Taylor & Francis
Taylor & Francis Group

e Canadian Journa | of Remote Sensi ng

of Remote Sensing élédétection

Journal canadien de télédétection

®)  Ucrssscr O IEIIINE (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujrs20

Toward Targeted Change Detection with
Heterogeneous Remote Sensing Images for Forest
Mortality Mapping

Jorgen A. Agersborg, Luigi T. Luppino, Stian Normann Anfinsen & Jane Uhd
Jepsen

To cite this article: Jergen A. Agersborg, Luigi T. Luppino, Stian Normann Anfinsen &
Jane Uhd Jepsen (2022): Toward Targeted Change Detection with Heterogeneous Remote
Sensing Images for Forest Mortality Mapping, Canadian Journal of Remote Sensing, DOI:
10.1080/07038992.2022.2135497

To link to this article: https://doi.org/10.1080/07038992.2022.2135497

8 © 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 20 Oct 2022.

N
CJ/ Submit your article to this journal

A
& View related articles &'

P

(!) View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ujrs20


https://www.tandfonline.com/action/journalInformation?journalCode=ujrs20
https://www.tandfonline.com/loi/ujrs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07038992.2022.2135497
https://doi.org/10.1080/07038992.2022.2135497
https://www.tandfonline.com/action/authorSubmission?journalCode=ujrs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ujrs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07038992.2022.2135497
https://www.tandfonline.com/doi/mlt/10.1080/07038992.2022.2135497
http://crossmark.crossref.org/dialog/?doi=10.1080/07038992.2022.2135497&domain=pdf&date_stamp=2022-10-20
http://crossmark.crossref.org/dialog/?doi=10.1080/07038992.2022.2135497&domain=pdf&date_stamp=2022-10-20

CANADIAN JOURNAL OF REMOTE SENSING
https://doi.org/10.1080/07038992.2022.2135497

Taylor & Francis
Taylor &Francis Group

RESEARCH ARTICLE

8 OPEN ACCESS ‘ ) Checkforupdates‘

Toward Targeted Change Detection with Heterogeneous Remote Sensing

Images for Forest Mortality Mapping

Vers une détection ciblée de changements a I'aide d'images de télédétection
hétérogenes pour la cartographie de la mortalité sylvestre

Jorgen A. Agersborg® (), Luigi T. Luppino®

, Stian Normann Anfinsen®®

, and Jane Uhd Jepsen®

?Department of Physics and Technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, N-9037 Tromsg, Norway;
PNORCE Norwegian Research Centre, PO Box 6434, N-9294 Tromsg, Norway; “Norwegian Institute for Nature Research, PO Box 6606

Langnes, N-9296 Tromsg, Norway

ABSTRACT

Several generic methods have recently been developed for change detection in heteroge-
neous remote sensing data, such as images from synthetic aperture radar (SAR) and multi-
spectral radiometers. However, these are not well-suited to detect weak signatures of certain
disturbances of ecological systems. To resolve this problem we propose a new approach
based on image-to-image translation and one-class classification (OCC). We aim to map forest
mortality caused by an outbreak of geometrid moths in a sparsely forested forest-tundra eco-
tone using multisource satellite images. The images preceding and following the event are
collected by Landsat-5 and RADARSAT-2, respectively. Using a recent deep learning method
for change-aware image translation, we compute difference images in both satellites’
respective domains. These differences are stacked with the original pre- and post-event
images and passed to an OCC trained on a small sample from the targeted change class.
The classifier produces a credible map of the complex pattern of forest mortality.

RESUME

Plusieurs méthodes génériques de détection de changements a partir d'images satellites
issues de sources hétérogenes (radar a synthese d'ouverture, optique, etc) ont été
développées récemment. Cependant, celles-ci sont rarement adaptées a la détection des
signatures spectrales peu distinctives de certaines perturbations des systemes écologiques.
Pour remédier a ce probleme, nous proposons une nouvelle approche basée sur le transfert
d’image et un algorithme de classification a une classe (OCC). Notre objectif est de cartog-
raphier I'effet d'une épidémie de papillons géométrides dans un écotone forét-toundra peu
boisé en utilisant des images satellites multisources. Les images précédant et suivant
I'événement proviennent de Landsat-5 et RADARSAT-2, respectivement. En utilisant une
méthode récente d’apprentissage profond de transfert d'images sensible aux changements,
nous calculons les images de différence dans les domaines respectifs des deux satellites.
Ces images de différences accompagnées des deux images originales sont alors traitées par
un OCC qui peut étre entrainé sur un petit échantillon de la classe des changements
souhaitée. L'algorithme de classification produit une carte crédible de la complexité de la
mortalité forestiere.
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Introduction

The forest-tundra ecotone, the sparsely forested transi-
tion zone between northern-boreal forest and low arc-
tic tundra, is changing rapidly with a warming climate
(CAFF 2013). In particular, changes in the distribu-
tion of woody vegetation cover through shrub
encroachment, tree line advance, and altered pressure

from browsers and forest pests, modify the structural
and functional attributes of the forest-tundra ecotone
with implications for biodiversity and regional cli-
mate feedback.

In Northern Norway, mountain birch (Betula
pubescens var. pumila) forms the treeline ecotone
toward the treeless Low Arctic tundra. In this region,
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Figure 1. A true color Sentinel-2 image (July 26, 2017) of the Polmak study site, and maps showing its location on the

Norwegian-Finnish border.

periodic outbreaks by forest defoliators are the most
important natural disturbance factor and the only
cause of large-scale forest die-off. In recent decades,
such pest outbreaks have been intensified due to range
expansions thought to be linked to more benign cli-
matic conditions (Jepsen et al. 2008, 2011). Today, two
species of geometrid moths; the autumnal moth
(Epirrita  autumnata) and the winter moth
(Operophtera brumata) have overlapping population
outbreaks at approximately decadal intervals, some of
which cause regional scale defoliation and tree and
shrub mortality in the forest-tundra ecotone. Outbreaks
can thus lead to a reduction in forested areas as well as

cascading effects on other species (Biuw et al. 2014;
Henden et al. 2020; Pedersen et al. 2021).

The Climate-ecological Observatory for Arctic
Tundra (COAT) (Ims et al. 2013) is an adaptive,
long-term monitoring program, aimed at document-
ing climate change impacts in Arctic tundra and tree-
line ecosystems in Arctic Norway. One of the COATs
monitoring sites, shown in Figure 1, is located near
lake Polmak, partially on the Norwegian side and par-
tially on the Finnish side of the border (28.0° E, 70.0°
N). The chosen study site is subject to different rein-
deer herding regimes, where the area on the Finnish
side of the border is grazed all year round (but mostly



during summer), while on the Norwegian side the
region is mainly winter grazed (Biuw et al. 2014). The
site’s subarctic birch forest suffered a major outbreak
by both autumnal moth and winter moth between
2006 and 2008, with effects that are still clearly visible
in the form of high stem mortality (Biuw et al. 2014).
Remote sensing imagery is an important tool to
observe and understand changes in the forest-tundra
ecotone, both for large-scale monitoring and mapping
on a local scale. In this work, we develop a method to
find areas with forest mortality after the geometrid
moth outbreak, based on satellite images and limited
ground reference data. This is a challenging task for
several reasons, where three significant factors stand
out and guide our approach to solve the problem.
Firstly, there are few remote sensing images available
from our study site. This is due to the high cloud
coverage at high latitudes of subarctic Fennoscandia,
which limits the imaging opportunities of optical sat-
ellites. The available cloud-free optical images are rela-
tively few and far between and consecutive images are
often from different sensors. Synthetic aperture radar
(SAR) is an active sensor largely uninfluenced by
clouds, which can be utilized to monitor defoliation
and deforestation (Bae et al. 2022; Perbet et al. 2019).
However, the planned acquisition of SAR images of
the Polmak study site did not start until after the out-
break. Detecting changes between images from differ-
ent modalities (e.g., SAR and optical), and even
between two images from different sensors of the
same modality, is very challenging. If these challenges
can be overcome, heterogeneous change detection
would enable us to use all available historical data
sources for long-term monitoring and increase the
temporal resolution and responsiveness of the ana-
lysis. The second factor is that changes in the canopy
state are difficult to detect in medium-resolution
imagery. At this scale we do not observe the aggre-
gated landscape level effect as in low-resolution satel-
lite images, nor are the individual canopies visible as
in high-resolution aerial photographs. For optical
images, the loss of “greenness” or normalized differ-
ence vegetation index (NDVI) response caused by for-
est mortality can be offset by the understorey
vegetation that becomes increasingly visible as the
canopy disappears. For SAR imagery, the change in
scattering mechanisms may help detect forest mortal-
ity. However, depending on the forest density, these
changes can be very subtle compared to other changes
in the scene. Thus, when using unsupervised change
detection methods, the presence of other man-made
or natural changes can easily drown out less distinct
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signs of forest mortality. Unsupervised methods tend
to detect these strong change signatures and attenuate
the weaker ones. Masking of pixels susceptible to such
changes by manual inspection, creation of detailed
databases of such areas, or pre-classification of images
would add another layer of complexity to the task.
The accuracy of the final detection result would also
be very dependent on the ability of the masking oper-
ation to find all relevant areas, and the spatial reso-
lution would be limited to that of the mask.
Furthermore, it does not prevent other uninteresting
changes in vegetation (i.e., not related to the canopy
state) from appearing in an unsupervised result. We,
therefore, create a targeted change detection algorithm
to learn the change signature for forest mortality
based on field data. The third factor is that learning
these signatures with a supervised approach requires
labeled data to train the classifier. While an ecological,
field-based, monitoring of forest structure and forest
regeneration in the Polmak study site was started in
2011, the scale of the field data is unsuitable to gener-
ate training labels for medium-resolution satellite
images and does not cover the full extent of all
ground cover classes contained in the images. To label
data for all classes would be a tedious manual process,
and we want to generate just enough training data for
our application of detecting forest mortality since
exhaustive classification is unnecessary for our appli-
cation and could adversely affect the classification
accuracy for the class of interest.

