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Chapter 1

Introduction

Optimisation is vital to modern economics, however tooling is non existent for the explo-
ration optimisation problems for which the objective functions are discontinuous. This is
unfortunate as there are interesting economic problems which can be modeled as discon-
tinuous functions. This thesis by publication aims to develop and demonstrate some uses
for such tooling. Of the three papers contained in this thesis, one develops tooling while
the other two show their usage in the context of ex-post moral hazard problems.

The first article, Positioning choice problems: the mathematics develops tooling for a
class of optimisation problems which we define as positioning choice problems. This is
a class of optimisation problems defined in finite-dimensional Euclidean spaces for which
the value function is always almost everywhere continuous even when the objective func-
tion is discontinuous.

For this new class of problem, we show that we can state an equivalent of first-order
conditions in terms of Dini supergradients. This allows us to prove that the value func-
tion is Lipschitz continuous, which implies by Rademacher’s theorem that it is almost
everywhere differentiable. This implication is essentially an ad-hoc envelope theorem for
positioning choice problem. The proof’s use of Rademacher’s theorem also yields a fuller
characterization of the derivative of positioning choice problems, in a way similar to Dan-
skin’s theorem. We conclude the paper by suggesting that positioning choice problems
are likely to be generalized on other spaces as well.

The first application we explore in Ex-Post moral hazard and manipulation-proof con-
tracts discusses ex-post moral hazard in the context of entrepreneurial financing. We
examine the trade-off between the provision of incentives to exert costly effort (ex-ante
moral hazard) and the incentives needed to prevent the agent from manipulating the
profit observed by the principal (ex-post moral hazard). Formally, we build a model of
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two stage hidden actions where the agent can both influence the expected revenue of a
business and manipulate its observed profit. We focus our efforts in the analysis of bonus
contracts as tools to provide incentives.

As the manipulation stage of the game is a positioning choice problem, and we can
thus directly import results from Lauzier (2020d). We show that the optimal contract
is manipulation-proof whenever the manipulation technology is linear. This linearity of
the manipulation technology entirely drives the result because it allows us to replace any
contract by the value function of the optimisation problem it defines in the manipulation
stage without changing the incentives to exert effort.

However, convex manipulation technologies sometimes lead to contracts for which
there are manipulations in equilibrium. Whenever the distribution satisfies the monotone
likelihood ratio property, we can always find a manipulation technology for which this
is the case. This results obtains because bonus contracts have the desirable property of
incentivizing hard work while maintaining the expected losses to (acceptable) manipula-
tions low.

The next application we turn to is the design of insurance. Insurance design and
arson-type risks. In Insurance design and arson-type risks, arson-type risks are modeled
similarly to the linear manipulation technologies of Lauzier (2020a). Therefore in addition
to the tooling we developed in Lauzier (2020d), we will additionally be able to import
some of the proof technique developed Lauzier (2020a).

Various authors obtain optimal insurance contracts which are at odds to the types
of contracts offered by the industry. Huberman et al. (1983)’s completely disappearing
deductible and Picard (2000)’s discontinuous contract serve as our main examples. The
authors observe that these contracts are not optimal when there are arson-type risks.

Similarly to Lauzier (2020a) the manipulation stage of the game is a positioning choice
problem. We can therefore, using our tooling, show that the optimal insurance contract
with arson-type risks must be continuous and have a bounded slope.

The economic intuition gathered from Lauzier (2020a) is reversed while dealing with
insurance. In Lauzier (2020a) there is a trade-off in the provision of incentivization deal-
ing with ex-ante and ex-post moral hazards and the optimal contract sometimes entails
manipulations in equilibrium.
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Insurance contracts never entail manipulations in equilibrium and all contracts mix-
ing coinsurance and deductibles are robust to arson-type risks. However, these types of
contracts are also used to mitigate other ex-ante agency problems such as adverse selec-
tion and ex-ante moral hazard. As the contracts used for the prevention of arson-type
manipulations are needed for the resolution of other agency problems we intuit that here
are no trade-offs as in "securities design".
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Chapter 2

Positioning choice problems: the
mathematics

Abstract

This article examines differentiability properties of the value function of positioning choice
problems, a class of optimisation problems in finite-dimensional Euclidean spaces. We
show that the value function of positioning choice problems is always almost everywhere
differentiable even when the objective function is discontinuous. To obtain this result we
first show that the Dini superdifferential is always well-defined for the maxima of position-
ing choice problems. This last property allows to state first-order necessary conditions in
term of Dini supergradients. We then prove our main result, which is an ad-hoc envelope
theorem for positioning choice problems. Lastly, after discussing necessity of some key
assumptions, we conjecture that similar theorems might hold in other spaces as well.

Keywords

Envelope theorem, Optimisation, Discontinuous optimisation, Danskin’s theorem, Rademacher’s
theorem, Lipschitz continuity, Positioning choice problems

2.1 Introduction

An envelope theorem is a statement about the derivative of value functions. Envelope the-
orems have foundational applications in several fields of mathematical analysis, notably
in the calculus of variations and optimal control. As such, they are also fundamental to
the microeconomic analysis of consumer and producer problems (Mas-Colell et al. (1995)).
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Envelope theorems and their generalizations, as they are currently formulated and
used, rely on a fundamental hypothesis: the continuity of the objective function. How-
ever, this assumption is problematic in applications where discontinuities are meaningful.
Notably, discontinuous functions are essential to modeling pivotal economic phenomena
such as executive bonuses, tax brackets and indivisible capital investments such as power
plants.

Optimisation problems with discontinuities are not differentiable and thus standard
first-order necessary conditions cannot be used to find maxima at such points. Conse-
quently, prior envelope theorems cannot be used to characterize the behaviour of their
value function.

In this article, to tackles this issue we define a class of optimisation problems in finite-
dimensional Euclidean spaces for which the value function is almost everywhere differen-
tiable even when the objective function is discontinuous. These optimisation problems
are dubbed positioning choice problems since they have a straightforward geometrical in-
terpretation as a choice of position. To the best of our knowledge this is the first article
to explicitly examine the value function of optimisation problems with discontinuous ob-
jective functions.

As mentioned, the maxima of discontinuous functions are not differentiable and so
standard first-order necessary conditions theorems cannot be used. We propose a gener-
alisation of first-order conditions using the Dini superdifferential. Dini supergradients are
well-defined at the maxima of positioning choice problems and so is the Dini superdif-
ferential. To the best of our knowledge this property is not shared by other notions of
superdifferentials in the literature.

We then prove an ad-hoc envelope theorem for positioning choice problems along the
lines of Danskin’s theorem (Danskin, 1967). A deeper look at the theorem shows that
it relies extensively on Euclidean spaces being a (Dedekind-)complete ordered field, an
observation worth investigating.

We set to do so with examples aimed at breaking down our main result. We first
present an optimisation problem for which the maxima are isolated points but where the
value function is still almost everywhere differentiable. This highlights that first-order
conditions are not essential to the characterization of the derivative of value functions.
The second example shows how differentiability depends on the domain of the value func-
tion. Piecing those observations together we suggest that envelope theorems might be
obtained on other spaces which are isomorphic to the reals. We conclude with an exam-
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ple on a Riemannian manifold which supporting this conjecture.

The presentation is as follows. We first give a brief overview of the literature. We
further detail important concepts in the beginning of section 1. Section 1 also defines po-
sitioning choice problems. It contains two examples that help build the intuition behind
our ad-hoc envelope theorem. Variations of these examples will be used while discussing
our findings.

Theorem 2, which provides a generalized notion of first-order necessary conditions for
a maximum in the context of positioning choice problems, and theorem 3, the ad-hoc
envelope theorem, are presented in section 2 which serves the core of the article.

Section 3 discuss the main results. The presentation is less formal as we use examples
to highlight certain properties of positioning choice problems. We show how continuity
and differentiability properties of value functions are tightly connected to the complete-
ness of Euclidean spaces. We conjecture that envelope theorems similar to theorem 3
might be stated for any spaces which are isomorphic to the reals.

Avenues for further research are identified in conclusion. Appendix A contains the
definitions omitted in the text and a relevant statement of Rademacher’s theorem, while
Appendix B contains the omitted proofs.

Literature review

The essential property of positioning choice problems is that the value function is always
a locally Lipschitz map between two finite-dimensional Euclidean spaces, even when the
objective function of the optimisation problem is discontinuous. By Rademacher’s the-
orem, this implies that the value function is almost everywhere differentiable (on open
sets, with regard to the Lebesgue measure) and therefore relatively "well-behaved".

The literature on envelope theorems is well-established. It is largely focused on provid-
ing increasingly general conditions on objective functions as to characterize the derivative
of value functions. Recent examples are Morand et al. (2015) and Morand et al. (2018).
The authors scrutinize what they call Lipschitz programs, a large class of parametric
optimisation problems where the objective function satisfies Lipschitzianity. They show
that under weak assumptions the Lipschitz property is inherited by the value function.
Our approach is different but complementary to theirs as we do not study parametric
problems instead lifting the Lipschitz assumption on the objective function while still
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obtaining Lipschitzianity of the value function.

Both Morand et al. (2015) and Morand et al. (2018) derive many results of Milgrom
and Segal (2002) as special cases since the latter assumes the absolute continuity of the
objective function. Our findings complements the results of Milgrom and Segal (2002) as
well as we consider discontinuous objective functions. More details on Milgrom and Segal
(2002) are provided in the next section.

To the best of our knowledge this paper is the first to explicitly examine the value
function of optimisation problems with discontinuous objective functions. Thus, we pri-
oritise clarity and keep notation, assumptions and proofs as simple as possible. This
comes at the cost of generality. The sequel paper, (Lauzier, 2020c), explores positioning
choice problems in greater generality by showing how we can relax some assumptions in
order to model different economic problems.

2.2 Positioning choice problems

Preliminaries

Let Θ be a set of parameters and let Y (θ) be a choice set given parameter θ. Let the
function h : Y (Θ)×Θ→ R be the objective function. The problem

sup
y(θ)∈Y (θ)

h(y(θ); θ)

is an optimisation problem. The optimal choice correspondence σ : Θ ⇒ 2Y (θ) is

σ(θ) = arg max
y(θ)∈Y (θ)

h(y(θ); θ)

and the value function V : Θ→ R is

V (θ) = h(y∗(θ); θ)

for y∗(θ) ∈ σ(θ). An envelope theorem is a statement about the rate of change of V (θ)

when θ changes, often stated in terms of the derivative

∂V (θ)

∂θ
.
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Typically, envelope theorems rely building a continuous selection1 y∗(θ) of σ(θ) in
order to use the chain rule and write this derivative as

∂V (θ)

∂θ
=
∂h(y∗(θ); θ)

∂θ
=
∂h(y∗(θ); θ)

∂y∗(θ)

∂y∗(θ)

∂θ
.

This approach relies on the family

{h(·; θ) : θ ∈ Θ}

being composed of functions satisfying some form of continuity. The simplest envelope
theorem such as the one found in Mas-Colell et al. (1995) assumes that this family consists
exclusively of differentiable functions. The basic statement of Milgrom and Segal (2002)
assumes that this family consists of absolutely continuous functions2. However, continuity
can be problematic in application. This paper shows that it is sometime possible to make
statements about the derivative of a value function even when the objective function is
discontinuous.

Definitions

Consider a slightly different notation to avoid confusion. Let 1 ≤ n <∞ and let C ( Rn

be a closed box in Rn which contains zero. Let the function f : C → R be the "payoff
function" of being at position y ∈ C. Let the function g : C × C → R be the "cost of
movement function" of moving from being at x ∈ C to y.

Assume that g is continuous, that supy∈C |f(y)| < +∞ and that max(x,y)∈C×C |g(x, y)| <
+∞. Further assume that the function g is always a metric on Rn (see appendix A). This
assumption is not essential to obtain the main results of this paper, but it greatly stream-
lines the proofs and thus the exposition.

Let x ∈ C be given and let h(x, y) = f(y)− g(x, y). The optimisation problem

sup
y∈C

h(x, y)

is a positioning choice problem.

1A selection f of a correspondence F is a function such that for every x ∈ domain(F ) it is f(x) ∈ F (x).
2 Lipschitzianity is assumed in Morand et al. (2015), Morand et al. (2018) and Clarke (2013).
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Further, assume that f is almost everywhere continuous except on a set of points
where it satisfies either

lim sup
x∈C, x→y

f(x) = f(y)

or

lim inf
x∈C, x→y

f(x) = f(y).

As previously, for x ∈ C given, h(x, y) is called the objective function and the corre-
spondence σ : C ⇒ 2C defined as

σ(x) = arg max
y∈C

h(x, y)

is called the optimal choice correspondence. A function y∗ : C → C is a selection of σ if
for every x ∈ C, y∗(x) ∈ σ(x). Letting y∗(x) ∈ σ(x), the value function V : C → R is

V (x) = h(x, y∗(x)) = f(y∗(x))− g(x, y∗(x)).

Example: the structure of the line at n=1

Let n = 1, C = [0, 2], f(x) = x ·1x≥1 and g(x, y) = α|y−x| for 1x≥1 the indicator function,
α > 1 and | · | the usual Euclidean distance on R. Notice that since f is discontinuous
the objective function also is. In other words, the family of functions

{h(x, ·) : x ∈ C}

consists exclusively of functions which are discontinuous. Thus, typical envelope theorems
cannot be used to characterize the derivative of the value function V

∂V (x)

∂x
.

However, notice that by the projection theorem there exists at least one pair (x, y),
y > x, for which we have

f(x)− g(x, x) = f(y)− g(y, x).
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Since α > 1 this pair is unique and is y = 1 and x = 1 − 1/α. The optimal choice
correspondence is

σ(x) =


{x} if x ∈ [0, 1− 1/α) ∪ [1, 2]

{1} if x ∈ (1− 1/α, 1)

{x, 1} if x = 1− 1/α

and so the value function is

V (x) =


0 if x ∈ [0, 1− 1/α]

1− α(1− x) if x ∈ (1− 1/α, 1)

x if x ∈ [1, 2].

Clearly, V (x) is almost everywhere differentiable on (0, 2) except at x ∈ {1− 1/α, 1}
and has derivative given by

V ′(x)|x∈(0,2)\{1−1/α,1} =


0 if x ∈ (0, 1− 1/α)

α if x ∈ (1− 1/α, 1)

1 if x ∈ (1, 2)

Moreover, V (x) is kinked at x = 1− 1/α with subdifferential given by

∂V (1− 1/α) = [0, α]

and at x = 1 with superdifferential

∂V (1) = [1, α].

This examples shows that even when the objective function is not particularly "well-
behaved" the value function is. Implicitly, this example uses the structure of the line to
guarantee that σ is upper hemicontinuous which guarantees a simple optimisation prob-
lem. Variations of it will be used in section 3 for further discussions.

Example: n=2 and an intuitive argument

The previous example can be generalized to additional dimensions. The next construc-
tive example aims to provide the reader with more intuition about the main results of the
article.
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Let n = 2, C = [0, 2]2, g(x, y) = α||y − x||, α > 1 and

f(x1, x2) =

1 if simultaneously x1 ≥ 1 and x2 ≥ 1

0 otherwise.

