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Abstract

Load forecasting is a required application in Smart-Grid, which provides essential input

to other applications such as Demand Response, Topology Optimization and Anomaly

Detection, facilitating the integration of intermittent clean energy sources. The big data

processing and operation of the energy system will require flexible tools to manage the

smart energy system, by using Information and Communication Technologies, Distributed

Generation and Artificial Intelligence, together. Machine Learning can provide electrical

load demand forecasting, giving information about future loads. In the literature there

are many methods on energy prediction, but most of them have used continuous time

approach together with complex neural networks which requires huge amount of data.

In this work collected operational data of typical urban and rural energy network are

analysed for predictions of energy consumption, as well as for selected region of Nordpool

electricity markets. The regression techniques are systematically investigated for electrical

energy prediction and correlating other impacting parameters. The k-Nearest Neighbour

(kNN), Random Forest (RF) and Linear Regression (LR) are analysed and evaluated

both by using continuous and vertical time approach. It is observed that for 30 minutes

predictions the RF Regression has the best results, shown by a mean absolute percentage

error (MAPE) in the range of 1-2 %. kNN show best results for the day-ahead forecasting

with MAPE of 2.61 %. The presented vertical time approach outperforms the continuous

time approach. To enhance pre-processing stage, refined techniques from the domain

of statistics and time series are adopted in the modelling. Reducing the dimensionality

through principal components analysis improves the predictive performance of Recurrent

Neural Networks (RNN). In the case of Gated Recurrent Units (GRU) networks, the

results for all the seasons are improved through principal components analysis (PCA).

This work also considers abnormal operation due to various instances (e.g. random effect,

intrusion, abnormal operation of smart devices, cyber-threats, etc.). In the results of kNN,

iforest and Local Outlier Factor (LOF) on urban area data and from rural region data, it

is observed that the anomaly detection for the scenarios are different. For the rural region,

most of the anomalies are observed in the latter timeline of the data concentrated in the

last year of the collected data. For the urban area data, the anomalies are spread out

over the entire timeline. The frequency of detected anomalies where considerably higher

for the rural area load demand than for the urban area load demand. Observing from

considered case scenarios, the incidents of detected anomalies are more data driven, than

exceptions in the algorithms. It is observed that from the domain knowledge of smart

energy systems the LOF is able to detect observations that could not have detected by

visual inspection alone, in contrast to kNN and iforest. Whereas kNN and iforest excludes
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an upper and lower bound, the LOF is density based and separates out anomalies amidst

in the data. The capability that LOF has to identify anomalies amidst the data together

with the deep domain knowledge is an advantage, when detecting anomalies in smart

meter data. This work has shown that the instance based models can compete with

models of higher complexity, yet some methods in preprocessing (such as circular coding)

does not function for an instance based learner such as k-Nearest Neighbor, and hence kNN

can not option for this kind of complexity even in the feature engineering of the model.

It will be interesting for the future work of electrical load forecasting to develop solution

that combines a high complexity in the feature engineering and have the explainability of

instance based models.



Sammendrag

Energiprediksjon er en essensiell applikasjon i driften av smarte elektriske nettverk. En-

ergiprediksjon gir viktig informasjon til nødvendige styringsprogram som forbruksrespons,

og til topologioptimalisering og anomalideteksjon. Dette vil hjelpe integreringen av forny-

bare energikilder i det elektriske nettverket. Stor-data prosessering og operasjon av en-

ergi nettverket, vil trenge fleksible verktøy for å kunne administrere smarte energi system,

gjennom informasjonsteknologi, distribuerte nettverk og kunstig intelligens. Maskinlæring

kan gi informasjon om fremtidig elektrisk forbruk. Det eksisterer mange metoder for en-

ergiprediksjon, mange av dem bruker kontinuerlig tidsorganisering kombinert med kom-

plekse nevrale nett, som trenger store mengde data. I dette arbeidet er typiske operasjons-

data fra urbane og rurale energi nettverk, i tillegg til utvalgte regioner fra NordPool spot

marked, analysert for å kunne forutsi energiforbruk. Regresjonsteknikker er systematisk

gjennomg̊att for elektrisk energiprediksjon i tillegg til korrelasjonsanalyse av andre in-

fluerende faktorer. k-Nearest Neighbour (kNN), Random Forest (RF) og Liniærregresjon

(LR) er analysert og evaluert med b̊ade kontinuerlig og vertikal tidsorganisering. Det er

observert at for halvtimes prediksjoner gir RF best resultat, gjennom en mean absolute

percentage error (MAPE) p̊a omkring 1-2 %. kNN gir best resultat for 24 timers predik-

sjon, med en MAPE p̊a 2,61 %. Den presenterte vertikale tidsorganiseringen presterer

bedre enn kontinuerlig tidsorganisering. For å forbedre preprosesseringen av data, er raf-

finerte teknikker fra statistikk og tidsserieanalyse adoptert i modellene. Ved å redusere

dimensjonaliteten p̊a input data gjennom prinsipal komponentanalyse (PCA) prediktive

ytelsen til Recurrent Neural Networks (RNN) forbedret. I Gated Recurrent Units (GRU),

er alle resultater, uavhengig av sesong, forbedret gjennom bruk av PCA. I dette arbeidet er

ogs̊a unormal operasjon av grunnet ulike variabler (tilfeldige utfall, unormal operasjon av

smarte enheter, cyber-trusler, osv.). I resultatene fra kNN, iforest og Local Outlier Factor

(LOF) anvendt p̊a urban og rural data, er det observert at anomalideteksjon for disse to

scenarioene er forskjellige. For de rurale regionenes data, er de fleste anomaliene observert

i den seneste delen av tidslinjen, konsentrert i det siste året av fem. For urban data er

de detekterte anomaliene spredt over hele tidslinjen. Antallet detekterte anomalier var

betydelig fler for urban enn rural data. Observert i disse brukerscenarioene, er detekterte

hendelser mer data drevne, enn unntak i algoritmene. Det er observert, i dette arbeidet,

gjennom domene kunnskap om smarte energisystem at LOF kan detektere tilfeller som

ikke ville vært synlige med visuell inspeksjon alene, i motsetning til iforest og kNN. Der

kNN og iforest ekskluderer et øvre og nedre b̊and, er LOF tetthetsbasert og separerer

ut anomalier ‘midt’ i datapunktene. Evnen LOF har til å identifisere anomalier midt i

datapunktene vil sammen med inng̊aende domenekunnskap være en fordel, ved anoma-
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lideteksjon i data fra smartmålere. Dette arbeidet har vist at instans-baserte modeller

kan konkurrere med mer komplekse modeller, selv om noen omr̊ader i pre-prosesseringen

(slik som circular coding) ikke fungerer for instans-baserte modeller,derfor kan ikke disse

modellene nyttiggjøre seg denne graden av kompleksitet. Det vil være interessant for

det videre arbeidet i elektrisk energiprediksjon å utvikle løsninger som kombinerer denne

graden av høy kompleksitet og som samtidig har forklarbarheten til instans-baserte mod-

eller.
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Chapter 1

Introduction

1.1 Scope

An analytical approach to understand and manage the increased complexity of energy

systems, identifies the D’s as key trends to discuss and describe energy system change [1].

What has been known as the 3D’s are decarbonisation, decentralisation, and digitalisation

[2].

The first D (decarbonisation) has reached considerable research traction across multi-

ple research disciplines, as well as scales of governance. Main challenges is the mitigation

of climate change amidst the steadily increasing world supply of energy [3], as shown in

Fig. 1.1. It is well documented that the conventional, centralised power system, relying

on large-scale fossil-fuel power plants, is causing carbonisation. Untill 2021, the energy

consumption and the Greenhouse Gas (GHG) emissions has increased, except from a 6%

decline during the Covid-19 [4].

The second D, decentralisation, involves changes in energy system structure, due to decar-

bonising policies introducing dynamic integration of renewable energy sources (RES). The

deployment of RES is facilitated closer to the consumption of electrical loads and is struc-

tured in a decentralised power grid. Solar and wind farms are due to their scalability, more

easily deployed in different areas and at a different scale, than conventional large-scale

fossil-fuelled power plants. This allows for more players, and a transformation of play-

ers from passive consumers to prosumers, investing and benefitting from the widespread

penetration of RES. Many of the tasks traditionally handled by the Transmission System

Operator (TSO) is growing responsibilities for the Distribution System Operators (DSO).

Due to the variability in power generation of RES the emerging additional roles of the

DSO includes techno-economical challenges involving peak load management through Dis-

tributed Energy Resources (DER), network congestion management, providing reactive

power support to TSOs, procure voltage support and technical validation for the power

market [5].

The third D, digitalisation, has become a key enabler for better, cheaper and faster moni-

toring to aid network and congestion management through changed consumer behaviour.
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Figure 1.1: The worlds total energy supply by source, from 1971-2018

The deployment of smart meters has served an unprecedented level of data granularity

as well as facilitating real-time monitoring of the power grid with enabled two-way com-

munication levelling the playing field for the actors developing a ’smart’ energy system [6].

In the so called Business As Usual scenarios (BAUs), where nothing is being done to

mitigate the GHG-emissions and control the growing energy demand, electricity demand

will be tripled by 2050.

For larger areas, such as a country, region or urban area, the electrical load demand

varies typically between 6000 MW (Sydney region), see Fig 1.4 and up to 80 GW (a sam-

ple European country), see Fig. 1.2. For larger areas, with extensive data, the patterns

in the electrical load consumption is identified through visual inspection, as in Fig 1.2;

depicting the electrical load consumption for a week in a big European country. Where

load schemes are made based on the quality of consumption. Apparatuses that needs

continuous energy demand, is identified as base load. Whereas power that are driven oc-

casionally, represents the peak in the energy consumption and is identified as peak load.

In between is the intermediate load. It is necessary for the operators of the power grid

to anticipate these load structures through electrical load demand forecasting. Fig. 1.3

shows the development of energy load demand for holiday cabins, in the years from 1993

to 2016.
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Figure 1.3: Energy demand for cab-

ins and holiday apartments in Nor-

way from 1993-2016, Statistics Norway

(2018).

1.2 Background and Motivation

Electricity is regarded a reliable commodity, and all our activities connected to the use

of electricity is metered and stored. The need for applicable tools to manage and make

use of the complex data gathering achieved through the smart grid, has gained traction

in the research community. Big data will play an important role in supplying the world

with sufficient energy.

A key solution for a more energy efficient system is smart electrification, making use

of a new agent topology introduced in the smart electrical power network, smart grid.

The smart grid will manage and operate production, distribution and transmission of

electricity by two-ways communication between the producers and end-users. The big

data processing and real-time monitoring of the energy system will require flexible tools

to manage the smart energy system, by using Information and Communication Technolo-

gies (ICT), Distributed Generation (DG) and Artificial Intelligence (AI), together [7][8].

It is needed to have an AI tool based in Machine Learning (ML) to process and correlate

the meaningful relation by finding structures and patterns in the considered data. When

presented with new data the machine can learn to perform a task without the need of re-

programming [9]. ML can provide electrical load demand forecasting, giving information

about future loads. Load forecasting is the most fundamental application in Smart-Grid,

which provides essential input to other applications such as Demand Response, Topology

Optimization and Anomaly Detection, facilitating the integration of intermittent clean

energy sources. Demand side management (DSM) is an umbrella term that describes

the utility company efforts to improve energy consumption at customer site, see Fig. 1.5.

Demand response (DR) is the customers adaptation to alter their normal electricity usage

in response to adjusted electricity prices with grid constraints or other incentives created

to decrease energy consumption at times of shortage or when system reliability is at risk.
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Figure 1.4: Electrical load profile for 24 hours for Sydney Urban Area

Main focus in the field is on load analysis and finding applicable techniques to en-

hance load forecasting, as well as the various technical solutions for data driven models

[10]. To enhance the load monitoring a variety of effective compression techniques of

electrical energy data is discussed concerning efficient processing, transmission and stor-

age of data [11]. The amount of such mentioned data is directly related to the choice

of algorithms and hence the predictive performance. The accuracy of the algorithms can

generally be traced as a function of the system level. For the highest level (national/re-

gional) normally containing big amounts of data Linear Models have been successful, at a

more intermediate level, when predicting for cities at Smart City/Smart grid level, hybrid

neural network based models are preferred and at the lowest level with least concistency

and lowest amount of data at the microgrid level (residential and rural area, islanding

cases), hybrid ANN based models are preferred [12]. Traditional modeling can not handle

the information flows from all the vectors in the power grid. These tasks includes load

forecasting, anomaly detection, stability assessment of the power grid, fault detection and

issues with security problems such as cyber attacks [13].

AI is the umbrella term, and ML being a subdivision and deep learning a subdivision

of ML. Deep Mining and Statistics appear on the outskirts, both as being used alone

or as a part of a hybrid algorithm or in the preprocessing of data. This categorisation

is also on the more algorithmic level divided into supervised and unsupervised learning,

where the first comprises classification, and regression, and the latter clustering and di-

mensionality reduction. Deep Learning are both classified as a part of supervised learning,

but in other sources as an entity alone alongside supervised/unsupervised learning [12][13].
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Figure 1.5: Overview of DSM and representative incentives in DR programs, from authors

chapter in upcoming book; Industrial Demand Response Methods, best practices, case

studies, and applications

The implementation of renewable energy sources is a concern for the operation of the

smart grid due to their nature of intermittent behaviour [14]. Remote and rural areas will

be needing alternative energy sources and Hybrid Renewable Energy System involves the

planning of multiple energy resources (Solar, Wind, Fuel Cell, Electrolyser) in combina-

tion with Energy storage (Battery Bank, Hydrogen) [15].
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The uncertainty and variability of RES implementation needs a more flexible system,

and research on an optimal solution that considers both the supply and demand is adding

smartness to the operation of the power grid and yields better results to electricity con-

sumers, providers and generators [16]. In this focus on demand-side and supply-side

forecasting, there is also an overlap between the two [17]. The internet of things (IoT)

solutions paves way for forecasting on real-time prerequisites, and facilitates equipment

that responds automatically and digitally to immediate shift in electrical demand [18].

1.3 Research Gap

The electrical energy distribution network is integrated with intelligent devices for mon-

itoring and controlling the operation of renewable energy sources and energy efficient

operation (e.g. demand side management, etc.). The intelligent devices are providing

real-time continuous data for making the energy system smart. The collected real-time

data needs to be analysed for predictions of energy consumption and renewable energy

productions. There is a great research gap related to renewable-based distribution net-

work planning from a flexibility point of view. In the literature there are many methods

on energy prediction, but most of them have used continuous time approach together

with complex neural networks which requires huge amount of data. These methods have

not significantly considered event-based demand prediction with impact of external pa-

rameters (e.g meteorological parameters, etc.). When these methods have considered the

seasonal impact of the external parameters, it has mainly been done modifying the contin-

uous time algorithm, and not adequately investigated the potential of the pre-processing

stage. To bridge the research gap deep domain knowledge needs to be applied together

with algorithmic development.

The event-based demand needs more accurate prediction using less amount of available

data and the regression techniques need to be systematically investigated for electrical

energy prediction and correlating other impacting parameters. There has not been sys-

tematic load synthesis and prediction analysis of rural areas seasonal occupancy which

requires for network expansion planning and integrated renewable energy sources. Also,

the urban area electrical energy demand prediction with weather parameters have not

been sufficiently investigated using regression techniques for energy management. Elec-

trical load demand forecasting is useful for energy management operation and can be used

for network topology optimisation and anomaly detection. In the literature, electrical de-

mand forecasting is mainly used for operation and planning, it has also the potential for

detecting abnormal operation due to various instances (e.g. random effect, intrusion, ab-

normal operation of smart devices, cyber-threats). The use of load prediction in flexibility

of operation of distributed networks has not been investigated sufficiently and there is a

research gap on use of flexibility with renewable-based distribution network.
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1.4 Research Objectives

Based on identified research gaps through state-of-the-art literature review, following are

the key objectives of the thesis:

• Is it possible to improve the predictive performance of regression tools for machine

learning algorithms by different time organisation?

• Does the implementation of aspects from Statistics and Time Series Analysis aid the

predictive performance of machine learning algorithms for electrical load demand

forecasting?

• Will a in general simpler algorithm be able to compete with more complex algo-

rithms?

• How can the use of regression tools bridge the the research gap between statistical

models and machine learning models?

1.5 Research Plan and Thesis Outline

The research work considers event-based demand prediction with impact of external pa-

rameters (e.g meteorological parameters, etc.). In order to bridge the research gap, deep

domain knowledge needs to be applied together with algorithmic development. In this

work the event-based demand prediction, using less amount of available data and the

regression techniques are systematically investigated. This work focuses on 3 topics: (i)

Urban Area Load Forecasting, (ii) Network Capacity Planning for Rural Area Networks

applying micro-grid operations, and (iii) Electricity Markets. This work includes case

studies with respective data of different types, size and granularity. It is for a rural area

and an urban area electric energy load demand as well as Nordic electricity spot price.

This dissertation is composed of two parts. Part I summarizes the research carried

out throughout the PhD and a presentation of the main findings. Part II contains the

collection of two journal papers, one academic book chapter, and two conference papers

representing the main contribution of this thesis. The organisation of paper contributions

is given in Fig. 1.6.

The remaining Chapters in Part I are:

• Chapter 2 positions this work within the state of the art literature and identifies

the research gaps that this thesis addresses.

• Chapter 3 presents the theory and mathematical modelling.

• Chapter 4 presents this works methodology.

• Chapter 5 presents the data.
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• Chapter 6 gives the main results of the evaluation and discusses them.

• Chapter 7 concludes the dissertation, presents the research limitations, and points

to future research directions.

The electrical load forecasting has been carried out using conventional mathematical

techniques and the traditional forecasting techniques are based on linear regression se-

ries. Typical for electric load forecasting is seasonal and diurnal changes. The seasonal

behavior is mainly influenced by external parameters, such as weather. An evaluation

of 3 different regression techniques and the novel vertical time approach method to deal

with seasonal variations, developed on urban area data, are presented in the attached

manuscript Paper A. The presented and discussed results show that vertical time ap-

proach through appropriate data pre-processing considering cross-correlations to external

weather parameters can performatively compete with complex neural network architec-

ture.

A time-series is a collected sequence of events. Basically, based on the assumption of

an inherent structure, such as autocorrelation, trend, and seasonal behavior. There are

many different scenarios of how these sequences of events are collected and described. In

the attached manuscript Paper B are presented rural area data, which is of different

granularity and size than the urban area data. Since the rural area data has fewer end-

users the structure and patterns are not as apparent. The method presented investigates

classical time series observations and techniques, and uses a persisting autoregression to

give finite gradient information to the model, improving its performance.

The electrical load prediction is necessary for distributed network energy management

and finding opportunity for flexibility in shifting the operation of non-critical power in-

tensive loads. The flexibility of resources defined by their dynamic capabilities such as

ramp time, start-up/shut-down time, operating range (minimum and maximum operat-

ing level) as well as minimum up and down times of the energy generation system. Both

urban area and rural area data are presented with flexible load analysis in the attached

manuscript Paper C.

In Paper D is analysed how the dimensionality reduction through orthogonal princi-

pal components aids the predictive performance of the most used instances of recurrent

neural networks (RNN), Vanilla RNN, Gated Recurrent Units (GRU) and Long short-

term Memory (LSTM). Further, the 3 RNN’s are compared and evaluated for theire

applications in electrical load demand forecasting.

An anomaly is defined as a deviation from an established normal pattern. These sys-

tems rely on deep domain expertise. Cyber threats could affect the ancillary services that

are being delivered from the aggregators, which might lead to stability and security issues

resulting in brownout or massive blackouts. In Paper E different anomaly detection

algorithms are evaluated and analysed.
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Figure 1.6: Organisations of contributions: The grey boxes defines a research area. Red

text the applied techniques. Cyan color are papers (A, D, F and J) based on urban area

data. The cyanish color are the papers (B, G and I) based on rural area data. In color

teal are the papers (C, E and K) combining urban and rural data. In the color ochre is

paper (H) using Nordpool data.
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1.6 Description of Publications

Key contributions from research publications are given below. The overview of research

publications with key objectives and how they interrelate is illustrated in Fig 1.7

1.6.1 Publication A (Journal Level II)

N. J. Johannesen, M. Kolhe and M. Goodwin, ‘Relative Evaluation of Regression Tools for Ur-

ban Area Electrical Energy Demand Forecasting’, Journal of Cleaner Production, volume 218,

pages 555-564, 2019, doi.org/10.1016/j.jclepro.2019.01.108

In Publication A the performance of regression techniques on urban electrical load demand

data and the impact of external parameters is evaluated. Load data was collected from

Australian Energy Market Operator (AEMO) and weather data from Bureau of Meteo-

rology (BOM). The entire dataset was used to validate findings of k-fold cross-validation,

where one fold equals one year. The findings of the paper supported the initial hypothesis

that external parameters and vertical time organization improved the predictions both

for 30 minutes and day-ahead forecasting. k-Nearest Neighbour (kNN) is found to be

the best predictor on day ahead forecasting and Random Forest regression performs best

for 30 minutes forecasting. Results of this work is going to be useful for predicting the

short term 30 minutes electrical energy using vertical approach and considering Random

Forest Regression Tool. For long term prediction of 24 hours kNN Regression Tool can

provide better results using vertical approach. It is also important to consider further

investigations of the impact of various weather parameters on load prediction.

1.6.2 Publication B (Journal Level II)

N. J. Johannesen, M. Kolhe, M. Goodwin, ‘Smart load prediction analysis for distributed power

network of Holiday Cabins in Norwegian rural area’, Journal of Cleaner Production, volume 266,

pages 121-423, 2020, doi.org/10.1016/j.jclepro.2020.121423

The selected rural area power network is used for Holiday Cabins and there is a potential

for integrating solar photovoltaic system with energy storage. The selected Bjønntjønn

Cabin Area is a typical rural area with low capacity power network in the south-east part

of Norway. The demand of Bjønntjønn Cabin Area from 2014 to 2018, shows a peak

demand in typically holiday winter seasons, and low load during summer time, where

temperature is higher, and evenings are brighter and thus less time for indoor activities.

External parameters data (from Norwegian Institute of Bioeconomy Research (NIBIO))

with weather information from the 3 closest meteorological stations to Bjønntjønn Cabin

Area (Bø, Gvarv and Gjerpen) are picked for doing correlation analysis. Through cor-

relation analysis, the highest correlating weather station is found. Most of the pattern

that constitutes the electric load profile is dependent on individual user behavior. The

individual human activities are not enough to make the substantial patterns on its own

accord, yet together with the influence of the changing weather, the impact is growing,
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and it is an important component of feature engineering in load forecasting. To improve

feature engineering with the relative smaller amounts of data, than that of an urban area,

ideas from time series analysis through autocorrelation where serial dependence, shows

how a time-series is related to its own lagged version. Leave-one out method, is compared

to crogging, a method aimed at preserving the temporal dependencies of a time series.

1.6.3 Publication C (Academic Book Chapter)

Johannesen, N. J., & Kolhe, M. L. (2021). Application of Regression Tools for Load Prediction

in Distributed Network for Flexible Analysis. In Flexibility in Electric Power Distribution Net-

works (pp. 67-94). CRC Press.

The methodology, used in this chapter, dealing with the problems of irregularities and

randomness in the time series considering urban and rural area case studies. Random

forest-regressor yields good results on hourly time prediction in load forecasting. The

kNN shows precise prediction due to its capability to capture the nearest step in a time

series based on the nearest neighbor principle. The presented vertical time approach uses

seasonal data for training and inference, as opposed to continuous time approach that

utilizes all data in a continuum from the start of the dataset until the time used for

inference. The regression tools can handle the low amount of data, and the prediction

accuracy matches with other techniques.

1.6.4 Publication D (In proceedings)

N. J. Johannesen, M. L. Kolhe and M. Goodwin, ”Comparing Recurrent Neural Networks using

Principal Component Analysis for Electrical Load Predictions,” 2021 6th International Con-

ference on Smart and Sustainable Technologies (SpliTech), 2021, pp. 1-6, doi: 10.23919/S-

pliTech52315.2021.9566357.

In the paper principal component analysis (PCA) is used and compared on 3 basic recur-

rent neural networks; VanillaRNN, Gated Recurrent Unites (GRU) and Long short-term

memory networks (LSTM). The Vanilla is the simplest RNN, using hidden states where

the output from the previous time step is being fed to the next time step. GRU intro-

duces a higher complexity from the Vanilla, introducing forget gates. LSTM is the highest

complexity of the compared recurrent neural networks, using a memory cell together with

the hidden state, to evaluate long term state dependencies. PCA reduces and extracts

the main components of available data. This work shows that PCA improves the per-

formance of RNNs with use of weather parameters. The historical electrical load dataset

from Sydney region is used to test the load forecasting using these techniques considering

meteorological parameters. Through load forecasting, it is observed that for the 30 min-

utes predictions, the simpler RNNs (Vanilla and GRU) has the best overall performance,

with GRU trained with a reduced number of principal components performs best for a

typical period with a mean absolute percentage error (MAPE) of 0.74%.
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1.6.5 Publication E (In proceedings)

N. J. Johannesen, M. L. Kolhe and M. Goodwin, ”Evaluating Anomaly Detection Algorithms

through different Grid scenarios using k-Nearest Neighbor, iforest and Local Outlier Factor,”

2022 7th International Conference on Smart and Sustainable Technologies 2022 (SpliTech 2022),

2022, pp. 1-6, Accepted for publishing.

Detection of anomalies based on smart meter data is crucial to identify potential risks and

unusual events at an early stage. The available advanced information and communicating

platform and computational capability renders smart grid prone to attacks with extreme

social, financial and physical effects. The smart network enables energy management of

smart appliances contributing support for ancillary services. Cyber threats could affect

operation of smart appliances and hence the ancillary services, which might lead to sta-

bility and security issues. In this work is given an overview of different methods used in

anomaly detection, and evaluates the performance of 3 models, the k-Nearest Neighbor,

local outlier factor and isolated forest on recorded smart meter data from urban area and

rural region.

1.6.6 Publication F (In proceedings)

N. J. Johannesen, M. Kolhe and M. Goodwin, ”Comparison of Regression Tools for Regional

Electric Load Forecasting,” 2018 3rd International Conference on Smart and Sustainable Tech-

nologies (SpliTech), 2018, pp. 1-6.

Urban area electrical load forecasting is important for power generation capacity planning

and also to integrate environment friendly energy sources at district level. Load predic-

tions will help in developing demand side management in coordination with renewable

power generation. Urban area load is influenced by meteorological conditions therefore it

is important to include weather parameters for load predictions. Machine Learning algo-

rithms can effectively contribute for electrical load predictions. The most commonly used

algorithm for load prediction is Artificial Neural Network (ANN), which is a complex pre-

dictor that utilizes a big amount of training data. k-Nearest Neighbour (kNN) has proven

to be efficient by the introduction of binary dummy variables for categorisation and it

can be used for short term (30 min) and long term (24 hours) load forecasting. This pa-

per explores the use of regression tool for regional electric load forecasting by correlating

lower distinctive categorical level (season and day of the week) and weather parameters.

The historical electrical load datasets with meteorological parameters are available for the

Sydney region and they have been used to test the regression tools. Data correlation over

seasonal changes have been argued by means of improving Mean Absolute Percentage

Error (MAPE). By examining the structure of various regressors they are compared for

the lowest MAPE. The regressors show good MAPE for short term (30 min) prediction

and Random Forest Regressor scores best in the range of 1-2 % MAPE.
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1.6.7 Publication G (In proceedings)

N. J. Johannesen, M. Lal Kolhe and M. Goodwin, ”Load Demand Analysis of Nordic Ru-

ral Area with Holiday Resorts for Network Capacity Planning,” 2019 4th International Con-

ference on Smart and Sustainable Technologies (SpliTech), 2019, pp. 1-7, doi: 10.23919/S-

pliTech.2019.8783029.

In this paper Artificial Neural Networks were first evaluated and benchmarked to K-

NN the first journal paper where the vertical approach was introduced, to enhance the

performance. In order to deal with the relative smaller amounts of data ideas from time

series analysis was used with an alternative version of autoregression to help the algorithm

searching the curvature and give a finite gradient based on the latest updates from the

targeted vector, in this case the load.

1.6.8 Publication H (In proceedings)

N. J. Johannesen, M. Kolhe and M. Goodwin, ”Deregulated Electric Energy Price Forecasting

in NordPool Market using Regression Techniques,” 2019 IEEE Sustainable Power and Energy

Conference (iSPEC), 2019, pp. 1932-1938, doi: 10.1109/iSPEC48194.2019.8975173.