We, therefore, select one-class classification (OCC)
to delineate the targeted change in an approach with
two main steps:

1. Change-aware image-to-image translation that
allows direct comparison of heterogeneous pre-
and post-event images through differencing.

2. OCC applied to a stack of difference images
(from step 1) and original input images to detect
defoliation.

We use the recently developed code-aligned autoen-
coders (CAE) algorithm (Luppino et al. 2022) to do the
image-to-image translation. CAE performs unsuper-
vised change detection. However, since it is based on
obtaining the difference images, it can be used to trans-
late images between domains. Furthermore, since it is
designed with change detection in mind, the network
learns to preserve the changes in the translations.

OCC is a semi-supervised learning approach that
utilizes the available labels but does not require a big
training set or access to labels for all classes. By
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Figure 2. lllustration of our approach. The input optical and SAR images at times t7 and t2 are translated to the other domain
using code-aligned autoencoders (CAE). The originals and the differences with the translated versions are stacked as feature vec-
tors for every image pixel. A limited amount of training data in the form of known areas with forest mortality is then used to train
a one-class classifier (OCC) to map the change for a large area in the presence of both unchanged areas and other changes.

learning the change signature of the phenomenon of
interest, we can perform targeted change detection by
solving a classification problem with limited and
incomplete ground reference data. For OCC we select
a flexible approach that utilizes all available ground
reference data, i.e., also from outside the class of
interest. Our approach is summarized in Figure 2.
The main contributions of this work are:

e We propose a method to detect a specific change
in heterogeneous remote sensing images based on
limited ground reference data and in presence of
other changes.

e We adapt a deep learning method recently devel-
oped for unsupervised change detection to trans-
late the images between domains while preserving
the changes.

e We adapt a method developed to identify reliable
negative samples in OCC for the text domain to
work on image data.

e We analyze the effect of the number of labeled
samples on benchmark datasets and show that
relatively little training data is needed to achieve a
good classification.

e We provide an ablation study for the various com-
ponents of our method using benchmark datasets.

e OQur approach allows a post-hoc study of change
events, that is study areas that were not originally

subject to persistent monitoring, by using any
available satellite imagery combination from before
and after the event.

e Our method allows more responsive detection of
changes in areas with high cloud cover.

Theory and related work

In this section, we provide an overview of relevant the-
ory for our application and work related to the detec-
tion of canopy damage caused by defoliating insects.

Remote sensing of insect-induced canopy
defoliation

Previous studies of canopy defoliation in the forest-
tundra ecotone have mostly utilized low-resolution
(250 m) MODIS data (Biuw et al. 2014; Jepsen et al.
2013, 2009; Olsson et al. 2016a, 2016b). This agrees
with the findings in a review of remote sensing of for-
est degradation by Gao et al. (2020), which shows the
prevalence of optical data in general and MODIS in
particular. A literature review by Senf et al. (2017)
found that studies of disturbances by broadleaved
defoliators mainly used low or medium-resolution
data, with Landsat being the most used sensor. These
works typically use spectral indices and dense time
series to detect the defoliation. Senf et al. (2017)



found that 82% of studies mapping insect disturbance
of broadleaved forest used a single spectral index, typ-
ically NDVI. This is consistent with the observation
by Hall et al. (2016) that image differencing of vegeta-
tion indices derived from spectral band ratios were
most frequently used. However, problems with the
low resolution of MODIS for mapping forest insect
disturbance in fragmented Fennoscandian forest land-
scape were emphasized by Olsson et al. (2016a).
Limitations of low spatial resolution sensors for detec-
tion of pest damage were also pointed out by Hall
et al. (2016), due to the large number of different sur-
face materials that can be contained in a pixel, only
some of which are affected by the outbreak. To rely
on a single spectral index makes results susceptible to
changes from other sources than forest mortality or
dependent on accurate forest masks to avoid this. The
sole use of NDVI also ignores the information con-
tained in other bands of the sensor.

When it comes to the use of SAR data, none of the
studies of broadleaf defoliation listed by Senf et al.
(2017) used SAR, nor did the works on remote sens-
ing for assessing forest pest damage reviewed by Hall
et al. (2016). A study by Mitchell et al. (2017) of
approaches for monitoring forest degradation did
include several SAR data applications. However, these
were mainly for L- and X-band SAR data. Most of the
summarized papers dealt with the scenario where
entire trees (stems and branches) had been removed,
for instance by fires or logging, or they used proxy
indicators, such as the detection of forest roads, to
monitor degradation (Mitchell et al. 2017). It was
found that only a few studies had investigated the use
of C-band data (Mitchell et al. 2017). The study of C-
band SAR remains interesting, particularly because the
Sentinel-1 satellites provide free data in that fre-
quency band.

A study of insect-induced defoliation using C-band
SAR was presented by Bae et al. (2022), which calcu-
lated the correlation between defoliation risk and
smoothed time series of backscatter values averaged
over five hectares (50,000 m?) plots. In a precursor to
this work, we discriminated between live and dead
canopy based on an accurate estimation of polarimet-
ric covariance from a single, full-polarimetric C-band
image (Agersborg et al. 2021).

Heterogeneous change detection

Traditionally, change detection has been based on
images from the same sensor and preferably with the
same acquisition geometry before and after the change
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event. This puts some limitations on the use of such
methods. Firstly, the response time is at a minimum
limited to the revisit time of that particular satellite or
constellation. Secondly, the area of interest (AOI)
might not be covered frequently by the sensor.
Furthermore, the time period which can be studied is
also limited to the active time period for that particu-
lar sensor. One way to alleviate these issues is to use
heterogeneous change detection on imagery from two
different sensors. This comes at the cost of solving a
problem that is methodologically more challenging,
especially in the unsupervised case, but is still our
chosen solution given the practical constraints.

To enable reliable, long-term, persistent monitoring
of forest mortality in our AOI, we need to use images
from different sensors due to frequent cloud cover.
SAR sensors have significantly higher imaging oppor-
tunities because of their near-weather-independent
nature. For our AOI, we do not have SAR imagery
before the geometrid moth outbreak, and we thus
have to use Landsat data for the pre-event image.
Furthermore, we do not have enough data to use time
series for smoothing or monitoring gradual changes,
as in the studies based on low-resolution MODIS
NDVI (Biuw et al. 2014; Jepsen et al. 2009, 2013;
Olsson et al. 2016a, 2016b) or the approach by (Bae
et al. 2022). Hence, we must rely on bi-temporal
change detection using pairs of images.