Notice that f is almost everywhere continuous except on the set

Disf = {(x, y) : x = 1, y ∈ [1, 2]} ∪ {(x, y) : x = [1, 2], y = 1}

where it is upper semicontinuous. By the projection theorem to every point

(x, y) ∈ Disf \ {(1, 1)}

there exists a unique (a, b) 6= (x, y) such that

V ((a, b)) = f ((a, b))− g ((a, b), (a, b)) = 0 = f ((x, y))− g ((x, y), (a, b)) .

This (a, b) corresponds exactly to the point x = 1− 1/α in the previous 1-dimensional
example so that if (x, y) = (1, y) then (a, b) = (1−1/α, y) and vice-versa for (x, y) = (x, 1).
Let K be the set of points that satisfies the previous condition.

The arc of circle with center (1, 1) defined by

L := {(x, y) : x ≤ 1, y ≤ 1, (x, y) belongs to a circle with center (1, 1) and radius 1−1/α}

is also a set of points that satisfies the previous equality. That is, for every (a, b) ∈ L it is

V ((a, b)) = f((a, b))− g((a, b), (a, b)) = 0 = f((1, 1))− g((1, 1), (a, b)).

Notice that the set
KinkV := Disf ∪K ∪ L

contains all the (interior) points of non-differentiability of V and is a set of measure zero
with regard to the Lebesgue measure on R2. Let int denotes the interior of a set. It is
clear that V is differentiable on M := int(C) \ KinkV , with ∇V (x) = (0, 0) for every
point (x, y) for which σ((x, y)) = {(x, y)}. Furthermore, whenever (x, y) ∈M and

σ((x, y)) = {(a, b)}, (a, b) 6= (x, y)
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then (a, b) ∈ Disf and the directional derivative of V at (x, y) in the direction of (a −
x, b− y) is3

V ′((x, y); (a− x, b− y)) = α||(a− x, b− y)||.

Constructing this example bare hands is tedious but insightful. It shows that there
are higher dimensional environments where the value functions are "well-behaved" even
when the objective functions are not. In other words, it is clear that the same problem
could be cast in n = 3, 4, ..., N < +∞ dimensions and the value function would still be
almost everywhere differentiable.

2.3 Statements

Let us start with a lemma that allows for simpler notation. Since C is closed, f is bounded
and g is continuous it is easy to show the following:

Lemma 1 Under the assumption made in section 1 there always exists a correspondence
f : C ⇒ 2R and a selection f

∗
of f such that

f = f = f
∗

almost everywhere

and for h(x, y) = f
∗
(y)− g(x, y) it holds

sup
y∈C

h(x, y) = sup
y∈C

h(x, y) = max
y∈C

h(x, y).

The proof follows from setting

f(y) =

{
z ∈ R : either lim sup

x∈C, x→y
f(x) = z or lim inf

x∈C, x→y
f(x) = z or both

}
and observing that for every x ∈ C it is possible to build a selection for which the problem
supy∈C h(x, y) attains its supremum. In light of the lemma, the rest of the presentation
uses max instead of sup and drops the subscript x ∈ C while taking limits.

Consider a positioning choice problem

max
y∈C

h(x, y)

satisfying the assumptions made in section 1. Let x be given and let y∗ ∈ cor(C) be
a maximizer of h(x, ·), where cor denotes the algebraic interior of a set4 . Since the

3See section 2 for a definition of the directional derivative.
4Recall that cor(A) = int(A) whenever A ⊂ Rn. See appendix A for more details
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objective function h is discontinuous it is possible that the gradient ∇h(x, ·) is ill-defined
at y∗. Thus, the standard first-order necessary condition

0 = ∇h(x, y∗)

is not necessarily meaningful. There is, however, a suitable substitute notion.

The upper Dini derivative5 of h(x, ·) in the direction of v ∈ Rn is

dh(x, y; v) = lim sup
w→v
t↓0

h(x, y + tw)− h(x, y)

t
(UDD)

and the Dini supperdifferential of h(x, ·) at y, denoted by ∂dh(x, y), is the set of ζ ∈ Rn

such that

dh(x, y; v) ≤ 〈ζ, v〉 ∀v ∈ Rn. (DS)

Each ζ ∈ ∂d is a Dini supergradient and if h(x, ·) is differentiable at y∗ ∈ σ(x) then

∂dh(x, y) = {∇h(x, y∗)}.

Theorem 2 (First-order necessary conditions for an interior solution on C) Under
the assumptions of Section 1, for every given x ∈ C, if y∗ ∈ cor(C) and y∗ ∈ σ(x) then

0 ∈ ∂dh(x, y∗) (CFOC)

Moreover, if both f and g are differentiable at y∗ then

0 = ∇h(x, y∗) = ∇(f(y∗)− g(x, y∗)) = ∇f(y∗)−∇g(x, y∗). (SFOC)

Proof. We only have to show the case when h is discontinuous at y∗ as the other cases
follow. Recall that by Lemma (1), we can assume without lost of generality that

lim sup
y→y∗

h(x, y) = h(x, y∗).

Lemma: ∂dh(x, y∗) is well-defined
Proof of the lemma: By definition it is

h(x, y∗) = f(y∗)− g(x, y∗) = lim sup
y→y∗

f(y∗)− g(x, y∗).

5The definitions used here follow Clarke (2013) chapter 11.
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For every direction v ∈ Rn for which there is a discontinuity it holds that

dh(x, y∗; v) = lim sup
w→v
t↓0

h(x, y∗ + tw)− h(x, y∗)

t
= −∞

because h(x, y∗ + tw) − h(x, y∗) → K < 0, K constant. Since f is almost everywhere
continuous there exists a direction v for which |dh(x, y∗; v)| is finite. As y∗ ∈ cor(C) and
y∗ ∈ σ(x) it is

∂dh(x, y∗) 6= ∅

and ∂dh(x, y∗) is well-defined. �

It follows immediately from y∗ ∈ σ(x) that for every v ∈ Rn it holds

dh(x, y∗; v) ≤ 0 = 〈0, v〉

and
0 ∈ ∂dh(x, y∗),

as desired.

The proof is almost identical to the proof of necessity of first-order conditions in books
on convex analysis and non-smooth optimisation such as Borwein and Lewis (2010). The
difference is the use of the Dini superdifferential, which is well-defined at discontinuity
points.

To simplify the presentation the remainder of this section always consider positioning
choice problems satisfying the assumptions of section 1 unless specified otherwise. The
next statement is the ad-hoc envelope theorem. It uses the Fréchet derivative defined in
appendix A. The Fréchet derivative is a generalisation of the standard gradient ∇ and
the two notions coincides on finite-dimensional euclidean spaces.

Theorem 3 ("Ad-Hoc" envelope theorem for positioning choice problems) Positioning
choice problems always have almost everywhere Fréchet differentiable value functions V .

The logic of the proof is instructive. Since C is closed, f is bounded and g is contin-
uous, it suffice to prove the continuity of V to show that it is Lipschitz and obtain, by
Rademacher’s theorem, that it is almost everywhere Fréchet. Proving continuity of V is
relatively simple but a bit tedious. By the way of contradiction it is assumed that V (x) is
discontinuous at a point. Since g is continuous this implies that there exists a converging
sequence xn → x along which (a) either V (x) > V (xn) or V (xn) > V (x) so (b) the set of
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maximizers σ(xn) and σ(x) are disjoint. For this to happen it must be the case that x is
a discontinuity point of f . WLOG let V (x) > V (xn) and consider y∗(x) ∈ σ(x). Since g
is a metric the projection theorem guarantees that we can find a neighborhood around x
such that y∗(x) strictly dominates every points of σ(xn), a contradiction.

Using Rademacher’s theorem also ensure that every points of V which are not Fréchet
differentiable have well-defined directional derivatives6 in every direction. This property
is summarized in the next corollary.

Corollary 4 (Properties of the derivative) The value function of a positioning choice
problem always satisfies the following:

1. Every point of non-differentiability in the sense of Fréchet have finite directional
derivative in every directions;

2. if σ(x) = {x} then V (x) = f(x) and ∇V (x) = ∇f(x) whenever ∇f(x) is well-
defined;

3. if g(x, y) = α||y − x|| for α ≥ 1 then to every x 6= y, x ∈ int(C), y ∈ C, it holds
that |V ′(x; y − x)| ≤ α||y − x||. Equality holds whenever y ∈ σ(x).

The corollary is an immediate consequence of Rademacher’s theorem and its proof
does not provide further insights. Intuitively, theorem 3 and its corollary provides a lim-
ited version of Danskin’s theorem (Danskin (1967)) in the context of positioning choice
problems.

The rest of this section gathers results which are useful in application. Following
Milgrom and Segal (2002), it is sometimes handy to write the value function as an integral.

Fact 5 (Integral representation of the value function) Let n = 1 and assume C =

[0,M ] for 0 < M < +∞. There exists a continuous function v0 : C → R such that for
every x̃ ∈ C it holds

V (x̃) = V (0) +

∫ x̃

0

v0(x)dx. (IRVF)

This representation is a simple application of the Second fundamental theorem of calculus.
The statement can be generalized to higher dimensions, but doing so does not provide

6Recall that the directional derivative of a function h : C → R at x ∈ C in the direction of y ∈ C is

h′(x; y) := lim
t↓0

h(x+ ty)− h(x)
t

when the limit exists.
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further insights on the behaviour of positioning choice problems.

The assumption that g is a metric is useful because it allows to streamline proofs by
using the projection theorem. However, it is restrictive.

Proposition 6 (Sufficient conditions for monotonicity of the value function) Let
g be

g(x, y) :=
n∑
i=1

gi(yi − xi)

for gi(yi − xi) continuous, non-decreasing and almost everywhere differentiable except
maybe at 0. Then the value function V (x) is almost everywhere differentiable.

Moreover, if g is positive and for every yi < 0 it holds gi(yi) = 0 then V is non-
decreasing: if y >> x then V (y) ≥ V (x).

Proposition 6 is an example of a class of functions g which are useful in economics.
Lauzier (2020a) considers the case when n = 1 and g(x, y) = max{0, y− x} is interpreted
as a manipulation technology of the observable profit of a firm. A simplified version of the
narrative goes as follows. A business owner hires a manager to take care of the company.
The real profit x randomly realizes at the end of a quarter. The manager observes x
and reports y, namely, the accounting profit of the quarter. The owner observes only
the accounting profit y. Before reporting, the manager can manipulate the accounting
profit by either burning some money (if y < x then g(x, y) = 0) or injecting liquidities
(if y > x then g(x, y) = y − x). Proposition 6 implies that the manager’s pay must
be non-decreasing in observable profit y because the value function of the optimisation
problem defined by this simple game is monotonic7.

Many optimisation problems which are important in application are defined on Rn and
not on a closed box C. Extending Theorem 3 to such setting can be challenging. Second-
order derivatives are not defined for discontinuous functions, and second-order sufficient
conditions for optimality cannot be used (i.e. Karush-Kuhn-Tucker theorem). Proposition
8 shows how to extend Theorem 3 to such setting. The next useful intermediate result is
stated independently as a lemma for ease of presentation.

Lemma 7 (A plane is a plane) Let f : Rn → R be a plane and let g : Rn × Rn → R+

be a positive and convex transformation of the Euclidean distance, i.e g(x, y) = g̃(||y−x||)

7Lauzier (2020c) shows how different functions g can be used to model economic problems.
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for some positive and strictly convex function g̃ : R+ → R+. Then for every finite x the
optimisation problem

max
y∈Rn

h(x, y) = max
y∈Rn
{f(y)− g(x, y)}

attains a finite maximum. Moreover, the value function V (x) is a plane parallel to f(x)

and hence continuously differentiable with ∇V = ∇f .

The proof of the lemma is straightforward and need not be covered.

Proposition 8 (Positioning choice problems and interior solutions) Let f and g
be as in lemma 7 with f non-decreasing. Let f̃ : Rn → R be a non-decreasing function
which is bounded by f . Then the value function

Ṽ (x) = h̃(x, ỹ∗(x)) = f̃(ỹ∗(x))− g(x, ỹ∗(x)) for ỹ∗(x) ∈ σ̃(x) = arg max
y∈Rn

h̃(x, y)

is almost everywhere Fréchet differentiable and is bounded by the function

V (x) = h(x, y∗(x)) = f(y∗(x))− g(x, y∗(x)) for y∗(x) ∈ σ(x) = arg max
y∈Rn

h(x, y).

The intuition behind proposition 8 is as follows. For f̃ a discontinuous function of
interest is found a function f which bounds it. The latter is taken continuous and lo-
cally bounded so that standard second-order conditions can be used solving problem
max{f(y)−g(x, y)}. The function g must be "sufficiently convex" so that "g crosses both
f and f̃ from below". This is enough to guarantee that

σ̃(x) ⊂ {y ∈ Rn : f(y)− g(x, y) ≥ 0}

and conclude that Ṽ (x) is finite and bounded by V (x). Similarly, the local Lipschitzianity
of Ṽ is insured by the local Lipschitzianity of V . Rademacher’s theorem then guarantees
that Ṽ is almost everywhere Fréchet. The sequel Lauzier (2020c) introduces set orders to
study further properties of positioning choice problems.

2.4 Discussion

We start by providing a simple example of a positioning choice problem where theorem
2 does not hold but where the value function can be characterised in a way paralleling
theorem 3. The example emphasis the role of Rn being a Dedekind-complete ordered field.
It also suggests that statements similar to Theorem 3 can be obtained for optimisation
problems defined on other spaces as well, for example for optimisation problems defined
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on Riemannian manifolds. We then conclude with an example where this "conjecture" is
correct.

Pathological cases

Positioning choice problems are defined on finite-dimensional Euclidean spaces. This
choice is consequential for three reasons. First, finite-dimensionality allows to define
maxima in straightforward ways. Second, it allows to use Rademacher’s theorem. Third,
theorem 3 implicitly exploits the properties of Euclidean spaces being Dedekind-complete
ordered fields. The next example shows why this is important.

Let n = 1, C = [0, 2] and consider the following functions:

f(y) =

1 if x = 1

0 otherwise,

and g(x, y) = |x− y|. For x ∈ [0, 2] given the optimisation problem is

max
y∈[0,2]

h(x, y) = max
y∈[0,2]

{f(y)− g(x, y)}.

It is easy to check that the optimal choice correspondence is σ(x) = {1} and thus

V (x) = 1− |1− x|.

The value function V is almost everywhere differentiable. The derivative is

V ′(x)|x∈(0,2)\{1} =

1 if 0 < x < 1

−1 if 1 < x < 2

Two observations are immediate.

First, the assumption that for every z ∈ dom(f) it is

lim sup
y→z

f(y) ≥ f(z)

is necessary to write down theorem 1. Otherwise the Dini superdifferential of h(x, y∗)

might not be well-defined for y∗ a maximizer. The problem is that no superdifferentials
are well-defined for isolated points (the points h(x, 1) in the example). However the as-
sumption is not necessary to obtain differentiable value functions.
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Second, the derivative V ′(x) is directly computed using the chain rule (setting y∗(x) =

1). In other words, it is possible to characterize the derivative of value functions with the
chain rule even for problems where the objective function fails all continuity properties
traditionally assumed in the literature8.