In this the electric energy price forecasting of two regions of NordPool market has been

compared and analysed with reference to energy generation scenarios two regions, as well

as to combine forecast models. Due to the dynamics of the electricity markets and region

divisions this work proposes electric energy price forecasting using regression tools based

in the k-Nearest Neighbor (kNN) regressor, to capture the small increments in changing

price behavior, and an autoregressor on top to capture the finite gradient of the occasional

spikes in the price cycles. A hybrid model, combining kNN-regressor and autoregressor

is used to improve the prediction accuracy of electric price forecasting. The NordPool

market trading behavior and the unanticipated price peaks at daily, weekly and annual

level, show improved prediction accuracy, when enhancing the model from a simple kNN-

regressor to the hybrid. The kNN-regressor captures the small increments in changing

price behavior, and the autoregressor captures spikes in the price cycles, as it is described

in the results especially considering the non-controllable Danish electricity generation sys-

tem, where the MAPE improves from 27.52 without autoregressor to 18.60 MAPE with

the autoregressor.

1.6.9 Publication I (Academic Book Chapter)

N. J. Johannesen, M. Kolhe, M. Goodwin, Power and energy management for microgrids in res-

idential systems and rural electrifications. In Residential Microgrids and Rural Electrifications.

© Academic Press 2021 Published: 26th November 2021, Paperback ISBN: 9780323901772

Rural electrifications scenarios based on load analysis. The performance of a rural area

distribution power network can be improved by operating it as a microgrid with integration

of energy storage, RES, and distributed generators. The microgrid is a complex system
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encompassing various subsystems at various stages of aggregation. It accommodates mul-

tidirectional power and information flows among all the vectors (e.g., power generation,

transmission, and distribution system operators; distributed intermittent RES; demand

response aggregations; end users). The load forecasting within the distributed network

requires good insight into user behavior, geographical location, and algorithm assessment.

Residential and rural energy networks have significantly lower load demand in comparison

to urban systems. This chapter focus on how to appropriately fit a suitable predictor for

a typical rural load system prediction and analysis.

1.6.10 Publication J (Academic Book Chapter)

N. J. Johannesen, M. Kolhe, M. Goodwin, Recurrent Neural Networks for Electrical Load Fore-

casting to use in Demand Response Industrial Demand Response: Methods, Best practices, Case

Studies, and Applications. Institution of Engineering and Technology (IET), pages 41-58, 2022.

doi.org/10.1049/PBPO215E ch3

Electric load forecasting is a fundamental technique to understand end-user behaviour

and therefore a crucial factor in the design of demand response programs. Load fore-

casting will also identify the appropriate design of demand response programs. In this

Chapter a range of different machine learning applications are covered to represent the

influential factors for electrical load demand forecast in a DR context, with a variety

of different data scenarios, temporal and technical scenario. This Chapter explores and

compares the load prediction analysis through basic Recurrent Neural Networks (RNNs);

Vanilla RNN, Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM),

using Principal Component Analysis (PCA). It is found that PCA can be used to reduce

the number of principal components for Vanilla RNN, GRU and LSTM networks. Reduc-

ing the number of principal components using PCA is one of the techniques that is used

in dimensionality reduction. Reduction in dimensionality will relieve the computational

burden. In this work the dimensionality reduction improves the predictive output. It

is observed that for electric load demand forecasting, the preferred technique is Gated

Recurrent Units, trained with a principal components. The performance is evaluated

through mean absolute percentage error (MAPE), which is relatively lower than other

techniques.

1.6.11 Publication K (Academic Book Chapter)

N. J. Johannesen, M. Kolhe, M. Goodwin, ’Vertical approach Anomaly Detection using Local

Outlier Factor’, Power Systems Cybersecurity. Springer Nature. Abstract accepted. Final sub-

mission sent to publisher.

Detection of anomalies based on smart meter data is crucial to identify potential risks

and unusual events at an early stage. In addition anomaly detection can be used as a tool

to detect unwanted outliers, caused by operational failures and technical faults, for the

pre-processing of data for machine learning, to detect concept drift as well as enhancing
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cyber-security in smart electrical grid operations. It is known that anomalies are defined

through their contextual appearance. Hence, anomalies are divided into point, conceptual

and contextual anomalies. In this work the contextual anomaly detection is examined,

through a novel type of load forecasting known as vertical approach. This chapter ex-

plores the use of anomaly detection in the relevant learning systems for machine learning

in smart electrical grid operation and management through data from New South Wales

region in Australia. The presented vertical time approach uses seasonal data for training

and inference, as opposed to continuous time approach that utilizes all data in a contin-

uum from the start of the dataset until the time used for inference. It is observed that

Local Outlier Factor identifies different local outliers given different vertical approaches.

In addition, the local outlier factor score vary vertically. An anomaly is defined as a

deviation from an established normal pattern. Spotting an anomaly depends on the abil-

ity to defy what is normal. Anomaly detection systems aim at finding these anomalies.

Anomaly detection systems are in high demand, despite the fact that there is no clear

validation approach. These systems rely on deep domain expertise.
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Chapter 2

Literature Review - State of The Art

Forecasting Techniques

2.0.1 Introduction

Reliable forecasting is a necessary part of decision identification, information gathering,

and assessing solutions in power networks. The principal objectives of forecasting is to

provide basic scheduling of power loads. Issues raised in the literature on electrical load

demand forecasting and price prediction on electricity markets in the 1980’s are still chal-

lenges for the industry [19] [20]. Main recent review articles in the field focus on the

analysis of load and finding applicable techniques to enhance load forecasting. The au-

thors of review [10] focuses on the various technical solutions for data driven models and

aims to categorize and schematically give an overview of the different algorithms, and de-

bates solutions in data driven AI solutions. To enhance the load monitoring a variety of

effective compression techniques of electrical energy data is discussed concerning efficient

processing, transmission and storage of data [11].

The amount of such mentioned data is directly related to the choice of algorithms and

hence the predictive performance. The accuracy of the algorithms can generally be traced

as a function of the system level. For the highest level (national/regional) normally con-

taining big amounts of data Linear Models have been successful, at a more intermediate

level, when predicting for cities at Smart City/Smart grid level, hybrid neural network

based models are preferred and at the lowest level with least consistency and lowest

amount of data at the microgrid level (residential and rural area, islanding cases), hybrid

ANN based models are preferred [12] Common for several of the review articles that there

is a hierarchical categorisation of the the field in general, where Artificial Intelligence is

the umbrella term, and machine learning being a subdivision and deep learning a subdivi-

sion of ML, and where Deep Mining and Statistics appear on the outskirts both as being

used alone or as a part of a hybrided algorithm or in the preprocessing of data. This cat-

egorisation is also on the more algorithmic level divided into supervised and unsupervised

learning, where the first comprises classification, and regression, and the latter cluster-

ing and dimensionality reduction. And on the side with a bit of both is Reinforcement

Learning. Deep Learning are both classified as a part of supervised learning but in other
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as an entity alone alongside supervised/unsupervised learning [12][13].

To enhance the performance of load forecasting models all influential parameters must be

considered comprehensively, to search for the influential parameters on the load profile

[21]. The small area of Tunis (with only installed capacity of 4425 MW) is considered for

analysis of load prediction with seasonal variations [22]. A variation in load due to season

is only once a year during heat wave in the summer. For training set they have used

horizontal time-series approach, where almost 10 months (more than 14400 datapoints)

of training was used for testing on one week. According to Lahouar and Slama (2015)

[22], who used random forest for day-ahead load forecast for the Tunisian market with

historical data from 2009-2014, they obtained an average MAPE of 2.24% when credit-

ing for the next 24 hours. Presented method of [22] does not improve, when predicting

for the heat wave season, as the average MAPE for heat wave period (7-13 July) has

increased to 2.6899%. During the Arabic spring in Tunis 2011, Tunis experienced a ran-

dom effect caused by a much lower power demand during the Tunisian Revolution, the

MAPE for some 24 hour intervals of prediction as high as 19.61%. It was even worse

during the Blackout of August 2014 where the MAPE rose to 398.09%. This show the

machine learning algorithms inabilities in forecasting rare events. [22] also makes a com-

parison with ANN, and for the testing period of 7-13 of July it scores 2.9140 MAPE. They

state that the main advantage with Random Forest over other methods is that there are

few hyper-parameters to set and generalize by saying default settings is normally enough

to compete with ANN and Support Vector Machine (SVM)/Support Vector Regressor

(SVR), which accuracy depends on the tuning of their hyper-parameters. In our work we

have used the experiences from Tunis to understand the random effects and their input

on electrical energy demand forecasting as well as the understanding of hyper-parameters.

Jinkyu and Sup (2015) [23] recognizes artificial intelligence techniques like ANN or Kalman

filter, to show promising results in the load forecasting predictions, although the hidden

structures in AI might limit the understanding of the complex spatiotemporal develop-

ments in correlation between meteorological conditions and electricity demand. Electrical

load demand and the temperature effects have been studied and short term load forecast

needs to take temperature effects into consideration for day-ahead predictions. In the

very short time load forecasting the time scale is to short for the temperature to have

any effect, and in the long run the effect tend to even out [24, 25]. On the load forecast-

ing for the UK electricity demand Al-Qahtani and Crone (2013), proposes a multivariate

k-NN approach that, opposed to the univariate model that does not take into account

the underlying sub-categories of the calender, create a binary dummy variable where dt

= 1 for all nonworking days and dt = 0 for working days. The load forecast MAPE of

both univariate and multivariate show improved results by the use of dummy variables.

A MAPE of 2.3284 was found using the univariate model, and a 1.8133 was found using

the multivariate model. The dataset contained data for more then 7 years (2001-2008).

The complete year of 2004 was used for training and 2005 used for validation [26]. Based

on their research we developed the relevance of doing multiple correlation analysis with

different time factors, where we can observe that meteorological parameters increase their
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importance on the prediction output as time window increases. In this context we re-

garded the work of Afkhami and Yazdi who proposes a way to quantisize the day into

3 periods of 8 hours for neural networks to enhance their performance [27]. Local Inter-

pretable Model-Agnostic Explanations (LIME) aims to reflect the behavior in proximity

to the predicted outcome, and does so by offering a interpretation that can explain doubts

about the model. By explaining here means to provide some mean of qualitative under-

standing in the relation between a decision making and the predictive outcome. In medical

diagnosis LIME highlights what features in the dataset that led to the prediction, and

what was evidential against it [28]. ANN studies have shown an MAPE of 1.9, resulting

in a Mean Absolute Error (MAE) of 167.91 MW, based on training data for a whole year.

The research includes studies of temperature effects and introduces two threshold values

where the load and temperature exhibits close correlation, at below 10 degrees Celsius

due to heating, and above 23 degrees because of cooling [29].

2.0.2 Forecasting in Distributed Networks

The rural area distribution network performance can be improved by operating it as a

micro-grid with integration of energy storage, renewable energy sources and distributed

generators. The smart micro-grid (i.e. smart distributed network) is a complex system

encompassing of various sub-systems at various stages of aggregation. Smart micro-grid is

going to accommodate multi-directional power flow to go together with multi-directional

information flows between all the vectors (e.g. power generations, transmission and dis-

tribution system operators, distributed intermittent renewable energy sources, demand

response aggregations, end-users, etc.). Over the past decade the power system is chang-

ing from centralized grid to more decentralized and its operational management is going

to be real-time monitored smart and micro-grids [30]. Reference [31] has reviewed energy

technologies for application in smart distributed network using IOT technologies, various

different types of solar technologies has been reviewed in the same paper and discusses

control strategies PV’s and hybrid energy systems. For effective operation of micro-grid

and demand side management, the load prediction analysis with impact of external pa-

rameters is required.

Machine learning algorithms can be electively used for electrical energy demand as well

as predicting the output from the renewable energy sources. It is important to do the

prediction of future load consumption to balance the electrical energy supply and de-

mand [32]. Existing research into micro-grid electric energy load demand forecasting is

scarce. The majority of the existing research selected micro-grids of large power scale

with electric energy load demand ranging from 10 MW scale, to larger ones at 1000 MW.

The GW-scale which is the size of a medium city and forecasting results from such a

large scale micro-grid is comparable to urban area load forecasting. Hence the smaller

scale micro-grid is more difficult to predict due to higher load fluctuations and random-

ness. At a smaller scale the load fluctuations within the same time period may be higher

than for bigger more stable load. A comprehensive study compares small and large scale

micro-grids in China. The Chinese case study uses five different scale of micro-grid where
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the two smallest micro-grids have subsequently maximum load of 273 and 463.8 kW. To

efficiently predict the electric energy load demand for these micro-grids they propose to

use different hybrid forecasting models based on Empirical Mode Decomposition (EMD),

Extended Kalman Filter (EKF), Extreme Learning Machine with Kernel (KELM) and

Particle Swarm Optimization (PSO). For the small scale micro-grid the hybrid models

achieves acceptable MAPE of 7 to 10 % [33]. Existing research on network capacity plan-

ning deal with much larger data samples. The term Big Data is a relative concept and

not an absolute definition, at best it is ambiguous and to quantify dataset is a difficult

task as the capacity and computational power is continuously increasing. Typical Big

Data is regarded as that quantification of collected data in different sampling rates is in

the Terabyte (TB) area [34] [35].

State of the art research in electrical load demand forecasting focuses on three main

aspects in order to make sound predictions. These inputs are from weather parameters,

holidays and time of day. The mentioned relations has been found equally important

both for simpler instance based machine learning models to the more complex black box

neural networks [36]. And the results of this are provided in the research for short [37]

[38], mid-term [39], as well as long-term forecasting [40]. The impact of external weather

parameters has proven also to be important for forecasting on limited data, such as for

households and buildings [41], as well as cabin areas [42]. Hybrid forecast combining neu-

ral networks with autoregression has proven to aid in tracing the curvature of the peak

in the volatile electricity markets [43].

In short-term electric load demand forecasting, Recurrent Neural Networks (RNN) by

Levenberg-Marquardt and Bayesian regularization on 30 minutes predictions had achieved

a mean absolute percentage error (MAPE) of an average in one week 1.4792 [44]. One hour

ahead prediction, has been performed on hourly power consumption in Toronto Canada

using Long Short-Term Memory (LSTM), achieving a MAPE of 2.639, which was an im-

provement of the Vanilla RNN of 3.712 MAPE [45]. The Resnetplus model for the ISO-NE

dataset proposed a day-ahead load forecasting model based on deep residual networks.

A basic structure of several fully connected layers to produce preliminary forecasts of 24

hours. A forecast is then made on the residuals of the preliminary forecast provided with

a formulation of Monte Carlo dropout for probabilistic forecasting, achieving an average

MAPE of 1.447 [46]. Gated Recurrent Unit (GRU) was used to predict the electricity

market in Singapore. Multi-features input models of different time structural architecture

named Multi-GRU has been used to give 30 minutes predictions [47].

2.0.3 Detection Methods for Abnormal Operation

Anomaly detection is done on any time series data. Various anomalies can be detected

in historic time series data, due to human error, false meter measurement, inaccuracies

in data processing and failure of delivery due to extreme weather or other failures. A

two-stage method is proposed in reference [48] combining two probabilistic anomaly de-

tection approaches for identifying anomalies in time series data of natural gas. Exogenous
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variables are known to influence the electrical load consumption, and loads are identified

accordingly as baseload, intermediate load and peak load. An autoregressive integrated

moving average with exogenous inputs (ARIMAX) model is used to extract weather de-

pendency to find the residuals, then through hypothesis testing the extremities, maximum

and minimums are found [49]. This procedure was reproduced, with linear regression find-

ing the residuals and a Bayesian maximum likelihood classifier to identify anomalies [48].

A data-mining based framework using DBSCAN was used to detect anomalies in office

buildings. The framework is aimed to identify typical electricity load patterns and gain

knowledge hidden in the patterns and to potentially be used in an early fault detection of

anomalous electricity load profiles [50]. Also to detect anomalies of electricity consump-

tion in office buildings an improved kNN is proposed, ikNN, to automatically classify

consumption footprints as normal or abnormal [51]. Dynamic Bayesian Networks and Re-

stricted Boltzman Machine has been proposed for anomaly detection in large-scale smart

grids. Simulated on the IEEE 39, 118, and 2848 bus systems the results were verified

[52]. Real-Time Mechanism for detecting FDIA analyzed the change of correlation be-

tween two phasor measurement units parameters using Pearson correlation coefficient on

IEEE 118 and 300-bus sytems [53]. Machine learning techniques have been highlighted

for theire ability to differentiate between cyberattacks and natural disturbances. By a

simulating a variety of scenarios the ability for One R, Random Forest, Naive Bayes and

J-Ripper to recoginze attacks was investigated: Short Circuit faults; location is repre-

sented by the percentage range, Line maintenance; identified through remote relay trip

command, Remote tripping command injection; the attacker operates the relay remotely

that causes a breaker to open, Relay setting change; the attacker misconfigures the relay

settings to cause maloperation of relays, FDIA; attacker manipulates measurements sen-

sors. The simulated scenarios was grouped into classes; natural events, attack events, and

no events [54]. In machine learning concept drift occurs when the underlying distribution

of the data changes over time, making the model unfit to predict for future events [55].

In concept drift, models are inaccurate due to change in the underlying data [56]. Thus

the observation can be a result of an improved energy system, and not anomaly [57]. An

adaptive sliding window method, that calculates an adoptive window-size on the fly is has

been proposed to deal with concept drift [58]. Another adaptation raises the complexity

by using multi sliding window detecting growth length over several windows detecting the

drift length by adjoining several windows finding the optimal window length useful for on-

line learning [59]. In Recurrent Neural Networks like Long Short-term Memory networks

(LSTM) different gates are used to remember and forget time-occurrence over different

time windows. To deal with concept drift in LSTMs it has been proposed a novel forget-

ting mechanism for anomaly detection [60]. It has also been proposed to narrow down

the scope, by critical lines detecting distribution change. The first step in the proposed

method is to reduced dimensionality through an orthogonal transformation of the data

reducing the feature space to its principal components [61]. After reducing the feature

space the distributions are compared by two-sample Kolmogorov–Smirnov Test (KS test)

[62].
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Chapter 3

Pattern Recognition in Machine

Learning Techniques

Since ancient times man has observed patterns in nature and aspired to make sense of

them. Understanding future conditions to optimize crops was crucial since the rise and

fall of ancient civilisations is correlated to changing climate conditions. The survival of an-

cient civilisations where dependant on regular agriculture and water availability. Mother

earth itself keeps timely track of climatic changes through the science of paleoclimatology,

and allows for observations that reveals hypothesis.

In a giant databank, the Greenland glacier, the gas trapped in the ice core are mea-

sured and used as a time-stratigraphic marker reducing the uncertainty of the time series

analysis by correlation the different ice core layers in high precision correlations of ice core

records of the past 100 000 years [63].

Nowadays, advanced meters provide data granularity at an unprecedented level. Smart

meters, as defined by The Energy Information Administration; “meters that measure and

record usage data at a minimum, in hourly intervals and provide usage data at least daily

to energy companies and may also provide data to consumers. Data are used for billing

and other purposes. Advanced meters include basic hourly interval meters and extend

to real-time meters with built-in two-way communication capable of recording and trans-

mitting instantaneous data” [64].

Advances was made in the fields of astronomy, weather, economics and medicine, and

recordings of observations within these fields lead to the general field of Time Series

Analysis. Questions of causality where treated strictly within the separate fields, yet

these fields searched to reveal hypothesis based on how the past influence the future.

Analysis of time series data with both statistical methods and machine learning tech-

niques will be increasingly important with more available data through Internet of things,

digitilization and smart systems. This type of continuous monitoring will increase the need

for some of the time series specific exploratory methods, that helps identifying stationar-

ity, applying window functions, understanding self-correlations and spurious correlations
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[65].

3.1 Time Series Analysis

The origins of time series analysis applied autoregressive methods to understand real time

data. Autoregression (AR) is a simple and straightforward regression technique, where

past values of the univariate time series are dependent on their own lagged version defined

by a parameter weighting of each input, ϕ, and therefore a parametric model. The current

value of y(t) is expressed by previous values of time yt−1, yt−2, ..., yt−p. The order of an

AR process is defined by the number of past values of y(t) it is regressed on. AR(p) is

defined by the last yt−p, considered in the process, denoted as:

y(t) = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ϵt (3.1)

Where the error term ϵt, is white noise defined by a constant mean and some unknown

fixed variance σ2
ϵ (t), a stationary process.

The parameters of AR are estimated from the data. In the 1920’s experimental physi-

cist Udny Yule, developed a set of equations together with Gabriel Walker, known as

the Yule-walker equations, based in the autocovariance and autocorrelation function of a

univariate time series. He applied the equations to an autoregressive model to Wolfer’s

sunspot data [66].

Wolfer’s sunspot data depicts an interesting development in the field of data collection,

in assuring a level of quality in the data. Ever since the beginning of the 1600’s when

astronomers had access to advanced equipment sunspot data have been collected. Yet,

these observations are in the eye of the beholder, namely that the observations change

according to the geographical location of the observer. Wolfram proposed a scaling fac-

tor k that varies with location and instrumentation, and developed the relative sunspot

number R, based on k, number of sunspot groups (g) and the number of individual spots

(s):

R = k(10g + s) (3.2)

With the relative sunspot number, more observations are considered, to increase the ac-

curacy of the data.

Certain assumptions about the time series is certified through Augmented Dickey-Fuller

(ADF) test, such as stationarity. To prove stationarity a search for no trend, constant

variance and constant autocorrelation is conducted. Testing for stationarity is done by

introducing the null hypothesis Ho: Time series is non-stationary due to trend. By the

ADF test, if certain criteria are met the null hypothesis is rejected and the time series

is assumed to be stationary. The ADF basically searches for trends in the dataset by

evaluating mean and variance over time.

The ACF of a white noise process is zero at all lags other than lag zero where it is
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unity, to indicate that the nature of its process is completely uncorrelated. Autocorrela-

tion (AC) is the serial dependence of a time-series shows the relation to its own lagged

versions [30].

ρk(t) =

∑n−k
i=1 (xt − x̂)

∑n−k
i=1 (yt+k − ŷ)√∑n−k

i=1 (xi − x̂)2
√∑n−k

i=1 (yt+k − ŷ)2
(3.3)

By using backshift operator (B), the previous value of the time series is related to the

current value yt−1 = Byt, and thus; yt−m = Bmy(t), and the error term is explained as:

ϕ(B)yt = ϵt (3.4)

An AR process p-value is defined by the autocorrelation of residuals of the AR process.

If the residuals autocorrelation falls within a confidence interval, normally considered as

95%, the autocorrelation function of the residuals are considered to be white noise. If not,

the AR process will still continue to find another parameter, until its residuals satisfy the

criteria of white noise. If the current and previous values of a white noise series ϵt, ϵt1
are expressed linearly, it is known as moving average process (MA), and an equivalent

implementation of backshift operator (B) would be:

y(t) = θ(B)ϵ(t) (3.5)

A combination of the two processes is autoregressive moving average (ARMA). If the

mean or covariance of the time series observations change with time, the series is defined

as nonstationary. A nonstationary series becomes a stationary series through integration,

by taking first difference of each data point with its previous one. The differencing process

introduces the ∇ operator, and the AR, MA and ARMA processes are transformed into

ARI, IMA or ARIMA process.

∇Yt = Yt − Yt−1 (3.6)

If the series needs to be differenced multiple times (d) to become stationary, stating the

integrated degree of d, shown as Yt → I(d) [67].

3.2 Information Criteria

One key aspect in modelling time series is to search for the most parsimonious model. A

parsimonious model explains the observations by the the simplest model. In ’Almagest’,

written by astronomer Ptolemo (cirka 150 CE), he argues to practice the principle of

choosing the simplest hypothesis to explain a phenomena [68]. William of Occam, defined

parsimony further in his theory known as ’Occams Razor’; when two hypothesis explain a

phenomena equally good, it is most likely that the simplest one is the correct hypothesis

[69].

In any case a-priori assumptions of observations are likely to be noisy, hence perfor-

mance metrices are used to numerically compare model performance. The R-squared,

R2, is calculated by dividing the sum of squared residuals (
∑

(yi − ŷi)
2) by total sum of
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squares (
∑

(yi − ȳ)2), subtracted by 1:

R2 = 1 −
∑

(yi − ŷi)
2

∑
(yi − ȳ)2

(3.7)

The ajdusted R2 is found by in the total sample size (N), including the degrees of freedom

(N-1) of the estimated variance and, including the number of predictors (p), the degrees

of freedom (N-p-1) of the error variance:

AdjustedR2 = 1 − (1 −R2)(N − 1)

N − p− 1
(3.8)

To select the best model it is possible to choose the one with the largest adjusted R2.

This is a tedious and computational heavy operation, and might not end up opting for

parsimonity.

Various information criterion techniques considers both the model fit as well as intro-

ducing a ’penalty’ for the number of parameters. The lag length of an autoregressive

model can be determined by The Aikike Information Criteria (AIC), Bayesian Informa-

tion Criteria (BIC) or Hannan-Quinn Criteria (HQC). The mathematical formulation, for

AIC and BIC, considers the residual sum of squares of the regression, sample size (n),

and the number of parameters (k) in the following equations:

AIC = ln

(∑
(yi − ŷ1)

n− k

)
+

2

n
k (3.9)

BIC = ln

(∑
(yi − ŷ1)

n− k

)
+

k

n
ln(n) (3.10)

Whereas HQC considers the maximum likelihood (Lmax), number of parameters (k) and

number of observations (n):

HQC = −2Lmax + 2kln(ln(n)) (3.11)

3.3 Linear Regression

Another parametric model is multiple linear regression (MLP) that assumes a linear re-

lationship in the training data and to explanatory variables to explain relationship to the

response-vector (y):

y(t) = a0 + β1x1(t) + ... + βnxn(t) + ϵ(t) (3.12)

where x1(t), ..., xn(t) are independent explanatory variables correlated with the dependent

load variable y(t). The independent variables are found through correlation analysis,

and coefficient estimation normally found through least square estimation, or iteratively

reweighted least squares (IRWLS). All parameters start at 0 and is step-wise improved

using backpropagation through a loss function to find appropriate weights, or through
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finding the intercept a0. Each explanatory variable finding its coefficient based on the

covariance and standard deviation of dependent and independent variables is defined as:

βx =
σxy√
σx

(3.13)

LOLS(β̂) =
n∑

i=1

(yi − x′
iβ̂)2 = ||y −Xβ̂||2 (3.14)

3.4 k-Nearest Neighbor Regression

Opposite to the linear regression (LR) is the k-nearest neighbor (kNN) regressor, which

is non-paramteric, relying on its own table look-up and mathematical foundation, and

highly non-linear.

yknn(x) =
1

K

K∑

k=1

yk for K nearest neighbours of x (3.15)

The kNN-classifier is illustrated in Fig. 3.1, where the left diagram with a small en-

circlement options for k = 1, where simply the nearest neighbor decides the class of

prediction, whilst in the right diagram in Fig. 3.1, the number of k is increased to more

then one [70].

Using k = 1 can lead to false prediction, and a set of kNNs is often used. When classify-

ing the dependent variable is categorical, it can easily be made numerical by regression.

The kNN regressor makes a regression based on the number of kNNs to minimize false

predictions. The model considers a range of different k-values to find the optimal value.

The kNN regressor needs thorough pre-processing and feature engineering to limit the

effect of noise caused by irrelevant features, and is, therefore, dependent on finding the

appropriate distance model [71]:

3.4.1 Distance

A variety of distances is used in the algorithm. As seen in Equations (3.16, 3.17, 3.18,

and 3.19), they are mostly used, since it is easy to intersect by changing the variable q.

The variable q is also considered to find the optimal value.

3.4.1.1 Manhattan/City Block Distance

d(x, y) =
k∑

i=1

|xi − yi| (3.16)

3.4.1.2 Euclidean distance

d(x, y) =

√√√√
k∑

i=1

(xi − yi)2 (3.17)
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Figure 3.1: k-Nearest Neighbour classifying based on the k’th observa-

tion.

3.4.1.3 Minkowski Distance

d(x, y) =

( k∑

i=1

(|xi − yi|)q
) 1

q

(3.18)

3.4.1.4 Chebychev Distance

d(x, y) = lim
q→∞

( k∑

i=1

(|xi − yi|)q
) 1

q

(3.19)

3.5 Decision Trees

One of the most practical methods is Decision Trees. It is a popular inductive inference

algorithm. The classification and regression trees (CART) algorithm, developed by Leo

Breiman. Other tree learning algorithms are ID3, ASSISTANT, and C4.5.

The Learning in a decision tree is represented by a tree, with a root that evolves into

different branches, where a leaf node, the final output node, provides a classification of

an attribute and in between are internal nodes [72].

The function that are used to make a decision is the splitting criteria. In scikit-learn

it is usually gini impurity, or entropy, but other methods are used as well.

The Decision Trees branches uses if else statements and it bases its decisions on a set

of rules. The fact that the Decision Tree is a rule based learner makes en attractive

model in a machine learning interpretation or explainability aspect. This field is called

’Explainable ML’ and ’Interpretable ML’ or ’Explainable AI’ and ’Interpretable AI’

Overfitting occurs when a tree is growing into a number of branches that makes the

accuracy improve while regarding the training data, but subsequently fails to improve,

and even reduce accuracy for new data. This issues are dealt with in C4.5, and has to
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do with the inductive bias and the phenomena Occams Razor. In C4.5 a decision tree is

pruned to improve accuracy.