Heterogeneous change detection has received
growing interest in the last years (Sun et al. 2021;
Touati et al. 2020). Fully heterogeneous change detec-
tion should work in a range of settings, from the easi-
est where the images are acquired with the same
sensor, but with different sensor parameters or under
different environmental conditions, to the most chal-
lenging where images are obtained by sensors that
use different physical measurement principles (e.g.,
SAR and optical) (Sun et al. 2021). The advances of
deep learning have in recent years opened up several
new directions for heterogeneous change detection.
Image-to-image translation in particular offers the
interesting prospect of comparing the images directly,
once one or both have been translated to the opposite
domain. Many traditional change detection methods
involve a step for homogenizing the images, such as
radiometric calibration, even for images from the
same sensor (Coppin et al. 2004). Image-to-image
translation can be seen as an evolution of this trad-
itional preprocessing step; one (or both) images are
“re-imagined” to what it would look like in the
other domain.
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Image-to-image translation

Code-aligned autoencoders (CAE) is a recently devel-
oped method for general purpose change detection
designed to work with heterogeneous remote sensing
data (Luppino et al. 2022). The change detection is
based on translating images U and V into V and U,
respectively, such that the difference images U — U and
V-V can be computed. The CAE algorithm must
ensure that changed areas are not considered when
learning the translation across domains to avoid falsely
aligning the changed areas. CAE identifies changed areas
in an unsupervised manner and reduces their impact on
the learned image-to-image translation. The unsuper-
vised nature of the algorithm means that we do not
need training data. While CAE performs change detec-
tion directly, it will detect all changes between the two
acquisition times, such as those caused by human activ-
ity, fluctuating water levels, seasonal vegetation changes,
etc., and not just forest mortality. We, therefore, utilize
it as an image-to-image translation method that does
not require labeled training data, is change-aware, and is
designed for heterogeneous remote sensing data.

One-class classification

Canopy defoliation has a weak change signature com-
pared to many other vegetation changes that can be
discerned in medium-resolution imagery, meaning that
the imposed change of the radiometric signal is much
smaller than for disturbances, such as e.g., forest fires
or clear cutting. Thus, it will not in general be detected
by the CAE. An unsupervised change detection method
will tend to highlight certain strong changes and ignore
weaker ones. If we lower the threshold for detection,
the forest mortality could be found, but it would be
surrounded and accompanied by many unrelated
changes in the final change map. We, therefore, use a
semi-supervised approach to detect the change phe-
nomenon of interest while ignoring all other changes.
Traditional supervised classification algorithms
require that all classes that occur in the dataset are
exhaustively labeled (Li et al. 2011). To obtain suffi-
cient training data from all possible classes by manual
labeling would be both time-consuming and costly (Li
et al. 2011), and does not necessarily improve the clas-
sification accuracy with respect to our class of interest.
While we cannot collect ground reference data for all
classes, we still want to utilize the available data to
train a change detection algorithm to find changes in
a larger region extending beyond the study area. We
instead use techniques from one-class classification
(OCC) to learn the change signature from a very

limited number of labeled samples of ground refer-
ence data containing forest mortality information.

OCC is framed as a binary classification problem,
where the class of interest is referred to as the positive
class (or target class), with the label y = 1. In this set-
ting, the negative class, y =0, is either absent from
the training data or the instances available “do not
form a statistically representative sample” (Khan and
Madden 2014). The negative class is usually a mixture
of different classes (Li et al. 2020), defined as the
complement of the positive class. The typical case for
OCC is that the full dataset X is divided into P, the
set of labeled positive samples, and an unlabeled set U
(also called mixed set) that consists of data from both
the positive and the negative class. OCC seeks to build
classifiers that work in such scenarios, which often
naturally arise in real-world applications (Bekker and
Davis 2020). In general, the results will not be as
good as in true binary classification, where statistically
representative samples from both the positive and
negative classes are available for training.

In our case, the reference data is not randomly
sampled, but selected systematically from a spatially
limited area with a sampling bias that is somewhat
related to landscape attributes. The lack of random
sampling limits our choice of OCC algorithm to the
so-called two-step techniques and discards the other
possibilities mentioned in the taxonomy of Bekker
and Davis (2020). Two-step techniques only require
two quite general assumptions: smoothness and separ-
ability (Bekker and Davis 2020). Smoothness means
that samples that are close are more likely to have the
same label, while separability means that the two
classes of interest can be separated (Bekker and Davis
2020). The steps are:

1. Given labeled positive samples P from a dataset
X, reliable negative (RN) samples are identified
from the remaining set of unlabeled samples U.

2. A classifier is trained with the provided labeled
positive samples P and using the RN samples
from Step 1 as the (initial) set of negative training
data, N.

Any (semi-)supervised classifier can be used in Step
2, as both positive and RN labels are available.

Methodology
Feature selection

Feature engineering is an important part of machine
learning, as selecting the right features and



normalization may have a big influence on the final
classification result. For our bitemporal change detec-
tion problem, we originally have the co-registered pre-
(U) and post-event (V) images, which may be from
different sensors and even different physical measure-
ment principles. We want the feature vectors to be as
descriptive as possible since we have a very limited
amount of training data, and only from the change
class of interest. A common change detection tech-
nique for homogeneous images is to subtract one
image from the other to obtain the difference image,
D € R, The exact steps for finding the changes
from the features of D vary, but often involve a form
of thresholding.

We seek to combine original image features and
difference vectors for heterogeneous images without
creating a specific method for weighting the contribu-
tions. Using CAE for image-to-image translation, we
can obtain U, which is the post-event image trans-
lated to the domain of U, and V, the pre-event image
translated to the domain of V. This allows us to com-
pare the pre- and post-event images and utilize the
difference images in our features:

D,=U-U (1)
D,=V-V )

If U is an image with ¢, channels and V has ¢,
channels for each pixel position in the & x w images,
Equations (1) and (2) correspond to the element-wise
differences:

d,=a—u="[u(l) —u(l),...u(c,) —u(c,)] » (3)
d,=v—v=1)—-7Q1),...v(c,) —¥(¢))] » (4)

where u € R“*! and v € R®*! are the multi-channel
pixel vectors in the co-registered input images at a
given position, @ eR%*! and v eR“*! are the corre-
sponding pixel vectors in the translated images, and
the parentheses are used to index the channels of the
image. For an optical image, the channels will be
spectral bands, while for SAR they will typically con-
tain polarimetric information.

By stacking the difference vectors from Equations
(3) and (4) with the original multichannel input data,
we form an array X € R"*"*¢ where at each of the
h x w pixel positions, the feature vector x can be writ-
ten as:

T
x=[uldlv"dl] eR! (5)

where ()T denotes the transpose operation, and the
dimension of the feature vector is equal to the sum of
the dimension for each component, ¢ = ¢, + ¢, + ¢, +
¢, = 2¢, + 2¢,. The combined feature vector x will
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contain information about both the change, and the
state before and after the event. Since we use labeled
training data, we avoid hand-crafted features or
dimensionality reduction methods, such as PCA, thus
allowing the machine learning algorithm to learn
which features are important for detecting the change
of interest.

Building the OCC

We select the two-step approach to OCC for our
application since it is flexible and makes no assump-
tions about the random sampling of the positively
labeled training data. A further benefit is that enables
the use of ground reference data collected from other
classes (i.e., not forest mortality) by adding it to the
RN samples to augment the negative class. When
selecting the methods for each step, we want to avoid
those that have many parameters that require tuning.
To further guide our choice, the OCC should work
for a range of different numbers of positive samples.
We also exclude methods that are highly specialized
in the text domain.

Step 1

To obtain RNs in the first step, we use a Gaussian
mixture model (GMM) updated once with the expect-
ation maximization (EM) algorithm (Dempster et al.
1977). This is inspired by the first step in the Spy
algorithm (Liu et al. 2002) and the well-established
use of the naive Bayes (NB) classifier solved with the
EM algorithm as the second step (Bekker and Davis
2020). Our starting point is the same as for Liu et al.
(2002): We want to train a Bayes classifier with the
labeled positive data and to wuse all remaining
(unlabeled) samples as negatives, before updating the
classifier once using EM. The classifier uses Bayes’
rule, where a data point x should be considered a reli-
able negative if the probability that it belongs to the
negative class (y=0) is greater than the probability of
belonging to the positive class (y = 1):

P(y = 0[x) > P(y = 1|x). (6)

These probabilities are then reformulated using
Bayes’ rule and canceling the evidence (p(x)) in the
denominators, which gives the decision rule:

Py =0)p(xly =0) > Py =1)p(xly=1)  (7)
where P(y) is the prior probability of the positive or
negative class and p(x|y) is the likelihood.