Those observations demonstrate that properties of value functions such as continuity
and differentiability are not necessarily "inherited" from objective functions. Such prop-
erties are tighten to the space on which the value function is defined.

Let us highlight further the role of Euclidean spaces being Dedekind-complete ordered
fields. Consider again the two functions f and g defined above but now assume that
x ∈ X = {0, 1, 2}. Theorem 3 cannot be used to characterize further the value function
of this problem, nor does any other envelope theorem we are aware of.

However, the value function is easily seen as

V (x) =

1 if x = 1

0 if x ∈ {0, 2}
.

This function is defined on the discrete space X so its derivative cannot be defined. This
difficulty is handled implicitly in positioning choice problems by insuring that the space of
"parameters" X is a (subset of a) Dedekind-complete ordered field. Precisely, the problem
stems from the fact that when X = {0, 1, 2} it is

cor(X) = ∅,

while the set cor(X) should be non-empty9.

Riemannian manifolds

The previous two examples are pathological but informative. Let X, Y be arbitrary sets,
let f : Y → R be a function and g : X × Y → R be an induced metric10 on X × Y . Set

8For instance, the main envelope theorem of Milgrom and Segal (2002) relies on the family

{h(x, y) : x ∈ [0, 2] and y ∈ [0, 2]}

consisting of functions that are absolutely continuous in y. The problem naturally fails this assumption.
9This example also shed lights on the role of finite-dimensionality. In the setting of this paper,

the interior int and the algebraic interior cor of a set coincides. This is not true anymore in infinite-
dimensional spaces where the two notions can differ dramatically. It might be possible to prove results
similar to theorem 3 in some infinite-dimensional spaces such as the ones defined in dynamic programming.

10This assumption is to rule-out discontinuous functions like the discrete metric.
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h(x, y) = f(y)− g(x, y) and consider the optimisation problem

sup
y∈Y

h(x, y)

for x ∈ X given. The value function is now

V (x) = h(x, y∗(x))

for

y∗(x) ∈ σ(x) = arg max
y∈Y

h(x, y).

What are the minimal assumptions which must be imposed on the set X and Y in order
to obtain statements similar to theorem 3?

The examples showed that one such minimal assumption is the algebraic interior of the
set X being non-empty. Moreover, the examples also showed that the characterization of
maxima in theorem 1 is not necessary to write down theorem 3. In other words, theorem
3 does not rely in any fundamental ways on topological properties of the Euclidean space.

Thus, we believe that envelope theorems can be obtained for positioning choice prob-
lems defined on many other spaces. This "conjecture" is supported by the following
example of a positioning choice problem defined on a Riemmanian manifold.

Let M be the ring (circle) obtained by defining the one-point closure of the (0, 2)

interval. Let again f(x) = x · 1x≥1, g(x, y) = |y − x| and h(x, y) = f(y) − g(x, y). For
x ∈M given the optimisation problem is

max
y∈M

h(x, y).

Notice that by the definition of the one-point closure it is

lim sup
z∈M,z→2

f(z) = 2 = lim sup
z∈M,z→0

f(y).

The optimal choice correspondence is

σ(x) =

{0} if 0 ≤ x < 1

[x, 2] if 1 ≤ x < 2
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and so the value function is
V (x) = 1 + |1− x|.

This function is almost everywhere differentiable with derivative

V ′(x)|M\{0,1} =

−1 if 0 < x < 1

1 if 1 < x < 2.

2.5 Conclusion

Envelope theorems are currently formulated to rely on the assumption of continuity of the
objective function. In cases where discontinuities need to be analysed this assumption,
fundamental to current envelope theorems, forces the development of different approaches.

Accordingly we defined a class of optimisation problems called positioning choice prob-
lems for which the value function is almost everywhere differentiable, even when the ob-
jective function is discontinuous.

Discontinuous functions do not have well-defined derivatives at their discontinuity
points. Thus, standard first-order necessary conditions theorems cannot be used for solv-
ing maximization problems with discontinuous objective functions. We have shown that
the Dini superdifferential is always well-defined at the maxima of positioning choice prob-
lems, even when the objective function is discontinuous. This allows us to state first-order
necessary conditions in terms of Dini supergradients in theorem 2.

This characterisation of the maxima lets us examine further properties of the value
function of positioning choice problems. We have shown in theorem 3 that these value
functions are always almost everywhere Fréchet differentiable. Fréchet differentiability
obtains by Rademacher’s theorem because the value functions of positioning choice prob-
lems are always a locally Lipschitz map between two Euclidean spaces.

We have found interesting properties of positioning choice problems but further study
is required as the argument "Lipschitzianity of the value function implies almost ev-
erywhere differentiability" should hold in a more general context. We provided many
examples supporting this conjecture, including one on a Riemannian manifold.

We have emphasized clarity over generality and have not modeled positioning choice
problems as parametric optimisation problems. In other words, we have not explicitly
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modeled sets of constraints, which are of great interest in optimisation theory. How-
ever, the definition of positioning choice problems can be extended to accommodate such
feature. We are planning to do so in further work.

2.6 Appendix A: Omitted definitions

The text always considers the measure spaces (Rn,B(Rn), λn) of finite-dimensions 1 ≤
n < ∞, where B(Rn) is the Borel σ-algebra of Rn and λn is the n-dimensional Lebesgue
measure. This appendix always considers functions f : Rn → R.

A property P of f is said to hold almost everywhere if there exists a set A ∈ B(Rn)

such that λn(A) = 0 and P is true on Rn \ A.

A function g : Rn × Rn → R is a metric on Rn if for every x, y, z ∈ Rn it satisfies
the following conditions:

• non-negativity : g(x, y) ≥ 0;

• identity of indiscernibles : g(x, y) = 0 ⇐⇒ x = y;

• symmetry : g(x, y) = g(y, x) and

• subadditivity or the triangle inequality : g(x, z) ≤ g(x, y) + g(y, z).

The notation || · || denotes the usual Euclidean metric.

The function f is said to be Lipschitz if there exists a 0 ≤ K < ∞ such that for
every x, y ∈ Rn it holds

|f(x)− f(y)| ≤ K||x− y||.

Let V be a normed space. A point θ0 ∈ Θ ⊂ V is in the algebraic interior of Θ,
denoted by cor(Θ), if for every v ∈ V there exists ηθ > 0 such that θ0 + tv ∈ Θ for all
0 ≤ t < ηθ. If V = Rn then cor(Θ) = int(Θ), where int denotes the interior of a set.

Let V and W be normed vector spaces with || · ||V and || · ||W the induced metric of
V and W respectively and let O ⊂ V be open. The function f : O → W is Fréchet
differentiable at x ∈ O if there exists a bounded linear operator A : V → W such that

lim
||h||V→0

||f(x+ h)− f(x)− Ah||W
||h||V

= 0.



26

If V = Rn and W = R then Fréchet differentiability is the "usual" differentiability and A
is the gradient ∇f(x) of f at x.

A proof of Rademacher’s theorem requiring minimal knowledge of measure theory can
be found in Borwein and Lewis (2010) (Theorem 9.1.2). It is stated here for completeness.

Theorem 9 (Rademacher’s theorem) Let O ⊂ Rn be an open subset of Rn and let
f : O → R be Lipschitz. Then the function f is almost everywhere Fréchet differentiable.

2.7 Appendix B: Omitted proofs

Proof of Lemma (1): Recall that f is almost everywhere continuous except on a set of
points where it satisfies

lim sup
x∈C, x→y

f(x) = f(y) or lim inf
x∈C, x→y

f(x) = f(y)

and set the correspondence f : C ⇒ 2R as

f(y) =

{
z ∈ R : either lim sup

x∈C, x→y
f(x) = z or lim inf

x∈C, x→y
f(x) = z or both

}

The set

D := {y ∈ C : lim sup
x∈C, x→y

f(x) 6= lim inf
x∈C, x→y

f(x)}

is a set of measure zero and f = f on C \D so the two are almost everywhere equal.

Let x be given. The problem
sup
y∈C

h(x, y)

attains a finite supremum because C is a closed box and it is assumed that

sup
y∈C
|f(y)| < +∞ and max

(x,y)∈C×C
|g(x, y)| < +∞.

If this supremum is attained for some y ∈ C then we are done.
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Suppose it is not. Then σ(x) := arg maxy∈C h(x, y) ⊂ D. Pick a y∗ ∈ σ(x) and observe
that since g is continuous it holds

sup
y∈C

h(x, y) = lim sup
y∈C,y→y∗

(f(y)− g(x, y)) = lim sup
y∈C,y→y∗

f(y)− lim sup
y∈C,y→y∗

g(x, y) = lim sup
y∈C,y→y∗

f(y)− g(x, y∗).

Let

f
∗
(y) =

f(y) if y /∈ D

max f(y) if y ∈ D.

The function f ∗ is a selection of f for which

f = f = f
∗ almost everywhere

and for h(x, y) = f
∗
(y)− g(x, y) it holds

sup
y∈C

h(x, y) = max
y∈C

h(x, y) = sup
y∈C

, h(x, y)

as desired. �

Proof of Theorem 3:
It suffice to show that V is continuous, as it follows immediately by observing that since
C is a closed box, g is a metric and f is bounded the value function is also Lipschitz and
hence, by Rademacher’s theorem, almost everywhere differentiable.

Suppose, by the way of contradiction, that V is discontinuous at x ∈ C. Then there
exists an α > 0 such that for every sequences (xn)n∈N ⊂ C converging to x, xn → x, it is

|V (x)− V (xn)| ≥ α.

By definition this means that

|f(y∗(x))− g(x, y∗(x))− f(y∗(xn)) + g(xn, y
∗(xn))| ≥ α

for every selection y∗(x) ∈ σ(x) and every selection y∗(xn) ∈ σ(xn). Since g is continuous,
the previous implies that for n large it is

σ(x) ∩ σ(xn) = ∅.
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Without loss of generality suppose that V (x) > V (xn) and pick a y∗(x) ∈ σ(x). Since
g is continuous it holds that

|V (x)− f(y∗(x))− g(xn, y
∗(x))| → 0.

Thus, there exists a β > 0 such that for every xn satisfying

||x− xn|| < β

it is
f(y∗(x))− g(xn, y

∗(x)) > f(y∗(xn)) + g(xn, y
∗(xn)),

for every y∗(xn) ∈ σ(xn), a contradiction. �

Proof of fact 5:
Equality (IRVF) follows immediately from the Second fundamental theorem of calculus by
observing that since V is Lipschitz it is almost everywhere differentiable (by Rademacher
theorem) and there exists a Riemann integrable function v0 such that for every a, b ∈ C,
a < b, it holds

V (b)− V (a) =

∫ b

a

v0(x)dx.

Continuity of v0 is also ensured by the Lipschitzianity of V . �

Proof of Proposition 6:
As C is closed, f is bounded and gi are continuous it holds that V is Lipschitz and almost
everywhere differentiability follows from Rademacher’s theorem.

The last statement is trivial if f is non-decreasing. If f is decreasing somewhere and
if gi(y) = 0 for every y < 0 then the last statement follows by observing that there always
exists an open ball B(x) such that there exists a y << x, y ∈ B(x), for which

f(y) = f(y)− 0 = f(y)− g(y, x) > f(x)− g(y, x) = f(x)

and V is non-decreasing. �

Proof of Lemma 7:
Let x̃ ∈ Rn be given. Under the assumption that g is a positive and convex transformation
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of the Euclidean distance || · || it holds that the optimisation problem

sup
y∈Rn

h(x̃, y) = f(y)− g(x̃, y)

attains a finite supremum. Let y∗ ∈ σ(x̃) and define z = y∗ − x̃. Since the Euclidean
distance is translation invariant g also is. Since f is a plane it holds that for every x ∈ Rn

x+ z ∈ σ(x).

Hence, V is a plane parallel to f . �

Proof of Proposition 8: Let x be given and consider the sets

Z(x) := {y ∈ Rn : f(x, y)− g(x, y) ≥ 0} and Z̃(x) := {y ∈ Rn : f̃(x, y)− g(x, y) ≥ 0}.

Since f dominates f̃ it holds that Z̃(x) ⊂ Z(x). Thus, the problem

max
y∈Rn

h̃(x, y)

attains an interior and by definition it holds that σ̃(x) ⊂ Z̃(x) ⊂ Z(x).

This implies that the value function V dominates the value function Ṽ and since the
former is a plane, the latter is a locally Lipschitz map between two Euclidean spaces. By
Rademacher’s theorem V is almost everywhere Fréchet differentiable, as desired. �
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Chapter 3

Ex-post moral hazard and
manipulation-proof contracts

Abstract

We examine the trade-off between the provision of incentives to exert costly effort (ex-
ante moral hazard) and the incentives needed to prevent the agent from manipulating the
profit observed by the principal (ex-post moral hazard). Formally, we build a model of
two stage hidden actions where the agent can both influence the expected revenue of a
business and manipulate its observed profit.

We use a novel proof technique to show that manipulation-proofness is sensitive to the
interaction between the manipulation technology and the probability distribution of the
stochastic output. The optimal contract is manipulation-proof whenever the manipula-
tion technology is linear. However, a convex manipulation technology sometimes lead to
contracts for which there is manipulation in equilibrium. Whenever the distribution satis-
fies the monotone likelihood ratio property we can always find a manipulation technology
for which this is the case.

Keywords

Moral hazard, hidden actions, monotone likelihood ratio, security design, fraud, earn-
ings management, window dressing, costly state falsification, positioning choice problem,
acceptable manipulations
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3.1 Introduction

Ex-post moral hazard arguments have been widely used to rationalize features of real-
world contracts. For instance, the earlier literature on financial contracts considers simple
models where a borrower can lie about the real profit of a business while hiding money
from the lender. Such manipulations provide a theoretical foundation for simple or collat-
eralized debt contracts as optimal securities, as these contracts minimize the incentives to
lie [(Attar and Campioni, 2003), (Lacker, 2001)]. Well-known macroeconomic models use
a similar argument to microfound a borrowing constraint for the representative firm, as
seen in Kiyotaki and Moore (1997)’s and Bernanke et al. (1999)’s famous credit rationing.

Recent literature suggests that the rise of performance-based executive compensation
is linked an explosion of accounting scandals during the early twenty-first century, such as
Nortel Telecom’s. Intuitively, the more CEOs are incentivized with bonuses, shares and
options, the more incentives they have to use accounting techniques to make reported
profits look higher than they are (Crocker and Slemrod, 2007). In fact, the empirical
literature on earnings management consistently observes a positive correlation between
earnings management and CEOs’ incentive pay. However this correlation may be driven
by optimal contracting and is thus likely to be efficient as seen in Sun (2014) and Beyer
et al. (2014).

