U

'.u/

�Z
U

J.u; u0/d�Nt .u
0/

�
Z
U�U

J.w; u0/d�Nt .w/d�
N
t .u

0/

�
d�Nt .u/

for any ' 2 C.U /. For any � 2 P.U /, we may denote

�� .u/ WD
�Z

U

J.u; u0/d�.u0/ �
Z
U�U

J.w; u0/d�.w/d�.u0/
�
;

so that �� .ui / D �N .ui / as in (1.1) for � DPN
jD1 �j �uj . By assuming that the

initial conditions �N0 * x� for a given x� 2 P.U /, one can show that �Nt * �t
for N !1 for any t , where � is the solution to

d
dt

Z
U

'.u/d�t .u/ D
Z
U

'.u/�� .u/d�t .u/; �.0/ D x�:
A result of well-posedness of such an equation for special choices of U is ob-

tained for instance in [35]; see also the more recent work [6]. The notion of equi-
librium is well understood in the case of a finite strategy space [25, 45]. On the
contrary, the situation of games with infinite strategies has long lacked a general
theory due to the technical and conceptual difficulties stemming from understand-
ing which notion of distance between probability measures was the most suitable.
We refer the reader to [35], where stability with respect to the weak topology has
been considered, and the discussion in [34]. Since the focus of the present pa-
per is not the analysis of the asymptotic behaviour of the replicator dynamics with
continuous strategy space, we refer the interested reader to additional and more
recent work along the measure theoretical framework, including [10, 16–19]. Our
approach uses the classical transport distances and the general framework of evo-
lution problems in the class of probability measures; see, for instance, [2] for a
systematic treatment of this topic; see also [13, 37] for recent contributions. Some
results of asymptotic behavior and the stability of solutions are given in [6].

1.4 Spatially inhomogeneous replicator dynamics
In this paper, in contrast to spatially homogenous dynamical games, we assume

that the population of players is distributed over a position space and that they
are each endowed with probability distributions of strategies, which they draw at
random to evolve their positions. The positions of the players are assumed to be in
the d -dimensional Euclidean space Rd and the pure strategies u are in a compact
metric spaceU ; a probability measure � 2 P.U / denotes a mixed strategy. Notice
that this setting is different from the one of spatial evolutionary games [22, 29]
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where pure strategies are distributed over a spatial domain and they are updated in
time according to the success of neighbor strategies via local interaction.

With these definitions, the space of pairs of positions and mixed strategies is
C WD Rd � P.U /, whose elements are pairs y D.x; �/ describing the state of a
player. The system will be described by the evolution of a measure � 2 P.C / D
P.Rd � P.U // on our state space, which represents a distribution of players
with strategies. Notice that such a measure � well describes the superposition of
players with different strategies that at some time occupy the same position.

Omitting for the time being the temporal variable, we proceed to the description
of the dynamics of the pair y WD .x; �/ 2 C . The player x moves with a velocity
that is obtained by averaging over all the strategies a suitable function eW Rd �
U ! Rd , namely,

(1.3) Px D
Z
U

e.x; u/d�.u/:

For instance, in the simplest case when e.x; u/ D u and the set of strategies U
consists of a finite subset of Rd , this “mean velocity” dynamics can be thought of
as the result of a faster time scale. For convenience, it is useful to see the right-hand
side of (1.3) as the result of a map aW C ! Rd by defining

(1.4) a.y/ D a.x; �/ WD
Z
U

e.x; u/d�.u/:

Notice that a depends linearly on � . In order to write the evolution law for the
strategies we will assume that it is driven by an interaction mechanism, which de-
pends only on the state of the system (position and strategies) and does not distin-
guish two players occupying the same place with the same instantaneous strategy
distribution. Thus we consider a Lipschitz function

(1.5) J W .Rd � U/2 ! R;

and we define an interaction potential

�W P.C / � C ! C.U /; .�; y/ 7! ��;y ;

by setting (notice that the integrals make sense, under suitable moment assump-
tions on � , since J has at most linear growth)

��;y D ��;.x;�/.u/

WD
Z
C

Z
U

J.x; u; x0; u0/d� 0.u0/d�.x0; � 0/

�
Z
U

Z
C

Z
U

J.x;w; x0; u0/d� 0.u0/d�.x0; � 0/d�.w/:

(1.6)

The evolution law for the mixed strategies of the player at x is again according to
a replicator dynamics similar to the ones mentioned above, and it can be written as

(1.7) P� D ��;.x;�/ �:
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The interaction potential � has here a simple interpretation: J.x; u; x0; u0/ repre-
sents the contribution to the payoff that the player x gets from the pure strategy u
assuming that the player x0 acts with pure strategy u0. When player x0 acts with
mixed strategy � 0, we obtain

(1.8) J .x; u; x0; � 0/ WD
Z
U

J.x; u; x0; u0/d� 0.u0/:

Therefore, the full payoff of x given the pure strategy u isZ
C

J .x; u; x0; � 0/d�.x0; � 0/;

corresponding to the first integral in (1.6). The second term is the integral of this
quantity with respect to � ; thus the payoff expected by x from the mixed strategy
� , given the full distribution � .

We remark that the dependence of the payoff in (1.8) on the full strategy � 0

of x0, which may imply a certain level of anticipation, is made for the sake of
generality: in practical situations J may only depend on a marginal of � 0, and
the strength of the interaction between players may be influenced by their distance
jx � x0j through the function J . From another point of view, this full dependence
(as the expectations of the players on the future in the mean-field games theory;
see [14] and the short discussion in Section 1.6) could emerge from a repetition of
the evolutionary game; see [9] for a contribution in this direction in the spatially
homogeneous case.

Putting together (1.4) and (1.7), we can write the evolution for y as

(1.9) Py D . Px; P�/ D .a.x; �/;��;.x;�/�/ DW b� .y/;
which can be interpreted as an ODE in the convex set C . The theory of ODEs in
Banach spaces (see Appendices A and B, or [15, partie II] and [21, chap. X] for
classical monographs on this topic) will be a useful tool in the study of the well-
posedness of (1.9), the existence, uniqueness, and stability of its solutions, and
their properties.

In order to do so, we embed C in the Banach space Y WD Rd � F.U /, where

F.U / WD span.P.U //
k � kBL

;

and the closure is taken in the dual space .Lip.U //0 with respect to the dual norm
(also called the bounded Lipschitz norm)

(1.10) k`kBL WD supfh`; 'iW ' 2 Lip.U /; k'kLip � 1g;
where k�kLip is the Lipschitz norm in (2.5) below. Notice that F.U / � .Lip.U //0,
and that .Y; k�kY /, with kykY D k.x; �/kY WD jxjCk�kBL, is a separable Banach
space. The space F.U / defined above, known in the literature as the Arens-Eells
space [5], is isometric to the predual of Lip.U /; see [3,43] for more details also on
the space .Lip.U //0.
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1.5 Formal derivation of a nonlinear master equation
We fix a time interval �0; T �, a time step h D T=N , and an initial datum x� 2

P.Rd �P.U //, assuming for simplicity that the first marginal of x� is compactly
supported. Recalling the notation C D Rd � P.U / and its natural structure of
convex set, we build a discrete solution

Mh 2 P.C.�0; T �IC//

concentrated on paths .x.t/; �.t//W �0; T � ! C , which are piecewise affine (in
the N intervals). We denote �t;h WD .evt /#Mh, where evt W C.�0; T �IC/ ! C

defined by evt .x; �/ WD .x.t/; �.t//. In particular, .ev0/#Mh D x� is the given
initial condition.

The heuristic idea is the following: If the player at time t D ih for i 2
f0; : : : ; N g is in the position xx, with mixed strategy represented by the probability
measure x� , first they upgrade their belief on the probability replacing x� by

x� 0 WD .1C h��t;h;.xx;x�// x�:

Then, they move to the next position xx C he.xx; u/ choosing u with probability x� 0
and carrying the same probability x� 0 to the new position. The probability measure
Mh takes all the future stochastic realizations into account. In more formal terms,
the conditional probability relative toMhj�0;tCh� of .x.tCh/; �.tCh//, given the
information that at time t one has .x; �/.t/ D .xx; x�/, is ..xx C he.xx; �//#x� 0/ � �x� 0 .
By iterating this process N times one can build Mh on the whole time interval
�0; T � (alternatively, one can view this as a Markov process with the above-defined
transition probabilities and build first a measure Nh in P.C /NC1; then Mh by
associating to N C 1 points in P.C / a piecewise affine path in �0; T �).

Under boundedness assumptions on the field eW Rd � U ! Rd and on the
interaction potential �, it turns out that Mh is concentrated on paths .x.t/; �.t//
satisfying the equi-Lipschitz property

(1.11)

(
jx.s/ � x.t/j � Ljs � t j
k�.s/ � �.t/kBL � Ljs � t j

for all 0 � s � t � T ,

with L D L.e; J; U / � 0.
Given now a bounded test function � W Y ! R of class C1 (in the Fréchet

sense) with respect to the k�kY norm, let us write a discrete continuity equation
associated to �t;h, the marginals of Mh in the sense �t;h WD .evt /#Mh. For
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t D ih, 0 � i � N � 1, one hasZ
�.x; �/ d.�tCh;h ��t;h/.x; �/

D
Z �
�.x.t C h/; �.t C h// � �.x.t/; �.t//�dMh.x.�/; �.�// D

D
Z �
�.x.t C h/; .1C h��t;h;x.t/;.�.t///�.t//

� �.x.t/; �.t//�dMh.x.�/; �.�//

� h

Z
D�.x.t/; �.t// � �a.x.t/; �.t//;��t;h;.x.t/;�.t//�.t/

�
dMh.x.�/; �.�//

D h

Z
D�.x; �/ � b�t;h

.x; �/d�t;h.x; �/;

where b� is given by (1.9), and we used the chain rule for Fréchet differentiation.
Recalling from (1.11) that Mh is concentrated on equi-Lipschitz paths t 7!

.x.t/; �.t//, the family fMhW h D T=N; N � 1g is weakly compact in the space
P.C.�0; T �IC// and by Prokhorov theorem it has limit points as h ! 0. Any
limit point M is concentrated on Lipschitz paths satisfying (1.11), and this con-
struction builds a continuous map � W �0; T � ! C by �t WD .evt /#M , satisfying
the equation

(1.12) @t�t C div.b�t
�t / D 0

in the weak sense of (3.10) below, with x� as initial condition. In the following,
we explore notions of solutions to (1.12) and conditions for their existence and
uniqueness, starting from the corresponding finite agents model.

1.6 Interpretation of the model, comparison with other population dynamics
models, and mean-field games

The master equation (1.12) is a novel model of spatially nonhomogenous evo-
lutive games, which fuses mean-field theory, optimal transport, and replicator dy-
namics from evolutionary game theory. We borrow and translate the mechanism of
the replicator dynamics of computing optimal mixed strategies of individual agents
involved in a spatial-type dynamics; in this sense our model is about a “dynami-
cal/evolutive game” rather than a “selection/evolutionary game” of a population.
The Darwinism/selection is not at the level of the population of agents, but at the
level of the best strategy applied by the single agent, and it is certainly more in
the spirit of “mean-field games” à la Lasry-Lions (see the discussion at the end
of this subsection), rather than a genuine contribution to evolutionary game the-
ory, for which population evolution/selection is the main focus. However, we think
that our model could also have potentially interesting applications for evolutionary
population dynamics, even if this was not our motivating viewpoint. We explain
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this latter interpretation in Section 3.1, where an evolutionary game is augmented
by external parameters.

In the works [12, 13], a population dynamics is considered in terms of (pos-
sibly nonlinear) transport equations modeling agents subjected to predetermined
(economic or social) forces induced by the other agents (the first principles of eco-
nomic or social interaction). Such models are very much inspired by physics where
particles are subjected to the action of physical forces governed by first principles.
The applicability of this type of models to economics or sociology raises several
questions, since in economics one assumes that every external intervention must
necessarily change the behavior of agents as they anticipate the effect. So the
dynamics with predefined interaction forces between agents does not encounter a
full acceptance by economists or sociologists. Instead, the model (1.12) where the
driving vector field evolves on the basis of the replicator equation is better adapted
to an economical viewpoint. It generates a more “complex” dynamics, due to the
self-interacting influence of the replicator equation on the motion, and it is closely
connected to the underlying principle of maximizing the individual payoff.

There are other approaches towards modeling spatially nonhomogenous games
of a large population of indistinguishable agents. Perhaps the most prominent is
the so-called theory of mean-field games. This class of problems was considered in
the economics literature by Boyan Jovanovic and Robert W. Rosenthal [30], in the
engineering literature by Peter E. Caines, Minyi Huang, and Roland P. Malhamé
[27,28], and independently and around the same time by the mathematicians Jean-
Michel Lasry and Pierre-Louis Lions [31].

