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Abstract
Vast amounts of data are being collected at hospitals across the world on a
continuous basis, and exploiting this data will play a vital role in ushering a
new generation of healthcare. A promising direction for exploiting the afore-
mentioned data is through data-driven methods, which are methods that learn
to perform tasks based on patterns in collected data. Great advances have been
made in data-driven healthcare over the last couple of years, with algorithms
reaching clinician-level performance on some tasks, or solving challenges that
seemed impossible for automatic systems only a few years ago.

A key driving force behind these advances in contemporary data-driven health-
care is deep learning. The success of deep learning is often attributed to its
ability to automatically extract relevant features from data without the need
for hand-crafted features. However, this ability also has limitations, since the
complex feature extraction process introduces some fundamental challenges
for deep learning-based systems in data-driven healthcare. Deep learning
algorithms lack explainability and do not provide a notion of uncertainty. If
these challenges are not tackled, data-driven healthcare systems based on deep
learning algorithms will lack trustworthiness and reliability. Moreover, deep
learning-based systems struggle when tasked with learning from unlabeled
data. As most healthcare data is unlabeled, this is a fundamental limitation that
needs to be addressed to exploit healthcare data in an efficientmanner. Towards
tackling these challenges, we present four lines of work where we develop new
explainability, uncertainty, and unsupervised learning methodology.

In the intersection between explainability and uncertainty, we propose two
newmethods for capturing uncertainty in explanations. We develop the first ap-
proach to capture uncertainty in explainability, which is accomplished through
a Bayesian method. The usability of the new methodology is illustrated in
the context of semantic segmentation of colorectal polyps. We also develop
a new ensemble approach for modeling uncertainty in the explanations for
clinical time series, which is motivated by common characteristics associated
with clinical time series. Further, we show how the uncertainty estimates can
be used to create uncertainty-filtered explanations, which are demonstrated
to have higher quality and less ambiguity.
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In the intersection between explainability and unsupervised learning, we pro-
pose the first framework for explaining representations, as opposed to predic-
tions. Using the new framework, we show how it allows for new insights into
self-supervised learning, multi-view clustering, and traditional feature extrac-
tion techniques. Finally, we present a new self-supervised approach to learning
from unlabeled data that exploits domain knowledge to extract clinically rel-
evant features. The new approach is also coupled with the representation
learning explainability framework to provide a novel analysis of explainability
in representation learning.

While the emphasis in this thesis has been on data-driven healthcare,we believe
that the advances introduced in this thesis can play an important role in other
domains for designing more reliable and trustworthy deep learning systems
that can effectively exploit data with little label information.
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1
Introduction
Vast amounts of data are being collected at hospitals across the world on a
continuous basis, and using this data will play a vital role in ushering a new
generation of healthcare [1, 2]. A promising set of algorithms for filling this
role are data-driven algorithms, which learn to perform a task by recognizing
patterns in data. These algorithms improve their performance when given more
data [3, 4], and can therefore keep improving with more examples.

Recent research has shown how data-driven algorithms can significantly im-
prove automatic support systems for healthcare applications. Esteva et al. [5]
demonstrated how a system for automatic classification of skin lesions could
achieve performance comparable with domain-experts. Such a system could
have a major impact as a low-cost healthcare solution on a global scale if
implemented in mobile devices. Campanella et al. [6] developed a system
for computational pathology that could provide comparable performance with
domain-experts, and in some cases even surpass their performance. One promis-
ing use case for this system is to exclude slides in whole slide images and reduce
the workload of pathologist, which are domain experts in high demand [7].
Kuttner et al. [8] proposed a framework for automatically extracting an arterial
input function directly from positron emission tomography (pet) images. This
could have a major impact in dynamic pet since it would alleviate the need for
blood sampling in diagnosis, a process that is both time-consuming and painful
for the patient. These are just some examples of how data-driven algorithms
could aid in providing better and more efficient treatment.

1
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A major driving force behind these advances in contemporary data-driven
healthcare is deep learning [9], particularly in critical healthcare domains such
as computer vision [10, 11] and natural language processing (nlp) [12, 13].
The success of deep learning is often attributed to its ability to automatically
extract relevant features from data without the need for hand-crafted features
[14]. However, this ability is a double-edged sword, since the complex auto-
matic feature extraction process introduces some fundamental challenges for
deep learning-based systems in data-driven healthcare. Deep learning algo-
rithms lack explainability [15], do not provide a notion of uncertainty [16],
and struggle when tasked with learning from unlabeled data [17]. If these chal-
lenges are not tackled, data-driven healthcare systems based on deep learning
could lack trustworthiness, and might not be able to exploit healthcare data
efficiently.