The idea that the optimal contract strictly trades-off between opposite incentives has
also found ground in recent literature on securities design. The entrepreneurial financing
model of Koufopoulos et al. (2018) shows that bonus contracts, even while inducing ma-
nipulation in equilibrium, sometimes dominate debt contracts. Intuitively, debt contracts
prevent manipulation perfectly while being incapable of separating entrepreneurial types
when there is adverse selection. Bonus contracts do the exact opposite and are thus op-
timal when separating types is sufficiently valuable.

In other words many strands of literature suggest that it is not always optimal to
perfectly prevent the manipulation of observed profit. The implicit implication of such
a statement is that unethical behaviours, such as defrauding, are to be expected in a
well-functioning economy. That is, if such argument is to be true, then the unintended
consequence of high-powered incentives is also to incentivize manipulation, and not much
can or should be done to prevent this type of unethical behaviour.

To the best of our knowledge, no previous articles provide a set of general conditions
for which the optimal contract entails manipulation in equilibrium. We are not aware of
any general treatment which identifies the conditions under which the possibility of ex-
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post moral hazard is problematic or not. This situation is unfortunate given the strong
normative implications of such models.

This articles aims to identify such a set of general conditions. Specifically, we build a
general model of two stage hidden actions and try to identify assumptions under which
the optimal contract entails manipulation in equilibrium. We interpret the model as a
model of entrepreneurial financing where the entrepreneur can burn business’s money
while having access to hidden borrowing1.

Following the results of Koufopoulos et al. (2018), we examine in greater details the
use of bonuses for the incentivization of hard work. Bonus contracts can be represented
as discontinuous functions. Such contracts set the rules of the our two-stage game. The
manipulation stage of the game is by definition an optimisation problem for which the
first-order conditions are not well-defined for bonus contracts. We circumvent this tech-
nical difficulty by using a novel approach developed in previous work (Lauzier, 2020d).
We obtain two main results:

1) The optimal contract must be manipulation-proof whenever the manipulation tech-
nology is linear. This holds for any distribution of profits. We interpret the linearity
of the manipulation technology as a situation where there are no frictions on the hidden
borrowing market. This result implies that when the profit can take a continuum of values
then the optimal contract is a generalized debt contract with a bounded slope.

2) The optimal contract can entail manipulation in equilibrium when the manipulation
technology is convex. When the distribution of profit satisfies the monotone likelihood
ratio property and another technical condition we can always find a manipulation technol-
ogy for which the optimal contract is not manipulation-proof. The convex manipulation
technology we consider in the main text can be interpreted as situations where there are
frictions on the hidden borrowing market.

Intuitively, contracts with manipulation in equilibrium are optimal when they allow
the entrepreneur to commit to a high(er) level of effort and the expected waste is small.
The manipulation technologies we consider are particularly wasteful. During a manip-
ulation the amount of resources wasted to manipulation can be very large in regard to
the total profit made. However, such manipulations are infrequent when the effort is
"productive enough", a difficult notion to pin down mathematically. We show that the
monotone likelihood ratio implicitly makes the entrepreneurs’ efforts "very productive"

1The possibility of hidden borrowing is sometimes called window dressing.
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and often leads to optimal contracts for which there is manipulation in equilibrium. This
is important because the monotone likelihood ratio is often assumed in application as a
mathematical convenience, and our results imply that it is with loss of generality to ignore
the possibility of manipulation in such applications.

We proceed with an extensive literature review. Then section 1 aims to provide the
reader with intuition by presenting simple models with three states and two levels of effort.

However, these simple models are not well-suited to stating or proving our results. We
therefore present in section 2 a full model with a continuum of states and effort levels. We
conclude with a short discussion on the difficulties of evaluating empirically our model’s
predictions. Appendix A is a primer on stochastic orders, Appendix B contains the proofs
omitted in the text while Appendix C further explains the equilibrium concept we use.

3.1.1 Literature review

Many papers have examined the agency problem which arises from an agent’s ability to
manipulate what is observed by the principal. The precise definition of a manipulation
is thus important for the understanding and categorization of the literature. In this ar-
ticle we consider an entrepreneurial financing model where the entrepreneur can burn
the enterprise’s profit while having access to hidden borrowing while the financier can
observe the final profit at zero cost but can never observe the state. This type of manipu-
lation is different to a situation in which the entrepreneur sends a message about the state.

When the entrepreneur can send any message at zero cost he always has an incentive
to declare a lower profit while keeping the money, essentially stealing from the business.
This possibility leads to a complete failure of the lending market if there are no other
mechanisms helping to mitigate the ex-post moral hazard problem2.

2Two main mechanisms are explored in the literature:
Observing the state at a cost : Papers belonging to the Costly state verification (CSV henceforth)

literature spawned by Townsend (1979) assume that the financier can observe a business’ real profit
by conducting an audit. However, auditing is costly and the optimal contract minimizes the expected
cost of verification as it is wasteful. Attar and Campioni (2003) provides a complete survey of the
CSV literature and its relation to the optimality of debt contracts. The paper also discusses the role of
financial intermediaries as delegated monitors in the sense of Diamond (1984) and its relation to the CSV
framework.

Collateralization: Another way to prevent the entrepreneur to always leave with the money is collat-
eralizing the loan. That is, the investor uses the entrepreneur’s asset as collateral to prevent him from
declaring bankruptcy. See Lacker (2001) for an extensive study of the idea. This mechanism is also the
micro foundation of the borrowing constraints (credit rationing) that can be found in Kiyotaki and Moore
(1997) and Bernanke et al. (1999).
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The possibility of stealing the money entails difficulties which are irrelevant to the
point we want to make. We thus assume that the entrepreneur can burn the business’
money. We show that this simple assumption guarantees that the optimal contract must
be non-decreasing3.

The manipulation technology we consider is similar to the one found in the Costly state
falsification literature spawned by Lacker and Weinberg (1989) and Maggi and Rodriguez-
Clare (1995). This literature generally assumes that the entrepreneur can send a message
about the business’ profit while the state is not verifiable by the principal. Lying is
costly, but small lies are inexpensive. Crocker and Slemrod (2007)’s model shows that
perfectly preventing manipulation represents a prohibitively expensive opportunity cost.
Intuitively, this is because manipulation-proof contracts are completely flat and do not
allow incentivization of hard work. The optimal contract is thus strictly trading-off be-
tween the provision of incentives to exert effort and the prevention of manipulation.

Our results complement the findings of Crocker and Slemrod (2007). We show that
the optimal contract might entail manipulation in equilibrium even when the cost of ma-
nipulation is "high". This possibility is mainly driven by the necessity to incentivize effort
and hence by the assumptions on the distribution of profit. In other words, we show that
the results of Crocker and Slemrod (2007) are not driven by the specific manipulation
technology they consider but by the assumption that the output satisfies the monotone
likelihood ratio property (MLRP henceforth).

Many articles investigate the link between the provision of incentives needed for a
CEO to exert effort and earnings management4. Sun (2014) argues that the empirical
positive correlation between managers’ incentive pay and earnings management is likely
due to optimal contracting and does not necessarily reflect market inefficiencies. Beyer
et al. (2014) analyses in details the optimal contract under earnings manipulation and
relates the shape of the contract to the quality of the business’ governance. The manip-
ulation technology considered in this literature is akin to the one found in Crocker and
Slemrod (2007). Thus, we do not directly address these models, although we conclude
with a discussion on the difficulty of empirically evaluating the welfare due to ex-post
moral hazard. We refer to Beyer et al. (2014) for an extensive literature review on the

3This result is already known in the literature as "Free disposal of output by the seller [entrepreneur]
is a common assumption in security design problems, and is used to justify restricting the set of securities
to designs for which the seller’s [entrepreneur’s] payoff is weakly increasing in the asset value."Hébert
(2017), square brackets added.

4The term "earnings management" broadly refers to the possibility that a business’ CEO can use
accounting techniques to make a business’ profit report appear better than it is.
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link between CEOs incentives pay and earnings management.

Our model can be interpreted as a security design problem. The formalization of ex-
ante moral hazard borrows from Innes (1990), with the notable difference that we consider
general distributions of profit. However, ours is not a "proper" model of security design
because we do not explicitly consider the competitive environment in which contracting
happens.

More recently, Koufopoulos et al. (2018) shed some new light on manipulation’s role
in the design of securities. The article considers a model with both ex-ante hidden in-
formation (adverse selection) and ex-post moral hazard. The authors ask whether the
assumption that returns to the lender must be monotonic is without loss of generality5.
They call manipulation-proof such types of contracts. They show that conditions exist
under which bonus contracts are optimal even though they are not manipulation-proof.
This is because bonus contracts allow for separating good and bad types of entrepreneurs.

Our results similarly compliment Crocker and Slemrod (2007) and Koufopoulos et
al. (2018). Koufopoulos et al. (2018) assumes that the probability distribution of profit
satisfies the MLRP in types. We show that bonus contracts implement a higher level of
effort than manipulation-proof contracts in a similar way that they allow the separation
of types. In other words, we show that their arguments on manipulation-proof contracts
hold in the context of ex-ante moral hazard. Again, this property is driven by the MLRP
assumption and not by the particular manipulation technology considered in the various
papers.

This article indirectly relates to the literature on the first-order approach’s validity
and the monotonicity of the optimal contract while the approach is valid. Broadly speak-
ing, this literature shows how the MLRP assumption is instrumental to modelling ex-ante
moral hazard problems. This single assumption guarantees that both the underlying op-
timisation problem is easier to solve and that the optimal contract is monotonic. The
ensuing literature made wide use of it to simplify many applied problems. We refer Ke
and Ryan (2018a) and Ke and Ryan (2018b) for a recent survey of the literature on the
first-order approach and the importance of the MLRP assumption.

We show that if the distribution of profit satisfies the MLRP in effort then there are
many cases for which the optimal contract entails manipulations in equilibrium. Our
results thus suggest that the MLRP is a stronger assumption than previously thought.

5The paper contains a thorough literature review discussion of this monotonicity assumption.
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The MLRP precisely captures the notion that an "effort is productive enough" for the
acceptance of such unethical behaviours in an well-functioning economy.

The optimisation problem at the manipulation stage of the game does not have well-
defined first-order conditions when the contract is a discontinuous function of the profit,
i.e. when the contract has bonuses. This features poses many technical challenges while
solving for the optimal contract. However in previous work Lauzier (2020d) we defined
this type of optimization problem as a positioning choice problem. We have shown in the
paper that positioning choice problems have desirable properties; their value function are
always Lipschitz and thus almost everywhere differentiable. We will use many of these
properties amongst others in section 2 to simplify our main statements’ proofs. However,
we do not fully introduce the mathematical apparatus needed to solve positioning choice
problems and we simply refer the reader to the relevant theorems of Lauzier (2020d).

3.2 Basic models

We present simple models with three states and two levels of effort to provide intu-
ition. We first show how much structure linear manipulation technologies impose on
the optimal contract. With these types of technologies the optimal contract must be
manipulation-proof, which implies that it is non-decreasing and has a bounded slope.
However, manipulation-proofness is not a desirable features in of itself, and we explain
how this result is solely driven by the peculiar structure of the manipulation technologies.

We then show that manipulation-proofness is too limiting on the entrepreneur’s ability
to commit to a high level of effort when the manipulation technology is convex. In a
nutshell, it is sometimes better to have manipulation in equilibrium provided that the
probability of a manipulation is sufficiently low.

3.2.1 Linear manipulation technologies

An entrepreneur needs to raise capital Q > 0 in order to finance a project. The project
profit is stochastic; let it be a discrete random variable taking value 0 ≤ xl < xm <

xh = M . The entrepreneur can take a costly action e ∈ E := {el, eh} which augments
the expected profit of the project, i.e. E[X(eh)] > E[X(el)], where X(e) is the stochastic
profit given effort level e. Exerting effort is costly, the cost c of effort being non-negative,
increasing and convex, with c(0) = 0. Further, we assume that every random variable
X(e) has full support.



38

The hidden action e ∈ E is chosen before the realization of the profit. Then, in stage
2, the entrepreneur observes the realization x ∈ {xl, xm, xh} of the profit and can take a
hidden action z ∈ R. This second hidden action modifies the profit x := x+z observed by
the financier. Finally, the financier observes x and the contract is implemented without
renegotiation.

The cost of the hidden action z is parametrized by a function g(z). Consider for the
moment that g(z) = (1 + r)max{0, z} for r ≥ 0. We interpret this function as the fol-
lowing manipulation technology: (A) when z < 0 then g(z) = 0 and the entrepreneur
burns the business’ money and (B) the entrepreneur can borrow the amount z > 0 at
the interest rate of r and inject the liquidities into the business therefore inflating the
business’ observed profit.

Let us assume that the financier’s upfront payment is always Q. The contract is there-
fore a vector (yi)i=l,m,h, where yi := y(xi) is the entrepreneur’s state-contingent share of
the profit upon the financier observing xi. The financier keeps xi − yi.

The entrepreneur is either risk-neutral or risk-averse, with standard Bernoulli utility
u twice differentiable and weakly concave. The entrepreneur also has both outside utility
and limited liability normalized to zero. The financier is risk-neutral with opportunity
cost of investment 1 + r, where r ≥ 0 is the interest rate of the economy. Let us also
assume that the financier will never pay more than the maximum profit realization of the
project, i.e. that yi ≤M .
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At time zero the financier makes a take-it-or-leave-it offer6. Denote by P[xi|e] the
conditional probability of xi given effort level e. The financier’s maximization problem is

max
(y(xi+zi))i=l,h,m,e∈E

∑
i

(xi + zi − y(xi + zi))P[xi|e]−Q (Problem Discrete)

s.t. 0 ≤ y(xi + zi) (LL-D)

y(xi + zi) ≤M (B-D)∑
i

u (y(xi + zi)− g(zi))P[xi|e]− c(e) ≥ 0 (IR-E-D)∑
i

(xi + zi − y(xi + zi))P[xi|e] ≥ (1 + r)Q (IR-F-D)

e ∈ argmax
ê∈E

{∑
i

u (y(xi + zi)− g(zi))P[xi|ê]− c(ê)

}
(IC-D)

∀xi, zi ∈ argmax
z
{y(xi + z)− g(z)} (IIC-D)

where (LL-D) is the limited liability constraint, (B-D) is the boundedness constraint,
(IR-E-D) is the individual rationality constraint of the entrepreneur, (IC-D) is the in-
centive compatibility constraint defined by stage 2 and (IIC-D) is the interim incentive
compatibility constraint defined by stage 3. Let us assume that the individual rationality
constraint of the financier (IR-F-D) is never binding so that we can drop it.

Consider the following distribution:

Table 3.1: A distribution satisfying FOSD but not MLRP

P[xl|e] P[xm|e] P[xh|e]
el 0.5 0.49995 0.0005
eh 0.5 0.0005 0.49995

This distribution satisfies the assumption of first-order stochastic dominance (FOSD)
in effort but does not satisfy the monotone likelihood ratio property (MLRP). Absent ex-
post moral hazard if the entrepreneur is risk-averse and if the financier wants to implement
the high level of effort eh then the optimal contract is non-monotonic, i.e. ym < yl < yh.
However, this contract is not optimal if we consider the possibility of manipulating the
observed profit.