The approach of NB is to make the so-called naive

assumption that all the features of x are mutually
independent when conditioned on the class y. Then
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p(x|y) can be written as the product of the marginal
univariate probability density functions (PDFs) of all
features in x. The use of NB by Liu et al. (2002) and
other works stems from document classification, where
the marginals are modeled as discrete probability mass
functions which represent the probability of a given
word occurring in a document of class y. These can be
readily estimated by counting word occurrences while
estimating p(x|y) for the set of words in a document
is intractable unless the vocabulary is small. In our
case, the naive assumption of mutual independence of
features does not make it easier to calculate Equation
(7), as that requires assumptions about the PDFs
p(xily) for each feature x; € x = [x0,X1,...,%1].
Instead, we choose to use a parametric model for the
conditional probability density functions for the fea-
ture vectors for each class, p(x|y). Compared to using
the naive approach, this allows us to account for the
correlation between the features of x. Recall that the
feature vectors consist of all channels from the original
images as well as differences obtained with the transla-
tions, as given by Equation (5), so we must assume a
correlation between features. Since the goal is to per-
form classification to obtain reliable negative samples
which can be used to train a better, final, classifier in
the second step, we do not attempt to optimize the
selection of p(x|y). We instead argue that the Gaussian
is a reasonable choice of PDF in this setting since its
parameters are readily estimated by the mean and the
sample covariance matrix, with the latter capturing the
correlation between features. Thus, we model the mar-
ginal density for the positive class as p(x|y =1) ~
N(p, X)), and likewise for the negative
class p(x|y = 0) ~ N (1, Xo).

This is a two-component GMM, and we can use
EM to provide an initial classification of the data to
find RNs. The initial estimates for the mean and
covariance of the first mixture component, i, and
¥, are based on the labeled positive training set,
while the estimates fi, and X, are based on the
unlabeled set, which contains both positive and nega-
tive samples. The standard sample mean and sample
covariance matrix estimators are used. Using results
from EM for GMM (see e.g., Bishop 2006) we can
now find refined estimates for the parameters. The
new estimates of the expectation for mixture compo-
nent k is then:

N-—
e = Z yz)x , k=0,1 (8)
j=0

where 7(zj) € [0,1] is called the responsibility and
denotes the posterior probability of sample x;

belonging to mixture component k, and ng =
Zjligl 7(zj) is a normalization factor. The term indi-
cates how much “responsibility” mixture component k
has for explaining sample j. The y(zj) are calculated
as the posterior probabilities of sample x; belonging to
mixture component k given the parameters of the
mixture components calculated in the previous (ini-
tial) iteration of the EM algorithm. The prior proba-
bilities in Equation (7) are initialized as equal
(uninformative) P(y = 1) = P(y = 0) = 0.5. Since we
want mixture component k=1 to model the positive
class, we set y(zj1) = 1 and y(zjo) = 0 when x; is from
the positive training set. The updated estimate for the
covariance matrices are given in a similar manner as
Equation (8) as

Z (z) () — i) (x5 — )"

=0

2, new

We note that the EM estimates are the maximum
likelihood estimators (MLEs) for the expectation and
covariance matrix weighted by y(zjx). These can be
easily found by functions that can calculate weighted
versions of the mean and sample covariance matrix,
e.g., the average and cov functions from the Python
numpy library. The reliable negatives are selected as
the samples x where the probability of belonging to
the mixture component used to model the negative
class is greater than that of the positive class accord-
ing to Equation (7). The prior probabilities are calcu-
lated as the proportion of samples assigned to each
class and the estimates in Equations (8) and (9) for
the positive and negative classes are then used to
evaluate the Gaussian PDFs. We used the multivaria-
te_normal function from the scipy.stats package.
Intuitively, the mixture component for the negative
class will be “wide” and have the largest value for
most of the support, while the mixture component of
the positive class will be “compact” and only have
higher values close to where the positive training sam-
ples are located.

Step 2

For the second step, any (semi-)supervised method
could be used, as we now have training data for both
classes with the labeled positives and RNs (Bekker
and Davis 2020). We choose to base our second step
on multi-layer perceptron (MLP) feed-forward neural
networks. Neural networks are a good out-of-the-box
method for problems, such as this, due to their high
flexibility as function approximators. Unfortunately,
there are no general guidelines for selecting the
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(d)

Figure 3. The spectral bands corresponding to red, green, and blue (RGB) for (a) the pre-event and (b) the post-event image. The
two rightmost plots show the confusion maps for (c) the unsupervised CAE result and (d) our OCC method, where white pixels
represent true positive (TP) classifications, black true negative (TN), green false positive (FP), and red false negative (FN). The small
clouds and their shadows in the Landsat 5 image are detected as changes compared to the EO-1 image in the unsupervised CAE
change detection result, and appear pairwise as green areas (FP) in the confusion map.

number of hidden network layers or the number of
neurons in each. Our initial data exploration revealed
that there were some variations in the classification
results depending on how the network architecture was
selected. We, therefore, opted to combine five different
MLPs in an ensemble model and use the majority vote
to determine the class of each pixel. The architectures
of the ensemble consisted of one MLP with a single
hidden layer of 1000 neurons, two MLPs with two hid-
den layers, one with 100 and the other with 200 neu-
rons in both layers, and two MLPs with three hidden
layers, again with uniform layer size of either 100 or
200 neurons in all layers. Except for the architecture,
all MLPs used the default parameters for the
MLPClassifier function from the Python Scikit-learn
sklearn.neural network package (Pedregosa
et al. 2011). The default parameter selection uses the
rectified linear unit (ReLU) activation function and the
Adam optimizer (Kingma and Ba 2014). The ensemble
setup and MLP parameters are kept constant for all
experiments. After training, the ensemble of MLPs is
used on the full dataset to find the targeted change.

Results
Illlustrating targeted change detection

To illustrate targeted change detection, we test our
method on a dataset used in the change detection

literature. The Texas dataset consists of two
1534 x 808 pixel multispectral optical images of
Bastrop County, Texas, where a destructive wild-
land-urban fire struck on September 4, 2011 (Volpi
et al. 2015). The pre-event image is from Landsat 5
Thematic Mapper (TM) with 7 spectral channels
and the post-event image is from Earth Observing-
1 Advanced Land Imager (EO-1 ALI), with 10
spectral channels. The ground truth was provided
by Volpi et al. (2015).

We apply our method with 1000 randomly drawn
positive samples as the training data. This corresponds
to 0.76% of the positive ground truth data (0.08% of
the total image pixels). In Figure 3 we zoom in on an
area containing both the targeted change (where the
fire has occurred) and other changes (clouds) and
show the original image data and the change detection
result. In addition to the result from our approach,
we show that of the unsupervised CAE change detec-
tion from Luppino et al. (2022). This illustrates how
our semi-supervised OCC-based approach ignores
changes not present in the labeled training set. The
result in Figure 3c is reasonable since the clouds (and
their shadows) represent an actual change between the
two acquisition times. However, it is the effects of the
forest fire which is interesting for us to map, and thus
the cloud-related changes are marked as false positives
in the ground truth data.
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Ablation study

We perform an ablation study to check the contribu-
tions of the various components of our approach. In
this study, we remove or replace a component and
assess the result when using the ablated procedure.
The objective is to check if all components contribute
positively to the change detection, or if a simpler
method performs equally well or better. This is an
important exercise in the field of machine learning
due to the complexity of the methods involved. Since
we wish to objectively measure the effects of the abla-
tion, we must use benchmark datasets where the
ground truth is available and we can evaluate the per-
formance of our method numerically. As a part of
this study, we also investigate the effect of the number
of labeled positive training samples, and how many
are needed for a stable result. We use three bench-
mark change detection datasets with heterogeneous
pre- and post-event images for which ground truth is
available. Though these datasets are not directly
related to the task of mapping forest mortality, this
study allows us to assert that our approach is valid for
problems beyond our AOIL We present how we per-
formed the study before discussing the result for one
of the benchmark datasets in detail, and then briefly
summarize the two others.

The labeled positive training data is created by ran-
domly drawing several positive samples from the
ground truth, and we vary the number used between
25 and 3000. For each positive sample set, we use it
as training data for the two-step classifier and calcu-
late the F1 score of the classification result. The F1
score is defined as the harmonic mean of precision
and recall and is a popular metric for evaluating the
performance of binary classifiers. Intuitively, the F1
score puts equal weight on the positive predictions
being precise (few false detections) and on finding all
positive samples. Due to its emphasis on both these
aspects, the F1 score gives a better characterization of
classifier performance than the traditional overall
accuracy measurement, particularly when the classes
are unbalanced. Expressed in terms of true (T) and
false (F) classification of positives (P) and negatives
(N), the F1 score is given as:

B TP
~ TP + 0.5(FP + FN)

F1 (10)
where we see that F1 € [0,1]. For each training set
size, |P|, we repeat the experiment 10 times with a
different random sample and calculate the mean F1
score. We keep all samples from the preceding set as

the number of labeled positives is increased to keep
the result consistent.