By imposing mathematical functions on the Decision Tree, it can return the tree structure

with the highest accuracy:

H(s) = −p ∗ log2(pos) − neg ∗ log2(neg) (3.20)

To enhance the decision tree a mathematical function is used to decide how well an

attribute classifies the training data. The entropy function H(s), see equation [3.20], mea-

sures the homogeneity of a classifier, and gives a indication of how pure a classifier is,

from 0 to 1, where 0 is the pure classifier and 1 is an impure classifier since it gives you

a 50/50 chance of being either which class.

H
(s

)
-

E
n
tr

op
y

Fraction positive/negative

Figure 3.2: The entropy func-

tion returns a measure of which

attribute makes the best classi-

fier.

Note that a the entropy can also be measured

for c number of values, then the function is:

Entropy(S) =
c∑

i=1

−pilog2pi (3.21)

The entropy is then used to evaluate the infor-

mation gain of an attribute, and thus to know

how to choose the highest gaining attribute

as the next branch in the decision tree. The

equation yields the expected reduction in en-

tropy, by imposing another branch in the deci-

sion tree:

Gain(S,A) = Entropy(S) −
∑

vϵV alues(A)

|Sv|
|S| Entropy(Sv) (3.22)

Gain = The information gathered

S = Entropy

A = Attribute

|Sv| = the value of the subset

|S| = Sum of the subsets

3.6 Random Forest Regression

Random forest (RF) regression is a combination of decision trees, found through recursive

partitioning to build a piece-wise linear model. From these tree models, it uses a majority
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vote for the most popular class. The trees grow dependant on a random vector, and the

outputs are numerical scalars [73]. Each leaf on the tree is a linear model constructed

for the cases at each node by regression techniques. One sole decision tree encompasses

attributes and classes in the data and uses a entropy function to distinguish its structure.

Entropy is known from thermodynamics as a measure of disorder, and later adopted by

the information theory. In information theory, entropy is a measure of uncertainty of

a variable, and defines a pure classifier [74]. In Equation (3.23) p is positive and n is

negative:

Entropy(S) = −p ∗ log2(p) − n ∗ log2(n) (3.23)

The entropy function is then used to evaluate the information gathered (gain) of an

attribute, and thus to know how to choose the highest gaining attribute as the next

branch in the decision tree. The equation yields the expected reduction in entropy, by

imposing another branch in the decision tree.

Gain(S,A) = Entropy(S) −
∑

ν∈V alues(A)

|Sv|
|S| Entropy(Sv) (3.24)

In equation (C.15), A are attributes used for splitting the data into subsets (S). S is

the sum of subsets, and Sv is the value of subsets. Using prior known input/output

relationships, the algorithm searches for a model for the best prediction in the training

set. The mathematical equations are structured in the algorithm, see Fig. C.6, based on

the past knowledge.

3.7 Ensemble Methods

In ensemble methods, multiple machine learning algorithms is used to perform ensemble

learning. A combination of models, in an ensemble, is the basis for ensemble learning.

An ensemble learning algorithm is called ensemble models or ensemble methods. The

underlying premise for ensemble methods is that an aggregated answer improves predic-

tions when the training data cannot provide sufficient information. When averaging the

measurements, the estimate is less pruned to random fluctuations in a single measure-

ment, and hence are a more reliable and stable output. The aggregated averaged answer

designed to improve the predictions, is also the same principle as ’Wisdom of the crowds’.

The best-known Ensemble Methods include Bagging, Boosting and Stacking. Usually

they consists of simple algorithms, like Light Gradient Boosting Machine (LightGBM),

includes a ’boosting’ paradigm based on gradient descent that adds expansion [75]. An-

other version is XGBoost that maneuvers the out-of-core computation, by chunking data

into manageable sizes for next to load data chunk by chunk, in a way that it allows for fast

processing of hundred millions of examples [76]. Decision Trees are ensemble methods,

when, as explained in the section above, see Section 3.6, multiple Decision Trees form a

Random Forest Regressor.
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Figure 3.3: Ensemble methods

3.8 Artificial Neural Networks

Artificial Neural Networks (ANN) has been used successfully for complex decision mak-

ing. Their advantage over basic regression tools is that they encompass a higher degree

of complexity, hence can detect structural combinations hidden for the naked eye. Inputs

are connected as nodes in hidden layers. Essentially the computed weights of the inputs

defines the final model. The complexity of associations made in the networks of hidden

layers, and the lack of explinability and interpretability have made ANN-models referred

to as black box models. When decision-making is done without being able to explain the

logic behind the decisions, it has questioned the ethics and fairness of neural networks and

introduced the aspect of fairness in algorithms. The term XAI, refers to explainable AI,

aimed to raise fairness through awareness, where focus is aimed at how data is selected

and used in algorithms [77], as well as well as advancing machine learning algorithms to

be fairness-aware [78].

The traditional Deep Neural Networks (DNN’s) learn patterns on the assumption that

inputs and outputs are independent of each other. The first DNN’s used stacked general-

ization to developed deep learning based on the concept of a perceptron [9]. A perceptron

mimics the behaviour of neurons in the brain for decision making. When the sum of

weights and inputs reach a certain threshold value, neurons fire off, just like learning

paths are developed in the brain. In neural networks an activation function decides upon

the state of activation. The output from the activation function is compared to the real

value from the targeted response vector in a loss function, as shown at Frame 1 in Fig. 3.5.

The output from the loss function is used to trace the global minima through stochastic

gradient descent. The information is backpropagated through the network and used to

adjust the weighted input of the network, and this process is found when training and

validation losses converge and a stop criterion terminates the process.
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Figure 3.4: Schematic of Artificial Neural Networks

In ANNs weights are given to inputs. When the sum of these weights and inputs overcome

a certain threshold value they give direction to the stochastic gradient descent of the loss

function, as illustrated in Fig. 3.4. This information is then backpropagated and used to

adjust the weights according to the information given to seek the global minima of the

loss function.

ANNs are flexible and have been applied successfully to a great extent of various fore-

casting problems, yet their performance on real time series problems are not satisfactory,

and it is important to create new models of neural networks [79] [80].

3.9 Recurrent Neural Networks

A Recurrent Neural Network (RNN) depend on the prior elements within the sequence,

to perform its decision making. RNNs was first developed in natural language processing

and the Vanilla RNN is a fully-connected RNN where the output from previous time step

is to be fed to the next time step by an additional set of units. The units have also

proven to be successful in other time series application, and for all problems constituted

by sequences, such as electrical load demand.

In Frame 2 of Fig. 3.5, illutrates a Feed Forward Neural Network (FFNN) as a black

box representation, with input, black box and a learn output.

Frame 3 in Fig. 3.5, shows a FFNN transposed to its vertical axis, to show the key

concept of units in RNN’s.

Recurrence that provides the key concepts behind Recurrent Neural Networks, the key

idea, is that the RNN’s remain the internal state, ht, that is updated for each timestep,

and keep the sense of recurrence in the network. The update is defined mathematically

as shown in Equation (3.25):

ht = fw(xt, ht−1) (3.25)
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Figure 3.5: Reurrent Neural Network

This internal state, ht, is a hidden layer used to define the state. When computed in

the network is is used as shown in [81]:

hi,t = σt(Uhi,t−1 + Wxi,t) (3.26)

In Equation (3.26), σ is activation function, U and H are learned weighted parameters for

hidden states and input vectors.
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The process then composes a set of learned weighted parameters in matrix V, which

for a regression problems uses a linear activation function σy to give the result in the

output layer:

yi,t = σy(V hi,t) (3.27)

3.10 Anomaly Detection using Machine Learning Al-

gorithms

3.10.0.1 Isolation Forest

The Isolation Forest algorithm is composed of several isolation trees (iTres) Isolation

forest takes advantage of the nature of anomalies which are less frequent than regular

observations and different from those in terms of values to isolate those. Iforest can deal

with large scale data quickly in a simplified way. It builds an ensemble of decision trees

(iTrees) for a given data set. Clustering is done using binary tree clustering. Anomalies

tend to be isolated closer to the root of the binary tree. Partitions are created using a split

value between the minima and maxima of a randomly selected feature. The algorithm

then tries to separate each point in the data. [82] [83] [84] [85].

3.10.0.2 Local Outlier Factor

Local Outlier Factor (LOF) is a density based anomaly detection algorithm introduced

in 2000 [26]. LOF compares the local density of a point to the local density of k of its

neighbors. By comparing the local density of a point to the local density of its neighbors

one can identify point that have substantially lower density than its neighbors. These

points are considered outliers. LOF uses the k-distance to a point as in kNN, to find the

Local Reachability Density (LRD), where a point is most likely to be found. The sum of

LRD is the used to find LOF for the point z, as in Equation (3.28):

LOFk(z
′) =

∑

z∈Nk(z′)

lrdk(z)

lrdk(z′)
/ ∥Nk(z′)∥ (3.28)

[86]

3.10.0.3 Normalising

The pre-processing of data is a transformed so that the machine learning algorithm can

learn the patterns and generate a sound forecast. In a standard normalization process,

input data are transformed with values from zero to one. This is done to make the

predictive algorithm more robust [42].

X̂ −Xmin

Xmax −Xmin

(3.29)

X̂

Xsum

(3.30)
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X̂

Xmax

(3.31)

X̂ −Xavg

Xmax −Xavg

(3.32)

3.10.0.4 Performance metrics

To evaluate the performance of load forecasting, a performance metric is used, including

mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error

(MSE), and symmetric mean absolute percentage error (SMAPE). They are defined as:

MAE =
1

n

n∑

i=1

|yi − ŷ| (3.33)

SMAPE =
1

n

n∑

i=1

( |yi − ŷ|
(|yi| + |ŷ|)/2

)
∗ 100 (3.34)

MSE =
1

n

n∑

i=1

(yi − ŷ)2 (3.35)

MAPE =
1

n

n∑

i=1

|yi − ŷ

yi
| ∗ 100 (3.36)

3.11 Detecting Patterns

The techniques provided in Machine Learning are aimed at enhancing the pattern recogni-

tion, and can be applied in a diversified range of fields (electrical demand forecasting, re-

newable energy production, condition monitoring, anomaly detection, energy market etc.).

The specific applications of machine learning techniques require deep domain knowledge

with improved novel methodologies that include subject specific knowledge.
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Chapter 4

Methodology for Electrical Demand

Prediction

The focus point of this works methodology is to understand how machine learning algo-

rithms function to solve the task of electrical load demand forecasting. The two aspects

is time organisation and how the algorithm perceive the more general information given.

From the literature there are concerning aspects that when AI and ML becomes an in-

tegral part of decision making in society, there is a growing need to understand how to

interpret and explain the algorithms. This paves the way for more fairness and awareness

in artificial intelligence and information from experts in the domain where it is applied.

The complexity of models incorporates a trade-off between bias and variance when choos-

ing the suitable model for a forecasting problem. The suitable model is found from this

trade-off in complexity, as well as the level of exlainability and interpretability. There is

a wide variety in models to choose from, and the algorithms shows different traits that

will be beneficiary in choosing the suitable model.

In general for a electrical load demand forecasting problem, there is the incremental

behaviour of each step in data governed by the time of use. This is incorporated by the

autogressive modelling, yet for more complex models it is needed to deal with stationarity

as well as seasonality. In time series modelling this is dealt with by introducing operators

such as the nabla operator and adding layers that handles seasonality. In Neural Net-

works, the incremental steps of time series is dealt with in the recurrence and seasonality

in long and short-term dependencies.

The methodology of this work is based in both a comprehensive feature engineering,

based in in-depth correlation analysis and dimensionality reduction, also including prin-

cipal component analysis. From the mentioned analysis, the most prominent features are

selected and this has given the fundamentals to test the most suitable models. The novelty

of this work is based in the way that the work also include a focus of domain knowledge,

shown through the design of a vertical axis approach, see Fig. 4.1. The presented vertical

time approach uses seasonal data for training and inference, as opposed to continuous

time approach that utilizes all data in a continuum from the start of the dataset until the
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Figure 4.1: Illustration of vertical and horizontal approach.

time used for inference.

In Fig. 4.2 is illustrated how the regressor model is designed with inputs (Hour, Day,

Previous load, Temperature), applied algorithm (kNN) and hyperparameters (Distance

Function), to give the load consumption prediction result.

4.1 Main features influencing electrical load demand

patterns

There is a consensus among the recent articles that the most important features influenc-

ing the load forecasting are[10][11][12][13][14][15][16][17][18][87][88][89][90][91][92]:

(i) Time

(ii) Weather

(iii) Random effects

The historical electrical load patterns has shown to be the most important factor to

describe the changing load demand and identify electrical load demand patterns. This is

also reflected in the series own lag, found through its autocorrelation, described in Chap-

ter 3, section 3.1, using Equation (3.3). Electrical load demand forecasting is divided into

categories by the time-term of the prediction window (short-/medium-/long-term). The

literature is known to deviate in how to categorize the time-terms. The overall tendency

is that short-term is everything below 24 Hours and medium-term is two or more days

to months, and long-term is year. Short term load forecasting is the most popular re-

search area, and occasionally short-term is divided into very-short-term, short term and
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Figure 4.2: The regressor model for electric load demand forecasting

long-term, where very-short-term is minute to 5 minutes forecasting, short-term is half-

hour to hourly and long-term is 24 hour forecast. In the following we will use the last

definition, namely that short-term is half-hour to hourly and long-term is 24 hour forecast.

In the short-term (30 minute) forecast the time is the most important factor. This is

shown through the mentioned autocorrelation, and hence forecast-methods such as au-

toregression, kNN, and Random Forest captures the trends of the short-term variations.

To capture the seasonal variations in the datasets, techniques such as ARIMA has been

devoloped into Seasonal Autoregressive Mean Average (SARIMA) [93]. A general term

notation for ARIMA, includes parameters, p, d and, q: ARIMA(p,d,q). Where p is the

autoregressive term, d is the number of differences (∆ - operator) to deal with stationarity,

and q refers to the moving average term. For SARIMA the parameters is expanded to

include for seasonal variations with (P,D,Q)s, where s is the number of periods per season

and P,D and Q is the autoregressive, ∆ and mean average parameter for the seasonal

term.and the general equation:

θ(B)Θ(Bm)(1B)d(1Bm)Dyt = α + Θ(B)Θ(Bm)ϵt (4.1)

where yt is the value electrical load at current time; θ(B) represents the non-seasonal AR

coefficients of the order p; Θ(Bm) is the seasonal AR coefficient of order P with seasonal

degree of order m; (1B)d is non-seasonal differencing of order d; (1Bm)D is the seasonal

differencing of order D with seasonal degree of order m; α is constant; Θ(B) is non-seasonal

moving average; Θ(Bm) is the seasonal moving average and ϵt is the current time error [94].

A one-term SARIMA model is written SARIMA(1, 1, 1)(1, 1, 1)12 [95]. The equation

includes 12 number of periods per season, and has shown good result for monthly electri-

cal load demand forecasting [95].
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Neural Networks developed to include short term dependencies in the Vanilla Recurrent

Neural Networks, to include long-term dependencies of seasonal parameters in LSTM.

4.2 Correlation Analysis of Electrical Load with Me-

teorological Parameters

In order to analyse how the external parameters influence the load and understand rea-

soning behind the development of extending models to include for seasonal behaviour

correlation analysis is necessary. Correlation is a measurement to how two ranges of data

move together, and will give us an indication of how to assess feature engineering. The

Pearson Correlation Coefficient (r) computes the linear relationship between two datasets,

in a range from -1 to +1. [36]. If the relationship is in the proximity of 1, it means that

when x increases so does y and at exact linearity, the opposite is true for -1, it means that

when a dataset is increasing the other dataset is decreasing.

r = rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2
(4.2)

One of the means to improve prediction accuracy in spite the seasonal differences, is to

create a dummy variable that increases the precision of the algorithm while differentiating

the seasonal changes.

4.3 Principal Component Analysis for Electrical Load

Forecasting

Principal components analysis (PCA) is a multivariate technique that can be applied to

many fields for feature reduction. To find the intrinsic nature of linguistic representation

Principal component analysis (PCA) has been performed on the hidden unit activation

patterns to reveal that the network solves the task by developing complex distributed rep-

resentations which encode the relevant time relations and hierarchical constituent struc-

ture [96]. It is the number of samples in the features that are reduced, not the entirety of

a feature in itself. PCA has been found useful in many areas such as daily urban demand

forecasting [97]. PCA is extracting the important information for later to represent it in a

new set of orthogonal vector input constituting the principal components. These principal

components is linear transformation of the data so that the first coordinate explains the

most of the variation, the second coordinate the second most, and so on. The components

are found through the eigen-decomposition and Singular Value Decomposition [98] [99].

To perform PCA the the input matrix is transposed and crossed with its non-transposed

version, stored in matrix L. By diagonalising L, find a matrix M and diagonal matrix W:

L = MTWM (4.3)

The feature space is reduced by restricting inputs based on the number of columns that

sums up M to make a rotated matrix. The eigenvalues from W are related to the variance
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of the principal components. PCA reduces the input feature space, yet remains to capture

and keep the variation for future inputs and is a important step in the feature engineering.

The proportion of variance needed for optimal feature space may vary. The reference

[97] refers to a meta-heuristic practice of principal components explaining 85% of the

variance, yet their optimal value was found at 92%.
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Chapter 5

Electrical Energy Data Description

The Big Data sources are divided into Operational and Non-Operational Data, where

the first can be extracted directly from the distribution grid through devices such as

Advanced Metering Infrastructure (AMI), time-referenced measures of voltage and cur-

rent phasors (PMU), and remote monitoring and control through Supervisory Control

and Data Aquisation (SCADA), and the latter comprises of additional information that

help utility companies gain knowledge about external parameters such as weather, elec-

tricity market data, social media, geographical information systems (GIS) and customer

behaviour data (number of occupants, square meters etc.) [10].

Big Data presents opportunities and challenges. Through the proper analysis of data

the detection of underlying patterns help improve the electrical energy network, yet it is

also changing energy production and consumption. These challenges involves collecting,

storing and manage energy data, analysing, extracting and discovering patterns in large

datasets using methods at the intersection of machine learning, statistics and database

systems (known as data mining), using data information effective decision making and

securing data and privacy of all players in the energy network [100].

In the era of Big Data, data have become a commodity in itself, and comes with a price.

Offers of weather forecasts often comes with a price, and also recorded past values has a

price tag. Some limited data might be freely available for downloading, but for specified

granularity most of the cases the data has a price [101]. Governmental agencies offers

data freely on web-services, but with limited usability due to the granularity of data and

researchers have adopted techniques to deal with limited data [102].

In GIS information are stored and updated in layers with a geographic location [103].

The overlay technique computerized in the early 1970s and first used for siting power

lines and roads. There are open source project that collect information about power

systems, and many governmental agencies offer data through GIS. Improvements in GISs

enabled environmental assessment and analysis. GIS allows for incorporating database ca-

pabilities, data visualization, and analytical tools in a single integrated environment [104].
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5.1 Case study I: Urban Area Load - New South

Wales

New South Wales, Sydney region electrical load profile data set [105] includes meteoro-

logical parameters (e.g. DryBulb and WetBulb Temperature, Humidity, Electricity price

and time of use) [106]. Data is gathered from 2006-2011. The overall energy mix in New

South Wales consists mainly of Coal, Natural Gas, Hydro and other renewable energy

sources as shown in Table 5.1. Fig. 5.1 illustrates the New South Wales distribution

network.

Power plant Number Installed Power (MW)

Hydro 24 4794

Wind 14 1250

Solar 9 228

Coal 8 11730

Biogas 11 56

Natural Gas 19 3766

Table 5.1: Energy Mix in New South Wales, Australia

New South Wales is operated in the National Electricity Market (NEM) that also com-

prises of five other states that includes Queensland, New South Wales (including the

Australian Capital Territory), South Australia, Victoria, and Tasmania. Making it one

of the worlds largest interconnected power systems covering a distance of 5000 km.

Data from Australian Government Department of Industry, Science, Energy and Re-

sources [107], shows an average growth in Australia’s energy consumption of 0.7 per cent

a year over the past ten years. Fig. 5.2 illustrates the states with the highest electricity

consumption (New South Wales, Queensland, Victoria, South Australia) in NEM, with

data ranging from 1999-2020 [107]. The load profiles for the mentioned regions have been

stable for tewnty years (1999-2020), at stable average values, see Table 5.2.

5.2 Case study II: Rural Area Load - Bjønntjønn

Hyttegrend

From rural cabin area in Bjønntjønn, Telemark, Norway, the electrical load demand con-

sumption profile is collected from smart meters. Weather data is collected from surround-

ing weather information statins in the surrounding area. The land owner of the area wants

to realize the project ’Bjønntjønn Grønn’ (Bjønntjønn Green). The project seeks through

different initiatives to make the cabin area ’green’, with power from local hydro power

stations, possibility of electric vehicle charging and operation of the load consumption
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Figure 5.1: New South Wales Power system indicating location of transmission lines,
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Figure 5.2: Load profile for the 4 regions in Australia, and the total load from NEM.
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Region Average Annual Electrical load demand (TWh)

New South Wales 73

Queensland 51

Victoria 49

South Australia 13

Tasmania 10

Snowy 0.6

NEM (Total) 194

Table 5.2: Regional Average Load demand 1999-2020, Australia

related to the power intensive usages. The land owner has currently an application to

get license from The Norwegian Energy Regulatory Authority (NVE) to run hydro power

stations in the area, with a total production of 10,08 GWh [108]. In the fall of 2021 NVE

approved an appplication for a Tesla Supercharger from Tesla Norway, situated in the

center of Treungen, an 8 km drive from the planned Bjønntjønn hydro power station [109]

[110].

The rural area network of a typical Norwegian holiday resort cabin area, Bjønntjønn

Cabin Area. It comprises 125 cottages with a peak demand of 478 kW. As for today,

this cabin area is grid connected, but a microgrid solution involving photovoltaics and

energy storage is also considered. In the summer of 2020 the land owner presented plan

of building 445 new cabins in the area [111].

Rural electrification is very different from the urban area electrical consumption, due to

diversified energy mix and overall conditions. A variety of case studies is necessary for a

generic approach, although each system requires an independent approach. The Nordic

market is much reliant on hydropower, as Norway’s share of hydropower is 95.8 % [112].

Norway also has the highest integration of Electric Vehicles, and this faces challenges to

the grid. This is especially a case in the rural area, where capacity is low, and the electrical

vehicle charging poses a liability to the grid. In these cases, a micro-grid solution can aid

the low-capacity network, with implementation of distributed generators, in combination

with energy storage.

When examining the general load profile of all Norwegian Holiday Cabins, a clear trend

is observed in the user behaviour. The load demand for Norwegian Cabins has increased

their total consumption from 0.7 TWh in 1993 to 2.3 TWh in 2016. Although the con-

sumption tripled and has been only 1.8 % of the total Norwegian load demand in 2016

[42]. Statistics Norway concludes in the 2018 report, that the increasing trend is due to

the general development, and that more Norwegians have bought cottages in rural areas,

such as mountains and seaside. Also, more cottages have been electrified in this period

[112].
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A rural village in Siyambialanduwa (Sri Lanka) has a different composition of the ba-

sic elements and energy mix. Although it is comparable with the Nordic Holiday Resort

in end-user size, with the villages 150 households, the daily energy load demand is 270

kWh [113]. The overall Sri Lankan energy mix is also like Norway heavily dependent on

hydropower (40.5 %), besides a bigger part of thermal power (49 %). Due to economic

conditions and geographical location (Sri Lanka is situated close to the equator) the most

liable energy solution for Sri Lanka in the future will be renewable energy sources (RES).

To electrify the rural area village population of Sri Lanka, through microgrid hybrid energy

sources, may increase the electrical resiliency. A micro-grid organized network powered

by RES hybrid systems can be considered for rural electrification and supported by the

Sri Lankan government. Due to the intermittent nature of the RES, energy storage is

an essential part of the system to maintain a continuity of supply and mitigate voltage

fluctuations that might harm the electrical system. The optimal system for the village

comprises photovoltaic (PV) system, wind turbines, diesel generation and a battery bank

[113].

In the Bjønntjønn Cabin Area, to deal with the ever-increasing penetration of electric

vehicles, photovoltaic system together with energy storage could be a scenario for the

future rural electrification. For the Nordic rural area network, a microgrid solution can

improve the electrical network capacity of the rural area, despite challenges from power

demanding operations as electric vehicle charging. Since the electric vehicle will not be

used mostly of the holiday resort area, the battery pack of the vehicle is be considered

as the battery bank for the microgrid. When the state of charge (SOC) of the battery

reaches a certain threshold level, it will be considered as a prosumer for the micro grid

and be able to contribute to electrical supply and stability. In the further analysis of the

rural electrification, it is necessary to have proper load analysis and forecasting.

5.3 Electricity Market Data - NordPool

The electricity ’spot market’ is a day-ahead market, and not a continuous trade mar-

ket. The process of deregulating the market and introducing a competitive trade market

has reshaped what used to be a monopolistic government-controlled power sector. This

process has been ongoing since the 1990’s and electricity is now traded using spot and

derivative contracts, hence the popular name ’spot-market’.

NordPool delivers power trading in the Nordic, Baltic and UK day-ahead markets, of-

fering both day-ahead and intraday markets to customers and trade power in 13 markets

as well as adding specific related services such as compliance and data. The Nordic trade

market has since November 2011 been split into 12 bidding zones, 5 in Norway, 2 in

Denmark, 4 in Sweden. Finland is operated as one bidding zone. Denmark has always

been split in two bidding zones (Jutland has not been part of the Nordic synchronous
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area), until 2010 there was no interconnection between the two bidding zones and the

connection is congested most of the time. Fluctuations in the hydrological balance make

the Norwegian power system different from the rest of the region. Dynamic bidding zones

create incentives for generators to optimize the use of storage capacity and ensures import

when the hydrological situation is weak.

The electricity ‘spot market’ is typically a day-ahead market that does not allow for con-

tinuous trading. Day-ahead forecasting means that bids for the next 24 hours of day (d),

are done before some given deadline the previous day (d-1 ). Then the market operator

uses the bids to calculate a market clearing price for each of the 24 hours, once the dead-

line has passed. Then the bids are approved, and a contract between producer/consumer

is established [114] [115].

5.3.0.1 Considered Regions - Denmark (DK1), Norway (NO2)

Although Norway and Denmark are neighbouring countries with sharing boarder, the

topology and terrain of the countries are very indifferent. In Denmark the terrain is flat,

contrasting the fjords and mountains of Norway. The differences of the two regions terrain

make them rely on different power sources, as two different energy systems.

The Danish region DK1 is naturally defined as the peninsular Jutland, encapsulated

by water and set apart by a the land border to Germany, see Fig 5.4. The Norwegian

region NO2 is in the soutwestern part of Norway, limited by the 420 kV transmission line

from Hasle to Rød, crossing the Oslo Fiord. Further, region NO2 is bordering NO5 by

the 300 kV line Vemork-Flesaker.

The Danish grid is relying on wind power and it is the dominating source of energy,

with 50.5% contribution to the Danish energy market. Norway’s installed power is 3.4

GW, and 94.3% is hydropower. More than 1000 dams results in a storage capacity of 86.5

TWh, and this is considered as Europe’s green battery in Norway.

The electric grid is joined by subsea DC-cable between Kristiansand in region ‘NO2’,

of southern Norway, and Tjele on Jutland in Denmark in region ‘DK1’, with a total ca-

pacity of 1400 MW. It has been illustrated in Fig. 5.4.

The NordPool Market web service (www.nordpoolgroup.com) offers data of hourly values

from 2013 to present date. The values are given in €/Mwh, which makes it effective

compare the prices of the different regions of the NordPool market.
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Chapter 6

Summary of Results

In this chapter, the key findings are summarised from the research work which have been

disseminated in the peer-reviewed published papers (Part II).

In Paper A the collected real-time data are analysed for predictions of energy con-

sumption to manage and operate renewable energy based distribution network planning

from a flexibility point of view. A novel vertical time approach are presented to help

close the gap to the many methods on energy prediction mentioned in the literature, that

utilise continuous time approach. Paper A investigates urban area electrical energy de-

mand prediction with weather parameters and analyses their correlations. kNN, Random

Forest and Linear Regression is analysed and evaluated both by using continuous and

vertical time approach. It is observed that for 30 minutes predictions the Random Forest

Regression has the best results, shown by a mean absolute percentage error (MAPE) in

the range of 1-2 %. kNN show best results for the day-ahead forecasting with a best

results with a MAPE of 2.61 %. The results, using vertical time approach, outperforms

compared to continuous time approach. The results can compete with the more complex

neural networks, with less amount of data. The regression tools for urban electric load

forecasting have been presented in Paper F, and results from k-fold cross-validation are

analysed, which have been further elaborated in the Paper A.