In continuous time, a mean-field game is typically composed of a Hamilton-
Jacobi-Bellman equation for the optimal control problem of an individual, and a
forward Fokker-Planck-Kolmogorov equation for the dynamics of the aggregate
distribution of agents. Under fairly general assumptions, it can be proven that
a mean-field game is the limit as N ! 1 of an N -player Nash equilibrium.
In particular, one can consider the stochastic evolution of N players dictated by
equations

(1.13) dX i
t D uitdt C

p
2�dB i

t ; i D 1; : : : ; N;

where X i
0 are independently drawn at random according to a probability distri-

bution �0 2 P.Rd /, B i
t are independent d -dimensional Brownian motions, and

� > 0 is a noise parameter, so that the limiting case � D 0 corresponds to the
so-called first-order games. The player i can choose a strategy ui adapted to the
filtration

(1.14) Ft D �
�
X
j
0 ; B

j
s W s � t; j D 1; : : : ; N

�
:

The payoff of player i is given by

(1.15) JNi .u
1; : : : ; uN / D E

�Z T

0

1

2
juit j2 C F

�
X i
t ;

1

N � 1
X
j¤i

�
X
j
t

�
dt
�
:
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The solution of the N -player game is the suitable minimization of (1.15) under
the constraints (1.13) for all i D 1; : : : ; N . Hence, the appropriate notion of so-
lution may be precisely the Nash equilibrium, i.e., a configuration of strategies
.u�;1; : : : ; u�;N / such that

JNi .u
�;1; : : : ; u�;N / � JNi .u�;1; : : : ; u�; i�1; u; u�; iC1; : : : ; u�;N / for all u;

for all i D 1; : : : ; N . The computation of such equilibria becomes intractable
already for a moderate number N of players. However, for N very large a mean-
field approximation for N !1 may help to obtain approximate Nash equilibria.
In particular, for N ! 1 one can approximate the empirical distribution �Nt D
1
N

PN
iD1 �X i

t
supported on realizations of (1.13) by the solution of the forward

Fokker-Planck-Kolmogorov equation

(1.16) @t� � ���C div.u�/ D 0

for an appropriate control function u.t; x/. For a given time-dependent distribution
y�t , the corresponding payoff functional would be given by

(1.17) J.u/ D
Z T

0

Z
Rd

�
1

2
ju.t; x/j2 C F .x; y�t /

�
d�t dt:

The solution of the mean-field game comes from the minimization of (1.17) under
the PDE constraints (1.16) and the fixed point condition �t D y�t , and these yield
the mean-field game system

(1.18)

(
�@t � �� C 1

2
jr j2 D F.x; �/;

@t� � ��� � div.r �/ D 0;

with appropriate initial and terminal conditions. The choice u.t; x/ D �r .t; x/
yields nearly optimal strategies to be inserted in (1.13) by posing uit D u.t; X i

t /.
Several comments about differences between our spatially nonhomogeneous evo-
lutionary game and mean-field games are in order:

� Mean-field games are intimately linked to the theory of (stochastic) mean-
field control and as such are global-in-time optimizations: in other words,
one has to forecast the future behavior of the agents in order to be able
to solve the game, and this is mathematically expressed by the need of
simultaneously solving a backward-in-time evolution to compute the op-
timal strategy. Our model is a simple forward-in-time evolution accord-
ing to the master equation (1.12) in a continuous local-in-time search for
pairwise-game equilibria.

� Mean-field games are built around the concept of Nash equilibrium for
noncooperative games, one of the notion of solutions considered in evolu-
tionary game theory, which also aims at reaching different situations.

� Well-posedness of the mean-field game system (1.18) has been shown for
special choices of costs F , the so-called potential games [31]. Accord-
ingly, the numerical solution of the mean-field game system (see also,
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e.g., [1] for alternative approaches) could be based on the iterative so-
lution of a backward-forward system by means of individual solvers for
the two equations: starting from a given initial trajectory t 7! �

.0/
t , one

iterates the numerical solution for n D 0; 1; 2; : : :(
�@t .n/ � �� .n/ C 1

2
jr .n/j2 D F.x; x�.n//;

@t�
.nC1/ � ���.nC1/ � div.r .n/�.nC1// D 0;

where x�.n/ D 1
n

Pn
iD1 �

.i/, and with appropriate initial and terminal
conditions. This iterative procedure, also called learning or fictitious play
in [14], provides a justification to the “knowledge about the future” in-
corporated in the model, and is shown to converge, at least for potential
games. For our model, we will prove that the well-posedness (existence,
stability, and uniqueness) of the master equation (1.12) is ensured under
Lipschitz assumptions on the function e in (1.4) and on our pairwise-game
payoff function J defined in (1.5). In addition, the formal derivation of
the master equation (1.12) as in Section 1.5 provides already a rather clear
path towards a time marching numerical solution.

2 Measure-Theoretic Preliminaries
Before exploring notions of solutions to (1.12) and conditions for their existence

and uniqueness, we make more precise the functional setting where the evolutions
governed by (1.12) take place. We use here differential and Bochner calculus in
separable Banach spaces, and we refer to Appendix A for some related basic no-
tions and results.

2.1 Notation and distances in the space of measures
If .X; dX / is a metric space, we denote by M .X/ the space of signed Borel

measures in X with finite total variation, by MC.X/, P.X/ the convex subsets
of nonnegative measures and probability measures respectively. For � 2 M .X/,
j� j 2 MC.X/ denotes the total variation measure of � (see also (2.4) below). We
shall also use the notation M0.X/ for the subset of measures with 0mean; we shall
use the identity R.P.X/ �P.X// D M0.X/ (in the sense of Minkowski sums)
provided by the Hahn decomposition theorem for signed measures.

For a Lipschitz function f W X ! R we denote by

Lip.f / WD sup
x;y2X
x¤y

jf .x/ � f .y/j
dX .x; y/

the Lipschitz constant, and denote by Lipb.X/ the space of bounded Lipschitz
functions.

Given � 2 MC.X/ and f WX ! Y , with f �-measurable, we shall denote
by f#� 2 MC.Y / the push-forward measure, having the same mass as � and
defined by f#�.B/ D �.f �1.B// for any Borel set B � Y (when � 2 P.X/, in
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probability theory it is also named law of f under �); we shall also often use the
change-of-variables formulaZ

Y

g df#� D
Z
X

g � f d�

whenever either one of the integrals makes sense.
In a complete and separable metric space .X; dX /, we shall use the Kantorovich-

Rubinstein (possibly infinite) distanceW1.�; �/ in the class P.X/; thanks to Kan-
torovich duality, the definition

W1.�; �/ WD sup
�Z

X

' d� �
Z
X

' d�W ' 2 Lipb.X/, Lip.'/ � 1
�

is equivalent to

(2.1) W1.�; �/ WD

inf
�Z

X�X

dX .x; y/ d�.x; y/W �.A �X/ D �.A/; �.X � B/ D �.B/

�

involving couplings � of � and �, but we shall mostly be working with the first
one. Notice that W1.�; �/ is finite if � and � belong to the space

(2.2) P1.X/ WD
�
� 2 P.X/W

Z
X

dX .x; xx/d�.x/ < C1 for some xx 2 X
�

and that .P1.X/;W1/ is complete if .X; dX / is complete. Recall also that the
convergence of �h 2 P1.X/ to � 2 P1.X/ with respect to the distance W1 is
equivalent to weak convergence in the duality with bounded Lipschitz functions
plus convergence of first moments [2], namely,

R
X dX . � ; xx/d�h !

R
X dX . � ; xx/d�

for all xx 2 X .
We also need a C1

b
variant of Kantorovich duality, valid in separable Banach

spaces, stated below.

LEMMA 2.1 (C1 duality). For any separable Banach space Y , one has that

dC1.�; �/ WD sup
�2C1

b
.Y /

Lip.�/�1

�Z
Y

� d� �
Z
Y

� d�
�

defines a distance in M .Y /, which coincides with W1 when restricted to P1.Y /.

PROOF. Symmetry and the triangle inequality are obvious. To prove the nonde-
generacy, notice that any cylindrical function �.y/ D  .hy; ´01i; : : : ; hy; ´0d i/with
 W Rd ! R bounded, continuously differentiable, and Lipschitz and ´0j 2 Y 0, is
a C1

b
function on Y and, after suitable rescaling, satisfies Lip.�/ � 1. If two mea-

sures � and � have vanishing dC1-distance, then necessarily they must coincide
on the � -algebra generated by such cylindrical functions. From [46, lemma on
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pp. 131–132], since Y is separable there exists a sequence .´0i /i2N in the unit ball
of Y 0 with

(2.3) kykY D sup
i

hy; ´0i i D sup
i;k

 k.hy; ´0i i/ for all y 2 Y ,

where  k.r/ D k tanh.r=k/.
Hence, balls and then open sets belong to the � -algebra generated by cylindrical

functions. It follows that this � -algebra coincides with the Borel � -algebra and
� D �.

The proof of the final statement requires a slight refinement of the previous
argument. Let �; � 2 P1.Y / and for every a > 0 let us set La WD

�
� 2 Lipb.Y / W

supY j�j � a; Lip.�/ � 1
	
. We consider the subset Ga of functions � 2 La such

that Z
Y

� d� �
Z
Y

� d� � dC1.�; �/:

By definition of dC1 , Ga contains La \ C1
b
.Y /; we want to show that Ga coincides

with La. Since Ga is closed with respect to pointwise convergence, it is sufficient
to prove that zGa WD La \ C1

b
.Y / coincides with La. Notice that the topology of

pointwise convergence in La is metrizable: it is sufficient to select a countable
dense subset .yi /i2N of Y and consider the distance

dLa.�;  / WD
1X
iD0

2�i j�.yi / �  .yi /j:

By approximating the convex function

SN .r/ WD r1 _ r2 _ � � � _ rN ; r D .r1; : : : ; rN / 2 RN ;

by convolution with a symmetric, nonnegative mollifier � 2 C1
c .RN /,

R
� D 1,

SN;h.r/ WD hN
Z
RN

SN .r � s/�.hs/ds; h 2 N;
we obtain an increasing sequence of smooth functions converging to SN as h!1
and satisfying

IN .r/ � SN;h.r/ � SN .r/; jSN;h.r/ � SN;h.r 0/j � sup
1�n�N

jrn � r 0nj;

where IN .r/ WD �SN .�r/ D r1^r2^� � �^rN . It follows that if 1; : : : ;  N 2 zGa,
then  h WD SN;h. 1; : : : ;  N / belongs to zGa and therefore also  D  1 _  2 _
� � � _ N belongs to zGa. The same property holds for the infimum and extends to a
countable family of functions.

By using the representation (2.3) it is then easy to check that any functions of
the form y 7! �a _ .bCky � y0k/^ a belong to zGa. Since every f 2 La can be
expressed as

f .y/ D inf
y02Y0

�a _ .f .y0/C ky � y0k/ ^ a 8y 2 Y



1366 L. AMBROSIO ET AL.

for any dense and countable subset Y0 of Y , we conclude the proof. �

From now on we fix a compact metric space U with a distance d. The space
M .U /, when endowed with the total variation norm

k�kTV WD sup
� Z

U

' d� W ' 2 C.U /; j'j � 1
�

has the structure of Banach space, isometrically isomorphic to the dual of C.U /.
We will also use the representation formulas

(2.4) k�kTV D j� j.U / D sup
� Z

U

' d� W ' 2 Bb.U /; j'j � 1
�
;

where Bb.U / denotes the class of bounded Borel functions 'W U ! R.
Mixed strategies can be interpreted as Borel probability measures in U . The set

of Borel probability measures P.U / is a convex and weak-star closed subset of
M .U /, corresponding to the class of nondecreasing linear functionalsLW C.U /!
R with L.1/ D 1 in the dual representation of M .U /. On the other hand, P.U /

can also be realized as a compact convex set of another Banach space, the dual
.Lip.U //0 of Lip.U /: the norm in Lip.U / is given by

(2.5) k'kLip WD sup
u2U

j'.u/j C Lip.'/

so that, for ` 2 .Lip.U //0,

k`kBL WD sup
�h`; 'i W ' 2 Lip.U /; k'kLip � 1

	
:

For later use, let us record the property

(2.6) k' kLip � k'kLipk kLip;

for all '; 2 Lip.U /.
Actually, while the linear structure we need forces us to go beyond P.U /, for

our purposes it will be more convenient to work in a closed subspace of .Lip.U //0,
namely,

F.U / WD span.P.U //
k�kBL � .Lip.U //0:

This space, also called Arens-Eells space in the literature, is a separable Banach
space containing M .U /.

Notice that, for a measure � 2 M0.U /, the BL norm is equivalent to the norm
induced by the dual formulation of the 1-Wasserstein distance: in fact, for every
1-Lipschitz function 'W U ! R and for every x0 2 U we haveZ

U

' d� D
Z
U

.'.x/ � '.x0//d�.x/ � k�kBL
�

sup
x2U

d.x; x0/C 1
�
;

so that, with DU WD min
x02U

max
x12U

d.x0; x1/ � diam.U /, one has

k�kBL � sup
� Z

U

' d� W Lip.'/ � 1
�
� .1CDU /k�kBL:
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In particular, when � D �1��2 with �1; �2 2 P.U /, Kantorovich duality gives

(2.7) k�1 � �2kBL � W1.�1; �2/ � .1CDU /k�1 � �2kBL:

We summarize the previous discussion in the following list of properties:
(i) .M .U /; k�kTV/ is a Banach space continuously embedded in the space
.F.U /; k�kBL/ with

(2.8) k�kBL � k�kTV for every � 2 M .U /:

(ii) P.U / is a weak-star and closed convex set of M .U /, endowed with the
total variation norm; it is also compact in F.U /. Thanks to (2.7) and to the
fact that W1 metrizes the weak-star convergence in P.U /, the BL norm
induces the weak-star topology in P.U /.