We compare our proposed approach to five differ-
ent alternatives, three of which are straightforward
ablations of our method; one where we drop the
second step and two with a reduced feature vector.
Compared to our proposed feature vector x in
Equation (5), the two feature-related ablations are: not
including the differences d, and d,, and not including
the original image pixel vectors u and v. The alterna-
tive difference vectors are then X/, gifferences =
[uT,vT]T and Xy/o originals = [d,f dVT ]T. We also include
the F1 score for the GMM with one EM update used
to find the reliable negatives (RNs) in the first step.
The difference between this result and our proposed
method is the contribution of the second step to the
final OCC result.

We also consider an alternative method in the
second step, which uses the same RNs as our pro-
posed approach. The method is called iterative sup-
port vector machine (SVM) (Bekker and Davis 2020)
and is a common choice for step two. It successively
trains SVM classifiers based on the labeled positive
and RN samples available and then classifies the
remaining unlabeled dataset. The samples which are
classified as negative are added to the RN set and
used to train a new SVM in the next iteration. After
some convergence criterion is met, the final SVM
trained is used to classify the entire dataset. Due to a
large number of RNs found in the first step, we can-
not use kernel SVM and must use the linear variant.
The SVM penalty parameter (see e.g., Bishop 2006) is
set by an automated search procedure, as recom-
mended by Hsu et al. (2003), to select the best value
based on the false negative rate (FNR). The iterative
SVM training stops when the FNR exceeds 5%, as was
first proposed by Li and Liu (2003). Both the MLP
ensemble and the iterative SVM use the same RNs
found in the first step by the GMM with one
EM update.

Finally, we also include results for the popular one-
class SVM (OCSVM) method (Khan and Madden
2014). While it is not an ablation of our approach,
OCSVM is an alternative to the first-step method we
use, and it is also a frequently used OCC method on
its own. Furthermore, in contrast to the iterative SVM
method, the training is only based on the relatively
few labeled positive samples, which enables the use of
kernel methods. We use the Scikit-learn implementa-
tion of OCSVM, OneClassSVM from sklearn.svm,
with default parameter values, which uses an RBF
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Figure 4. F1 scores for all the ablations and methods tested with the France dataset and for different positive training set sizes
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kernel with kernel size determined by the number of
features and sample variance.

We plot the F1 scores as a function of the number
of positive samples, |P|, for a heterogeneous change
detection dataset consisting of two optical RGB
images acquired by Pleiades and WorldView 2 in May
2012 and July 2013, respectively. The ground truth is
provided by Touati et al. (2020). The dataset shows
construction work occurring in Toulouse, France, and
the list of changes includes earthwork, concrete laying,
building construction, and more. The areas that have
been changed were a mixture of different landcover
types in the pre-event image, including bare soil,
urban, and vegetated. Figure 4 shows the average F1
score of the 10 runs plotted as a function of the
increasing number of labeled positive training samples
on a logarithmic x-axis. The error bars represent the
10th and 90th percentile F1 score. We see that
the iterative SVM second step performs well when the
number of labeled positive samples is small. However,
the algorithm actually decreases the F1 score from the
first step. The OCSVM has relatively consistent per-
formance as a function of |P|, but a considerably
lower F1 score than the GMM with one EM update
used in the first step. The OCSVM was originally
designed for anomaly detection, a setting where there
often is no unlabeled (or negative) data available. The
poor performance in this setting compared to our
GMM EM method illustrates the importance of utiliz-
ing the unlabeled data. The ablation of difference fea-
tures performs better than the ablation of original
features, and also better than with the full feature vec-
tor when |P| is small. Our proposed approach has the
best F1 score when |P| > 250.

Table 1. F1 score for 1000 positive samples.

W/o W/o W/o MLP
Dataset  originals  differences step2 OCSVM ISVM  ensemble
France 0.676 0.730 0.692 0.279 0.638 0.750
Texas 0.804 0.940 0.869 0.635  0.965 0.951
Italy 0.729 0.664 0.581 0.503 0.607 0.782

In Table 1 we list the F1 scores for the different
ablations when |P| =1000. In addition to the result
for the France dataset, which corresponds to the F1
scores for one x-value in Figure 4, we include the
result for two additional heterogeneous change detec-
tion datasets where ground truth information is avail-
able. One is the Texas dataset used for the example in
Figure 3. The other dataset concerns mapping the
extent of a lake overflow in Sardinia, Italy. Both
images are obtained by Landsat-5, with the pre-event
image obtained in September 1995 consisting of a sin-
gle channel: the near-infrared (NIR) spectral band.
The post-event image contains the RGB channels and
is from July 1996. The ground truth provided by
Touati et al. (2020).

Table 1 shows that both the originals and the dif-
ferences are important to include in the feature vec-
tors. The original images have the biggest
contribution for the France and Texas datasets, while
the difference vectors are the most important for Italy.
For all datasets, the best result is achieved with the
full feature vectors. The GMM with one EM update
performs much better than OCSVM. For the second
step, our MLP ensemble improves the F1 score signifi-
cantly compared to the first step for all datasets. The
ISVM results are more varied. It decreases the F1
score for the France dataset, as seen in Figure 4, but
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achieves a slightly higher F1 score than the MLP
ensemble for the Texas dataset.

We conclude that all components of our method
contribute to the F1 score. Relatively few positive
samples are needed for a stable classification result,
which bodes well for our forest mortality classifica-
tion. We also note that our method performs well for
these datasets despite that the changed areas in the
pre-event images of the benchmark datasets are more
varied than for forest mortality mapping. Several dif-
ferent landcover types are affected by the construc-
tion, fire, and flooding, whereas for our application
the changed areas are always live forest in the pre-
event image.

Creating the forest mortality map

There are few cloud-free optical images available from
our AOI, which limits the selection of imagery that
could be used to map the forest mortality that has
occurred. We found one Landsat-5 (LS-5) Thematic
Mapper (TM) image from 3 July 2005 reasonably
close to the start of the geometrid moth outbreak
(2006) which we use as the pre-event image.

For the post-event image, we use a fine-resolution
quad-polarization RADARSAT-2 (RS-2) scene from
July 25, 2017. We first performed radiometric calibra-
tion and terrain correction with the GETASSE30
digital elevation model (DEM) in the Sentinel
Application Platform (SNAP), keeping the data in sin-
gle-look complex (SLC) format with 10.0m x 10.0 m
spatial resolution. Then the polarimetric covariance
matrices were estimated using the guided non-local
means method (Agersborg et al. 2021). This method
preserves SLC resolution and was shown to give esti-
mates of the polarimetric features that better separate
between live and dead canopy than alternative meth-
ods (Agersborg et al. 2021). The features relevant to
canopy state classification were extracted from the
covariance matrix C. These are the intensities in the
HH, HV, and VV channels, Cy;, C,,, and Cs3, respect-
ively, and the cross-correlation between the complex
scattering coefficients for HH and VV, C;3=
|C13]e/“C1 (Agersborg et al. 2021).

The Landsat-5 TM bands were upsampled from the
original 30.0m (120.0 m for Band 6) spatial resolution
to give a pixel size of 10.0m x 10.0m using bilinear
interpolation resampling during the coregistration
process with the SAR data. In this process, both the
LS-5 and RS-2 images were geocoded to the UTM
35N projection and mapped on a common grid using
QGIS before cropping and extraction of overlapping

images. This resulted in 1399 x 1278 pixel images
which were the input for the analysis.

The training data was created by experts carefully
comparing high-resolution aerial photography from
before (2005) and after the outbreak (2015), drawing
polygons covering areas with forest mortality. We
choose this approach for three reasons. Firstly, it was
easier than selecting a greater number of smaller areas
from all over the scene, especially considering that the
aerial photographs only covered parts of it. The areas
need to be relatively large as the original 30.0 m reso-
lution of the LS-5 data sets a lower limit for the poly-
gon size. Secondly, by extracting from within larger
homogeneous areas we minimize the effect of any
misalignment between the ground reference data and
the satellite imagery, which could cause the training
data to contain pixels from the negative class. Thirdly,
the manual creation of training data is tedious work,
and we want to generate just enough training data for
our OCC method to map the forest mortality for the
entire scene. 15 polygons of roughly rectangular
shapes with various sizes were created. Four of these
intersect with transects studied in field work in 2017
(Agersborg et al. 2021). In total, the 15 polygons con-
tained 1536 pixels, which given the excerpt size of
1399 x 1278 constitutes 0.086% of all pixels.

