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D.1 Abstract

This paper aims to improve quadratic time-frequency distributions to adapt condition
monitoring of electrical machines in transient states. Short-Time Fourier transform (STFT)
has been a baseline signal processing technique for detecting fault characteristic frequen-
cies. However, limits of window sizes due to loss of frequency- or time-resolution, make
it hard to capture rapid changes in frequencies. Within this study, Choi-Williams and
Wigner-Ville distributions are proposed to effectively detect peaks at characteristic fre-
quencies while still maintaining low computation time. The improved quadratic time-
frequency distributions allow for generating spectrograms of a longer lasting data sig-
nal and capturing multi-component signals with a better separation of the components
than STFT. Further, the time resolution of the spectrograms generated by the proposed
method is not affected by the window size. The effectiveness of the proposed methods is
numerically verified from the data of an in-house test setup.

D.2 Introduction

Permanent magnet synchronous motors (PMSMs) are compact and highly efficient, mak-
ing them attractive in electric powertrains for wind turbines and electric vehicles, which
operate dynamically with variable speed and torque. Moreover, the powertrains are in-
tensively exposed to mechanical-, and electrical stress in harsh environments and thermal
cycling due to the dynamic operation. Consequently, detection and prevention of the
faults in such powertrains are more important and challenging. In condition-based main-
tenance the machines are monitored over time, which allows to determine when the next
maintenance is needed. Implemented correctly will reduce unexpected downtimes and
costs.

Condition monitoring for electrical machines in dynamic operation requires the anal-
ysis of non-stationary signals. Short-time Fourier transform (STFT) is often used for
this purpose. The resolution of the time-frequency representation, or spectrogram, is de-
pendent on the window size. A smaller time window results in a high time resolution
and fewer lines of resolution on the frequency axis. On the other hand, larger window
sizes cause a lower time resolution. Over the years, multiple techniques have been de-
veloped, i.e., Wavelet transform [1] and quadratic time-frequency distribution (TFD), to
address the computation burden and resolution. Quadratic TFD or Cohen Class function
has been used in quantum physics and Heisenberg’s uncertainty principle [2]. This fam-
ily of functions includes Wigner-Ville (WVD), Choi-Williams (CWD), Zhao-Atlas-Marks
(ZAM), and Rihaczek distributions. The difference among them is their kernel function.
The advantage of these distributions is that they can capture the transient behavior of a
signal, and time resolution is not affected by the length of the time sample. This property
makes quadratic TFDs attractive in many applications besides fault detection of electrical
motors, i.e., optical sensor, radar sensor, and wireless communication [3]–[5].

WVD is one of the oldest distributions and fast to compute. The demerit of this
distribution is the presence of cross-terms. Additional peaks and patterns occur when
applied to a signal with multiple components. Pseudo WVD or combining WVD with the
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Gabor distribution can be a solution to address this challenge [6], [7]. Alternatively, an
improved eigenvalue decomposition-based approach for reducing the cross-term was pro-
posed in [8]. Minimizing the cross-term can also be done by changing the kernel function,
giving a different Cohen class function. Towards condition monitoring for PMSMs, CWD
was used for feature extraction in a demagnetization fault detection scheme [9]. The fault
indicator was based on a box-counting fractal dimension. The spectrogram is divided
into squares by a grid. The number of squares, where the signal is present, is counted. A
demagnetization fault increases the number of boxes due to a more chaotic signal.

Although considerable researches have been devoted to enhance the accuracy of quadratic
TFDs [6]–[13], limited research has focused on improving computation time of time-
frequency representations or spectrograms [14]. The spectrograms were limited to shorter
time samples. The largest time sample used in a bilinear TFD was found in [7], which
was 2.7 s with sampling frequency 1.5 kHz. The increasing computation time with longer
sample arrays restricts the application of quadratic TFDs in condition monitoring. This
paper aims to propose an improved quadratic TFDs to make quadratic TFDs better suit-
able for condition monitoring of electrical machines in transient states while reducing the
computational burden.

D.3 Mathematical background

D.3.1 Cohen Class Function

The general equation for Cohen class distribution function can be written as function of
time t and frequency ω.

C(t, ω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
A(θ, τ)ϕ(θ, τ)e−jθt−jτωdθdτ (D.1)

where A(θ, τ) is the ambiguity function

A(θ, τ) =
1

2π

∫ ∞

−∞
R(t, τ)ejθtdt (D.2)

R(t, τ) is the auto correlation function, which is defined as

R(t, τ) = s∗(t− τ

2
)s(t+

τ

2
) (D.3)

where τ is running time. The analytic signal s(t) is defined as

s(t) = x(t) + jH(x(t)) (D.4)

where the real part x(t) is the original signal and the imaginary part H(x(t)) is the Hilbert
transform of the original signal.