In Paper B, event-based demand prediction with impact of external parameters (e.g

meteorological parameters, etc.) have been investigated using vertical time approach con-

sidering the seasonal impact of the external parameters. The Paper B investigates the

potential of the pre-processing stage. To bridge this research gap, domain knowledge has

been applied together with algorithmic development. The proposed solutions has been

sought for in the pre-processing stage, developed in the novel vertical time approach, and

by refining techniques from the domain of statistics and time series to be included in the

model. The regression techniques are systematically investigated for smart load energy

prediction analysis and correlating it to other impacting parameters. The techniques are

developed with the knowledge of research mentioned in the literature, that utilise contin-

uous time approach together with complex neural networks which requires huge amount

of data. Paper B presents a systematic load synthesis and prediction analysis of rural

areas seasonal occupancy for network expansion planning and integrated renewable en-
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ergy sources. The work in Paper B is based on the findings in Paper G, where load

analysis of a typical Nordic rural area with holiday cabins is done. Paper I is linked to

Paper B and Paper G, through rural area energy consumption data. Three models are

evaluated in Paper G, a base model, a heterogeneous model, and a homogeneous model.

The base model uses k-nearest neighbor regression, random forest regression, and linear

regression. In the heterogeneous model, XGBoost regression, LightGBM regression, and

random forest regression are combined. The homogeneous model has three layers of linear

regression. The meta estimator for all three models is linear regression. The performance

is relative to the season, and it is consistent for both algorithms. Both algorithms perform

best on the season with the highest granularity of data, meaning the season in which the

electrical load consumption is the highest.

Paper C analyses dealing with the problems of irregularities and randomness in the

time series considering urban and rural area case studies and it can be used for network

topology optimisation. The work in Paper C uses both case studies presented in Paper

A and Paper B into consideration, and presents the overall methodology and results

from the two mentioned papers.

Paper D further investigates and analyses the pre-processing stage for Recurrent Neural

Networks (RNN), and finds that reducing the dimensionality through principal compo-

nents analysis (PCA) for improving the predictive performance. In the winter season, the

correlations to weather parameters are higher than other seasons, as well as in general the

winter season has a higher load demand. These are factors explaining the lower MAPE in

winter season as opposed to other seasons. In the case of Gated Recurrent Unit (GRU)

networks, the results for all the seasons are improved through PCA. Also for the Vanilla

RNN, there is a benefit from reduced number of principal components in a lesser MAPE,

and for the summer test on a week in July, it scores best of the compared RNNs. Yet

for the Long Short-Term Memory (LSTM), it does not benefit from an improved MAPE

from the PCA. The best results are measured in January, when also the electrical load

demand is at the highest, and the impact of external weather parameters is influencing

greatly on the load demand. The curvature of the load profile is dominated by a high

peak at noon, and GRU captures it very good. The results from the week of April, has

a lower load demand than January. In January, the load demand is highly correlated

to the weather parameters readings in winter season. GRU with PCA achieves the best

forecast MAPE result for the week in April, yet with a slightly higher MAPE than for

January. This can be explained by the lower load demand in April, and that correlations

to weather parameters are usually lower in spring and autumn. In the test week of Octo-

ber, which has the same range in load demand (6000 - 10000 MW), it is also GRU with

PCA that scores best with a MAPE of 0.94. When comparing the results without and

with the use of dimensionality redution through PCA, the MAPE is in the same range

for Vanilla RNN (1.45 for April, and 1.38 for October), GRU (1.21 for April and 1.26

for October) and LSTM (1.25 for April, and 1.24 for October). The similarity in results

from spring (observed from the test results for the week in April) and autumn (observed

from the test results for the week in October) can be explained by similar load range and
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meteorological conditions. In the case of Vanilla RNN and GRU, the explanations of the

compared results indicates the same, when investigating the results on the RNNs tested

with PCA. The exception is the LSTM tested with PCA, that shows a higher MAPE. It

is observed that LSTM is a more complex algorithm, than the Vanilla RNN and GRU,

when it is trained with relatively lesser data. Although it is analysed using its principal

components, it is not able to improve the predictions. It is observed that for the week

in July with the lowest load demand, the simplest RNN (Vanilla RNN) with reduced

principal components achieve the preferred MAPE, amongst all of the predictors. Paper

D is the foundation of Paper J that covers Recurrent Neural Networks for electrical load

forecasting to use in Demand Response.

Paper E considers abnormal operation due to various instances (e.g. random effect,

intrusion, abnormal operation of smart devices, cyber-threats). In the results of kNN,

iforest and LOF on urban area data and from rural region data, it is observed that the

anomaly detection for the considered grid scenarios are different. For the rural region,

most of the anomalies are observed in the latter timeline of the data concentrated in the

last year of the collected data. For the urban area data, the anomalies are spread out over

the entire timeline. The frequency of detected anomalies, where considerably higher for

the rural area load demand than for the urban area load demand. Observing from case

scenarios, the incidents of detected anomalies are more data driven, than exceptions in

the algorithms. It is observed that there are some anomalies, where the recorded electrical

load demand is zero, in the rural region dataset that the iforest and LOF did not detect.

This was only detected by kNN. It is observed that from the domain knowledge of smart

energy systems, the LOF is able to detect observations that could not have detected by

visual inspection alone, in contrast to kNN and iforest. Whereas kNN and iforest excludes

an upper and lower bound, the LOF is density based and separates out anomalies amidst

in the data. The capability that LOF has to identify anomalies amidst the data, will

together with the deep domain knowledge, be an advantage when detecting anomalies in

energy system data. The results from Paper E is further analysed in Paper K on cyber

security in power systems highlighting related topics, such as concept drift.

In Paper H analysis of Electricity Markets in Norway (NO2) and Denmark (DK1) are

presented. From load and price analysis, it is shown that peaks normally happen once

in the morning, and again in the evening with a valley during the night, and a shoulder

leveling out the load consumption between the first peak in the morning and the second

peak in the evening. The kNN-regressor surfaced with an autoregressor, is giving the finite

gradient of the curvature, amd the MAPE improved. The Norwegian region is easier to

predict, since it is a more stable system due to hydropower. However, the Danish system

has a higher integration of peak and valleys in the dataset, hence more curvature, and

therefore the algorithm improve its predictive accuracy for the Danish market, more than

the Norwegian, when given the autoregressor.
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Chapter 7

Concluding Remarks

The energy consumption data has been analysed using vertical axis approach, and it has

been implemented and elaborated in this work. The vertical time axis approach has been

proven to work effectively using instance based models, which also options for explainabil-

ity and interpretability of the predictive algorithm. When regarding the computational

time, which is less for instance based models that those of higher complexity (i. e. Neural

Networks), added to the fact that vertical time axis approach uses less data, than the

horizontal time organisation. It is observed that for both horizontal (i.e. continuous ap-

proach) and vertical approaches the correlation to weather parameters and multivariate

input features helps in improving the predictive outcome. Especially introducing lower in-

dicator variables (i.e. working/non-working day) is fruitful for improving the performance

metrics. In vertical time axis approach when combined with lower indicator variables, the

best performance is observed.

For rural area load demand forecasting the improvements by using vertical time axis

approach is minimal, due to the low electrical load demand, hence it makes pattern

recognition in general more difficult. It is observed that for areas with lower electrical

load demand, aspects from statistics and time series analysis (such as autoregression and

autocorrelation) improves the predictive outcome. In addition to improving the predic-

tions it also gives a rapid response to the best input feature from the historical load values

to use as input features.

This work has shown that the instance based models can compete with models of higher

complexity, yet some methods in preprocessing (such as circular coding) does not function

for an instance based learner such as kNearest Neighbor, and hence kNN can not option

for this kind of complexity even in the feature engineering of the model.

It will be interesting for the future work of electrical load forecasting to develop solution

that combines a high complexity in the feature engineering and have the explainability of

instance based models. The short-term energy forecasting can be used for analysing possi-

ble abnormal operation of electrical energy network including cyber-intrusions. Day-ahead

energy forecasting combining with energy market forecasting can be further investigated

for finding more accurate demand considering user behaviour.
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Appendix A

Paper A - Relative Evaluation of

Regression Tools for Urban Area

Electrical Energy Demand

Forecasting

Nils Jakob Johannesen and Mohan Kolhe and Morten Goodwin

Faculty of Engineering and Science, University of Agder, PO Box 422, NO 4604 Kris-

tiansand, Norway.

Abstract - Load forecasting is the most fundamental application in Smart-

Grid, which provides essential input to Demand Response, Topology Opti-

mization and Abnormally Detection, facilitating the integration of intermit-

tent clean energy sources. In this work, several regression tools are analyzed

using larger datasets for urban area electrical load forecasting. The regression

tools which are used are Random Forest Regressor, k-Nearest Neighbor Re-

gressor and Linear Regressor. This work explores the use of regression tool

for regional electric load forecasting by correlating lower distinctive categor-

ical level (season, day of the week) and weather parameters. The regression

analysis has been done on continuous time basis as well as vertical time axis

approach. The vertical time approach is considering a sample time period

(e.g seasonally and weekly) of data for four years and has been tested for

the same time period for the consecutive year. This work has uniqueness

in electrical demand forecasting using regression tools through vertical ap-

proach and it also considers the impact of meteorological parameters. This

vertical approach uses less amount of data compare to continuous time-series

as well as neural network techniques. A correlation study, where both the

Pearson method and visual inspection, of the vertical approach depicts mean-

ingful relation between pre-processing of data, test methods and results, for

the regressors examined through Mean Absolute Percentage Error (MAPE).

By examining the structure of various regressors they are compared for the
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lowest MAPE. Random Forest Regressor provides better short-term load pre-

diction (30 min) and kNN offers relatively better long-term load prediction

(24 hours).

Keywords - Electrical Energy Demand Forecasting, Impact of meteorological param-

eters on demand forecasting, Smart-Grid management, Machine Learning, Regression

Tools, Random Forest Regressor, k-Nearest Neighbor Regressor, Linear Regressor.

A.1 Introduction

Urban area electrical energy demand forecasting is necessary for optimizing the electrical

power generation scheduling in coordination with distributed generators including inter-

mittent renewable energy sources. It will also be beneficial for demand side management

considering grid constraints. In the literature, most of the electrical energy prediction

studies are using shallow neural networks and support vector [2, 3]. Popular stochastic

models, such as hidden Markov models, are also used for energy prediction [4, 5]. In

the EU FP7 SEMIAH (Scalable Energy Management Infrastructure for Aggregation of

Households) project [5], the domestic demand has been predicted using a two-stage linear

stochastic optimization for managing operation of non-critical power intensive loads (for

example, thermal load).

Recent research from 2018 on Computational Intelligence Approaches for Energy Load

Forecasting [6], that reviewed more then 50 research papers related to the subject out-

lines the complexity of demand patterns as potentially influenced by factors like climate,

time periods, holiday or working days and other factors such as social activities, eco-

nomic factors including power market policies. Electrical energy demand is influenced

by meteorological weather conditions, therefore it is necessary to include the impact of

meteorological weather parameters in electrical energy demand forecasting also renewable

electrical energy production is nature dependent. The future electrified grid will increas-

ingly depend on renewable intermittent energy sources (solar, wind), and the individual

load profiles of such a system will change radically as home appliances includes new energy

demanding appliances (e.g. heat pump, electric vehicles and induction stove) [7]. The

new electrified grid is Smart Grid System, as it is a complex whole of two-way communi-

cation aided by intelligent agents. The information will be used to provide demand side

management such as peak shaving, where non-critical load demands are shifted to other

periods where the stress on the grid is less intense. Electric load forecasting by machine

learning will be useful in the operation of load shifting, with an accurate prediction of the

load demand. Machine learning falls into two categories of Supervised, where the data

points have a known value, and Unsupervised, where data points have unknown outcome.

The types of supervised learning is divided into regression and classification. The first

where the outcome is continuous (numerical), the latter categorical. Regression models

considers the relationship to independent variables, predictors, and a dependent variable,

known as target.
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The regression models k-Nearest Neighbor (kNN), Linear Regression (LR), and Ran-

dom Forests (RF) are supervised machine learning algorithms with a numerical outcome.

The model is trained to find rules for pattern recognition in the input to output relation.

The input to the model are known as features. Neural Networks is the preferred machine

learning tool and are known as both feedforward and backpropagating networks, where

a number of inputs are weighted in order to provide a predictive outcome. Neural net-

works are good for detecting non-linearities and therefore preferred as a predictive tool in

electrical load forecasting, yet also often criticized for low transparency and lack of inter-

pretability because of the black box approach, and using large amount of data. Overfitting

is still a challenging issue when applying Neural Networks to electrical demand prediction

[8]. The literature distinguishes between short term prediction and long term prediction

time. In this article short term is defined as the 30 minute prediction time interval, and

long term prediction is defined as 24 hour time prediction interval.

Urban area load is influenced by meteorological conditions therefore it is important to

include impact of weather parameters on load prediction, yet this impact is governed by

the prediction time, greater for long term and decreases as the prediction time is nar-

rowed. The electrical energy demand is influenced by the user behavior as well as weather

conditions. Individual human behavior and weather are so random that a complex neural

network would not predict the outcome better then a coin toss. Hence, if one has to

analyze the load demand of larger area like the urban area, systematic load behavior with

correlation to weather parameters and continuous load profile, should be investigated.

This work has uniqueness in electrical demand forecasting using regression tools through

vertical approach and it also considers the impact of meteorological parameters. This

vertical approach uses less amount of data compare to continuous time-series as well as

neural network techniques.

The objectives of this work are to explore the use of regression tools for regional elec-

trical load forecasting by correlating lower distinctive categorical levels (season, day of

the week) and weather parameters. The vertical time approach is considering a sample

time period (e.g seasonally and weekly) of data for four years and has been tested for

the same time period for the consecutive year. A vertical axis approach, showed to be

competitive to Artificial Neural Networks (ANN), with a low amount of data.

The paper is organized as follows: Review of electrical load forecasting is presented in

Section 2. In Section 3, various parameters (e.g. weather parameters, seasonal impact

and time as well as random effects) are discussed for urban area electrical energy demand

forecasting. Section 4 shows analysis both by Pearson correlation method and visual in-

spection to find correlation of meteorological parameters and previous load patterns on

Urban Area Load Forecasting and shows the Regressor Model and gives regression model

analysis. Results and Discussions are provided in Section 5. Finally, in Section 6, the

conclusions are presented.
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A.2 Review of electrical load forecasting

In most of the work, hourly electrical energy predictions are considered. It is important

to have precise prediction for short-term (e.g. 30 min) using less amount of data as well

as for long-term (e.g. 24 hours) for urban area electrical demand for electrical power gen-

eration coordination. The small area of Tunis (with only installed capacity of 4425 MW)

is considered for analysis of load prediction with seasonal variations [22]. A variation in

load due to season is only once a year during heat wave in the summer. For training

set they have used horizontal time-series approach, where almost 10 months (more than

14400 datapoints) of training was used for testing on one week. According to Lahouar and

Slama (2015) [22], who used random forest for day-ahead load forecast for the Tunisian

market with historical data from 2009-2014, they obtained an average MAPE of 2.24%

when crediting for the next 24 hours. Presented method of [22] does not improve, when

predicting for the heat wave season, as the average MAPE for heat wave period (7-13 July)

has increased to 2.6899%. During the Arabic spring in Tunis 2011, Tunis experienced a

Random effect caused by a much lower power demand during the Tunisian Revolution,

the MAPE for some 24 hour intervals of prediction as high as 19.61%. It was even worse

during the Blackout of August 2014 where the MAPE rose to 398.09%. This show the

machine learning algorithms inabilities in forecasting rare events. [22] also makes a com-

parison with ANN, and for the testing period of 7-13 of July it scores 2.9140 MAPE. They

state that the main advantage with Random Forest over other methods is that there are

few hyper-parameters to set and generalize by saying default settings is normally enough

to compete with ANN and Support Vector Machine (SVM)/Support Vector Regressor

(SVR), which accuracy depends on the tuning of their hyper-parameters. In our work we

have used the experiences from Tunis to understand the random effects and their input

on electrical energy demand forecasting as well as the understanding of hyper-parameters.

Jinkyu and Sup (2015) [23] recognizes artificial intelligence techniques like ANN or Kalman

filter, to show promising results in the load forecasting predictions, although the hidden

structures in AI might limit the understanding of the complex spatiotemporal develop-

ments in correlation between meteorological conditions and electricity demand. Electrical

load demand and the temperature effects have been studied and short term load forecast

needs to take temperature effects into consideration for day-ahead predictions. In the

very short time load prediction the time scale is to short for the temperature to have

any effect, and in the long run the effect tend to even out [24, 25]. On the load forecast-

ing for the UK electricity demand Al-Qahtani and Crone (2013), proposes a multivariate

k-NN approach that, opposed to the univariate model that does not take into account

the underlying sub-categories of the calender, create a binary dummy variable where dt

= 1 for all nonworking days and dt = 0 for working days. The load forecast MAPE of

both univariate and multivariate show improved results by the use of dummy variables.

A MAPE of 2.3284 was found using the univariate model, and a 1.8133 was found using

the multivariate model. The dataset contained data for more then 7 years (2001-2008).

The complete year of 2004 was used for training and 2005 used for validation [26]. Based

on their research we developed the relevance of doing multiple correlation analysis with
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different time factors, where we can observe that meteorological parameters increase their

importance on the prediction output as time window increases. In this context we re-

garded the work of Afkhami and Yazdi who proposes a way to quantisize the day into 3

periods of 8 hours for neural networks to enhance their performance [27].

Local Interpretable Model-Agnostic Explanations (LIME) aims to reflect the behavior

in proximity to the predicted outcome, and does so by offering a interpretation that can

explain doubts about the model. By explaining here means to provide some mean of

qualitative understanding in the relation between a decision making and the predictive

outcome. In medical diagnosis LIME highlights what features in the dataset that led to

the prediction, and what was evidential against it [28].

ANN studies have shown an MAPE of 1.9, resulting in a Mean Absolute Error (MAE)

of 167.91 MW, based on training data for a whole year. The research includes studies of

temperature effects and introduces two threshold values where the load and temperature

exhibits close correlation, at below 10 degrees Celsius due to heating, and above 23 de-

grees because of cooling [29].

The focus of this work is to verify the regression tools for electrical energy demand fore-

casting and we have not considered the prediction from the supply side. We considered

regional area electrical energy demand forecasting with impact of weather parameters.

And we have the availability of the required data for mentioned period.

A.3 Urban Area Electrical Demand Forecasting

The purpose has been to test the regression tools on the available real data. Urban area

electrical energy demand forecasting is very important for generation scheduling, as well

as effectively taking contribution from renewable energy sources and demand side man-

agement. Urban area electrical energy demand predictions for short term (30 min) and

long term (24 hours) are necessary for scheduling power generation units as well as partic-

ipating them in short term and day ahead energy market. When predicting the electrical

load demand for a particular time window, in this case the next 30 minutes or 24 hours,

the machine learning algorithms search for patterns and rules for the predictive outcome

in the Supervised category with a continuous numerical output.

The following three parameters are important for system electrical energy demand:

(i) Time

(ii) Weather

(iii) Random effects

The seasonal patterns are repeating with the same upper and lower limits (e.g repeating

on annual basis) and therefore considered as no economic effects are influencing the load

behavior in the urban area of Sydney during the years 2006-2010. When investigating

the Sydney dataset, see Figure A.1, we find that the load curves, yet containing cyclic
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Figure A.1: Load curve of Sydney dataset containing five years of half hour values.

and seasonal differences, do not contain significant changes on the system load due to

changing economic trends [57].

A.3.1 Time

Apart from the seasonal effects, shown in Figure A.1, underlying patterns emerges in the

system load demand. There are different peaks throughout the seasons, whether it is a

winter peak or a summer peak. Emerging under this seasonal patterns are daily- and a

weekly-cycles. The daily routines of human behavior are manifested in systematic load

patterns on a daily basis. Day of the week is also significant. Public buildings and offices

demands large amount of electrical load and whether it is a working day or not, influences

load patterns.

When inspecting the daily- and weekly-cycle in Figure A.2, we can clearly see a load

pattern emerging from a very low activity during the early hours of the day, into one peak

at morning (between 8-10 hours), and another peak in the evening (between 19-21 hours)

in Subfigure A.2a. The same daily repeating pattern, with a low activity followed by two

peaks, are also evident in the weekly cycle, seen in Subfigure A.2b, except for that the

two last days of the week (Saturday and Sunday) the peaks and general load is lower. It

can be seen that urban area load predominantly reflects the domestic load and it can be

correlated to human behavior. The periodicity in the load patterns reveal a load demand

that reflects consumer-lifestyle.

The periodicity reflected in the daily load curve is significant in weekly cycles as well as

monthly, seasonal and yearly load curves, as seen in Figure A.1 and A.2. Sub-categorical

levels like working/non-working days are referred to in the literature as an indicator vari-

able. In this work the time has been used as a variable which can be categorized as day

of the week or working/non-working days or time of the day. To give this properties to

our algorithms are very important as it makes prediction of forecast load more efficient

[48]. The use of such type of variables has been successfully employed in electric market

forecasting in the Tunis as well as the UK [22, 26].
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Figure A.2: Load patterns in daily- and weekly- cycles
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A.3.2 Weather
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Figure A.3: DryBulb temperature curve of Sydney dataset containing five years of half

hour values.

The features enlisted in the Sydney dataset, has two time indicators ’Date’ and ’Hour’,

four weather parameters, information about the electricity price, ’ElecPrice’ and informa-

tion about the electricity load consumption, ’SYSLoad’, these features have been devel-

oped in the pre-processing to match the requirements of the prediction tool, see Figure A.4.

The four weather parameters enlisted are DryBulb, DewPnt, WetBulb and Humidity.

Dry Bulb Temperature (DBT) is temperature measured from the air, yet not exposed

to solar radiation or moisture. Wet Bulb Temperature (WBT) is measured from a ther-

mometer where the bulb of the measurement device is soaked by a wet cloth. As long as

the air is not saturated, evaporation from the moist cloth keeps the WBT lower then the

DBT. From the DBT and WBT one can then derive the relative humidity of the air and

the dew point from a Mollier Chart by psychometrics.

Many electrical utilities are weather-sensitive, such as heating and air conditioning. Tem-

perature, as well as past temperature effect on the load are important effect on the

electrical demand, the temperature on a hot summer day may reach its peak after sunset

due to heat buildup in the construction materials of buildings. In addition to the daily

heat buildup, will a sequence of days with high temperature create new system peak.

The complexity in the control system engineering of maintaining thermal comfort as well

as optimizing for energy is important to know. At the same time it is important to ac-

knowledge that most houses are designed to resist the worst meteorological conditions[50].

There are also limitations in the heating system itself that might cause load peaks, like

the inertia in the floor heating system, known as thermal lag [51].

In humid and hot places it is likely that humidity will effect the load pattern in simi-

lar ways as temperature. Humidity explains the complex relation between temperature

and load, and therefore mathematical models is not enough in a thorough analysis. Hu-

midity is the amount of water vapor in the air and might increase the gap between actual

and apparent or felt temperature. When regulating temperature the body utilizes evapo-

rate cooling, and the rate of evaporation through the skin is correlated to humidity, and

because of the conductive properties of water, we feel warmer at high humid conditions.
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Figure A.4: Model input parameters: indicator variables, weather parameters

and previous load consumption.

Also, due to the seasonal changes of weather data, the correlation to the electrical load

will vary during the year.

A.3.3 Random effects

Infrastructural changes in the urban area and maintenance work are random effects that

will not be detected by pattern recognition. When examining the Sydney dataset load

curve as shown in Fig. A.1, there is consisting seasonal patterns. Load pattern are

consistent from year to year, and show reoccurring seasonal pattern. When the yearly

load curves do not vary from year to year show that there are no economic trends.

A.3.4 Relevance

It is important to investigate the main effects on the system load pattern as these are the

main predictors in load forecasting.

To look for causalities in load and effect has been the topic of previous studies in load

forecasting. Knowledge about the cause and effect about external parameters and system

load is needed for accurate prediction. In the literature concerns have been voiced about

more complicated forecast scenarios based on deregulated markets [22] and demand side

management.

When energy consumers are free to choose suppliers the varying energy prices are in-

centives to attempt to shift non-critical load demands to periods where the stress on the

grid is less intense, otherwise known as peak shaving. The other aspect is the integration

of the district level environment friendly power plant, relying on intermittent renewable

energy sources. In Figure 2.4, the load and temperature are plotted in the same plot.

The plot will help searching for linearity among the features. The upper side of the plot

forms a v-shape, separating the plot into two linear relationships at around 21◦C. While

the lower end has a more round u-shape.
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A.4 Correlation Analysis of Electrical Load with Me-

teorological Parameters

Correlation is a measurement to how two ranges of data move together, and will give us

an indication of how to assess feature engineering. Other means to measure the relevance

between variables is Shannons concept of Mutual Information (MI), a method based in

the entropy function that gives the certainty of a variable [21]. Correlation is widely used

in contemporary research, where regression tools and other machine learning methods

are applied to various engineering features (e.g. power transformers health index [22],

emission prediction of Combined Cycle Gas Turbine [23], wind power prediction based on

weather data and local terrain [24]). The Pearson Correlation Coefficient (r) computes the

linear relationship between two datasets, in a range from -1 to +1. [36]. If the relationship

is in the proximity of 1, it means that when x increases so does y and at exact linearity,

the opposite is true for -1, it means that when a dataset is increasing the other dataset is

decreasing.

r = rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2
(A.1)

One of the means to improve prediction accuracy in spite the seasonal differences, is to

create a dummy variable that increases the precision of the algorithm while differentiating

the seasonal changes.

A dummy variable or Indicator variable is an variable created to represent more distinct

categorical level. In this paper one was made to categorize on day of week:

df [′season′] = (df [′month′]%12 + 3)// (A.2)

The use of dummy variables has been successfully employed by forecasting on the UK

electricity market, to categorize days into working and non-working days [26].

Other papers conclude what this research also experienced that the most accurate predic-

tion comes from either from predicting on the same hour or for 24 hours, probably due

to the habitual individual behaviour like showering and putting on the coffee at the same

time every day [25].

A.4.1 Regressor Model

The input for the model are based on tree parameters, time, weather and previous load

consumption, see Figure A.4. The time parameters are divided into sub-categories in

lower categorical level as the indicating variables day of the week, working-/non-working

days and season. Included are also the previous load consumption are organized by the

lag method and weather parameters.

The preprocessed inputs are then computed using regression tools, in Figure A.5, rep-

resented by the k-Nearest Neighbour regressor. Figure A.5, is showing the k-Nearest
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Figure A.5: The regressor model

Neighbour algorithm, where the model shows the algorithm consider a k-value and dis-

tance function based on the inputs. The regressors are taken from the scikit learn library

[29], and further the hyper-parameters are tuned for optimal performance.

A.4.2 Regression Models Analysis

The regression-tools considered in this article are kNearestNeighborRegressor, Linear-

Regressor and RandomForestRegressor. To elaborate further on the model used in this

research in the following the kNearestNeighborRegressor is explained: The k-Nearest

Neighbour is an algorithm that computes the numerical value of the distance between

given features or data points and a query point in an multi-dimensional array, and then

find the point in vicinity to the query point [26].

In Figure A.5, the model takes a set of inputs, based on time, date, previous power

consumption and weather parameters, based on the features of the Sydney dataset and

further created.

A.4.2.1 kNN Regression Tool

The kNN-classifier is illustrated in Figure A.6, where Subfigure A.6a, depicts a nearest

neighbour of k=1, where simply the nearest neighbour decides the class of prediction,

whilst in Subfigure A.6b, the number of k is increased to more then one [70].

Using k=1 can lead to false prediction, and a set of k-Nearest Neighbours are often used.

When classifying the dependent variable is categorical can easily been made numerical

by regression. The k-NN regressor makes a regression based on the number of k-Nearest

Neighbours to minimize the false predictions. The model considers a range of different

k-values to find the optimal value.
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(a) k=1 (b) k=2

Figure A.6: kNN-classifier

A.4.2.2 Distance

A variety of distances is used in the algorithm. As seen in Equation C.10, C.11, C.12,

and C.13, they are most used since it is easy to intersect by changing the variable q. The

variable q is also considered to find the optimal value.

A.4.2.3 Manhattan/City Block Distance

d(x, y) =
k∑

i=1

|xi − yi| (A.3)

A.4.2.4 Euclidean distance

d(x, y) =

√√√√
k∑

i=1

(xi − yi)2 (A.4)

A.4.2.5 Minkowski Distance

d(x, y) =

( k∑

i=1

(|xi − yi|)q
) 1

q

(A.5)

A.4.2.6 Chebychev Distance

d(x, y) = lim
q→∞

( k∑

i=1

(|xi − yi|)q
) 1

q

(A.6)

Similarly the all the regression-tools have parameters viable for optimisation. This re-

search employs a systematic grid-search on selected parameters.
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A.5 Results and Discussions

In k-fold cross validation the dataset D is divided into an equally adjusted amount of

k’s. For the Sydney dataset the subsets are D2006, D2007, D2008, D2009 and D2010. One

subset when is taken apart for testing Di, and the remaining four is used for training. The

method is repeated until all the subsets are tested on an equal shifted amount of training

data [28]. In the case of the Sydney dataset containing 87648 datapoints, each k-subset

will contain approximately 17530 datapoints depending if there is a leap year or not.

