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The goal of this paper is to design a new correlation coefficient for T-spherical fuzzy sets (TSFSs), which can accurately measure
the nature of correlation (i.e., positive and negative) as well as the degree of relationship between TSFS. In order to formulate our
proposed idea, we had taken inspiration from the statistical concept of the correlation coefficient. While doing so, we firstly
introduce the variance and covariance of two TSFS and then constructed our scheme using these two newly defined notions.
The numerical value of our proposed correlation coefficient lies within the interval ½−1,+1�, as it should be from a statistical
point of view, whereas the existing methods cannot measure the negative correlation between TSFS, as their numerical value
falls within the interval ½0, 1�, which is not reasonable both statistically and intuitively. This aspect has also been thoroughly
demonstrated using some numerical examples. The comparison results witnessed the dominance and upper hand of our
proposed method over the existing definitions, with reliable and better results. In order to demonstrate the feasibility,
usefulness, and practical application, we applied our proposed scheme to solve technical and scientific problems of
multicriteria decision-making and pattern recognition. The numerical results show that our proposed scheme is practically
suitable, technically applicable, and intuitively reasonable.

1. Introduction

The notion of fuzzy sets (FS) was initially proposed by
Zadeh [1] to deal with imprecise and vague situations where
the membership MAðxÞ is assigned to each element [2, 3],
and it is a generalization of the crisp set [4]. In crisp set the-
ory, we consider only deterministic and precise situations

that could not handle imprecise and vague situations. Alter-
natively, fuzzy sets provide better solutions for real-life prob-
lems. Various researchers have developed certain novel
techniques related to fuzzy sets and demonstrated their
application in other fields such as [5–14] that are some prac-
tical examples. In a fuzzy set, however, only the degree of
membership MAðxÞ is of relevance to research, and
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nonmembership NAðxÞ is not an option. In light of this, Ata-
nassov [15] developed the notion of intuitionistic fuzzy sets
(IFS), which takes into account both membership and non-
membership functions under a particular condition: 0 ≤
MAðxÞ +NAðxÞ ≤ 1, where 0 ≤MAðxÞ ≤ 1 and 0 ≤NAðxÞ ≤ 1
, and the term τAðxÞ = 1 −MAðxÞ −NAðxÞ is called degree
of hesitancy. IFS has a wide range of application in many
fields, e.g., decision-making [16], logic programming [17], pat-
tern recognition [18–20] medical diagnosis [21], information
retrieval [22] and cluster analysis [23], and communication
[24–26]. Although the theory of IFS has been successfully
applied in different fields, there are some real-life situations
where human opinions involve more than two independent
statements, like yes, no, abstain, and refusal. Therefore, to deal
with these types of situations, Cuong and Kreinovich [27]
extended Zadeh FS and Atanassov’s IFS into picture fuzzy sets
(PFS) with the following condition ðMAðxÞ + IAðxÞ +NAðxÞ
≤ 1Þ, whereMAðxÞð∈½0, 1�Þ is the degree of positive member-
ship, IAðxÞð∈½0, 1�Þ which represents the degree of neutral
membership, and NAðxÞð∈½0, 1�Þ is a degree of negative mem-
bership. The proposed idea of Cuong and Kreinovich [27] has
great importance and application to deal with human opinion
efficiently as we have discussed earlier but in some particular
scenarios, the sum of membership degrees exceeds 1, i.e.,
ðMAðxÞ + IAðxÞ +NAðxÞ > 1Þ. In these situations, IFS is
insufficient to provide a satisfactory result. To address this
problem, Mahmood et al. [28] developed the spherical
fuzzy set (SFS) by adding new constraints: ðM2

AðxÞ + I2AðxÞ
+N2

AðxÞ ≤ 1 for SFSsÞ and ðMn
AðxÞ + InAðxÞ +Nn

AðxÞ ≤ 1 for
TSFSsÞ which is a generalization of FS, IFS, and PFS, which
satisfies the sum of membership degrees is less than or
equal to 1. The concept of TSFS is a recent development
in fuzzy set theory and successfully applied to medical diag-
nosis and multiattribute decision-making. In addition, the
extensions of IFS method are also found in literature abun-
dantly such as fuzzy multisets [29], type-2 fuzzy sets [30],
hesitant fuzzy sets [31], and Pythagorean fuzzy sets, [32].

earson proposed the concept of correlation in 1895, and
it has since become one of the most widely used indices in
statistics. Correlation is a statistical term that describes
how two variables are related in a linear pattern. Murthy
et al. [33] introduced the concept of fuzzy set correlation
for the first time in 1985. The correlation coefficient for
IFS was proposed by Gerstenkorn and Manko [34] who
introduced the correlation coefficient for IFS. Later on, Hong
and Hwang [35] went on to extend intuitionistic fuzzy sets’
association in probability space. Mitchell [36] illustrated
new formula for intuitionistic fuzzy sets and interpreted
two intuitionistic fuzzy sets as ensembles of ordinary fuzzy
sets. Several novel expansions, such as [23, 37–41], have also
been proposed in the literature. Ullah et al. [42] recently dis-
covered correlation coefficients for T-spherical fuzzy sets,
which they used in clustering and multiattribute decision-
making. Guleria and Bajaj [43] also presented a similar idea
of the correlation coefficient for TSFSs and illustrated its
application in pattern recognition and medical diagnosis.
These newly developed ideas are applicable in many areas
but their proposed method only measures [0, 1] ranging cor-
relations and is unable to deal with negative correlation.