The goal of this thesis is to tackle these challenges by developing new method-
ology in the field of deep learning. These challenges are presented in the
following section, and addressed in the included papers of this thesis.

1.1 Key challenges

This thesis will focus on three key challenges for data-driven healthcare: (1)
the lack of explainability, (2) how to model uncertainty, and (3) learning
from unlabeled data. These challenges and related work on addressing these
challenges in the context of data-driven healthcare will be discussed in more
detail in Chapter 6.

Lack of explainability

A fundamental problem in deep learning is the lack of explainability. This lack
has been highlighted as one of the major factors that impedes data-driven
healthcare based on deep learning from being implemented in clinical practice
[18]. Explainability refers to the ability to explain why a particular prediction
was made, typically by indicating what input features are most important to the
prediction. Without this ability, healthcare providers could be reluctant to fully
trust the system, since it is well known that deep learning-based systems can
exploit artifacts and confounding factors to make their decision [19, 20].

Recently, major advances have been made within the within the field of ex-
plainable artificial intelligence (xai) [21, 22], which aims at tackling the lack
of explainability. However, there are still major issues in the field of xai that
have been left unattended. First, explanations are often presented without any
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notion of uncertainty. This can give an unwarranted trust in the reliability of an
explanation, which could deteriorate trust instead of enforcing it. For instance,
uncertainty quantification of importance maps plays an important role in field
of computational neuroimaging [23], but such considerations are not present
in current xai methodology. While some initial studies have looked into un-
certainty in explainability [24, 25], very little work have been done in this
direction. Second, xaimethods have mainly been focused on explaining scores
in the form of predictions or decisions. But this excludes many important deep
learning models that do not produce such a score. For instance, representation
learning through self-supervision has gained a lot of recent attention [26].
In such frameworks, the output is typically a vector representation that can
be used for other tasks. Some work have made strides towards unsupervised
explainability [27], but explaining representations is something that current
xai methods are not capable of.

How to model uncertainty

When working with real-world medical problems, uncertainty is unavoidable.
Knowing the confidence of a prediction is crucial information when faced with
life-or-death decisions. In a recent survey of clinicians, uncertainty modeling
was highlighted as a key component for any system intended to be used in
clinical practice [16]. Nevertheless, deep learning algorithms does not have the
capability to provide uncertainty estimates with its prediction. This significantly
limits the potential of deep learning in data-driven healthcare.

Development of methods for capturing uncertainty in deep learning systems
have progressed significantly over the last couple of years [28, 29]. Neverthe-
less, this progression has mainly been focused on modeling uncertainty in
predictions. Capturing uncertainty in e.g. explanations has received very little
focus, which limits the impact of uncertainty analysis in deep learning.

Learning from unlabeled data

The success of deep learning has been mostly confined to scenarios where
data have been accompanied by labels provided by human annotators [17].
However, medical data is typically obtained without label-information, which
is why learning from unlabeled data has been highlighted as one of the main
obstacles in data-driven healthcare [17]. Labeling medical data can be both
costly and time consuming, as it requires efforts from numerous domain experts.
Moreover, for challenging and noisy data, domain experts might disagree on
the correct annotation, which makes labeling data even more problematic. If
data-driven healthcare systems are not able to learn from unlabeled data, large
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amounts of collected information is rendered irrelevant. Development of deep
learning methodology that can learn without labels is therefore of paramount
importance if data-driven healthcare is going to fulfil its potential.

The field of unsupervised learning is a fundamental research area in ma-
chine learning, which is focused on learning without supervision. Recently,
self-supervised representation learning has emerged as a major research direc-
tion within unsupervised learning [26], with impressive results on extraction
of information without human supervision [30, 31]. However, contemporary
self-supervised frameworks for images are developed with natural images in
mind, and not customized for the characteristics found in medical images.
This hinders the application of self-supervised approaches within data-driven
healthcare.

1.2 Key objectives

The key objectives in this thesis is to address the aforementioned key challenges.
In particular, our focus will be in the intersection of these challenges. That is,
modeling uncertainty in explanations, and how to explain systems that do not
rely on labels to learn. These objectives can be summarized as:

1 Develop methodology for modeling uncertainty in explanations.

2 Develop methodology for explaining systems that learn without labels.

3 Develop methodology for learning from unlabeled data.

As a secondary objective, we emphasize on evaluating the proposed methodol-
ogy on healthcare data.