The cross validation was done on various regressors from the Python library scikit-learn

[29]. All regressors were set to the default values. In Table A.1, the validation is done for

short-term (30 min) time prediction window, denoted t-1, and long-term (24 hour) time

prediction window, denoted t-48. The MAPE of the cross validation show little variation

between the subsets. In this work the weather parameters and the load data from the

urban area of Sydney city is used. The results are analyzed for correlation among the

dataset variables, graphical inspection for understanding some patterns between load and

temperature, impact analyses of q-values on load prediction, and analyses of results for

load and indicator variables.

A.5.1 Correlation Analysis

Correlation analysis between the variables enlisted in the Sydney dataset (Date and Hour,

four weather parameters; DryBulb, DewPnt, WetBulb and Humidity, information about

the electricity load consumption, ’SYSLoad’) are presented in Table A.2.

A.5.2 Graphical Inspection between Load and Temperature

In section 8.1 it is observed that there is significant impact of temperature on the load.

Therefore it is also investigated through graphical depiction the complex relation between

DryBulb Temperature and the load patterns emerging from human lifestyle behavior,

influenced by the weather conditions. The correlation of System Load to Last half hour

value correlates highest at 0.98, and is also the most effective variable for short-term load

forecast. Preceding the last half hour value is the variable Hour at 0.48, giving high impact

on the periodicity. It has been observed that among the weather parameters, DryBulb

has a better correlation with the load. The correlation for DryBulb to the load improves

further when it is correlated to the previous 24 hour load data. This might explain

why the 24 hour prediction results improves when impact of the weather parameters

are included. When investigating the correlation between load and temperature from

the graphical depiction, as seen in Figure A.7, where seasonal effects influences the load

patterns we find complex patterns, but also periodicity. From these observations it can

be seen that the vertical approach (considering a sample time period - e.g seasonally and

weekly - of data for four years, and tested for the same time period of the consecutive

year) enables the algorithm to reveal the complexity of load and temperature for better

prediction results [30].
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Table A.1: k-fold validation result in MAPE

Regr. 20
06

t-
1

20
06

t-
48

20
07

t-
1

20
07

t-
48

20
08

t-
1

20
08

t-
48

20
09

t-
1

20
09

t-
48

20
10

t-
1

20
10

t-
48

Rand. 1.02 4.47 1.00 4.07 0.98 3.96 1.02 4.35 1.05 4.35

k-NN 1.83 4.93 1.73 4.65 1.64 4.43 1.79 4.92 1.82 4.88

Linear 2.22 5.49 2.12 5.07 2.13 4.95 2.17 5.24 2.11 5.11

Bayes 2.22 5.49 2.12 5.07 2.13 4.95 2.17 5.24 2.11 5.11

Table A.2: Correlation of Dataset
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Figure A.7: Correlation of DryBulb Temperature and Electric Load consumption.
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Table A.3: Seasons

Season Months

Season 1 December January February

Season 2 March April May

Season 3 June July August

Season 4 September October November

A.5.3 Impact Analysis of q-value on MAPE

In this work the annual load profile has been divided in four seasons and time frames are

given in Table A.3. Observing the results of the impact of q-values on prediction, the

preferred value is 1, which is the absolute value. Only occasionly are other q-values the

preferred output, meaning the one with the lowest MAPE. On these occasions the highest

q-value was 4. Load prediction has been analyzed for all seasons for different regressors

and the MAPE for short-term (30 minutes) and long term (24 hours) are presented in

Table A.4. In this analysis only the previous load pattern were taken into account. MAPE

analysis has been carried out for horizontal (continous time series) as well as vertical ap-

proach. It has been observed that Random Forest Regressor provides better results for 30

minutes prediction in horizontal as well as vertical approach for all seasons. For 24 hours

prediction it has been observed that in most of the season k-Nearest Neighbour Regressor

performs well compared to other regression tools. But in season one for vertical approach

Linear Regression has given better result. In season three k-Nearest Neighbour regressor

performs well especially considering the vertical approach.

The load prediction using Random Forest Regressor, k-Neareast Neighbor Regressor and

Linear Regression has been presented in Figure A.8. These regression results for 24 hour

load prediction in season three using vertical approach. Tests conducted by including

previous load consumption, weather parameters and indicator variables.

A.5.4 Lowest MAPE for short term and long term prediction

The relative comparison of the MAPE for different regression tools for 30 minutes and 24

hours have been done using both horizontal and vertical approach for all seasons, as shown

in Table C.4. It has been found that the the lowest MAPE was achieved with the use

of previous load patterns together with indicator variables, and noticeably disregarding

weather variables. This goes well with the previous analysis of correlation, which confirms

that previous load patterns and indicator variables have higher correlation to the actual

load, then the weather parameters.

It has been observed from the test results the lowest MAPE is found through Random

Forest Regressor for 30 minutes prediction using the vertical approach. For the 24 hour

time period k-Nearest Neighbor is providing lowest MAPE, again through the vertical

approach. The lowest MAPE for 30 minutes prediction in season three using vertical ap-
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Table A.4: q-Value Results

Regressor

Time Random Forest k-Nearest Neighbour Linear Regression

Season One Horizontal Approach

30 minutes 1.12(16*) 1.29(5**,1***) 2.02

24 hours 5.21(13*) 4.30(16**,4***) 5.55

Season One Vertical Approach

30 minutes 1.01(16*) 1.44(11**,1***) 1.78

24 hours 6.75(13*) 6.63(19**,1***) 6.29

Season Three Horizontal Approach

30 minutes 1.13(15*) 1.43(7**,1***) 2.29

24 hours 4.00(15*) 3.60(19**,3***) 5.03

Season Three Vertical Approach

30 minutes 0.93(18*) 1.17(7**,1***) 2.22

24 hours 3.73(13*) 3.58(7**,1***) 5.09

* n-estimator

** k-value

***q-value
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Figure A.8: Regression results on 24 hour prediction for season tree

using vertical approach. Tests conducted by including previous load

consumption, weather parameters and indicator variables.

proach is shown in Figure A.9, and similarly for 24 hours in Figure A.10. The MAPE for

30 min prediction results using ‘random forest regressor’ is varying between 1-2%, as seen

in Figure A.9, and providing very good results compare to other regressions techniques,

which have been used in this work. The 24 hours predictions results using ‘k-Nearest

Neighbor Regressor’ technique has MAP of 2.61%, as seen in Figure A.10, which is much
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Figure A.9: Best performance for 30 min prediction by Random Forest Regressor
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Figure A.10: Best performance for 24 hour prediction by kNN regressor

better compare to other regressors, which have been studied in his work. From the results,

it has been observed that for short-term predictions (30 min) the ‘random forest regres-

sor’ should be used; and for long-term predictions (24 hours) the ‘k-Nearest Neighbor

Regressor’ should be considered.
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Table A.5: BEST RESULTS (MAPE Load and Indicator aggregated ver-

sion test results)

Regressor

Time Random Forest k-Nearest Neighbour Linear Regression

Season One Horizontal Approach

30 minutes 1.11(9*) 1.98(7**,1***) 2.04

24 hours 5.32(13*) 6.53(4**,1***) 5.15

Season One Vertical Approach

30 minutes 0.94(16*) 1.85(8**,1***) 1.76

24 hours 5.88(13*) 5.49(5**,2***) 5.83

Season Three Horizontal Approach

30 minutes 1.12(17*) 2.36(5**,1***) 2.29

24 hours 4.76(9*) 5.41(19**,1***) 5.27

Season Three Vertical Approach

30 minutes 0.86(17*) 1.19(6**,1***) 2.15

24 hours 2.71(17*) 2.61(17**,1***) 4.26

* n-estimator

** k-value

***q-value
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A.6 Conclusion

In this paper the regression tools, Random Forest Regressor, k-Nearest Neighbor Regres-

sor and Linear Regression are used for analyzing the urban area electrical energy demand

forecasting. Using larger dataset of Sydney region. This work has explored the use of

regression tools for electrical energy load forecasting through correlating weather param-

eters as well as the time period. Load prediction analysis using regression tools have been

done continuous time basis (horizontal) as well as vertical time approach.

A correlation study, where both the Pearson method and visual inspection, of the vertical

approach depicts meaningful relation between pre-processing of data, test methods and

results, for the regressors examined. Data correlation over seasonal changes have been

argued by means of improving Mean Absolute Percentage Error (MAPE). By examining

the structure of various regressors they are compared for the lowest MAPE. The regres-

sors show good MAPE for short term (30 min) prediction and Random Forest Regressor

scores best in the range of 1-2 % MAPE. kNN show best results for 24 hour prediction,

with a MAPE of 2.61%.

Results of this work is going to be useful for predicting the short term 30 minutes electri-

cal energy using vertical approach and considering Random Forest Regression Tool. For

long term prediction of 24 hours kNN Regression Tool can provide better results using

vertical approach. It is also important to consider further investigations of the impact of

various weather parameters on load prediction.

The presented regression techniques can forecast electrical energy demand for short-term

(30 min) and long-term (24 hours) using limited datasets. Vertical axis approach has

shown competitiveness to ANN due to use of low amount of data and considering the

impact of meteorological parameters. Load forecasting is the most fundamental applica-

tion in Smart-Grid, which provides essential input to other applications such as Demand

Response, Topology Optimization and Abnormally Detection, facilitating the integration

of intermittent clean energy sources. Presented regression techniques can also be used for

predicting energy output (short- and long-term) from the intermittent renewable energy

sources.
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Norwegian Rural Area
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tiansand, Norway.

Abstract - The Norwegian rural distributed network is designed for Holi-

day Cabins with limited loading capacity. Load prediction analysis, of such

type of network, is necessary for effective operation and to manage increasing

demand of new appliances (e. g. electric vehicles and heat pumps). In this

paper, load prediction of distributed network (a typical Norwegian rural area

power network with 125 cottages with 478 kW peak demand) is carried out

using regression analysis for making autocorrelations and correlations among

weather parameters and occurrence time in the period of 2014 to 2018. In this

study, the regression analysis for load prediction is done considering vertical

and continuous time approach for day-ahead prediction. The vertical time

approach uses seasonal data for training and inference, compared to continu-

ous time approach that utilizes all data in a continuum from the start of the

dataset until the time period used for inference. The vertical approach does

this with even fewer data than continuous approach. The regression tools can

perform using the low amount of data, and the prediction accuracy matches

with other techniques. It is observed through load predictive analysis that the

autocorrelation by vertical approach with kNN-regressor gives a low Symmet-

ric Mean Absolute Percentage Error. The kNN-regressor is compared with

Random Forest Regressor and, also it uses autoregression. Autoregression is

the simplest and the most straightforward predictive model based on the tar-

geted vector itself. The autoregression indicates the decline and incline of the
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time-series, and thus gives a finite gradient for the curvature of load profile.

It is observed that joint learning of regression tools with autoregression can

predict time-series components of different load profile characteristics. The

presented load prediction analysis is going to be useful for distributed network

operation, demand-side management, integration of renewable energy sources

and distributed generator.

Keywords - Load Predictive Analysis, Distributed Network Operation, Machine

Learning, Regression Analysis

B.1 Introduction

The Norwegian rural distributed network is designed for Holiday Cabins with limited

loading capacity. Load prediction analysis, of such type of network, is necessary for

effective operation and to manage increasing demand of new appliances (e. g. elec-

tric vehicles and heat pumps). Change in user behavior due to installed heat pumps

and electric vehicle charging stations are expected to increase the electric load demand.

Such type of rural distributed network can be operated as micro-grid with integration

of renewable energy sources and distributed generators. The rural distributed network

may face voltage instability due to increasing demand of power intensive loads, there-

fore appropriate operation and management of rural distributed network are required.

The rural area distribution network performance can be improved by operating it as a

micro-grid with integration of energy storage, renewable energy sources and distributed

generators. The smart micro-grid (i.e. smart distributed network) is a complex system

encompassing of various sub-systems at various stages of aggregation. Smart micro-grid is

going to accommodate multi-directional power flow to go together with multi-directional

information flows between all the vectors (e.g. power generations, transmission and dis-

tribution system operators, distributed intermittent renewable energy sources, demand

response aggregations, end-users, etc.). Over the past decade the power system is chang-

ing from centralized grid to more decentralized and its operational management is going

to be real-time monitored smart and micro-grids [30]. Reference [31] has reviewed energy

technologies for application in smart distributed network using IOT technologies, various

different types of solar technologies has been reviewed in the same paper and discusses

control strategies PV’s and hybrid energy systems. For effective operation of micro-grid

and demand side management, the load prediction analysis with impact of external pa-

rameters is required.

Machine learning algorithms can be electively used for electrical energy demand as well

as predicting the output from the renewable energy sources. It is important to do the

prediction of future load consumption to balance the electrical energy supply and de-

mand [32]. Existing research into micro-grid electric energy load demand forecasting is

scarce. The majority of the existing research selected micro-grids of large power scale

with electric energy load demand ranging from 10 MW scale, to larger ones at 1000 MW.

The GW-scale which is the size of a medium city and forecasting results from such a
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large scale micro-grid is comparable to urban area load forecasting. Hence the smaller

scale micro-grid is more difficult to predict due to higher load fluctuations and random-

ness. At a smaller scale the load fluctuations within the same time period may be higher

than for bigger more stable load. A comprehensive study compares small and large scale

micro-grids in China. The chineese case study uses five different scale of micro-grid where

the two smallest micro-grids have subsequently maximum load of 273 and 463.8 kW. To

efficiently predict the electric energy load demand for these micro-grids they propose to

use different hybrid forecasting models based on Empirical Mode Decomposition (EMD),

Extended Kalman Filter (EKF), Extreme Learning Machine with Kernel (KELM) and

Particle Swarm Optimization (PSO). For the small scale micro-grid the hybrid models

achieves acceptable MAPE of 7 to 10 % [33]. Existing research on network capacity plan-

ning deal with much larger data samples. The term Big Data is a relative concept and

not an absolute definition, at best it is ambiguous and to quantify dataset is a difficult

task as the capacity and computational power is continuously increasing. Typical Big

Data is regarded as that quantification of collected data in different sampling rates is in

the Terabyte (TB) area [35] [34].

The main objectives for this research work is to investigate the vertical axis approach,

described in our paper [7] by studying user behavior and applying vertical time approach

that uses seasonal data for training and inference. Potential research will be analyzing

micro-grid architecture (adaptive) based on local renewable energy prediction as well as

demand forecasting. This architecture will consider techno-economic operational charac-

teristics of dispatchable distributed generators, and focus on analyzing predictive tech-

niques and performance metrics for maintaining the system reliability and stability in

practical operation and management.

In a review article [8], the performance metrics mean squared error (MSE), root mean

square error (RMSE), mean absolute error (MAE) and mean absolute percentage error

(MAPE), are evaluated. The last three decades the popular performance metrics has

changed from MSE to MAPE, bringing MAPE to be the preferred metric in recent years.

MAPE works well for load forecasting, as long as the real value is unlike zero, that is caus-

ing a computational error as described in [43]. The review on electric price forecasting

(EPF) [10] points out there is no standardized method for evaluating prediction perfor-

mance. Absolute errors, although widely used, make it hard to compare among different

dataset, and measures, based on absolute percentage errors, are used. With point forecast

for low values the MAPE values become very large, even though the absolute value is not.

MAPE comparisons must be done with caution. In the case of low values, a symmetric

mean absolute percentage (SMAPE) can be used. The Makridakis or M-Competitions

conducted by the International Institute of Forecasters (IIF) for evaluating the partici-

pating methods by focus of empirical validation, [11] recognizes that the metric SMAPE

penalizes large positive errors.

In our previous study [7], we have used regression techniques for urban area load fore-

casting and it has been validated by correlation analysis to external parameters with the
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vertical approach. The regression techniques are used in this work for the rural area

load prediction with autocorrelation analysis. From previous study [7], it has concluded

that the vertical approach predicts well with fewer data. In the rural area, where data is

limited, hence the vertical approach is a preferred method for the rural area electric load

demand forecast.

In this paper, load prediction of a distributed network (a typical Norwegian rural power

network of 125 cottages with 478 kW peak demand) is carried out using regression anal-

ysis for making autocorrelation and correlations among weather parameters and time of

usage in the time period of 2014 to 2018. In this study the regression analysis for load

prediction is done using vertical and continuous time approach for day-ahead planning

with 24 hour prediction. The load prediction analysis is going to be useful for distributed

network operation, demand-side management, integration of renewable energy sources

and distributed generator.

Selection and description of load profile of the data are presented in Section B.2. The

quick and easy application of optimized autocorrelation based feature selection is pre-

sented in Section B.3. The regression techniques are explained analytically in Section

B.4. The obtained results of the considered rural area are analyzed in Section E.5. The

usefulness of the presented load prediction techniques is summarized in Section B.6.

B.2 Load Profile of Selected Rural Area Network

The electric energy load demand for holiday resorts have increased radically the last two

decades. Since 1996 the load demand in Norwegian Cabin Areas has been growing into

tree times its original size. Most of this is due to a change in standard, from bio-fueled

ovens to electric heating, therefore load analysis and forecasting is important due to the

enlarged power dependent installations like heat pumps and chargers for electric vehicles.

This is an important field of research and has been neglected since the holiday resort

electric energy load consumption is only 1.8 % of the 2016 Norwegian electric energy load

demand [12]. The weekly electric load cycles of Bjønntjønn Cabin Area is direct oppo-

site to that of larger urban areas, where the electric energy load demand is considerable

lower during weekdays, where businesses are not demanding energy. In Fig. B.1, where

the total kilowatt consumption is aggregated and showing high load demand on typical

(holiday) weekends, from Friday to Sunday.

The selected rural area network is used for Holiday Cabins and there is a potential for

integrating solar photovoltaic system with energy storage. In Norway the penetration of

electric vehicles is increasing more then in any other countries, and is a potential challenge

for the operation and management of the entire grid, therefore the load prediction analysis

of such type of rural network is necessary. Bjønntjønn Cabin Area is a typical rural area

low capacity network in the south-east part of Norway, see Fig B.2. The load demand of

Bjønntjønn Cabin Area from 2014 to 2018, as illustrated in Fig. B.3 shows a peak load
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demand in typically holiday winter seasons, and low load during summer time, where

temperature is higher, and evenings are brighter and thus less time for indoor activities.

To study correlation between load and external parameters data from Norwegian Institute

of Bioeconomy Research (NIBIO) with weather information from 3 closest meteorological

stations, to Bjønntjønn Cabin Area (Bø, Gvarv and Gjerpen) are picked for correlation

analysis. Through correlation analysis the highest correlating weather station, is found.

Most of the pattern that constitutes the electric load profile is dependent on individ-

ual user behavior. The individual human activities is not enough to make substantial

patterns on its own accord, yet together with the influence of the changing weather the

impact is growing, and an important component of feature engineering in load forecasting.

The Dry-bulb temperature is the most fundamental external parameter debated in the

load forecasting literature [13]. Comprehensive correlation analysis of load demand to

weather has historically proven to be important [14]. Previous developed research makes

inquires into seasonal load demand variation for the amount used on space heating and

reveals that the amount is substantial, and hence contributes to the correlation to electric

energy load demand. The technique proposed by [15] indicates that individual activi-

ties (Television/Radio, heating water, lights) are negatively correlated temperature. The

electric energy load demand reaches a peak demand in the end of typical holiday season,

and this period is not particularly colder then out of holiday season period, as seen in

Fig. B.4, that illustrates the complex relation of temperature and load demand. Time

occurrence dependence relationship is a fundamental asset for optimal feature extraction

based on correlations between independent features and are described in Section B.3.

For load analysis of electric energy demand it is important to look into the character-

istics of the data; trends, seasonality and cycles [16]. Trend is when the load consumption

in the total time-series from start to finish shows an inclination to increase or decrease

with a longer-term change of the mean value. On a lower level there might be reoccurring

phenomenon due to seasonality, whether it is a higher load demand during winter due to

increased heating and indoor activities as opposed to summer. Seasonality can also take

shape from a lower indicative level such as month, and can be the change in monthly

arrival of residencers at a cabin area. Cycles can be patterns that are observed for more

than a year for various reasons (e. g. droughts, famine or financial crisis). Cycles can

also be observed at lower time levels as daily and weekly cycles [7] [17] .

B.3 Feature Engineering

The efficient and transparent predictive model is extracting a focus set of informative

features from a bigger dataset. The process of removing redundant and irrelevant features

has many names; feature extraction, feature selection or feature engineering. Leaving

the decision making to a small feature space reduce data dimensionality to evoke faster
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in Bjønntjønn Cabin Area 2014-2018

Figure B.2: The Bjønntjønn Cabin Area and weather station Bø. Map

data © 2019 Google.
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computation time, avoid overfitting and induce model transparency.

B.3.1 Autocorrelation

Autocorrelation is a type of serial dependence, and it shows how a time-series is related

to its own lagged version. By plotting the autocorrelation, information on the temporal

component of the data is given and unfolds the fundamental construction of time-series;

unraveling trends, seasonality and their inherent structure [18]. Features of previous load

information is selected through analysis of autocorrelation of the previous 200 hourly

timelags, see Fig. B.5 and Fig. C.13, by equation B.1.

Norwegian meteorological web service, yr.no, offers first hand downloadable data through

their service. The data is limited, informing the daily minimum, maximum and mean

values. The sparse information have no practical use in hourly prediction. This is a

known problem, other national meteorological forecasters like the Bureau of Meteorology

of Australian Government (BMAG) only release the minimum and maximum value have

limited information available. The authors of [19] offer a way to mitigate this problem,

through k-Nearest Neighbor algorithm and searching for nearest neighbors among the

external parameters, by taking the square root and adding the difference of two squared

sums of daily minimum and maximum temperatures.

rk =

∑N−k
t=1 (xt−x̄)(xt+k−x̄)

N−k−1∑N
t=1(xt−x̄)2

N−1

(B.1)

B.3.2 External Parameters

B.3.2.1 Weather Parameters

Based on correlation analysis the weather station with the strongest correlation of temper-

ature to the load data from Bjønntjønn Cabin Area is identified, and used for the further

research. Previous research found Bø weather station with the highest negative correlation

to the electric energy load demand at Bjønntjønn Cabin Area [20]. The heuristics of good

correlation-based feature selection is based on the level of intercorrelation within the class

and subset features. A good feature set contains independent variables that have high

positive or negative correlation to the dependent variable, and no correlation amongst the

other dependent variables [55]. The correlation of the variables in the Bjønntjonn Cabin

Area dataset, see Table D.1, shows a high negative correlation of load to temperature,

positive correlation of load and holiday and no correlation between the dependent vari-

ables holiday and temperature. In Fig. C.11 the variation of temperature and load are

illustrated for the seasonal information of Bjønntjønn Cabin Area.
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Table B.1: Correlation of features

Load Temperature Holiday

Load 1 -0.82 0.18

Temperature -0.82 1 0

Holiday 0.18 0 1

B.3.2.2 Working-/Non-Working Days

To search for patterns among the days of the week, all kilowatthours-usage based on the

respective day of the week are summed together, and illustrated in a bargraph in Fig.

B.1. From Friday to Sunday the sum of kilowatthours for the total years of 2014-2018 is

above 890 MWh, with a top consumption on Saturdays with surpassing 1 GWh. The rest

of the week, from Monday to Wednesday is stable in the 700 MWh region. The weekly

pattern follows a very neat curve of increasing electric energy load demand from Monday

to Saturday, before there is a slight decline on Sunday. This coincides with the holiday

patterns of holiday resorts users, in Norway people travel to their cabin after lunch on

Friday and return home Sunday evening.

B.3.2.3 Public Holidays

In the comprehensive study of German market the authors [22] found improvement of

forecasting accuracy by 80 % by including holiday effects. This underpins the usefulness

of including the effects of public holidays as they are usually known in advance, by law,

and one can therefore anticipate the affect of human activity. National or state authorities

agree upon holidays and state them as law. We identified all Norwegian holidays; Easter,

labor day, national day, ascension day, Pentecost and X-mas. Identification of holidays

as well at studying holiday behavior given by Statistics Norway, we categorize holidays

as one. The days in the holiday periods also included working-/non-working as defined

in the Section B.3.2.2, regardless of this definition all the days of holiday period is coded

with the value 1, meaning a non-working day.

B.3.3 Validation

Cross-validation (CV) is a simple and universal tool for estimating expected accuracy

of the predictive algorithm by taking the mean value of all errors of the independent

samples of the dataset. For data with temporal dependencies, the validation and training

samples are no longer independent. Leave one out or hold-out k-fold validation, uses one

fold for testing and the remaining folds for training, where for the NordPool dataset k

equals five (for data from 2014-2018), see Fig. B.8. Leave-one-out validation is also called

jackknife due to the jackknifes ability to be used as a ’quick and dirty’ replacement tool

for more sophisticated tools. Leave-one out method, is compared to crogging, a method

aimed at preserving the temporal dependencies of a time series. Crogging combines cross-
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Figure B.7: Sum of load consumption and temperature on a seasonal

basis

validation and forecast aggregation, where each fold aggregates training data whilst all

the time validating against new test data, see Fig. B.9.

Train Test
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Figure B.8: Leave-one-out, or jackknife, leaves

the test sample out of the training and trains the

algorithm on the remaining
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Figure B.9: Crogging combines cross validation

and forecast aggregation to capture the temporal

dependency of time-series

B.4 Methodology

The vertical time approach uses seasonal data for training and inference, as opposed to

continuous time approach that utilizes all data in a continuum from the start of the dataset

until the time period used for inference. In this work the regression analysis is done on

continuous time basis as well as using vertical time axis approach. The kNN-regressor

is compared to Random Forest Regressor and also used autoregression. Autoregression

is the simplest and most straightforward predictive model, based on the targeted vector

itself and a certain time-window. It indicates the decline and incline of the time-window,

and thus gives a finite gradient for the curvature of load profiles. The joint learning

of regression tools with autoregression predicts time-series components of the different

characteristics.

B.4.1 Performance Metrics

To evaluate the rural area electric energy load forecasting, several performance metric can

be used where the real value y is compared over equations C.20, C.23 and C.21 by the

predicted value ŷ.

MAE =
1

n

n∑

i=1

|yi − ŷi| (B.2)

MAPE =
1

n

n∑

i=1

|yi − ŷi
yi

| ∗ 100 (B.3)

SMAPE =
1

n

n∑

i=1

( |yi − ŷi|
(|yi| + |ŷi|)/2

)
∗ 100 (B.4)

Data correlation over seasonal changes will be argued by means of improving MAPE,

SMAPE and MAE.
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B.4.2 Regression Tools

The methodology of this work is based on consideration of limited dataset, therefore

the vertical approach is appropriate. The research work is using on k-Nearest Neighbor

Regressor (kNN) and the Random Forest Regressor (RF). Prior research finds kNN and

RF can perform best in short time load forecasting in a comparison of different regressors

[23].

B.4.2.1 k-Nearest Neighbor

The kNN computes the difference of the sum of the inputs, and finds the number of

nearest neighbors from the designated k-value. And it provides the numerical continuous

output based on regression considering nearest neighbors.

B.4.2.2 Random Forest Regressor

RF is a magnitude of different decision trees that uses a majority vote to rule the best

class. For the RF, the trees are grown dependent on a random vector, and the outputs

are numerical scalars. One sole decision tree encompasses attributes and classes in the

datasets and uses an entropy function to find the best classifier as well as gain function

to build the best structured tree.

B.4.2.3 Autoregression

The autoregressor finds the curvature and gives a finite gradient based on the latest up-

dates from the targeted vector. In this case it is the load, based on equation C.24.

c = (Lt−1 − Lt−2)
1
p (B.5)

The methodology used in this research work is developed to deal with the problems of

irregularities and randomness in the time series. RF-regressor yield good result on hourly

time prediction in load forecasting. The kNN-regressor has shown precise prediction in

time-series, due to its capability to capture the nearest step in a time series based on the

nearest neighbor principle. The two regressors need to be investigated independently, to

search for their independent qualities, and finally as a hybrid model to fully utilize their

joint potential. Previous study shows that the combination of qualities in hybrid models

are able to capture the stationary linearity of the time series and capture the peaks of the

time series to enhance the forecasting precision [10].

B.4.3 Test/Inference

The testing and inference to finalize the chosen parameters are done by cross validation

methods of Leave-One-Out and Crogging, as explained in Section B.3.3. Meaning that

based on these results we find the final model used for further testing and inference. The
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last fold of both of the mentioned cross-validation methods, is the continuous approach.

Since the folds are divided into separate years, test periods is extracted based on seasons,

to effectively compare to the vertical approach. The seasonal performance is then verified

by weekly MAE, MAPE and SMAPE, as explained by [10]. The weeks are chosen by the

mid-week of each season, so that for the winter season (December, January, February)

the week for verification is considered mid-January, and so on for all the seasons. It is

important that the algorithm has never seen the inference data, e.g. that this data has

not been used for training. For continuous approach, we are training the algorithm with

all the data from 2014 up before the week in mid-January 2018. By this way, we ensure

that training- and test- data are carefully separated. We are using the same manner of

verification for the continuous approach on all four seasons.