Keeping this drawback in mind, we propose a new correla-
tion coefficient for TSFSs that can easily address the
highlighted weaknesses in the existing methods. The numer-
ical value of our proposed correlation coefficient lies within
the interval ½−1,+1� as it should be from a statistical point
of view, whereas the existing methods cannot measure the
negative correlation between TSFSs, as their numerical value
falls within the interval ½0, 1�, which is not reasonable both
statistically and intuitively.

The organization of this manuscript has been furnished
as follows. Section 2 entails basic concepts of IFS, PFS, SFS,
and TSFS. It also reviews some existing ideas of the CC of
TSFS. Section 3 details our proposed scheme (CC of TSFS),
and it also validates and verifies our method with the help
of some theorems and propositions. In Section 4, we demon-
strate numerical comparisons regarding the performance of
our method and the other existing methods to show the
strengths and superiority of the proposed idea. Section 5
illustrates the feasibility and usefulness of our idea in the
thematic areas of MCDM and PR with the help of some
real-world problems. In Section 6, we finalize this manu-
script with concluding remarks.

2. Preliminaries

This section has been dedicated to recalling some essential
theories, functions, and characteristics of TSFSs as well as
the coefficient of correlation to facilitate the understanding
of our research study. In the entire paper, we use MðxÞ, Nð
xÞ, IðxÞ, and ΛðxÞ to represent the degree of membership,
nonmembership, abstinence, and refusal in a unit interval
[0, 1], respectively.

2.1. Generalizations of Fuzzy Sets

Definition 1. (see [15]). Let F be an intuitionistic fuzzy set
(IFS) on a universe of discourse X = fx1, x2, x3,⋯, xmg,
and then it can be algebraically defined as F = fhx,MFðxÞ,
NFðxÞi/x ∈ Xg, with a constraint of 0 ≤MFðxÞ +NFðxÞ ≤ 1,
whereas H = 1 − fMFðxÞ +NFðxÞg is known as the degree
of hesitancy for an element x ∈ X to be belonging toF.

Definition 2. (see [44]). A mathematical expression for a PFS
P defined over a universe of discourse X = fx1, x2, x3,⋯,
xmg can be presented as J = fhx,MJðxÞ, I JðxÞ,NJðxÞi/x ∈ X
g, with a constraint of 0 ≤MJðxÞ + I JðxÞ +NJðxÞ ≤ 1, where
the degree of refusal for an element x ∈ X to be in J is repre-
sented as ΛðxÞ = 1 − fMJðxÞ + I JðxÞ +NJðxÞg.

Definition 3. (see [45]). The standard negation set of the PFS J
can be expressed asNðJÞ = fhx,NJðxÞ,ΛJðxÞ,MJðxÞi/x ∈ Xg.

Definition 4. (see [28]). Let S be an SFS on a universe of dis-
course X = fx1, x2, x3,⋯, xmg, and then it can be mathemat-
ically defined as S = fhx,MSðxÞ, ISðxÞ,NSðxÞi/x ∈ Xg, with a
constraint of 0 ≤M2

SðxÞ + I2S +N2
SðxÞ ≤ 1, while the degree of

refusal for an element x ∈ X to be belonging to S can be
expressed as ΛðxÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fM2

SðxÞ + I2S +N2
SðxÞg

p
.
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Definition 5. (see [28]). For a TSFS T on a universe of dis-
course X = fx1, x2, x3,⋯, xmg, its mathematical representa-
tion can be expressed as T = fhx,MTðxÞ, ITðxÞ,NTðxÞi/
x ∈ Xg, with a constraint of 0 ≤Mn

TðxÞ + InT +Nn
TðxÞ ≤ 1. The

degree of refusal for an element x ∈ X to be in TSFS T is
defined as ΛTðxÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fMn

TðxÞ + InT +Nn
TðxÞgn

p
.

2.2. Existing Methods (CC of TSFSs)

Definition 6. (see [42]). Let S1 and S2 be two TSFSs in a
universe of discourse X = fx1, x2, x3,⋯, xmg, and the coef-
ficient of correlation between TSFSs S1 and S2 is

while the correlation coefficient for weighted TSFSs is

Both of the above definitions (1) and (2) satisfy the
following features:

(a) RðS1, S2Þ = RðS2, S1Þ
(b) 0 ≤ RðS1, S2Þ ≤ 1

(c) RðS1, S2Þ = 1, iff S1 = S2

Definition 7. (see [42]). Another form of correlation coefficient
between two TSFSs S1 and S2 in X = fx1, x2, x3,⋯, xmg is

whereas its weighted form can be defined as

R S1, S2ð Þ =
∑m

i=1 Mn
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i=1 M2
S1

xið Þ
� �n

+ I2S1 xið Þ
� �n

+ N2
S1

xið Þ
� �n

+ Λ2
S1

xið Þ
� �nh i

×

∑m
i=1 M2

S2
xið Þ

� �n
+ I2S2 xið Þ
� �n

+ N2
S2

xið Þ
� �n

+ Λ2
S2

xið Þ
� �nh i

vuuuut
,

ð1Þ

Rw S1, S2ð Þ =
∑m

i=1wi M
n
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i=1wi M2
S1

xið Þ
� �n

+ I2S1 xið Þ
� �n

+ N2
S1

xið Þ
� �n

+ Λ2
S1

xið Þ
� �nh i

×

∑m
i=1wi M2

S2
xið Þ

� �n
+ I2S2 xið Þ
� �n

+ N2
S2

xið Þ
� �n

+ Λ2
S2

xið Þ
� �nh i

vuuuut
:

ð2Þ

R∗ S1, S2ð Þ =
∑m

i=1 Mn
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

max
∑m

i=1 M2
S1

xið Þ
� �n

+ I2S1 xið Þ
� �n

+ N2
S1

xið Þ
� �n

+ Λ2
S1

xið Þ
� �nh i

,

∑m
i=1 M2

S2
xið Þ

� �n
+ I2S2 xið Þ
� �n

+ N2
S2

xið Þ
� �n

+ Λ2
S2

xið Þ
� �nh ih i

* + ,
ð3Þ

R∗
w S1, S2ð Þ =

∑m
i=1wi M

n
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

max
∑m

i=1wi M2
S1

xið Þ
� �n

+ I2S1 xið Þ
� �n

+ N2
S1

xið Þ
� �n

+ Λ2
S1

xið Þ
� �nh i

,

∑m
i=1wi M2

S2
xið Þ

� �n
+ I2S2 xið Þ
� �n

+ N2
S2

xið Þ
� �n

+ Λ2
S2

xið Þ
� �nh i

* + :

ð4Þ
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Equations (3) and (4) also satisfy the following properties:

(a) R∗ðS1, S2Þ = R∗ðS2, S1Þ
(b) 0 ≤ R∗ðS1, S2Þ ≤ 1

(c) R∗ðS1, S2Þ = 1, iff S1 = S2

Definition 8. (see [43]). Coefficient of correlation between
TSFSs S1 and S2 in X = fx1, x2, x3,⋯, xmg is defined as

while the correlation coefficient for weighted TSFSs is

Definition 9. (see [43]). Another definition of the correlation
coefficient between two TSFSs S1 and S2 is

whereas its weighted form can be defined as

K S1, S2ð Þ =
∑m

i=1 Mn
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

∑m
i=1 Mn

S1
xið Þ

� �2
+ InS1 xið Þ
� �2

+ Nn
S1

xið Þ
� �2

+ Λn
S1

xið Þ
� �2

� �� �1/2
×

∑m
i=1 Mn

S2
xið Þ

� �2
+ InS2 xið Þ
� �2

+ Nn
S2

xið Þ
� �2

+ Λn
S2

xið Þ
� �2

� �� �1/2
,

ð5Þ

Kw S1, S2ð Þ =
∑m

i=1wi M
n
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i
∑m

i=1wi Mn
S1

xið Þ
� �2

+ InS1 xið Þ
� �2

+ Nn
S1

xið Þ
� �2

+ Λn
S1

xið Þ
� �2

� �� �1/2
×

∑m
i=1wi Mn

S2
xið Þ

� �2
+ InS2 xið Þ
� �2

+ Nn
S2

xið Þ
� �2

+ Λn
S2

xið Þ
� �2

� �� �1/2
:

ð6Þ

K∗ S1, S2ð Þ =
∑m

i=1 Mn
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

max
∑m

i=1 M2
S1

xið Þ
� �n

+ I2S1 xið Þ
� �n

+ N2
S1

xið Þ
� �n

+ Λ2
S1

xið Þ
� �nh i

,

∑m
i=1 M2

S2
xið Þ

� �n
+ I2S2 xið Þ
� �n

+ N2
S2

xið Þ
� �n

+ Λ2
S2

xið Þ
� �nh ih i

* + ,
ð7Þ

K∗
w S1, S2ð Þ =

∑m
i=1wi M

n
S1

xið Þ ×Mn
S2

xið Þ + InS1 xið Þ × InS2 xið Þ +Nn
S1

xið Þ ×Nn
S2

xið Þ +Λn
S1

xið Þ ×Λn
S2

xið Þ
h i

max
∑m

i=1wi M2
S1

xið Þ
� �n

+ I2S1 xið Þ
� �n

+ N2
S1

xið Þ
� �n

+ Λ2
S1

xið Þ
� �nh i

,

∑m
i=1wi M2

S2
xið Þ

� �n
+ I2S2 xið Þ
� �n

+ N2
S2

xið Þ
� �n

+ Λ2
S2

xið Þ
� �nh i

* + :

ð8Þ
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Equations (5)–(8) satisfy the following properties:

(a) KðS1, S2Þ = KðS2, S1Þ
(b) 0 ≤ KðS1, S2Þ ≤ 1

(c) KðS1, S2Þ = 1, iff S1 = S2

3. Proposed New Correlation
Coefficient of TSFSs

We propose a new correlation coefficient(s) of TSFSs,
including both the weighted and unweighted environments,
to overcome the drawbacks of the existing definitions [37,
38]. It has been formulated using a statistical theory of cor-
relation coefficient between two phenomena, that is, the
mathematical ratio between the covariance of two TSFSs
and the geometric mean of their individual variances. Ini-
tially, we introduce the variances and covariance of two
TSFSs and use those new definitions to construct our pro-
posed correlation coefficient.

Motivated from [46], we designed the structure of our
proposed new correlation coefficient of TSFSs, demonstrated
as follows.