(iii) For every �1; �2 2 P.U /, besides (2.7) and (2.8) with � D �1 � �2, we
have

(2.9) W1.�1; �2/ � DU k�1 � �2kTV:

2.2 Differentiable curves in the space of measures
Let us now consider two curves t 7! �t 2 P.U /, and t 7! �t 2 F.U /,

t 2 �0; T �. We will assume that � and � are continuous with respect to the BL
norm, and we want to give a meaning to the differential equation

(2.10)
d
dt
�t D �t t 2 �0; T �:

It is easy to check that the classical formulation of (2.10) as an ODE in the Banach
space F.U / is equivalent to the weak formulation of (2.10), which reads as

(2.11)
Z
U

' d�t �
Z
U

' d�s D
Z t

s

h�� ; 'i d� for every ' 2 Lip.U /; s; t 2 �0; T �.

Indeed, since � is continuous, the map

(2.12) t 7! Nt D
Z t

0

�� d�

is of class C1 and its derivative exists in the classical sense

(2.13) lim
h!0





1h.NtCh �Nt / � �t






BL
D 0 for every t 2 �0; T �:

From (2.11) it follows thatZ
U

' d�t D
Z
U

' d�0 C hNt ; 'i for every ' 2 Lip.U /;

and therefore the density of Lip.U / in C.U / implies �t D �0CNt for all t 2 �0; T �.
In particular, (2.13) gives that t 7! �t 2 F.U / is of class C1 and that (2.10) holds
in the classical sense.
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Remark 2.2 (Vector integral). Since � is continuous, the integral in (2.12) can be
equivalently defined as a Cauchy-Riemann integral or as a Bochner integral (see
Section A.2).

Let us now suppose that � takes its values in the smaller space M .U / � F.U /

and that the stronger conditionZ T

0

k�tkTV dt < C1

is satisfied. Notice that the TV norm is lower-semicontinuous with respect to the
BL topology, so that the map t 7! k�tkTV is lower-semicontinuous and therefore
Borel. From the representation formula of �t , it follows that

k�t � �skTV D kNt �NskTV �
Z t

s

k��kTV d� for all 0 � s � t � T ,

so that t 7! �t 2 M .U / is absolutely continuous. In particular, if k�tkTV 2
L1.0; T /, then �t is a Lipschitz curve. Eventually, if � is even continuous with
respect to the total variation norm, then t 7! �t 2 M .U / is of class C1, namely,

lim
h!0





1h.�tCh � �t / � �t





TV

D 0 for every t 2 �0; T �.

2.3 ODEs in the space of measures
Let us now consider the case when the right-hand side �t in (2.10) is given by

a time-dependent family of operators A.t; �/W �0; T � � P.U / ! F.U /, not nec-
essarily linear with respect to � ; we assume that A is a continuous map when both
P.U / and F.U / are endowed with the BL topologies. Then, we are considering
the ODE

(2.14)
d
dt
�t D A.t; �t / t 2 �0; T �;

in F.U /. Initially, one can also look for solutions � 2 C.�0; T �I .P.U /; k�kBL//

in the weak sense of (2.11), namely,

Z
U

' d�t �
Z
U

' d�s D
Z t

s

hA.�; �� /; 'i d�;

for every ' 2 Lip.U /; 0 � s � t � T .

But, since A is continuous, we deduce from the previous discussion that t 7! �t 2
F.U / is of class C1; therefore (2.14) holds in the classical pointwise sense at every
t 2 �0; T �:

(2.15) lim
h!0





1h
�
�tCh � �t

� � A.t; �t /






BL
D 0 for all t 2 �0; T �.
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If moreover A maps �0; T � � P.U / to the smaller space M .U / and we know
that

sup
t2�0;T �

kA.t; �t /kTV < C1;

then we deduce that the curve t 7! �t is Lipschitz with respect to the total variation
norm. Finally, if AW �0; T ��P.U /! M .U / is continuous when the target space
is endowed with respect to the total variation norm, (2.15) improves to

lim
h!0





1h
�
�tCh � �t

� � A.t; �t /






TV
D 0 for all t 2 �0; T �.

3 Finite Agent Model
3.1 1-average-player evolution

In order to explain how to apply the previous discussion to our model, let us first
consider the simplest, and somehow degenerate, case of a single player. Recalling
the formal derivation of our model in Section 1.5, this case should be considered as
a limit of an evolution process, when all the players (whose total mass is conven-
tionally normalized to 1) are initially concentrated in the same initial place xx with
the same initial distribution x� of strategies.

The evolution is then given by a moving point yt D .xt ; �t / 2 Rd � P.U /,
and �t is just the Dirac mass concentrated at yt . Then y satisfies the differential
equation

(3.1)

8�����<
�����:

Pxt D a.xt ; �t / D
Z
U

e.xt ; u/d�t .u/;

P�t D
�Z

U

J.xt ; � ; xt ; u0/d�t .u0/

�
Z
U�U

J.xt ; w; xt ; u
0/d�t .u0/d�t .w/

�
�t ;

where we denoted by eW Rd � U ! Rd the velocity field driving the motion of
the player according to the choice of a strategy u. This can be interpreted as a
differential equation in the phase space C D Rd �P.U / � Y D Rd � F.U / of
the form

(3.2) Pyt D b.yt /

where b is the vector field

b.x; �/ D
�Z

U

e.x; u/d�.u/;
�Z

U

J.x; �; x; u0/d�.u0/

�
Z
U�U

J.x;w; x; u0/d�.u0/d�.w/
�
�

�
:

The 1-average-player evolution thus reproduces the mechanism of a replicator
equation influenced by a vector parameter x, whose dynamics is in turn affected by
the evolving strategy distribution. As we will see in the next more general cases,
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the particular structure of the vector field b satisfies the structural assumptions of
the main existence Theorem B.1, and the second component �t of the curve yt will
be differentiable even with respect to the total variation norm.

Remark 3.1. We already observed that our paper deals with dynamical/evolutive
processes of populations more in the spirit of the mean-field games à la Lasry-Lions
(see Section 1.6) rather than selection/evolutionary processes of populations. The
Darwinian selection aspect is occurring in the selection of the mixed strategies of
each individual. Nevertheless, the dynamics (3.1)–(3.2) admits a different interpre-
tation in terms of a usual replicator dynamics and evolutionary game theory, when
the evolution law of the population also depends on a parameter x 2 R (d D 1,
just to consider the scalar case where x may represents some kind of available re-
sources). Suppose that the distribution of x of the initial population is concentrated
on a single given value x1. It is typical of the replicator dynamics that the evolution
will remain concentrated on x1 for all the time, so that it would be useless to enrich
the state space U to U � fx1g, and x1 enters only as a parameter of the equations.

Instead, the transport effects of the first equation in (3.1) may allow a variation
of x with respect to time modeled by a simple ODE, affected by the distribution
�t 2 P.U / of the population itself. This transport effect becomes more relevant
when the initial distribution of x is concentrated on N values: this is one of the
possible interpretations of the case of theN -player systems of the next section 3.2.

In the present paper, we focus our efforts on the correct way of modeling the
interaction between transport and replicator dynamics, by choosing a simple trans-
port dynamic for the Rd -component of the evolution, but more general dynamical
systems can also be considered in our setting, see, e.g., [32]. We think that the flex-
ibility offered by the present approach could be relevant for interesting and novel
evolutionary game models.

3.2 N -average-player system
In the case of N players, we have to follow the evolution of N points yi;t D

.xi;t ; �i;t /, i D 1; : : : ; N . It is useful to introduce the interaction field f W C �C !
Y between two players (as usual, a player is identified by the position x and a
mixed strategy � ): we can write f as a pair .fx; f� / where fx W C �C ! Rd and
f� W C � C ! F.U /; the first component is in fact independent of the interaction
and can be written as

(3.3) fx.y; y
0/ D fx.x; �; x

0; � 0/ D a.x; �/ D
Z
U

e.x; u/d�.u/;

whereas the second component f� is given by

f� .y; y
0/ D f� .x; �; x

0; � 0/

WD
�Z

U

J.x; � ; x0; u0/d� 0.u0/

�
Z
U�U

J.x;w; x0; u0/d� 0.u0/d�.w/
�
�:

(3.4)
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The system8�������<
�������:

Pxi;t D a.xi;t ; �i;t / D
R
U e.xi;t ; u/d�i;t .u/;

P�i;t D
 
1

N

NX
jD1

�Z
U

J.xi;t ; �; xj;t ; u0/d�j;t .u0/

�
Z
U

J.xi;t ; w; xj;t ; u
0/d�j;t .u0/d�i;t .w/

�!
�i;t ;

can be rewritten in the compact form

(3.5) Pyi;t D 1

N

NX
jD1

f .yi;t ; yj;t /:

We will see in the next section that such a problem always admits a unique solution,
whenever f satisfies the following two conditions:

(i) f is Lipschitz fromC�C to Y when Y is endowed with the product norm
induced by the Euclidean norm in Rd and the BL norm in F.U / and the
convex subset C is endowed with the distance induced by the inclusion in
Rd � F.U /;

(ii) for every R > 0 there exists a constant � > 0 such that for every x; x0 2
BR.0/ � Rd and �; � 0 2 P.U /

� C �f� .x; �; x
0; � 0/ 2 P.U /:

This last condition is needed to have condition (B.2) in Theorem B.1 ful-
filled.

The above conditions are surely satisfied if the function J is Lipschitz in .Rd �
U/2.

Notice that (3.5) admits an equivalent formulation by introducing the time-
dependent distribution �N

t WD 1
N

PN
iD1 �yi;t 2 P.X/ and the associated vector

field

b�N
t
.y/ D b�N .t; y/ WD

Z
Y

f .y; y0/d�N
t .y

0/ D 1

N

NX
iD1

NX
iD1

f .y; yi;t /:

Such a vector field induces a family Y�N .t; s; � /W C ! C for 0 � s < t � T of
transition operators (also called a flow map) associated to the initial value problem

Pyr D b�N .r; yr/; ys D y;

namely, Y�N .t; s; y/ WD ys .
Therefore (3.5) reads as

yi;t D Y�N .t; s; yi;s/

so that
�N
t D Y�N .t; s; � /#�N

s for every 0 � s � t � T .
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We conclude this section by further elaborating on the expressions above. By a
suitable exchange of integrals, we rewrite the following equation with the equiva-
lent notation

P�i;t D
�
1

N

NX
jD1

�Z
U

J.xi;t ; � ; xj;t ; u0/ d�j;t .u0/

�
Z
U�U

J.xi;t ; w; xj;t ; u
0/d�j;t .u0/d�i;t .w/

��
�i;t ;

D
�Z

C

�Z
U

J.xi;t ; � ; x0; u0/ d� 0.u0/

�
Z
U�U

J.xi;t ; w; x
0; u0/d� 0.u0/d�i;t .w/

�
d�N

t .x
0; � 0/

�
�i;t

D
�
J ��N

t .xi;t ; � / �
Z
U

J ��N
t .xi;t ; w/d�i;t .w/

�
�i;t ;

where in the following we shall use the compact notation

(3.6) J ��.x; u/ WD
Z
C

Z
U

J.x; u; x0; u0/d� 0.u0/d�.x0; � 0/

for � 2 P.C /.

3.3 Distributed players system: Eulerian and Lagrangian solutions
The general problem associated to an arbitrary initial distribution of players

x� 2 P.C / can be described as follows. Recall that we are endowing C with
the distance

dC .y1; y2/ WD jx1 � x2j C k�1 � �2kBL; yi D .xi ; �i /:

First of all, in order to take care of the lack of compactness ofRd , the first factor
of C , we assume that the first moment of the first marginal of x� is finite:

(3.7)
Z
C

jxjd x�.x; �/ DM0 < C1:

Since U is compact, (3.7) holds if and only if x� 2 P1.C /, with P1.C / defined
as in (2.2).