6The solution concept is a weak Perfect Bayesian Equilibrium where the entrepreneur takes the action
the most favoured by the financier whenever indifferent
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Property 1 - monotonicity

Suppose that the optimal contract when there is only ex-ante moral hazard is such that

ym < yl < yh and yh − ym < (1 + r)(xh − xm).

This contract is not optimal if the entrepreneur can manipulate the observed profit.

Upon realization of profit xm the entrepreneur burns amount xm − xl and receives
yl > ym. Consider an alternative contract where y′m = yl = y′l and y′h = yh. This new
contract strictly dominates the original contract as it does not induce wasteful manip-
ulations and does not change the incentives to exert effort as the entrepreneur receives
state-by-state the same amount with both contracts.

In other words, the value function of the optimisation problem defined at the manip-
ulation stage of the game is non-decreasing whenever the entrepreneur can freely burn
money. This implies that any contract which is decreasing somewhere is dominated by
a monotonic contract, since replacing the former by by its monotone envelope does not
change incentives.

Figure 3.1: Property 1 - monotonicity
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Property 2 - bounded slope

Now suppose that the contract with ex-ante moral hazard only satisfies the following:

ym < yl < yh ;

yh − ym > (1 + r)(xh − xm) ;

yh − ym > yl and

yh − yl ≤ (1 + r)(xh − xl).

Again, this contract is not optimal when the entrepreneur can manipulate the profit.

Updating the contract with the optimisation program’s value function at the manipula-
tion stage eliminates wasteful manipulations while leaving incentives intact. This implies
that the optimal contract has a bounded slope. However, this is only true when g(z)

is linear as this is the only type of manipulation technology for which the entrepreneur
receives state-by-state the same amount in both contracts.

Figure 3.2: Property 2 - bounded slope
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3.2.2 Convex manipulation technologies

Let us craft an example where the optimal contract entails manipulation. Let

g(z) =

0 if z ≤ 0

g̃(z) if z > 0
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for g̃ a strictly convex function satisfying

lim
z↓0

g̃(z) = 0 and inf
z>0

{
∂g(z)

∂z

}
≥ 1.

This assumption guarantees that g is continuous and that lying is always "expensive".

Now, for the sake of simplicity suppose that the entrepreneur is risk-neutral and that
he makes the take-it or leave-it offer at the initial stage of the game. Let q ∈ (0, 0.45) and
assume the following distribution:

Table 3.2: Another distribution which satisfies FOSD but not the MLRP

P[xl|e] P[xm|e] P[xh|e]
el 0.1 0.9 - q q
eh 0.1 q 0.9 - q

Best manipulation-proof contract

Let us first consider a manipulation-proof contract Y = {yl, ym, yh}. The upward interim
incentive compatibility constraints are

ym − g(xm − xl) ≤ yl (IICl,m)

yh − g(xh − xm) ≤ ym (IICm,h)

yh − g(xh − xl) ≤ yl. (IICl,h)

Consider the contract for which IICl,m and IICm,h are binding, i.e.

IICl,m : ym − g(xm − xl) = yl

IICm,h : yh − g(xh − xm) = ym.

This is the manipulation-proof contract that maximizes the spread between yl and yh
therefore maximizes the incentives the exertion of high effort7. The Individual Rationality
constraint of the financier reads

E[X − Y |eh] ≥ (1 + r)Q

or

E[X|eh]− 0.9 (g(xm − xl) + g(xh − xm)) + qg(xh − xm) ≥ (1 + r)Q+ yl. (IRMP
F )

7By convexity of g the constraint (IICl,h) is slack.
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Denote by yl(q) the highest feasible value of yl. Since P[xl|eh] = P[xl|el], the first stage
Incentive Compatibility constraint E[Y |eh]− c(eh) ≥ E[Y |el] boils down to

0.9g(xh − xm)− 2q(g(xh + xm) + g(xm − xl)) ≥ c(eh). (ICMP )

Contract with manipulation

Let us consider a contract Y M = {yMl , yMm , yMh } for which IICl,h is an equality. By the
strict convexity of g we have

yMh = g(xh − xl) + yMl > g(xh + xm) + g(xm − xl) + yMl

which implies that IICm,h is violated whenever IICl,m is satisfied. Suppose IICl,m is
satisfied. In equilibrium, xm is never seen by the financier and its Individual Rationality
constraint reads

P[xl|eh]xl + (P[xm|eh] + P[xh|eh])(xh − g(xh − xl)) ≥ (1 + r)Q+ yMl . (IRM
F )

Denote by yMl (q) the highest feasible value of yMl that satisfies the previous equality.
The first stage Incentive Compatibility constraint becomes

0.9g(xh − xm)− 2qg(xh − xl) ≥ ce(eh). (ICM)

Optimal contract

We are now left to show that there exists distributions for which the entrepreneur would
prefer proposing Y M to Y . By construction both contracts satisfy the Individual Ratio-
nality constraint of the financier.

The entrepreneur would be better-off proposing the contract Y M if

E[Y M |eh] ≥ E[Y |eh],

i.e. if

0.1yMl (q) + q(g(xh − xl)− g(xh − xm)) + (0.9− q)g(xh − xl) ≥
0.1yl(q) + qg(xm − xl) + (0.9− q)(g(xh − xm) + g(xm − xl)).

Suppose that (IRMP
F ) and (IRM

F ) holds at equality. The previous equation becomes

0.81g(xh − xl)− 0.1qg(xh − xm) ≥ 0.81[g(xh − xm) + g(xm − xl)].
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As q ↓ 0, the inequality is strict due to the convexity of g. Moreover, taking q ↓ 0

in (ICM) and (ICMP ) shows that the Incentive Compatibility constraints converge, and
are therefore both satisfied provided that 0.9g(xh − xm) ≥ c(eh). Thus, there exists
distributions for which Y M strictly dominates Y .

3.2.3 Preliminary discussion

These simple examples shed light on the mechanics at play. Manipulations waste valuable
resources and avoiding them imposes a lot of structure on contracts. However, this does
not imply that the optimal contract necessarily avoids manipulations in equilibrium. This
feature depends on the interplay between the "productivity of effort" and the expected
waste in equilibrium.

The possibility of burning the money unambiguously implies that the contract is non-
decreasing. Burning money is wasteful and no gains in incentives can be made by allowing
it. Clearly this feature does not depend on the particular probability distribution of profit
we assumed. Theorem 12 of section 2.1 formalizes these observations.

When the manipulation technology is linear the optimal contract does not entail ma-
nipulation in equilibrium. However, this feature is entirely driven by the linearity assump-
tion. In this case, any contract can be replaced by the value function of the optimisation
problem it defines in the manipulation stage of the game without changing the incentives
to exert effort. In other words, any implementable level of effort is implementable with a
contract that perfectly prevents manipulation. This is true with any distribution of profit
we are considering. Theorem 16 of section 2.2 formalizes this statement, while corollary
17 shows that the optimal contract is a generalized debt contract with bounded slope.

But manipulation-proofness is not necessarily a desirable feature when the manipula-
tion technology is convex. This is because manipulation-proof contracts are sometimes
too restrictive upon the incentives to hard work. Under certain circumstances there exist
high levels of effort which can only be implemented with a contract which entails manip-
ulation in equilibrium. Contracts with bonuses have the desirable feature of reducing the
probability of a manipulation while keeping high powered incentives to hard work.

Intuitively, the effort must be "productive enough" for this to happen, an elusive notion
when considering stochastic output. Theorem 18 of section section 3 shows that the MLRP
is a somewhat "sufficient condition" for the optimal contract to induce manipulations in
equilibrium, although it is not necessary as shown in the example in section 1.2.
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3.3 Full model

We now present the full fledged model with a continuum of states and effort levels to
prove our main results. We show in section 2.1 that the optimal contract is non-decreasing
whenever the entrepreneur can burn the business’ money. We also state in this section
two lemmas inspired by our previous work, Lauzier (2020d), which help to solve the full
fledged model.

We then show in section 2.2 that manipulation-proofness obtains whenever the ma-
nipulation technology is linear. As a corollary, we obtain that the optimal contract is a
generalized debt contract with a bounded slope. Finally, we show in section 2.3 that when
the distribution of profit satisfies the MLRP and another technical condition then we can
always find a convex manipulation technology for which the optimal contract entails ma-
nipulation in equilibrium.

Let the set of efforts be E = [0, emax] for emax > 0 large. The business’ profit
is a family of continuous random variables8 (X(e))e∈E with common and full support
[0,M ]. Exerting effort augments the expected profit of the project so that e > e′ implies
E[X(e)] > E[X(e′)]. Exerting effort is costly, with the cost c : E → R+ being increasing,
differentiable, (weakly) convex and satisfying c(0) = 0.

Let S = [0,M ] be a set of states of the world and let B(S) be the Borel sigma-algebra
of S. The family of random variables defined above is thus a family of X(s, e) : S ×E →
[0,M ] such that for every e ∈ E it is

min
s∈S

X(s, e) = 0 < M := max
s∈S

X(s, e) < +∞.

This abstract environment usefully keeps the notation compact.

The entrepreneur needs to borrow the amount Q > 0 before starting the project.
Let us assume again that the financier is risk-neutral and never pays more than Q. The
contract is a transfer function

Y = I ◦X ∈ B+(B([0,M ]))

which depends only on the observed realization of profit x(s), whereB+(B([0,M ])) denotes
the Banach space (sup-norm) of non-negative bounded functions which are measurable
with regard to B([0,M ]). This function Y represents the amount received by the en-

8The vector notation (·) is used instead of the general {·} to emphasize that we will mostly consider
families of random variables ordered in at least one of the two stochastic orders defined in appendix A.
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trepreneur, with the financier keeping the amount x− Y .

The entrepreneur first chooses the level of effort and then observes the state s ∈ S. The
entrepreneur can then take another hidden action z ∈ [−M,M ] in order to manipulate
the profit x = X(s, e) + z as observed by the financier. The cost of this hidden action
is parameterized by a function g : [−M,M ] → R+ which represents the manipulation
technology. We assume throughout that

g(z) =

0 if z ≤ 0

g̃(z) if z > 0

for g̃ a (weakly) convex function which is differentiable on (0,M) and which satisfies

lim
z↓0

g̃(z) = 0 and inf
z>0

{
∂g(z)

∂z

}
≥ 1. (assumption 1)

The first part of assumption 1 is to guarantee that the cost of a manipulation is a con-
tinuous function, while the second is to guarantee that inflating the observed profit is
"expensive". We will further discuss the interpretation of this manipulation technology
in section 3.

The entrepreneur is either risk-neutral or risk-averse, with Bernoulli utility u weakly
concave and differentiable. The entrepreneur also has outside utility u ≥ 0 and limited
liability standardized to zero so that Y ≥ 0. Similarly, we will assume that Y ≤M . This
boundedness constraint states that the financier never pays the entrepreneur more than
the maximum amount which the business can make.

The financier makes a take-it or leave-it offer at the initial stage of the game. The
solution concept is a weak Perfect Bayesian equilibrium where the entrepreneur takes
the action most favoured by the financier when indifferent9. By backward induction the

9We consider weak Perfect Bayesian Equilbria in pure strategies (Mas-Colell et al., 1995) with the
assumption that the entrepreneur chooses the highest level of effort whenever indifferent and takes the
action most favoured by the financier whenever indifferent. See appendix C for more details.
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optimal contract satisfies the optimisation program

sup
Y ∈B+(B([0,M ])),e∈E

∫
X(s, e) + z(s)− Y (X(s, e) + z(s))dP−Q (Problem F)

s.t. 0 ≤ Y (LL)

Y ≤M (B)∫
u (Y (X(s, e) + z(s))− g(z(s))− c(e)) dP ≥ u (E-IR)∫
X(s, e) + z(s)− Y (X(s, e) + z(s)))dP ≥ (1 + r)Q (F-IR)

e ∈ argmax
e

{∫
u(Y (X(s, e) + z(s))− g(z(s))− c(e))dP

}
(IC)

∀s ∈ S, z(s) ∈ argmax
z
{Y (X(s, e) + z)− g(z)} (IIC)

where (E-IR) is the entrepreneur’s participation constraint, (F-IR) is the financier’s par-
ticipation constraint, (IC) is the incentive compatibility constraint imposed by stage one
and (IIC) is the interim incentive compatibility constraint imposed by stage two. We will
assume without loss of generality that the constraint F-IR is redundant.

3.3.1 Monotonicity of the optimal contract

Each contract Y defines a sequential choice of effort e and then of manipulation z. At
the manipulation stage both e and s are given so we can write the optimal choice corre-
spondence of this stage as

σ(Y, e, s) = arg max
z∈[−M,M ]

{Y (X(s, e) + z)− g(z)}.

The value function of the manipulation stage of the game is

V (s;Y, e) = Y (X(s, e) + z(s))− g(z(s))

for z(s) a selection10 of σ(Y, e, s). Intuitively, we want to allow Y being discontinuous
because we interpret the upward "jumps" as bonuses. However, this makes characterizing
the optimal choice correspondence and the value function much harder.

Fortunately, the optimisation problem of the manipulation stage is a positioning choice
problem, a class of optimisation problems which we have defined and examined in detail
in previous work. We will simply need to adapt some of the results obtained in Lauzier

10A selection f of a correspondence F is a function such that for every x ∈ domain(F ) it is f(x) ∈ F (x).
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(2020d) to our particular setting in order to simplify the treatment.

Without loss of generality we will exclusively consider contracts which are almost
everywhere continuous and which satisfy the following technical assumption:

for every x ∈ [0,M ] it is lim sup
x′→x

Y (x′) = Y (x). (assumption 2)

We can now state two lemmas which help solve problem Problem F. We do not prove
them in the current article as they are straightforward applications of our previous work.

Lemma 10 (Continuity of the value function) Let the function g satisfy assump-
tion 1. Then for every given Y and e the value function

V (s;Y, e)

is Lipschitz continuous and thus almost everywhere differentiable.

This lemma follows immediately from Theorem 3 of Lauzier (2020d).

Recall that we currently aim to prove that the possibility of burning the money implies
that the optimal contract must be monotonic. The next lemma is a useful intermediate
step.

Lemma 11 (Monotonicity of the value function) Let the function g satisfy assump-
tion 1. Then for every given Y and e the value function

V (s;Y, e)

is non-decreasing.

This lemma is Proposition 6 of Lauzier (2020d) applied to the problem at hand. We can
now state our first theorem.

Theorem 12 (Monotonicity of the optimal contract) Any contract solving Problem
F is non-decreasing.

The proof is instructive and will be done carefully. It uses the following notion.
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Definition 13 (Monotone envelope) Let Y satisfy assumption 2. The monotone en-
velope of the function Y is the smallest non-decreasing function Y such that Y ≤ Y .

Proof of theorem 12: Suppose by contraposition that the contract Y is decreasing
somewhere and let eY be a level of effort that contract Y implements. By lemma 10 and
11 the value function

V (s;Y, eY )

is continuous and non-decreasing. By assumption 1 it is also the case that V (s;Y, eY ) ≥ Y .
Consider the alternative contract Y defined by the monotone envelope of Y .