1.3 Key solutions

We propose two new approaches to undertake the problem of modeling un-
certainty in explanations. First, we propose a Bayesian approach coupled with
a propagation-based explainability method to capture uncertainty in expla-
nations (Paper I). The proposed method is demonstrated in the context of
semantic segmentation of colorectal polyps. Second, we introduce an ensemble
approach that captures uncertainty in explanations by measuring the agree-
ment in explanations across ensemble members (Paper II). This approach is
applied in the context of classification of clinical time series.
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To address the challenges with explaining models that learn from unlabeled
data, we introduce the first framework for explaining representations of data
(Paper III), as opposed to predictions. Moreover, Paper III also connects with the
problem of modeling uncertainty in explanations, as we show how uncertainty
can be captured in the proposed framework.

In order to tackle the issue of learning from unlabeled data we propose a
new self-supervised approach that incorporates clinical knowledge into the
training process (Paper IV), and enables deep content-based image retrieval
(cbir) systems to focus on particular organs in the feature extraction process.
This work also connects with the challenge of explaining systems that learn
from unlabeled data, since the proposed self-supervised approach cannot be
explained without the framework proposed in Paper III.

1.4 Brief summary of included papers

This section presents a list of papers included in this thesis, along with a brief
summary of each paper. Additionally, a list of other articles published during
this PhD project is included in the next section. Figure 1.1 gives an overview of
which challenges and parts of the machine learning field that the included and
others papers are associatedwith. Figure 1.2 displays a hierarchy of the included
papers and how they contribute to different parts of different fields.

I Kristoffer K. Wickstrøm,Michael C. Kampffmeyer, Robert Jenssen. "Uncer-
tainty and interpretability in convolutional neural networks for semantic
segmentation of colorectal polyps". In Medical Image Analysis, 2020.

II Kristoffer K. Wickstrøm, Karl Øyvind Mikalsen, Michael C. Kampffmeyer,
Arthur Revhaug, Robert Jenssen. "Uncertainty-aware deep ensembles
for reliable and explainable predictions of clinical time series". In IEEE
Journal of Biomedical and Health Informatics, 2020.

III KristofferK. Wickstrøm,Daniel J. Trosten,Sigurd Løkse,Ahcène Boubekki,
Karl Øyvind Mikalsen, Michael C. Kampffmeyer, Robert Jenssen. "RELAX:
representation learning explainability". Submitted to International Jour-
nal of Computer Vision.

IV Kristoffer K. Wickstrøm, Eirik A. Østmo, Keyur Radiya, Karl Øyvind
Mikalsen, Michael C. Kampffmeyer, Robert Jenssen. "A clinically mo-
tivated self-supervised approach for content-based image retrieval of CT
liver images". Submitted to Computerized Medical Imaging and Graphics.
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Explainablity Uncertainty Lack of labels

Deep learning Machine learning

Papers: I, II, III, IV, 12, 14, 18, 23 Papers: I, II, III, 12, 14, 17, 21 Papers: III, IV, 7, 8, 14, 15, 16 

Papers: I, II, III, IV, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 18, 19, 20, 22 

Papers: 5, 6, 11, 17, 20, 21

Figure 1.1: Overview of papers.

Paper I Introduces a new method for modeling uncertainty in the explana-
tions, illustrated in the setting of semantic segmentation of colorectal polyps.
We propose to sample explanations from a trained network through a noise
injection procedure and compute uncertainty estimates by taking the standard
deviation across all samples. We show how incorporating uncertainty is crucial
to produce trustworthy explanations and that some parts of an explanations
can have higher uncertainty than others.

Paper II Presents a new ensemble-based approach to uncertainty in expla-
nations of clinical time series. The motivation for such an approach is to exploit
common characteristics in clinical time series, namely small models and few
data samples. These characteristics makes ensembles suitable for clinical time
series, since they can be computationally demanding in e.g. computer vision
where big models and large datasets are more common. Furthermore, we pro-
pose to filter the explanations using the uncertainty estimates, and we show
how this provides more concise explanations with higher quality.

Paper III Proposes RELAX, the first method for explaining representations
as opposed to predictions. The core idea of RELAX is to measure similarities
between the representation of an image and perturbed versions of the same
image. We provide theoretical guarantees and analysis of RELAX, and show
that seemingly similar deep feature extraction models can utilize very different
input features. Also, we show how RELAX can be used to explain hand-crafted
feature extractors, and the explanation illustrate why such approaches can
provide inferior performance compared to deep learning.

