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Abstract 

 

In this thesis a methodology utilizing IV-characteristics and image analysis to model power 

losses due to snow cover is presented. The objective of this dissertation is to investigate the 

performance of PV modules under different snow cover conditions by simulating and 

analyzing IV-curves. Additionally, investigating if image analysis could be useful in 

estimating snow cover, and could improve the modelled IV-curve power loss estimations. 

An IV-characteristics model in MATLAB Simulink was used to model situations with 

uniform and partial snow cover for different irradiance and snow depth conditions. The image 

analysis method was used to estimate PV module snow cover and used in combination with 

the IV-curve model to improve power loss estimations. It was concluded that the IV-curve 

model proved capable of estimating power losses due to uniform snow covers, but less 

effective in some partial snow cover situations. Including image analysis improved the power 

loss estimations in some cases, however, to improve the model accuracy additional factors 

must be included. The numerous model uncertainties that were identified has a certain impact 

on the model accuracy which should be investigated further. For further research it is 

recommended that the model is developed further to include and account for significant snow 

characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

ii 

 

Preface 

 

Background and motivation  

 

I am a 28-year-old male from Valle municipality in Setesdal, Norway. I have formerly 

obtained a bachelor’s degree in Renewable Energy, Engineering from the Norwegian 

University of Science and Technology, and a MSc in Renewable Energy and Environmental 

Modelling from the University of Dundee, Scotland. My inspiration for writing this 

dissertation was to investigate further the effects snow has on PV modules and their IV-

characteristics, which is a probable challenge to encounter as PV technology develops further 

and becomes more widespread throughout the world.   

 

The intended target group of this thesis is people wanting to get a better understanding of 

some of the challenges PV systems has related to snowfall, and how significant the negative 

consequences can be.   
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1. Introduction 

This master’s thesis is written as part of the master’s degree in Renewable Energy at the 

University of Agder. It aims to investigate the impact different types of snow cover has on the 

power output of a PV module and its IV-curve, which is accomplished by modelling IV-

characteristics and using an image analysis method.  

 

This dissertation is a further work for ENE503 Energy Research Project “The Effects of Snow 

on IV-curves and PV Module Performance” [1] written by the author. The research question 

proposed in this thesis can be seen as a continuation of the work conducted in ENE503.   

 

1.1  Background  

 

The use of photovoltaic (PV) systems has become increasingly more popular in the last 

decades with a strong focus on utilizing renewable energy sources that eventually can replace 

conventional energy sources and end the age of oil. Along with other renewable energy 

sources the price of PV panels has seen a significant price drop, which has resulted in a rapid 

growth of the PV installations worldwide.  

 

As electricity production from PV systems are dependent on the available solar resources in a 

particular area they are normally found in areas with favourable solar conditions. For instance, 

countries located closer to the equator have some of the best solar resources in the world, at 

least in terms of high solar irradiance. However, there are also other factors that impact PV 

system performance, such as temperature, among other things [2, 3]. Globally, the installed 

PV capacity has seen substantial growth, which is expected to increase by 17% annually and 

reach 200 GW of new installed capacity in 2026. Utility-scale solar PV installations are 

responsible for 60% of new renewable energy capacity and is the cheapest form of adding 

new electricity generation capacity [4]. Furthermore, in Europe, Germany in particular is 

responsible for spearheading the development of solar PV in the 2000s, and in 2020 the total 

installed capacity reached 54 GWP [5]. 

 

For a country located in the northern hemisphere like Norway, precipitation in the form of 

snow is not uncommon to encounter. Operating PV systems in colder climates does have a 

positive impact on energy production, on the other hand should snow cover the panels, the 

power output is reduced substantially [6]. Therefore, it is beneficial that PV installations in 

areas with a high probability of snowfall implement measures that can help minimize the 

power losses [6].    

 

There are studies and research papers that have investigated the effects of snow on PV system 

performance, although it is not a widely researched area [7-11]. Additionally, it is not easy to 

create models that can accurately predict the output from a PV system affected by snow 
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cover. Snowfall events have proven to be challenging to identify in power generation datasets 

since it is difficult to distinguish the effects of snowfall from PV faults [12]. Moreover, snow 

on PV modules is rarely measured, likely due to the complex behavior of snow which is 

challenging to model.  

 

In this thesis the effects of snow on PV module performance are going to be investigated 

through the modelling and measurement of IV-characteristics, and image analysis. Previously 

recorded IV-curves are used to validate the modelling results. The modelled and measured 

results will then be used to assess the impact of snow cover on PV module output and the 

losses associated with it. This is for a fixed system with PV modules installed in a rack on the 

UiA roof with a 45° tilt angle facing south. However, the methodology presented is thought to 

be applicable for a wider range of PV system configurations and locations. This is primarily 

because the results, for instance how snow cover impacts IV-curves, is assumed to be 

applicable to other PV systems.  

 

Additionally, as there is a considerable number of images of the PV modules available, an 

image analysis will be conducted to get a better understanding of how power losses are 

affected by the actual PV module area covered by snow. This is to be done through automatic 

detection of individual PV modules from images, followed by the detection of snow on the 

module surface. Similarly, to the modelling of IV-curves the objective here is also to use this 

to estimate the power losses from PV modules associated with snow cover.  

 

Consequently, the thesis sets out to investigate how snow affects IV-curves and PV module 

performance and uses the modelling of IV-curves to estimate power loss caused by different 

types of snow cover. In addition, an image analysis methodology is introduced to investigate 

if it could contribute to more accurate power loss estimations.  

 

To make accurate snow loss predictions, we need to understand the effect of snow on PV 

modules, which is challenging since predicting the behaviour of snow is complicated. 

Furthermore, more irregular weather events are likely to occur frequently in the future as a 

direct result of global warming [13]. As a result, increasing the necessity for reliable snow 

loss models. Several different snow loss models have been proposed in the existing literature 

based on various input parameters [9-11]. The results proved to be inconsistent with some 

models showing unreasonably low estimated losses [8].    

 

1.2  Thesis structure and scope 

 

The main work in form of the methodology, results, discussion, and conclusion are new, 

while the following sections: chapter 1, parts of subchapter 1.1, parts of chapter 3, chapter 4, 

subchapter 4.1, and parts of subchapters 4.2-4.5, is based on work conducted in the ENE503 

Energy Research Project course taken in 2021 at UiA. Parts of sections written in this thesis is 

taken from the report “The Effects of Snow on IV-curves and PV Module Performance” 

written by the author [1].   
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First, this thesis presents a brief introduction to PV and how the performance is related to 

irradiance, temperature, and meteorological factors, such as snow. A brief overview of 

existing research on areas related to PV systems with regards to snow is presented, and 

possible research gaps are identified. Furthermore, the type of data available from UiA PV 

system is also presented. Then the thesis subject and research questions that the thesis 

attempts to answer are presented along with methods that will be used to accomplish this.  

Secondly, a literature review on PV systems and the effects of shading, challenges with snow 

cover, module orientation, mechanical loads and snow, IV-curve simulations, and snow loss 

models is presented.  

 

Thirdly, a theory part is included to provide some background information relevant to the 

project. It includes an explanation of the PV module structure, IV-curves, effects of 

temperature, shading and bypass diodes, and the electrical circuit diagram for a solar cell. 

Moreover, the methodology chapter explains the goal and scope of the thesis and introduces 

the UiA PV research system, along with the necessary correction factors due to the system 

design. The datasheet values for each relevant PV module used throughout the thesis is also 

included here. Then the IV-characteristics model in MATLAB Simulink used to perform IV-

curve simulations is explained and validated to assess its accuracy. Based on this model the 

methods for simulating cases with uniform and partial snow cover is introduced, along with 

an investigation of the correlation between irradiance and snow depth. Lastly, the image 

analysis methodology is explained.     

 

The results chapter shows the modelling results of the IV-curves for different irradiance, 

module temperatures, and snow depths for uniform and partial snow cover. In addition, to the 

IV-curves simulated using the results from the image analysis. The next chapter includes 

discussion about things and factors impacting the results, such as irradiance and temperature 

measurements. Besides talk about the inclination angle, comparing modelled and recorded IV-

curves, and discussing the relationship between PMPP (maximum power point) reduction and 

snow depth. Finally, a conclusion is drawn based on the work conducted throughout the 

thesis, together with the findings from the results and discussion chapters. A recommendation 

for further work is also included, along with the used references. 

 

The scope of this thesis is limited by the available data from the UiA PV system, which does 

not include any data related to transmittance, although this is an important factor when trying 

to model snow cover. Furthermore, in the available data there is a limited number of dates 

where PV modules have snow cover, which reduces the availability of situations to analyse.   

 

The dissertation utilizes a wide range of sources, such as PV textbooks and online resources, 

research articles from various journals, and published reports.     
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2. Research Question  

 

The purpose of this master’s thesis is to investigate how precipitation in the form of snow, and 

accumulation of snow on PV modules would impact their performance and how this can be 

estimated from modeling and imaging tools. This is assessed by doing power loss estimations 

of different PV modules that are part of the UiA PV research system. More specifically, the 

research question is investigated through modelled and measured of IV-characteristics, and 

image analysis using the historical data available from the PV system. Based on this, the 

thesis aims to answer the following research questions:  

 

1. How does different degrees of snow cover affect the performance of PV modules and 

their IV-characteristics? 

2. Is it possible to accurately predict power losses associated with a specific snow cover 

on a PV module through the modelling of IV-curves? 

3. Can image analysis be used to quantify the uniform/partial snow cover on the surface 

of PV modules, and can this in combination with the modelling of IV-curves improve 

the estimation of power losses?  

To answer these research questions the following methods are used:  

 

1. Analysis of measured data from the UiA PV research system and modelling of IV-

characteristics.  

2. An image analysis is conducted by implementing simple MATLAB code to process 

raw images of the PV modules and using the tools available in the Image Processing 

Toolbox in MATLAB to identify partial snow cover. 

3. Literature Review  

The purpose of a PV system is to generate electricity and although this is achieved most of the 

time it is inevitable that faults and problems can curtail this production. There are several 

things that can cause power losses, for instance, faults such as hot spots created because of 

shaded or damaged cells [14]. Furthermore, current mismatching will reduce power output 

and can lead to the development of hot spots. This can occur if the manufactured solar cells 

have different characteristics [15]. Problems with shading are usually due to trees or objects 

covering parts of a module, however snow build-up on PV modules will have the same 

negative effect [16].   

 

There are several research papers that consider the effects of snow on PV systems. Because 

the effects of snow are like that of shading, they are often compared. We often distinguish 

between two different types of shading, soft and hard shading. Soft shading is typically 

caused by distant obstacles, such as clouds. This type of shading is normally considered to be 

uniform, meaning it is distributed equally throughout the entire module area and will therefore 

not result in local hot spots. It results in lower irradiance and lower power output, and is also 
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uncontrollable [14]. On the other hand, there is hard shading or partial shading which is often 

caused by physical objects blocking the irradiance on parts of a module. Shading caused by 

trees, bird droppings, dirt, antennas, etc. are some examples of hard shading [14]. Hard 

shading can produce hot spots and have drastic effects on the power output of a PV system 

[17, 18]. 

 

The power losses caused by snow is strongly dependent on the climatical conditions at the 

location and the PV system design [6]. For instance, one study by Powers et al. [10] 

conducted in Truckee, California, tried to estimate the power losses caused by snow 

throughout the winter. They concluded that for different module tilt angles of 0°, 24°, and 

39°, the estimated annual power output losses were 18%, 15%, 12%, respectively. The 

location received on average amounts of precipitation, which is around 500 cm of snow 

annually, although in this case it was slightly below the average of 500 cm [10]. Another 

study done by Becker et al. [19] investigated the effects of snow on a 1 MWp grid connected 

PV system (28° tilt) in Munich, Germany. For a five-year period, their results showed annual 

losses of 0.3-2.7% during the winter months. However, the number of days with snow 

covering PV modules was only 5-17 days each year, with snow heights of 40 cm and 20 cm in 

January and March, respectively [19]. Hence, the much lower power loss reported by [19] 

could be due to much less snow compared to [10]. 

 

A study published by Marion et al. [9] compared measured and modelled energy losses for 

several PV systems in Colorado and Wisconsin. These systems were modelled for a duration 

of two-years. In some cases, measurements showed that monthly losses due to snow reached 

as high as 90%, although annually they varied between 1-12% with average annual snowfalls 

of 137 cm and 98 cm for Colorado and Wisconsin, respectively. They also suggest a snow 

loss model with promising results for long term modelling. The model results deviated less 

than 2% from the measured losses, although short term modelled losses were less accurate 

and could deviate by over 10% [9]. Summing up these studies, annual losses are highly 

dependent on which type of climate the PV systems are found in, and the accuracy of the 

snow loss model being used determines the correlation between measured and modelled 

energy losses.    

 

The accumulation of snow greatly impacts the total power production. A large portion of the 

incoming solar radiation is reflected because of the high reflective properties (albedo) of snow 

[8, 11]. However, even a small layer of snow accumulated on a PV module surface can have 

significant negative effects on the power production. For instance, a study published by 

Perovich [20] investigated the effects of reflection and transmission of light by snow. They 

found that for thin layers of snow, the albedo is heavily reliant on snow depth. For example, a 

snow depth of only 5 cm resulted in an albedo equal to 0.9, meaning there is very little 

transmittance through the snow layer as most of it gets reflected. Furthermore, a snow cover 

of 10 cm only allowed less than 5% and 1%, of visible and near-infrared transmittance, 

respectively [20].  

 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

6 

 

Moreover, the type of snow is also an important factor, which can influence the transmittance 

and the shedding time of snow on a PV module surface [7, 12]. One of the advantages of PV 

modules is that they require little maintenance, compared to other ways of generating 

electricity, which typically involves many moving parts. However, heavy loads of densely 

packed snow, can, if left unattended, cause structural damage to the modules themselves [7, 

21]. In addition, if snow is allowed to freeze on the surface, removing it can be difficult 

without causing damage [22]. Different types of coatings (hydrophobic) have been developed 

to enhance the surface to make water droplets slide off. Icephobic coatings that prevent or halt 

the creation of ice are also being researched [7]. Another solution to reduce snow build-up is 

to run a current through the modules to effectively melt the snow. The Norwegian company 

Innos have created a system able to do this, named “Weight watchers”, which depends on a 

certain snow weight limit to start snow melting [23, 24].   

 

The orientation of PV modules should be taken into consideration when trying to minimize 

power losses from potential snow build-up. Portrait and landscape orientation meaning that 

the long side of the module is facing east-west and north-south, respectively. Several studies 

have looked at how module orientation can impact power losses, both regarding natural 

removal of snow, but also systems with active snow removal features [25]. Different types of 

orientation on the modules will also have an impact on power losses. Especially, if the module 

contains bypass diodes that are series connected, and with strings of series connected cells 

parallel to the long side of the module [7]. Articles published by Andenæs et al. [7] and 

Andrews et al. [8] argue that power losses due to snow cover will be higher for modules with 

portrait orientation compared to landscape orientation [7, 8]. However, another study found 

that modules installed in portrait orientation resulted in quicker module snow clearing [26].  

 

In general, due to gravity it is obvious that a greater module tilt angle can allow for better 

sliding conditions and potentially reduce the build-up of snow. However, this also depends on 

the climatic conditions. For example, in colder climates snow is less likely to melt and slide 

off the modules [8]. In a research article published by Jelle [25], snow was observed on 

modules installed at tilt angles of 70° degrees without sliding, even under cold climatic 

conditions [25]. These conditions should be considered in design of the system, when 

increasing the module angle is expected to provide better snow clearing abilities, although 

sacrificing some power output. Building integrated photovoltaics (BIPV) mounted on building 

facades can be beneficial in areas with frequent snowfall. The increase in albedo because of 

snow around a PV system can result in higher yields, especially for systems with high tilt 

angles [8].    

 

A challenge with snowfall is that from power generation datasets it is not easily detectable 

and separated from what could be common PV faults. A study by Øgaard et al. [12] stated that 

production data recorded for modules with complete snow cover resembled that of a damaged 

inverter. The modelling of PV systems that utilize statistical models or machine learning 

algorithms can result in lower accuracy when parts of a training data set include snow events, 

unless thousands of snow events exist in the data, which the model is trained to recognize 
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[27]. However, a paper published by Schill et al. [28] concluded that the effects of soiling 

were clearly mirrored in the form of the IV-curves, but challenging to differentiate from a PV 

fault. In this case soil had accumulated at the bottom of modules that were mounted in portrait 

orientation. Schill et al. [28] observed similar results on IV-curves for modules with partial 

snow cover located in the alpine region.   

 

In literature there are several articles that consider the power output losses related to snow 

cover on PV modules, but different methods are used for this estimation. Creating accurate 

snow loss models is essential to properly predict PV system yields, especially as weather 

patterns are likely to get more sporadic because of climate change [13]. However, creating 

accurate models is a challenge, particularly considering the complexities of snow and its 

behavior. The performance of different snow loss models varies greatly. For instance, one 

study by Andrews et al. [8] found the snow loss estimates to be unrealistically low.  

 

Furthermore, in the article by Andrews et al. [8] a model was created that considered different 

PV module types at various fixed angles. The short-circuit current (Isc) and back temperature 

were monitored, where Isc was used to determine the performance because of its close 

correlation with irradiance and as temperature has relatively small impacts on Isc. To have a 

basis of comparison it is necessary to establish a baseline for the performance of the PV 

system. The predicted and actual values were then to be compared to give an idea of how 

snowfall would impact the output. The Isc was predicted based on meteorological data [11]. To 

account for snow clearance from PV modules a filtering algorithm was implemented.  