In the vertical approach, we aggregate the data by concatenating each season as a training

set. The vertical approach is taking winter season from 2014 to 2017, and then test for

the mid-week of January 2018, we are following the same pattern for all four seasons.

The continuous approach have the advantage to be trained by more data in sequence,

then the vertical approach.

B.4.4 Test set-up regime

We are testing for two algorithms, kNN and RF Regressor for day-ahead forecasting (24

hour). They are tested both for the vertical approach as well as continuous approach (as

described in section B.4.3). Hyperparameter tuning based on cross-validation is tested

for a range of nearest neighbors (2-12) and n-estimators (2-12), we the best option based

on performance are selected to be neighbors 12 and n-estimator of 10.

Since a time-series is related to the same lagged version of itself, we select it as a feature

always to be tested since the values of autocorrelation are showing high significance. We

analyze the autocorrelating behavior of the time-series of electric energy load demand for

cabin-users at Bjønntjønn, and find that the preceding-day (24 hours), preceding-two day

(48 hours) and preceding-week (168 hours) are the prominent previous load features of

the data. They are always embedded as features for the test set-up. When presented in

tables this feature is notated as AC for autocorrelation.

We want to analyze how the kNN and RF Regressors behave when given the information

of the autoregression. We test for this feature together with the features given from the

autocorrelation (AC). This feature is notated as AR for autoregression.

A matter of interest is how well the external parameters, weather and time of occurence

contribute to the predictive outcome, and we have tested them. This features is notated

as T for temperature and H for holidays.
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Table B.2: Forecasting Results (24 hours prediction) by seasons trained with time feature lags of 24-, 48- and

168-hours

Features
Vertical Continous

summer winter summer winter

S
M

A
P
E

M
A
P
E

M
A
E

S
M

A
P
E

M
A
P
E

M
A
E

S
M

A
P
E

M
A
P
E

M
A
E

S
M

A
P
E

M
A
P
E

M
A
E

kNN AC 12.74 12.74 6.87 9.88 10.06 26.07 13.17 13.35 7.17 9.72 9.74 25.60

RF AC 14.70 14.78 8.07 10.43 10.67 27.85 15.27 15.47 8.49 9.56 9.49 25.24

kNN AC AR 13.17 13.24 7.11 10.05 10.20 26.39 13.28 13.43 7.23 9.25 9.24 24.42

RF AC AR 14.16 14.14 7.70 10.87 11.03 28.67 13.89 14.07 7.54 10.34 10.34 26.91

kNN AC T H 14.79 14.46 7.94 9.48 9.66 25.09 15.07 14.75 8.08 9.05 9.09 23.89

RF AC T H 16.53 16.10 8.80 11.39 11.53 29.86 17.05 16.48 9.14 11.50 11.53 29.81

kNN AC AR T H 14.27 14.07 7.68 9.75 9.92 25.65 14.41 14.14 7.71 8.88 8.86 23.45

RF AC AR T H 16.98 16.66 9.02 12.03 12.18 31.56 17.21 16.91 9.19 10.88 10.96 28.06
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B.5 Results and Discussion

The load profile of the considered holiday resort is categorized season wise. In this work

Regression Tools are used for load predictive analysis. In the load predictive analysis the

vertical time approach is used for a particular holiday time period. Vertical approach

can perform with minimum amount of data compared to continuous approach. Also, the

vertical time approach predictive results are compared with the prediction based on con-

tinuous time-series data. The presented methodology can also deal with the problems of

irregularities and randomness in the dataset.

The kNN with autocorrelation (kNN AC), the SMAPE for summer season using vertical

approach is 12.74 % and in winter season 9.88 %, but for the continuous data SMAPE

is 13.17 % in summer season and 9.72 % in winter season. Although both SMAPE and

MAPE values are relatively high. The kNN with autocorrelation performs by far the best

in terms of MAE, as illustrated in Fig. B.10. The kNN with autocorrelation, for vertical

approach for summer season is giving the lowest amount of information as well as a low

amount of data, meaning there is a minimum ability to recognize a pattern. Except from

a low dip at the very end of the week (as seen in Fig. B.10) the load is fluctuating in

the same low load interval. For generality the results show a low MAE for all the dif-

ferent versions of regressors and hybrid models with various features when trained with

low amount of data. With the low load consumption, due to summer season, MAE scores

comparatively good for all instances. The best is the simplest version of kNN only, as the

time features of previous load are 24, 48 and 168 time lags. The 24, 48 and 168 time lags is

found to autocorrelate higher than any other time lag. Similarly RF with autocorrelation

(RF AC), the SMAPE for summer season with vertical approach is 14.70 % and in winter

season 10.43 %, but for continuous data SMAPE is 15.27 % in summer season and 9.56

% in winter season. Results from an altered time dependent feature (containing time lags

at 24 and 168) are different from the findings in the autocorrelation analysis, and they

have impacted the predictive outcome negatively. With these different time-features, the

vertical approach for the winter season results in a SMAPE of 12.22% (kNN AC) and

13.43% (RF AC), a more than 2% difference from the results presented in the Table B.2

using time dependent features from the autocorrelation analysis.

Through the kNN with autocorrelation and autoregression (kNN AC AR), the SMAPE

for summer season using vertical approach is 13.17 %, and in winter season 10.05 %.

For continuous data SMAPE is 13.28 % in summer season and 9.25 % in winter sea-

son. Similarly RF with autocorrelation and autoregression (RF AC AR), the SMAPE for

summer season given vertical approach is 14.16% and in winter season 10.87 %, but for

continuous data SMAPE is 13.89 % in summer season and 10.34 % in winter season. The

comparative analysis of various regression techniques on load prediction for summer and

winter seasons load is presented in Table B.2. The forecasting results of electric loads are

compared for vertical and continuous approach for both seasonal loads.

When training kNN regressor hybrid model with autoregressor, weather parameter and
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Figure B.10: Prediction for week of July 2018 scoring MAE 6.87 using vertical approach

kNN-regressor only trained with time features.
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Figure B.11: kNN regressor with autoregressor by continuous approach scoring 8.86

SMAPE and 8.88 MAPE for a week in January 2018. Trained with time feature, weather

parameters and holiday information.
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holiday information, it is observed that the prediction can follow the load into the longer

term holiday period, where the load is peaking (see Fig. B.11). It is observed for all the

regression techniques during summer season, the vertical approach has better prediction

compared to continuous approach, as measured by all the performance metrics including

SMAPE, MAPE as well as MAE.

B.6 Conclusion

The regressors, kNN and RF, are used with autoregression as well as autocorrelation and

correlation among parameters for the relative comparison for prediction accuracy. Auto-

correlation is a neat and practical approach to feature engineering that saves time for the

appropriate actions to be made for feature extraction. The regression tools can handle the

low amount of data for day-ahead forecasting and the prediction measurements through

MAPE is relatively much better compared to other techniques.

In this study, the regression analysis for load prediction of rural area Norwegian net-

work is done using vertical and continuous time approach for day-ahead planning with 24

hour prediction. The vertical time approach uses seasonal data for training and inference,

as opposed to continuous time approach that utilizes all data in a continuum from the

start of the dataset until the time period used for inference. The regression tools can

handle the low amount of data, and the prediction accuracy through MAPE matches

other techniques. The vertical approach does this with even fewer data than continuous

approach. It is observed that through load predictive analysis the autocorrelation by

vertical approach with kNN-regressor gives a low SMAPE. The methodology used in this

research work is developed to deal with the problems of irregularities and randomness in

the time series, RF-regressor yield good result on day-ahead (24 hours) time prediction

in load forecasting.

The presented load prediction analysis is going to be useful for distributed network oper-

ation, demand-side management, integration of renewable energy sources and distributed

generator. To establish more accuracy for this work, the research is continued into the

Deep Learning, exploring neural networks with capability of long short term memory.
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Appendix C

Paper C - Application of Regression

Tools for Load Prediction in

Distributed Network for Flexible

Analysis

Nils Jakob Johannesen and Mohan Kolhe

Faculty of Engineering and Science, University of Agder, PO Box 422, NO 4604 Kris-

tiansand, Norway.

Abstract - The electrical load prediction is necessary for distributed network

energy management and finding opportunity for flexibility in shifting the oper-

ation of non-critical power intensive loads. The application of regression tools

has showed to be promising for predicting electric load within distributed

network as well as for flexibility analysis. The distributed electrical energy

network is low-capacity networks with low amount of data that need flexible

operation and analysis. Random forest regressor, k-nearest neighbor (kNN)

regressor, and linear regression are considered for analyzing electrical energy

demand forecasting. The methodology, used in this chapter, dealing with the

problems of irregularities and randomness in the time series considering urban

and rural area case studies. Random forest-regressor yields good results on

hourly time prediction in load forecasting. The kNN shows precise prediction

due to its capability to capture the nearest step in a time series based on the

nearest neighbor principle. The presented vertical time approach uses sea-

sonal data for training and inference, as opposed to continuous time approach

that utilizes all data in a continuum from the start of the dataset until the

time used for inference. The regression tools can handle the low amount of

data, and the prediction accuracy matches with other techniques.

Keywords Power system flexibility, load prediction, distributed network, regression tools.
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C.1 Load Flexibility and Management

Load flexibility relates to the ability of power system to shift the operation. The flexi-

bility has to respond to the variability and uncertainty of the net load. The increasing

penetration of variable renewable generation increases the need for flexibility in the load

demand. A flexible power system can adapt to rapid change in supply and demand. The

flexibility of resources is defined by their dynamic capabilities such as ramp time, start-

up/shut-down time, operating range (minimum and maximum operating level) as well as

minimum up and down times of the energy generation system.

The regression tools can be used to understand the variation and uncertainty in load

and supply, as well as to analyze and forecast the expected output. Regression techniques

can be used to model the past behavior, to understand and help to predict the future

scenarios both on demand and generation.

Flexible electric power system operation is going to help in integrating a mix of en-

ergy sources that can respond to the varying demand for electricity. This demand is met

with three types of plants typically referred to as baseload (meeting the constant de-

mand), intermediate load (meeting the diurnal changes), and peaking (meeting the peak

demand). At very high penetration of RG, a key element of system flexibility is the abil-

ity of baseload generators, as well as generators providing operating reserves, to reduce

output to very low levels while maintaining system reliability. Although baseload genera-

tors are a capital incentive, but inexpensive small-unit generators are favored [1, 2, 3, 4, 5].

Demand side management is an umbrella term that describes the utility company efforts

to improve energy consumption at customer site, the demand side of the meter [6]. De-

mand response (DR) is the customers’ adaptation to alter their normal electricity usage in

response to the adjusted electricity prices with grid constraints or other incentives created

to decrease energy consumption at times of shortage or when system reliability is at risk

[64]. The introduction of advanced metering system in the form of smart energy meters

(SEM) allows for an unprecedented granularity in data gathering, and hence unlocking

the potential of DR. The SEM implements an advanced measurement infrastructure, a

two-way communication between the end-user and the distribution management system.

SEM monitors, measures, and reports electric energy load demand in near real-time [8].

Traditionally, utilities have used three types of generating facilities to serve the diurnal

and seasonal changes in load demand: Baseload, intermediate load, and peak load plants

[9]. A load demand curve for a sample European country shown in Fig C.2 illustrates

typical load demand patterns, where the segments indicate natural threshold level typical

for baseload, intermediate load, and peak load. Yearly seasonal load demand of a selected

European country is given in Fig. C.3.

The diurnal changes start with a surge demand in the morning when industrial com-

panies commence activity and domestic end-users start their home appliances; it is the

first peak in the load demand curve. Following the early morning activities, load demand
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Figure C.1: Objective of load shapes

stabilizes; there is a dip in the load demand creating a valley in the load curve. When

the working day is over, another surge load follows when people return to home and start

cooking. The last diurnal valley in the load demand curve commences in the night time

when people go to bed.

Depending on the operative flexibility of generators, they serve different load demand

[10]. Efforts have been done to advance more flexible operation for managing the range

between peak power and minimum load. Load cycling has a degenerating effect on units,

impairs power production and leads to frequent breakdowns and unplanned maintenance

[11, 12]. Different techniques are used to create a better match between load and supply.

Peak clipping or peak load shaving is to reduce the peak demand. Another incentive is to

fill up the valleys where demand is low Load shifting as seen in Fig C.1, combines the two

previous techniques by shaving of the peak demand and filling the low-demand valleys [1].

Load shifting regime is crucial to development of microgrids within the distributed net-

work. Microgrids are designed without peaking generator, thus reserve their capacity and

up to 10% of load is not utilised [13]. These tasks can be solved by robust electric energy

load demand forecasting. Demand forecasting is done by understanding how the past

influences the future by learning from the past in order to prophesy the future.
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Figure C.2: The electric load demand curve of a sample European country

for one week, indicating level of load curves. Source: ENTSOE-E
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Figure C.3: The yearly electric load demand curve of a sample European

country, depicting seasonal changes. Source: ENTSOE-E

C.2 Conventional Electric Load Forecasting Techniques

The electrical load forecasting has been carried out using conventional mathematical tech-

niques. The traditional forecasting techniques are based on linear regression series. Most
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of them use statistical techniques. A time series is a collected sequence of events, based on

the assumption of an inherent structure. The inherent structure is analytically observed

trhough means such as autocorrelation, trend, and seasonal behaviour. There are many

different scenarios of how these sequences of events are collected and described. The

most often used time series techniques are in particular autoregressive moving average

(ARMA), autoregressive integrated moving average (ARIMA), autoregressive integrated

moving average with exogenous variables (ARIMAX). For stationary processes ,ARMA is

usually used, and it has been extended to ARIMA for non-stationary processes. ARIMAX

is the most natural tool since electrical load generally depends on exogenous variables such

as weather and historical time series data. Time series forecasting, its data and analysis

will in the future be increasingly important as the availability and scaling of such data

is growing through Internet of things (IOTs), the rise of smart cities, and due to the ad-

vanced infrastructure metering. The continuous monitoring and data mining will pave the

way for adequate time series analysis, both statistical and machine learning techniques,

as well as hybrid models will increase.

Time series analysis has traditionally been performed in meteorology, energy, and eco-

nomics. The era of modern time series analysis started and the Box-Jenkins model was

introduced [4]. The Box-Jenkins method has been further developed by the research com-

munity to a robust parsimonious ARMA for multivariate forecasting, requiring less human

intervention [5]. Additional improvement has been reached with a combined Box-Jenkins

econometric approach to forecast monthly peak system load. By observing changes in eco-

nomic and weather-related variables in a Box-Jenkins time series model, refined forecasts

are obtained [6]. It is common for these approaches that they use multiplex mathematical

computations and possess a heavy computational burden [7].

Machine learning models seriously contested the classical statistics with the artificial neu-

ral networks (ANN) [18]. The neural networks can aid dispatchers deal with uncertain

loads [19]. ANN is used with updating network parameters, generating plant control and

economic power dispatch problem [20, 21, 22, 23]. A typical neural network model with

back propagating adjusted weights is presented in Fig. C.4. In the following years during

the 1990s, the research on ANN in electric load forecasting was mainly concerned with

regional loads in the MW-scale, resembling the load consumption of a medium size Euro-

pean country and including multivariate time series analysis [24, 25, 26].

Focus has also been attuned towards case and system dependency of ANN [27], the ex-

plainable and interpretative ANN, and the “black box nature” of neural networks. This

has paved the way for ensembles of trees, linear fits, Support Vector Machines (SVM), and

other machine learning models. Some of these models find their origin in the statistics

and overlapping with machine learning (see discussion [28]) [65, 30]. Deep learning tech-

niques based on long- or short-term memory and recurrent neural networks have shown

promising results for optimal scheduling of microgrids [31]. Also, the convolutional neural

networks (CNN) show good results, but need big load schemes in GW-scale to perform

well [32].
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Figure C.4: Neural network model with the propagating adjusted weights

C.3 Learning Systems

Machine learning provides a framework for estimating from the observed data to form an

appropriate model in the time dependencies. Machine learning is a subcategory of arti-

ficial intelligence and usually divided into two main types, supervised and unsupervised

learning. Unsupervised learning is learning without any prior knowledge of the aim of

learning, and is also named as knowledge discovery. Hence, the unsupervised learning can

be state dependent or clustering. For the supervised learning, the aim or independent

variable is known. In supervised learning, data is orchestrated in such a way that it fits

the aim.

In supervised learning, x and y are preserved in a train and test set. Here, D is called the

training set and N is the number of training examples. Test-set, is preserved for inference

purposes. When the inference is performed, the algorithm is normally verified according

to a performance metrics. In the predictive or supervised learning approach, the goal is

to learn a mapping from inputs x to outputs y, given a labeled set of input-output pairs

D = (xi, yi)
N
i=1. Given the inputs, D = xi

N
i=1, the aim is recognizing patterns in the data.

The problem at hand is undefined, and we don’t know what to look for, and no use of

performance metric as we do not have a given x to the observed value; the response vector

y [33].

C.4 Regression tools

Regression is distinguishable from classification by the response vector (y), which is a

continuous output of time, whilst in classification, the y vector is categorical. In this

sense, the classification is a subdivision of regression [71]. For this reason, regression has

been known by machine learning practitioners “learning how to classify among continuous
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classes” [35].

Regression methods vary from purely statistical methods, machine learning techniques

to hybrid models that combine two methods. The regression tools can be parametric,

where a particular distribution constitutes the method, either by direct measures or when

posing a relationship to external parameters. The non-parametric regression methods do

not prescribe any certain distribution, hence regress on pure mathematical foundations.

The semi-parametric regression models combine an underlying distribution with a pure

mathematical relation. A feature used in many of the regression tools is correlation tech-

niques, either to research the data for their general function, or in multivariate time series

that correlates to external parameters. Correlation is a measurement to how two ranges

of data move together. The Pearson Correlation Coefficient (r) computes the linear re-

lationship between two variables, in a range from – 1 to + 1 [36]. If the relationship is

in the proximity of 1, it means that when x increases so does y, and at exact linearity,

the opposite is true for – 1, which means that when one variable increases, the other

decreases.

a = 1 (C.1)

Autocorrelation function (ACF) shows how a time series is correlated to its own lagged

version at each lagk [37]:

ρk(t) =

∑n−k
i=1 (xt − x̂)

∑n−k
i=1 (yt+k − ŷ)√∑n−k

i=1 (xi − x̂)2
√∑n−k

i=1 (yt+k − ŷ)2
(C.2)

Cross-correlation can be found when one of the variables is shifted in time (t), and can

be used to alter the time lags between the variables for a reshaped perspective of the

relationship between them. As the times series are cross-correlated, an evaluation of

temporal similarity is made [38]:

ρxy(t) =

∑n
i=1(xi − x̂)

∑n
i=1(yi−t − ŷ)√∑n

i=1(xi − x̂)2
√∑n

i=1(yi−t − ŷ)2
(C.3)

Autoregression (AR) is a simple and straightforward regression technique, where past

values of the univariate time series are dependent on their own lagged version defined by

a parameter weighting of each input, ϕ, and therefore a parametric model. The current

value of y(t) is expressed by previous values of time yt−1, yt−2, ..., yt−p. The order of an

AR process is defined by the number of past values of y(t) it is regressed on. AR(p) is

defined by the last yt−p, considered in the process, denoted as:

y(t) = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ϵt (C.4)

Where the error term ϵt, is white noise defined by a constant mean and some unknown

fixed variance σ2
ϵ (t), a stationary process. The ACF of a white noise process is zero at

all lags other than lag zero where it is unity, to indicate that the nature of its process is

completely uncorrelated. By using backshift operator (B), the previous value of the time

series is related to the current value yt−1 = Byt, and thus; yt−m = Bmy(t), and the error

term is explained as:

ϕ(B)yt = ϵt (C.5)
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An AR process p-value is defined by the autocorrelation of residuals of the AR process.

If the residuals autocorrelation falls within a confidence interval, normally considered as

95%, the autocorrelation function of the residuals are considered to be white noise. If not,

the AR process will still continue to find another parameter, until its residuals satisfy the

criteria of white noise. If the current and previous values of a white noise series ϵt, ϵt1
are expressed linearly, it is known as moving average process (MA), and an equivalent

implementation of backshift operator (B) would be:

y(t) = θ(B)ϵ(t) (C.6)

A combination of the two processes is the ARMA. If the mean or covariance of the

time series observations change with time, the series is defined as non-stationary, and a

differencing process makes it stationary by introducing the ∇ operator, and the AR, MA

and ARMA processes are transformed into ARI, IMA or ARIMA process.

C.4.1 Linear Regression

Another parametric model is multiple linear regression (MLP) that assumes a linear re-

lationship in the training data and to explanatory variables to explain relationship to the

response-vector (y):

y(t) = a0 + β1x1(t) + ... + βnxn(t) + ϵ(t) (C.7)

where x1(t), ..., xn(t) are independent explanatory variables correlated with the dependent

load variable y(t). The independent variables are found through correlation analysis,

and coefficient estimation normally found through least square estimation, or iteratively

reweighted least squares (IRWLS). All parameters start at 0 and is step-wise improved

using backpropagation through a loss function to find appropriate weights, or through

finding the intercept a0. Each explanatory variable finding its coefficient based on the

covariance and standard deviation of dependent and independent variables is defined as:

βx =
σxy√
σx

(C.8)

C.4.2 k-Nearest Neighbor Regression

Opposite to the linear regression (LR) is the k-nearest neighbor (kNN) regressor, which

is non-paramteric, relying on its own table look-up and mathematical foundation, and

highly non-linear.

yknn(x) =
1

K

K∑

k=1

yk for K nearest neighbours of x (C.9)

The kNN-classifier is illustrated in Fig. E.1, where the left diagram with a small en-

circlement options for k = 1, where simply the nearest neighbor decides the class of

prediction, whilst in the right diagram in Fig. E.1, the number of k is increased to more

then one [70].

122



x2

x
1

x2

x
1

Figure C.5: k-Nearest Neighbour classifying based on the k’th observa-

tion.

Using k = 1 can lead to false prediction, and a set of kNNs is often used. When classi-

fying the dependent variable is categorical, it can easily be made numerical by regression.

The kNN regressor makes a regression based on the number of kNNs to minimize false

predictions. The model considers a range of different kvalues to find the optimal value.

The kNN regressor needs thorough pre-processing and feature engineering to limit the

effect of noise caused by irrelevant features, and is, therefore, dependent on finding the

appropriate distance model [71]:

C.4.3 Distance

A variety of distances is used in the algorithm. As seen in Equations C.10, C.11, C.12,

and C.13, they are mostly used, since it is easy to intersect by changing the variable q.

The variable q is also considered to find the optimal value.

C.4.3.1 Manhattan/City Block Distance

d(x, y) =
k∑

i=1

|xi − yi| (C.10)

C.4.3.2 Euclidean distance

d(x, y) =

√√√√
k∑

i=1

(xi − yi)2 (C.11)

C.4.3.3 Minkowski Distance

d(x, y) =

( k∑

i=1

(|xi − yi|)q
) 1

q

(C.12)
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C.4.3.4 Chebychev Distance

d(x, y) = lim
q→∞

( k∑

i=1

(|xi − yi|)q
) 1

q

(C.13)

C.4.4 Random Forest Regression

Random forest (RF) regression is a combination of decision trees, found through recursive

partitioning to build a piece-wise linear model. From these tree models, it uses a majority

vote for the most popular class. The trees grow dependant on a random vector, and the

outputs are numerical scalars [73]. Each leaf on the tree is a linear model constructed

for the cases at each node by regression techniques. One sole decision tree encompasses

attributes and classes in the data and uses an entropy function gain function to distinguish

its structure. Entropy is known from thermodynamics as a measure of disorder, and

later adopted by the information theory. In information theory, entropy is a measure of

uncertainty of a variable, and defines a pure classifier [74]. In equation (5) p is positive

and n is negative:

Entropy(S) = −p ∗ log2(p) − n ∗ log2(n) (C.14)

The entropy function is then used to evaluate the information gathered (gain) of an

attribute, and thus to know how to choose the highest gaining attribute as the next

branch in the decision tree. The equation yields the expected reduction in entropy, by

imposing another branch in the decision tree.

Gain(S,A) = Entropy(S) −
∑

ν∈V alues(A)

|Sv|
|S| Entropy(Sv) (C.15)

In equation (C.15), A are attributes used for splitting the data into subsets (S). S is

the sum of subsets, and Sv is the value of subsets. Using prior known input/output

relationships, the algorithm searches for a model for the best prediction in the training

set. The mathematical equations are structured in the algorithm, see Fig. C.6, based on

the past knowledge.

C.4.4.1 Normalising

The pre-processing of data is a transformed so that the machine learning algorithm can

learn the patterns and generate a sound forecast. In a standard normalization process,

input data are transformed with values from zero to one. This is done to make the

predictive algorithm more robust [42].

X̂ −Xmin

Xmax −Xmin

(C.16)

X̂

Xsum

(C.17)

X̂

Xmax

(C.18)
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X̂ −Xavg

Xmax −Xavg

(C.19)
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Figure C.6: Random Forest Regression diagram sampling and voting from n trees
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C.4.4.2 Performance metrics

To evaluate the performance of load forecasting, a performance metric is used, including

mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error

(MSE), and symmetric mean absolute percentage error (SMAPE) [43]. They are defined

as:

MAE =
1

n

n∑

i=1

|yi − ŷ| (C.20)

SMAPE =
1

n

n∑

i=1

( |yi − ŷ|
(|yi| + |ŷ|)/2

)
∗ 100 (C.21)

MSE =
1

n

n∑

i=1

(yi − ŷ)2 (C.22)

MAPE =
1

n

n∑

i=1

|yi − ŷ

yi
| ∗ 100 (C.23)

C.4.5 Visual Inspection

The first thing is to plot the time series of the data shown in Fig. C.7 and C.8. In these

plots, the time series are plotted as univariate time series with y-axis representing the

univariate or dependent variable, and x-axis being the time axis. By visual inspection,

these plots are giving the main features of the time series. Important information such

as time span, trends, and cycles are emerging in the figures. When applying intuition to

visually inspect these time series, they certainly display some repetitive patterns, as in

Fig. C.7, where load pattern seems to be taken a U-wave form that repeats itself over

time. Fig. C.8 is much more dense then Fig. C.7, and looks to contain more information.

In some instances, a univariate time series can be explained by itself as is the case for

univariate analysis; even then a univariate series can and most likely will be affected by

other influences, but remains self-explanatory for this purpose. For the multivariate case

where explanatory independent features are added, they are not directly connected to the

dependent/response variable such as weather parameters, yet correlation exists to aid the

time series analysis.

C.5 Applications of Regression Techniques for Elec-

tric Load Forecasting

Recent research from 2018 on computational intelligence approaches for energy load fore-

casting that reviewed more than 50 research papers related to the subject outlines the

complexity of demand patterns as potentially influenced by factors such as climate, time

periods, holiday or working days and other factors such as social activities, economic
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Figure C.7: Rural Load
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Figure C.8: Urban Load

factors, including power market policies. Electrical energy demand is influenced by me-

teorological weather conditions; therefore, it is necessary to include the impact of me-

teorological weather parameters on electrical energy demand forecasting; also renewable

electrical energy production is nature-dependent. The future electrified grid will increas-

ingly depend on renewable intermittent energy sources (solar, wind), and the individual

load profiles of such a system will change radically as home appliances include new energy

demanding appliances (e.g., heat pump, electric vehicles, and induction stove) [44].

The regression models kNN, LR, and RF are supervised machine learning algorithms

with a numerical outcome. The model is trained to find rules for pattern recognition in
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the input to output relation. The inputs to the model are known as features. Neural

networks are the preferred machine learning tool and are known as both feedforward and

back propagating networks, where a number of inputs are weighted in order to provide a

predictive outcome. Neural networks are good for detecting non-linearities, and therefore

preferred as a predictive tool in electrical load forecasting, yet also often criticized for low

transparency and lack of interpretability because of the black box approach and using a

large amount of data. Overfitting is still a challenging issue when applying neural net-

works to electrical demand prediction. It is known as the bias-variance trade-off. When a

model is of very low complexity and yet scores well, it is highly biased, which signifies that

the data fits the model accurately (the training set), and it will often perform poorly on

new data (from the test set). The model should contain a complexity that is in coherence

with the level of information embedded in the data. Somewhere in between is the optimal

model, also referred to as the suitable model [45].

Urban area load is influenced by meteorological conditions; therefore, it is important

to include impact of weather parameters on load prediction, yet this impact is governed

by the prediction time, greater for long term, and decreases as the prediction time is

narrowed. The electrical energy demand is influenced by the user behavior as well as

weather conditions. Individual human behavior and weather are so random that a com-

plex neural network would not predict the outcome better than a coin toss. Hence, if one

has to analyze the load demand of larger area such as the urban area, systematic load

behavior with correlation to weather parameters and continuous load profile should be

investigated. This work has uniqueness in electrical demand forecasting using regression

tools through vertical approach, and it also considers the impact of meteorological param-

eters. This vertical approach uses less amount of data compared to continuous time series

as well as neural network techniques. The objectives of this work are to explore the use

of regression tools for regional electrical load forecasting by correlating lower distinctive

categorical levels (season, day of the week) and weather parameters, see Fig.C.9. The

vertical time approach is to consider a sample time period (e.g., seasonally and weekly)

of data for four years, which will be tested for the same time period for the consecutive

year. A vertical axis approach is shown to be competitive to ANN.