Paper IV This paper introduces a new clinically motivated self-supervised
learning framework forcbir. We propose to exploit know properties of the liver
in CT images to train a feature extractor without labels using self-supervised
learning. Experiments illustrate how the proposed approach achieves supe-
rior performance across several metrics. Moreover, this paper leverages the
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RELAX framework to explain the representations produced by the proposed
self-supervised framework. These explanations reveal insights into the feature
extraction process that would not be obtainable without RELAX.

1.5 Other papers

5 Kristoffer K. Wickstrøm, Sigurd Løkse, Michael C. Kampffmeyer, Shujian
Yu, Jose Principe and Robert Jenssen. ”Analysis of Deep Neural Networks
using Tensor Kernels and Matrix–Based Renyi’s Entropy”. Workshop on
Information Theory and Machine Learning, Neural Information Process-
ing Systems 2019.

6 Kristoffer K. Wickstrøm, Sigurd Løkse, Michael C. Kampffmeyer, and
Robert Jenssen. ”Modelling the information plane of recurrent neural
networks”. Extended abstract and oral presentation at the Northern
Lights Deep Learning Conference, 2019.

7 Van Nhan Nguyen, Sigurd Løkse, Kristoffer K. Wickstrøm, Michael C.
Kampffmeyer, Davide Roverso and Robert Jenssen. ”SEN: a novel dissim-
ilarity measure for prototypical few–shot learning networks". Workshop
on Visual Learning with Limited Labels, Conference on Computer Vision
and Pattern Recognition, 2020.

8 Van Nhan Nguyen, Sigurd Løkse, Kristoffer K. Wickstrøm, Michael C.
Kampffmeyer, Davide Roverso and Robert Jenssen. ”SEN: a novel dissim-
ilarity measure for prototypical few–shot learning networks”. European
Conference on Computer Vision, 2020.

9 Samuel Kuttner, Kristoffer K. Wickstrøm, Gustav Kalda, S Esmaeil Dorraji,
Montserrat Martin-Armas, Ana Oteiza, Robert Jenssen, Kristin Fenton,
Rune Sundset, Jan Axelsson. "Machine learning derived input-function
in a dynamic 18F-FDG PET study of mice". Biomedical Physics and Engi-
neering Express, 2020.

10 Shujian Yu, Kristoffer K. Wickstrøm, Robert Jenssen, Jose C Principe. "Un-
derstanding convolutional neural networks with information theory: An
initial exploration". IEEE Transactions on Neural Networks and Learning
Systems, 2020.

11 Andreas Kvammen, Kristoffer K. Wickstrøm, Derek McKay, Noora Par-
tamies. "Auroral image classification with deep neural networks". Journal
of Geophysical Research: Space Physics, 2020.
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12 Kristoffer K. Wickstrøm, Karl Øyvind Mikalsen, Michael C. Kampffmeyer,
Arthur Revhaug, Robert Jenssen. "Uncertainty-aware deep ensembles for
reliable and explainable predictions of clinical time series". Extended
abstract and oral presentation at the Northern Lights Deep Learning
Conference, 2021.

13 Samuel Kuttner, Kristoffer K. Wickstrøm, Mark Lubberink, Andreas Tolf,
Joachim Burman, Rune Sundset, Robert Jenssen, Lieuwe Appel, Jan Ax-
elsson. "Cerebral blood flow measurements with 15O-water PET using a
non-invasive machine-learning-derived arterial input function". Journal
of Cerebral Blood Flow and Metabolism, 2021.

14 KristofferK. Wickstrøm,Daniel J. Trosten,Sigurd Løkse,Ahcène Boubekki,
Karl Øyvind Mikalsen, Michael C. Kampffmeyer, Robert Jenssen. "RELAX:
representation learning explainability". Abstract and oral presentation
at the NOBIM conference, 2021.

15 Daniel J. Trosten, Kristoffer K. Wickstrøm, Shujian Yu, Sigurd Løkse,
Robert Jenssen and Michael C. Kampffmeyer. "Deep clustering with the
Cauchy-Schwarz divergence". Workshop on Information Theory for Deep
Learning, Conference on Artificial Intelligence 2022.

16 Kristoffer K. Wickstrøm, Michael C. Kampffmeyer, Karl Øyvind Mikalsen,
Robert Jenssen. "Mixing up contrastive learning: self-supervised repre-
sentation learning for time series". Pattern Recognition Letters, 2022.

17 Kristoffer K. Wickstrøm, J. Emmanuel Johnson, Sigurd Løkse, Gustau
Camps-Valls, Karl Øyvind Mikalsen, Michael C. Kampffmeyer, Robert
Jenssen. "The kernelized Taylor diagram". Norwegian Artificial Intel-
ligence Symposium, 2022.