Let T1 and T2 be two TSFSs X = fx1, x2, x3,⋯, xmg, and
we describe two new variables based on the deviations of
membership grades as

Qi T1ð Þ = Mn
T1

xið Þ − �Mn
T1

xið Þ
D E

− InT1
xið Þ −�InT1

xið Þ
D En

− Nn
T1

xið Þ − �Nn
T1

xið Þ
D E

+ Λn
T1

xið Þ − �Λ
n
T1

xið Þ
D Eo

,

Qi T2ð Þ = Mn
T2

xið Þ − �Mn
T2

xið Þ
D E

− InT2
xið Þ −�InT2

xið Þ
D En

− Nn
T2

xið Þ − �Nn
T2

xið Þ
D E

+ Λn
T2

xið Þ − �Λ
n
T2

xið Þ
D Eo

,∀xi ∈ X,

ð9Þ

where

�Mn
T1

xið Þ = 1
m
〠
m

i=1
Mn

T1
xið Þ,�InT1

xið Þ = 1
m
〠
m

i=1
InT1

xið Þ, �Nn
T1

xið Þ

=
1
m
〠
m

i=1
Nn

T1
xið Þ, �Λn

T1
xið Þ = 1

m
〠
m

i=1
Λn

T1
xið Þ,

�Mn
T2

xið Þ = 1
m
〠
m

i=1
Mn

T2
xið Þ,�InT2

xið Þ = 1
m
〠
m

i=1
InT2

xið Þ, �Nn
T2

xið Þ

=
1
m
〠
m

i=1
Nn

T2
xið Þ, and �Λ

n
T2

xið Þ = 1
m
〠
m

i=1
Λn

T2
xið Þ:

ð10Þ

Definition 10. For two TSFSs T1 = fhx,Mn
T1
ðxÞ, InT1

ðxÞ,Nn
T1
ð

xÞi/x ∈ Xg and T2 = fhx,Mn
T2
ðxÞ, InT2

ðxÞ,Nn
T2
ðxÞi/x ∈ Xg,

variances in terms of new variables can be defined as

Var T1ð Þ = 1
m − 1

〠
m

i=1
Q2

i T1ð Þ,

Var T2ð Þ = 1
m − 1

〠
m

i=1
Q2

i T2ð Þ,
ð11Þ

while their covariance is mathematically expressed as

Cov T1, T2ð Þ = 1
m − 1

〠
m

i=1
Qi T1ð Þ ×Qi T2ð Þ: ð12Þ

Proposition 11. For CovðT1, T2Þ to be the covariance of two
TSFSs T1 and T2, it should satisfy the following conditions:

Cov T1, T2ð Þ = Cov T2, T1ð Þ
Cov T1, T1ð Þ = Var T1ð Þ,

Cov T1, T1ð Þj j ≤ Var T1ð Þh i1/2 × Var T2ð Þh i1/2
ð13Þ

Proof. ðiÞ and ðiiÞ are straight forward
ðiiiÞ Using Cauchy-Schwarz inequality, we have

〠
n

i=1
aibi

* +2

≤ 〠
n

i=1
ai

2

* +
× 〠

n

i=1
bi

2

* +
or 〠

n

i=1
aibi

					
					

≤ 〠
n

i=1
ai

2

* +1/2

× 〠
n

i=1
bi

2

* +1/2

,

Hence Cov T1, T2ð Þh i2 = 1
m − 1

〠
m

i=1
Qi T1ð Þ ×Ni T2ð Þ

* +2

= 1
m − 1ð Þ2 〠

m

i=1
Qi T1ð Þ ×Ni T2ð Þ

* +2

,

Cov T1, T2ð Þh i2 ≤ 1
m − 1ð Þ2 〠

m

i=1
Q2

i T1ð Þ × 〠
m

i=1
Q2

i T2ð Þ
* +

,

Cov T1, T2ð Þh i2 ≤ 1
m − 1ð Þ 〠

m

i=1
Q2

i T1ð Þ
* +

×
1

m − 1ð Þ 〠
m

i=1
Q2

i T2ð Þ
* +

,

Cov T1, T2ð Þh i2 ≤Var T1ð Þ × Var T2ð Þ,
Cov T1, T2ð Þj j ≤ Var T1ð Þh i1/2 × Var T2ð Þh i1/2:

ð14Þ

Definition 12. Let T1 and T2 be two TSFSs on a universe of
discourse X = fx1, x2, x3,⋯, xmg. The correlation coefficient
between T1 and T2 is defined as

ρ T1, T2ð Þ = Cov T1, T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var T1ð Þ × Var T2ð Þp ,

ρ T1, T2ð Þ = ∑m
i=1Qi T1ð Þ ×Qi T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑m
i=1Q

2
i T1ð Þ
 �

× ∑m
i=1Q

2
i T2ð Þ
 �q :

ð15Þ
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Theorem 13.We have two TSFSs T1 and T2, defined over the
universe of discourse X = fx1, x2, x3,⋯, xmg, and then the
correlation coefficient between them must fulfill the following
conditions:

(a) ρðT1, T2Þ = ρðT2, T1Þ
(b) −1 ≤ ρðT1, T2Þ ≤ +1

(c) ρðT1, T2Þ = 1, if T1 = cT2 for any constant c > 0,
where T1 = cT2 means, Mn

T1
ðxÞ = cMn

T2
ðxÞ ∈ ½0, 1�,

InT1
ðxÞ = cInT2

ðxÞ ∈ ½0, 1�, Nn
T1
ðxÞ = cNn

T2
ðxÞ ∈ ½0, 1�,

and Λn
T1
ðxÞ = cΛn

T2
ðxÞ ∈ ½0, 1�

(d) ρðT1, T2Þ = −1, if T1 = cT2, for any constant c < 0

Proof.