We observe that for every continuous curve t 2 �0; T � 7! �t 2 P1.C / it is
possible to define a time-dependent vector field

(3.8) b� .t; y/ D b�t
.y/ D

Z
C

f .y; y0/d�t .y
0/

with f D .fx; f� / as in (3.3) and (3.4). Since f .y; � / is continuous with linear
growth and �t 2 P1.C /, the integral above can be interpreted as a Bochner
integral; see Section A.2.
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We can then associate to b� the transition maps Y� .t; s; y/ induced by ODE
in Y

(3.9) Pyt D b�t
.yt /; ys D y:

A solution y D .x; �/ to (3.9) satisfies, with the notation (3.6),8���������<
���������:

Pxt D a.xt ; �t / D
Z
U

e.xt ; u/d�t .u/;

P�t D
�Z

C

�Z
U

J.xt ; � ; x0; u0/d� 0.u0/

�
Z
U�U

J.xt ; w; x
0; u0/d� 0.u0/d�t .w/

�
d�t .x

0; � 0/

�
�t

D
�
J ��t .xt ; � / �

Z
U

J ��t .xt ; w/d�t .w/
�
�t ;

and the existence of a solution to (3.9) follows again by Theorem B.1; see Theorem
4.1 under the structural properties assumed in Section 3.4 below.

Whenever we have at our disposal the flow map Y� , the transported measures
y�t WD Y.t; 0; � /# x� solve an infinite-dimensional continuity equation driven by the

vector field b�t
given by (3.8), namely (in integral form)

(3.10)

Z
C

�.t; y/d y�t .y/ �
Z
C

�.0; y/d y�0.y/

D
Z t

0

Z
C

�
@s�.s; y/C

Z
C

D�.s; y/.f .y; y0//d�s.y
0/

�
d y�s.y/ds

for every � 2 C1
b
.�0; T � � Y /. Indeed, using the change-of-variables formula for

the push-forward measure, the chain rule, and once more the change-of-variables
formula, one has

d
dt

Z
C

�.t; y/d y�t .y/

D
Z
C

d
dt
�
�
t;Y� .t; 0; ´/

�
d x�.´/

D
Z
C

�
@t�.t;Y� .t; 0; ´//

C D�.t;Y� .t; 0; ´//
�
b�t

.Y� .t; 0; ´//
��

d x�.´/

D
Z
C

�
@t�.t; y/C D�.t; y/.b�t

.y//
�
d y�t .y/

D
Z
C

�
@t�.t; y/C

Z
C

D�.t; y/.f .y; y0//d�t .y
0/

�
d�t .y/:

Formula (3.10) follows now by integration in time.
We look for an evolving distribution � that is self-transported by the generated

vector field b� , so that y� D � . These facts motivate the following definition.
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DEFINITION 3.2 (Lagrangian and Eulerian solutions). Let � 2 C0.�0; T �I
.P1.C /;W1// and x� 2 P1.C /. We say that � is an Eulerian solution of the
initial value problem for the master equation starting from x� if �0 D x� and
(3.10) holds with y� D � . We say that� is a Lagrangian solution starting from x�
if

(3.11) �t D Y� .t; 0; � /# x� for every 0 � t � T;
where Y� .t; s; y/ are the transition maps associated to the ODE (3.9).

The Lagrangian notion of solution given by the transport identity (3.11) is rather
standard and accepted in the literature of multiagent systems and mean-field equa-
tions. One can see, for instance, the notion of solution given in [13, def. 3.3]. On
the other hand, as in fluid mechanics, when looking at the evolution of spatially
averaged quantities it is also important to derive an alternative Eulerian description
in terms of a PDE, in our case (3.10).

We shall first address the problem of existence and uniqueness of Lagrangian
solutions. Given that, as we illustrated above, Lagrangian solutions are Eulerian,
this settles the existence problem also for Eulerian solutions. The uniqueness of
Eulerian solutions is technically harder, and it will be dealt with in Section 5.

THEOREM 3.3. Suppose that J W .Rd � U/2 ! R and eW Rd � U ! R are
Lipschitz maps and let f W C � C ! Y be defined as in (3.3) and (3.4). Then, for
every x� 2 P1.C /, there exists a unique Lagrangian solution � , and its flow map
Y� .t; s; y/ D .x.t; s; y/;σ.t; s; y// satisfies the additional regularity property
that σ. � ; s; y/ is of class C1 with values in .M .U /; k�kTV /, with

(3.12) Lip
�
σ. � ; s; y/; .M .U /; k�kTV /

� � LJ diam.U /:

Moreover, there exists L � 0 such that for every pair x� i , i D 1; 2, of initial
data in P1.C /, the corresponding solutions � i

t satisfy

W1

�
�1
t ; �

2
t

� � eLtW1

� x�1; x�2
�

for every t 2 �0; T �.
The proof of Theorem 3.3 will be given in Section 4: it does not depend on the

particular structure of f and J , but relies on their Lipschitz property, the convexity
of C , and the Banach framework. Notice that (3.12) comes immediately from (3.4)
and the definition of the F.U /-component .b�t

/� .y/ D
R
Y f� .y; y

0/d�t .y
0/ of

b�t
by using the estimateZ
U

����
Z
U

J.x; u; x0; u0/d� 0.u0/ �
Z
U�U

J.x;w; x0; u0/d� 0.u0/d�.w/
����d�.u/

� LJ diam.U /

which, thanks to the uniformity with respect to y0 D .x0; � 0/, gives that

k.b�t
/�kTV � LJ diam.U /:

Then, thanks to the discussion in Section 2.2, we also obtain C1 regularity with
respect to the total variation norm.



SPATIALLY INHOMOGENEOUS EVOLUTIONARY GAMES 1375

3.4 Structural properties of the interaction term f

Recall that C D Rd �P.U / is a closed and convex subset of Y D Rd �F.U /.
We shall denote in the following by Le and LJ the Lipschitz constants of e and J ,
respectively.

Remark 3.4. We endow C � C with the distance induced by the norm in Y � Y
k.y1; y2/k WD ky1kBL C ky2kBL:

With this choice, a function is L-Lipschitz if (and only if) it is L-Lipschitz sepa-
rately in the components, that is, if for every y; y1; y2 2 C one has

kf .y1; y/ � f .y2; y/k � Lky1 � y2kBL;

kf .y; y1/ � f .y; y2/k � Lky1 � y2kBL;

then

kf .y1; y2/ � f .y01; y02/k � L
�ky1 � y01kBL C ky2 � y02kBL

�
D Lk.y1; y2/ � .y01; y02/k:

For y D .x; �/ 2 C and � 2 P1.C /, let b� .y/ D
R
U f .y; y

0/d�.y0/ as in
(3.8), where f W C � C ! Y is defined by

f .y; y0/ D
�
a.y/;

�Z
U

J.x; � ; x0; u0/d� 0.u0/

�
Z
U�U

J.x;w; x0; u0/d� 0.u0/d�.w/
�
�

�
;

(3.13)

with a.y/ D a.x; �/ D R
U e.x; u/d�.u/ as in (1.4). We define a map j W Rd �

Rd �P.U /! Lip.U / by

(3.14) .x; x0; � 0/ 7! j.x; x0; � 0/.u/ WD
Z
U

J.x; u; x0; u0/d� 0.u0/:

Notice that the map j.x; x0; � 0/ depends linearly on � 0. Moreover, recalling that
� 0 is a probability measure, it is not difficult to see that

kj.x; x0; � 0/kLip.U / D kj.x; x0; � 0/kL1.U / C Lip.j.x; x0; � 0//

� max jJ.x; � ; x0; � /j C LJ diam.U /:

LEMMA 3.5. Let � 2 P.U / and let ´ 2 Lip.U /. Then the following estimate
holds:

(3.15) k´�kBL � k´kLipk�kBL:

PROOF. It follows directly by (2.6) and by the definition (1.10) of the BL norm
that

k´�kBL D sup
�Wk�kLip�1

Z
U

�.u/´.u/d�.u/ � k´kLipk�kBL: �
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PROPOSITION 3.6. The map f defined in (3.13) is L-Lipschitz (in both variables),
with L depending only on Le, LJ , and diam.U /, and satisfies the compatibility
condition (see also (4.1) below)

(3.16) 8R > 0; 9� > 0W y; y0 2 C \ BR.0/ ) y � �f .y; y0/ 2 C:
PROOF. By Remark 3.4, we can study the Lipschitz dependence of f separately

with respect to y and y0. Moreover, we can consider the Lipschitz dependence on
x and � separately, keeping the other variable frozen. Let us start with fx; since it
does not depend on y0, we only study the Lipschitz dependence on y. We have

(3.17)

jfx.y1; y0/ � fx.y2; y0/j D ja.y1/ � a.y2/j

D
����
Z
U

e.x1; u/d�1.u/ �
Z
U

e.x2; u/d�2.u/
����

�
����
Z
U

e.x1; u/d�1.u/ �
Z
U

e.x1; u/d�2.u/
����

C
����
Z
U

e.x1; u/d�2.u/ �
Z
U

e.x2; u/d�2.u/
����

� Le.1C diamU/k�1 � �2kBL C Lejx1 � x2j

� Le.1C diamU/ky1 � y2k;
where we have used (2.9). To study the Lipschitz dependence of f� on its variables,
it is convenient to do it for x, x0, � , and � 0 separately. The Lipschitz dependence
on x is easy to obtain, and it leads to

(3.18) kf� .x1; �; y0/ � f� .x2; �; y0/kBL � 2LJ .1C diamU/jx1 � x2j:
Similarly, one can prove that

(3.19) kf� .y; x01; � 0/ � f� .y; x02; � 0/kBL � 2LJ .1C diamU/jx01 � x02j:
Let us consider the dependence on � . Using the map j.x; x0; � 0/ defined in (3.14),
we have to estimate

kf� .x; �1; y0/ � f� .x; �2; y0/kBL
D




�1

�
j.x; x0; � 0/.�/ �

Z
U

j.x; x0; � 0/.v/d�1.v/
�

� �2
�
j.x; x0; � 0/.�/ �

Z
U

j.x; x0; � 0/.v/d�2.v/
�





BL

�




.�1 � �2/

�
j.x; x0; � 0/.�/ �

Z
U

j.x; x0; � 0/.v/d�2.v/
�





BL

C




�1

�Z
U

j.x; x0; � 0/.v/d.�2 � �1/.v/
�





BL
DW I C II:

(3.20)
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Term I above can be estimated as follows

I D




.�1 � �2/

�Z
U

�
j.x; x0; � 0/.�/ � j.x; x0; � 0/.v/�d�2.v/

�




BL

� LJ .1C diamU/k�1 � �2kBL:

(3.21)

To estimate II, we use the definition of BL norm and the fact that �1��2 2 M0.U /:

II D sup
�Wk�kLip�1

Z
U

�.u/

�Z
U

j.x; x0; � 0/.v/d.�2 � �1/.v/
�

d�1.u/

�
����
Z
U

j.x; x0; � 0/.v/d.�2 � �1/.v/
����

�
Z
U

jj.x; x0; � 0/.v/ � j.x; x0; � 0/.u/jd.�2 � �1/.v/

� LJ diamU k�1 � �2kBL:

(3.22)

Putting (3.21) and (3.22) together, we can complete the estimate for (3.20) and
obtain

(3.23) kf� .x; �1; y0/ � f� .x; �2; y0/kBL � 2LJ .1C diamU/k�1 � �2kBL:

Using (3.15) and that k�kBL � 1, let us now estimate

kf� .y; x0; � 01/ � f� .y; x0; � 02/kBL

D




�
�
j.x; x0; � 01/.�/ �

Z
U

j.x; x0; � 01/.v/d�.v/
�

� �
�
j.x; x0; � 02/.�/ �

Z
U

j.x; x0; � 02/.v/d�.v/
�





BL

� kj.x; x0; � 01/ � j.x; x0; � 02/kLip

C





Z
U

�
j.x; x0; � 01/.v/ � j.x; x0; � 02/.v/

�
d�.v/






Lip

DW I0 C II0:

To estimate I0, we use the definition (3.14) of j.x; x0; � 0/ and the fact that � 01�� 02 2
M0.U / to obtain

I0 D





Z
U

J.x; � ; x0; u0/d� 01.u0/ �
Z
U

J.x; � ; x0; u0/d� 02.u0/






Lip

D





Z
U

J.x; � ; x0; u0/d.� 01 � � 02/.u0/






Lip

D





Z
U

�
J.x; � ; x0; u0/ � J.x; � ; x0; v0/�d.� 01 � � 02/.u0/






Lip

� LJ .1C diamU/k� 01 � � 02kBL:
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The estimate of II0 follows in a similar way, so that we obtain

(3.24) kf� .y; x0; � 01/ � f� .y; x0; � 02/kBL � 2LJ .1C diamU/


� 01 � � 02

BL:

Putting (3.18), (3.19), (3.23), and (3.24) together, we obtain

kf� .y1; y01/ � f� .y2; y02/kBL � 2LJ .1C diamU/
�ky1 � y2k C ky01 � y02k

�
;

which, together with (3.17) gives the Lipschitz estimate on f .
Let us now discuss the compatibility conditions (4.1) for the f defined in (3.13).