Figure 5 shows the satellite images and the corre-
sponding CAE translations. The red, green, and blue
bands (Band 3, 2, and 1) of the Landsat-5TM image
are shown in the corresponding RGB channels. For
the RADARSAT-2 scene, we use the intensities for the
HH, HV, and VV polarizations as the red, green, and
blue channels, respectively. The translations are shown
below the corresponding original using the RGB chan-
nels as the other domain. Noteworthy features in the
image include lake Polmak, in the center of the lower
half of the image, and the Tana river, which runs
approximately from east to west in the upper half of
the image. There is also a dirt road in the leftmost
part of the image going from the Tana river and south
toward the western bank of lake Polmak, which is
clearly visible in the optical imagery, but very hard to
discern in the SAR data.

The CAE translations in Figure 5 are reasonably
similar to the other image in the translated domain,
but can easily be discerned from the original data.
This is expected as it is not possible to exactly recreate
the spectral information found in optical imagery
from SAR data, and likewise, the polarimetric infor-
mation about scattering characteristics cannot be
replicated from the Landsat TM reflectance measure-
ments. The translation from the optical to the SAR
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Figure 5. Dataset pair and translation. (a) Landsat-5 RGB image. (b) RADARSAT-2 HH, HV, and VV intensities. (c) Translation of LS-5
image with same channels as (b). (d) Translation of RS-2 image with same channels as (a).

domain seems to match the original RS-2 image quite
well and appears visually to be the better of the two
translations, whereas the translation in 5(d) appears
somewhat blurry with muted colors. There are some
obvious translation artifacts, for instance, the bright
pixels in lake Polmak in the translated RS-2 result.

Unsupervised change detection with CAE

To illustrate the changes detected by a non-targeted
approach based on the translations in Figure 5, we
show the CAE result. Change detection with CAE is
based on thresholding the magnitude of the difference
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vectors between the translations and the originals
(Luppino et al. 2022). Figure 6 shows the confusion
map for the CAE change detection based on the dif-
ference vectors obtained from the images shown in
Figure 5.

Figure 6 also shows the 15 ground reference poly-
gons with forest mortality created as training data for
the OCC. Note that some of the polygons are too
small to be discerned in Figure 6. Parts of the forest
mortality polygons where CAE predicts no change are
shown in red, while correct change predictions for
these areas are white in Figure 6. Only 14% of the
pixels with forest mortality are predicted as changed.
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Figure 6. CAE confusion map, with predicted changes in green, predicted unchanged in black, correctly classified forest mortality
from our limited ground reference dataset marked white, and red showing missed detections from the same dataset.

We notice that parts of the predicted changes resem-
ble outlines of the water bodies in Figure 5, which
indicates that CAE detects changes in water levels.
There are also changes in the agricultural and settled
land, primarily along the Tana river. The translation
artifacts from lake Polmak in Figure 5d are also
marked as changes. Compared to these phenomena,
which result in high-magnitude difference vectors, the
death of the canopy layer of the fragmented forest-
tundra ecotone is a subtle change at this resolution
level. To detect it we need to train a classifier to look
for it specifically.

Target change detection with the
proposed method

Figure 7 shows the forest mortality map provided by
our targeted change detection method. The feature
vectors in Equation (5) are obtained from the images
and translations shown in Figure 5. The two-step
OCC is then trained on 1536 feature vectors from the
15 polygons with known forest mortality. The result
indicates that large areas of forest have died following
the outbreak. Particularly the western side of lake
Polmak, on the Finnish side of the border, has been
heavily afflicted. This is in line with the observations
by Biuw et al. (2014) that the regeneration of moun-
tain birch stands appeared to have been severely ham-
pered by the year-round grazing on the Finnish side

of the border. Significant forest mortality is also
detected north of the river. We note the fragmented
nature of the forest mortality map, which is natural
given that the sparse nature of the forest-tundra eco-
tone. Contrary to the CAE result, there are no detec-
tions along the agricultural and settled land around
the Tana river.

We do not have another map of the effects of the
outbreak to evaluate, so we cannot readily quantify
the accuracy of the full forest mortality map. By use
of NDVI measurements from before and after the
outbreak, in the same period as the input imagery,
and correlating with the result in Figure 7, we find a
noticeable NDVI decrease in the areas of classified
forest mortality. For these areas, shown as white in
Figure 7, the NDVI decreased by 0.145 on average. In
the other areas, the difference was virtually zero.

We also evaluate our result on a systematic grid of
30m x 30m cells aligned with transects examined
during field work in 2017 (Agersborg et al. 2021). The
cells were classified by an expert into four classes
based on a study of aerial photographs. Three of the
classes were related to forest mortality, as they
describe the canopy state as “live” (33 cells), “dead”
(44 cells), and “damaged” (30 cells) (Agersborg et al.
2021). All cells with a canopy state class were from
the forest with a live canopy in the 2005 aerial image,
with the canopy state of the cell in the 2015 image
determining if it was classified as live, damaged,
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Figure 7. Predicted forest mortality areas are shown in white using our approach.

or dead. The last class, denoted “other” (66 cells), is
vegetation without canopy cover. For each grid cell,
we find the pixels in the forest mortality map in
Figure 7 that intersects the geographical coordinates
defining the bounding box of that cell. Since the mor-
tality map uses a 10 m x 10 m pixel spacing, each grid
cell should correspond to 3 x3=9 pixels, though a
few will be larger, as we choose to include partially
covered pixels. Note that the grid is not aligned
north-south and has not been co-registered to the sat-
ellite imagery. Hence, there may be some inaccuracies
due to misalignment, especially since the size of the
cells is the same as the resolution of the LS-5 pre-
event image.

For the classes “live” and “other,” we observe a low
false alarm rate with "fﬁhve grid = 98.7% and
TNother grid = 96.9% of the pixels correctly classified
as no forest mortality. As part of the work to create
the polygons with forest mortality, 15 polygons of live
forest were also extracted. These were similar in shape
(rectangular), size and grouping, and located relatively
close to areas with forest mortality. In total, the 15
polygons with live forest consist of 2070 pixels. For
the live polygons, our approach performs well with
TN}ive poly = 97.2%, which is consistent with the
result for the “live” class for the grid cells. Note that
the both the “live” and the “other” classes are subsets
of the negative superclass and are not necessarily
accurate estimates for the true negative rate for the
complete negative class. Comparing the forest

mortality map in Figure 7 with the optical image in
Figure 5a and the unsupervised CAE change detection
results in Figure 6, indicates that we avoid classifying
changes in agricultural and settled areas as forest mor-
tality, which is important for the true negative rate.

For the “dead” grid cells we observe a true positive
rate of ﬁgrid = 66.4%. Misalignment could be a con-
tributing factor to the missed detections as 37 of 44
(84.1%) of the cells do contain pixels classified as for-
est mortality. The number of missed detections along
with the low false alarm rate could also be an indica-
tion that our method is conservative in predicting for-
est mortality, though this was not seen for the
training data where the true positive rate was 96.8%.
While accuracy scores for the training data always are
of questionable validity, this indicates that our method
does not have to “sacrifice” much accuracy on the
positive training set to increase accuracy on the RNs
during training.

It is not obvious if the grid cells with damaged can-
opy state should be considered as the positive or
negative class for evaluation. This state contains a
mixture of dead stems and trees where parts of the
canopy have re-sprouted. 28.1% of the pixels in the
grid cells of this category were classified as forest
mortality. Arguments could be made for considering
the damaged state as a part of the positive class since
there is a clear decrease in canopy cover. However,
for operational monitoring, it could be more import-
ant to focus on areas where the forest has died
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Figure 8. Forest mortality map as an overlay to aerial photographs. (a) Before the outbreak (2005). (b) After the outbreak (2015).

completely, as it can be assumed that most of the for-
est will suffer canopy damage in a major outbreak,
and our targeted change detection approach should be
able to map only the former. Nonetheless, that only
28.1% of the pixels in the damaged class were labeled
as forest mortality may be another indication that our
prediction of forest mortality is on the conserva-
tive side.

To evaluate how well the forest mortality map cor-
responds to the high-resolution aerial photographs, we
show the map as an overlay to the images from 2005
and 2015. The mortality map is shown as a bright
see-through layer in Figure 8. The image from 2005 is
shown at the top of Figure 8a with 2015 in Figure 8b.
The latter image has a higher resolution of
0.25m x 0.25m compared to 0.50m x 0.50m for the
2005 image, and appears to be more easily interpret-
able. The “pixelated” appearance of the mortality map
is due to the 10m x 10m pixel spacing. Most of the
areas with forest mortality have been accurately
detected, although the mapped area in the left half of
Figure 8 could have included a larger area. There also
appear to be some false alarms, with the three single
10m x 10m areas of the mortality map in the lower
right half of the images in Figure 8 appear to have a
live canopy in the 2015 image. Apart from that, our

method appears to avoid misclassifying other land-
cover types as forest mortality.