(a) It is straightforward

(b) From proposition 11 (14), we know that jCovðT1,
T2Þj ≤ hVarðT1Þi1/2 × hVarðT2Þi1/2; hence,

− Var T1ð Þh i1/2 × Var T2ð Þh i1/2 ≤ Cov T1, T2ð Þj j: ð16Þ

By using these two inequalities,

− Var T1ð Þh i1/2 × Var T2ð Þh i1/2
≤ Cov T1, T2ð Þj j
≤ Var T1ð Þh i1/2 × Var T2ð Þh i1/2,

−1 ≤
Cov T1, T2ð Þj j

Var T1ð Þh i1/2 × Var T2ð Þh i1/2
≤ 1 − 1 ≤ ρ T1, T2ð Þ ≤ +1:

ð17Þ

(c) Since for any constant c > 0, Mn
T1
ðxÞ = cMn

T2
ðxÞ,

InT1
ðxÞ = cInT2

ðxÞ, Nn
T1
ðxÞ = cNn

T2
ðxÞ, and Λn

T1
ðxÞ = c

Λn
T2
ðxÞ, hence

Qi T1ð Þ = Mn
T1

xið Þ − �Mn
T1

xið Þ
D E

− InT1
xið Þ −�InT1

xið Þ
D En

− Nn
T1

xið Þ − �Nn
T1

xið Þ
D E

+ Λn
T1

xið Þ − �Λ
n
T1

xið Þ
D E

g,

Qi T1ð Þ = cMn
T2

xið Þ − c �Mn
T2

xið Þ
D E

− cInT2
xið Þ − c�InT2

xið Þ
D En

− cNn
T2

xið Þ − c�Nn
T2

xið Þ
D E

+ cΛn
T2

xið Þ − c�Λn
T2

xið Þ
D E

g,

Qi T1ð Þ = c Mn
T2

xið Þ − �Mn
T2

xið Þ
D E

− InT2
xið Þ −�InT2

xið Þ
D En

− Nn
T2

xið Þ − �Nn
T2

xið Þ
D E

+ Λn
T2

xið Þ − �Λ
n
T2

xið Þ
D E

g,
Qi T1ð Þ = cQi T2ð Þ:

ð18Þ

Therefore, CovðT1, T2Þ = 1/m − 1∑m
i=1QiðT1Þ ×QiðT2Þ

= 1/m − 1∑m
i=1cQiðT2Þ ×QiðT2Þ.

Cov T1, T2ð Þ = 1
m − 1

〠
m

i=1
cQ2

i T2ð Þ, ð19Þ

CovðT1, T2Þ = cVarðT2Þ,

Var T1ð Þ = 1
m − 1

〠
m

i=1
Q2

i T1ð Þ = 1
m − 1

〠
m

i=1
c2Q2

i T2ð Þ,

Var T1ð Þ = c2Var T2ð Þ:
ð20Þ

Hence, for any constant c > 0,

ρ T1, T2ð Þ = Cov T1, T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var T1ð Þh i × Var T2ð Þh ip

=
kVar T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2Var T2ð Þ� 

× Var T2ð Þh i

q ,

ρ T1, T2ð Þ = kVar T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kVar T2ð Þh i2

q =
kVar T2ð Þ
kVar T2ð Þ ,

ρ T1, T2ð Þ = 1:

ð21Þ

(d) Since A = kB, so for any constant c < 0, Mn
T1
ðxÞ = −

cMn
T2
ðxÞ, InT1

ðxÞ = −cInT2
ðxÞ, Nn

T1
ðxÞ = −cNn

T2
ðxÞ, and

Λn
T1
ðxÞ = −cΛn

T2
ðxÞ, therefore,

Qi T1ð Þ = Mn
T1

xið Þ − �Mn
T1

xið Þ
D E

− InT1
xið Þ −�InT1

xið Þ
D En

− Nn
T1

xið Þ − �Nn
T1

xið Þ
D E

+ Λn
T1

xið Þ − �Λ
n
T1

xið Þ
D Eo

,

Qi T1ð Þ = −cMn
T2

xið Þ + c �Mn
T2

xið Þ
D E

− −cInT2
xið Þ + c�InT2

xið Þ
D En

− −cNn
T2

xið Þ + �Nn
T2

xið Þ
D E

+ −cΛn
T2

xið Þ + c�Λn
T2

xið Þ
D Eo

,Qi T1ð Þ
= −c Mn

T2
xið Þ − �Mn

T2
xið Þ

D E
+ c InT2

xið Þ −�InT2
xið Þ

D En
+ c Nn

T2
xið Þ − �Nn

T2
xið Þ

D E
− c Λn

T2
xið Þ − �Λ

n
T2

xið Þ
D Eo

,Qi T1ð Þ
= −c Mn

T2
xið Þ − �Mn

T2
xið Þ

D E
− InT2

xið Þ −�InT2
xið Þ

D En
− Nn

T2
xið Þ − �Nn

T2
xið Þ

D E
+ Λn

T2
xið Þ − �Λ

n
T2

xið Þ
D Eo

,Qi T1ð Þ
= −cQi T2ð Þ:

ð22Þ
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Hence,

Cov T1, T2ð Þ = 1
m − 1

〠
m

i=1
Qi T1ð Þ ×Qi T2ð Þ

=
1

m − 1
〠
m

i=1
− cQi T2ð Þ ×Qi T2ð Þ,

Cov T1, T2ð Þ = 1
m − 1

〠
m

i=1
− cQ2

i T2ð Þ,

ð23Þ

CovðT1, T2Þ = −cVarðT2Þ, and

Var T1ð Þ = 1
m − 1

〠
m

i=1
Q2

i T1ð Þ = 1
m − 1

〠
m

i=1
c2Q2

i T2ð Þ,

Var T1ð Þ = c2Var T2ð Þ:
ð24Þ

So, for c < 0,

ρ T1, T2ð Þ = Cov T1, T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var T1ð Þh i × Var T2ð Þh ip =