It is clear that the first component of y C �f .y; y0/, namely x C �a.y/, belongs
to Rd for all � 2 R, so that we are left with checking that the second component
� C �f� .y; y

0/, namely,

(3.25) � C ��

�Z
U

J.x; � ; x0; u0/d� 0.u0/�
Z
U�U

J.x; u; x0; u0/d� 0.u0/d�.u/
�
;

belongs to F.U /. As a matter of fact, we will prove that (3.25) is an element of
P.U /, which means that its integral over U is 1 and that it is positive. The proof
that � C �f� .y; y

0/ � 0 can be obtained via some manipulations and using the
Lipschitz estimate on J . Indeed,

� C �f� .y; y
0/

D �

�
1C �

�Z
U

J.x; u; x0; u0/d� 0.u0/

�
Z
U�U

J.x;w; x0; u0/d� 0.u0/d�.w/
��

D �

�
1C �

Z
U

�
J.x; u; x0; u0/ �

Z
U

J.x;w; x0; u0/d�.w/
�

d� 0.u0/
�

D �

�
1C �

Z
U�U

.J.x; u; x0; u0/ � J.x;w; x0; u0//d�.w/d� 0.u0/
�

� �
�
1 � �LJ

Z
U

dU .u;w/d� 0.u0/
�
� �.1 � �LJ diamU/;

which is nonnegative as soon as � � .LJ diamU/�1. By recalling that f� .y; y0/ 2
M0.U /, we obtain that � C �f� .y; y

0/ 2 P.U /. �

4 Existence and Uniqueness of Lagrangian Solutions
4.1 Interaction systems in Banach spaces

Let us consider now a Banach space .Y; k�k/ with a closed convex set C and a
L-Lipschitz map

f W C � C ! Y

satisfying the compatibility condition

(4.1) 8R > 0; 9� > 0 c; c0 2 C \ BR.0/ ) c C �f .c; c0/ 2 C:
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Let us consider a continuous curve of measures � 2 C.�0; T �I .P1.C /;W1//.
Recalling that

(4.2) kf .c; c0/k � kf .c0; c0/k C L.kc � c0k C kc0 � c0k/
where c0 is an arbitrary point in C , we can define the time-dependent vector field
b� .t; � /W C ! Y by

(4.3) b� .t; c/ D b�t
.c/ WD

Z
C

f .c; c0/d�t .c
0/;

where the integral above can be interpreted in the strong sense, as a Bochner inte-
gral.

We are going to prove the following result, which provides (taking Proposi-
tion 3.6 into account) the proof of Theorem 3.3.

THEOREM 4.1. Given x� 2 P1.C / there exists � 2 C0.�0; T �I .P1.C /;W1//

with �0 D x� such that the family of transition maps Y� .t; s; � / in C associated
to the ODE

Pyt D b� .t; yt /; ys D y; y 2 C1.�s; T �IY /; yt 2 C for every t 2 �s; T �;
with the vector field b� given by (4.3) satisfying

�t D Y� .t; s; � /#�s for every 0 � s � t � T .

In addition, one has the stability estimate

(4.4) W1.�t ; �
0
t / � e2L.t�s/W1.�s; �

0
s/ for every 0 � s � t � T ;

for the solutions �; � 0 starting from x� , x� 0, where L is the Lipschitz constant
of f .

4.2 Existence for the discrete problem
We first study the discrete problem forN particles evolving in Y , corresponding

to the evolution of a discrete (atomic) measure. This case could be simply seen as a
by-product of the more general “diffuse” measure well-posedness result; however,
we include it both as a guideline to introduce the more general case and also as a
constructive approximation (for N large; see also Remark 4.8 below), which could
be useful for the purpose of numerical simulation. We consider the convex set CN

in Y N with the norm

kykYN WD 1

N

NX
iD1

kyik; y D .y1; : : : ; yN / 2 Y N :

We define the map fN D .f N
1 ; : : : ; f N

N /W CN ! Y N by

f N
i .y/ D 1

N

NX
jD1

f .yi ; yj /; i D 1; : : : ; N:
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We notice that f is Lipschitz, since

kfN .y/ � fN .y0/kYN � 1

N

NX
iD1

kf N
i .y/ � f N

i .y0/k

� 1

N 2

NX
i; jD1

kf .yi ; yj / � f .y0i ; y0j /k

� L

N 2

NX
i; jD1

.kyi � y0ik C kyj � y0j k/

� 2Lky � y0kYN :

Let us now check that CN satisfies the invariance properties with respect to fN : if
y 2 CN with kyk � R, then every component yi belongs to C and kyik � NR.
By (4.1) (applied to the constant NR) we may find a constant � > 0 such that

yi C �f .yi ; yj / 2 C for every i; j ,

so that the convexity of C yields

yi C �f N
i .y/ D 1

N

NX
jD1

�
yi C �f .yi ; yj /

� 2 C:
By applying Theorem B.1 with CN and Y N we obtain the following result.

COROLLARY 4.2. For every xy 2 CN , there exists a unique curve yW �0;C1/ !
CN of class C1 such that (

Py.t/ D fN .yN .t//;

y.0/ D xy:
In particular, the family �t WD 1

N

PN
iD1 �yi;t provides a solution to the existence

part of Theorem 4.1 for the initial datum x� WD 1
N

PN
iD1 �xyi .

4.3 Stability estimates
PROPOSITION 4.3 (Properties of bt ). Let �; �0 2 C.�0; T �IP1.C //, let b� and
b�0 be defined as in (4.3) and let f W C � C ! Y be L-Lipschitz. Then

(i) kb�.t; y/k � kf .y0; y0/kCLky � y0kCL
R
C ky0 � y0k d�t .y

0/ for all
y0 2 Y .

(ii) kb�.t; y/ � b�.t; ´/k � Lky � ´k.
(iii) kb�.t; y/ � b�.s; y/k � LW1.�t ; �s/.
(iv) kb�.t; y/ � b�0.t; y/k � LW1.�t ; �

0
t /.

(v) If there exists xR > 0 such that �t .C n B xR.0// D 0 for every t 2 �0; T �,
then for every R > 0 there exists � > 0 such that

y 2 C; kyk � R; t 2 �0; T � ) y C �b�.t; y/ 2 C:
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PROOF. Property (i) follows immediately from (4.2). To prove (ii), we notice
that

kb�.t; y/ � b�.t; ´/k D





Z
C

�
f .y; y0/ � f .´; y0/

�
d�t .y

0/





 � Lky � ´k:
Estimate (iii) is a simple computation:

kb�.t; y/ � b�.s; y/k D





Z
C

f .y; y0/d.�t ��s/.y
0/






D sup

´2Y 0; k´kY 0�1

Z
C

h´; f .y; y0/i d.�t ��s/.y
0/

� LW1.�t ; �s/;

where we have used that the map y0 7! h´; f .y; y0/i is L-Lipschitz. The proof of
(iv) is analogous.

Let us now consider the last statement (v); we may assume R � xR, and we can
choose � > 0 such that (4.1) holds. Therefore

y C �b�.t; y/ D
Z
C

.y C �f .y; y0//d�t .y
0/ 2 C;

since C is convex and closed, and �t is a probability measure. �

COROLLARY 4.4. Let �; �i 2 C.�0; T �IP1.C //, let b�; b�i be defined as in
(4.3), y0 2 Y and let f W C � C ! Y be L-Lipschitz. Then

(i) for every y 2 C and s 2 �0; T � there exists a unique solution yt D
Y�.t; s; y/ from �s; T � to C of class C1 of the Cauchy problem

(4.5) Pyr D b�.r; yr/ D b�r
.yr/; ys D yI

(ii) Y�.t; 0; y/ satisfies the estimate

(4.6) kY�.t; 0; y/ � y0k �
�ky � y0k C tB.�; t; y0/

�
eLt

with

(4.7) B.�; t; y0/ WD kf .y0; y0/k C L max
s2�0;t�

Z
C

ky0 � y0kd�s.y
0/I

(iii) Y�. � ; 0; y/ satisfies the estimate

kY�.t; 0; y/ � Y�.t
0; 0; y/k

� jt � t 0j�B.�; T; y0/C L
�ky � y0k C TB.�; T; y0/

�
eLT

�I(4.8)

(iv) Y�.t; s; � / satisfies the estimate

kY�.t; s; y/ � Y�.t; s; y
0/k � eL.t�s/ ky � y0k; 0 � s � t � T I
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(v) more generally, Y�1 and Y�2 satisfy the estimate for 0 � s � t � T :

kY�1.t; s; y1/ � Y�2.t; s; y2/k � eL.t�s/ ky1 � y2k

C L

Z t

s

eL.t��/W1.�
1
� ; �

2
� /d�:

(4.9)

PROOF. Let us first assume that � and �i are concentrated on a ball of radius
xR in Y . Then statements (i) and (iv) immediately follow by Theorem B.1, thanks
to the estimates of Proposition 4.3.

The proof of (ii) is a computation: recalling (3.8), Proposition 4.3(i) and the
definition (4.7) of B.�; t; y0/, the triangle inequality gives

kY�.t; 0; y/ � y0k � ky � y0k C
Z t

0

kb�s
.y.s//kds

� ky � y0k C tB.�; t; y0/C L

Z t

0

ky.s/ � y0kds;

which yields (4.6) by Gronwall’s inequality. Estimate (4.8) follows from combin-
ing Proposition 4.3(i) with estimate (4.6), so that (iii) is proved.

Concerning (v), it is clearly sufficient to consider the case s D 0. Denoting by
yit , t 2 �0; T �, the solutions to (4.5) with respect to the fields bit D b�i

t
and the

initial conditions xyi , from Pyi D bit .y
i / we have, by Proposition 4.3(ii) and (iv)

d
dt
ky1 � y2k.t/ � kb1t .y1/ � b1t .y2/k C kb1t .y2/ � b2t .y2/k

� Lky1 � y2k C LW1.�
1
t ; �

2
t /;

which gives by a simple comparison argument

ky1.t/ � y2.t/k � eLtky1 � y2k C L

Z t

0

eL.t��/W1.�
1
� ; �

2
� /d�:

The general case when � may have unbounded support can be obtained by ap-
proximation, using once more Proposition 4.3, since the estimates are independent
of xR. �

4.4 Contractivity and stability
We now fix x� 2 P1.C / and we consider the metric space

A WD �
� 2 C.�0; T �I .P1.C /;W1// W �0 D x�	;

complete when endowed with the usual sup distance (as a consequence of the com-
pleteness of .P1.C /;W1/). We define a map T W A ! A in the following way:
given � 2 A we first compute the flow map Y�.t; s; � / associated to b� and then
we define the curve T ���W �0; T �! P1.C / by

(4.10) T ���t WD Y�.t; 0; � /# x�
It is immediate to check that T maps A to A .
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LEMMA 4.5. For every �; �1; �2 2 A we have

(4.11)
W1.T ���t ; T ���s/

� jt � sj
�
B.�; T; y0/C L

�Z
C

ky � y0k d x�.y/C TB.�; T; y0/

�
eLT

�
;

(4.12) W1.T ��1�t ; T ��2�t / � L
Z t

0

eL.t��/W1.�
1
� ; �

2
� /d�;

where the constant B.�; T; y0/ is defined in (4.7) for t D T .

PROOF. Estimate (4.11) follows immediately from the definition of T ��� in
(4.10), estimate (4.8), and the fact that x� is a probability measure. Estimate (4.12)
is a direct consequence of (4.9), since

W1.T ��1�t ; T ��2�t / �
Z
C

kY�1.t; 0; y/ � Y�2.t; 0; y/kd x�.y/

and x� is a probability measure. �

COROLLARY 4.6. The map T admits a unique fixed point, which provides the
unique solution � in Theorem 4.1.

PROOF. Let us fix a constant L0 > 2L so that ` WD L=.L0 � L/ < 1, and let us
consider the equivalent distance in A given by

d.�;�0/ WD max
t2�0;T �

e�L
0tW1.�t ; �

0
t /:

Then, from (4.12) we immediately get

e�L
0tW1.T ���t ; T ��0�t / � L

Z t

0

e.L�L
0/.t�s/ds W1.�r ; �

0
r/ 8t 2 �0; T �;

so that our choice of L0 gives d.T ���; T ��0�/ � `d.�;�0/. �

We can slightly modify the previous argument in order to derive a stability esti-
mate of the solution �t in terms of the initial datum x� .

LEMMA 4.7. Let x�1 and x�2 be initial data in P1.C /, and let � i
t be the corre-

sponding solutions. Then

(4.13) W1.�
1
t ; �

2
t / � e2Lt W1. x�1; x�2/ 8t 2 �0; T �:

PROOF. Let us fix 0 � s < t � T and consider an optimal coupling �s be-
tween �1

s and �2
s so that using the fact that .Y�1.t; s; y1/;Y�2.t; s; y2//#�s is

a coupling between �1
t and �2

t we can write

W1.�
1
t ; �

2
t / �

Z
C�C

kY�1.t; s; y1/ � Y�2.t; s; y2/kd�s.y
1; y2/:
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By (4.9) we get

W1.�
1
t ; �

2
t /

� eL.t�s/
Z
C�C

ky1 � y2kd�s.y
1; y2/C L

Z t

s

eL.t��/W1.�
1
� ; �

2
� /d�

D eL.t�s/W1.�
1
s ; �

2
s /C L

Z t

s

eL.t��/W1.�
1
� ; �

2
� /d�:

Choosing t D s C h proves that the upper right derivative d=dsC of the map
s 7! W1.�

1
s ; �

2
s / satisfies

d
dsC

W1.�
1
s ; �

2
s / � 2LW1.�

1
s ; �

2
s /

and therefore W1.�
1
s ; �

2
s / � e2LsW1. x�1; x�2/, which proves (4.13). �

Remark 4.8 (Another existence proof). The following argument can provide an
alternative strategy to constructing a solution starting from the discrete solutions of
the previous section. In fact, one can use the contractivity to pass to the limit in the
discrete problem. Choose xyi .!/ 2 C independent and identically distributed, with
law x� , so that the random measures x�N .!/ WD 1

N

PN
iD1 �xyi .!/ almost surely

converge in P1.C / to x� . We fix ! such that this happens, set xyi .!/ D xyi ,
and let y.t/ D .y1.t/; : : : ; yN .t// be the discrete evolution starting from y.t/ D
.xy1; : : : ; xyN /. Then, by contractivity, �N

t WD 1
N

PN
iD1 �yi .t/ converges weakly,

and it is not hard to prove that �t D limN!1�N
t provides a solution.