 

Additionally, images of the modules were also taken frequently to identify accumulation and 

clearing of snow [8]. Results showed that snow shedding is hard to predict from 

meteorological data, and that with an increase in module angle snow losses were reduced 

because of better snow shedding. Overall, the predicted loss was lower than the actual loss.  

 

The study from Truckee, California published by Powers et al. [10] considered an empirical 

model based on meteorological data from The National Renewable Energy Laboratory 

(NREL) using the 30-year TMY (typical meteorological year) database. This included daily 

data for snow depths and number of days since last snowfall, but also hourly solar and 

weather data [29]. Based on these datasets an analytical model was created, which estimated 

annual snow losses to 2-5%. Furthermore, a generalized relationship between module tilt 

angle, snowfall, and losses was observed. A simple relationship of annual % snow losses was 

presented and is given by multiplying a factor of 0.1 with snowfall (inches) and cos2(tilt 

angle). It proved to be satisfactory, however, there was an RMS (root-mean-square) error 

margin of +/- 2%. Moreover, the relationship only proved to be decent for tilt angles below 45 

degrees [10].  

 

Moreover, a study published by Marion et al. [9] developed a model that utilized a  

combination of several meteorological variables. This includes the daily snow depths to 

recognize fresh snow, predicting the occurrence of snow sliding by using a relationship 
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between hourly global horizontal irradiance (GHI) and air temperature, predicting the snow 

sliding length by using the array tilt angle, and the degree of energy output losses related to 

array snow coverage. The snow losses were determined by using the measured daily electrical 

energy generated and subtracting it from an estimated value for each day. The electrical 

energy generated without snow was estimated based on an equation that considers module DC 

(direct-current) power, performance ratio, temperature effects and irradiance. In general, the 

model performed well. Modelled annual energy losses were within 0.5% and 1.5% of 

measured losses for the non-residential and residential systems, respectively. The residential 

systems had a module tilt angle of 18.4° and 22.5°, while the non-residential systems had a 

module tilt angle of 15°, 26°, 30°, and 35°. Nonetheless, for shorter time periods (months) a 

larger difference between modelled and measured annual energy loss was observed. It was 

concluded that additional studies could help improve the model, particularly studies related to 

temperature and snow loads, but also a wider range of PV systems setups [9].  

 

One study by Øgaard et al. [12] compared four different snow loss models utilizing five years 

of PV system data from an installation Norway. Three of these models utilize empirical 

relationships in combination with several meteorological factors, these are the models used by 

Andrews et al. [11], Powers et al. [10], and Townsend et al. [30], while the last model by 

Marion et al. [9] estimates snow losses based on a snow cover estimate. The results showed 

variable performance of the models. Overall, the completely empirical models performed the 

worst, which are models where PV system and weather data is used directly to approximate 

power loss. On the other hand, the Marion snow loss model, which relied on empirical 

correlations, proved more flexible and performed better. This model had separated different 

consequences resulting in snow clearing/coverage and modelled them separately. The 

improved Marion model proposed in this paper resulted in more accurate modelled snow 

losses and the authors suggest that it could potentially be used to separate snow loss events 

from other events impacting PV production, such as faults [12]. Further testing of the model is 

still necessary, so a possibility to improve this model could be done by comparing it to a 

model using a combination of IV-curves and images to verify its accuracy.   

 

Besides these models there are also alternative methodologies proposed in other studies that 

involve utilizing MATLAB Simulink to model IV-curves to estimate power losses related to 

snow or shading [12, 31, 32]. For example, a study published by Øgaard et al. [12] compared 

the actual recorded PV data with modelled data that were to represent no snow conditions. 

The model of the IV-curves was based on the single diode model [33], which is an electrical 

circuit representation of a solar cell. The results showed similar trends in voltage, current and 

power losses, although the measured current losses take longer to reach a steady level 

compared to the simulated values, as the snow cover gradually decreases. An explanation for 

this trend is thought to be related to the uneven distribution of snow coverage and thickness 

on the PV module surface that occurs during snow melting [12]. However, although the study 

did model IV-curves it did not compare them with actual IV-curves recorded under snow 

conditions in real-time. Therefore, it will be beneficial to model IV-curves based on the 
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specifications in the module datasheet and compare these results with actual IV-curves 

recorded for modules under partial and total snow cover.  

 

Furthermore, another study by Aarseth et al. [34] utilized IV-curves to simulate defective PV 

modules and compared them to infrared thermography (IRT). Based on the IRT images, the 

IV-curves of defective modules are modelled and compared to field IV measurements of the 

same modules. As a result, power losses related to different module defects could be 

identified [34]. Other studies have used the modelling of IV-curves to investigate the effects 

of shading, for which the IV-curve has similar characteristics to snow coverage. For instance, 

Bazzi et al. [32] proposed a new method for detecting PMPP under partial shading conditions. 

Results showed that the proposed model is capable of simulating IV-curves that match the 

experimental results from real PV modules. However, for two different modules under partial 

shading conditions the PMPP values did include an error margin between 5-7% and 11-13%, 

respectively [32]. This shows that it can be difficult to accurately model IV-curves under 

partial shading conditions.  

 

Several studies have looked at alternative ways of estimating power losses associated with 

snow cover on PV module area [6-9, 11, 12, 35]. In a study by Andrews et al. [8] image 

analysis was used to identify snow on the PV module surface by analyzing time series of 

images to determine where snow typically accumulated over time. Furthermore, in a study by 

Braid et al. [35] images were used to determine snow shedding rates from the PV modules. In 

addition, performance metrics, such as, start/finish show shedding, power production start 

time, and timeslot for 90% power production were also identified. None of these studies 

utilize image analysis single handedly to estimate power loss due to snow cover, but both 

studies use it as part of a more comprehensive methodology. This type of image analysis is an 

effective way to identify the behavior of snow on PV module surfaces, however beyond that 

there are some limitations.  

4. Theory 

 

4.1  Solar module structure  

 

Photovoltaics cells, or commonly known as solar cells, utilize the photovoltaic effect to 

convert the energy in sunlight directly into electrical energy. The cells are typically made 

from crystalline silicon (c-Si), either mono or poly/multi-Si (pc-Si/mc-Si) [36, 37]. Several 

solar cells are mounted together in a framework to create a module. The PV module is built 

up in a sandwich structure which includes different layers, each with their own purpose. This 

structure is illustrated in Figure 4.1. The solar cell layer is in the middle, enclosed by a layer 

of special plastic on each side. This encapsulant’s function is to prevent moisture and soil 

from entering, which can reduce panel lifetime and performance. The front of the solar 

module is enclosed in a glass sheet which protects it from the elements [38]. The glass 

typically has an anti-reflection layer on the backside, which minimizes reflection losses and 
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improves transmittance. An aluminium frame is used to protect the edges and improve the 

overall structural integrity. The back sheet consists of different layers designed to withstand 

UV radiation over time, humidity, mechanical load and provide insulation (electric) [39]. The 

electrical conductors from each solar cell string are interconnected in the junction box, 

together with bypass diodes, see Figure 4.8. The junction box is mounted on the back sheet 

and must be weather-resistant [40].      

 

 
Figure 4.1 – Structure of a typical solar module. Source: [41].  

The performance of PV modules is typically tested under standard test conditions (STC), 

which is the industry standard that ensures equal and fair comparison between different solar 

PV modules. It is specified with a cell temperature of 25°C, irradiance of 1000 W/m2, and air 

mass 1.5 (AM1.5) [42].  

 

4.2  Solar cell IV-characteristics  

 

The IV-characteristics of a solar cell is based on the principle of a photodiode, a component 

that changes properties when illuminated [16]. The current passing through this diode is 

represented by the equation known as the ideal diode law equation, given as a function of 

voltage [43]. The expression is given in Equation (1),   

 

 
𝐼 = 𝐼0 [exp (

𝑞𝑉

𝑘𝑇
) − 1] 

  

(1) 

where I0 is the dark saturation current, k is the Boltzmann constant, q is the electron charge 

value, V is the voltage, and T is the absolute temperature (K).  

 

When the solar cell is illuminated it shifts the IV-curve from the first quadrant down into the 

fourth quadrant to allow for the extraction of power [44]. Figure 4.2 shows a simplified 

equivalent circuit diagram of a solar cell. In addition, Figure 4.2 illustrates how the IV-curve 

is shifted from the first quadrant down into the fourth quadrant as the light intensity increases.  
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Figure 4.2 – Illustration of how the intensity of light affects and shifts the IV-characteristics, and a simplified equivalent 
circuit diagram of a solar cell. Source: PVEducation [44].  

The equation for the IV-characteristics in the first quadrant is given by the following 

expression in Equation (2):  

 
𝐼 = 𝐼𝑃𝐻 − 𝐼0[exp (

𝑞𝑉

𝑛𝑘𝑇
) − 1] (2) 

 

Where IPH is the light generated current and n is the ideality factor.  

 

Usually, the -1 term in Equation (2) is neglected as the exponential expression often is much 

larger than 1, however this is not the case at low voltages. Under illumination the IPH term is 

superior to the I0 term making it negligible [44].       

 

By rearranging Equation (2) an expression can be found for the voltage in terms of current, 

shown in Equation (3):  

 
𝑉 =

𝑛𝑘𝑇

𝑞
ln (

𝐼𝑃𝐻 − 𝐼

𝐼0
+ 1) 

 

(3) 

 

Figure 4.3 shows an example of an IV-characteristics of a single solar cell for different 

irradiance levels, and that ISC is proportional to the irradiance.   

PH 
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Figure 4.3 – Example of an IV-characteristics of a single solar cell at different irradiance levels and 25°C. Source: [45].  

Figure 4.4 shows a typical IV-curve and power curve for a solar cell. The short circuit current 

(ISC) and open-circuit voltage (VOC) can be determined from IV-curve, they are denoted by 

green points on the y-axis and x-axis, respectively. The maximum voltage point (VMPP) and 

maximum current point (IMPP) are also marked on the IV-curve. The electrical power equation 

states that current multiplied with voltage equals power. The product of VMPP and IMPP, the 

maximum power point (PMPP), can be seen on the blue line graph, which represents the power 

curve [44].  

 
Figure 4.4 – Current/Power vs Voltage curve for a solar cell. Maximum power point denoted as PMP. Source: [44]. 
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4.3  Solar cell standard equivalent circuit diagram 

 

The solar cell is often represented by a circuit diagram, more specifically called the standard 

model or single-diode model. This is because the IV-characteristics of a solar cell can be 

represented by an electrical component, such as a diode. It is used to explain the behaviour of 

a solar cell as accurately as possible. Figure 4.5 shows the standard equivalent circuit of a 

solar cell. The photocurrent IPH represents the current generated from the solar cell. Ideally, 

the goal is to pass the generated current to our load at the terminals, however because of the 

physical limitations the diode is not ideal. Moreover, the equivalent circuit also includes ID 

and IP, representing the diode current and parallel (shunt) current, respectively.  

 
Figure 4.5 – Standard equivalent circuit diagram of a solar cell. Source: Mertens, K. [46]. 

The electrical circuit includes the series resistance RS, which is composed of the ohmic losses 

(losses due to voltage drop) at the front contacts of the solar cell, the resistance from the 

semiconductor material and metal electrodes, and the contact resistance between 

semiconductor and metal contacts [46, 47]. Figure 4.6 illustrates how increasing the series 

resistance RS results in the IV-characteristics curve losing its traditional shape, which leads to 

a reduction in the fill-factor of the solar cell.      

 
Figure 4.6 – Effects of series resistance RS on the IV-characteristics curve. Source: Mertens, K. [46].  
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In addition to the series resistance RS another resistance is included in the circuit diagram, the 

shunt resistance RSH. The decrease of shunt resistance is mainly due to defects in the solar cell 

created during the manufacturing process or as a result of degradation processes. These 

defects can result in alternative ways for the light-generated current to flow, resulting in 

power losses in the solar cell. Consequently, an increase in the shunt resistance leads to a 

more optimal curve and a higher fill-factor, which is visible from the IV-characteristics in 

Figure 4.7.   

 
Figure 4.7 – Effects of shunt resistance RSH on the IV-characteristics curve. Source: Mertens, K. [46]. 

Furthermore, it is generally agreed upon in published literature that the increase in shunt 

resistance RSH is seen as a direct result of lower irradiance conditions [48, 49]. The single 

diode equation is widely used as an electrical circuit representation of a solar cell, although 

some weaknesses in certain situations has been identified, especially when trying to model 

IV-curves in low irradiance conditions [49]. In addition, a paper by Grunow et al. [50] 

mentions the importance of RSH and its influence as a substantial loss mechanism at low 

irradiance levels. However, throughout the years low light conditions is taken into account by 

manufacturers, simply by considering a large enough RSH [51].        

 

Apart from the resistances, although not included in the circuit diagram another variable is the 

ideality factor n which is used to denote how closely a solar cell is able to follow the ideal 

diode equation. From Figure 4.5 the current I is given by Equation (4), which shows the 

characteristics curve equation for the standard model.  

 

𝐼 = 𝐼𝑃𝐻 − 𝐼𝑠 ∗ (𝑒
𝑉+𝐼∗𝑅𝑆
𝑛∗𝑉𝑇 − 1) −

𝑉 + 𝐼 ∗ 𝑅𝑆
𝑅𝑆𝐻

 
(4) 

 

The shunt current IP is then given in Equation (5). 

 

 
𝐼𝑃 =

𝑉𝐷
𝑅𝑆𝐻

=
𝑉 + 𝐼 ∗ 𝑅𝑆

𝑅𝑆𝐻
 

(5) 

 

The equation can be used to model the IV-characteristics of a solar cell, although it is only 

solvable using numerical methods [46].    
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4.4  Bypass diodes and PV module faults  

 

There are typically either 36, 60 or 72 series connected solar cells in a PV module. Therefore, 

as they are connected in series, the voltage of all the cells is added up together. Additionally, 

there are usually three bypass diodes for the typical crystalline silicon modules [16]. A 

module with 60 series connected cells, including three bypass diodes are shown in Figure 4.8. 

The function of a bypass diode is closely related to its name. The performance of the module 

is limited by the worst performing cell in the series connection which can end up being a 

bottleneck. For instance, if a single cell in a string is shaded, and as the current through a 

series connection is the same, the current through the string of cells reduces to the current 

level of the shaded cell [52]. Furthermore, the excess current produced by the good cells will 

(forward bias) the good cells. Therefore, if this string of cells is short circuited, then this 

(forward bias across all good cells) reverse biases the shaded cell. Thus, this is causing heat to 

be dissipated in the bad cell, which can result in overheating (hot spots) in some areas [16, 

53]. As a result, to circumvent this problem bypass diodes allow the current to flow in an 

external circuit. 

 
Figure 4.8 – Structure of a PV module with 60 series connected cells and three bypass diodes, and illustration of six solar cell 

strings or three sub-strings. Source: [54]. 

Figure 4.9 shows the IV-curve of a solar cell both with and without a bypass diode. The 

bypass diode will only become active when there is a reverse bias and starts to conduct when 

it passes the threshold voltage (around 0.6 - 0.7 V). Looking at the IV-curve in Figure 4.9 we 

see this occurring as the voltage reaches Vd and the current increases, which reduces the 

energy loss in the cell [53].  
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Figure 4.9 – IV-curve of solar cell with and without bypass diode. Source: PVEducation [53].  

There are several faults that typically can occur throughout the lifetime of a PV module, and 

that can be detected on the IV-curve. Some of these faults is cell breakage, glass corrosion, 

defect bypass diode, short-circuited cells, and broken cell interconnections, to mention some 

[55]. These faults have different effects on the IV-curve. Figure 4.10 shows an example of an 

IV-curve for a PV module with different faults.  

 
Figure 4.10 – IV-characteristics for different PV faults. Source: Dong et al. [56]. 

A mismatching fault, where the individual solar cells in the module can have slightly different 

characteristics, results in a reduction in IMP as seen by the green curve in Figure 4.10. 

Similarly, an open-circuit fault has an identical effect on the IV-characteristics, but ISC is 

reduced further compared to a mismatch fault. This is due to an entire string of solar cells 
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being disconnected with an open-circuit fault, so the current from these cells is effectively 

lost. An open-circuit fault can occur if the electrical circuit is damaged because of broken 

wires or fuses. The reduction in open-circuit voltage VOC can typically be caused by short-

circuit faults where there is failure in individual cells or bypass diodes [55]. Such faults can 

occur both in a series connected string, but also between two individual strings. The 

difference between open-circuit faults and short-circuit faults is that in one case ISC is greatly 

reduced and VOC in the other.  

 

4.5  Shading and snow cover 

 

Snow cover on a PV module will affect the IV-characteristics, but the impact could be more 

drastic as compared to the effects of faults seen in Figure 4.10. The presence of snow reduces 

the sunlight hitting the module surface, and thus reducing the current substantially. Figure 

4.11 shows the comparison of the IV-characteristics for a PV module both completely 

covered by snow (blue curve) and without snow (orange curve). It is clearly visible from 

Figure 4.11 that the current from the module without snow is almost thrice the value of the 

current from the snow-covered module. Additionally, there is another drop in current just 

before the voltage reaches 10 V, likely due bypass diode activation. However, the two 

example IV-characteristics represents data for the same timeslot, but with an interval of a day 

between them. The weather was overcast on both days with available irradiance levels of 129 

W/m2 and 65 W/m2 for the day with and without snow cover, respectively. Figure 4.11 clearly 

illustrates how the current is reduced when the entire module area is covered by snow.  