Lemma 14 The contract Y implements eY and is such that

V (s;Y, eY ) = V (s;Y , eY ).

Proof of lemma 14: Consider x ∈ [0,M ] and redefine the choice correspondence as

σ(Y, x) = arg max
z∈[0,M ]

{Y (x+ z)− g(z)}

and the value function as

V (x;Y ) = Y (x+ z(x))− g(z(x))

for z(x) ∈ σ(Y, x). By definition if 0 ∈ σ(Y, x) then 0 ∈ σ(Y , x) and V (x;Y ) = V (x;Y ).
It remains to show the cases when 0 /∈ σ(Y, x).

Downward manipulation: If there exists a z ∈ σ(Y, x) such that z < 0 then

V (x;Y ) = Y (x+ z)− g(z) = Y (x+ z) = Y (x)

by definition of the monotone envelope. Thus, 0 ∈ σ(Y , x) and V (x;Y ) = V (x;Y ).

Upward manipulation: If every z ∈ σ(Y, x) are such that z > 0 then σ(Y, x) = σ(Y , x)

and V (x, Y ) = V (x, Y ).

We have just shown that for every given level of effort the value functions of the manip-
ulation stage of the game are equal under both contracts. Thus, Y implements effort eY .�
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By construction the contract Y satisfies constraint (E-IR) if the contract Y does. Let

z(s) ∈ σ(Y, eY , s) and z(s) ∈ σ(Y , eY , s)

be selections. The contract Y dominates the contract Y since the latter induces downward
manipulation which implies that∫
X(s, eY ) + z(s)− Y (X(s, eY ) + z(s))dP >

∫
X(s, eY ) + z(s)− Y (X(s, eY ) + z(s))dP,

and Y is not optimal. �

The critical steps are in lemma 14. Virtually all this article’s proofs rely on compar-
ing two contracts and verifying whether or not they implement the same level of effort.
Theorem 12 compares a contract to its monotone envelope because lemma 11 implicitly
guarantees that they implement the same level of effort.

This monotonicity property is entirely driven by the manipulation technology and does
not rely on properties of the distribution of profit. We now show that a similar result is
true for linear manipulation technologies.

3.3.2 Linear manipulation technologies and manipulation-proofness

Let us now assume that

g(z) = (1 + r) max{0, z} for r ≥ 0. (Assumption 3)

From corollary 4 of Lauzier (2020d) the following ancillary lemma immediately obtains:

Lemma 15 Let g satisfy Assumption 3. For every given Y and e the value function

V (s;Y, e)

has a slope lesser or equal to 1 + r.

Lemma 15 allows us to essentially repeat the proof of theorem 12 while using the value
function defined by a contract Y instead of its monotone envelope.
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Theorem 16 (Manipulation-proof contracts) Let g satisfy Assumption 3. Then the
optimal contract Y is manipulation-proof: for every x ∈ [0,M ] it holds that

0 ∈ arg max
z∈[−M,M ]

{Y (x+ z)− g(z)}.

Moreover, it is continuous, non-decreasing and has a slope lesser or equal to 1 + r, i.e.

0 ≤ ∂Y (x)

∂x
≤ 1 + r.

whenever this derivative is well-defined.

As mentioned, the proof of theorem 16 is almost identical to the proof of theorem 12.
For the sake of brevity we omit it in the main text and refer the reader to appendix B.

It is worth emphasizing again that the proof does not rely on properties of the distri-
bution of profit. The linearity of the manipulation technology entirely drives the result
because this is what allows us to replace any contract by the value function of the op-
timisation problem it defines in the manipulation-stage of the game. Doing so does not
change the incentives to exert effort, and we therefore deduce that the optimal contract
is manipulation-proof. However, manipulation-proofness is not obtained because a ma-
nipulation is a "bad thing" per see, but simply because there are no losses in perfectly
preventing it.

Some readers might have further interest in the shape of the optimal contract. We
conclude this section with a simple corollary which helps characterize it further. Since
any continuous, non-negative and non-decreasing function can be written as a maximum
we deduce the following:

Corollary 17 Let g satisfy assumption 3. Then the optimal contract can be written as a
generalized debt contract

Y (x) = max{0, α(x)x− d}+ w

where d ≥ 0 is a threshold of debt, w ≥ 0 is a flat wage and α(x) is a non-decreasing and
continuous function with slope ≤ 1 + r.

3.3.3 Convex manipulation technologies

In the last two sections we aimed to characterize the optimal contract in its greatest
generality and thus we tried to impose as few assumptions as possible. Our goal now is
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to show that convex manipulation technologies sometimes lead to contracts which induce
manipulation in equilibrium. This is an existence statement, which will allow us to make
stronger assumptions in order to highlight the mechanics at play.

Let us assume that the entrepreneur is risk-neutral and that he makes the take-it or
leave-it offer at the initial stage of the game. Let the manipulation technology be

g(z) =

0 if z ≤ 0

g̃(z) if z > 0

for g̃ a strictly convex function which is differentiable on (0,M) and which satisfies

lim
z↓0

g̃(z) = 0 and inf
z>0

{
∂g(z)

∂z

}
= 1. (Assumption 4)

Finally, let us also assume that the financier will never agree to give the entrepreneur
more than the (state-by-state) profit of the business, i.e. that Y ≤ X.

The optimal contract solves the following optimisation problem

sup
Y ∈B+(B([0,M ])),e∈E

∫
Y (X(s, e) + z(s))− g(z(s))dP− c(e) (Problem Entrepreneur)

s.t. 0 ≤ Y ≤ X (Feasibility)∫
X(s, e) + z(s)− Y (X(s, e) + z(s)))dP ≥ (1 + r)Q (IR)

e ∈ argmax
e

{∫
Y (X(s, e) + z(s))− g(z(s))dP− c(e)

}
(IC)

∀s ∈ S, z(s) ∈ argmax
z
{Y (X(s, e) + z)− g(z)} (IIC)

Our current goal is showing that probability distributions and manipulation technolo-
gies exist for which the optimal contract entails manipulation in equilibrium. We will do
so by using bonus contracts, which will define a partition

M = {[0, a), [a, b), [b,M ]}

of [0,M ] for which manipulation will be restricted to the middle interval [a, b). Intuitively,
these intervals correspond to the three states xl, xm and xh of the example of section 1.2.
We will be done by showing that situations where the probability of middle interval is
small and the bonus contract implements a strictly higher level of effort than the best-
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manipulation proof contract can exist simultaneously.

First we claim that the constraint (IR) is binding at any solution Y of Problem En-
trepreneur. This claim is standard and we do not prove it in the main text.

Let eMP be the highest level of effort which is implementable with a manipulation-
proof contract and let Y MP implement eMP . We want to know if we can find an alternative
contract Y and a level of effort eY such that simultaneously eY cannot be implemented
with a manipulation-proof contract and∫

Y (X(s, eY ) + z(s))− g(z(s))dP− c(eY ) >

∫
Y MP (X(s, eMP ))dP− c(eMP ).

Assumption 4 implicitly guarantees that every manipulation-proof contract must be
continuous and have a slope ≤ 1. The manipulation-proof contract which implement the
highest level of effort is thus a simple debt contract representable by the function

Y MP (x) = max{0, x− d}

for d ∈ (0,M) solving constraint (IR) at equality.

We want to show that there exists a bonus contract Y Bonus which dominates the
contract Y MP . Thus, consider the contract

Y Bonus(x) =

0 if x < d′

x− β if x ≥ d′

for 0 < β < d′ and d < d′ < M . The value b = β − d′ > 0 is the amount of bonus the
entrepreneur keeps upon a realization of profit greater than d′.

Since g̃ is strictly convex the contract Y Bonus defines a partition

Mg = {[0, d′ − g̃−1(b)), [d′ − g̃−1(b), d′), [d′,M ]}

for which there is manipulation in the middle interval [d′−g̃−1(b), d′). That is, the function

z(x) =

0 if x ∈Mg \ [d′ − g̃−1(b), d′)

d′ − x if x ∈ [d′ − g̃−1(b), d′)

is a selection of the optimal choice correspondence σ(Y, x).
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As mentioned, these three intervals intuitively correspond to the three states xl, xm
and xh we had in section 1.2. Thus, it suffices to show that we can find situations where

P[X(e) ∈ [d′ − g̃−1(b), d′)|e]→ 0, (3.1)

a convergence which intuitively corresponds to the limit q ↓ 0 in the example of section
1.2. We can show this by finding a "sequence of increasingly steeper functions" g̃ so that
the interval [d′ − g̃−1(b), d′) converges to the singleton {d′}. The assumption that the
family (X(e))e∈E consists exclusively of continuous random variables then guarantees the
convergence in (3.1).

If Y Bonus implements a higher level of effort than Y MP and if the effort is "productive
enough" then we have just shown that the former contract dominates the latter. The
notion of an effort level being "productive enough" is elusive. The MLRP is enough for
the argument above to be correct, although the example in section 1.2 show that it is not
necessary.

Theorem 18 Let the family (X(e))e∈E be ordered in the likelihood ratio and let eMP <

e2nd, where eMP is the highest level of effort implementable with a manipulation proof
contract and e2nd is the highest level of effort when there is only ex-ante moral hazard.

Then we can always find a manipulation technology g satisfying assumption 4 for which
the solution to problem (Problem Entrepreneur) entails manipulation in equilibrium: there
exists profit realizations x ∈ [0,M ] such that z(x) > 0.

3.4 Discussion

Discussions about theorem 8 will be split, moving at a tutorial pace. First, theorem 8’s
features will be expanded upon and mapped to various models. These models will then
be interpreted in relationship to the various assumptions made. We then provide our own
interpretation of the model’s normative implications. Discussions will be concluded by
explaining the difficulties of assessing the empirical validity of the model.

The possibility that the optimal contract entails manipulation in equilibrium is sensi-
tive to the interplay between the manipulation technology and the stochastic output and
thus to the assumptions we have made. It is worth taking a closer look at the proof of
theorem 18 to better understand this sensitivity. Theorem 8 relies on two key moving
parts, the manipulation technology and the distribution of output. A thorough under-
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standing of both of these moving parts is useful to the interpretation of the model.

First, we want to emphasize that the assumptions we made about the manipulation
technologies are quite strong and were in fact binding our hands. Incidentally this dis-
cussion will show that theorem 18 is more general than a first glance can tell.

The proof of 18 relies on comparing the best manipulation-proof contract to a slightly
modified version of itself. Intuitively, this is a variational argument, as the bonus con-
tract we consider is essentially the best manipulation-proof contract to which we added
an upward jump at a well-chosen point. If the new contract implements a higher level of
effort and keeps the expected loss of manipulation low then we are done.

We assumed a manipulation technology for which the cost of small upward manipula-
tion is "large", which implied that the best manipulation-proof contract still incentivizes
working hard. However, the literature also considers technologies for which the cost of
small upward manipulations is "low", for instance by assuming that

g(z) = g(x− x) = (x− x)2

where x is once again the realized profit and x is the profit as declared by the entrepreneur.
Such type of manipulation technology is used in articles like Crocker and Slemrod (2007)
and Sun (2014), where it is interpreted as a situation where the manager can manipulate
the firm’s accounting profit.

Taking derivative around z = 0 we see that

∂g(z)

∂z

∣∣∣∣
z=0

= 0 = inf
z>0

{
∂g(z)

∂z

}
and any upward sloping contract induces manipulation. With such manipulation tech-
nology it is impossible to incentivize working hard with a manipulation-proof contract.
That is, the optimal contract always entails manipulation in equilibrium when the cost
of small lies is low and incentivizing hard work is valuable.

Which brings us to the second key moving part of the proof. As mentioned, the bonus
contract can be thought of as a local variation of the best manipulation-proof contract,
the debt contract. This local change to the contract implements a higher level of effort if
the effort "moves enough probability weight from the left to the right" of the distribution.
By definition the MLRP does precisely that, and thus is essentially sufficient to show that
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this local change improves on the original contract.

However, the MLRP condition is not necessary for such perturbation argument to be
globally true. Indeed, many distributions which do not satisfy the MLRP still exhibit
the property that a well-chosen bonus contract implements a higher level of effort than a
debt contract. For instance, many "U-shaped" distributions have this property, which is
precisely the intuition that helped us build the examples in section 1.

Figure 3.3: MLRP & U-shaped distributions
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We would like to conclude by explaining our own interpretation of our results, an
interpretation with which the reader may very-well disagree. Piecing together the ob-
servations made above we consider that manipulation is often a necessary evil. In our
model’s restricted world there are many situations where the optimal contract induces
certain acceptable manipulations in equilibrium. As mentioned, the model of Crocker
and Slemrod (2007) theoretically links the growth of performance-based executive com-
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pensation to the explosion of accounting scandals of the early twenty-first century. Ours
suggest that such theoretical link is not restricted to high-level executives, as contracts
with high-powered incentives are the staples of our modern economy.

Assessing the scale of these acceptable manipulations remains an empirical question.
One to which we, the authors, are skeptical can ever be answered precisely. The litera-
ture on earnings management consistently observes a positive correlation between CEOs’
incentive pays and earnings management. Papers like Sun (2014) use simplified manipu-
lation models to argue that this correlation is likely to be driven by optimal contracting
and does not reflect inefficiencies in the market, further evidence that acceptable manip-
ulations exist.

We do not believe that more could be done. Our fundamental objection is one of
logical consistency, as assessing precisely the losses due to acceptable manipulations would
require that the econometrician observe both hidden actions of exerting effort and profit
manipulation. However, we postulate that the Principal cannot observe these actions, as
such observation would preclude moral hazard. In other words, evaluating empirically
such phenomena with any precision would require for the econometrician to be better
informed than the contracting parties, an assumption which is hardly tenable in any
situation we can think of.

3.5 Conclusion

The literature on ex-post moral hazard is well established, dating at least to the Costly
state verification model of Townsend (1979). However, the subsequent literature consid-
ers many different definitions for a manipulation, and the conclusions for each particular
model is highly sensitive to the assumptions made about the manipulation technologies.

The recent literature highlights a trade-off between the provision of incentives to work
hard and the prevention of manipulation. The importance of this trade-off is supported by
the empirical literature on earnings management, which consistently observes a positive
correlation between CEOs’ incentive pay and earnings management.

Despite many theoretical models and empirical evidence pointing to the existence of
such trade-offs, no previous article provides a set of general conditions under which the
optimal contract entails acceptable manipulations in equilibrium. This state of knowledge
is unfortunate given the strong normative implications of some models, which implicitly
imply that unethical behaviours such as fraud are a normal part of a well-functioning
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economy.

This article sheds light on the interplay between the manipulation technology and the
productivity of effort. The optimal contract is non-decreasing whenever the agent can
burn the business’ profit. This is because burning money is unambiguously wasteful and
no gains in incentives can be made by allowing it.

The optimal contract is always manipulation-proof when the manipulation technology
is linear. This feature is entirely driven by the linearity assumption, which guarantees that
any contract can be replaced by the value function of the optimisation problem it defines
in the manipulation stage of the game without changing incentives. In other words, the
reason why the optimal contract prevents manipulation is not because a manipulation is
"bad" per see, but because there are no losses in doing so when the technology is linear.
This is not true with convex manipulation technologies.