5 Uniqueness of Eulerian Solutions
In this section we address the uniqueness of Eulerian solutions, according to

(3.10). Our first proof uses a classical duality argument, adapted to the infinite-
dimensional space of measures and to the special structure

(5.1) b� .t; c/ D b�t
.c/ D

Z
C

f .c; c0/d�t .c
0/

of the vector field, with f D .fx; f� / as in (3.3) and (3.4). One of the advantages
of the duality proof is that it provides uniqueness in the larger class of signed
measures; the drawback is that, since we don’t have at our disposal the mollification
schemes of the finite-dimensional setting, we have to require C1 regularity in place
of Lipschitz regularity with respect to the x-variable of e and J . We use the special
structure of the vector field, together with (3.16), also to make use of the flow map
Y.s; t; x/ backward in time, i.e., for times s � t ; indeed, (3.16) yields that the
abstract compatibility condition (4.1) holds also for �b, whose forward solutions
correspond to backward solutions for b.

In this section we shall apply the abstract calculus tools of Appendices A.1 and B
with C D Rd � P.U /, E D Y D Rd � F.U /, the subspace EC D YC D
Rd �M0.U /, and its closure xEC D Rd � f� 2 F.U / W �.1/ D 0g.
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5.1 Uniqueness by duality
THEOREM 5.1. Suppose that J W .Rd � U/2 ! R and eW Rd � U ! R are
Lipschitz maps, with J. � ; u; x0; u0/ of class C1 for all .u; x0; u0/ 2 U � Rd � U ,
and e.�; u/ of class C1 for all u 2 U . Then, for all x� 2 M .C / with

R
C jxjdj x� j <C1, equation (3.10) admits a unique solution in the class of weakly continuous

maps t 2 �0; T � 7! �t 2 M .C / with supt
R
C .1Cjxj/dj�t j < C1 and�0 D x� .

PROOF. Let us consider solutions�1 and�2 of (3.10) such that�1
0 D �2

0 and
fix h > 0. Let us denote

R WD �
r W �0; h�! Cb.Y /W r is Borel, rt 2 C1

b.Y /, Lip.rt / � 1 for all t 2 �0; h�	;
with the usual notation rt .y/ D r.t; y/.

The difference �t WD �1
t ��2

t solves
d
dt
�t C div.b�1

t
�t / D �div.bt�2

t /

in the weak sense of (3.10), with bt WD b�1
t
� b�2

t
. Let us stress that bt has null

first component, since it is the difference of the vector fields b�1
t

and b�2
t

that have
the same first component (recall the notation (3.6)):

b� i
t
.x; �/ D

�Z
U

e.x; u/d�.u/;
�
J �� i

t .x; � / �
Z
U

J �� i
t .x; u/d�.u/

�
�

�
;

for i D 1; 2. By linearity of the second components with respect to � we obtain
the representation

bt .x; �/ D
�
0;

�
J ��t .x; � / �

Z
U

J ��t .x; u/ d�.u/
�
�

�
:

We consider a bounded solution g 2 C1.�0; h� � C/ of the backward transport
equation with velocity field b�1

t
, right-hand side rt , and terminal condition gh D 0

(with the usual notation gs.c/ D g.s; c/):

(5.2)

(
@tgt C Dgt .b�1

t
/ D rt in �0; h� � C ;

gh D 0 in C :

We stress now that the differentiations acting on gt with respect to c are all meant in
the Fréchet sense (see Definition A.1) and that the pairing Dgt .b�1

t
/ corresponds

to the directional derivative of gt along the vector b�1
t
2 YC . By the classical

method of characteristics, one can construct a solution g of (5.2) with the required
C1 regularity property by setting

(5.3) gt .c/ D �
Z h

t

rs.Y�1.s; t; c//ds:

Indeed, the C1
b
.Y / regularity of rt , the C1 regularity of Y�1.s; t; � / granted by The-

orem B.2 (and the arguments below; see before formula (5.4)), and Theorem A.2
yield the C1 regularity of the function g in (5.3), together with the exchange of
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Fréchet differentiation with integration (the latter granted by (A.9)). Obviously
gh D 0, and one can check that g satisfies (5.2) with the following observation:
since, thanks to (A.2),

d
dt
g.t; c.t// D �

@tgt C Dgt .b�1
t
/
�
.t; c.t//

along any C1 solution c.t/ of the ODE

d
dt
c.t/ D b�1

t
.c.t//;

if for any c0 2 C and t0 2 .0; h/ we are able to find a C1 solution c.t/ to the
ODE above with c.t0/ D c0 and d

dt g.t; c.t// D rt .c.t// at t D t0, we are done.
Choosing c.t/ D Y�1.t; 0; d/ for some d 2 C , from the semigroup property we
get

g.t; c.t// D �
Z h

t

rs.Y�1.s; 0; d//ds

so that we are able to check (5.2) at any .t0; c0/with c0 D Y�1.t0; 0; d/. Choosing
d D Y�1.0; t0; c0/ (only at this point we are using the flow backwards in time),
we obtain the global validity of (5.2).

As mentioned above, the C1 regularity of Y�1.s; t; � / follows from Theorem B.2
if we check that

(5.4) .t; c/ 7! DYCA.t; � /.c/ is continuous from �0; T � � C to L.YC ; xYC /

in the sense of (B.5), with

A.t; c/ D b�1
t
.c/;

and we recall Proposition 4.3. It is at this stage that we need the extra C1 assump-
tion on J. � ; u; x0; u0/ and e. � ; u/. Indeed, thanks to the representation (5.1) of
b�1 , it is sufficient to check C1 differentiability of f . � ; c0/ for all c0 D .x0; � 0/ in
the direction .v; �/ 2 YC ; the partial differential with respect to the x-variable at
c D .x; �/ is given by

v 2 Rd 7!
�Z

U

Dxe.x; u/.v/d�.u/;�Z
U

DxJ.x; � ; x0; u0/.v/d� 0.u0/

�
Z
U�U

DxJ.x;w; x
0; u0/.v/d� 0.u0/d�.w/

�
�

�
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while a partial differential with respect to the � -variable is given by

� 2 M0.U / 7!
�Z

U

e.x; u/d�.u/;
�Z

U

J.x; � ; x0; u0/d� 0.u0/

�
Z
U�U

J.x;w; x0; u0/d� 0.u0/d�.w/
�
�

�
�Z

U�U

J.x;w; x0; u0/d� 0.u0/d�.w/
�
�

�
;

so that the differential is continuous from �0; T � � C to L.YC ; xYC /.
Since rt are 1-Lipschitz, and the Lipschitz constant of b�1

t
can be estimated

from above by L� D L supt j�1
t j.C /, with the L Lipschitz constant of the in-

teraction term f in (5.1), from the Lipschitz estimate on Y�1.t; s; � / granted by
Theorem B.2, we get

(5.5) kDgt .c/kL.Y0;Y / � .h � t /eL�T for all .t; c/ 2 �0; h� � C .

Since gt�t vanishes at t D 0 and t D h, by the Leibniz rule and Theorem A.2
we get

0 D
Z h

0

d
dt

Z
C

gt d�t dt

D
Z h

0

Z
C

�
@tgt C Dgt .b�1

t
/d�t dt C

Z h

0

Z
C

Dgt .b�1
t
/d�2

t dt:

Using (5.2), we obtain that

(5.6) sup
r

Z h

0

Z
C

rt d�t dt �
Z h

0

Z
C

jDgt .bt /jdj�2
t jdt:

Motivated by this estimate, we employ the distance dC1 in M .C / of Lemma 2.1.
Let us prove now that

(5.7) sup
r2R

Z h

0

Z
C

rt d�t dt D
Z h

0

dC1.�
1
t ; �

2
t /dt:

The inequality � is obvious, since rt is an admissible function in the definition of
dC1 for any t 2 �0; h�. To prove the converse, we apply a measurable selection
argument: since Y is separable, it is easily seen that

B WD �
v 2 Cb.Y /W v 2 C1

b.Y /; Lip.v/ � 1	
is a Borel and separable subset of Cb.Y /, and that t 7! dC1.�t ; �

0
t / is a Borel

function. Then, for � > 0 fixed we consider the set

� WD
�
.t; v/ 2 �0; h� � Cb.Y /W v 2 B; dC1.�

1
t ; �

2
t / < � C

Z
Y

v d�t

�
;
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which is measurable, thanks to the above-mentioned properties, with respect to the
product of the Borel � -algebras. Then, a measurable selection theorem [7, theo-
rem 6.9.1] grants the existence of a Borel selection map xr W �0; h� ! B satisfying
.t; xrt / 2 � for a.e. t 2 �0; h�. Since, by construction, xr 2 R, it follows that

sup
r2R

Z h

0

Z
C

rt d�t dt �
Z h

0

Z
C

xrt d�t dt

� ��
Z h

0

j�t j.C /dt C
Z h

0

dC1.�
1
t ; �

2
t /dt:

Since � > 0 is arbitrary, this proves (5.7).
Combining (5.6) and (5.7) we obtain

(5.8)
Z h

0

dC1.�
1
t ; �

2
t /dt �

Z h

0

Z
C

jDgt .bt /jdj�2
t jdt:

It remains to estimate from above the right-hand side in (5.8). Recalling that the
norm on Y is given by kykY D k.x; �/kY D jxj C k�kBL and using (5.5), we
haveZ h

0

Z
C

jDgt .bt /jdj�2
t jdt

�
Z h

0

Z
C

kDgtkL.Y0;Y /kbt .y/kY dj�2
t j.y/dt

� eL�T
Z h

0

.h � t /

�
Z
C






�
0;

�
J ��t .x; � / �

Z
U

J ��t .x; w/d�.w/
�
�

�




Y

dj�2
t j.y/dt

� eL�T
Z h

0

.h � t /

�
Z
C






�
J ��t .x; � / �

Z
U

J ��t .x; w/d�.w/
�
�






BL

dj�2
t j.y/dt:

Moreover, (2.8) gives




�
J ��t .x; � / �

Z
U

J ��t .x; w/d�.w/
�
�






BL

� 2
Z
U

jJ ��t .x; u/jd�.u/;

and
jJ ��t .x; u/j � LJ dC1.�

1
t ; �

2
t /;

so that, with S D supt j�2
t j.C /, we get

(5.9)
Z h

0

Z
C

jDgt .bt /jdj�2
t jdt � 2SeL�TLJh

Z h

0

dC1.�
1
t ; �

2
t /dt:



SPATIALLY INHOMOGENEOUS EVOLUTIONARY GAMES 1389

Combining (5.8) and (5.9) we obtainZ h

0

dC1.�
1
t ; �

2
t /dt � 2SeL�TLJh

Z h

0

dC1.�
1
t ; �

2
t /dt:

For h > 0 small enough such that 2SeL�TLJh < 1, one has

dC1.�
1
t ; �

2
t / D 0 for all 0 � t � h,

so that the curves �1 and �2 coincide in �0; h� and the proof is achieved by re-
peating this argument finitely many times. �

5.2 Uniqueness by superposition
In this section we prove uniqueness of Eulerian solutions, as defined in Defi-

nition 3.2, under the same assumptions of Theorem 3.3, dealing with Lagrangian
solutions. In particular, we require the sole Lipschitz continuity of e and J , not
requiring the C1 smoothness of J. � ; u; x0; u0/ and e. � ; u/ of Theorem 5.1. The
proof covers the more general setting of interaction systems in Banach spaces of
Section 4.1; see Theorem 4.1 for the existence and stability of Lagrangian solu-
tions.

Our main tool in the proof is the so-called superposition principle: it allows us
to lift solutions to the continuity equation to probability measures on paths, thus
recovering an (extended) Lagrangian representation; the principle, which remark-
ably works under no regularity assumption on the vector field, has by now many
versions; see, for instance, [2, theorem 8.2.1] in Euclidean spaces and [39] in the
context of the theory of currents. Here we consider the case when the state space
is a separable Banach space.