 
Figure 4.11 – IV-characteristics for a PV module with and without complete snow cover. Source: Data from UiA PV System 
2016. Figure created by author.  

The effects of snow have been discussed earlier and it can be closely resembled by shading a 

cell. Figure 4.12 illustrates the effects of shading 50% of the 60 series connected cells in a 

module without a bypass diode. As expected, the current is reduced to half of its original 

value, because of its close connection with irradiance, although the voltage is not [52]. 
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Figure 4.12 – Effects of shading a single cell in a module. Source: PVEducation [52]. 

A similar occurrence can happen with snow covering parts of a module, although when snow 

melting occurs the covered area is likely to vary greatly resulting in a non-uniform shaded 

area [8]. In addition, snow cover will also have a cooling effect on the modules, which is 

positive for the power output [57]. Nevertheless, this beneficial cooling effect does not exceed 

the power output lost because of snow cover. The effects of covering parts of a cell were 

illustrated in Figure 4.12, but this was without any bypass diodes. Figure 4.13 displays what 

an IV-curve looks like for a module with different faults and with bypass diodes included. We 

observe that there is a noticeable drop in current before the bypass diodes are activated in case 

number (4) and (5). However, with bypass diodes the current is not reduced any further, hence 

the power output is increased relative to a module without bypass diodes [53].  

 
Figure 4.13 – Effects of different faults on the IV-curve of a PV module with bypass diodes. Source: [58]. 

Figure 4.14 shows an IV-curve for a PV module which is subject to partial snow cover and is 

the result of snow covering parts of each module substring. This leads to the activation of 

each of the three bypass diodes connections found in the junction box. As a result, the active 

bypass diodes are visible on the IV-curve as three noticeable kinks since the voltage levels of 

the module is reduced as one module substring is bypassed. Furthermore, as the product of 
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current and voltage represents the power this leads to the creation of numerous local MPP on 

the curve, and where the inverter should find the global MPP as the operating point. However, 

without the bypass diodes the IV-curve would be more like the blue IV-curve illustrated in 

Figure 4.11, resulting in a lower current and therefore reduced power output.   

 
Figure 4.14 – Top figure: IV-characteristics with three active bypass diodes. Bottom figure: PV-characteristics with three 
active bypass diodes. Source: UiA PV System 2016. Figure created by author. 

4.6  Effects of temperature  

Besides shading there are other phenomena that impact solar cells in a negative way. Solar 

cells utilize the photovoltaic effect to convert the energy in incoming sunlight directly to 

electricity. However, only approximately 15-20% of this sunlight is successfully converted to 

electricity, as much of it is transformed into heat [59]. This heat is undesirable since an 

increase in module temperature has negative effects on the performance of the PV module. 

Typically, a change in module temperature by 1 Kelvin results in a decrease/increase in power 

output of around 0.5% [3, 60]. This is because the open circuit voltage is reduced gradually 

with an increase in module temperature. Figure 4.15 illustrates this effect. At the same time 

the short circuit current increases slightly, but this is not enough to counter the voltage drop. 

Consequently, the power output will decrease [2, 16].   

 
Figure 4.15 – Temperature dependency of a silicon solar cell. Source: [16]. 
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5. Methodology 

 

5.1  Goal and scope 

 

This thesis proposes a methodology that is set to utilize a large quantity of available data 

consisting of both recorded IV-curves, images, irradiance, and PV module temperature data. 

The main objectives are to investigate if using an IV-characteristics model can be effective to 

perform power loss estimations on uniformly and partially snow-covered PV modules. The 

overall shape of the modelled IV-curves and the PMPP deviation is compared against the 

recorded IV-curves available from the UiA PV research system to assess the accuracy of the 

power loss estimations. The IV-characteristics model uses irradiance and module temperature 

as input data. Module images and recorded snow depths from SeNorge [61] is used to make 

an initial assumption on the irradiance reduction due to a specific snow cover. Based on the 

results from the first IV-curve simulation the irradiance reduction is adjusted with a trial-and-

error approach to achieve the best possible IV-curve fit between the modelled and recorded 

IV-curves. The snow depths are not used directly as input in the model, but only to get an idea 

of what power losses could be expected for different snow depths and snow covers under 

various irradiance conditions.   

 

Furthermore, the work also aims to investigate if an image analysis method can be used to 

identify snow covered module areas and be incorporated into the IV-curve model to improve 

power loss estimations for partial snow cover situations. This methodology uses module 

images as input, and the results, the calculated partial module snow coverages are used as 

input to the IV-characteristics model. The calculated partial module snow coverage replaces 

the trial-and-error approach described in the previous section. The methodology proposed is 

tested on different types of PV module snow coverages to evaluate the accuracy of the 

modelled power loss estimations under various irradiance conditions.  

 

The first part of this methodology focuses on trying to simulate IV-curves based on a set of 

predefined parameters based on datasheet values for the relevant PV module. This is done to 

estimate the expected output of the modules with and without snow cover which is compared 

with measured IV-curves. These five parameters are estimated, based on the datasheet values, 

by a set of built-in equations in MATLAB, which is then used as input in the single diode 

equation to perform the simulations. These parameters include the dark saturation current (I0), 

light current (IL), series resistance (RS), shunt resistance (RSH), and the diode ideality factor 

(n). In addition, the temperature coefficients of VOC (β) and ISC (α) are also necessary as input 

to account for how the open-circuit voltage and short-circuit current will react to a change in 

cell temperature. However, it is also necessary to make some assumptions for the PV module 

being considered, such as each individual cell being identical, constant irradiance and 

temperature levels for all the cells. Moreover, by utilizing a PV model available in MATLAB 

Simulink, these five parameters are calculated automatically when the PV datasheet values are 

used as input. Additionally, the bypass diodes included in the PV model also have parameters 
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that needs to be specified. This includes the forward voltage (VF) and the internal resistance 

(RIR).   

 

Secondly, the other part of this thesis aims to conduct an image analysis, specifically of PV 

module images. The goal is to automatically identify individual PV module areas in an image 

containing multiple modules. Furthermore, the identified area is to be checked for the 

presence of any snow to assess the amount of PV module area covered by snow. Finding the 

area will allow for an approximation of how much power loss is associated with how large a 

portion of the module area is covered by snow. Additionally, investigating if calculated partial 

module snow coverages can improve the accuracy of the modelled power losses. This is to be 

done by implementing an image analysis method in MATLAB, similarly, to what Pearce et al. 

[8] and Braid et al. [35] used as part of their methodology when investigating power losses 

associated with snow cover on PV modules. The approach is divided into different steps, 

these include conversion of images PV modules into different formats, such as HSV color 

space, greyscale, and lastly image binarization. This is necessary as the image processing 

toolbox available in MATLAB requires this type of image format as an input. Furthermore, 

by utilizing the image region analyzer (IRA) and image segmentation (IS) tools, the 

individual PV module areas can be identified. The detected pixel value for module areas 

without snow cover can then be compared against cases with variable amounts of partial snow 

cover. Thus, giving an estimation of what percentage of the module surface is covered by 

snow.  

       

5.2  UiA PV research system 

 

The University of Agder (UiA) has a PV system used for research purposes mounted on the 

top of the roof at campus Grimstad. It has been in use since 2010, although the PV modules 

have been frequently changed depending on different research projects that has been 

conducted. A variety of PV module types has been used as part of the PV system, including 

monocrystalline silicon (mono-Si), polycrystalline or multi-crystalline (mc-Si), and thin-film 

cells, such as copper indium selenium (CIS), copper indium gallium selenide (CIGS), 

cadmium telluride (CdTe), and amorphous silicon (a-Si). Figure 5.1 shows the PV research 

system as of 2016 and Table 5.1 shows the datasheet values for the different modules, and 

Table 5.2 presents the module type, vintage, and cell/string configuration. The modules in the 

PV system are mounted facing south at a 39° tilt angle with little spacing in between.  

Data collection is done for parameters, such as global horizontal irradiance (GHI), plane of 

array (POA) irradiance, back-of-module temperature, and ambient temperature. Average 

temperature measurements were recorded continuously in 1-minute intervals, along with ISC, 

VOC, VMPP, and PMAX values. In addition, IV-curves consisting of 4000 datapoints were 

recorded for each module if the lower irradiance limit of around 30 W/m2 was reached [62].   
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Figure 5.1 – PV research system setup in 2016 located on the rooftop at UiA campus Grimstad. Source: UiA PV Research 
System.  

Table 5.1 – UiA PV research system PV module datasheet values and measured temperature coefficients. *Not certain these 
are accurate because multiple datasheet values were available, and it was uncertain whether all these were correct.  

Module data Q-Cells 

A10156 

Q-Cells 

A10160 

SunTech 

422 

SunTech 

433 

SunTech 

423 

TITAN 

PMPP 224 W 223 W 235 W 236 W 235 W 250 W 

VMPP 30.15* V 29.74 V  29.6 V 29.6 V 29.6 V 30.72 V 

IMPP 7.20* A 7.47 A  7.61 A 7.61 A 7.61 A 8.14 A 

VOC 37.2 V 36.4 V 36.8 V 37.1 V 37.0 V 38.0 V 

ISC 7.89 A 8.07 A 8.49 A 8.57 A 8.47 A 8.75 A 

VOC and ISC 

temperature 

coefficients 

      

β (VOC) -0.339 [%/K] -0.370 

[%/K] 

-0.351 

[%/K] 

-0.354 

[%/K] 

-0.321 

[%/K] 

-0.320 

[%/K] 

α (ISC)  0.064 [%/K] 0.082 

[%/K] 

0.056 

[%/K] 

0.059 

[%/K] 

0.056 

[%/K] 

0.019 

[%/K] 

 

In 2018 the PV systems data collection capabilities were improved by installing additional 

monitoring equipment. Besides the parameters that are monitored in the earlier system, the 

new research system includes weather data, such as wind speed, air temperature, humidity, air 

pressure, and precipitation. Moreover, instruments measuring other components of the solar 

irradiance, such as diffuse horizontal irradiance (DHI), tilted global irradiance (TGI), direct 

normal irradiance (DNI), global vertical irradiance (GVI), and albedo [62].  

 

SUNTECH 

459 
TITAN 

 ESS NEW 
SUNTECH 

422 SUNTECH 

433 

SUNTECH 

423 Q.CELLS A10156 
Q.CELLS A10160 
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Table 5.2 – Information about PV module types, number of cells/strings, and module vintage. 

PV Module Module Type Number of cells/strings Vintage 

Q-Cells A10156  mc-Si 60 / 3 2008 

Q-Cells A10160 mc-Si 60 / 3 2008 

SunTech 422 mc-Si 60 / 3 2012 

SunTech 433 mc-Si 60 / 3 2012 

SunTech 423 mc-Si 60 / 3 2012 

TITAN mc-Si 60 / 3 2013 

 

The data is collected in the time-period 2011-2017, and it includes both images and IV-curve 

data. In this thesis the used data is from 2015 to 2017. The available image data was 

investigated to pinpoint snowfall events that could be of interest. These time-periods would 

then be used in the modelling of IV-curves and in the image analysis. Firstly, since the 

analysis requires multiple events with snow fall it is required that the recorded data involves 

such events. However, as the recorded data has a minimum irradiance limit of 30 W/m2, time-

periods with too much cloud cover and heavy precipitation (snow) will not provide any data. 

Therefore, events with gradual snow build-up followed by clear sky days with greater 

irradiance levels, or higher air temperatures that allows for snow to melt and slide down the 

module particularly interesting to look at. Furthermore, events with uniform snow cover are 

also of interest as different amounts and types of module coverage could potentially be 

interesting to examine in further detail. For example, occurrences where snow has 

accumulated in smaller random areas of a PV module, covering a specific part of the module. 

In addition, situations with partial snow cover can also contribute to the formation of hot 

spots, which will damage the modules in the long run. It could potentially reduce their 

lifetime, thus making such events important to identify.    

 

5.3  Recorded PV data and correction factors 

 

The UiA PV research system is designed in such a way that for several of the modules IV data 

must be multiplied with a correction factor to get the correct value. This is due to voltage 

dividers having to accommodate for the hardware limitations of the load. The configuration of 

the PV research system is not uniform for all the PV modules, as some channels were 

connected to a 175 W load where 0-10 V corresponds to 0-10 A. Meanwhile, for other 

modules 0-10 V corresponds to 0-20 A, thereby requiring some current values to be 

multiplied by a factor of 2. Furthermore, as a variety of voltage divider ratios are used, the 

correction factors range from 3.7 to 9.2 for the voltage values. The correction factors for the 

different PV modules in the UiA PV research system are listed in Table 5.3. These factors are 

multiplied with the current and voltage raw data values to create the recorded IV-curves 

shown in this thesis.  
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Table 5.3 – UiA PV research system module current and voltage correction factors applied to the raw data. Source: [62]. 

PV Module Current correction factor Voltage correction factor 

Q-Cells A10156  2.0 4.8755 

Q-Cells A10160 2.0 4.902 

SunTech 422 2.0 5.992 

SunTech 433 2.0 5.996 

SunTech 423 2.0 5.99 

TITAN 2.0 5.99 

 

5.4  The IV-characteristics model  

 

The IV-characteristics model is based on a MATLAB Simulink model available from the 

MathWorks website [63]. It is easily editable where the amount of incoming irradiance can be 

specified individually for each of the three substrings, and the temperature of the 

corresponding cells. The irradiance and temperature connections are denoted as Ir1, Ir2, Ir3, 

and Temp C, Temp C1, Temp C2, on the model respectively. The three substrings are series 

connected with a bypass diode connection between each substring. Additionally, to illustrate 

snow cover a shading factor (irradiance reduction) is added to each substring, which is simply 

a constant value that is multiplied with the irradiance values to represent the amount of 

irradiance that reaches the PV module. It ranges from 1 to 0 where 1 and 0 represents no and 

full snow cover, respectively. An image of the MATLAB Simulink model is displayed in 

Figure 5.2.  

 
Figure 5.2 – MATLAB Simulink model of a single PV module with 60 cells. Source: MATLAB snapshot. 

On the right side of the figure the voltage and current values from the three different 

substrings are connected to a current and voltage measurement block and summed together 

before being connected to the variable DC source. To allow for the illustration of both the IV 
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and PV-curves, the individual current and voltage measurements from each substring is 

passed through a scope to plot the two curves. However, first the measurement signals must 

be converted to a vector signal. To calculate the IV-characteristics of the PV module a 

variable DC voltage source is used to ramp the voltage up from 0 until a full IV-curve is 

created. The model utilizes the diode equation, shown in Equation (4), which is solved to 

calculate the current based on the different voltage values input into the equation. 

Furthermore, depending on which PV module is being modelled the simulation parameters 

must be changed accordingly.   

 
Figure 5.3 – PV module data input window (1) and model parameters (2) calculated by the MATLAB Simulink model. Source: 
MATLAB snapshot. Figure created by author. 

 

Firstly, periods with snow fall are identified in the module images available from the UiA PV 

System. The recorded IV-curves for selected situations with PV module snow cover is 

compared with the simulated IV-characteristics for snow and snow free conditions. For the 

selected PV modules shown in Table 5.1, the datasheet values are inserted into the MATLAB 

model module data window (1), illustrated in Figure 5.3. These are used to estimate the 

required model parameters (2) necessary to run the MATLAB model. In addition, the 

incoming irradiance data and module temperature are extracted from the available datasets to 

set up the model correctly. A simple block diagram of the PV snow loss model proposed in 

MATLAB Simulink is displayed in Figure 5.4. The model optimization block illustrated in 

the block diagram is the adjustment of the irradiance reduction described in subchapter 5.1. 
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Figure 5.4 – Basic block diagram of the PV snow loss model in MATLAB Simulink. Source: Figure created by author.  

 

5.5  Validation of the MATLAB Simulink model  

 

Before testing the model on different variations of snow cover it is necessary to test its 

performance and ability to simulate the IV-curve and the PMPP without any form of module 

shading. To get an understanding of how the model performs in situations with module snow 

cover it is useful to first test it under snow free and clear sky conditions. This is necessary 

because without knowing the model accuracy in clear sky conditions it is difficult to assess its 

accuracy in situations with snow cover. Therefore, the model is tested for several different 

situations with variable irradiance levels, and for different PV modules. The overall shape and 

fit of the curves are evaluated and the PMPP compared to the recorded IV-curves. The 

calculated single diode equation parameters from the MATLAB Simulink model, and module 

temperature coefficients are displayed in Table 5.4.     
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Table 5.4 – PV Module calculated single diode equation parameters calculated based on datasheet values at STC and 
measured temperature coefficients. 