H(x(t)) =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (D.5)

The integrals in (D.1) and (D.2) are Fourier and inverse Fourier transformations:
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Ft→ω(f(t)) =

∫ ∞

−∞
f(t)e−jωtdt (D.6)

F−1
ω→t(F (ω)) =

∫ ∞

−∞
F (ω)ejωtdω (D.7)

The indexes t → ω and ω → t are added for clarifying what domains the data is switched
between with the Fourier transformations. The general equation of Cohen class function,
defined by (D.1) and (D.2), is rewritten to

C(t, ω) = Fτ→ωFθ→t

(
ϕ(θ, τ)F−1

t→θ (R(t, τ))
)

(D.8)

The frequency domains θ and ω are different. The θ-domain is where the filtering by the
kernel function is applied, while ω is the frequency domain of the resulting TFD.

The kernel function ϕ(θ, τ) is the main difference between the Cohen class functions.
The simplest kernel functions is

ϕWVD(θ, τ) = 1 (D.9)

This gives the WVD, which can be written as

C(t, ω) = Fτ→ωR(t, τ) (D.10)

The main problem of WVD is the cross-term when the signal x(t) consists of multiple
components. The most commonly used TFDs, that minimizes the cross-term, are CWD
and ZAM, in which the kernel function is defined as:

ϕCWD(θ, τ) = e−
(θτ)2

σ (D.11)

and
ϕZAM(θ, τ) =

sin (πθτ)

πθτ
e

−2πτ2

σ (D.12)

Other notations of these kernel functions substitute σ with 1
α
. Keeping σ is preferred, since

reducing σ minimises the cross terms, while α has an inverse relation. Both ϕCWD(θ, τ)

and ϕZAM(θ, τ) become equivalent to ϕWVD(θ, τ) when σ goes toward ∞.
The integrals of the Cohen class distribution functions are defined from −∞ to ∞.

The next section will describe how to obtain the spectrograms for signals, that lasts for a
finite period, with Fast Fourier Transform (FFT).

D.3.2 Discrete form

First apply the window function d(n) to a measurement sample array x(n). The selected
window function is a hanning window.

d(n) =
1

2
+

1

2
cos
(
2π

n

N

)
(D.13)

where N is the element size of x(n) and n is the integer defined in the range
[
−N

2
, N

2
− 1
]
.

The Hilbert transform is applied for obtaining the analytical signal s(n) and a zero is
appended,
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s(n) =

[
x(n) + jH (x(n))

0

]
. (D.14)

Then the elements of s(n) need to be organized in the auto correlation matrix R (nt, nτ ).
The row vector nτ and column vector nt are defined as,

nτ =
[
−N

2
· · · N

2
− 1
]

(D.15)

and

nt =
[
−N

2
· · · N

2
− 1
]T

(D.16)

R (nt, nτ ) is now written as,

R(nt, nτ ) = s∗(nt − nτ )⊙ s(nt + nτ ) (D.17)

Note that the multiplications performed in (D.17) is a Hadamard product. About a half
of the entries is not defined, because the sum or difference between nt and nτ is outside
of the definition range of x(n),

[
−N

2
, N

2
− 1
]
. These entries are set to 0. One way to solve

this problem (in a code) is to set all entries, that are not defined in R (nt, nτ ), equal to
the last entry of s(n), which is 0.

The ambiguity function is obtained by an inverse FFT from nt-domain to nθ-domain.

A (nθ, nτ ) = FFT−1
nt→nθ

(R(nt, nτ )) (D.18)

The characteristic function M (nθ, nτ ) equals the element wise product (Hadamard prod-
uct) between the ambiguity function and the kernel function.

M (nθ, nτ ) = ϕ(nθ, nτ )⊙ A(nθ, nτ ) (D.19)

The final TFD is obtained by a FFT from nθ-domain back to nt-domain and then by a
FFT from nτ -domain to nω-domain

C(nt, nω) = FFTnτ→nω (FFTnθ→nt (M (nθ, nτ ))) (D.20)

Both window function and kernel function have been applied to the signal x(n). Re-
ducing σ for a CWD minimizes the cross-terms but spreads it across all frequencies e.g.,
raises the noise floor. It appears as vertical lines in a CWD with horizontal time axis and
vertical frequency axis. The peaks of the frequency components are still present on top of
the noise floor. This effect was filtered out by subtracting the hundredths smallest values
of C(nt, nω) for each time instant nt.

D.4 Proposed Quadratic Time-Frequency Distribution

The essential parameters include the sampling frequency (fs), time window (T ), and
overlap (OL), which are selected at 1 kHz, 1 s, and 20 %, respectively, in this work.
Figure D.1 shows the flowchart of the proposed method with steps as follows.
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1. Extract a sample from the original array from entry n1 to n2. The initial values of
n1 and n2 are 1 and fsT , respectively.