−cVar T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Var T2ð Þh i × Var T2ð Þh ip ,

ρ T1, T2ð Þ = −cVar T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cVar T2ð Þh i2

q =
−cVar T2ð Þ
cVar T2ð Þ ,

ρ T1, T2ð Þ = −1:

ð25Þ

3.1. Special Cases

(a) When n = 2, equation (15) reduces to the correlation
coefficient of SFSs

(b) When n = 1, equation (15) reduces to the correlation
coefficient of PFSs

(c) When n = q and IAðxiÞ = IBðxiÞ = 0, equation (15)
reduces to the correlation coefficient of Q-ROFSs

(d) When n = 2 and ΛT1
ðxiÞ =ΛT2

ðxiÞ = 0, equation (15)
reduces to the correlation coefficient of PyFSs

(e) When n = 1 and ΛT1
ðxiÞ =ΛT2

ðxiÞ = 0, equation (15)
reduces to the correlation coefficient of IFSs

We also propose a weighted correlation coefficient
between two TSFSs in the following, to deal with the prac-
tical problems and situations, with different objects having
unequal importance, in which we consider their weights
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarwðAÞ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarwðBÞ

p
≤ jCovwðA, BÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarwðAÞ

p
×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarwðBÞ
p

keeping in view their relative importance.

Definition 14. Suppose we have two TSFSs T1 and T2 defined
over a universe of discourse X = fx1, x2, x3,⋯, xmg, having a
weight vector w = fw1,w2,w3,⋯,wmg for its elements xi ∈
X, where wi ≥ 0 and ∑m

i=1wi = 1, then their weighted correla-
tion coefficient can be defined as

ρw T1, T2ð Þ = Covw T1, T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varw T1ð Þ × Varw T2ð Þp ,

ρw T1, T2ð Þ = ∑m
i=1wiQi T1ð Þ ×Qi T2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑m
i=1wiQ

2
i T1ð Þ
 �

× ∑m
i=1wiQ

2
i T2ð Þ
 �q :

ð26Þ

If all of the elements xi ∈ X have equal weights
(i:e:w = fð1/mÞ, ð1/mÞ, ð1/mÞ,⋯, ð1/mÞg), then equation
(26) can be reduced to equation (15).

From the above definitions, we derive the following
proposition and theorem.

Proposition 15. If we have two SFSs ρwðA, BÞ = CovwðA, BÞ
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAÞVarwðBÞ

p
= aVarwðBÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2VarwðBÞVarwðBÞ

p
and

ρwðA, BÞ = aVarwðBÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2VarwðBÞ2

q
= aVarwðBÞ/aVarwðBÞ

in a universe of discourse ρwðA, BÞ = 1, then their weighted
covariance satisfies the following conditions:

(i) CovwðA, BÞ = CovwðB, AÞ
(ii) CovwðA, AÞ =VarwðAÞ
(iii) jCovwðA, BÞj ≤ hVarwðAÞi1/2 × hVarwðBÞi1/2

Proof. It can be proved like Proposition 11.

Theorem 16. For two TSFSs T1 and T2 defined over X =
fx1, x2, x3,⋯, xmg, then the weighted correlation coefficient
between them must satisfy the following properties:

(a) ρwðT1, T2Þ = ρwðT2, T1Þ
(b) −1 ≤ ρwðT1, T2Þ ≤ +1

(c) ρwðT1, T2Þ = 1, if T1 = cT2 for any constant c > 0

(d) ρwðT1, T2Þ = −1, if T1 = cT2, for any constant c < 0

Proof. Theorem 16 can also be proved like Theorem 13.

Definition 17. Let T be a TSFS defined over a universe of dis-
courseX = fx1, x2, x3,⋯, xmg, and then standard negation set
for it be characterized as MNðTÞðxiÞ =NTðxiÞ, INðTÞðxiÞ =ΛT

ðxiÞ and NNðTÞðxiÞ =MTðxiÞ for all δFmin = min
i
jFAðxiÞ − Fð

xiÞj and can be mathematically expressed as NðTÞ = fhx,NTð
xÞ,ΛTðxÞ,MTðxÞi/x ∈ Xg, where 0 ≤Mn

TðxÞ + InTðxÞ +Nn
BðxÞ

≤ 1 and where ΛTðxÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fMn

TðxÞ + InTðxÞ +Nn
TðxÞg

p
is

the degree of refusal for an element x ∈ X to be in SFSs T .

4. Comparison with Existing Methods

This section has been dedicated to establishing a full com-
parative study of the results acquired from our suggested
scheme and other current approaches [42, 43] using numer-
ical examples to demonstrate the advantage and novelty of
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our concept. Using these examples and numerical results, we
also intuitively showed the advantages of our proposed
method to address the shortcomings of the existing methods.
From a statistical as well as intuitive point of view, if two phe-
nomena or datasets are moving in the same direction, then
they have a positive relationship, while if their movement is
in the opposite direction, then their relationship would be
inverse. The correlation coefficient is an important instru-
ment in statistical theory for determining the degree and
nature of a link between two processes or variables.

So, our definitions of correlation coefficient should accu-
rately measure both the degree and the nature of relation-
ship between two TSFSs.

We present some numerical examples in the following to
show those characteristics of our proposed scheme and its
comparison with existing methods.