Calculated 

parameters 

Q-Cells 

A10156 

Q-Cells 

A10160 

SunTech 422 SunTech 433 SunTech 423 TITAN 

I0 [A] 1.2851e-10   3.95e-10  2.0451e-10  2.3013e-10  6.6771E-11 6.3335e-11  

IPH [A] 7.9194  8.085  8.5391  8.633  8.524  8.7703  

RS [Ω] 0.11816  0.094155  0.11822  0.12976   0.13308 0.11575  

RSH [Ω] 31.7129  50.5209  20.4386  17.6468  20.8608 53.7878  

n 0.9733 0.9958 0.9790 0.9919 0.9412 0.9619 

Bypass diode parameters (Identical for all modules) 

RIR 0.001 Ω 

VF 0.7 V 

 

To validate the MATLAB Simulink IV-curve model different test periods were considered for 

several PV modules. The specific date and time for each case, irradiance values, module 

temperature, modelled PMPP, recorded PMPP, and the deviation between the two PMPP is listed 

in Table 5.5. The time slots considered are between January and April with irradiance values 

ranging from 100 W/m2 to 1000 W/m2, and module temperature values between -5.7 to 

+32.8°C.   

 
Table 5.5 – Irradiance data, module temperature, and comparison of modelled and recorded PMPP values for different time 
periods for different PV modules.  

Date and 

time 

PV 

Module 

Irradiance 

[W/m2] 

Module 

temperature 

[°C] 

PMPP 

modelled 

[W] 

PMPP 

recorded 

[W] 

PMPP 

deviation 

[%] 

27/03/15 

12:31 

Q-Cells 

A10156  

1005.2 25.1  218.1 221.6 1.6  

 

13/12/15 

12:30 

Q-Cells 

A10156 

526.3 11.9 121.2 120.6 0.5 

05/03/16 

10:46 

Q-Cells 

A10156 

171.1 3.5  39.9 38.8 2.7 

02/04/15 

13:09 

TITAN 1010.5 27.6 249.8 229.7 8.1 

 

13/12/15 

12:30  

TITAN 526.3 13.3 139.9 136.8 2.2 

13/12/15 

14:30 

TITAN 264.3 11.1 70.4 69 2.0 

18/01/16 

12:45  

SunTech 

422  

600 14.0 142.8  151.1 5.5 

08/03/16 

14:31 

SunTech 

422 

200.7 9.7  48.0 49.1 2.2 
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02/04/15 

13:09 

SunTech 

422  

1010.5 32.8 220.2 219.7 0.2 

16/12/17 

09:20 

SunTech 

422 

98.5 -5.7 24.5 21.8 11 

 

Results from modelling the IV-curves for the different times and conditions shows that the 

PMPP deviation varies between around 0.2-11%. In one case the modelled PMPP is almost equal 

to the rated power of the TITAN module, but it can also surpass the rated power of the PV 

module. This is due to the rated power at STC, which is based on irradiance values of 1000 

W/m2, and module temperatures of 25°C. So, an irradiance level above STC conditions and 

module temperatures below 25°C, can result in power values above the rated module power. 

The modelled and recorded IV and PV-curves for the Q-Cells A10156, TITAN, and SunTech 

422 PV module is displayed in Figure 5.5, Figure 5.6 , Figure 5.7, respectively. In addition, 

each curve plotted individually are found in Appendix A.2-Appendix A.4. 

 
Figure 5.5 – Top graph: Modelled and recorded IV-curves for the Q-Cells A10156 module at different irradiance levels. 
Bottom graph: Modelled and recorded PV-curves for the Q-Cells A10156 module at different irradiance levels.   



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

29 

 

The modelled and recorded IV and PV-curves for the Q-Cells A10156 module at three 

different irradiance levels, is shown in Figure 5.5. Overall, Isc in the modelled curves deviates 

slightly from Isc in the recorded ones, resulting in a PMPP deviations ranging from 0.5-2.7%. 

However, the shape of the modelled IV-curves is similar, but as the voltage increases past 30 

V the curve is shifted towards a higher voltage compared to the recorded curve. This suggests 

that there are some uncertainties related to the voltage datasheet values and the parameters 

used in the model. Thus, resulting in a greater VOC for the modelled curve compared to the 

recorded one.  

 

 
Figure 5.6 - Top graph: Modelled and recorded IV-curves for the TITAN module at different irradiance levels. Bottom graph: 
Modelled and recorded PV-curves for the TITAN module at different irradiance levels.   

In Figure 5.6 the three irradiance levels considered for the TITAN module are similar to the 

previously modelled example in Figure 5.5. The worst PMPP deviation in this case is 8.1% at 

irradiance level >1000 W/m2, while the best is only different by 2% at <300 W/m2. 

Furthermore, in the last example at irradiance levels of 526.3 W/m2, the deviation is only 

2.2%. Initially for the TITAN module, in this case the curves align almost perfectly, but as the 
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recorded curve reaches its PMPP the modelled curve starts to differ more. This situation is 

under relatively low irradiance conditions (<300 W/m2), so it could be somewhat affected by 

shunt resistance losses. Although, for the SunTech 422 module curves visible in Figure 5.7 

this is more likely as the irradiance levels are <100 W/m2. In this lowest irradiance case, the 

PMPP deviation is at 11%, which is the highest of all the modelled situations. This is a direct 

result of shunt resistance losses, which is visible on the IV and PV-curves as they do not reach 

the modelled voltage and current levels. The low irradiance conditions for this case are 

potentially a direct reason for the shunt resistance losses, as the shunt resistances tends to 

increase with lower irradiance levels [48, 49].   

 

 
Figure 5.7 - Top graph: Modelled and recorded IV-curves for the SunTech 422 module at different irradiance levels. Bottom 
graph: Modelled and recorded PV-curves for the SunTech 422 module at different irradiance levels.  

To sum up, the general impression is that all the modelled curves, overall does fit quite well, 

but in some cases the modelled PMPP is larger than the recorded PMPP, and vice versa. This is 

also the situation where the PMPP deviation is the lowest with only 0.2%, but generally it 

varies from 0.2-11% for the different simulation cases. These differences are considered to be 
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low enough to model power losses as the deviations in the recorded IV-curves potentially are 

even larger when considering snow cover. Therefore, the proposed MATLAB Simulink 

model is considered satisfactory enough to perform simulations to evaluate power losses, due 

to different types of snow coverage on PV modules. Furthermore, at low irradiance conditions 

there is a tendency on the IV and PV-curves that resembles shunt resistance losses. Although 

only one case with irradiance levels <100 W/m2 were tested here, it is likely to be more 

relevant when modelling situations including different types of snow cover. In such cases the 

irradiance levels may be even lower, but not below 30 W/m2 as that is the lower irradiance 

limit set for the system to record IV-curves. The time slots that were modelled were in the 

periods from December-April, and module temperatures ranged from -5.7°C to 32.8°C.  

 

There is no clear trend for what irradiance levels result in the largest percentagewise PMPP 

deviations among the three different PV modules tested for validating the MATLAB Simulink 

model. For instance, the Q-Cells A10156 module simulations the case with highest irradiance 

levels resulted in the largest deviation. On the other hand, for the TITAN and SunTech 422 

module, the lowest irradiance levels resulted in the largest PMPP deviation.    

 

5.6  Modelling uniform snow cover  

 

The modelling of uniform snow cover is necessary to get an idea of how uniform snow cover 

impacts the IV-characteristics and to test the performance of the model. Understanding how 

simulation results from such a simple model compares to the recorded IV-curves will be 

helpful, to identify potential weaknesses, and areas of improvement that can be investigated 

further. Therefore, a way to do this is by using the available images of the PV modules to 

figure out the correlation with snow cover. First, as a starting point it is necessary to make 

some assumptions, such as the snow cover being equally distributed throughout the module 

surface. In this way it is possible to gradually adjust the irradiance reduction of the simulated 

snow cover, and test how this will affect the accuracy of the modelled IV-curve. In addition, 

weather data, such as precipitation will be useful to see how much irradiance levels are 

reduced due to snow cover and the snow depth. Then it is possible to compare how the 

recorded IV-curve fits to the simulated IV-curve and evaluate its accuracy. The recorded 

snow depths are not directly used as input in the MATLAB model but is useful to include to 

get an understanding of how the power loss correlates to the amount of snow covering the 

module surface.    

 

The module that is first considered in the simulation to test the simple IV-characteristics 

model is the Q-Cells A10156 module. The uniform snow cover conditions that are 

investigated are illustrated in Figure 5.8. For this period, according to meteorological data 

from SeNorge, the snowfall corresponds to around 13 cm of fresh snow [61]. However, these 

precipitation values should only be considered an estimate and not exact values. Particularly 

as the snow cover in Figure 5.8 does not look like 13 cm of snow, and since the accumulation 

of snow on a module surface tilted 35° is likely to be less than on a flat surface, such as the 

ground [64].  
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Figure 5.8 – UiA PV research system as of February 2016. Source: UiA PV research system. The modules marked with a blue 
cross are not in use.  

Furthermore, the five simulation parameters calculated in the MATLAB Simulink model 

based on the Q-Cells A10156 PV module datasheet values from Table 5.1, bypass diode 

parameters, and the module temperature coefficients, are shown in Table 5.4. The input of 

these values is at STC for the selected module, and the input window into the model and 

diode parameters is shown in Figure 5.3 and Appendix A.1, respectively.   

 

Similar five-parameter values were found by Hansen et al. [65] for a 240W c-Si PV module, 

although in this case the shunt resistance RSH was considerably larger. In addition, a study by 

Song et al. [66] evaluated different methods for estimating the five-parameter values in the 

single diode equation. The results showed similar values for the majority of the parameters, 

but not all values as it largely depends on the PV module specifications, which were not 

specified here [66]. Also, the bypass diode parameter, such as the forward voltage VF 

typically range from 0.6 to 0.7 V [53]. Therefore, using the single diode equation values 

calculated by the MATLAB Simulink model seem reasonable.   

 

5.7  Investigating the correlation between irradiance and snow depth   

 

Initially, the first simulations are meant to demonstrate how the IV-characteristics is affected 

by the uniform snow cover of different snow depths, which blocks most of the incoming 

irradiance. The recorded IV-curves are compared with the simulated IV-curves that show 

what the IV-curve would look like without snow cover, but under the same irradiance and 

temperature conditions. Examining various snow depths is necessary to investigate the 

correlation between snow depth and power losses. According to a study by Perovich et al. 

[20] <5% of visible light transmittance was allowed through a snow cover of 10 cm, 

highlighting the impact that transmittance and snow depth has on the module power output.  
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Table 5.6 shows the recorded irradiance value, the recorded module temperatures, and the 

recorded snow depth available from SeNorge [61] for different situations. In this first case, 

the effects of snow cover on the IV and PV-curves are illustrated with a comparison of the 

modelled curves without snow and recorded curves with snow. Images of the different PV 

modules with snow cover is found in Appendix A.5. The recorded snow depths are taken 

from the SeNorge location of the UiA PV research system, although it should be noted that 

these precipitation values are considered for the ground, and not tilted surfaces like the PV 

modules. Therefore, the snowfall data from SeNorge should be viewed more as an estimate, 

and not accurate recorded data.  

 
Table 5.6 – Recorded module temperature, snow depths, and irradiance data for different PV modules and time periods. 
Source: UiA PV System, and snow depths from SeNorge [61]. *No recorded snow depths from SeNorge at this day, so 0.3 mm 
is assumed by looking at images with similar low recorded snow depths (case with 0.6 mm). **No recorded snow depths 
from SeNorge, 1.0 mm is assumed.  

Date and 

time 

PV 

Module 

Irradiance 

[W/m2] 

Module 

Temperature 

[°C] 

Snow 

depth 

[mm] 

Image of PV module 

22/01/2015 

09:44 

Q-Cells 

A10156 

165.8 -0.40 70 

 
19/01/2015 

11:56 

SunTech 

423 

31.5 -0.60 0.6  

 
26/03/2015 

13:10 

TITAN 72.1 3.3 27.9 

 
23/01/2016 

12:00  

 

SunTech 

422 

35.2 -2.5 1.8 
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07/03/2016 

10:00  

 

SunTech 

423 

51.8 4.1 22.4 

 
17/01/2016 

12:00 

Q-Cells 

A10160 

618.2  -0.59 3.0 

 
17/01/2016 

12:00 

Q-Cells 

A10156 

618.2  5.8 3.0 

 
12/12/2017 

10:00 

SunTech 

423 

178.3 1.45 0.5 

 
03/03/2016 

08:56 

SunTech 

433 

75.0 0.39 45.6 

 
22/03/2015 

11:44 

SunTech 

422 

59.6 0.48 0.3* 

 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

35 

 

15/12/2015 

10:19 

Q-Cells 

A10160 

213.8 0.96 2.0 

 
19/01/2015 

10:57 

SunTech 

422 

56.3 5.4 1.0** 

 
 

The snow covers visible on the images of the tilted PV modules for the different situations in 

Table 5.6 clearly illustrate that there is insufficient correlation between the recorded snow 

depths from SeNorge.  

 

The modelling results showing a comparison between the modelled and recorded IV-curves 

based on data in Table 5.6 are displayed in Figure 5.9. The impact of the snow cover on the 

IV-curves is clearly visible as there is a distinct difference between the modelled and recorded 

curves. The measured current for the snow-covered curves is significantly lower compared to 

the modelled snow free curves. However, all the modelled curves without snow cover have 

their distinctive shape, but with some PV modules performing better and having a higher 

output than others. This is certainly due to different irradiance and module temperature values 

being used as the module input, and where a higher irradiance value results in a higher 

current. The three cases involving the SunTech modules are almost overlapping because they 

have similar irradiance values as the model input. As irradiance is one of the two input factors 

it has a large impact on the modelled ISC in snow free conditions. On the other hand, the 

recorded IV-curves show a different picture as the highest irradiance situation is not the case 

with largest ISC, due to the snow cover. The reduction in irradiance reaching the PV cells 

shows just how substantial the impact of snow cover is on the power output of the PV 

module. Furthermore, two of the IV-curves show signatures of bypass diode activation, likely 

since the module snow cover is not completely uniform in these two situations.    
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Figure 5.9 – Top graph (no snow cover): Modelled IV-curves for different modules at various irradiance levels without any 
module snow cover. Bottom graph (snow cover): Recorded IV-curves at the same irradiance levels, but with actual snow 
cover at different snow depths. Source: UiA PV System. Figure created by author. Note the different x-axis in the two 
figures.  

Figure 5.10 shows the modelled PV-curves versus the recorded ones for various irradiance 

levels and snow depths. This situation has very low irradiance conditions resulting in small 

currents, and obviously low power outputs, with the highest recorded PMPP value being just 

38.6 W. Overall, all the recorded curves with modules covered by snow produce similar low 

PMPP, which ranges from 1.5-38.6 W.   
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Figure 5.10 – Top graph (no snow cover): Modelled PV-curves for different modules at various irradiance levels without any 
module snow cover. Bottom graph (snow cover): Recorded PV-curves at the same irradiance levels, but with actual snow 
cover at different snow depths. Source: UiA PV System. Figure created by author. Note the different x-axis in the two 
figures.  

Calculated reductions in PMPP when comparing the simulated snow-free and recorded snow-

covered curves is displayed in Table 5.7. The PMPP reduction ranges from 19-97% depending 

on the irradiance/snow depth for each case. However, it should be noted that recorded snow 

depths/precipitation from SeNorge [61] involve a high degree of uncertainty, as being 

completely sure that this amount of snow is present on the module surface is challenging. The 

behavior of snow is very complex to model and would ideally require additional parameters, 

such as snow transparency and its variability with different types of snow to model it 

accurately. In addition, interpreting this from images alone is difficult, but nevertheless it 

should give some indication as to how irradiance correlates with snow depth on the PV 

module surface.   
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Table 5.7 – PMPP simulation results for various time periods with and without snow for different PV modules and snow cover 
depths. 

Date and time PV 

Module 

Modelled 

PMPP without 

snow [W] 

Recorded 

PMPP with 

snow [W] 

PMPP 

reduction 

[%] 

Snow 

depth 

[mm] 

22/01/2015 

09:44 

Q-Cells 

A10156 

39.2 2.4 93.9 70 

19/01/2015 

11:56 

SunTech 

423 

7.3 2.0 72.6 0.6  

26/03/2015 

13:10 

TITAN 19.1 1.5 92.2 27.9 

23/01/2016 

12:00  

 

SunTech 

422 

8.1 2.1 74.1 1.8 

07/03/2016 

10:00  

 

SunTech 

423 

8.2 3.3 59.8 22.4 

17/01/2016 

12:00 

Q-Cells 

A10160 

152.2 13.9 90.9 3.0 

17/01/2016 

12:00 

Q-Cells 

A10156 

145.5 11.5 92.1 3.0 

12/12/2017 

10:00 

SunTech 

423 

44.1 1.53 96.5 0.5 

03/03/2016 

08:56 

SunTech 

433 

18.2 2.45 86.5 45.6 

22/03/2015 

11:44 

SunTech 

422 

14.2 11.6 18.8 0.3 

15/12/2015 

10:19 

Q-Cells 

A10160 

51.4 38.6 24.9 2.0 

19/01/2015 

10:57 

SunTech 

422 

13.1 5.5 58.0 1.0 

 

The correlation between the estimated snow depth on the module surface and the reduction in 

PMPP is plotted and displayed in Figure 5.11. Only five cases were chosen as it was difficult to 

find situations with available data and uniform snow cover as IV-curves for irradiance levels 

below 30 W/m2 are not recorded. Additionally, a considerable amount of work is necessary to 

process the data and extract relevant information. Although, this is just based on 12 different 

situations, the relationship between snow depth and PMPP reduction should still give an 

indication of how they correlate. On the other hand, when comparing two among the five 

cases there are two situations where the recorded snow depth is 22.4 mm and 27.9 mm, 

however the PMPP reduction is 59.8% and 92.2%, respectively. Even though there is an 

irradiance difference between the two, this is not large enough to result in differences of this 

magnitude. For the two cases of minimal snow cover (0.6 mm and 1.8 mm) the PMPP reduction 

is relatively equal between the two. Moreover, the two cases with the deepest snow covers 

produce similar reductions in PMPP, although the difference in recorded snow depths are 

significant, but is compensated by higher irradiance levels.  