When the manipulation technology is convex then the optimal contract sometimes
entails acceptable manipulations in equilibrium. This feature depends on the specificity
of the interplay between the manipulation technology and the "productivity of effort".
Intuitively, when hard work is productive enough to be worth rewarding, then upward
manipulations are justified, provided they are not so frequent that the expected losses
to manipulation stays low. Bonus contracts have the desirable property of incentivizing
hard work while maintaining the expected losses to acceptable manipulations low.

A mathematical definition of "productive enough" effort is elusive. We have shown
that the monotone likelihood ratio is somewhat of a sufficient condition for the optimal
contract to entail manipulations in equilibrium. It is not, however, necessary, as bonus
contracts can incentivize a high level of effort for many other types of distributions. How-
ever, our results still suggest that the monotone likelihood ratio is a stronger assumption
than previously thought, as it is essentially the type of assumption which justifies accept-
able manipulations. That is, it is precisely the type of assumption for which it is true
that unethical behaviours such as fraud are a normal part of a well-functioning economy.
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3.6 Appendix A: Omitted definitions

We collect standard results on stochastic orders. We mainly follow the treatment of
Shaked and Shanthikumar (2007) but we also incorporate some results known in the lit-
erature. We assume throughout that every random variable has support χ ⊂ [0,M ] for
0 < M <∞.

Let X, Y be two random variables. We say that X is smaller than Y in the usual
stochastic order, denoted by X ≤FOSD Y , if

P[X > x] ≤ P[Y > x] for all x ∈ χ. (FOSD)

Condition (FOSD) is often called first-order stochastic dominance. Let F and G

denote the cumulative distribution function of X and Y respectively. It holds that
X ≤FOSD Y if and only if

G(x) ≤ F (x) for all x ∈ χ with strict inequality for some x.

Accordingly, we write F ≤FOSD G to denote X ≤FOSD Y when it is not ambigu-
ous. Let (X(θ))θ∈Θ be a family of random variable with parameters θ ∈ Θ ⊂ R.
Let (F (x|θ))θ∈Θ be their corresponding conditional cumulative distribution functions
and assume that F (·|θ) is differentiable in θ. Then (F (x|θ))θ∈Θ satisfy FOSD in θ,
θ ≤ θ′ ⇒ F (x|θ) ≤FOSD F (x|θ′), if

Fθ(x|θ) ≤ 0 for all x ∈ χ with strict inequality for some x.

Let X, Y be random variables and let f, g be their corresponding density. Let

L(x) :=
g(x)

f(x)

be their likelihood ratio. We say that X is smaller than Y in the likelihood ratio
order, denoted by X ≤LR Y , if

∂L(x)

∂x
≥ 0 for all x ∈ χ (MLRP)

where a/0 := ∞ whenever a > 0. Condition (MLRP) is sometimes called the monotone
likelihood ratio property, and is equivalent to the condition that

f(x)g(y) ≥ f(y)g(x) for all x ≤ y.
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Integrating the previous equation over x ∈ A and y ∈ B for A,B measurable subsets of
χ we obtain the following equivalent condition:

P[X ∈ A]P[Y ∈ B] ≥ P[X ∈ B]P[Y ∈ A] for all measurable sets A,B such that A ≤ B

where A ≤ B means x ∈ A and y ∈ B implies x ≤ y. This last condition is interest-
ing because it does not involve densities and applies uniformly to continuous, discrete or
mixed distributions.

Let X and Y have full support and denote by F and G their respective cumulative
distribution functions. Then

X ≤LR Y ⇐⇒ G/F is convex.

Let (X(θ))θ∈Θ be a family of random variables with full support and let (f(x|θ))θ∈Θ be
their corresponding conditional densities. Assume that f(·|θ) is differentiable in θ. Then
(f(x|θ))θ∈Θ satisfies the MLRP in θ, θ ≤ θ′ ⇒ X(θ) ≤LR X(θ′), if

f(x|θ)f(y|θ′) ≥ f(x|θ′)f(y|θ) whenever x > y and θ′ > θ.

The previous condition is equivalent to

∂

∂x

[
fθ(x|θ′)
f(x|θ′)

]
≥ 0 for all θ′ ∈ Θ and for all x ∈ χ.

We say that (f(x|θ))θ∈Θ satisfies the strict MLRP in θ if the previous inequality is
strict. Alternatively, the strict MLRP states that for every θ < θ′ it is

f(x|θ)f(y|θ′) > f(x|θ′)f(y|θ) whenever x > y and θ′ > θ.

Of course the strict MLRP implies that F (θ′)/F (θ) is strictly convex.

Finally, note that

X ≤LR Y =⇒ X ≤FOSD Y

but the converse is not generally true unless |χ| = 2.
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3.7 Appendix B: Ommitted proofs

Proof of theorem 6: By theorem 12 the optimal contract is non-decreasing. Suppose
by contraposition that the contract Y induces manipulation in equilibrium and let eY be
a level of effort implemented by Y . Since Y is monotonic the contraposition assumption
states that there exists some xs,eY ∈ [0,M ] for which every z ∈ σ(Y, e, s) are such that

z > 0.

Let V (s;Y, eY ) be the value function of the manipulation stage of the game and let
U ⊂ [0,M ] be the set of xs,eY ∈ [0,M ] for which the contract Y induces manipulation in
equilibrium. By lemma 5, V (s, Y, eY ) is continuous and has slope ≤ 1 + r, with equality
on U . Consider the alternative contract Y defined by the value function V (s, Y, eY ), i.e.

Y = V (s, Y, eY ).

Since g is linear it suffice to prove that Y is manipulation-proof to obtain that Y
implements eY and dominates Y , similarly to the proof of theorem 12.

Redefine the optimal manipulation correspondence as

σ(Y, x) = arg max
z∈[0,M ]

{Y (x+ z)− g(z)} and

σ(Y , x) = arg max
z∈[0,M ]

{Y (x+ z)− g(z)}.

Notice that since Y is manipulation-proof on [0,M ] \ U the two contracts are equal on
this set and thus Y is also manipulation-poof on [0,M ] \ U .

Let x ∈ U be given. We want to show that 0 ∈ σ(Y , x). By construction to every
z ∈ σ(Y, x) it is Y (x) = Y (x+ z)− (1 + r)z. Suppose by contradiction that 0 /∈ σ(Y , x).
Since Y is monotonic this implies that every z′ ∈ σ(Y , x) are such that z′ > 0. However,
this assumption implies that

Y (x+ z′)− (1 + r)z′ > Y (x) ⇐⇒
[Y (x+ z′)− (1 + r)z′]− (1 + r)z′ > Y (x) ⇐⇒

Y (x+ z′)− 2(1 + r)z′ > Y (x).

If z′ ∈ σ(Y, x) then the previous equality becomes

Y (x+ z′)− 2(1 + r)z′ > Y (x) = Y (x+ z′)− (1 + r)z′,
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an absurd given that z′ > 0 and r > 0. If z′ /∈ σ(Y, x) then there exists a z̃ ∈ σ(Y, x),
z̃ 6= z′, such that simultaneously

Y (x+ z̃)− (1 + r)z̃ > Y (x+ z′)− (1 + r)z′

and
Y (x+ z̃)− (1 + r)z̃ = Y (x) < Y (x+ z′)− (1 + r)z′,

another absurd. Thus, 0 ∈ σ(Y , x) and we are done. �

Proof of theorem 8: We begin with a few preliminary claims.

Claim 19 The Individual Rationality constraint IR must be binding at any solution of
problem Problem Entrepreneur.

Proof of the claim: Let eY be the level of effort implemented by contract Y . The claim
follows immediately by contraposition observing that if∫

X(eY )− Y (X(eY ))dP > (1 + r)Q

then there exists an alternative contract Ỹ 6= Y which implements effort eỸ ≥ eY , which
is feasible because∫

X(eY )− Y (X(eY ))dP >
∫
X(eỸ )− Ỹ (X(eỸ )dP ≥ (1 + r)Q

and which strictly dominates Y because∫
Ỹ (X(eỸ )dP >

∫
Y (X(eY ))dP. �

Claim 20 The best manipulation-proof contract is a debt contract, the function

Y MP (x) = max{0, x− d}

for d ∈ (0,m) satisfying∫
X(s, eMP )−max{0, X(s, eMP )− d}dP = (1 + r)Q,

where eMP is the level of effort implemented by Y MP .

Proof of the claim: The feasibility constraint states that 0 ≤ Y ≤ X and thus it is
Y MP (0) = 0. By theorem 12 the contract Y MP (x) is a non-decreasing function and since
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eMP < e2nd the best manipulation-proof contract implements the highest possible effort
level. By Assumption 4 it is

inf
z>0

{
∂g(z)

∂z

}
= 1

and Y MP must be continuous and with a slope ≤ 1 in order to prevent manipulations.

Set
Y MP (x) = max{0, x− d}

for d > 0 making constraint IR an equality. Taking derivative we have

∂Y (x)

∂x

∣∣∣∣
x∈(0,M)\{d}

=

0 if x < d

1 if x > d

and the monotone likelihood ratio property guarantees that Y MP is the manipulation-
proof contract that implements the highest possible effort level. �

We want to show that there exists a manipulation technology for which there is a pair
(Y, eY ) such that Y implements eY and Y strictly dominates Y MP , i.e∫

Y (X(s, eY ) + z(s)− g(z(s))dP− c(eY ) >

∫
Y MP (X(s, eMP )dP− c(eMP )

(domination)

for
z(s) ∈ σ(Y, eY , s)

a selection. Rearranging we obtain

E[Y (X(eY )]− E[Y MP (X(eMP )]− [c(eY )− c(eMP )] > E[g(z(s))].

The assumption that eMP < e2nd guarantees that there exists effort levels eỸ ∈ (eMP , e2nd]

for which we can find a contract Ỹ which implements eỸ and is such that

E[Ỹ (X(s, eỸ )]− E[Y MP (X(s, eMP )]− [c(eỸ )− c(eMP )] > 0.

Thus, we will be done if we can find a pair (Y, eY ) such that eY ∈ (eMP , e2nd] and

E[g(z(s))]→ 0,

a convergence which we will define precisely below.
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Consider the following bonus contract:

Y Bonus(x) =

0 if x < d′

x− β if x ≥ d′

for 0 < β < d′ and d < d′ < M . By theorem 2 of Lauzier (2020d) for every given g

satisfying Assumption 4 there exists a partition

Mg = {[0, d′ − g̃−1(b)), [d′ − g̃−1(b), d′), [d′,M ]}

for which the function

z(x) =

0 if x ∈Mg \ [d′ − g̃−1(b), d′)

d′ − x if x ∈ [d′ − g̃−1(b), d′)

is a selection of the optimal choice correspondence

σ(Y Bonus, x) = arg max
z∈[−M,M ]

{Y Bonus(x+ z)− g(z)}.

There exists a net of functions (gγ)γ∈Γ such that

1. for every γ < +∞ the function gγ satisfies assumption 4;

2. the net (gγ)γ∈Γ consists of increasingly steeper functions: if γ′ > γ then for every z
it is gγ′(z) ≥ gγ(z), with strict inequality for some z;

3. it is

lim
γ→+∞

gγ(z) = g∞(z) =

0 if z ≤ 0

+∞ if z > 0
.

The middle interval [d′ − g̃−1
γ (b), d′) converges to the singleton {d′}, i.e

[d′ − g̃−1
γ (b), d′)

γ→+∞−→ {d′}.

Since the random variables X(e) are continuous it holds for every e ∈ E that

P[X(e) ∈ [d′ − g̃−1
γ (b), d′)|e] γ→+∞−→ 0

and thus

E[gγ(z(s))]
γ→+∞−→ 0.
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As γ → +∞ the Incentive Compatibility constraint IC converges to the Incentive Com-
patiblity constraint of the problem with ex-ante moral hazard only, i.e. to the Incentive
Compatibility constraint of the problem

sup
Y ∈B+(B([0,M ])),e∈E

∫
Y (X(s, e)))dP− c(e)

s.t. 0 ≤ Y ≤ X∫
X(s, e)− Y (X(s, e)))dP ≥ (1 + r)Q

e ∈ argmax
e

{∫
Y (X(s, e))dP− c(e)

}
.

Since the distribution satisfies the monotone likelihood ratio property we can define the
bonus contrat Y Bonus such that, in the limit when γ → +∞, the contract implements the
effort level e ∈ (eMP , e2nd] and satisfies the constraint IR at equality. Thus, the inequality
(domination) is satisfied in the limit as γ → +∞ and we are done. �

3.8 Appendix C: Solution concept

This appendix expands on the solution concept we used in the main text and explains
further some of the assumptions we made. We focus on the case where the financier makes
the take-it or leave-it offer at the initial stage of the game.

Recall that the entrepreneur have to make two sequential choices after being presented
with an offer; he first chooses a level of effort e ∈ E, then he observes the realisationX(s, e)

("Nature moves") and finally he chooses a manipulation z ∈ R. We would like to empha-
sis that this wording already implies that we are restricting our attention to equilibria in
pure strategies.

Now recall that the family (X(e))e∈E consists of random variables which all have com-
mon and full support [0,M ]. We can thereby slightly abuse notation and write the optimal
manipulation correspondence σ(Y, e, s) as σ(Y, x). In other words, our assumption guar-
antees that the optimal manipulation correspondence is a mapping [0,M ]→ B([0,M ]).

The optimal manipulation correspondence is rarely single-valued, and not every ac-
tions which are payoff equivalent to the entrepreneur are equal. This is better seen by
considering a flat part of a contract and noticing that the entrepreneur might be indif-
ferent between burning the money or telling the truth, but that the former action hurts
the financier while the latter does not. That is, the latter manipulation Pareto dominates
the former. This motivate our focus on equilibria for which the entrepreneur takes the
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manipulation most favoured by the financier whenever indifferent, which is tantamount
to focusing on equilibria for which the manipulation is Pareto efficient.

A similar problem arises for the choice of effort e ∈ E. Let the contract Y be given and
denote by E∗(Y ) the set of effort that maximize the expected payoff for the entrepreneur.
The set E∗(Y ) we considered in the text does not need to be a singleton. In other words,
a given contract does not necessarily implement only one level effort. This is because
we worked with the weakest assumptions on the probability distribution as we can man-
age. Thereby we considered pure strategy equilibria where the entrepreneur chooses the
highest level of effort whenever indifferent. This choice is motivated by our interpretation
that working hard is a "good thing" and not by any mathematical properties of the model.

This discussion incidentally sheds lights on our notion of sub-game perfectness. Our as-
sumptions about the entrepreneur’s actions at indifference guarantee that the financier’s
conjecture about the behaviour of the entrepreneur is correct in equilibrium. Without
these assumptions there might exist equilibria where this conjecture is incorrect.