2. Execute the signal processing described in Section II on this sample and obtain the
quadratic TFD.

3. Cut off the first 20 % and last 20 % of the spectrogram (OL). In the case, for the
first second the spectrogram from 0.2 s to 0.8 s is extracted and put into the final
plot.

4. Add the product of the OL and fsT to n1 to n2 and repeat the process. In the
second iteration, the next sample extracted is from 0.8 s to 1.8 s. The third interval
will be from 1.6 s to 2.6 s.

5. Repeat until end of signal

Measurements

Extract sample 
in range 
[n1 , n2]

Generate 
Quadratic TFD

Compute new 
n1 and n2 

Subtract overlaps 
from TFD 

Add to final TFD

Figure D.1: Flowchart of the proposed quadratic TFD

D.5 Numerical test

In this section, the performance of the proposed quadratic TFDs is numerically investi-
gated and compared with that of using STFT. In this numerical example, a signal with 5
frequency components used and was defined as:

x(t) =
5∑

k=1

sin

(
2πk

(
5

c
sin (ct) + 25t

))
. (D.21)

The signal includes sinusoidal components with frequency modulation. The instantaneous
frequency of the signal component, where k = 1 and c = 1 rad

s , is a sinusoidal function
with amplitude of 1, frequency of 1

2π
Hz and bias of 25 Hz. The constant c is set to

1 rad
s . Figs. D.2a and D.2b show the spectrograms generated with CWD and STFT,

respectively. The window size was set 1 s with 20 % overlap. CWD was computed with
σ = 0.1. Both algorithms capture all five signal components as described by (D.21). c was
increased to 2 rad

s . The signal of (D.21) was separable in the CWD, but not separable in
the spectrogram generated by STFT. (See Figure D.3a and Figure D.3b) The resolution
improves when the window size is reduced to 0.1 s for STFT, but the signal component is
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(a) (b)

Figure D.2: Numerical example - c = 1 and window 1 s - (a) STFT and (b) CWD

(a) (b)

Figure D.3: Numerical example - c = 2 and window 1 s - (a) STFT and (b) CWD

still hard to separate. The contours of the signal components in the CWD spectrogram
seem to be thinner and have a smoother shape.

Decreasing window size to 0.1 s reduces the computation time for CWD from 16.5
s to 1.3 s, while the computation time for STFT is increased from 0.014 s to 0.040 s.
The performance is considered acceptable for both methods since the total time for the
measurement array was 120 s. The reduction in computation time for CWD is obtained
since the CWD solves smaller matrices after each iteration. The algorithm solves a 100×
100 matrix with a window size of 0.1 s and a 1000 × 1000 matrix with a window size of
1 s. The sampling rate is 1 kHz. Both CWD and STFT need to perform more iterations
due to a smaller window. Another interesting finding is that increasing the window size
for CWD does not affect the time resolution of the spectrogram. Changes in frequency
can still be captured by CWD, while all the signal components will get merged in the
STFT at too larger window sizes. However, the window size only needs to be sufficiently
large for the CWD. Smaller window size will give problems with lines of resolution on the
frequency axis. Note that a larger window size increases the computation time.

129



Detecting Eccentricity and Demagnetization Fault of Permanent Magnet Synchronous
Generators in Transient State

Figure D.4: Computation time versus number of elements in array - CWD

Figure D.4 shows the computation time for executing one iteration of the proposed
algorithm presented versus the element size of the input sample. The overlap is set to 0
%. If the input array has an element size of 10000, it will take 7.5 s to solve. An array of
10000 elements can have a total time of 1 s with sample rate of 10 kHz or 10 s with sample
rate of 1 kHz. The second sample would be possible in condition monitoring, because the
total time would is larger than the computation time.

The replacement of values in the matrices of nt − nτ and nt + nτ is one of the time
consuming operations. This is solved with if-statements, where half of the entries end
up as 0 in R (nt, nτ ). One possibility for reducing computation complexity is to avoid
computing parts of the kernel function and auto-correlation matrix because those entries
have an insignificant effect on the final TFD. This is explored in detail in [14]. The
complexity of FFT (and inverse FFT) applied to a vector with N elements is O(N log(N)).
Both R (nt, nτ ) and M (nθ, nτ ) are square matrices with N rows and N columns. Inverse
FFT is executed once, and FFT is executed twice on N × N matrices. Therefore, the
computational complicity of all these transformations is O(3N2 log(N)), which explains
why the computational complexity increase exponentially in Figure D.4. The performance
of the algorithm can can be improved with faster computer or a more efficient code.