 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

39 

 

 

 

 
Figure 5.11 – Linear curve fit to investigate correlation between snow depth and PMPP reduction based on the twelve 
simulated cases. Figure created by author.  

 

5.8  Image Analysis with MATLAB IPT and IRA 

 

The MATLAB Simulink model showed reasonable satisfactory results when modelling power 

loss for cases with uniform snow cover. Furthermore, an alternative approach is considered, 

which utilizes image analysis to estimate the snow-covered area on a PV module surface. For 

partial snow cover situations, the calculated percentage module snow cover is used as input to 

the IV-characteristics replacing the module substring irradiance reductions adjusted by a trial-

and-error approach, see subchapter 5.1. This is done to determine if percentage snow 

coverages estimated through image analysis could improve the accuracy of the IV-curve 

power loss estimations. The methodology described here and in the following subchapters 

explains how the image analysis is completed with only module images as input. The thought 

is that by using the image processing toolbox available in MATLAB, PV modules areas can 

be detected first in clear sky conditions, and then in situations with variations of partial snow 

cover. The difference between the clear sky/snow covered module area makes it possible to 

identify what percentage of the module surface is covered by snow.   
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A visual inspection of the available images is considered the simplest approach to estimate 

how much of the PV module surface is covered by snow in different situations. However, the 

accuracy with such a method is time consuming and largely affected by human error. 

Therefore, an improved module area identification method is proposed that uses the image 

processing toolbox available in MATLAB.  

 

Initially, the images are converted from RGB to hue-saturated-value (HSV) colour space 

because it describes colour, similar to how it is perceived by the human eye. Additionally, 

with RGB colour space we cannot differentiate between colour information from luminance, 

but this is possible with HSV and is the reason why the conversion is necessary [67]. The next 

step involves another conversion from HSV colour space to greyscale, which is necessary 

because the next step (binarization) requires this image input format. Furthermore, it is a way 

of compressing the image so less information is necessary for each pixel. As a result, the 

greyscale images reduce the computational requirements when using image analysis 

algorithms, allowing for faster and better performance [68]. Figure 5.12 illustrates the 

conversion of the image is first converted to HSV and then to greyscale.     

 

With the image converted to greyscale a binarization can be done to identify non-module and 

module colours. The default method used by the MATLAB function “imbinarize” is the 

Otsu’s method, which is an image processing thresholding algorithm that separates pixels into 

foreground and background classes [69]. In this way it is possible to separate out the areas 

containing the PV modules from other parts of the image. The MATLAB code used here is 

shown in Appendix A.8. This image binarization is also required as input to the “Image 

Region Analyzer” (IRA), which can then be used to detect the PV module areas from the 

available images without snow, to determine the total area of the PV module. A “fill-holes” 

function is used in IRA as it allows for some level of correction if some parts of the image 

were identified as a background instead of foreground class, allowing for a better estimation 

of the different PV module areas.  

 

Furthermore, this can then be used as a baseline area for each module without snow cover, 

and now that this is established, the same procedure is repeated for images with different 

variations of partial snow cover. Thus, allowing for a comparison between the area of the 

module being covered/uncovered. The binarized, improved image, and the finalized image 

with identified module areas is shown in Figure 5.13. The identified module areas are given as 

the number of pixels in the filled area.   
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5.9  Image processing method  

 

• Import selected images to MATLAB. As the images are taken from a fixed camera 

position the images can be used without any pre-processing of the images being 

necessary.  

• Selection of a clear sky image of the PV system without any reflection on the module, 

to identify each individual module area.  

• Image is converted into hue-saturation-value (HSV) before being converted again to 

greyscale. 

• Binarization of the image to separate background and foreground classes. Processing 

of image to improve module area estimation accuracy using the “Image Region 

Analyzer”.    

• Utilize IRA to identify the baseline PV module area.  

• Import different images with partial snow cover to estimate module area covered by 

snow and compare this with estimated baseline PV module area.  

A similar approach is used by Pearce et al. [35], however in their study the borders of the PV 

modules in the binarized images were identified by using a contour algorithm. This was also 

considered, but the areas of the PV modules proved to be identified without the use of a 

contour algorithm directly. Hence, the image is binarized using the Otsu’s thresholding 

algorithm, and not a contour algorithm, which is considered simple to implement [69].  

 

However, in some of the cases the binarization of the image proved difficult, making it 

necessary to utilize the active contour function available in the Image Segmenter (IS) tool. It 

uses either a region-based or edge-based active contour segmentation method to refine the 

mask of the PV modules more thoroughly. Otherwise, many of the modules are identified as 

one large area instead of multiple smaller ones, making it challenging to detect the correct 

module area. In this case the contour algorithm runs through several iterations and identifies 

the borders of the PV modules more clearly, so they can be identified as separate module 

areas when using the IRA. Furthermore, the usability also depends on the types of images, 

and the background in the images being analyzed [70]. In another study by Pearce et al. [8] 

the detection of snow on PV modules is done based on the conversion of images to greyscale 

and binarization, similarly to the image processing method described above.   
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Figure 5.12 – Top image: Original image RGB color space. Middle image: image converted to HSV color space. Bottom 
image: HSV image converted to greyscale.  

Noticeable from Figure 5.13 there are some small sections where the detected pixels are 

identified as black instead of white. This results in the estimated PV module area being 

slightly lower than it should be as but compared to the entire module area it is minimal. 

However, this only seems to be the case for the modules that are closest to the camera. 
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Figure 5.13 – Top image: Binarized image. Middle image: improved binarized image. Bottom image: image of several 
identified module areas.  

The estimated PV module pixel values using IRA in MATLAB are listed in Table 5.8. It is 

noticeable that the pixels values do not necessarily correspond to their actual physical area, 

e.g., the considerable pixel value difference between the two Q-Cells modules. As one would 

expect similarly sized modules to have an equal number of pixels, but it is likely that the 

angle at which the images are taken influences this. However, because all the images that are 

used are taken from the same angle this will not have any negative impact.  
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Additionally, this methodology needs more work to be improved as the detection of the 

modules are not flawless in all weather conditions. For example, detecting modules in cloudy 

weather conditions proved to be challenging, making it most applicable for partial snow cover 

in relatively clear sky conditions. A more optimal camera angle would certainly improve the 

detection of PV module areas, but further development beyond that is necessary. On the other 

hand, this method is just considered as a demonstration that image analysis can be a useful 

tool for estimating power loss. 
Table 5.8 – The estimated pixels in filled module areas using IRA in MATLAB.   

PV Module Estimated pixels in filled module area  

Q-Cells A10156  111 326 

Q-Cells A10160 249 047  

SunTech 422 23 985 

SunTech 433 15 211 

SunTech 423 28 983 

TITAN 84 305 

 

Figure 5.14 shows an image of the PV system where the active contour segmentation method 

has been used to improve the detection of the PV module borders. Comparing this image with 

the previous ones from Figure 5.13 there is a clear improvement in the detection of module 

borders.  

 

 
Figure 5.14 – Binarized image of the PV system with improved module borders using the active contour segmentation 
method in Image Segmenter (IS).  
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5.10 Estimating PV module areas under partial snow cover 

 

The baseline PV module pixel area for different modules has been established in subchapter 

5.9. The next step is to estimate the number of snow pixels in situations with partial module 

snow coverage and calculate how much of the module surface is covered by snow. The 

percentage of module snow cover is calculated by first taking the number of pixels estimated 

on the module under partial snow cover, shown in Table 5.9 and dividing it by the estimated 

pixels in the module area without snow cover, from Table 5.8. The result is a percentage of 

the area of the module that is considered free of snow. Therefore, by subtracting this value 

from 100% an estimated module area covered by snow is found. The original images of the 

PV modules for each case are displayed in Appendix A.7.  

 

The estimated module snow cover for the different situations ranges from 11-80%, but there 

are cases where the module busbars are identified by the algorithm as snow. Leading to a 

slightly larger area being recognized as snow, instead of the module area. However, by 

looking at the images of the studied examples in Table 5.9, this is considered to have minimal 

impact on the estimated module snow cover. By visually studying the detected areas of snow 

cover, and making rough estimations, it seems that the area estimated when using MATLAB 

is reasonable accurate.      
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Table 5.9 – Estimated module pixels with snow cover and the calculated percentage of module snow cover. 

 

Date and 

time 

PV Module Estimated 

module 

pixels  

Estimated 

module snow 

cover [%] 

Module image  

27/03/2015 

08:10 

Q-Cells 

A10156  

99 166 11  

 
TITAN (top) and A10156 (bottom) 

27/03/2015 

08:10 

TITAN  36 737 56.4 

23/01/2015  

10:00 

 

Q-Cells 

A10156 

42 651 61.7 

 
A10160 (left) and A10156 (right) 

23/01/2015 

10:00 

Q-Cells 

A10160 

57 996  76.7 

23/01/2015 

10:00 

SunTech 422 11 567  51.8 

 
25/04/2016 

13:11 

Q-Cells 

A10156 

70 178 37.0 

 
A10160 (left) and A10156 (right)  

25/04/2016 

13:11 

Q-Cells 

A10160 

151 391 39.2  

17/01/2016 

12:42  

 

SunTech 422 4640 80.6 

SunTech 422 (top) and SunTech 423 (bot.) 

17/01/2016 

12:42  

SunTech 423 9286 68.0  
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5.11 Estimating snow coverage on individual cell/substring level  

 

The estimation of the snow cover percentage of the PV module area using image analysis 

proved to be feasible. However, with this method it is not possible to estimate which 

cells/substrings are responsible for how much of the power reduction due to the snow cover. 

Therefore, the image analysis is expanded further to investigate how many cells of each 

substring that is covered. The previous partial snow cover model utilized an input for 

percentage of snow coverage for each module substring based on trial-and-error to find the 

best fit. However, by expanding the image analysis method the snow percentage coverage for 

each substring can be estimated automatically. Although, it should be noted that even as the 

percentage of coverage of individual cell areas is identified, there is still a large error margin 

as the snow transmittance will have a major impact on the power output from each cell, 

besides the percentage covered.  

 

Similarly, to the previous method, described in subsection 5.9, for identifying the PV module 

pixel values, a clear sky image is used to estimate the baseline pixel value that will be used as 

a comparison. Based on this image and the selected module the mask is manually drawn as 

accurate as is possible. With the created module mask applied to the image the entire module 

area is cropped before being converted to a binarized format. Furthermore, like before the 

binarized image is imported to IRA where it detects the pixel values for each individual cell. 

The images showing this process is shown in Figure 5.15, and the calculated pixel values the 

Q-Cells A10156 and TITAN module are found in Table 5.10 and Table 5.11. The MATLAB 

code used to do this is shown in Appendix A.9.  

 
Table 5.10 – Calculated Q-Cells A10156 PV module pixel values for each individual cell in each substring, from left to right, and 
total pixel area value.   

Substring 1 (pixel area) Total 

1954 1679 1587 1495 1399 1141 1155 1177 930 776 
27 125 

2017 1798 1634 1545 1508 1193 1178 1249 838 872 

Substring 2 (pixel area)  

2107 1952 1739 1582 1581 1304 1262 1181 1087 869 
30 067 

2191 2006 1866 1666 1568 1496 1393 1104 1244 869 

Substring 3 (pixel area)  

2350 2128 1999 1784 1655 1456 1513 1178 1136 1072 
33 733 

2628 2174 2022 1938 1736 1695 1471 1258 1335 1205 

 

For some of the situations where there is snow present on parts of the PV module, it is 

necessary to use the contour algorithm available in IS. It improves the detection of the 

individual cell borders and enhances the separation of background and foreground values in 

the binarized image. Thus, making it easier to distinguish the cell pixel values from the snow 

cover pixel values. First, the 60-cell mask is applied to the image before binarizing it, and 

then running the contour algorithm.  
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Figure 5.15 – Q-Cells A10156 PV module (left) and TITAN PV module (right), created mask to identify individual cell pixel 
values. Top image: Created module mask fitted to module surface. Middle image: Cropping the relevant module area. 
Bottom image: Binarized image of the created PV module mask. 

Table 5.11 - Calculated TITAN PV module pixel values for each individual cell in each substring, from left to right, and total 
pixel area value. 

Substring 1 (pixel area) Total 

1918 1299 1095 1107 967 920 958 745 725 630 
20 425 

1402 1259 1075 1188 1017 985 928 738 737 732 

Substring 2 (pixel area)  

1480 1225 1119 1325 1059 890 807 899 752 816 
21 589 

1720 1396 1252 1229 1220 1056 879 857 871 737 

Substring 3 (pixel area)  

1650 1392 1328 1215 1245 1149 1169 921 905 1046 
23 833 

1719 1573 1357 1269 1174 1007 964 951 825 974 
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6. Results 

The results presented in this chapter are based on the modelling of IV-characteristics for 

different cases of uniform and partial snow cover. Furthermore, findings from the conducted 

image analysis are presented, and an assessment of its feasibility for estimating power losses 

due to PV module snow cover. A comparison of simulated IV-curves with a modelled snow 

cover, and recorded IV-curves with actual snow cover, for different situations with various 

snow covers is presented. In addition, the feasibility of using the estimated substring snow 

cover percentage from the image analysis in the IV-curve model is evaluated. The estimated 

percentage snow coverages are utilized in situations with partial snow cover, as opposed to 

using a trial-and-error approach.  

 

6.1  Modelling uniform snow cover 

 

After validating the model and testing out the correlation between irradiance and snow depth, 

the next step is to test how cases with modelled snow cover compares to actual recorded cases 

with snow cover. As specified earlier in this case an equal reduction in irradiance must be 

applied to the MATLAB Simulink model for each substring. Obviously, as these cases 

consider snow cover on PV modules, this corresponds to very low light conditions, which has 

a very distinct effect on the IV- and PV-curves. A variety of situations with different 

irradiance values and snow depths are also considered in this case, an overview of these is 

presented in Table 6.1. The results presented here are based on the methodology explained in 

subchapter 5.7. An educated guess of the irradiance reduction is done by visually inspecting 

the module images with snow cover and based on the correlation between snow depth and 

transmittance reduction identified in literature [20]. Based on the IV-curve simulation results 

the irradiance reduction is then adjusted with a trial-and-error approach until a reasonable 

curve fit is achieved.  

 
Table 6.1 – Simulated situations with uniform snow cover on PV module surface, including irradiance, module temperature, 
snow depth, and estimated irradiance reduction values.   

Date and 

time 

PV 

Module 

Irradiance 

[W/m2] 

Module 

Temperature 

[°C] 

Snow 

depth 

[mm]  

Irradiance 

reduction 

[%] 

22/01/2015 

09:44 

Q-Cells 

A10156 

165.8 -0.4 70 95 

17/01/2016 

12:00 

Q-Cells 

A10160 

618.2  -0.6 3.0 90 

17/01/2016 

12:00 

Q-Cells 

A10156 

618.2  5.8 3.0  90 

11/12/2017  

14:30 

SunTech 

433 

35.7  0.7 0.5 87 

12/12/2017 

10:00 

SunTech 

423 

178.3 1.5 0.5 96 

21/01/2015 

14:20 

TITAN 49.7 0.3 21 90 
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07/03/2016 

09:40 

 

SunTech 

422 

100.5  0.6 22.4 80 

03/03/2016 

08:56 

SunTech 

433 

75.0 0.4 45.6 85 

 

The modelling results and comparison of the first case with the Q-Cells A10156 module IV 

and PV-curves are displayed in Figure 6.1. The IV-curve is modelled using the methodology 

described in subchapter 5.6, which uses irradiance and module temperature as input and visual 

inspection of module image, and IV data to generate the recorded IV-curve.   

 
Figure 6.1 – Modelled IV and PV-curves versus recorded curves for uniform snow cover. Source: UiA PV System.  

In this case the shape of the modelled IV-curve fits somewhat to the recorded curve, although 

the latter does not reach the same PMPP level as the former. For the modelled IV-curve the 

PMPP reaches 1.57 W compared to the recorded curve PMPP, which is only 1.2 W, resulting in a 

difference of around 23.6%. However, the absolute PMPP deviation is only 0.3 W. The 

difference in the modelled curve shape is somewhat affected by the VOC not reaching the 

same levels as the recorded curve. A similar voltage deviation was observed for two of the 

modules (A10156 and TITAN) when validating the IV-curve model without snow cover in 

subchapter 5.5. The voltage deviation occurred for both low and high irradiance values.  

 

Therefore, for this case the simple model is not very accurate, although it should be noted that 

the main comparison has been on the PMPP and how the overall shape of the modelled curve 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

51 

 

compares to the recorded one. Potentially, different weather conditions, such as situations 

with higher irradiance and module temperatures will prove to be more advantageous when 

trying to model the IV-curve.  