THEOREM 5.2. Let .Y; k�kY / be a separable Banach space, let bW .0; T /�Y ! Y

be a Borel vector field, and let �t 2 P.Y /, t 2 �0; T �, be a continuous curve with

(5.10)
Z T

0

Z
Y

kbtkY d�t dt < C1:

If
d
dt
�t C div.bt�t / D 0

in duality with cylindrical functions � 2 C1
b
.Y /, precisely of the form (here h � ; � i

denotes the duality map between Y and Y 0),

'.hy; ´01i; hy; ´02i; : : : ; hy; ´0N i/
with ' 2 C1

b
.RN / and ´01; : : : ; ´

0
N 2 Y 0, then there exists η 2 P.C.�0; T �IY //

concentrated on absolutely continuous solutions to the ODE Py D bt .y/ and with
evt .η/ D �t for all t 2 �0; T �.
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PROOF. We start from the version of the superposition principle in the space
R1 of all sequences .xi /, i � 1, proved in [4, theorem 7.1] by finite-dimensional
approximation. We endow R1 with the distance

d1.x; y/ WD 2�n minf1; jxn � ynjg;
which makes it a complete and separable metric space. If cW .0; T / � R1 ! R1

is a vector field, with components ci measurable with respect to the product of the
Borel � -algebras in the domain, and if �t 2 P.R1/ satisfy

R T
0

R
R1

jcit jd�t dt <
C1 for any i and solve the continuity equation

d
dt
�t C div.ct�t / D 0

in duality with C1
b

cylindrical function � (i.e., dependent on finitely many coordi-
nates xi ), there exists σ 2 P.C.�0; T �IR1// such that

(1) σ is concentrated on continuous curves 
 W �0; T � ! R1, with absolutely
continuous components 
 i solving the infinite system of ODE P
 i D cit .
/,
i � 1;

(2) evt .σ/ D �t for all t 2 �0; T �.
Given this basic result, if we strengthen the integrability assumption on c by re-
quiring

(5.11)
Z T

0

Z
R1

	.sup
i

jcit j/d�t dt < C1

with 	 a nondecreasing function such that 	.´/=´ ! C1 as ´ ! 1, then it is
immediately seen that σ is concentrated on a Borel set � (i.e., σ.C.�0; T �IR1/ n
�/ D 0) made of curves 
 absolutely continuous with respect to the norm k�k1.
More precisely, one has

sup
i

j
 is � 
 it j �
Z t

s

sup
i

jci� j � 
� d� for all 0 � s � t � T and all 
 2 �,

Z T

0

	.sup
i

jci� j � 
� /d� < C1 for all 
 2 �.

Now we turn to the case of a separable Banach space Y . Thanks to the Dunford-
Pettis theorem when applied to the space-time measure �t dt , we can find a non-
decreasing function 	 W �0;C1/ ! �0;C1/ with 	.´/=´ ! C1 as ´ ! C1
such that (5.10) improves to

(5.12)
Z T

0

Z
Y

	.kbtkY /d�t dt < C1:

Let .´0i / � Y 0 as in the proof of Lemma 2.1 and let us consider the mapEW Y !
`1 � R1 defined by

E.y/ WD .hy; ´01i; hy; ´02i; : : : /:
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It is immediately seen from (2.3) that the mapping E is an isometry of Y into `1;
hence, E.Y / is closed and separable in `1. In addition, [7, theorem 6.8.6] grants
that E maps Borel sets of Y into Borel sets of R1; in particular, E.Y / is a Borel
set of R1. As a consequence, E�1 extended to 0 out of E.Y / is �-measurable for
any � 2 P.R1/.

Let us consider the measures �t D E#�t 2 P.R1/; if we define

cit WD hbt ; ´0i i �E�1 on E.Y / for i � 1
(and equal to 0 on R1 n E.Y /, this extension is irrelevant; since the measures �t
are concentrated on E.Y /), we obtain by construction that the continuity equation
holds, with the stronger integrability condition (5.11) coming from (5.12), since
supi jcit j � kbtkY (recall that 	 is nondecreasing).

Then, from the superposition theorem in R1 we obtain a probability measure
σ 2 P.C.�0; T �IR1// concentrated on solutions of the ODE P
 it D cit .
/ and
absolutely continuous with respect to the norm k�k1. Moreover, since �t are con-
centrated on E.Y /, we obtain that, for any t 2 �0; T �, 
t 2 E.Y / for σ-a.e. 
 . In
particular, restricting t to a countable set, for σ-a.e. 
 , one has

(5.13) 
t 2 E.Y / for any t 2 Q \ �0; T �.
If we fix 
 2 � (so that 
 is absolutely continuous with respect to the k�k1 norm)
and (5.13) holds, since our choice of the ´0i guarantees that the composition with
E�1 is an isometry between the norm k�k1 and k�kY , from 
t 2 E.Y / for any
t 2 Q \ �0; T �, we deduce 
.�0; T �/ � E.Y /: indeed, if tn 2 Q \ �0; T � and
tn ! t , 
tn D E.yn/, then the absolute continuity of 
 yields that .yn/ is a
Cauchy sequence in Y ; hence yn ! y for some y 2 Y and then 
t D E.y/ 2
E.Y /. Therefore, we proved that for all 
 2 � the property (5.13) improves
to 
.�0; T �/ � E.Y /, and the same argument shows that the transformed curve
E�1
 in Y is absolutely continuous.

The ODE P
 it D cit .
/ becomes, for the transformed curve yt D E�1
t ,

d
dt
hy; ´0i i D hbt � y; ´0i i for all i � 1,

since the ´0i separate points in Y 0, which allows us to conclude that Py D bt � y.
Let us now consider the map zEW C.�0; T �IY /! C.�0; T �IR1/, zE.
/ WD E�
 ,

which naturally extends E to the corresponding complete and separable spaces of
curves. Since zE is continuous and injective, it maps Borel sets into Borel sets. It
follows that the inverse map E�, 
 7! y D zE�1
 , arbitrarily defined to a constant
on the Borel and σ-negligible set

C.�0; T �IR1/ n zE�C.�0; T �IY /� � C.�0; T �IR1/ n�;
is Borel.

To conclude, having set η D .E�/#σ, from evt .σ/ D �t one obtains evt .η/ D
�t for all t 2 �0; T �. The measure η then satisfies all stated properties. �
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THEOREM 5.3. Let x� 2 P1.C /, f W C � C ! Y be L-Lipschitz, and let b� be
defined as in (5.1). Then there is a unique � 2 C.�0; T �IP1.C // with �0 D x� ,
satisfying Z

C

�.t; y/d�t .y/ �
Z
C

�.0; y/d�0.y/

D
Z t

0

Z
C

�
@s�.s; y/C D�.s; y/.b�s

.y//
�
d�s.y/ds

for all � 2 C1
b
.�0; T � � Y /.

PROOF. Let us consider Eulerian solutions �1 and �2 starting from the same
initial datum x� , and let us denote by b1.t; y/, b2.t; y/ the respective velocity fields
and by Y1.t; y/, Y2.t; y/ the respective flow maps. By applying the superposition
theorem to bi (extended with the 0 value to .0; T / � .Y n C/), � i we obtain that
� i
t D evt .ηi / for suitable ηi 2 P.C.�0; T �IY // concentrated on absolutely-

continuous-in-�0; T � solutions to the Cauchy problem

Py D b� i .t; y/ in .0; T /.

On the other hand, since from Theorem B.1 we know that the solution to the
Cauchy problem is unique, the conditional probabilities ηiy of ηi given the ini-
tial condition y.0/ D y have to be Dirac masses, precisely ηiy D �Yi . � ;y/. It
follows that � i

t D Yi .t; � /# x� for all t 2 �0; T �. An application of the stability
estimate (4.4) in Theorem 4.1 yields uniqueness. �

Appendix A Calculus in Banach Spaces
We adapt some basic calculus notions in Banach spaces to our framework, where

the domain C of the functions we wish to differentiate is a convex subset of a
normed space E but need not be open; in this case we denote by EC the vector
space R.C � C/. For c 2 C , we shall instead denote by Ec the convex cone of
directions

Ec WD RC.C � c/ � EC :

A.1 Differentiation
We first introduce a notion of multivalued Fréchet differential, adapted to func-

tions defined on convex sets.

DEFINITION A.1 (Multivalued F-differential). Let E; F be normed vector spaces,
C � E convex, and let f W C ! F be a map. We say that f is F-differentiable at
c 2 C if there exists L 2 L.EC ; F / such that

(A.1) lim
C3c0!c

kf .c0/ � f .c/ � L.c0 � c/kF
kc0 � ckE

D 0:
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This notion is too strong for some applications, since the natural domain of L
should be only the closure of the cone Ec , on which L is uniquely determined by
(A.1). We denote the F-differential of f in c 2 C by

Df .c/ D fL 2 L.EC ; F / W L fulfills (A.1)g;
and, if Ec is not dense in EC , the map D is multivalued (as in the case of the
subdifferential in convex analysis). By density, each L 2 Df .c/ uniquely extends
to an operator in L. xEC ; F /. Hence, the F-differential Df .c/ is a closed convex
subset of L. xEC ; F /. For any e 2 EC we denote

Df .c/e D Df .c/.e/ D fL.e/ D Le W L 2 Df .c/g:
If e 2 xEc , then Df .c/e is a singleton and in this case, with a slight abuse of
notation, we may use Df .c/e instead of Le for any L 2 Df .c/.

A straightforward consequence of (A.1) is the chain rule for curves: if t 7!
c.t/ 2 C1.�0; T �IC/ is a differentiable map, then c0.t/ 2 xEc.t/ � xEC and

(A.2)
d
ds
f .c.s//

����
sDt

D Df .c.t//.c0.t//

whenever f is F-differentiable at c.t/ (we remark on the abuse of notation men-
tioned above).

For F-differentiability we can also adopt the handy notation

f .c0/ � f .c/ � Df .c/.c0 � c/ D o.kc0 � ckE /:
If we consider the particular case when E D F and f W C ! C , obviously any

L 2 Df .c/ is a linear operator from EC to xEC . With these notions, the proof of
the following chain rule is standard.

THEOREM A.2 (Chain rule). Suppose f W C ! C and gW C ! R are F-differen-
tiable, respectively, at c 2 C and at d D f .c/ 2 C . Then g � f W C ! R is also
F-differentiable at c and

D.g � f /.c/ � Dg.d/ � Df .c/;

where Dg.d/ � Df .c/ D fM � L WM 2 Dg.d/; L 2 Df .c/g.
Notice that if e 2 Ec , then Df .c/.e/ is unique (i.e., it does not depend on

the choice of L) and belongs to xEd . Therefore, also the choice of the element
M 2 Dg.d/ is irrelevant.

PROOF. It suffices to write

g � f .c0/ � g � f .c/ D g.d C Df .c/.c0 � c/CR.c0// � g.d/
with kR.c0/kE D o.kc0 � ckE / as c0 ! c, and the expansion g.d 0/ � g.d/ D
Dg.d/.d 0 � d/C o.kd 0 � dkE / with d 0 D d C Df .c/.c0 � c/CR.c0/. �
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We say that f is of class C1 and we write f 2 C1.C IF / if f is F-differentiable
at each c 2 C , and there exists a selection L.c/ 2 Df .c/ for all c 2 C such that

(A.3) c 7! L.c/ is continuous from C to L.EC ; F /

with L.EC ; F / endowed with the distance induced by the operator norm. To con-
form with the classical continuous Fréchet differentiability, below we may write
with a slight abuse of notation that

(A.4) c 7! Df .c/ is continuous from C to L.EC ; F /

to actually mean f 2 C1.C IF / as in (A.3).
In the context of Theorem A.2, by choosing a continuous selection for Df .c/

and for Dg.d/, we have a continuous selection for the F-differential of the compo-
sition at c, D.g � f /.c/, thus granting the C1 regularity of g � f .

DEFINITION A.3 (G-differentiation). Let E;F be normed vector spaces, C � E

convex, and let f W C ! F be a map. We say that f is G-differentiable at c 2 C
if the directional right derivatives

df .c; e/ WD lim
h!0C

f .c C he/ � f .c/
h

exists in F for all e 2 Ec .

Of course, F-differentiability at c implies G-differentiability at c, with

df .c; e/ D Df .c/.e/

for all e 2 Ec . In connection with the differentiability properties of the flow map,
it is useful to establish the converse implication.

LEMMA A.4 (Criterion for C1 regularity). Let f W C ! F be a continuous map
and assume the existence of a continuous operator

C 3 c 7! L.c/ 2 L.EC ; F /

such that df .c; e/ D L.c/e for all c 2 C and all e 2 Ec . Then L.c/ 2 Df .c/ is
an admissible choice in (A.1) for all c 2 C , so that f 2 C1.C IF /.