Example 18. Let T1 and T2 be two TSFSs in a universe of dis-
course X = fx1, x2, x3g, characterized as

T1 = x1, 0:9, 0:5, 0:7h i, x2, 0:7, 0:6, 0:8h i, x3, 0:5, 0:8, 0:9h if g,
T2 = x1, 0:7, 0:6, 0:9h i, x2, 0:8, 0:5, 0:7h i, x3, 0:9, 0:4, 0:6h if g:

ð27Þ

By using our new definition, the standard negation set
of a TSFS T1 is SNðT1Þ = fhx1, 0:7, 0:,0:9i, hx2, 0:8, 0:,0:7i,
hx3, 0:9, 0:,0:5ig.

The following Table 1 represents the comparative results
of our proposed method and the existing definitions [37, 38]
of the correlation coefficient when applied to the above TSFSs.

It is intuitively justifiable that the relationship between a
TSFS and its negation set should have an inverse relation,
with a negative correlation coefficient. It can be observed
from the above Table 1 that none of the definitions [42,
43] can accurately measure the negative relationship
between TSFS T1 and its standard negation set SNðTÞ1,
rather reflecting a positive relation (0.3798, 0.3505) which
cannot be possible, while our proposed correlation coeffi-
cient shows that there is a negatively strong correlation
(-0.9865) between TSFS T1 and its standard negation set S
NðTÞ1. Similarly, it can be seen that the corresponding
membership grades of TSFSs T1 and T2 are moving in an
opposite direction over the various point of the universe of
discourse X = fx1, x2, x3g. So, they should have an inverse
relationship between them, with a negative correlation coef-
ficient. It can be clearly seen from the above Table 1 that the
value of our proposed correlation coefficient (-0.9859) por-
trays that there exists a strongly negative correlation between
TSFSs T1 and T2, as it should be statistically as well as intu-
itively. On the other and the existing methods show a posi-
tive correlation (0.4304., 0.4051) between them and
overlook their inverse relationship. Hence, it shows the
superiority and upper hand of our proposed method over
the existing definitions of correlation coefficient for TSFSs.

Example 19. Let w = f0:22, 0:33, 0:45g be the weight vector
for the elements of TSFSs in Example 18. After applying
our proposed weighted correlation coefficient and the exist-

ing methods for weighted TSFSs [42, 43], we present the
comparative performance results in the following Table 2.

It can also be clearly seen from Table 2 that our pro-
posed method accurately measures the negative relationship
between TSFSs T1 and its standard negation set SNðT1Þ hav-
ing a weighted correlation coefficient -0.9862, rationally
endorsing the strongly negative correlation between them.
Contrarily, the existing definitions [42, 43] show a positive
correlation (0.3153, 0.2850) between TSFSs T1 and its stan-
dard negation set SNðT1Þ, which cannot be logically possi-
ble. Moreover, there should be a negative correlation
between TSFSs T1 and T1 (as explained in example 18).
Table 2 shows that our method demonstrates a negative cor-
relation (-0.9859) between T1 and T1 while the existing
methods cannot measure it accurately, as they show a posi-
tive correlation coefficient (0.3774, 0.3473), which cannot
be intuitively possible, and these shortcomings reduce the
reliability and accuracy of the existing definitions. Further-
more, the competency of our proposed method to address
these drawbacks shows its effectiveness and advantages.

5. Application in Multicriteria Decision-Making
and Pattern Recognition

This section has been designated to illustrate the application of
our proposed idea of the correlation coefficient for TSFSs in

Table 1: Coefficient of correlation.

ρ Ti, T j


 � Existing definitions
Our proposed idea

[37, 38] [37, 38]

ρ T1, SN T1ð Þð Þ 0.3798 0.3505 -0.9865

ρ T1, T2ð Þ 0.4304 0.4051 -0.9859

Table 2: Weighted correlation coefficient.

ρw Ti, T j


 � Existing definitions Our proposed
definition[42, 43] [42, 43]

ρw T1, SN T1ð Þð Þ 0.3153 0.2850 -0.9862

ρw T1, T2ð Þ 0.3774 0.3473 -0.9859

Table 3: T-spherical fuzzy information of alternatives Ajðj = 1, 2, 3Þ.

Alternatives F1 F2 F3

A1 <0.8, 0.5, 0.4> <0.7, 0.4, 0.4> <0.3, 0.5, 0.4>
A2 <0.9, 0.2, 0.4> <0.6, 0.3, 0.2> <0.4, 0.1, 0.7>
A3 <0.5, 0.5, 0.5> <0.8, 0.2, 0.3> <0.6, 0.4, 0.3>

Table 4: Association between A∗ and Ajðj = 1, 2, 3Þ.

ρw A∗, Aið Þ A1 A2 A3

ρw A∗, Aið Þ 0.9703 0.8307 -0.2530
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the practical domain of MCDM and pattern recognition to
show its suitability and usefulness. Pattern recognition and
machine learning are versatile practices that have widely dis-
cussed in different disciplines such as [19, 20, 24–26, 47, 48]:
these are some examples.

5.1. Application in MCDM. This subsection has been planned
to show the application of our proposed scheme in the field of
multicriteria decision-making by using a real MCDM prob-
lem, taken from [28]. To do so, we present here the implemen-
tation procedure of our proposed scheme for dealing with an
MCDM problem. Suppose there is a set of “k” alternatives
defined as TSFSs A = fA1, A2,⋯, Akg and a set of “m” evalu-
ation features F = fF1, F2,⋯, Fmg, having weight vector w
= fw1,w2,⋯,wmgT , 0 ≤w ≤ 1, and ∑m

i=1wi = 1, we define
the ideal alternative A∗ as a TSFS by taking maximum mem-
bership value, minimum nonmembership, and minimum
indeterminacy value for each evaluation criteria across all of
the given alternatives, like an ideal positive solution in TOP-
SIS. A∗ = fðFi, max

1≤j≤k
hMAj

ðFiÞi, min
1≤j≤k

hIAj
ðFiÞi, min

1≤j≤k
hNAj

ðFiÞiÞ
/Fi ∈ Fg. By applying our proposed correlation coefficient,
we calculate the relationship between ideal choice A∗ and
the given alternatives. Furthermore, by using the principle of
the maximum correlation coefficient, we select an alternative
as the best option, which has the highest correlation coefficient
with an ideal alternative A∗.