D.6 Experimental results and Discussions

The experimental setup consists of two 2.5 kW, 16 poles PMSMs as shown in Figure D.5,
in which one operates as a motor while another motor operates as a generator coupled
to a resistive load. An inter-turn winding short circuit fault with 10 % severity is seeded
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in the motor. The setup is tested on two different speed profiles in both healthy and
faulty conditions. The first one is a multi-step speed-profile between standstill to 375 rpm
and back down to a full stop. The second speed-profile is an unpredictable speed-profile
where the speed increases and decreases around 250 rpm in an irregular manner. The
experimental setup is described in detail in [15].

Figure D.5: The in-house experimental setup.

Figure D.6a shows the spectrogram generated by STFT for a phase current of the
PMSM in the healthy case. Sampling rate and window size are 1 kHz and 1 s, respec-
tively. The hanning window function was applied to the window with an overlap of 20 %.
STFT is used as a benchmark to compare with the spectrograms generated by CWD and
WVD. Figure D.6b and D.6c show the spectrograms generated from CWD and WVD. The
kernel function for CWD has σ = 10−7. The harmonic peaks were captured and proved
that CWD is capable of capturing harmonic peaks. The fundamental frequency is much
more dominant in CWD as compared to the STFT. This may be due to the extremely
small σ. One attempt to solve this issue was done by applying an element-wise square
root of the CWD, but this makes the spectrograms noisier. The additional filtering by
subtracting the hundredths smallest value for each instant in time improved the quality of
the spectrogram. The WVD-based spectrograms have additional peaks, but other peaks
are not visible on the spectrograms. This is caused by the cross-term and the limits on
the color axis.

Figure D.7a, D.7b and D.7c show the spectrograms obtained by STFT, CWD, and
WVD of the phase current for the same PMSM operating under an inter-turn short circuit.
Both STFT and CWD was able to pick up the second harmonic, which is an indicator
for electrical faults. WVD seems to pick up all the integer harmonics. Similar results are
shown in Figure D.8a, D.8b and D.8c, which show the spectrograms for the second speed
profile generated by STFT, CWD, and WVD, respectively. These experimental results
proved that CWD can pick up the same harmonic peaks as STFT. The fundamental
component is much more dominant in the CWD. It was discussed earlier in the numerical
example, how the quadratic TFDs would perform better with more rapid speed changes.
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(a)

(b)

(c)

Figure D.6: Spectrograms of phase current of healthy PMSM operating with the first
speed profile, (a) STFT, (b) CWD and (c) WVD
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(a)

(b)

(c)

Figure D.7: Spectrograms of phase current of PMSM with 10 % ITSC operating with the
first speed profile, (a) STFT, (b) CWD and (c) WVD
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(a)

(b)

(c)

Figure D.8: Spectrograms of phase current of PMSM with 10 % ITSC operating with the
second speed profile, (a) STFT, (b) CWD and (c) WVD
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The second and third harmonics have merged in the first 10 s and around 50 s on
the spectrograms using STFT and CWD as shown in Figure D.8a and Figure D.8b,
respectively. The reason for this issue is that they are separable in the WVD (See Figure
D.8c). Multiplying the fundamental frequency with integers would also lead to the same
conclusion.

The spectrograms computed from the experimental data shows that the quadratic TFD
can capture the signal, but the current set-up does not give any additional information
compared to STFT. But further analysis shows that the signal components in the CWD
have sharper peaks. The spectrogram generated from the second speed profile was divided
into three frequency bands as listed in Table I. The first, third and fifth harmonics are
present and dominant in these bands. The time average kurtosis comparison between
CWD and STFT is presented in Table I. CWD have a larger kurtosis in all three frequency
bands, which indicates that it got higher and sharper central peaks.

Table D.1: Average kurtosis over frequency bands in the spectrgram generated by STFT
and CWD

Frequency band CWD STFT
0 Hz to 50 Hz 414.0 20.5

50 Hz to 150 Hz 9.6 2.6
150 Hz to 300 Hz 4.0 2.1

D.7 Conclusion

In this paper, we have proposed a solution to improve quadratic TFD for analyzing
non-stationary signals. The proposed method allows for generating spectrograms with
CWD and WVD for longer-lasting signals, as compared to the existing methods. The
numerical test showed that CWD could generate spectrograms with better separation of
multiple components than STFT if the frequency modulation is too large. Within the
framework, the time resolution is unaffected by window size, but frequency resolution sets
a minimum limit on the window. Larger windows increase the computation time and set
a maximum limit. The test on the experimental data proved that the proposed method
could capture the signal components on data with noise. The time average kurtosis for
generating spectrograms by CWD was larger than that of STFT for the first, third and
fifth harmonics of the signal. This indicates that CWD generates spectrograms with
sharper peaks.

Future work will include trying out other distribution functions that will overcome the
problems of the CWD, and make the fundamental frequency less dominant. The WVD
has a problem with cross-terms, but is much faster than other Cohen class functions.
Alternatively, a pseudo WVD could be implemented instead, which would reduce cross-
terms and maintain high computation speed and resolution.
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