PROOF. Set ct D c C t .c0 � c/ for t 2 �0; 1� and set e D c0 � c 2 Ec , and
notice that �e 2 Ect for all t 2 .0; 1/. Since t 7! f .ct / is continuous in �0; 1� and
differentiable in .0; 1/, we can write

(A.5) f .c0/ � f .c/ D
Z 1

0

df .ct ; e/dt D
Z 1

0

L.ct /e dt:

Now we use that L.ct /e=kekE ! L.c/e=kekE uniformly in �0; 1� as c0 ! c to
obtain (A.1). �

Remark A.5. Formula (A.5) also shows that a function f 2 C1.C IF / with a
uniformly bounded F-differential selection LW c 7! L.c/ as in (A.3), which means
L 2 Cb.C IL.EC ; F // satisfies a uniform bound

kf .c/kF � kf .c0/kF C kc � c0kE sup
c2C

kL.c/kL.EC ;F /;
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where c0 is a given point in C . In particular, f has linear growth

(A.6) sup
c2C

kf .c/kF
1C kc � c0kE

� kf .c0/k C sup
c2C

kLckL.EC ;F /:

The left-hand side of (A.6) defines a norm in the space Clg.C; F / of continuous
functions with linear growth (the definition is in fact independent of c0). The same
argument of the proof of Lemma A.4 also shows that the graph of the multivalued
operator D

X WD �
.f; L/ 2 C1.C; F / � Cb.C;L.EC ; F //W
L.c/ 2 Df .c/ for every c 2 C 	(A.7)

between C1.C IF / and Cb.C IL.EC ; F // is closed, and thus a Banach space, with
respect to the graph norm

k.f; L/kX WD sup
c2C

kf .c/kF
1C kc � c0kE

C sup
c2C

kL.c/kL.EC ;F /;

which in turn is equivalent to kf .c0/kF C supc2C kL.c/kL.EC ;F /.
The closedness of the graph X is equivalent to saying that if c 7! Ln.c/ 2

Dfn.c/ is a sequence of maps in Cb.C IL.EC ; F // uniformly converging to L 2
Cb.C IL.EC ; F // and limn!1 fn.c0/ D f .c0/ in F , then fn is also converging
uniformly on bounded sets to a function f 2 C1.C IF / and L.c/ 2 Df .c/ for all
c 2 C .

A.2 Bochner integration
Let .A;A; �/ be a � -finite measure space, and let E be a Banach space. A

�-simple function f W A! E is representable as

f D
NX
nD1

�An
en;

where en 2 E and An 2 A with �.An/ < C1.

DEFINITION A.6 (Bochner integral). A function f W A ! E is �-Bochner inte-
grable if there exist simple functions fnW A! E such that

(i) limn fn D f �-a.e. (strong �-measurability);
(ii) limn

R
A kfn � f kE d� D 0.

If f is �-Bochner integrable, thenZ
A

f d� D lim
n

Z
A

fn d� 2 E

exists and is independent of the sequence .fn/. It is called the Bochner integral of
f and satisfies

(A.8)





Z
A

f d�





E

�
Z
A

kf kE d�:
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We shall use the fact that, in the case when .A; dA/ is a separable metric space
and A is the Borel � -algebra, any continuous function f W A ! E is strongly �-
measurable. This is a consequence of the Pettis measurability theorem (see, for
instance, [46, chap. 5]), since x 7! he0; f .x/i is continuous, hence �-measurable,
for any e0 2 E 0 (the so-called weak measurability property), and of the fact that
the range of f is separable.

A simple criterion for Bochner integrability is the following:

PROPOSITION A.7 (Bochner integrability criterion). A function that is strongly �-
measurable (as in (i) of Definition A.6) f W A! E is �-Bochner integrable if and
only if Z

A

kf kE d� < C1:

The Bochner integral commutes in many ways with linear operators; let us il-
lustrate these properties for duality operators, linear operators, and differentiation
operators.

(1) For any x0 2 E 0 one has�Z
A

f d�; x0
�
E�E 0

D
Z
A

hf; x0iE�E 0 d�

and an analogous formula with the predual holds if E is a dual Banach space.
(2) Iff W A! E is�-Bochner integrable andT 2 L.E; F /, then Tf W A! F

is also �-Bochner integrable and

T

Z
A

f d� D
Z
A

Tf d�:

(3) Let E;F be normed spaces. If .f; L/W A ! X , where X in the Banach
space defined in (A.7), and where L.x; � / is a continuous selection in Df .x; � /, is
�-Bochner integrable, then

(A.9) D
Z
A

f .x; � /d�.x/ 3
Z
A

L.x; � /d�.x/ 2 Cb.C IL.EC ; F //:

This useful formula explains the correct exchange of F-differentiation and Bochner
integration. In particular, it provides, in conjunction with item (1) above, the fol-
lowing simple extension of the fundamental theorem of calculus, for which in fact
the simpler Riemann integral would be sufficient.

THEOREM A.8. If f W �a; b� ! F is continuous and differentiable in .a; b/, and
f 0 extends continuously to �a; b�, then

f .b/ � f .a/ D
Z b

a

f 0.�/d�:
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Appendix B Well-Posedness of ODEs in Banach Spaces
and Linearization

First we recall Brezis’ theorem [11, sec. I.3, theorem 1.4, cor. 1.1] on the well-
posedness of ODEs in Banach spaces.

THEOREM B.1. Let .E; k�kE / be a Banach space, C a closed convex subset of
E, and let A.t; � /W C ! E, t 2 �0; T �, be a family of operators satisfying the
following properties:

(i) There exists a constant L � 0 such that

(B.1)
kA.t; c1/ � A.t; c2/kE � Lkc1 � c2kE

for every c1; c2 2 C and t 2 �0; T �.
(ii) For every c 2 C the map t 7! A.t; c/ is continuous in �0; T �.

(iii) For every R > 0 there exists � > 0 such that

(B.2) c 2 C; kckE � R ) c C �A.t; c/ 2 C:
Then for every xc 2 C there exists a unique curve cW �0; T � ! C of class C1

satisfying ct 2 C for all t 2 �0; T � and
d
dt
ct D A.t; ct / in �0; T �; c0 D xc:

Moreover, if c1; c2 are the solutions starting from the initial data xc1; xc2 2 C ,
respectively, we have

(B.3)


c1t � c2t 

E � eLt



xc1 � xc2


E

for every t 2 �0; T �.
Assume now that A.t; � /W C ! E is a family of operators as required by the

assumptions of Theorem B.1, so that the flow map YW �0; T � � C ! C given by

(B.4)
d
dt

Y.t; c/ D A.t;Y.t; c//; Y.0; c/ D c;

is well-defined. For simplicity we consider only the flow map starting from t D 0,
but the same results hold for the full family of transition maps Y.t; s; c/.

Thanks to (B.2), the operators A take their values in EC . In this section we
shall highlight additional conditions on A for the flow map Y.t; � / to be continu-
ously F-differentiable, uniformly in t 2 �0; T �. More precisely, we assume that the
operators A.t; � / satisfy

(B.5) .t; c/ 7! DEC
A.t; � /.c/ is continuous from �0; T � � C to L.EC ; xEC /.

From (A.4), by (B.5) we mean that a selection LA.t; c/ 2 DEC
A.t; � /.c/ exists

such that .t; c/ 7! LA.t; c/ is continuous from �0; T � � C to L.EC ; xEC /.
Under this assumption, we prove by classical linearization and stability argu-

ments the existence of the G-derivatives, and then their continuity as functions of
the point of differentiation, using eventually Lemma A.4 to obtain the F-differen-
tiability.
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THEOREM B.2. Under the assumptions of Theorem B.1 and (B.5), the map Y.t; � /
is continuously F-differentiable for all t 2 �0; T �, with an F-differential DY satis-
fying:

(i) .t; c/ 7! DY.t; � /.c/ continuous from �0; T � � C to L.EC ; xEC /;
(ii) kDY.t; � /.c/kL.EC ; xEC /

� eLT for all .t; c/ 2 �0; T � � C .

PROOF. For c 2 C , e 2 Ec , and h > 0 sufficiently small, let us consider the
finite difference

(B.6) ´h.t; .c; e// D
Y.t; c C he/ � Y.t; c/

h
:

From (B.4) we obtain the equation

(B.7)
d
dt
´h.t; .c; e// D

A.t;Y.t; c C he// � A.t;Y.t; c//
h

; ´h.0; .c; e// D e:

In view of the well-posedness of (B.4), also (B.7) is well-posed. We highlight now
some regularity properties of the functions t 7! ´h.t; .c; e//, which naturally come
from the assumptions on A.

By definition of ´h.t; .c; e// and (B.3) we observe that

(B.8) sup
t2�0;T �

k´h.t; .c; e//kE � kekEeLT ;

where L is the constant of Theorem B.1(i). Hence t 7! ´h.t; .c; e// are uniformly
bounded in �0; T � with respect to h. To compute their limit as h # 0, notice that an
application of Theorem B.1 (or more classical results for linear ODEs) yields for
all f 2 EC the existence and the uniqueness of a C1 map t 7! ´.t/ 2 xEC solving
the linear differential equation

(B.9) ´0.t/ D LA.t;Y.t; c//´.t/; ´.0/ D f;

for a continuous selection LA.t;Y.t; c// 2 DEC
A.t; � /.Y.t; c//, whose existence

is granted by (B.5). For later use we denote the solution ´ D f́ to emphasize its
initial datum.

From (B.6) and (B.7), with the notation ´h.t/ WD ´h.t; .c; e//, we have the
identity

d
dt
.´h.t/ � ´e.t//
D h�1

�
A.t;Y.t; c/C h´h.t// � A.t;Y.t; c//

� hLA.t;Y.t; c//´h.t/
�C LA.t;Y.t; c//�´h.t/ � ´e.t/�:

We recall now that for any g 2 C1.�0; T �IE/ the map t 7! kg.t/kE is Lipschitz
and satisfies (as a simple consequence of the fundamental theorem of calculus and
(A.8)) ���� d

dt
kg.t/kE

���� � kg0.t/kE for almost every t 2 �0; T �.
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Then, we obtain the estimates
d
dt
k´h.t/ � ´e.t/kE
� 

h�1�A.t;Y.t; c/C h´h.t// � A.t;Y.t; c// � hLA.t;Y.t; c//´h.t/

�
C LA.t;Y.t; c//�´h.t/ � ´e.t/�




E

� 

h�1�A.t;Y.t; c/C h´h.t// � A.t;Y.t; c// � hLA.t;Y.t; c//´h.t/�



E

C Lk´h.t/ � ´e.t/kE ;
since kLA.t;Y.t; c//kL.EC ; xEC /

� L, thanks to (B.1). By Gronwall’s inequality
and using that ´h.0/ D ´e.0/ D e, we obtain

k´h.t/ � ´e.t/kE

�
Z t

0



h�1�A.s;Y.s; c/C h´h.s// � A.t;Y.s; c//
� hLA.t;Y.t; c//´h.s/�




E

eL.t�s/ds:

By the pointwise limit

h�1�A.s;Y.s; c/C h´h.s// � A.t;Y.s; c// � hLA.t;Y.t; c//´h.s/�



E
! 0

for h! 0;

and by the dominated convergence ensured by assumption (B.1) and the uniform
boundedness in (B.8), we conclude that

lim
h!0

sup
t2�0;T �

k´h.t/ � ´e.t/kE D 0:

Moreover, with a similar argument as above we have

d
dt
k´e.t/kE � Lk´e.t/kE ;

and again by Gronwall’s inequality and ´e.0/ D e

(B.10) k´e.t/kE � kekEeLT :
We shall denote now by L.t; c/ the linear operators induced by (B.9) by set-
ting L.t; c/f D f́ .t/ for any f 2 EC (not to be confused with LA.t; c/ 2
DEC

A.t; � /.c/). Notice that in view of (B.10) the operators L.t; c/ 2 L.EC ; xEC /

are in fact uniformly bounded. With all of this we proved that Y.t; � / is G-differen-
tiable (uniformly in t 2 �0; T �) and that

dY.t; c; e/ D L.t; c/e for every e 2 Ec , t 2 �0; T �,
In order to improve from G-differentiability to F-differentiability, we apply Lemma
A.4 if we are able to show that the operator .t; c/ 7! L.t; c/ is continuous from
�0; T � � C to L.EC ; xEC /. Since uniform continuity with respect to t is obvious,
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the continuity with respect to c can be again shown by considering, for c; c0 2 C ,
the operator

Z.t; c; c0/ WD L.t; c/ � L.t; c0/:
Indeed, for c; c0 fixed, we have in the space L.EC ; xEC / the linear differential
equation

d
dt
Z.t; c; c0/ D LA.t;Yt .c

0// �Z.t; c; c0/
C �LA.t;Yt .c

0// � LA.t;Yt .c//� � L.t; c/;
with the initial conditionZ.0; c; c0/ D 0; here we denoted Yt .c/ D Y.t; c/. Under
the assumption (B.5) and by a similar argument based on the Gronwall inequality
as above, since, for c fixed, LA.t;Yt .c

0// ! LA.t;Yt .c// as kc � c0kE ! 0,
we can conclude that Z.t; c; c0/ ! 0 as kc � c0kE ! 0 uniformly in �0; T �, and
therefore the continuity of c 7! L.t; c/. It follows that Yt is of class C1, uniformly
with respect to t 2 �0; T �, with a F-differential at c given by L.t; c/. �
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