C.5.1 Feature engineering for electric load demand forecasting

The following three parameters are important for system electrical energy demand:

(i) Time

(ii) Weather

(iii) Random effects

C.5.1.1 Time

Apart from the seasonal effects, underlying patterns emerge in the system load demand.

There are different peaks throughout the seasons, whether it is a winter peak or a summer

peak. Emerging under this seasonal patterns are daily- and weekly-cycles. The daily

routines of human behavior are manifested in systematic load patterns on a daily basis.
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Figure C.9: The regressor model for electric load demand forecasting

Day of the week is also significant. Working day or off day or non-working day (weekend

or other calendar event) changes human activities, and whether it is a working day or not,

influences load patterns. People might also during weekends shift their sleeping habits,

as to wake up later, and thus change the diurnal load demand to delay the morning peak

load demand. Sub-categorical levels such as working/non-working days are referred to

in the literature as an indicator variable. Such an indicator variable composes a lower

indicator level, with a binary switch of working days and non-working days/holidays (0

and 1). To give this property to our algorithms is very important as it makes prediction

of forecast load more efficient. The use of such type of variables has been successfully

employed in the forecasting of electric market [42, 22, 47, 48, 49].

C.5.1.2 Weather

Weather variables play an important rule in changing load patterns. The effect of ambient

temperature as well as past temperature on the load is necessary for prediction analysis;

the indoor temperature on a hot summer day may reach its peak after sunset due to heat

buildup in the construction materials of buildings. In addition to the daily heat buildup,

a sequence of days with high temperature creates a new system peak. The time delay

from shift in temperature until the change in electric is observed and should be evalu-

ated through the temporal similarity of cross-correlation between the load and different

weather parameters: DryBulb, DewPnt, WetBulb, and Humidity. Dry bulb temperature

(DBT) is the temperature measured from air, yet not exposed to solar radiation or mois-

ture. Wet bulb temperature (WBT) is measured from a thermometer where the bulb of

the measurement device is soaked by a wet cloth. As long as the air is not saturated,

evaporation from the moist cloth keeps the WBT lower than the DBT. From the DBT
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and WBT, one can then derive the relative humidity of the air and the dew point from

a Mollier Chart by psychometric. In humid and hot conditions, it is likely that humidity

will effect the load pattern in similar ways as temperature. Humidity explains the com-

plex relation between temperature and load, and therefore mathematical models are not

enough in a thorough analysis. Humidity is the amount of water vapor in the air, and

might increase the gap between the actual and the apparent or felt temperature. When

regulating temperature, the body utilizes evaporative cooling, and the rate of evaporation

through the skin is correlated to humidity, and because of the conductive properties of

water, we feel warmer at high humid conditions. Also, due to the seasonal changes of

weather data, the correlation to the electrical load will vary during the year. Many elec-

trical utilities are weather-sensitive such as heating and air conditioning. Electric loads

are often classified as weather-sensitive load and non-weather-sensitive load. Temperature

data is obviously a very important factor affecting the load. However, its value is often

limited to the confidence level on weather forecasting. Therefore, unless the weather fore-

casting is very accurate, an underlying deterministic model is its premise. The complexity

in the control system engineering of maintaining thermal comfort as well as optimizing

for energy is important to know. At the same time, it is important to acknowledge that

most houses are designed to resist the worst meteorological conditions. There are also

limitations in the heating system itself that might cause load peaks, such as the inertia in

the floor heating system, known as thermal lag. Therefore machine learning can help to

use the weather parameters for load predictions in the built-environment [50, 51, 52, 53].

C.5.1.3 Random effects

Random disturbances lead to increase the number of electricity consumers due to many

factors. Infrastructural changes in the urban area and maintenance work are random

effects that are not detected by pattern recognition. Load patterns are consistent from

year to year, and show reoccurring seasonal pattern. When the yearly load curves do

not vary from year to year, it means that there are no economic trends. Load prediction

analysis using machine learning can take care of random effects.

The effect of external parameters on load predictions can be considered through the

machine learning approaches for different type of loads (e.g. rural area and urban area

loads).

C.6 Case study 1: Rural Area Electric Energy Load

In this study, the dataset for rural area electric energy load is the data collected by a smart

meter at a electric substation providing Nissedal Cabin Area in Bjønntjønn with power. It

is a typical Norwegian rural power network with 125 cottages, and 478 kW peak demand.

The dataset is hereby referred to as the Bjønntjønn dataset. The rural area load profile

is illustrated in Figure 4.7. The smart meter collects data at every hour, as a point value,

making it a dataset of hourly values. The weather information by Norwegian Institute of

Bioeconomy Research (NIBIO) runs 52 weather stations with detailed information down

131



to hourly resolution and freely downloadable on their web service (lmt.nibio.no). Among

the 52 weather stations, three weather stations closest to Bjønntjønn Cabin Area are

Bø, Gvarv, and Gjerpen. Based on the correlation analysis, the weather station with

the strongest correlation of temperature to the load data from Bjønntjønn Cabin Area is

identified, and used for the analysis.

C.7 Case study 2: Urban Area Electric Load

The dataset for urban area electric load contains 87648 collected datapoints from the

urban area of Sydney in the region of New South Wales in Australia. It is called the

Sydney dataset. These datapoints are collected at every 30 minutes, spanning from five

years. Since it is the granularity of collected data observations that decides the lower

limit of forecast window, this dataset gives the oppurtunity of 30 minutes predictions.

The historical data is gathered by Australian Energy Market Operator (AEMO) and

Bureau of Meteorology (BOM) from years 2006 to 2010, and hereafter referred to as the

Sydney dataset. During the years 2006–2010, the maximum load was 14274.2 MW. In

this study the purpose is to test the regression tools on the available real data of urban

area.

C.8 Results and Discussion

In this work, several regression tools have been analyzed and compared for different

datasets. Based on the analysis of the data and regressors, a new vertical approach

has been further developed and inferred to deal with the relatively low amount of data

and load pattern; it has been in particular validated for the case studies (i) in the rural

area and (ii) in the urban area.

The vertical time approach also uses seasonal data for training and inference. The hori-

zontal approach uses continuous datasets, i.e., it utilizes all data in a continuum from the

start of the dataset until the time period used for inference. The illustration of horizontal

and vertical approaches is presented in Fig. C.10.

Vertical approach can be performed with minimum amount of data compared to con-

tinuous approach. Also, the vertical time approach predictive results are compared with

prediction based on continuous time series data. In vertical approach, the training set,

D = {xi}Ni=1, is partitioned into subsets by each season of the year, and then are merged

together only containing seasonally information about the load pattern. In a dataset con-

taining time observation for five years (e.g., 2016–2020), time is separately selected season-

wise, and then merged to contain only the specific season for training, D = {xspringi}2019i=2016.

In this study, the inferred test-set is for a week in the middle of the selected trained season

for the following year D = {xweek}sundayi=monday. Seasons are divided by months, as seen in

Table C.1, where Season 1 is Winter, and Season 4 is Autumn.
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C.8.1 Case Study 1: Rural Area

In the case study of rural area load prediction, the regression analysis has been done

on continuous time basis as well as using vertical time axis approach. The correlation

analysis of load and weather parameters has been analyzed to study the relation between

meteorological parameters and electricity consumption. The hourly electrical loads of

each season have been juxtaposed to the seasonal temperature, and negative correlation

has been observed (Fig C.11).

From this observation, it can be seen that vertical approach enables the algorithm to

reveal complexity of load and temperature for better prediction results [54]. The relation

between working days and non-working days affects the cycles of load consumption, and

is noticeable in the latter part of of the holiday where load demand increases even more

(Fig. C.12).

The load pattern shows autocorrelation (AC) to previous lags, as seen in Fig. C.13.

The AC aids the feature extraction procedure in engineering for the optimal previous

k-lag values to be selected for the predictive algorithm. The observed results from the

the autocorrelation function (ACF) plot (Fig C.13), shows a steep linear decline in lags

0–5; after that the slope is almost horizontal (lags 6–15) before it makes a small bump

at lag 17–20, for then again to increase its value for the 23rd lag (which is the 24th hour

since unity lag is zero), and then a deep decrease. The ACF plot also shows strong de-

pendencies on historical data values, which indicate that the time series is autoregressive.

The further correlation analysis of the rural electrical load demand patterns reveals also

a strong dependency on the day of the week. For the considered Norwegian rural load

of holiday cabins, the Norwegian holidays are identified as Easter, labor day, national

day, ascension day, Pentecost, and X-mas. The observed correlations between the load

and temperature, load and working days/non-working days, and the intercorrelation of

temperature and working days/non-working days for the rural area have been well within

the good heuristic model for correlation-based feature selection. The heuristics of good

correlation-based feature selection is based on the level of intercorrelation within the class

and subset features. In the rural area, there is no correlation between the working days

and temperature. A good feature set contains independent variables that have high pos-

itive or negative correlation to the dependent variable, and no correlation amongst the

other dependent variables [55].

Season Months

Season 1 December January February

Season 2 March April May

Season 3 June July August

Season 4 September October November

Table C.1: Seasons
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Figure C.10: Illustration of vertical and horizontal approach.
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Figure C.11: Load consumption and temperature profiles on seasonal

basis

In the further evaluation of the regressors performance metrics are used (Table C.2

and C.3)

In this work, different features in the regression tools (kNN and RF) have been studied to
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Figure C.13: Autocorrelation of load consumption of the first 30 lags

for Bjønntjønn Cabin Area 2014-2018

analyze how they perform. In Tables (C.2, C.3), the autocorrelation (AC), autoregression

(AR), temperature (T) and holiday effects (H) have been studied separately and together

(AC, AR, T, H) combined with the regressors. The performance metrics SMAPE, MAPE,

and MAE have been chosen to make appropriate analysis of their performance (see para-

graph C.4.4.2). MAE is the most straightforward error estimation, but is poor in order to

understand the context it is given; therefore MAPE is more used, since it is normalized to

the true value of time series. Typially for the rural area, the load demand is low, opposite

to the urban area, and occasionally the rural area load reaches zero. At zero values the

MAPE is obsolete and the performance is also measured by SMAPE.
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The Table C.2, compares the vertical and continuous approach for the winter season,

whilst Table C.3, compares the vertical and continuous approach for summer season.

Table C.2: Forecasting Results (24 hours prediction) for season 1 (winter) trained with

time feature lags of 24-, 48- and 168-hours

Features Vertical winter Continous winter

SMAPE MAPE MAE SMAPE MAPE MAE

kNN AC 9.88 10.06 26.07 9.72 9.74 25.60

RF AC 10.43 10.67 27.85 9.56 9.49 25.24

kNN AC AR 10.05 10.20 26.39 9.25 9.24 24.42

RF AC AR 10.87 11.03 28.67 10.34 10.34 26.91

kNN AC T H 9.48 9.66 25.09 9.05 9.09 23.89

RF AC T H 11.39 11.53 29.86 11.50 11.53 29.81

kNN AC AR T H 9.75 9.92 25.65 8.88 8.86 23.45

RF AC AR T H 12.03 12.18 31.56 10.88 10.96 28.06

Table C.3: Forecasting Results (24 hours prediction) for season 3 (summer) trained with

time feature lags of 24-, 48- and 168-hours

Features Vertical summer Continous summer

SMAPE MAPE MAE SMAPE MAPE MAE

kNN AC 12.74 12.74 6.87 13.17 13.35 7.17

RF AC 14.70 14.78 8.07 15.27 15.47 8.49

kNN AC AR 13.17 13.24 7.11 13.28 13.43 7.23

RF AC AR 14.16 14.14 7.70 13.89 14.07 7.54

kNN AC T H 14.79 14.46 7.94 15.07 14.75 8.08

RF AC T H 16.53 16.10 8.80 17.05 16.48 9.14

kNN AC AR T H 14.27 14.07 7.68 14.41 14.14 7.71

RF AC AR T H 16.98 16.66 9.02 17.21 16.91 9.19

Note the big difference in MAE between the seasons; however, MAPE and SMAPE have

more or less the same values. This is due to relatively higher load consumption in winter

time that leads to a higher absolute error, but when compared in absolute percentage

error, the error is not noticeable.

The kNN regressor is compared to RF regressor, and it also uses autoregression. In the

analysis, a visual inspection might aid to understand the predictive outcome. Prediction

results are compared with and without error estimation (see Fig. C.14 and C.15). The

kNN and RF alone has no information about the finite gradient of the curvature. In Fig.

C.14, the two graphs mostly appear to merely be shifted in time. To overcome this, the

real value was compared to the error estimation (see Fig. C.15)), and increasingly peak-

ing errors were shown. A simple form of autoregression is tried in order to mitigate the
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Figure C.14: Prediction result

without error estimation
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Figure C.15: Prediction result

with error estimation

problem of peaking errors. It is a possible remedy, since the correlation analysis showed

a strong autocorrelation to the first historical instances of the time series. Instead of

a cumbersome ordinary least square-search (OLS) for the backshift operator parameter,

only a backshift value is found based on Equation C.24. The autoregressor is used to find

the curvature and gives a finite gradient based on the latest update from the targeted

vector (in this case, the load). The autoregressor is used to find the curvature and give a

finite gradient based on the latest update from the targeted vector, in this case the load.

c = (Lt−1 − Lt−2)
1
p (C.24)

Autoregression is the simplest and most straightforward predictive model, based on the

targeted vector itself, and at certain time window, it indicates the decline and incline

of the time window, and gives a finite gradient for the curvature of load profiles. The

joint learning of regression tools with autoregression predicts time series components of

different characteristics. Other hybrid combinations can be done with MA, ARMA, and

ARIMA models, to aid the regressor model in the predictions.

The load profile of the considered holiday resort (rural area) is categorized seasonally.

In this work, regression tools are used for load predictive analysis. In the load predictive

analysis, vertical time approach is used for a particular holiday time period. Vertical

approach can be performed with minimum amount of data compared to continuous ap-

proach. Also, in vertical time approach, predictive results are compared with the predic-

tion based on continuous time series (i.e., horizontal approach). The presented vertical

approach methodology can also deal with the problems of irregularities and randomness

in the dataset [56].

C.8.2 Case Study 2: Urban Area

The dataset for urban area electric load contains 87648 collected datapoints from the

urban area of Sydney in the region of New South Wales in Australia. The relative com-

parison of load prediction with MAPE for considered regression tools for 30 minutes and
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24 hours is done using both horizontal and vertical approaches for all seasons. The re-

sults are shown in Table C.4. It is found that the lowest MAPE is achieved with the use

of previous load patterns together with indicator variables, and noticeably disregarding

weather variables. This goes well with the previous analysis of correlation, which confirms

that previous load patterns and indicator variables have higher correlation to the actual

load than the weather parameters.

It has been observed from the test results, the lowest MAPE is found through RF re-

gressor for 30 minutes prediction using vertical approach. For the 24-hour time period,

kNN provides the lowest MAPE through vertical approach.

MAPE for 30 minutes prediction results using RF regressor varies between 1% and 2%,

and provides very good results compared to other regressions techniques, which have been

used in this work. The 24 hours prediction results using kNN regressor technique have

MAPE of 2.61%, which is much better compared to other regressors. From the results,

it has been observed that for short-term predictions (30 minutes), RF regressor should

be used; and for long-term predictions (24 hours), kNN regressor should be considered [53].

Urban area electrical energy demand forecasting is very important for generation schedul-

ing and flexibility with consideration of renewable energy sources and possible demand

side management. Urban area electrical energy demand predictions for short term (30

minutes) and long term (24 hours) are necessary for scheduling power generation units as

well as for participating them in short term and day ahead energy market.

The seasonal patterns are repeating with the same upper and lower limits (e.g., repeat-

ing on annual basis), and can be further investigated for economic effects on the load

behavior in the urban area of Sydney during the years 2006–2010. When investigating

the Sydney dataset, we find that the load curves, yet containing cyclic and seasonal dif-

ferences, do not contain significant changes on the system load due to changing economic

trends [57]. When inspecting the daily and weekly load cycle, we can clearly see a load

pattern emerging from a very low activity during the early hours of the day, into one

peak at morning (between 8 and 10 hours), and another peak in the evening (between

19 and 21 hours). The same daily repeating patterns, with a low activity followed by

two peaks, are also evident in the weekly cycle, except for the last two days of the week

(Saturday and Sunday) when the peaks and general load are lower. It can be seen that

urban area load predominantly reflects the domestic load, and it can be correlated to

human behavior. The periodicity in the load patterns reveals a load demand that reflects

a consumer lifestyle. When examining the features enlisted in the Sydney dataset, it has

indicators “Date” and “Hour”, four weather parameters, information about the electricity

price, “ElecPrice” and information about the electricity load consumption, “SYSLoad”.

These features have been developed in the pre-processing to match the requirements of

the prediction tool.

RF regressor, kNN regressor, and LR are used for analyzing the urban area electrical
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Table C.4: MAPE for Urban Area Load and Indicator aggregated version

test results)

Regressor

Time Random Forest k-Nearest Neighbour Linear Regression

Season One Horizontal Approach

30 minutes 1.11(9*) 1.98(7**,1***) 2.04

24 hours 5.32(13*) 6.53(4**,1***) 5.15

Season One Vertical Approach

30 minutes 0.94(16*) 1.85(8**,1***) 1.76

24 hours 5.88(13*) 5.49(5**,2***) 5.83

Season Three Horizontal Approach

30 minutes 1.12(17*) 2.36(5**,1***) 2.29

24 hours 4.76(9*) 5.41(19**,1***) 5.27

Season Three Vertical Approach

30 minutes 0.86(17*) 1.19(6**,1***) 2.15

24 hours 2.71(17*) 2.61(17**,1***) 4.26

* n-estimator

** k-value

***q-value

energy demand forecasting, using larger dataset of Sydney region. Data correlation over

seasonal changes have been argued by means of improving MAPE. By examining the

structure of various regressors, they are compared for the lowest MAPE. The regressors

show good MAPE for short term (30 minutes) prediction, and RF regressor scores best

in the range of 1–2% MAPE. kNN shows the best results for 24 hours prediction, with

a MAPE of 2.61%. The prediction of the short-term 30 minutes electrical energy using

vertical approach is relatively better through RF regression tool. For long-term prediction

of 24 h, kNN regression tool can provide better results using vertical approach.

C.9 Conclusions

This work has explored the use of regression tools for electrical energy load forecasting

through correlating weather parameters as well as the time period. Load prediction anal-

ysis using regression tools has been done on continuous time basis (horizontal) as well as

using vertical time approach. The Pearson method and visual inspection of the vertical

approach depict meaningful relation among pre-processing of data, test methods, and re-

sults for the examined regressors.

The application of regression tools has shown to be promising for predicting electric load
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within distributed network as well as for flexibility analysis. The distributed network are

low-capacity networks with low amount of data that need flexible operation and analysis.

RF regressor, kNN regressor, and are considered for analyzing the rural area and urban

area electrical energy demand forecasting. In addition, LR is used for urban area due to

the continous load patterns.

The methodology presented is developed to deal with the problems of irregularities and

randomness in the time series. RF regressor yields good result on hourly time prediction

in load forecasting. The kNN regressor has shown precise prediction in time series due to

its capability to capture the nearest step in a time series based on the nearest neighbor

principle.

Autocorrelation is a neat and practical approach to feature engineering that saves time

for the appropriate actions to be made for feature extraction. The regression tools can

handle the low amount of data, typical for the rural area, for day-ahead forecasting. In

this work, the regression analysis for load prediction of rural area is done using vertical

and continuous time approaches for day-ahead planning with 24 hours prediction. The

vertical time approach uses seasonal data for training and inference, as opposed to con-

tinuous time approach that utilizes all data in a continuum from the start of the dataset

until the time period used for inference. The regression tools can handle the low amount

of data, and the prediction accuracy (through MAPE) matches with other techniques. It

is observed that through load predictive analysis, the autocorrelation by vertical approach

with kNN-regressor gives a low SMAPE. The kNN captures the lower boundaries of the

load demand quite well. When analyzing the error, we find that the algorithms struggle for

identifying and predicting the high peaks of the load demand. When the autoregression

is given, it helps the algorithm to find the curvature of high peaks; even without captur-

ing the overall trend of the load peak demand, MAPE can be improved by autoregression.

RF regressor, kNN regressor, and LR are used for analyzing the urban area electrical

energy demand forecasting. The presented regression techniques can forecast electrical

demand for short term (30 minutes) and long term (24 hours) using limited datasets. Ver-

tical axis approach can have more competitiveness to ANN due to the use of low amount

of data and considering the impact of meteorological parameters.

Load forecasting is the most fundamental application of smart grid, which provides essen-

tial input for flexibility such as demand response, topology optimization, and abnormally

detection, facilitating the integration of intermittent clean energy sources.
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Schuyer, Audrey Dobbins, Abhishek Shivakumar, Paul Deane, and Mark Howells,

editors, Europe’s Energy Transition, pages 149 – 172. Academic Press, 2017.

[11] Alberto Benato, Anna Stoppato, and Stefano Bracco. Combined cycle power plants:

A comparison between two different dynamic models to evaluate transient behaviour

and residual life. Energy Conversion and Management, 87:1269 – 1280, 2014.

[12] Kenneth Van den Bergh and Erik Delarue. Cycling of conventional power plants:

Technical limits and actual costs. Energy Conversion and Management, 97:70 – 77,

2015.

[13] Moslem Uddin, M.F. Romlie, M.F. Abdullah, ChiaKwang Tan, GM Shafiullah, and

A.H.A. Bakar. A novel peak shaving algorithm for islanded microgrid using battery

energy storage system. Energy, 196:117084, 2020.

[14] George.E.P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and

Control. Holden-Day, 1976.

[15] S. Vemuri, W. L. Huang, and D. J. Nelson. On-line algorithms for forecasting hourly

loads of an electric utility. IEEE Transactions on Power Apparatus and Systems,

PAS-100(8):3775–3784, 1981.

[16] Noel D. Uri. Forecasting peak system load using a combined time series and econo-

metric model. Applied Energy, 4(3):219 – 227, 1978.

[17] S. Rahman and R. Bhatnagar. An expert system based algorithm for short term load

forecast. IEEE Transactions on Power Systems, 3(2):392–399, 1988.

[18] M. J. Damborg, M. A. El-Sharkawi, M. E. Aggoune, and R. J. Marks. Potential of ar-

tificial neural networks in power system operation. In IEEE International Symposium

on Circuits and Systems, pages 2933–2937 vol.4, 1990.

[19] D. J. Sobajic and Y. . Pao. Artificial neural-net based dynamic security assessment

for electric power systems. IEEE Transactions on Power Systems, 4(1):220–228,

1989.

[20] R. Fischl, M. Kam, J. . Chow, and S. Ricciardi. Screening power system contingen-

cies using a back-propagation trained multiperceptron. In 1989 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 486–489 vol.1, 1989.

[21] H Mori and S Tsuzuki. Power system topological observability analysis using a

neural network model. In Proc. of Second Symposium on Expert Systems Application

to Power Systems, pages 385–391, 1989.

[22] A Marthur, T Samad, and K Anderson. Neural networks and how the utility industry

can benefit from them. In EPRI Conference on Expert Systems Applications for the

Electric Power Industry, Scottsdale, Arizona, 1989.

142



[23] Satoshi Matsuda and Yoshiakira Akimoto. The representation of large numbers in

neural networks and its application to economical load dispatching of electric power.

In International 1989 Joint Conference on Neural Networks, pages 587–592. IEEE,

1989.

[24] D. C. Park, M. A. El-Sharkawi, R. J. Marks, L. E. Atlas, and M. J. Damborg.

Electric load forecasting using an artificial neural network. IEEE Transactions on

Power Systems, 6(2):442–449, 1991.

[25] A. G. Bakirtzis, V. Petridis, S. J. Kiartzis, M. C. Alexiadis, and A. H. Maissis. A

neural network short term load forecasting model for the greek power system. IEEE

Transactions on Power Systems, 11(2):858–863, 1996.

[26] Che-Chiang Hsu and Chia-Yon Chen. Regional load forecasting in tai-

wan––applications of artificial neural networks. Energy Conversion and Management,

44(12):1941 – 1949, 2003.

[27] C. . Lu, H. . Wu, and S. Vemuri. Neural network based short term load forecasting.

IEEE Transactions on Power Systems, 8(1):336–342, 1993.

[28] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,

2001.

[29] Aileen Nielsen. Practical Time Series Analysis : Prediction with Statistics and Ma-

chine Learning. O’Reilly Media, Inc, USA, 2019.

[30] Nesreen K. Ahmed, Amir F. Atiya, Neamat El Gayar, and Hisham El-Shishiny. An

empirical comparison of machine learning models for time series forecasting. Econo-

metric Reviews, 29(5-6):594–621, 2010.

[31] Lulu Wen, Kaile Zhou, Shanlin Yang, and Xinhui Lu. Optimal load dispatch of

community microgrid with deep learning based solar power and load forecasting.

Energy, 171:1053 – 1065, 2019.
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Abstract - Electrical demand forecasting is essential for power generation

capacity planning and integrating environment-friendly energy sources. In

addition, load predictions will help in developing demand-side management

in coordination with renewable power generation. Meteorological conditions

influence urban area load pattern; therefore, it is vital to include weather

parameters for load predictions. Machine Learning algorithms can effectively

be used for electrical load predictions considering impact of external parame-

ters. This paper explores and compares the basic Recurrent Neural Networks

(RNN); Simple Recurrent Neural Networks (Vanilla RNN), Gated Recurrent

Units (GRU), and Long Short-Term Memory networks (LSTM). Vanilla RNNs

are fully connected neural networks where the output from the previous time

step is being fed to the next time step. GRUs are networks with a gating

mechanism: a forget gate. LSTM networks also, in addition to a forget gate,

include an output gate. Even though the recurrent structure in itself is robust

for efficient forecasting, pre-processing of data (including load, weather) is im-

portant to enhance the performance. Principal Component Analysis (PCA)

reduces and extracts the main components of available data. This work shows

that PCA improves the performance of RNNs with use of weather parameters.

The historical electrical load dataset from Sydney region is used to test the

load forecasting using these techniques considering meteorological parameters.

Through load forecasting, it is observed that for the 30 minutes predictions,
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GRU trained with a reduced number of principal components performs best

for a typical period with a mean absolute percentage error (MAPE) of 0.74%.

Keywords - load forecasting, principal component analysis, smart grid, load time

series, recurrent neural networks

D.1 Introduction

The smart electrical energy network grid requires more accurate demand and prediction

for control and managing the demand in coordination with intermittent renewable energy

sources [1]. The smart grid will require advanced control and management, including reli-

able forecasting to anticipate the events involved in dispatching, control and management

of the operating grid. The accurate load prediction can help in managing peak demand

and to reduce overall capital cost investment [2]. Demand prediction is important for short

term load forecasting. The aim of demand response in the long term is to reduce overall

plant and capital cost investments and to postpone the need for network upgrades. For

effectively implement demand response programs, short-term load forecasting will provide

useful information [3].

Time series analysis has traditionally been performed in meteorology, energy and eco-

nomics [4]. The Box Jenkins method for time series analysis has been further developed

by the research community to a robust parsimonious Autoregressive Moving Average

(ARMA) for multivariate forecasting, requiring less human intervention [5]. By observing

changes in economic and weather related variables in a Box-Jenkins time series model, re-

fined forecasts are obtained [6]. The AutoRegressive Integrated Mean Average (ARIMA)

model was introduced to deal with trends in the dataset. For the multivariate case the

exogenous variable is introduced in AutoRegressive Integrated Moving Average with Ex-

ogenous variables (ARIMAX). This is further developed into Seasonal AutoRegressive

Moving Average with Exogenous variables (SARIMAX), that also accounts for seasonal

behaviour [7]. These methods are useful for the modeling of time series and aids the elec-

trical load analysis. Cycles, trends and periodicity can be found through tests provided

by time series analysis [11].

Stack Generalization functions on the principle that two minds work better than one.

When Geoffrey Hinton first introduced ’Deep Learning’ in 2006 composing artificial neu-

rons in stacked layers [9]. The stacking layers of neurons showed that Deep Learning is

possible, with the aid of computer power and big amounts of data [10].

State of the art research in electrical load demand forecasting focuses on three main

aspects in order to make sound predictions. These inputs are from weather parameters,

holidays and time of day. The mentioned relations has been found equally important

both for simpler instance based machine learning models to the more complex black box

neural networks [11] [36]. And the results of this are provided in the research for short

term [10] [37] [38] , mid-term [39], as well as long-term forecasting [40]. The impact of
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external weather parameters has proven also to be important for forecasting on limited

data, such as for households and buildings [41], as well as cabin areas [35]. Hybrid forecast

combining neural networks with autoregression has proven to aid in tracing the curvature

of the peak in the volatile electricity markets [5].