 
Figure 6.2 – Modelled IV and PV-curves plotted against recorded curves for Q-Cells A10160 module on 17/01/2016 at 12:00.  

The two examples here simulate the same time slot for both the Q-Cells A10160 and A10156 

module, with the results visible in Figure 6.2 and Figure 6.3, respectively. The recorded PMPP 

value for the A10160 module deviates by 2.8% from the recorded value, although the absolute 

PMPP deviation is only 0.4 W. However, for the A10156 module the percentage PMPP deviation 

is 16.7% with an absolute deviation of 2.3 W. The voltage in the modelled curve for the 

A10160 module fits slightly better to the recorded curve compared to the A10156 module 

curves in Figure 6.1 and Figure 6.3. The simulated IV- and PV-curves from the other 

modelled situations with uniform snow cover are shown in Appendix A.6, while Table 6.2 

displays the modelled and recorded PMPP and the calculated PMPP deviation.  
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Figure 6.3 - Modelled IV and PV-curves plotted against recorded curves for Q-Cells A10156 module on 17/01/2016 at 12:00 
with an irradiance reduction of 90%.  

Table 6.2 – Simulation results for modelled and recorded PMPP with variations of uniform snow cover.*Cases where data 
from SeNorge [61] seems too low when looking at images. The snow cover is modelled using the SeNorge data for the 
simulated curves whereas the recorded curves have the actual snow cover.  

Date and 

time 

PV 

Module 

PMPP 

modelled 

[W] 

PMPP 

recorded 

[W] 

PMPP 

deviation 

[%] 

Snow depth 

[mm]  

22/01/2015 

09:44 

Q-Cells 

A10156 

1.57 1.2 23.6 70 

17/01/2016 

12:00 

Q-Cells 

A10160 

14.3 13.9 2.8 3* 

17/01/2016 

12:00 

Q-Cells 

A10156 

13.8 11.5 16.7 3* 

11/12/2017 

14:30 

SunTech 

433 

1.0 0.8 20.0 0.5* 

12/12/2017 

10:00 

SunTech 

423 

1.57 1.53 2.6 0.5* 

21/01/2015 

14:20 

TITAN 1.2 1.15 4.2 21 

07/03/2016 

09:40 

 

SunTech 

422 

4.6 4.39 4.6 22 

03/03/2016 

08:56 

SunTech 

433 

2.53 2.45 3.2 46 
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To sum up, the modelling of uniform snow cover for different cases has shown that the 

calculated PMPP deviation ranges from around 3% to 24%, when simulating IV-curves with 

snow cover and comparing it to actual recorded IV-curves from modules with snow cover. 

Furthermore, in some cases the activation of bypass-diodes indicates that the snow cover on 

the module surface is not completely uniform, which could possibly explain the larger PMPP 

deviations. As discussed earlier the available snow depth data from SeNorge does not always 

seem to correspond well when inspecting the snow cover on the images of the PV modules. 

However, there are some cases where the IV-characteristics simulations manage to calculate 

PMPP values that deviate <5%.  

 

6.2  Modelling nonuniform/partial snow cover 

 

The modelling of partial and variable snow cover is done to investigate how the MATLAB 

Simulink model is able replicate the effects caused by this type of snow cover visible on the 

IV-curves. Previous simulations done for cases of uniform snow cover typically resulted in 

IV-curves having a relatively normal shape, the typical shape during non-shaded conditions, 

although with ISC being reduced. However, with some exceptions in cases where the 

difference in irradiance levels hitting the cells in a substring were high enough to allow the 

activation of one bypass diode, due to uneven snow layers on the module surface and hence 

not representing completely uniform conditions. Similarly, partial snow cover usually leads to 

the activation of bypass diodes which is easily visible on the IV-curve as kinks on the curve. 

For uniform snow covers situations the bypass diodes are usually not activated. By modelling 

variable snow cover, the objective is to get a better understanding of how the distribution of 

snow on the module surface and the different substrings affects the IV-curve. The 

accumulation of snow in certain areas of a PV module can lead to the formation of hot spots, 

which can damage the module and reduce its lifetime [71]. This would be mostly applicable 

in colder climates and areas that have long and stable winters with considerable amounts of 

snowfall and where it would take a long time for snow to naturally clear from the modules, 

allowing it to accumulate at certain areas.  

 

The modelling of different types of partial snow cover is done using the same string-based 

MATLAB Simulink model as for uniform snow, but now a degree of shading must be 

specified for each module substring. This is necessary to simulate the reduction in irradiance 

caused by various types of snow cover for each individual substring. The method is explained 

in subchapter 5.6. The irradiance reduction for each substring is based on an educated guess 

by visually inspecting the module images and using the snow depths from SeNorge. Based on 

the simulation results the irradiance reduction is gradually adjusted until a satisfying fit 

between the modelled and recorded IV-curve is achieved. The uncertainty of the recorded 

snow depths from SeNorge and non-uniformity of snow distribution is the reason for 

combining these two methods.  
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Table 6.3 lists different situations with partial shading that is simulated, all with variable 

degrees of snow depth and irradiance levels. Some of the situations that are investigated relies 

on snow depths from SeNorge recorded the day before, and as evaporation of snow is affected 

by the air temperature, solar and wind conditions, the snow depth may be reduced due to 

sublimation [72]. According to a study by Stigter et al. [73] the average daily sublimation rate 

is around 1.0 mm, although this was measured at a considerable altitude, and under favourable 

conditions. Therefore, in cases where the recorded snow depth value is considered a day later, 

the sublimation loss is unlikely to be very high, and can in most cases be neglected. In 

addition, as discussed earlier in Chapter 3 there is less accumulation of snow on a tilted 

surface [64]. 

 
Table 6.3 – Recorded module temperature, irradiance data, snow depth, and module image for different time slots with 
various degrees of partial snow cover. *Note that the recorded snow depth is from SeNorge for the given date, but actual 
snow depth visible on the images is after melting has occurred. Source: UiA PV System.  

Date and 

time 

PV 

Module 

Irradiance 

[W/m2] 

Module 

Temperature 

[°C] 

Snow 

depth 

[mm]  

Module image 

23/01/2015 

10:00 

Q-Cells 

A10160 

357.6  2.5 70* 

 
27/03/2015 

08:16 

TITAN 460 7.2 27.9* 

 
27/03/2015 

08:39 

TITAN 536 9.9 27.9* 

 
27/03/2015 

09:21 

TITAN 651.2 19.7 27.9* 

 
12/12/2017 

10:20 

SunTech 

433 

332.6 1.5 0.5* 
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The first situation specified in Table 6.3 is shown in Figure 6.4 where the Q-Cells A10160 

module is under partial snow cover. The recorded snow depth from the previous day 

according to SeNorge is 7 cm, but as there is no additional precipitation occurring during the 

night, it is reasonable to conclude that the sublimation is negligible, meaning the snow depth 

should still be around 7 cm.  

 
Figure 6.4 – Q-Cells A10160 PV module from the UiA PV System as of 23. January 2015 at 10:00. Source: UiA PV System.   

 
Figure 6.5 – Modelled IV and PV-curves versus recorded curves for the partial snow cover situation on module Q-Cells 
A10160 shown in Figure 6.4. Source: UiA PV System. 

Q.CELLS A10160 
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The IV and PV-curve result from modelling the Q-Cells A10160 module on 23/01/2015 at 

10:00 is presented in Figure 6.5. In this case the PMPP for the recorded curve (with snow) is 

7.02 W, while for the modelled curve (with snow) it is 8.22 W, resulting in a 14.6% 

difference. As the model is string-based (20 cells) it is visible from Figure 6.5 that the bypass 

diode activation on the recorded curve (with snow) does not fit well. In substring 1 there are 

only a few cells completely and partially covered by snow, while the remaining two 

substrings are totally covered. The irradiance reduction applied for substring 1-3, are 88, 90, 

and 90%, respectively. Otherwise, the general shape of the curve has some similar traits, but 

VOC for the recorded curve exceeds the value of the modelled one by 2-3 V.  

 
Figure 6.6 – TITAN PV module and the three substrings, each consisting of 20 solar cells. Image from the 27. March at 08:16, 
08:39, and 09:21 with partial snow cover. Source: UiA PV System.  

Substring 1 

Substring 2 

Substring 3 
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Figure 6.6 displays the TITAN module with its three substrings of solar cells. The image is 

from the 27. March at 08:16, 08:39, and 09:21 showing a situation with partial snow cover 

that gradually decreases. This is a scenario at different times with different module 

temperatures and irradiance values, which are compared. At the first image in Figure 6.6 each 

of the three substrings are illustrated. Here it is clearly visible that substring 1 is completely 

free of any snow. Meanwhile in substring 2 less than 10 cells are without any snow cover, and 

in substring 3 all the cells are almost entirely covered by snow. Furthermore, looking at the 

second image at 08:39, substring 2 has less snow cover, and is completely free of snow at 

09:21. However, most of substring 3 remains partly covered at all timeslots.  

 
Figure 6.7 – IV-curve modelling results for the three different times with various types of partial snow cover for the TITAN 
module. Top figure represents the timeslot at 08:16, middle figure the one at 08:39, and the bottom figure timeslot at 09:21. 
The activation of the three bypass diodes is clearly visible on the IV-curve.   
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The results from the different simulations are shown in Figure 6.7, and the PV-curves are 

found in Appendix A.6. Figure 6.8 illustrates the modelled and recorded curves for the 

SunTech 433 module under the partial snow cover visible inTable 6.3. In this case, the first 

parts of the curve up to the first local PMPP does not fit completely well, however the 

remaining sections do, and the PMPP deviation is <1%.  

 
Figure 6.8 – IV and PV-curve modelling results for the SunTech 433 module with partial snow cover compared against the 
actual recorded IV and PV-curves from the UiA PV system. 

Table 6.4 – Simulation results for different PV modules and situations with variations of partial snow cover. Including the 
irradiance reduction per substring, modelled, recorded, and PMPP deviation.  

Date and 

time 

PV 

Module 

Irradiance 

reduction 

Substring 

1 [%] 

Irradiance 

reduction 

Substring 

2 [%] 

Irradiance 

reduction 

Substring 

3 [%] 

PMPP 

modelled 

[W] 

PMPP 

recorded 

[W] 

PMPP 

deviation 

[%] 

23/01/2015  

10:00 

Q-Cells 

A10160 

88 90 90 8.2 7.0 14.6 

27/03/2015 

08:16 

TITAN 0 47.2 84.5 46.2  48.3  4.3 

27/03/2015 

08:39 

TITAN 0 22.0 82.0 78.1 76.3 2.3 

27/03/2015 

09:21 

TITAN 0 0 70.0 115.4 103.6 10.2 

12/12/2017 

10:20 

SunTech 

433 

50 83 85 13.03 13.01 0.12 
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The values listed in Table 6.4 show the three different timeslots for the TITAN module case 

in Figure 6.6, the corresponding module temperature and, irradiance data for each case, and 

the respective substring irradiance reductions. As expected, the trend is that for each scenario 

the irradiance levels increase along with the module temperatures. Simultaneously, the partial 

snow cover is slowly reduced over time. The simulated cases show that the calculated PMPP 

deviation ranges from 0.1-14.6% for the cases investigated. However, when considering 

curves with activated bypass diodes, resulting in additional local PMPP, these do not frequently 

fit as well. It should be noted that the case with the highest PMPP deviation involves very low 

power values, which implies higher uncertainty.  

 

6.3  Comparing recorded IV-curves and modelled curves using calculated 

substring snow coverages from image analysis 

 

At first, looking at the images of the PV modules with estimated snow cover it is possible to 

draw some conclusions. Because of the relationship between irradiance and ISC it is expected 

that, at best, half of the module power output is available under a 50% area-based module 

thick snow cover, unless bypass diodes are activation which will result in a voltage drop. 

Furthermore, if a larger area-based snow cover is present the reduction in power is decreased 

equally to the percentage of the estimated snow cover. However, this is a simplification as the 

snow layer is unlikely to have uniform depth, especially in partial snow cover situations. 

Additionally, if bypass diodes were activated the power reduction would not correlate directly 

with the magnitude of the snow cover. In this subchapter the recorded IV-curves and their 

PMPP is compared to modelled IV-curves using the estimated percentage snow coverages from 

the image analysis, see subchapter 5.8-5.10 for methodology.   

 

The two Q-Cells A10156 modelled situation from Table 6.5 with partial snow coverage is 

shown in Figure 6.9. The top images show the created 60-cell mask for the Q-Cells A10156 

module applied to the two module images. The middle images show the binarized, but 

distorted images trying to separate the PV cells pixels from the snow cover pixels. Therefore, 

by using the contour algorithm in IS the improved image is generated, shown as the bottom 

images in Figure 6.9. Note that the PV cells covered partially or entirely, by snow are 

displayed in white color, whereas the uncovered cells are shown in black. This process is then 

repeated for each of the simulated cases shown in Table 6.5, and the results are visible in 

Figure 6.9 and Figure 6.10.   
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Figure 6.9 – Top images: Created Q-Cells A10156 mask applied to the two images. Middle images: binarization of masked 
images. Bottom images: improved version of masked binarized images using active contour algorithm in IS.  

 
Figure 6.10 – Top images: Created TITAN module mask applied to the three images. Middle image: binarization of masked 
images. Bottom images: improved version of masked binarized images.  
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Table 6.5 displays cases with different PV modules under different types of partial snow 

cover together, with the calculated module snow pixel value for each substring, and the 

masked module image. Similarly, to before the module pixel area covered by snow is found 

by taking the calculated snow pixel values from Table 6.5 divided by the baseline pixel values 

for each substring from Table 5.10. Figure 6.11-Figure 6.15 shows the simulated IV and PV-

curves for the modelled curves using the estimated percentage substring snow coverages from 

Table 6.6.  
Table 6.5 – Calculated total module substring pixel values for different situations with partial snow cover. 

Date and 

time 

PV 

Module 

Calculated 

pixels 

substring 

1  

Calculated 

pixels 

substring 

2 

Calculated 

pixels 

substring 

3 

Module image with mask 

23/01/2015 

10:00 

Q-Cells 

A10156 

1 368 20 548 33 712 

 
27/03/2015 

08:16 

TITAN No snow 10 625 22 225 

 
27/03/2015 

09:07 

 

Irr.: 589.4 

W/m2 

Temp: 

18.6°C 

TITAN No snow No snow 21 057 

 

27/03/2015 

09:21 

TITAN No snow No snow 18 419 

 
17/01/2016 

15:00 

 

Irr.: 335.6 

W/m2 

Temp: 

3.3°C 

Q-Cells 

A10156 

Covered 6 540 18 254 
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Figure 6.11 – Modelled IV and PV-curves, using the estimated substring snow coverages, and the recorded IV and PV-curves 
for the Q-Cells A10156 module on 23/01/2015 at 10:00.  

 
Figure 6.12 – Modelled IV and PV-curves, using the substring snow coverage estimated using image analysis, and the 
recorded IV and PV-curves for the TITAN module on 27/03/2015 at 09:07.  
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Figure 6.13 – Modelled IV and PV-curves, using the estimated substring snow coverages from the image analysis, and the 
recorded IV and PV-curves for the TITAN module on 27/03/2015 at 08:16.  

 
Figure 6.14 – Modelled IV and PV-curves, using substring coverages estimated through image analysis, and the recorded IV 
and PV-curves for the TITAN module on 27/03/2015 at 09:21.  
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Figure 6.15 – Modelled IV and PV-curves, using estimated substring coverages from image analysis, and the recorded IV and 
PV-curves for the Q-Cells A10156 module on 17/01/2016 at 15:00.  

The simulation results after using the calculated irradiance reductions for each substring from 

the image analysis as input into the MATLAB Simulink IV-characteristics model is displayed 

in Table 6.6. Comparing the curves for the Q-Cells A10156 module with the recorded curves, 

it is apparent that the model fails to resemble them in the two cases tested. Additionally, in 

both cases there is no bypass diode activation visible on the recorded curves, as opposed to 

the modelled ones where it is a direct consequence of the input substring irradiance 

reductions. The calculated snow coverage seems reasonable; however, the MATLAB model 

assumes that the irradiance hitting the PV module is reduced similarly to the module area 

covered by snow. That is an oversimplification, since considering the transparency of the 

snow layer requires additional data that could be difficult to gather and would require a more 

complex IV-characteristics model. As a result, the calculated PMPP deviation equals 75.4% and 

76.6% in these two cases for the Q-Cells A10156 module, although it should be noted that 

these cases involve the lowest recorded power values, which makes the uncertainty of the data 

higher [74]. For instance, the recorded PMPP is 6.1 W and 5.5 W, respectively, which are 
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extremely low power values. On the other hand, for the three TITAN module cases at 

different time slots, the calculated PMPP deviation is in the range 2.8-9.1%. The activation of 

the bypass diodes on the modelled and recorded curves also matches to some degree. That is a 

significant improvement compared to the previous situations with the A10156 module.    

  

The mismatch between the recorded and modelled IV-curves for the TITAN module was 

much greater compared to the Q-Cells A10156 module IV-curves. Simulations done earlier 

with the Q-Cells A10156 module (see Figure 6.1 and Figure 6.3 ) seem to work fine and gave 

reasonable matching IV-curves and PMPP deviations. However, the activation of the bypass 

diodes has not been demonstrated clearly on any of the previously recorded curves for the Q-

Cells A10156 module. Therefore, it is possible that one or more of the bypass diodes are not 

working properly, which would result in a drop in power output visible on the IV-curve if this 

was the case. On the other hand, it could potentially be a coincidence and that additional 

simulations would have given better results for both modules, but that is just speculation.   