We also note the challenge of accurately mapping
forest mortality due to the sparse nature of the forest-
tundra ecotone and the entangled pattern of live and
dead trees. Since the resulting map appears quite
good, setting the pixel spacing of the mortality map to
10m x 10 m to match the RS-2 resolution, seems war-
ranted. However, we should keep in mind that the
resolution of LS-5 used as the pre-event image is
30m x 30m, which will affect the accuracy of the
mortality map. An example of the mortality map fail-
ing to delineate thin separations between classes is
shown in Figure 9. Here there is a separation between
areas where the trees have died that are included in
the mortality map. Similarly to the result in Figure 8,
the map shown in Figure 9 misses parts of the forest
that has died which borders on the areas correctly
mapped as dead. It also appears that there is an area
that is falsely classified as forest mortality in the bot-
tom right part of Figure 9.

The results in Figures 8 and 9, and the numerical
evaluations on the grid cells and live polygons, indi-
cate that the mortality map is conservative. One way
of easily increasing the number of pixels predicted as
forest mortality is to adjust the ensemble voting done
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Figure 9. Forest mortality map as an overlay to aerial photographs. (a) Before the outbreak (2005). (b) After the outbreak (2015).

in the second step of the OCC method, where five
MLPs classify the input data. Reducing the number of
MLPs required to predict the positive class would
therefore increase the prediction of forest mortality.
This is equivalent to considering the output of the
ensemble as the average number of predictors which
predict the positive class as a number between 0 and
1 that is thresholded to give the final binary output
map. Then, reducing the votes necessary is the same
as reducing this threshold t. By reducing the number
of votes required from three (majority) to two we
obtain a higher true positive rate of TPgiq = 76.6%.
In terms of threshold, this corresponds to lowering
the threshold from t=0.5 to t =0.3. However, there is
a decrea/ss in the true negative rate, with "fﬁlive poly =
94.6%, TNijve grid = 97.5%, and TNher grid = 94.6%.
There was also an increase in the number of pixels
from the “damaged” state classified as forest mortality
to 33.7%. When evaluating this result on the high-
resolution aerial photographs, we see that more forest
mortality is correctly detected, but at the cost of a
higher number of false alarms. An example of this is
shown in Figure 10, where the result of our method
with t=0.5 to t=0.3 are both overlain the photo-
graphs from before and after the outbreak. The
brightest overlay areas are predicted as forest

mortality with both thresholds, while the more see-
through overlay corresponds to the prediction from
t=0.3 alone. For the area in the upper right corner,
the +=0.3 appears better, while the difference in pre-
diction at the bottom right of Figure 10 appears to be
mostly false alarms.

Conclusions and future work

In this work, we have presented a method for detecting
forest mortality from a pair of medium-resolution het-
erogeneous remote sensing images to map the effect of
a geometrid moth outbreak. This is a challenging prob-
lem, and we were unable to achieve it using the
unsupervised CAE results alone since the phenomenon
of interest has a weak signature compared to other
changes. By utilizing the CAE for change-aware image-
to-image translation, we obtained multitemporal differ-
ence vectors despite the heterogeneity of the input
images. When combined with the original image fea-
tures, a semi-supervised one-class classifier can learn to
map the changes of interest from a very limited set of
training data consisting of <0.1% of the image pixels
of these extended feature vectors. The ablation study
shows that all the different components of our targeted
change detection approach contribute to the final
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Figure 10. Two forest mortality maps corresponding to different thresholds as overlays to images before and after the outbreak.
The brightest overlay shows areas classified as forest mortality with both thresholds, while the more transparent overlay are classi-
fications only made with t=0.3. (a) Image from 2005. (b) Image from 2015.

output, and we achieve good results for benchmark
datasets, despite not being intended as a general change
detection method.

The evaluation for our AOI indicates that we achieve
a low false alarm rate, but that the predicted forest mor-
tality map may be a bit conservative. It is possible to
increase the true positive rate at the expense of more
false alarms by adjusting a threshold in the ensemble
voting done in the second step of the OCC method.
However, we prefer a low false alarm rate to a higher
number of detections in the tradeoff, for instance in
case the map should be used to determine new areas for
field work to study the effect of the outbreak. Future
work should seek to assess performance on datasets
with complete ground truth data available. This should
preferably be done on datasets suitable for targeted
change detection, where changes unrelated to the phe-
nomenon of interest are included in the negative class.

Our approach expands the potential for detecting the
extent of changes that we know have occurred at one
or more locations by using whatever satellite imagery
available from before and after the event as long as it
can be co-registered. This allows us to map a phenom-
enon of interest over large areas. It does not require a

dense time series of data, in the same manner as
NDVI-based approaches, which can be problematic for
our AQI given the high cloud cover percentage. The
modular nature of our approach means that compo-
nents can be replaced if the particular dataset warrants
it. This could also be investigated in future work, and
our ablation study hints at some interesting directions.
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Appendix

Code-aligned autoencoders

As the name implies, the CAE algorithm uses an autoen-
coder architecture that learns a pair of convolutional neural
networks, the encoder, and the decoder, for each of the
images. The domain-specific encoders are trained to encode
their respective input images into a code representation,
while the decoders are trained to reconstruct the input
images with high fidelity from these codes. That is, if we
denote the encoder associated with the pre- and post-event
images as E, and E,, respectively, these can be used to
obtain encoded representations of U and V as E,(U) = Z,
and E,(V) = Z,. The corresponding decoders, D, and D,,
then reconstruct the encoded input as:

Dy(Zy) = Du(E,(U)) = U ~ U (11)
D,(Z,) = D,(E,(V)) =V =~V (12)

where the reconstructed original pre- and post-event
images, U and V, should be approximately equal to the
corresponding original images. This objective is formulated
as a loss function, the reconstruction loss, which is an
inherent part of all autoencoders. For CAE the reconstruc-
tion loss is one of four terms in the total loss function used
to train the full network.

In general, the code layer representations of two separ-
ately trained autoencoders are not similar. By aligning the
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Figure A1. lllustration of code-aligned autoencoder network showing the translation of patches u from U and v from V.

code spaces one can obtain a translation between domains
by using the decoder from one domain on the coded repre-
sentation of the other domain. That is

Dy(Z,) = Dy(E,(V)) = U (13)
Dy(Z,) = Dy(E,(U)) =V (14)

where the encoders and decoders are the same as for
Equations (11) and (12), and U and V are the pre- and
post-event images translated to the other domain.
Figure Al, adapted from Luppino et al. (2022), illustrates
the network, showing the result of encoding and decoding a
pair of coregistered image patches from the Texas dataset.

CAE enforces alignment of the code layers of the two
autoencoders by adding a loss term that ensures their align-
ment in both distribution and location of land covers
(Luppino et al. 2022). This code correlation loss is a novel
feature of CAE and enforces that Z, should be similar to Z,
(Luppino et al. 2022). The similarity is based on a cross-
modal distance between training patches in the input
domains. This allows pixels that have changed to be distin-
guished from those that have not, and the loss term seeks
to preserve these relationships in the code layer. Contrary
to the other loss functions, which are used to train the both
encoders and decoders, the code correlation loss is only
used for the encoders.

A cycle-consistency loss enforces that data translated
from one domain to the other, and then back again, should
be identical to the input. In a sense, it is similar to the
reconstruction loss, except that the cycle-consistency loss
involves all encoders and decoders of the network.

The final loss term requires that the translations U and
V in Equations (13) and (14) should be similar to the data
in the original domain U and V, except for pixels where
changes have occurred. If there is a significant chance that
a change has occurred for a particular pixel, its contribution
to this loss term is strongly suppressed, whereas pixels of U
(V) from likely unchanged areas should be close to U (V).
To distinguish between changed and unchanged areas, this
loss term includes a weighting factor updated iteratively
during training. This is based on preliminary change detec-
tion results obtained with the image translations at the
current stage of training. Note that while the final change-

detection result of CAE is a binary change map, the weight-
ing factor is a continuous variable between zero and one
where lower values indicate where there is a high probabil-
ity of change.