Formally let Y be an offer and let E∗(Y ) = {el, eh} ⊂ E for el < eh. Suppose that
the financier’s believe that the entrepreneur plays eh with probability 1, i.e. that his
conjecture is

µF (e∗(Y )) = δeh ,

where µF (e∗(Y )) is the financier’s conjecture about the entrepreneur’s choice of effort
given offer Y and where δ is the Dirac measure. Since eh ∈ E∗(Y ) there might exists
equilibria where the financier offer Y and wrongly believes that the entrepreneur takes
the action eh while the entrepreneur truly takes the action el. In other words, without
our assumptions on the entrepreneur’s behaviour, we would need to be very careful about
our definition of belief and sub-game perfectness.
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Chapter 4

Insurance design and arson-type risks

Abstract

We design the optimal insurance contract when the insurer faces arson-type risks us-
ing a novel proof technique developed in previous work. The optimal contract must be
manipulation-proof. The optimal contract is therefore continuous and has a bounded
slope. Ipso facto, any contract which mixes deductible and coinsurance is robust to these
types of risks.

Keywords

Insurance design, ex-post moral hazard, arson-type risks, positioning, discontinuous opti-
misation, positioning choice problems

4.1 Introduction

Suppose Bob was just involved in a bicycle accident. After the fact, an officer of the law
provided Bob with a certificate indicating that the automobile driver was responsible for
the accident. The certificate does not, however, specify how bad the damage inflicted to
Bob’s steel steed was. Which types of insurance contracts will incentivize Bob to take a
sledgehammer to his bicycle before taking a picture and filling his insurance claim?

Huberman et al. (1983) was first to point out that the possibility of inflating an in-
surance claim by physically destroying an object imposes strong structure on the type
of contract which can be offered by an insurer. They show that (completely) vanishing
deductibles strongly incentivize the insured to augment the damage. In their model, the
next best contract is a simple deductible.
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Picard (2000) uses a similar argument to guarantee that his model’s optimal contract
is continuous. The author also defines the risk of destroying the object as an "arson-type"
risk to distinguish it from other ex-post risks of defrauding the contract1.

We use results from Lauzier (2020d) and Lauzier (2020a) to show that the arguments
made in Picard (2000) and Huberman et al. (1983) are two sides of the same coin. We
show that when there are arson-type risks the optimal contract must be continuous and
have a bounded slope. Ipso facto, any contract mixing coinsurance and deductible will be
robust to these risks.

After a brief literature review, we introduce and solve the model then conclude by
providing a few observations about our findings’ robustness.

X

Y

d

(a) completely disappearing

X

Y

d

(b) simple

Figure 4.1: deductibles

Literature review

Huberman et al. (1983) contains the earliest mention of arson-type risks which we are
aware of. The authors analyze the optimal insurance contract when respecting the con-
tract involves non-actuarial costs such as administrative cost. Their model’s optimal
contract is a completely disappearing deductible, and the authors observe that this type
of contract is infrequently observed in real life, if at all. They show that if the insured
can cause extra damage then their model’s next best contract is a simple deductible.

Picard (2000)’s introduction of arson-type risks is similar to Huberman et al. (1983)’s.
Picard (2000) designs the optimal insurance contract when the insured can defraud the

1See Picard’s chapter in Dionne et al. (2000) for a review of the different notions of fraud risks.
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contract and manipulate the audit costs. The model’s optimal contract is discontinuous,
another oddity infrequently observed in real life. The author then shows that this discon-
tinuity disappears when there are arson-type risks.

Both the contract’s continuity and its bounded slope obtain from the same mathemat-
ical result. Formally, the manipulation stage of the game defines an optimisation problem.
As these contracts can be discontinuous as stated in Picard (2000) the first-order con-
ditions cannot be used. This is where the results of Lauzier (2020d) become necessary.
These results also inform that the value function of the manipulation stage’s optimisation
problem is continuous and has a bounded slope.

Using an argument similar to one made in Lauzier (2020a) we determine that the
shape of the contract is continuous and has a bounded slope. This is because replacing
a contract by the value function of the optimisation problem it defines does not change
the amount of insurance provided. The new contract does not induce manipulation, it is
therefore cheaper as the expected waste due to manipulation is priced by the insurer at nil.

While in Lauzier (2020a) we obtain acceptable manipulations we cannot phantom them
in the case of insurance contracts. In insurance contracts, the possibility of manipulations
simply hurts the insured by lowering the protection by the insurer in equilibrium. Since
all contracts mixing coinsurance and deductibles are robust to arson-type risks, there does
not seem to be a trade-off between the prevention of arson-type manipulations and the
provision of incentives to prevent ex-ante moral hazard. This is exactly the opposite result
as that obtained in Lauzier (2020a).

We will discuss Spaeter and Roger (1997) in the main text and we refer to Dionne et
al. (2000) for an introduction to the Arrow-Borch-Raviv model.

4.2 Model

The three stage proof will structure the presentation. We start by showing that opti-
mal contracts accounting for arson-type risks must be continuous and have a bounded
sloped. This implies that we can substitute our optimisation problem by a simpler one.
This new optimisation problem is formally almost identical to the one found in Spaeter
and Roger (1997), modulo an extra constraint which is not always binding. The latter
allows us to characterize many cases, though the final derivations will be left to the reader.
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Notation and problem

We use standard notation throughout. Let S be a set of states of the world and let P be
the probability of state s ∈ S. Let the function X : S → [0,M ] be a continuous random
variable representing the risk to be insured against, with X having full support [0,M ]

and some mass at 0, said mass representing the possibility that no accident ever occurs.
Let the function c : [0,M ]→ R+ be the cost of respecting the insurance contract and let
Y : [0,M ] → [0,M ] be the state-contingent, variable part of the contract2. The amount
H ≥ 0 denotes the price of the contract while W0 > 0 is the initial wealth of the insured
and ρ ≥ 0 is the loading factor of the insurer. As usual, the function u : R+ → R+

is a twice differentiable and strictly concave Bernoulli utility function satisfying Inada
conditions.

The game proceeds as follows:

Stage 1 the insured buys the insurance contract Y at price H;

Stage 2 the state s realizes and loss X(s) occurs (Nature moves);

Stage 3 the insured observes the loss and decides to take hidden action z ∈ [0,M ] to
augment the damages;

Stage 4 the contract is implemented without renegotiation.

The solution concept is a weak Perfect Bayesian equilibrium where we assume that the
insured takes the insurer’s most favoured action whenever indifferent3.

By backward induction the optimal contract (H,Y ) solves the following optimization
program:

sup
H≥0,Y ∈B+(B([0,M ]))

∫
u(W0 −H −X(s)− z(s)− g(z(s)) + Y (X(s) + z(s)))dP (Problem I)

s.t. 0 ≤ Y (LLI)

Y ≤ X (BI)∫
Y (X(s) + z(s)) + c(Y (X(s) + z(s)))dP ≤ (1 + ρ)H (PCI)

∀s, z(s) ∈ argmaxz{X(s)− z − g(z) + Y (X(s) + z)} (IIC)

where (LLI) is the insured’s limited liability constraint, (BI) is the "boundedness con-
straint" stating that the insurer will never pay more than the observed loss, (PCI) is the

2 So Y ∈ B+(B([0,M ])), the space of non-negative and bounded functions (sup-norm) which are
measurable with regard to the Borel σ-algebra of [0,M ].

3We refer to Mas-Colell et al. (1995) for a definition of our equilibrium concept.
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insurer’s participation constraint, (IIC) is the insured’s interim incentive compatibility
constraint and the function

g(z) =

+∞ if z < 0

βz if z ≥ 0

represents an extra cost of inflicting damage (Bob buying a sledgehammer).

We now aim to prove that Y is Lipschitz continuous with constant ≤ 1 + β.

Assumption 1 We assume throughout that Y is a non-decreasing function.

The next statement is standard and will not be proved:

Lemma 21 The insurer’s participation constraint (PCI) must be binding.

The interim incentive compatibility constraint defines an optimisation problem that
defined in Lauzier (2020d) as a positioning choice problem. It immediately follows from
Theorem 3 (p.12) that the value function V (s) is Lipschitz continuous with constant
≤ 1 + β. Paralleling the argumentation of Theorem 6 (p.19) in Lauzier (2020a) we
conclude:

Proposition 22 Any optimal contract Y ∗ is manipulation-proof: for every s ∈ S it is
0 ∈ argmaxz{X(s)− z − g(z) + Y (X(s) + z)}.

Proof. Suppose, by the way of contradiction, that Y ∗ is optimal but that there exists a
s ∈ S such that such that for every z(s) ∈ argmaxz{X(s)− z− g(z) + Y (X(s) + z)} it is
z(s) > 0. Consider the alternative contract (H̃, Ỹ ) for which we set Ỹ (s) = V (s), where
V (s) is the value function of the optimisation problem (IIC) defined by Y ∗. Since Ỹ (s) is
Lipschitz with constant 1 + β it is manipulation-proof so V (s) = Ṽ (s), where Ṽ (s) is the
value function of the optimisation problem (IIC) defined by Ỹ . In words, this means that
the insured receives state-by-state the same final payoff under both contracts. By lemma
1, it holds that H̃ < H and (H̃, Ỹ ) dominates (H,Y ∗), a contradiction.

We can intuitively understand proposition 2 as stating that arson-type risks are fully
priced by the insurer. The insured thus will prefer the cheapest contract as he receives
state-by-state the same final amount under both contracts. Or, from Bob’s perspective,
he was offered two contracts offering the same protection. An expensive one which would
allow him to take a sledgehammer to his bike and a cheaper one which did not, so Bob,
being a rational person, chose the cheaper option.

Corollary 23 Any contract Y must be Lipschitz and with slope ≤ 1 + β.
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Furthermore, together, corollary 3 and assumption 1 imply that, by Theorem 3 of
Lauzier (2020d), the family of contracts

{Y ∈ B+(B([0,M ])) : Y (s) = V (s)}

consist of functions which are almost everywhere differentiable and everywhere direction-
nally differentiable.

We can thus rewrite (Problem I) as

max
H≥0,Y ∈B+(B([0,M ]))

∫
u(W0 −H −X(s) + Y (X(s))dP (Problem S)

s.t. 0 ≤ Y ≤ X (4.1)

slope(Y ) ≤ 1 + β (4.2)∫
Y (X(s)) + c(Y (X(s)))dP = (1 + ρ)H (4.3)

under the implicit assumption that Y ∈ C0[0,M ] 4 is almost everywhere differentiable
and everywhere directionnally differentiable. Notice how this problem, as rewritten, is
almost identical to the problem studied in Spaeter and Roger (1997) except for the extra
constraint slope(Y ) ≤ 1 + β.

A deduction from the author’s work informs when the constraint is binding. While
the constraint is not binding the authors’ solution is also a solution to Problem S. While
the constraint is binding we must resolve Problem S.

Lemma 24 If c = 0 then the optimal contract entails full insurance, i.e. Y = X.

Proof. Observe that for Y = X constraint (4.2) is never binding and for c = 0 constraint
(4.3) collapses to ∫

Y (X(s))dP = (1 + ρ)H

so problem (Problem S) is the standard Arrow-Borch-Raviv problem.

This lemma tells us that (Problem S) becomes interesting only when c > 0 somewhere.
This is because when c = 0 Bob is completely insured this precludes any incentive to take
a sledgehammer to his bike.

4The space of continuous functions on the close interval [0,M ].
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Fact 25 If Y ∗ solves the reduced problem

max
H≥0,Y ∈B+(B([0,M ]))

∫
u(W0 −H −X(s) + Y (X(s))dP (Reduced problem)

s.t. 0 ≤ Y ≤ X∫
Y (X(s)) + c(Y (X(s)))dP = (1 + ρ)H

of Spaeter and Roger (1997) and Y ∗ satisfies constraint (4.2) then Y ∗ solves (Problem S).

This fact informs us that the only problematic case which must be handled is when
the contract Y ∗ found in Spaeter and Roger (1997) does not satisfy constraint (4.2)
somewhere. Intuitively it seems natural to attempt fattening Y ∗ sufficiently to satisfy
slope(Y ) ≤ 1 + β thus solving Problem S. This approach is sometimes fruitful but does
not work in certain cases as we explain later. While intermediate cases will be left to the
reader we will characterise a simple case when β = 0.

Lemma 26 If β = 0, Y ∗R solves (Reduced problem) and Y ∗R is a completely disappearing
deductible then the unique solution Y ∗I to problem (Problem I) is a simple deductible, i.e.
a function of the form

Y ∗I (s) = max{0, X(s)− d}

for d ≥ 0.

Proof. If Y ∗R is a completely disappearing deductible then there exists a s̃ ∈ S such
that for every X(s) ≥ X(s̃) it is Y ∗R(s) = X(s). This implies that there is a state
˜̃s ∈ S such that for every X(s) ≥ X(˜̃s) the constraint (4.2) of problem (Problem S)
will be binding and so slope(Y ∗I (s)) = 1 on the set [X(˜̃s),M ]. It is easy to check that5

slope(Y ∗I (s)) = 0 on [0, X(˜̃s)). Setting d = X(˜̃s) we obtain that Y ∗I can be written as
Y ∗I (s) = max{0, X(s)− d}.

The possibility that people have to take a sledgehammer to their bicycles is priced into
insurance contracts is the reason why Bob will never be offered a completely disappearing
deductible contract. Simply, though Bob would honestly like to purchase such contract,
he cannot. This is because no Bob can commit to being honest.

The intuition that the contract solving problem (Problem S) is simply a "flattening"
of the solution to (Reduced problem) is misleading. By additivity of the Lebesgue in-
tegral, the insurer’s participation constraint states that the insurer should recoup the
cost on average and not state-by-state. This, fortunately, gives us some leeway in solving

5Either by "Guessing & Verifying" in (Problem S) or working by contradiction assuming Y ∗I (s) is
increasing somewhere on [0, X(˜̃s)).
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(Problem S). However, this also means that there are some cases where we have to roll-up
our sleeves and directly attack the problem.

4.3 Concluding remarks

We conclude with a few observations. First, notice that in proving Proposition 2 we never
used the underlying probability properties except for the fact that the two integrals in
(Problem I) are finite. This means that we could have considered different decision crite-
rion. For instance, by replacing P with a capacity ν in one integral and integrating in the
sense of Choquet instead of Lebesgue. This would have changed nothing to the veracity
of Proposition 2, provided that the set of solutions to (Problem I) remains non-empty.

Which brings us to the two problems of existence and uniqueness. Existence was
implicitly guaranteed by the formal association with the problem of Spaeter and Roger
(1997). Uniqueness is not. While the contracts found in lemma 4, fact 1 and lemma 5
are unique, we were unable to prove uniqueness in the general case. The difficulty comes
from the observation that the cost c must be recouped on average and not state-by-state.
The problem remains open.

Finally, notice the following: (A) we worked by backward induction from the last action
taken in the game and (B) the class of contracts robust to arson-type risks contains all
contracts mixing co-insurance and deductible. This means that there are no reasons to
think a priori that complexifying the model would fundamentally change the observations
made in the text. In particular, enriching the model with notions of ex-ante hidden action
or information would most likely change nothing about the fact that the optimal contract
must be robust to arson-type risks.
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