 
Table 6.6 – Simulation results for different cases of module partial snow coverage showing the calculated substring irradiance 
reductions, and a comparison between the modelled and recorded PMPP. 

Date and 

time 

PV 

Module 

Calculated 

available 

irradiance 

Substring 1 

[%] 

Calculated 

available 

irradiance 

Substring 2 

[%] 

Calculated 

available 

irradiance 

Substring 3 

[%] 

PMPP 

modelled 

[W] 

PMPP 

recorded 

[W] 

PMPP 

deviation 

[%] 

23/01/2015 

10:00 

Q-Cells 

A10156 

94.95 31.65 0.062 23.5 5.5 76.6 

27/03/2015 

08:16 

TITAN 100 50.79 6.75 43.9 48.3 9.1 

27/03/2015 

09:07 

TITAN 100 100 11.64 98.8 96.0 2.8 

27/03/2015 

09:21 

TITAN 100 100 22.72 108.5 103.6 4.5 

17/01/2016 

15:00 

Q-Cells 

A10156 

0 45.9 78.25 24.8 6.1 75.4 

 

6.4  Investigating the impact of current limiting by individual solar cells  

 

The power output of a module substring is limited by the output of the least producing cell. 

Therefore, a larger snow cover on an individual cell will be responsible for restricting the 

power output from the entire substring in the module. The two modelled cases with the largest 

PMPP deviation for the previous chapter is considered again, but this time the most covered cell 

in each substring is identified, along with its pixel value. This is done to try and represent the 

least producing cell in the substring, to assess if it improves the results. The methodology 

used here is described in subchapter 5.11.  

 

Similarly, to before the pixel value of each snow-covered cell is compared to baseline pixel 

value (free of snow) of the cell. The cell with the largest pixel difference compared to the 
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baseline value is considered the most limiting cell. Then based on this, the available 

irradiance for the limiting cell in each substring is calculated and used as input in the 

MATLAB IV-characteristics model. The binarized images displaying the identified snow-

covered solar cell areas for the cases with the A10156 and TITAN modules are presented in 

Figure 6.16.  

 

Figure 6.17-Figure 6.20 shows the simulated IV and PV-curves for the partial snow cover 

situations for the Q-Cells A10156 and TITAN modules displayed in Figure 6.16. Whereas the 

results from modelling the IV-characteristics based on the most limiting solar cell in each 

substring identified using the image analysis method is shown in Table 6.8.  

 
Table 6.7 – Recorded irradiance and PV module temperature data, and module image for the selected situations.  

Date and 

time 

PV 

Module 

Irradiance 

[W/m2] 

Module 

Temperature 

[°C] 

Module image 

23/01/2015 

10:00 

Q-Cells 

A10156 

357.6  2.5 

 
17/01/2016 

15:00 

Q-Cells 

A10156 

335.6 3.3 

 
27/03/2015 

08:16 

TITAN 460 7.2 

 
22/01/2015 

10:00 

TITAN 296.3 4.6 
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Figure 6.16 – Top images: Binarized images of the Q-Cells A10156 modules, identifying all the snow-covered cell areas (red) 
for the two modelled cases from the previous chapter. The left and right images showing the cases on 17/01/2016 and 
23/01/2015, respectively. Bottom images: Binarized images of the TITAN module, showing the identified snow-covered cell 
areas (red) for the two situations. The left image shows the partial snow cover case on 27/03/2015 and the right image 
shows the situation on 22/01/2015.  

 
Figure 6.17 – Modelled IV and PV-curves, using the estimated available irradiance based on the limiting cell in each 
substring, compared to the recorded curves for the A10156 module on 17/01/2016.  
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Figure 6.18 – Simulated IV and PV-curves, using the estimated available irradiance based on the limiting cell in each 
substring, compared to the recorded curves for the A10156 module on 23/01/2015. 

 
Figure 6.19 – Modelled IV and PV-curves, using the available irradiance estimated based the most limiting cell in each 
substring, compared to the recorded curves for the TITAN module on 27/03/2015.  
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Figure 6.20 – Simulated IV and PV-curves, using the available irradiance values estimated based on the limiting cell for each 
substring, compared to the recorded curves for the TITAN module on 22/01/2015.  

The idea was to investigate if the results could be improved by using an alternative approach 

and taking advantage of the image analysis where individual cell pixel values were already 

identified. With the calculated limiting cell irradiances available from each substring shown in 

Table 6.8, the PMPP deviation is 73.4% for the case for the A10156 module shown in Figure 

6.18. Consequently, the modelled curve differs considerably from the recorded one. In 

contrast, the other case visible in Figure 6.17 showed a larger improvement with a PMPP 

difference of 19.7%. However, this is still a substantial deviation, but the overall curve does 

fit better for simulations done with the cell-based model.   

 

Furthermore, the two simulated cases for the TITAN module, illustrated in Figure 6.19 and 

Figure 6.20, showed PMPP deviations of 24.4% and 18.2%, respectively. The first case was 

modelled earlier, shown in Figure 6.7, not using the image analysis approach. In that case the 

PMPP deviation was only 4.3%, however using the limiting cell-based method resulted in a 

20% greater PMPP deviation, and thus a worse result. The last case produced the lowest PMPP 

deviation of the four modelled situations with 18.2%. Studying the IV-curves for these cases 

the overall curve shape fits, although not the magnitude of the current/voltage. The 

comparison between the string-based model and cell-based model is discussed further in 

subchapter 7.5.   
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Table 6.8 – Modelling results for the two Q-Cells A10156 module and two TITAN module cases displaying the calculated 
limiting cell available irradiance for each substring, and the modelled and recorded PMPP. 

Date and 

time 

PV 

Module 

Limiting 

cell 

available 

irradiance  

Substring 

1 [%] 

Limiting 

cell 

available 

irradiance  

Substring 

2 [%] 

Limiting 

cell 

available 

irradiance  

Substring 

3 [%] 

PMPP 

modelled 

[W] 

PMPP 

recorded 

[W] 

PMPP 

deviation 

[%] 

23/01/2015 

10:00 

Q-Cells 

A10156 

83.8 8.4 10.4 20.7 5.5 73.4 

17/01/2016 

15:00 

Q-Cells 

A10156 

18.35 9.61 1.52 4.9 6.1 19.7 

27/03/2015 

08:16 

TITAN 100 2.97 5.65 36.5 48.3 24.4 

22/01/2015 

10:00 

TITAN 59.4 4.5 1.3 17.0 13.9 18.2 

 

7. Discussion 

In this chapter, the results from the modelling of IV-characteristics for different situations 

with variable amounts of both uniform and partial snow cover are discussed. The significance 

and uncertainty of input parameters that impact the modelling results, namely recorded 

irradiance, and module temperature data is debated. Moreover, the importance of 

transmittance and snow depth when modelling IV-curves is explained, and the findings from 

the image analysis is presented and evaluated.  

 

7.1  The impact of uncertainty in measurements   

 

There are numerous things that can lead to the incorrect measurements when irradiance and 

temperature data is collected, which can have negative effects if used to model IV-curves. 

Incorrect irradiance and temperature measurements can lead to larger differences between 

simulated and actual IV-curves [75]. Since the MATLAB Simulink model that was used to 

perform the simulations relies on two input parameters, namely irradiance and temperature, 

the importance of accurate measurements is evident.    

 

During this work several temperature measurements that had been used to simulate IV-curves 

had to be changed, and the simulations repeated because of misread values being used as 

input. These changes made some of the PMPP deviations, for certain modelled situations, more 

accurate, whereas in other cases the opposite happened. The exposure to sunlight and higher 

irradiance values results in an increasing module temperature. Therefore, as there are multiple 

PV modules in the system the IV-curves for each individual module can be plotted together 

and compared. A module with temperature data that is not following the irradiance as 

expected is then easily detected. Furthermore, for some of the PV modules the temperature 
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sensors were damaged and did not provide any useful data. In these cases, average module 

temperature values of similar neighboring PV modules were utilized.   

 

In addition to abnormal cases of increased uncertainties there are several uncertainties related 

to normal operation. The electrical equipment used to do measurements always involves some 

degree of uncertainty. The IV-curve measurements that are done in the UiA PV system uses 

electrical loads that involve measurement uncertainties, which according to the datasheet 

specifications has, for instance, a wattmeter accuracy of ± 0.5% [76]. In addition, the 

Kipp&Zonen pyranometer that does the irradiance measurements is listed with a measurement 

uncertainty <2% [77]. Additionally, the temperature sensors have a measurement uncertainty 

of ±0.2°C for the temperature range -40°C to +70°C [78].  

 

The module temperature measurements that are registered also depend on where the 

temperature sensor is located on the backside of the module. A uniform snow cover on the 

module surface is likely to give more accurate temperature measurements compared to a 

partial snow cover situation. The temperature measurement for a single location with a 

module under partial snow cover will not be representative for the entire module surface. For 

example, if a large snow cover accumulated around the module frame and the module center 

remained snow free, a temperature sensor mounted in the center would result in a higher 

measurement uncertainty. This is likely to occur in situations that involve snow melting which 

results in different irradiance values due to snow cover and therefore also different 

temperatures.   

 

7.2  The effects of snow cover 

 

The IV-curves modelled using the MATLAB Simulink model showed variable degrees of fit 

when compared to the recorded IV-curves from the UiA PV system. Additionally, it is 

expected that the modelled and recorded IV-curves will be very different from each other, as 

IV-curves with and without snow cover is being compared. Figure 7.1 displays the correlation 

between irradiance and snow depth, and PMPP reduction for the different modelled cases. 

Firstly, most of the cases consider irradiance values <200 W/m2, although two situations have 

irradiance levels at around 600 W/m2. The simulation results for irradiance <200 W/m2 shows 

that the PMPP reduction varies greatly, with values ranging from as low as 20% up to over 90% 

for some cases. The difference in irradiance may impact the overall PMPP deviation results as 

higher uncertainty involving low irradiance values has been confirmed in different 

publications [74, 79]. Simultaneously, the snow depth for these cases varies from 0.30-70 

mm, although there are situations with high irradiance, low snow depths, and high PMPP 

reductions, relative to other examples. A higher irradiance values means that there is more 

radiant energy striking the module surface area compared to a situation with lower irradiance. 

The higher radiant energy could result in more sunlight penetrating the snow layer when the 

irradiance is higher and speed up the melting process of snow. However, it is evident that the 

power reduction on the recorded IV-curves with snow compared to the modelled IV-curves 

without snow is substantial. For instance, the two highest irradiance cases (>600W/m2) have a 
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PMPP reduction of 91% and 92%, respectively, despite both cases having a recorded snow 

depth of only 3.0 mm. In contrast to situations with irradiance levels of 166 W/m2 and 72 

W/m2, resulting in PMPP reductions of 94% and 92%, respectively. Regardless of these 

situations having considerably higher recorded snow depths of 70 mm and 28 mm.  

 
Figure 7.1 – Results from modelled IV-curves for different situations showing irradiance values and snow depth plotted 
against the calculated PMPP reduction for each case.   

Moreover, of the five different cases with irradiance levels <60 W/m2 four of them have snow 

depths <2.0 mm, but with PMPP reductions varying between 18.8-74.1%. However, in the fifth 

case the PMPP reduction is 59.8%, even though the recorded snow depth is 22.4 mm. Overall, 

it is possible to spot something resembling a trend, which with increasing snow cover results 

in larger PMPP reductions, but ideally, they should be more consistent to draw any conclusions.  

 

Considering some of the findings from Perovich et al. [20], referring to the transmittance 

reduction related to snow cover, and the research from Andenæs et al. [7], the results from  

some of the cases are acceptable. Particularly cases with PMPP reductions around 90% for 

relatively low snow depths, however, there are situations where this clearly is not the case. 

However, there is a significant uncertainty in the recorded snow depths that is used, which is 

available from SeNorge. For many of the examples the accuracy of the recorded snow depth 

is questionable because a simple glance at the module images is sufficient to disprove it. It 

should also be pointed out that the recorded snow depths are based on the available 

meteorological data, and not a snow gauge specifically designed to measure snow depths at an 

exact location.  
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To get a better understanding of snow accumulation on a tilted surface a possible snow depth 

measurement could be to mount a snow gauge at an inclination similar to the tilt angle of a 

PV module or system. Similar to what Powers et al. [10] did with PV modules mounted at 

different inclination angles, although the snow measurements used here were for a horizontal 

and not a tilted surface. To achieve this a possibility would be to apply some form of adhesive 

layer to prevent snow sliding and see how snow would accumulate on the module surface.  

 

Moreover, snow depth is a complex thing to measure because snow tends to accumulate 

randomly around on the module surface [6, 8]. The inclination of the PV module and the 

module shape heavily impacts how snow will accumulate. So, for a module mounted at a 

certain inclination it is likely that snow accumulating results in different snow depths 

throughout the module surface. Furthermore, unevenness on the module surface could 

potentially increase the chances of snow accumulation at certain areas, but wind is another 

factor that affects snow accumulation [64]. Therefore, even if relatively accurate snow depth 

measurement were available it would still involve some form of uncertainty.  

 

The power loss caused by snow cover on a PV module surface is not expected to have a linear 

relationship to the depth of the snow layer. The transmittance is impacted by snow crystals 

existing in numerous shapes and forms with different characteristics [22]. For example, a wet 

snow layer with a higher water content and a dryer snow layer of the same depth will certainly 

result in varied power losses [7]. Moreover, a snow layer will also change over time, and an 

old, deformed snow layer is likely to be more compacted together, which can impact the 

transmittance in different ways.  

 

7.3  Simulated versus recorded IV-curves  

 

The IV-curves modelled (with snow) using the MATLAB Simulink model were compared 

with the recorded IV-curves (with snow) from the UiA PV system. The comparison was done 

for different types of snow cover. Simulation results for uniform and partial snow cover are 

illustrated in Figure 7.2 and Figure 7.3 showing the percentage PMPP deviations and absolute 

PMPP deviations, respectively. Analyzing both percentage and absolute values is necessary 

because it is easy to misinterpret the results when only looking at percentage values. The PMPP 

deviation is used to evaluate how the MPP from the modelled and recorded IV-curve matches.  

 

The optimal reduction in irradiance used in the MATLAB model was first assumed based on 

viewing the module images and the relationship between irradiance reduction and snow depth 

from published literature [7, 12, 20]. Based on the fit between the modelled and recorded IV-

curve the reduction in irradiance was adjusted accordingly by using a trial-and-error approach. 

However, the PMPP deviation was not calculated for every reduction in irradiance that was 

tested as this would be very time consuming. Visual inspection was used to determine the 

overall fit based on the shape of the IV-curve and the PMPP. Therefore, it is likely that in some 

situations the PMPP deviation could have been decreased, although it is unlikely that the results 

would have been extremely different.  



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

74 

 

 

Most uniform snow cover situations that have irradiance levels <200 W/m2 has PMPP 

deviations at <5%, however two of the cases had differences of >20%. Simultaneously, for 

the two cases with high irradiance levels (>600 W/m2) the results were more variable, with 

PMPP deviations of <5% and >15%. Studying the snow depth for the cases with the least PMPP 

deviation no clear trend is visible. For instance, of the five uniform snow cover cases with 

PMPP deviations <5%, two situations have snow depths <3 mm, while the two other have snow 

depths >20 mm, and the remaining one has snow depths >40 mm. Nevertheless, the three 

cases with the highest PMPP deviations (all >15%) has recorded snow depths as low and high 

as 0.5 mm and 70 mm, respectively, all with very different irradiance levels. Therefore, the 

cases with lowest irradiance values are not consistent enough to indicate that low irradiance 

results in low PMPP deviations.  

 
Figure 7.2 – PMPP deviation results for modelled IV-curves (with modelled snow) with uniform and partial snow cover 
compared to recorded curves (with snow) for different irradiance and snow depth values.     

For various cases of partial snow cover the simulation results are visible in Figure 7.2 where 

all the modelled situations have irradiance levels >300 W/m2. In the same way as the IV-

curves modelled with uniform snow cover, the PMPP deviation for the partial snow cover cases 

are equally variable. The PMPP deviation fluctuates between values from 0.1% to 14.6%, 

where both cases have similar irradiance values, although the recorded snow depths are 0.5 

mm and 70 mm, respectively. In contrast, the remaining three cases consider different time 
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slots with the same snow depth, even though some snow melting occurs. Still, the PMPP 

deviation in the first (least snow melted) of these three times starts at 4.3% before decreasing 

to 2.3% and increasing again to 10.2% for the last situation (most snow melted).  

 

The absolute PMPP deviation for the uniform and partial snow cover situations is illustrated in 

Figure 7.3. The PMPP deviation for most uniform snow cover cases is <0.5 W with irradiance 

levels <200 W/m2, which is a minor difference when comparing the modelled and recorded 

power values. For the partial snow cover cases the irradiance is more variable (300-500 

W/m2) along with the PMPP deviation that ranges from <0.1 W to 2 W.  

 

 
Figure 7.3 – Absolute PMPP deviation results for modelled IV-curves (with modelled snow) with uniform and partial snow 
cover compared to recorded curves (with snow) for different irradiance and snow depth values. Note that in this plot one 
outlier (one case with 27.9 mm snow depth) have been removed as it had an absolute deviation value of 12 W and expanded 
the x-axis too far making it difficult to see the remaining values. 