We have made some adaptations to the CAE related to
network training, with the aim of improving the visual
quality and detail preservation of the translations, as
briefly summarized:

o The patch size used for training is reduced from
100 x 100 pixels to 20 x 20, so the code correlation loss
is calculated for all pixel pairs in the input patches. In
the original implementation, the cross-modal distance
between training patches was based on a 20 x 20 pixels
excerpt from the center of the full 100 x 100 training
patch due to memory constraints (Luppino 2020). By
reducing its size, the full training patch is used for the
code correlation loss to better align the two domains.

e The number of patches per training batch is increased
from 10 to 20 and the number of batches per epoch
from 10 to 600 to compensate for the lower number of
pixels seen during training due to the reduced patch
size. A 100 x 100 patch contains 25 times as many pixels
as a 20x 20 one, and it is, therefore, necessary to
increase the batch size and the number of epochs com-
pared to Luppino (2020).

e The preliminary evaluation of the difference image is
changed from using the reconstructed versions (U and
V) to using the originals in the weighted translation loss
to better preserve details in the translations.

In our experience, these modifications improve the visual
quality of the translations, and through more meaningful
difference images also the accuracy of the final
classification.

One-class classification

OCC is framed as a binary classification problem, where the
positive class of interest has label y=1 and the negative
class, y=0, is usually defined as the complement of the
positive class (Li et al. 2020). The full dataset X is typically
divided into PP, the set of labeled positive samples, and an
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unlabeled set U (also called mixed set) that consists of data
from both the positive and the negative class.

Text classification and document retrieval are applica-
tions where OCC has seen much use and several OCC
methods that have been developed are customized for the
text domain. In the taxonomy of OCC techniques proposed
by Khan and Madden (2014), the applications were divided
into two categories: “text/document classification” and
“other applications.” The terms single-class classification
(SCC) (Yu 2005), partially supervised classification (Liu
et al. 2002), and others (see Khan and Madden 2014 for a
brief summary) have been used for one-class classification
problems. OCC is also related to positive and unlabeled
learning (PUL), and the distinction between the two is
somewhat blurry. Just as in the OCC setting, PUL assumes
that a labeled positive training set and an unlabeled set that
contains mixed samples from both the positive and negative
classes are available. Many PUL methods are based on esti-
mating dataset attributes, such as the labeling frequency and
class prior probability of the positive class, and thus need to
make assumptions about how the labeled positive samples
were generated (Bekker and Davis 2020). Some methods
assume that the labeled positive samples were selected com-
pletely at random (SCAR). PUL also considers two different
settings: the single-training-set scenario, where the positive
and unlabeled samples are from the same dataset, and the
case-control scenario, where they are from different data-
sets. We choose to draw the distinction between OCC and
PUL by saying that the latter makes assumptions about how
the positive samples were labeled, or that it is designed to
work in the case-control scenario or both. Further, unlike
PUL, OCC also opens up for the possibility that some
labeled negative data may be available, although not well
enough sampled or statistically representative enough to
build a traditional binary classifier. Note that the PUL acro-
nym has also been used by Elkan and Noto (2008) about a
learning algorithm using the SCAR assumption and a spe-
cially held-out validation set to estimate the probability of a
positive sample being labeled.

The SCAR assumption does not hold for our application
with the available ground reference data from our AOI The
weaker “selected at random” condition, which assumes that
labeled examples “are a biased sample from the positive dis-
tribution, where the bias completely depends on the attrib-
utes” (Bekker and Davis 2020), also does not hold. Our
ground reference data is selected systematically from a lim-
ited area, and the sample selection bias is related to the
attributes of the feature vectors due to some spatial correl-
ation in the type of background vegetation, soil conditions,
tree densities, mortality rates, etc. However, this bias is not
completely dependent on the attributes of the feature vec-
tors. Therefore, according to our definition above, we use
the term OCC and not PUL in this work, although we
acknowledge that the distinction between the terms is not
well-established.

There are many different OCC methods to choose from,
and the choice should naturally depend on the application.
The OCC taxonomy by Khan and Madden (2014) divides
the methodology into “one-class support vector machine”
(OCSVM) and “non-OCSVM.” However, this taxonomy
(Khan and Madden 2014) is focused on the text domain
and only mentions in passing other application domains

without summarizing which OCC methods they use. A
more useful taxonomy, at least when it comes to guiding
our choice of methods, is provided in the review article by
Bekker and Davis (2020), which lists three different catego-
ries of PUL methods: two-step techniques, biased learning,
and class prior incorporation. The latter two invoke the
SCAR assumption and are thus not applicable in our case.
We, therefore, end up using the two-step technique, which
was previously reviewed.

OCC has been used to extract a particular land cover
type from remote sensing images. It has also been applied
for targeted change detection. Camps-Valls et al. (2008)
tested a one-class kernel support vector domain descriptor
(SVDD) method for heterogeneous change detection of
transitions between urban and non-urban landcover on an
optical-SAR image pair. SVDD is similar to one-class SVM
(OCSVM) but uses a hypersphere instead of a hyperplane
for separation (Munoz-Mari et al. 2010). It can be shown
that with normalized data and isotropic kernels, the two
methods give the same results (Munoz-Mari et al. 2010).
The SVDD compared favorably to a simple single hidden
layer multilayer perceptron (MLP) and other SVM classi-
fiers trained on both changed and unchanged pixels
(Camps-Valls et al. 2008).

Li and Xu (2010) used OCSVM with a radial basis func-
tion (RBF) kernel to detect changes in two bitemporal pairs
with features derived from Landsat-5 Thematic Mapper
(TM) images. In the more complicated experiment of urban
expansion, OCSVM was used separately for each of the
different change types (water-urban, soil-urban, vegetation-
urban) (Li and Xu 2010), thus requiring three separate clas-
sification procedures and three different labeled training
datasets. OCSVM compared favorably to post-classification
comparison (PCC) in tests performed on balanced samples
from both datasets.

Two modified SVM methods were tested on four remote
sensing problems by Munoz-Mari et al. (2010), one of
which was a homogeneous change detection problem. The
two methods considered were variations of OCSVM and
biased SVM (Liu et al. 2003) adjusted to better utilize the
unlabeled data. OCSVM was modified to include unlabeled
data to adjust the SVM kernel, while the modification of
biased SVM was an adjustment to the cost function
(Munoz-Mari et al. 2010). However, only a small subset of
the unlabeled samples was used due to the computational
cost of inverting the kernel matrix that increases exponen-
tially with the number of samples (Munoz-Mari et al. 2010).

An OCC method based on a sparse representation of the
features was tested for bitemporal change detection of a
flood in a homogeneous multispectral dataset and compared
with an RBF-kernel OCSVM by Ran et al. (2016). Ran et al.
(2018) reported results using kernelized versions of the
sparse representation classifiers.

Ye et al. (2016) presented an OCC-based method for tar-
geted change detection combining SVDD with results from
change vector analysis (CVA) and PCC. However, due to
difficulties in finding tight boundaries for the target cluster
in the feature space, the changed class was subdivided into
several subclasses depending on the spectral signature, each
dependent on a balanced training dataset (Ye et al. 2016).
The approach was tested on homogeneous image pairs, and



good results were reported on selected balanced training
and test datasets.

Jian et al. (2022) used generative adversarial networks
(GANs) to perform OCC change detection. It was based on
“spatial-spectral” features extracted from a stack of three
homogeneous RGB remote sensing images, where the
change occurred in the latest image of the stack. Contrary
to the other methods discussed, the training dataset was
created from unchanged data from the first two images of
the stack. Two GANs generate samples from a “change
data” distribution, and a discriminator was trained to separ-
ate unchanged from generated change samples (Jian et al.
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2022). This discriminator was then finally used to detect
changes in the spatial-spectral features generated from the
second and third images in the stack where the change
occurred. The method performed comparably to deep learn-
ing-based unsupervised change detection methods and other
OCC methods when these, contrary to the normal setting of
labeled positive data, were trained with data from the
unchanged negative class. It should be noted that while the
concept of using only unchanged data for OCC-based
change detection is intriguing, it requires additional
unchanged images and is unable to perform targeted change
detection.



	Abstract
	Introduction
	Theory and related work
	Remote sensing of insect-induced canopy defoliation
	Heterogeneous change detection
	Image-to-image translation
	One-class classification

	Methodology
	Feature selection
	Building the OCC
	Step 1
	Step 2


	Results
	Illustrating targeted change detection
	Ablation study
	Creating the forest mortality map
	Unsupervised change detection with CAE
	Target change detection with the proposed method

	Conclusions and future work
	Disclosure statement
	Funding
	Orcid
	References
	mkchapUJRS_S0007_sec