Example 20. In order to strengthen the sales and purchase
department, a firm had advertised the position of manager
and selected 3 candidates after conducting an initial screen-
ing of the prospective candidates, who had applied. For the
selection of the best candidate, the top management of the
firm had considered the following three features to evaluate
the aforementioned initially short-listed candidates. (i) F1:
communication skills, (ii) F2: sense of responsibility, and
(iii) F3: creativity. The candidates, evaluation criteria, and
their weights have been presented in the form of sets as a
set of alternatives, set of evaluation criteria, and weights vec-
tor, respectively, as follows.

A = fA1, A2, A3g,F = fF1, F2, F3g, and w = f0:20, 0:35,
0:45gT . After a comprehensive evaluation of the candidates,
their decision information has been presented in the follow-
ing Table 3 as a T-spherical fuzzy decision matrix (TSFDM).

It can be clearly seen that the decision information in the
above Table 3 is TSFI n = 3. So, we apply our proposed
scheme to find a correlation coefficient between the ideal
candidate A∗ = fh0:9, 0:2, 0:4i, h0:8, 0:2, 0:2i, h0:6, 0:1, 0:3ig

and the initially short-listed three candidates. The results
have been furnished in the following Table 4.

It can be clearly seen that the candidate A1 has the high-
est degree of relationship with the ideal choice A∗ as com-
pared to that of the other alternatives. Hence, using the
principle of maximum correlation, we can say that the can-
didate A1 is the most suitable choice for the position of man-
ager. This is in complete agreement with the decision, from
where this example has been taken.

5.2. Application in Pattern Recognition. In this section, we
show how we used our proposed theory to solve a pattern
recognition problem and recognize an unknown pattern
while taking into account the properties of several well-
known patterns. We develop a relationship between the
unknown sample pattern P∗ and the set of known patterns
P = fP1, P2,⋯, Pkg using our proposed correlation coeffi-
cient on the basis of a set of evaluation criteria. Taking
motivation from the idea of the recognition principle [49],
we developed an analogy as a degree of belongingness of
the unknown pattern to any one of the known patterns to
recognize its actual class as j∗ = arg max

j
fρðP∗, PjÞg, where

ρðP∗, PjÞ is the degree of relationship between P∗ and Pj

that can be calculated using our proposed correlation coef-
ficient. More will be the value of j∗, and more will be the
closeness P∗ to the jth known pattern. A synthetic/fictitious
numerical example has been given in the following to dem-
onstrate the application of our method in pattern recogni-
tion problems.

Example 21. Let T1, T2, and T3 be three patterns which are
known, and T be an unknown sample pattern, defined as
follows in the form of TSFSs. These TSFSs have been defined
over a space of points X = fx1, x2, x3g, and weights have
been expressed in the form of a weight vector as w =
f0:31, 0:36, 0:33gT . The characteristic values of the above-
mentioned patterns have been furnished in the following
Table 5.

By applying our proposed scheme n = 5, we measure the
relationship between the unknown sample pattern T and the
other three known patterns (T1, T2, T3) to identify its

Table 5: T-spherical fuzzy pattern information matrix (TSFIM).

Patterns x1 x2 x3
T1 <0.42, 0.42, 0.42> <0.42, 0.42, 0.62> <0.63, 0.63, 0.72>
T2 <0.42, 0.42, 0.62> <0.52, 0.63, 0.82> <0.72, 0.72, 0.82>
T3 <0.42, 0.52, 0.63> <0.52, 0.63, 0.72> <0.63, 0.72, 0.82>
T <0.42, 0.42, 0.42> <0.42, 0.42, 0.52> <0.63, 0.63, 0.72>

Table 6: Relationship between T and T jðj = 1, 2, 3Þ.

ρw T , T j


 �
T1 T2 T3

ρw T , T j


 �
0.9566 0.5185 0.9548
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belongingness. The obtained results have been presented in
the following Table 4.

Table 6 clearly shows that the unknown sample pat-
tern T has the highest correlation coefficient with the
known pattern T1 as compared to the other known pat-
terns T2 and T3. Hence, using the principle of maximum
belongingness j∗ = arg max

j
fρðP∗, PjÞg, we can conclude

that the unknown sample pattern T belongs to the known
pattern T1.

6. Conclusions

The TSFS is a useful tool for displaying the degree of posi-
tive, neutral, and negative membership, as well as the infor-
mation’s dependability owing to rejection membership.
Major correlation coefficient approaches based on the unit
interval [0, 1] have been defined in the literature. In accor-
dance with the conventional correlation coefficient in statis-
tics, our newly proposed technique correlation coefficient for
T-spherical fuzzy sets is the best choice for dealing with pos-
itive, negative, and no correlation [-1, 1]. The mathematical
derivations for the upper and lower bound of correlation
have been given. To show the novelty, we compare our
method with existing methods, and the results demonstrate
the good aspect of the proposed idea. Furthermore, to dem-
onstrate the feasibility, usefulness, and practical application,
we applied our proposed scheme to solve technical and sci-
entific problems of multicriteria decision-making and pat-
tern recognition.
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