The uniform snow situations involve snow depths ranging from 0.5 mm to 70 mm, although 

the absolute PMPP deviation is <0.5 W for most cases. This minimal differences in PMPP for 

many different snow depths are largely a consequence of the high uncertainty regarding the 

recorded snow depth values. On the other hand, the partial snow cover situations result in 

higher absolute PMPP deviation overall for many of the same snow depths when compared to 
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uniform snow cover. Furthermore, the largest absolute PMPP deviation for both uniform and 

partial snow cover is slightly above 2 W, which is all in all an insignificant difference.     

 

Comparing the percentage and actual PMPP deviations it is evident that percentage values can 

give a false impression of the model performance. For instance, a percentage deviation of 

20% is considered large, but when the actual PMPP deviation value is <1 W it is not that 

significant after all. The majority of the absolute PMPP deviation are <2 W both for uniform 

and partial snow cover situations, however for the same cases the percentage PMPP deviations 

are >14% for multiple cases, but with the majority being <5%.  

 

The two cases with a recorded snow depth of 70 mm can be identified as clear outliers as the 

snow depth value is extremely uncertain, and result in a percentage PMPP deviation close to 

25%, visible in Figure 7.2. However, at the same time these two cases have an actual PMPP 

deviation of only 0.4 and 1.2 W, which illustrates that only considering percentage values is 

not necessarily always a reliable solution.    

 

7.4  Image analysis  

 

In this thesis an image analysis methodology was used to identify uniform and partial snow 

covers which achieved great results. However, trying to detect module snow coverage for 

module images taken on days with overcast weather proved to be challenging. Part of the 

problem was identified as the camera likely not having an optimal angle as some modules 

ended up being far away and harder to detect. Images taken directly in front and not at an 

angle would make identifying the module areas and snow covers easier and more precise. 

Additionally, having a stationary camera setup is also beneficial when relying on and 

comparing pixel values, because they will vary depending on the camera angle. Furthermore, 

like the detected areas of uniform snow cover the detected areas for partial snow cover 

situations also seemed very reasonable. The use of automatically detected irradiance 

reductions for each module substring as input in the IV-curve model gave moderately more 

accurate modelled IV-curves, and PMPP deviations that were smaller. Nevertheless, the lack of 

transmittance data increases the uncertainty of the detected snow layers substantially as the 

model assumes that for a module area with snow cover there is zero transmittance through the 

snow layer. To improve the image analysis method including transmittance data is required 

because it is too essential not be included.  

 

However, a possibility could be to attempt power loss estimations by only using and analysing 

images, although, this is difficult to do with the image analysis methodology proposed here. 

The module snow coverages in the form of pixel values were identified, but without having 

additional data that includes information about the snow cover, beyond how large the covered 

area is, the use of only images seems questionable. Perhaps a PV module setup designed 

especially for this purpose with a specialized camera setup in combination with different 

sensors, and by using snow pixel intensities on a snow cover if they are detectable. In the 

literature researched during this thesis there is no approach like the one described above using 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

77 

 

only images to do power loss estimations that has been discovered. The studies that consider 

image analysis uses it as part of a more comprehensive methodology, for instance in Braid et 

al. [35] to identify snow shedding rates. Similarly, in Andrews et al. [8] image analysis was 

used to determine module clearance and areas on the PV module where snow frequently 

accumulated. Therefore, the possibilities for relying entirely on image analysis may be a 

questionable solution, but not completely unthinkable.  

 

7.5  String based model versus cell-based model 

 

To test if the cell-based model performed any better compared to the string-based model, 

three of the same situations modelled earlier with the string-based model were simulated with 

the cell-based model. The irradiance and snow depth values for the three previously modelled 

cases are shown in Table 7.1. The remaining percentage and absolute PMPP deviation results 

from modelling the IV-curves with the string-based and cell-based model is displayed in 

Figure 7.4.  

 
Table 7.1 – Irradiance, snow depths, and the percentage and absolute PMPP results from modelling the IV-curves with both the 
string-based model and the cell-based model.   

Irradiance [W/m2] Snow depth [mm] PMPP string-based model PMPP cell-based model 
  Percentage (%) Absolute (W) Percentage (%) Absolute (W) 

336 0.5 75.4 18.7 19.7 1.2 

460 27.9 4.4 4.4 24.4 11.8 

358 70 76.6 18 73.4 15.2 

 

Modelling results show that with the string-based model the percentage PMPP deviation is 

>75% for two of the cases, while with the cell-based model one case improves greatly (from 

75% to 20%), but the other remains almost unchanged. Simultaneously, the absolute PMPP 

deviation improves by dropping from 18 W to 15 W, and from 19 W to 1 W. However, in the 

third case the cell-based model performs worse, which increases the PMPP deviation. In the last 

simulation case using the cell-based model the percentage PMPP deviation is 18% compared to 

an absolute deviation of only 3 W.  
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Figure 7.4 – Percentage and absolute PMPP deviations for modelled IV-curves (with modelled snow) with partial snow cover 
compared to recorded curves (with snow) for different irradiance levels.   

To sum up, for some cases there were improvements when using the cell-based model over 

the string-based model, although in a few cases the string-based model performed better. It 

could be argued that the advantage of using a cell-based model disappears where there is no 

transmittance data available.    

 

7.6  Transmittance of snow cover 

 

To simulate snow cover using the MATLAB Simulink model a reduction in the available 

irradiance reaching each substring of the PV module was implemented. The modelled 

irradiance reductions were achieved by multiplying the incoming irradiance by a figure 

between 0 and 1. A limited amount of data was available from the UiA PV system, which did 

not include any transmittance data. It should be emphasized that transmittance is complicated 

to measure and is not typically, unless for specific research projects, data that would be 

recorded for a regular PV system [7]. Not including transmittance is a substantial model 

simplification as there will be some transmittance through the snow layer dependent on the 

snow type and depth. However, the current MATLAB Simulink model (with estimated 

module coverages) assumes that if an area is covered by snow there is no transmittance 

through the snow layer.  
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The transmittance on a snow surface is another aspect that is challenging to assess and has a 

considerable impact in combination with snow depth. Naturally, it will vary based on the 

snow depth, but also depending on the characteristics of snow. For instance, as snow melts 

and the water content increase a larger portion of the electromagnetic radiation hitting the 

snow layer is absorbed. Thus, resulting in less radiation reaching the PV module surface [20].  

In contrast, snow can be fluffy or hard packed giving it different optical properties, but the 

transmittance of snow is also influenced by other factors [7].   

 

As a result, for some of the simulations that are done based on the estimated module 

coverages by using the proposed image analysis method, the PMPP deviations varies 

considerably. An improvement could be to consider a 60-cell model where the irradiance for 

each cell could be specified, instead of assuming it to be equally distributed throughout each 

individual substring. Nevertheless, this would require transmittance data for the snow layer 

covering the entire PV module surface, and a more complicated IV-characteristics model to 

utilize it. The lack of transmittance data being incorporated into the IV-curve modelling, 

described in the previous chapters, can be considered a likely explanation for the variability 

and uncertainty in situations with large PMPP deviations and poor IV-curve fit.  

 

7.7  Uncertainty in low irradiance values and angle of incidence 

 

Another aspect closely related to transmittance is the available solar irradiance. Since the 

situations modelled requires snow, the simulations are based on different timeslots between 

December and April. During these months the suns position on the sky is relatively low, 

especially in December and January, which results in the irradiance having a higher incidence 

angle, and sunrays travelling further, i.e., lowering their intensity [7]. Irradiance is one of the 

two inputs into the MATLAB Simulink model based on the recorded irradiance data from the 

pyranometers at the UiA PV System. Thus, resulting in larger reflection losses for the PV 

modules due to the higher angle of incidence [79, 80]. Meaning that there could potentially be 

a greater variance between the measured irradiance levels at the pyranometer, and the 

irradiance reaching the module surface.  

 

This could be one factor that contributes to larger differences between the recorded and the 

modelled IV-characteristics, and thus higher PMPP deviations. At the same time, several of the 

situations that were modelled involves low irradiance values, typically <100 W/m2. This 

resulted in a decrease in power output not directly proportional to the reduction in irradiance, 

i.e., a drop in cell efficiency. Additionally, in low light conditions, cells with a higher RSH 

achieved greater efficiencies contrary to cells with lower RSH values. However, a reduction in 

cell efficiency was observed even at irradiance levels between 400-600 W/m2 [50].  

 

Furthermore, the deviations between the recorded and the modelled IV-curves is something 

that impacts the final PMPP reduction and deviation results. It is already established that there 

is a mismatch between the recorded and modelled IV-curves, which was confirmed when 

validating the IV-characteristics model. In a study by Huld et al. [74] the modelled power 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

80 

 

values for situations with irradiance levels <100 W/m2, were lower than the measured power 

values and deviated by 5-10%. In comparison, the simulation results in this thesis largely had 

modelled power values that were larger than the recorded power values. 

 

To summarize, of the impacting factors discussed it is undoubtedly the snow layer depth that 

has the most significant impact in combination with the snow cover transmittance. This is 

especially noticeable when the snow coverages calculated from the image analysis method is 

used as input in the IV-curve model. For the modelled IV-curves compared with the recorded 

IV-curves the largest deviations are likely due to the lack of transmittance data. However, the 

combination of model uncertainties, such as the low irradiance, angle of incidence, and the 

IV-characteristics model not being able to completely replicate IV-curves does also impact 

the results.  

8. Conclusion 

To conclude, the performance of PV modules is significantly reduced when covered by even 

small layers of snow. Considerable uniform snow covers result in a reduction in ISC visible on 

the IV-curves, however for less uniform and partial snow cover situations the activation of 

bypass diodes is recognizable.  

 

The results from modelling different types of snow cover using the MATLAB model show an 

acceptable fit between the modelled and recorded IV-curves. The different types of uniform 

and partial snow cover show small percentage PMPP deviations, but with some exceptions. 

However, many of the modelled situations involve low irradiance conditions that results in 

low absolute PMPP values and deviations. This minor absolute deviation is not reflected 

adequately when percentage PMPP deviation is considered. Furthermore, some cases of better 

IV-curve fit between modelled and recorded IV-curves indicates that the IV-characteristics 

model improved under higher irradiance conditions, however no clear trend could be 

established. The explanation could be that with decreasing irradiance values the uncertainty 

associated with them increases, and that the IV-characteristics model is incapable of perfectly 

duplicating the recorded IV-curves. In addition, some uncertainty is linked to irradiance 

measurements in the winter months, because of a higher angle of incidence and increased 

reflection losses in the PV modules.     

 

The modelling of IV-curves to determine power loss due to snow cover is challenging, 

especially for situations with partial snow cover. However, the intention is that after 

demonstrating that power loss can be estimated with the IV-curve model, and with acceptable 

performance, it could be developed further to only use external input data like irradiance, 

temperature, and snow depth. Additionally, the IV-curve model could be used to evaluate 

what irradiance reductions to expect for different snow cover scenarios, which could be used 

to establish a more precise correlation between irradiance and snow depth.  
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The image analysis method proved to be efficient in identifying snow on a PV module 

surface. Image analysis has a lot of potential, but to utilize it fully transmittance data must be 

taken into consideration as snow accumulates differently on the module surface. Additionally, 

transmittance will vary based on the snow depth and snow characteristics. Modelled IV-

curves using the estimated PV module substring snow coverages from the image analysis, as 

input to the IV-curve model, performed variably when used for different partial snow cover 

situations. In some cases, the simulated IV-curves improved by using the cell-based model 

compared to the string-based model, however in one case it performed worse.  

 

Summing up, this thesis has demonstrated that the negative impacts of snow cover on PV 

modules is considerable, and that it is somewhat feasible to model IV-curves to predict the 

power loss caused by snow cover. The image analysis method is a promising tool that is 

suitable to detect snow cover, but it should be developed further to utilize its full potential.    

9. Recommendations 

 

For future research, a more diverse and greater collection of data would be beneficial and 

should be collected over time, since the availability of data with situations where PV modules 

had snow cover was limited. This would allow for better optimization of the model for a 

variation of different snow cover conditions, and because of a larger data quantity, a more 

statistically significant assessment of the results.   

 

It is recommended that the image analysis methodology is developed further to include the 

detection of pixel intensity values, and not just a greyscale/binarized conversion. The idea is 

to utilize pixel intensity values to estimate the snow reflectance and use the reflectance to 

approximate the transmittance. Achieving this could help identify how layers of snow are 

spread out on a PV module surface, to determine which solar cells are covered and preferably 

by what magnitude. Furthermore, to perform simulations based on image analysis it is 

necessary to incorporate transmittance values into the model as this must be accounted for to 

improve the accuracy. Alternatively, having a way to estimate the transmittance, or making 

assumptions based on the snow type that is present, such as fresh snow likely having a higher 

transmittance, in contrast to older and more compressed snow.  

 

The IV-characteristics model manages to estimate power losses due to snow cover when 

compared with recorded IV-curves with acceptable deviations. The next step for the IV-curve 

model is to develop and improve it further so that only external input is used, that includes 

irradiance and module temperature, which was done in this thesis, but also incorporating snow 

depth could be a significant improvement. No recorded IV-curves would be used with this 

improved version of the model, which was only necessary to use as a basis for comparison in 

this thesis to test the model performance.  
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Appendices 

 

Appendix A.1  
 
MATLAB Simulink bypass diode parameter window. 

 

 
 

Appendix A.2 
 

Modelled IV and PV-curves for MATLAB Simulink model validation, Q-Cells A10156 

PV module. 
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Appendix A.3  

 
Modelled IV and PV-curves for MATLAB Simulink model validation, TITAN PV 

module. 

 

 



Power loss estimation of PV modules through IV-characteristics 

and image analysis 

 

92 

 

 
Appendix A.4  
 

Modelled IV and PV-curves for MATLAB Simulink model validation, SunTech 422 PV 

module. 
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Appendix A.5  

 

PV modules under different snow cover conditions for correlating snow depth and 

power loss.  

 

22/01/2015 – 09:44 

 

Q.CELLS A10156 
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19/01/2015 – 11:56 

 
 

 

26/03/2015 – 13:10  

 
 

 

 

 

 

 

TITAN 

 

SUNTECH 

423 
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23/01/2016 – 12:00  

 
 

 

07/03/2016 – 09:00  

 
 

 

 

 

 

SUNTECH 
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Appendix A.6 
 
Modelling of uniform snow cover, simulated cases.  

 

17/01/2016 – 12:00  

 
 

11/12/2017 – 14:30. SunTech 433 with 13% irradiance.  
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11/12/2017 – 14:30. SunTech 433 with 13% irradiance.  

 
 

 

12/12/2017 – 10:00. SunTech 423 with 4% irradiance. 
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12/12/2017 – 10:00. SunTech 423 with 4% irradiance. 

 
 

21/01/2015 – 14:20. TITAN with 10% irradiance. 
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21/01/2015 – 14:20. TITAN with 10% irradiance 

 
 

07/03/2016 – 09:40. SunTech 422 with 20% irradiance. 
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07/03/2016 – 09:40. SunTech 422 with 20% irradiance.  

 
 

 

03/03/2016 – 08:56. SunTech 433 with 15% irradiance. 
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03/03/2016 – 08:56. SunTech 433 with 15% irradiance.  

 
Appendix A.6  
 

Modelling cases with partial snow cover. 

 

TITAN module 08:16. 2015 27 March 
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TITAN module 08:39 2015 27. March  

 
TITAN Module 09:21. 2015 27. March 
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Appendix A.7  
 

5.12 - Estimating partial snow cover on different PV modules using image analysis.  

 

27/03/2015 – 08:10 

 
 

23/01/2015 – 10:00  
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25/04/16 – 13:11  

 
 

17/01/2016 – 12:42  
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Appendix A.8 
 

Importing and converting module image.  

 
%%Image conversion 

  
I = imread('maskedimage.jpg'); %Read image 

 
HSV = rgb2hsv(I); %Convert to HSV 

 

GR = rgb2gray(HSV); %Convert to Greyscale 

 
BW = imbinarize(GR); %Binarize image  

 
figure 
imshowpair(I,BW,'montage') %Plot image 

 

Appendix A.9  
 

Applying the created 60-cell mask to estimate snow cover percentage.  

 
%%Estimating 60 cell/string based snow cover 

  

I = imread('image15-01-23_10-00-16-29.jpg'); %Read image 

  
%%Load the created 60-cell mask for the relevant PV module 

  
load('BW_60CELLS_MASK_A10156.mat') 

  

%%Apply the mask on the RGB image, and crop image of the PV module  

  
maskedRgbImage = bsxfun(@times, I, cast(BW_60CELLMASK_A10156, 'like', I)) 

  
%%Save new image as jpg file. 

  
imwrite(maskedRgbImage, 'maskedimage.jpg')  

  
%%Import the newly cropped and masked RGB format image 

  
I_mask = imread('maskedimage.jpg') 

  
HSV_mask = rgb2hsv(I_mask); %Convert to HSV 

  

GR_mask = rgb2gray(HSV_mask); %Convert to Greyscale 

  
BW_mask = imbinarize(GR_mask); %Binarize image  

  
%%Plotting the original and binarized image side by side.  
figure 
imshowpair(I_mask,BW_mask,'montage') %Plot image 