In short-term electric load demand forecasting, Recurrent Neural Networks (RNN) by

Levenberg-Marquardt and Bayesian regularization on 30 minutes predictions had achieved

a mean absolute percentage error (MAPE) of an average in one week 1.4792 [44]. One hour

ahead prediction, has been performed on hourly power consumption in Toronto Canada

using Long Short-Term Memory (LSTM), achieving a MAPE of 2.639, which was an im-

provement of the Vanilla RNN of 3.712 MAPE [45]. The Resnetplus model for the ISO-NE

dataset proposed a day-ahead load forecasting model based on deep residual networks.

A basic structure of several fully connected layers to produce preliminary forecasts of 24

hours. A forecast is then made on the residuals of the preliminary forecast provided with

a formulation of Monte Carlo dropout for probabilistic forecasting, achieving an average

MAPE of 1.447 [46]. Gated Recurrent Unit (GRU) was used to predict the electricity

market in Singapore. Multi-features input models of different time structural architecture

named Multi-GRU has been used to give 30 minutes predictions [47].

This article is organised in the following sections: Section D.2 the principal components

analysis is explained, the Section E.4 outlines the methodology, Section D.4 includes the

data pre-processing, results are discussed in Section E.5, and finally the Conclusion is

provided in Section E.6.

D.1.1 Scaling data, normalising

Data is scaled. The general method of calculation is to determine the distribution mean

and standard deviation for each feature. Next we subtract the mean from each feature.

Then we divide the values (mean is already subtracted) of each feature by its standard

deviation.

x′
ij =

xi − x̂j

σj

(D.1)

x′
ij is the value of the input variable of row i and column j, x̂j is the mean of the values

in column j, and finally σj is the standard deviation of the values in column j [24].

D.2 Principal Component Analysis for Electrical Load

Forecasting

Principal components analysis (PCA) is a multivariate technique that can be applied to

many fields for feature reduction. It is the number of samples in the features that are

reduced, not the entirety of a feature in itself.

PCA has been found useful in many areas such as daily urban demand forecasting [97].
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PCA is extracting the important information for later to represent it in a new set of or-

thogonal vector input constituting the principal components. These principal components

is linear transformation of the data so that the first coordinate explains the most of the

variation, the second coordinate the second most, and so on. The components are found

through the eigen-decomposition and Singular Value Decomposition [98] [99].

In this work, Sydney region load profile data set is used, which includes meteorological

parameters (e.g. DryBulb and WetBulb Temperature, Humidity, weekday and time of

use) [106]. In the further feature engineering, a lower indicator variable is designed to

differentiate over working-days / non-working days with a binary switch [29]. The RNNs

purposefully search in a higher category space to find meaningful relations between the

vectors, and therefore the time input is coded using circular coding. The circular coding

identifies the time of day according to the unit circle, giving both a sine and cosine co-

ordination as its parameters. They are used as training inputs for the target vector, the

electric load demand. The data pre-prossesing in this case leaves the entire feature space

with 9 principal components.

Fig. D.1, depicts the proportion of variance that are captured by each number of principal

components after feature engineering for the Sydney Data. The red dashed line signifies

that when we include the 6 principal components the PCA-process capture 95 % of the

variance.

To perform PCA the the input matrix is transposed and crossed with its non-transposed

version, stored in matrix L. By diagonalising L, find a matrix M and diagonal matrix W:

L = MTWM (D.2)

The feature space is reduced by restricting inputs based on the number of columns that

sums up M to make a rotated matrix. The eigenvalues from W are related to the variance

of the principal components. PCA reduces the input feature space, yet remains to capture

and keep the variation for future inputs and is a important step in the feature engineering.

The proportion of variance needed for optimal feature space may vary. The reference

[97] refers to a meta-heuristic practice of principal components explaining 85% of the

variance, yet their optimal value was found at 92%.

D.3 Method

The traditional deep neural networks learn patterns on the assumption that inputs and

outputs are independent of each other. A RNN depend on the prior elements within the

sequence, to perform its decision making. The RNNs used in this work are all based

on Keras [30]. RNNs was first developed in natural language processing and the Vanilla

RNN is a fully-connected RNN where the output from previous time step is to be fed

to next time step by an additional set of units. These units provide for limited recur-

rence, hence the name ’simple’. The units have also proven to be successful in other time
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Figure D.1: The cumulative variance per introduced principal compo-

nents, with red dashed line indicating 95% variance.

series application, and for all problems constituted by sequences, such as electrical load

demand. To find the intrinsic nature of linguistic representation Principal component

analysis (PCA) has been performed on the hidden unit activation patterns to reveal that

the network solves the task by developing complex distributed representations which en-

code the relevant time relations and hierarchical constituent structure [96]. Vanilla RNN’s

are fully-connected neural network where the output from previous time step is being fed

to the next time step. GRU’s are networks with a gating mechanism, a forget gate. Long

short-term memory networks also, in addition to a forget gate includes an output gate.

In a recurrent network, in addition the weight layer is combined with the previous

state, called the recurrent weight layer U [32]:

netj(t) =
n∑

i

xi(t) + wji +
m∑

h

xh(t− 1)ujh + θj (D.3)

The set of weights in nettj is a candidate value, and through learning finds a candidate

solution, ĥj
t , that combines the present state with the previous state. The Vanilla RNN

remembers the near future quite well due to the introduction of the hidden state, h, in

practice they seem to forget quickly. In LSTM network a memory state is introduced

alongside the hidden states, to evaluate long term state dependencies. As illustrated in

Fig. D.2, at the bottom the input comes in together with the hidden state (as explained

by Vanilla RNN), at the bottom left forget gate fn:

fn = σ (Wf · [ht−1, xt] + bf ) (D.4)
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Figure D.2: LSTM network with hidden state and memory cell

and input gate:

in = σ (Wi · [ht−1, xt] + bi) (D.5)

In the top memory timeline of Fig. D.2 is a memory cell or cell state, c, the new memory

cell is concatenated with previous cell state, added to the input concatenated with cell

c̃n:

cn = fn ⊙ cn−1 + in ⊙ c̃n (D.6)

The cn is updated by forgetting memory as well as adding new memory content c̃n. For

each LSTM unit there exists a memory attached to it cn at time t. The activation, of the

LSTM unit is:

ht = on ∗ tanh (cn) (D.7)

Where the output gate ot is computed as:

ot = σ (Wo · [Uoht−1, xt] + Voct) (D.8)

GRU has only two gates, reset gate r, and update gate z. The first determines the

relation of new input to previous memory, and the latter defines to what degree of previous

memory is kept. The reset gate is directly applied to the hidden state:

r = σ (Wr · [ht−1, xt]) (D.9)

z = σ (Wz · [ht−1, xt]) (D.10)

When r=1 and z=0, it equals the Vanilla RNN [33].

D.4 Load data pre-processing with Time organisa-

tion and training, validation and testing

Time dependent structures are composed as vectors and fed as inputs to the RNNs. To

avoid biases and overfitting the data is to be divided amongst training, validation and

testing. In particular the algorithm must capture trends and seasonal variations. If the

152



time series can claim to be stationary, no means needs to be taken. To prove stationar-

ity a search for no trend, constant variance and constant autocorrelation is conducted.

Testing for stationarity is done by introducing the null hypothesis Ho: Time series is non-

stationary due to trend. By the Augmented Dickey-Fuller (ADF) test, if certain criteria

are met the null hypothesis is rejected and the time series is assumed to be stationary.

The ADF basically searches for trends in the dataset by evaluating mean and variance

over time. Based on this assumption that the time series is stationary, a division into

training, validation and test set are done (Fig. D.3).

The training set ranges from the beginning of the recorded data on 01.01.2006 until

31.12.2008. The entire 2009 is used for validation and finally 2010 is for testing. The

RNN is learned through a time-lag vector, also known as lookback, that for the multi-

variate case is a 3D-vector, containing he amount of data (samples), lags and number of

inputs (features). Equally on the output, it aims for the target vector. In the training

phase this is the next step ahead relative to the input vector.

The proposed model in this work finds suitable training, validation and test-sets by search-

ing for stationarity through Augmented Dickey Fuller Test. The original training set is

then reduced feature space and variation representation by performing its principal com-

ponents analysis, reducing the principal components from an offset features of 9 to be

represented by 8 principal components according for 99% of the variance. The training

set has then been scaled, and trained on three different RNNs, Vanilla RNN, GRU, and

LSTM. These different models have been tested for different seasons to analyse how they

assimilate for seasonal variations. Finally the models using PCA, are compared to a ver-

sion that does not reduce its feature space through PCA.

It is observed from training the RNNs with PCA that during 50 epochs of training and

validation, the training loss and validation loss decreases to a point of stability with a

minimal gap between the two final loss values, in the Fig. D.5 illustrated with the GRU

with PCA, for the Vanilla RNN and LSTM the loss curves show the same convergence.

The RNNs have been tested for a week in January, April, July and October, respectively,

and MAPE has been averaged. The results show that all of the RNNs are capturing

the inherent structure of the electric load demand quite well, resulting in an acceptable

MAPE around 1-2% through all seasons, see Table D.1.

D.5 Results and Discussion

In the winter season the correlations to weather parameters are higher than other sea-

sons, as well as in general the winter season has a higher load demand. These are factors

explaining the lower MAPE in winter season as opposed to other seasons.

In the case of GRU networks, the results for all the seasons are improved through PCA
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Figure D.3: The Sydney Region data with load measurements for every 30 minutes from

2006 to 2010. Dashed black lines indicates the separation into train-, validation- and

test-set.
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Figure D.4: The Model applied scales the raw Sydney Data, and through PCA

predicted by different RNNs
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Figure D.5: GRU networks training and validation loss de-

creases to a point of stability

concluding with 99% of the variation captured by the 8 principal components, see Table

D.2. Also for the Vanilla RNN there is a benefit from reduced number of principal com-

ponents in a lesser MAPE, and for the summer test on a week in July (Fig. D.8), it scores

best of all RNNs. Yet for the LSTM it does not benefit from an improved MAPE from

the PCA. The best results are measured in January when also the electrical load demand

is at the highest (Fig. D.6), and the impact of external weather parameters is influencing

greatly on the load demand. The curvature of the load profile is dominated by a high

peak at noon, and GRU captures this very good.

The results from the week of April (Fig. D.7), has a lower load demand than January.

In January the load demand is highly correlated to the weather parameters readings in

winter season. In April, as in January, GRU with PCA achieves the best forecast MAPE

result for the week in April, yet with a slightly higher MAPE than for January. This

can be explained by the lower load demand in April, and that correlations to weather

parameters are usually lower in spring and autumn. In the test week of October (Fig.

D.9), which has the same range in load demand (6000 - 10000 MW), it is also GRU with

PCA that scores best with a MAPE of 0.94, see Table D.2.

When comparing the results in Tables D.1 with D.2, the MAPE is in the same range

for Vanilla RNN (1.45 for April, and 1.38 for October), GRU (1.21 for April and 1.26

for October) and LSTM (1.25 for April, and 1.24 for October). The similarity in results

from spring (observed from the test results for the week in April) and autumn (observed

from the test results for the week in October) can be explained by similar load range and

155



0 50 100 150 200 250 300 350
Half-hour values

6000

7000

8000

9000

10000

11000

12000

13000

14000

Lo
ad
 (M

W
)

original
forecast

Figure D.6: GRU with PCA tested on a week in January, with a MAPE

of 0.74

0 50 100 150 200 250 300 350
Half-hour values

6000

6500

7000

7500

8000

8500

9000

9500

10000

Lo
ad

 (M
W
)

original
forecast

Figure D.7: GRU with PCA performing best of the RNNs for the test

week in April

meteorological conditions. In the case of Vanilla RNN and GRU, the explanations of the

compared results indicates the same when investigating the results on the RNNs tested

with PCA. The exception is the LSTM tested with PCA, that shows a higher MAPE. It is
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Figure D.8: Vanilla RNN is performing best of all the RNNs on the test

week with the lowest load demand, July.
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Figure D.9: GRU with PCA performing best of the RNNs for the test

week in October

observed that LSTM is a more complex algorithm, than the Vanilla RNN and GRU, and

when it is trained with relatively lesser data, although it is analysed using its principal

components, it is not able to improve the predictions. It is observed that for the for the
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Table D.1: Performance (MAPE)

MAPE Recurrent Neural Networks

– Vanilla RNN GRU LSTM

Jan 0.95 0.87 0.90

April 1.45 1.21 1.25

July 1.84 1.64 1.30

October 1.38 1.26 1.24

Table D.2: Performance using PCA (MAPE)

MAPE Recurrent Neural Networks

PCA Vanilla RNN GRU LSTM

Jan 0.87 0.74 0.89

April 1.11 1.16 1.60

July 1.39 1.53 1.75

October 1.06 0.94 1.27

week in July with the lowest load demand the simplest RNN (Vanilla RNN) with reduced

principal components achieves the preferred MAPE, amongst all of the predictors.

D.6 Conclusion

This paper explores and compares the load prediction analysis through basic RNN; Vanilla

RNN, GRU, and LSTM, using PCA. The winter season load behaviour is more influenced

by weather parameters, which explains why in the winter season the RNNs scores relatively

higher than in other seasons. It is found that PCA can be used to reduce the number

of principal components for Vanilla RNN, GRU and LSTM networks. Not only is the

reduced feature input space the preferred option in terms of dimensionality reduction,

yet also the predictive output is improved. For the electric load demand forecasting the

preferred RNN is GRU trained with a principal component of 8, and it is shown through

MAPE. After comparing with the version without PCA, the results show that MAPE is

reduced when using PCA. For the 30 minutes forecasting GRU with PCA performs best

MAPE of 0.74%. This work will benefit the reliable forecasting to anticipate the events

involved in dispatching, control and management of the operating grid.
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Paper E - Evaluating Anomaly

Detection Algorithms through

different Grid scenarios using

k-Nearest Neighbor, iforest and

Local Outlier Factor

Nils Jakob Johannesen and Mohan Kolhe and Morten Goodwin

Faculty of Engineering and Science, University of Agder, PO Box 422, NO 4604 Kris-

tiansand, Norway.

Abstract - Detection of anomalies based on smart meter data is crucial to

identify potential risks and unusual events at an early stage. The available

advanced information and communicating platform and computational capa-

bility renders smart grid prone to attacks with extreme social, financial and

physical effects. The smart network enables energy management of smart ap-

pliances contributing support for ancillary services. Cyber threats could affect

operation of smart appliances and hence the ancillary services, which might

lead to stability and security issues. In this work, an overview is presented

of different methods used in anomaly detection, performance evaluation of

3 models, the k-Nearest Neighbor, local outlier factor and isolated forest on

recorded smart meter data from urban area and rural region.

Keywords cybersecurity, anomaly detection, smart grid, local outlier factor, isolated

forest

E.1 Introduction

The smart electrical energy network grid requires more accurate demand and prediction

for control and managing the demand in coordination with intermittent renewable energy
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sources [1]. The smart grid will require advanced control and management, including reli-

able forecasting to anticipate the events involved in dispatching, control and management

of the operating grid. The accurate load prediction can help in managing peak demand

and to reduce overall capital cost investment [2].

From the field of Artificial Intelligence (AI) a tool to process meaningful relation of com-

plex big data by uncovering structures and patterns is learned through training with Ma-

chine Learning (ML). When presented with new data the machine can learn to perform

a task without the need of re-programming [9]. ML can provide electrical load demand

forecasting, giving information about future loads, which provides essential input to other

applications such as Demand Response, Topology Optimization and Anomaly Detection,

facilitating the integration of intermittent clean energy sources. Anomaly detection can

been used as a first step in data cleaning process and has been known to enhance any

forecasting algorithm [4][5].

The data used is of such an amount, that it is not possible to do so manually or by

visual inspection, and there is a need for an efficient, automated and accurate anomaly

detection methods [48]

An anomaly is defined as a deviation from an established normal pattern. Spotting

an anomaly depends on the ability to defy what is normal. Anomaly detection systems

aim at finding these anomalies. Anomaly detection systems are in high demand, despite

the fact that there is no clear validation approach. These systems rely on deep domain

expertise. Cyber threats could affect the ancillary services that are being delivered from

the aggregators, which might lead to stability and security issues resulting in brownout

or massive blackouts [7]. Large scale monitoring using the supervisory control and data

acquisition (SCADA) makes it vulnerable to cyber attacks. Anomaly detection can be

used for preventing possible cyber-attacks.

The buses in a power system is in normal operation in the same state, it is reasonable

that an anomaly exists if one bus deviates from the others [8] The implementation of two

way communication by the use of sensors and intelligent agents such as advanced metering

infrastructure as well as load aggregation, make these attractive objects for cyber attacks.

Sensors can be penetrated using a Trojan Horse, to manipulate the adversary inside the

control platform, and change reference inputs in controllers of components. The attacker

can here change acquisition gains, that create bias in the measurements report.

In the distributed power network the attack can disrupt the frequency regulation, voltage

stability and the power flow management [9].

It is necessary to investigate different computing methods, and their applications in

anomaly detection. In this work the performance evaluation of 3 models is analysed

on recorded smart meter data from urban area and rural region.

164



This article is organised in sections: Section E.2 the literature review. Theory in Section

E.3, user scenarios in Section E.4, results in Section E.5, and conclusion in Section E.6.

E.2 Review on Anomaly Detection

Anomaly detection is done on any time series data. Various anomalies can be detected in

historic time series data, due to human error, false meter measurement, inaccuracies in

data processing and failure of delivery due to extreme weather or other failures. A two-

stage method is proposed in reference [48] combining two probabilistic anomaly detection

approaches for identifying anomalies in time series data of natural gas. Exogenous vari-

ables are known to influent the electrical load consumption [10], and loads are identified

accordingly as baseload, intermediate load and peak load [11]

An autoregressive integrated moving average with exogenous inputs (ARIMAX) model is

used to extract weather dependency to find the residuals, then through hypothesis testing

the extremities, maximum and minimums are found [49]. This procedure was reproduced,

with linear regression finding the residuals and a Bayesian maximum likelihood classifier

to identify anomalies [48].

A data-mining based framework using DBSCAN was used to detect anomalies in of-

fice buildings. The framework is aimed to identify typical electricity load patterns and

gain knowledge hidden in the patterns and to potentially be used in an early fault de-

tection of anomalous electricity load profiles[50]. Also to detect anomalies of electricity

consumption in office buildings an improved kNN is proposed, ikNN, to automatically

classify consumption footprints as normal or abnormal [51].

Dynamic Bayesian Networks and Restricted Boltzman Machine has been proposed for

anomaly detection in large-scale smart grids. Simulated on the IEEE 39, 118, and 2848

bus systems the results were verified [52]. Real-Time Mechanism for detecting FDIA

analyzed the change of correlation between two phasor measurement units parameters

using Pearson correlation coefficient on IEEE 118 and 300-bus sytems [53]. Machine

learning techniques have been highlighted for theire ability to differentiate between cy-

berattacks and natural disturbances. By a simulating a variety of scenarios the ability for

One R, Random Forest, Naive Bayes and J-Ripper to recoginze attacks was investigated:

Short Circuit faults; location is represented by the percentage range, Line maintenance;

identified through remote relay trip command, Remote tripping command injection; the

attacker operates the relay remotely that causes a breaker to open, Relay setting change;

the attacker misconfigures the relay settings to cause maloperation of relays, FDIA; at-

tacker manipulates measurements sensors. The simulated scenarios was grouped into

classes; natural events, attack events, and no events [54].

In concept drift, models are inaccurate due to change in the underlying data [56]. Thus

the observation can be a result of an improved energy system, and not anomaly[57].
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E.3 Anomaly Detection using Machine Learning Al-

gorithms

3 different models is compared for anomaly detection in the different grid scenarios:

E.3.0.1 k-Nearest Neighbor

The k-nearest neighbor (kNN) regressor, which is non-paramteric, relying on its own table

look-up and mathematical foundation, and highly non-linear.

yknn(x) =
1

K

K∑

k=1

yk for K nearest neighbours of x (E.1)

The kNN-classifier is illustrated in Fig. E.1, where the left diagram with a small en-

circlement options for k = 1, where simply the nearest neighbor decides the class of

prediction, whilst in the right diagram in Fig. E.1, the number of k is increased to more

then one [70].

Using k = 1 can lead to false prediction, and a set of kNNs is often used. When classify-

ing the dependent variable is categorical, it can easily be made numerical by regression.

The kNN regressor makes a regression based on the number of kNNs to minimize false

predictions. The model considers a range of different kvalues to find the optimal value.

The kNN regressor needs thorough pre-processing and feature engineering to limit the

effect of noise caused by irrelevant features, and is, therefore, dependent on finding the

appropriate distance model [71].

E.3.0.2 Isolation Forest

The Isolation Forest algorithm is composed of several isolation trees (iTres) Isolation

forest takes advantage of the nature of anomalies which are less frequent than regular

observations and different from those in terms of values to isolate those. Iforest can deal

with large scale data quickly in a simplified way. It builds an ensemble of decision trees

(iTrees) for a given data set. Clustering is done using binary tree clustering. Anomalies

tend to be isolated closer to the root of the binary tree. Partitions are created using a split

value between the minima and maxima of a randomly selected feature. The algorithm

then tries to separate each point in the data [82] [83] [84] [85].

E.3.0.3 Local Outlier Factor

Local Outlier Factor (LOF) is a density based anomaly detection algorithm introduced

in 2000 [26]. LOF compares the local density of a point to the local density of k of its

neighbors. By comparing the local density of a point to the local density of its neighbors

one can identify point that have substantially lower density than its neighbors. These
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Figure E.1: k-Nearest Neighbour classifying based on the k’th observa-

tion.

points are considered outliers. LOF uses the k-distance to a point as in kNN, to find the

Local Reachability Density (LRD), where a point is most likely to be found. The sum of

LRD is then used to find LOF for the point z, as in Equation (E.2):

LOFk(z
′) =

∑

z∈Nk(z′)

lrdk(z)

lrdk(z′)
/ ∥Nk(z′)∥ (E.2)

[86]

E.4 User case scenarios

In this work 3 different models is used to detect anomalies in two different grid scenarios:

E.4.1 Scenario 1

New South Wales, Sydney region electrical load profile data set [105] includes meteoro-

logical parameters (e.g. DryBulb and WetBulb Temperature, Humidity, Electricity price

and time of use) [106]. Data is gathered from 2006-2011. The overall energy mix in New

South Wales consists mainly of Coal, Natural Gas, Hydro and other renewable energy

sources. Fig. E.2 illustrates the New South Wales distribution network.
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Figure E.2: New South Wales Power system, indicating transmission

lines, power stations, and substations

E.4.2 Scenario 2

From rural cabin area in Bjønntjønn, Telemark, Norway, the electrical load demand con-

sumption profile is collected from smart meters. Weather data is collected from surround-

ing weather information statins in the surrounding area. The land owner of the area wants

to realize the project ’Bjønntjønn Grønn’ (Bjønntjønn Green). The project seeks through

different initiatives to make the cabin area ’green’, with power from local hydro power

stations, possibility of electric vehicle charging and operation of the load consumption

related to the power intensive usages. The land owner has currently an application to

get license from The Norwegian Energy Regulatory Authority (NVE) to run hydro power

stations in the area, with a total production of 10,08 GWh [108]. In the fall of 2021 NVE

approved an appplication for a Tesla Supercharger from Tesla Norway, situated in the

center of Treungen, an 8 km drive from the planned Bjønntjønn hydro power station [109]

[110].

The rural area network of a typical Norwegian holiday resort cabin area, Bjønntjønn

Cabin Area. It comprises 125 cottages with a peak demand of 478 kW. As for today,

this cabin area is grid connected, but a microgrid solution involving photovoltaics and

energy storage is also considered. In the summer of 2020 the land owner presented plan

of building 445 new cabins in the area [111].
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Rural electrification is very different from the urban area electrical consumption, due

to diversified energy mix and overall conditions. A variety of case studies is necessary for

a generic approach, although each system requires an independent approach. The Nordic

market is much reliant on hydropower, as Norway’s share of hydropower is 95.8 % [112].

Norway also has the highest integration of Electric Vehicles, and this faces challenges to

the grid. This is especially a case in the rural area, where capacity is low, and the electrical

vehicle charging poses a liability to the grid. In these cases, a micro-grid solution can aid

the low-capacity network, with implementation of distributed generators, in combination

with energy storage.

When examining the general load profile of all Norwegian Holiday Cabins, a clear trend

is observed in the user behaviour. The load demand for Norwegian Cabins has increased

their total consumption from 0.7 TWh in 1993 to 2.3 TWh in 2016. Although the con-

sumption tripled and has been only 1.8 % of the total Norwegian load demand in 2016

[35]. Statistics Norway concludes in the 2018 report, that the increasing trend is due to

the general development, and that more Norwegians have bought cottages in rural areas,

such as mountains and seaside. Also, more cottages have been electrified in this period

[112].

In the Bjønntjønn Cabin Area, to deal with the ever-increasing penetration of electric

vehicles, photovoltaic system together with energy storage could be a scenario for the

future rural electrification. For the Nordic rural area network, a microgrid solution can

improve the electrical network capacity of the rural area, despite challenges from power

demanding operations as electric vehicle charging. Since the electric vehicle will not be

used mostly of the holiday resort area, the battery pack of the vehicle is be considered

as the battery bank for the microgrid. When the state of charge (SOC) of the battery

reaches a certain threshold level, it will be considered as a prosumer for the micro grid

and be able to contribute to electrical supply and stability.

E.5 Results and Discussion

The results of kNN, iforest and LOF on urban area data, are shown in Fig. E.4, E.5 and

E.6, and from rural region data in Fig. E.7, E.8 and E.9. The results are depicted with a

0.0005 amount of contamination of the data set, this is the proportion of outliers in the

data set. Used when fitting to define the threshold on the decision function [36].

It is observed that the anomaly detection for the two grid scenarios are different, for

the rural region most of the anomalies where observed in the latter timeline of the data

concentrated in the last year of the collected data. For the urban area data the anomalies

are spread out over the entire timeline. In Table E.1, it is shown that the frequency of

detected anomalies where considerably higher for the rural area load demand than for the

urban area load demand. When observing the anomalies detected based on the algorithm

the results in Table E.1 are consistent.
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algorithm urban rural

kNN 44 10

iforest 35 25*

lof 44 21

Table E.1: Results using fraction 0.0005, except * =

0.0006

Observing from these case scenarios the incidents of detected anomalies are more data

driven, then exceptions in the algorithms. It is observed that there are 3 anomalies, where

the recorded electrial load demand is zero, in the rural region dataset that the iforest and

LOF did not detect. This was only detected by kNN, see Fig. E.7.

When comparing the 3 algorithms tested on the urban area data it is observed that

kNN and isolated forest finds a threshold value, based in the mentioned fraction of con-

tamination, and separates a lower and upper bound, whilst the density based LOF finds

anomalies at several ranges of the dataset, see Fig. E.4, E.5 and E.6.

When visually inspecting results in Fig. E.4, E.5, E.6, E.7, E.8 and E.9, it is observed

that from the domain knowledge of smart energy systems the LOF is able to detect ob-

servations that could not have detected by visual inspection alone, in contrast to kNN

and iforest. Whereas kNN and iforest excludes an upper and lower bound, the LOF is

density based and separates out anomalies amidst in the data. The capability that LOF

has to identify anomalies amidst the data will together with the deep domain knowledge

is an advantage when detecting anomalies in smart meter data.

E.6 Conclusion

Detection of anomalies based on smart meter data is crucial to identify potential risks

and unusual events at an early stage. An anomaly is defined as a deviation from an

established normal pattern. Spotting an anomaly depends on the ability to defy what is

normal.Cyber threats could affect operation of smart appliances and hence the ancillary

services, which might lead to stability and security issues. In this work is evaluated the

performance of 3 models, the k-Nearest Neighbor, local outlier factor and isolated forest

on recorded smart meter data from urban area and rural region. Observed that from

the domain knowledge of smart energy systems the LOF is able to detect observations

that could not have detected by visual inspection alone, in contrast to kNN and iforest.

Whereas kNN and iforest excludes an upper and lower bound, the LOF is density based

and separates out anomalies amidst in the data. The capability that LOF has to identify

anomalies amidst the data will together with the deep domain knowledge is an advantage

when detecting anomalies in smart meter data. The anomaly detection based on machine

learning algorithms gives a fast response to potential anomalies.
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Figure E.4: Anomaly detected outliers marked in red using kNN, frac-

tion = 0.0005
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Figure E.5: Anomaly detected outliers marked in red using iforest, f =

0.0005
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Figure E.6: Anomaly detected outliers marked in red using LOF, f=

0.0005
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Figure E.7: Anomaly detected outliers marked in red using kNN, frac-

tion = 0.0005
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Figure E.8: Anomaly detected outliers marked in red using iforest, f =

0.0006
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Figure E.9: Anomaly detected outliers marked in red using LOF, f=

0.0005
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