18 Kristoffer K. Wickstrøm. "Hva gjør vi når kunstig intelligens gir oss
kunnskap vi ikke forstår?". Forskersonen.no, 2022. https://forskerson
en.no/kunstig-intelligens-meninger-populaervitenskap/hva-gjor-
vi-nar-kunstig-intelligens-gir-oss-kunnskap-vi-ikke-forstar/19
57326

19 Samuel Kuttner, Luigi T. Luppino, Kristoffer K. Wickstrøm, Nils T. D.
Midtbø, S. Esmaeil Dorraji, Ana Oteiza, Montserrat Martin-Armas, Kristin
Fenton, Laurence Convert,Otman Sarrhini, Roger Lecomte,Rune Sundset,
Michael C. Kampffmeyer, Robert Jenssen. "Deep learning derived input-
function in dynamic 18F-FDG PET imaging of mice". Extended abstract
and top-rated oral presentation at the Annual Congress of the European
Association of Nuclear Medicine, 2022.

https://forskersonen.no/kunstig-intelligens-meninger-populaervitenskap/hva-gjor-vi-nar-kunstig-intelligens-gir-oss-kunnskap-vi-ikke-forstar/1957326
https://forskersonen.no/kunstig-intelligens-meninger-populaervitenskap/hva-gjor-vi-nar-kunstig-intelligens-gir-oss-kunnskap-vi-ikke-forstar/1957326
https://forskersonen.no/kunstig-intelligens-meninger-populaervitenskap/hva-gjor-vi-nar-kunstig-intelligens-gir-oss-kunnskap-vi-ikke-forstar/1957326
https://forskersonen.no/kunstig-intelligens-meninger-populaervitenskap/hva-gjor-vi-nar-kunstig-intelligens-gir-oss-kunnskap-vi-ikke-forstar/1957326
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20 Kristoffer K. Wickstrøm, Sigurd Løkse, Michael C. Kampffmeyer, Shujian
Yu, Jose Principe and Robert Jenssen. "Information plane analysis of deep
neural networks via matrix-based Renyi’s entropy and tensor kernels".
Submitted to Pattern Recognition.

21 Ane Blázquez-García, Kristoffer K. Wickstrøm, Shujian Yu, Karl Øyvind
Mikalsen, Ahcene Boubekki, Angel Conde, Usue Mori, Robert Jenssen,
Jose A. Lozano. "Selective imputation formultivariate time series datasets
with missing values". Submitted to Transactions on Knowledge and Data
Engineering.

22 Andreas Kvammen, Kristoffer K. Wickstrøm, Samuel Kociscak, Jakub
Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic, Audun
Theodorsen, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann.
"Machine learning classification of dust impact signals observed by the
solar orbiter". Submitted to Annales Geophyicae.

23 Anna Hedström, Kristoffer K. Wickstrøm, Dilyara Bareeva, Wojciech
Samek, Sebastian Lapuschkin, Marina M-C Höhne. "Can I count on you?:
scrutinising the evaluation of AI explainers". Submitted to IEEE Transac-
tions on Artificial Intelligence.

1.6 Reading guide

The remainder of this thesis is organized into three parts; methodology, sum-
mary of research, and included papers. The "methodology"-part consists of
five chapters that introduce the relevant background material for all papers.
Chapter 2 presents an overview of the essential components of deep learning
and introduces convolutional neural networks. Chapter 3 introduces the field
of xai and gives a short overview of different explainability methods. Chapter 4
outlines uncertainty modeling in deep learning and presents Bayesian, ensem-
ble, and test-time augmentation methods for uncertainty estimation. Chapter
5 presents the main components of self-supervised deep learning and briefly
introduces contrastive, clustering, and siamese-based self-supervised learning.
Chapter 6 gives an overview of data-driven healthcare, with a particular fo-
cus on the role of deep learning. The "summary of research and concluding
remarks"-part consist 5 chapters, where Chapter 7-10 provides a brief overview
of the scientific contributions of each paper in this thesis. Additionally, Chapter
11 includes some concluding remarks and discusses the limitations and po-
tential future works based on our research. Lastly, the "included papers"-part
contains the research papers included in this thesis.
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Figure 1.2: Included paper hierarchy.
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1.7 Open science

Reproducibility is becoming increasingly important in all areas of science [32].
In deep learning, making research open could be achieved by sharing resources
such as code and data, or making sure that all necessary details to reproduce
an experiment is openly available. Towards making the research conducted in
this thesis as open as possible, we have made code and other resources publicly
available. These resources are further described in relation to each research
paper in Chapter 7-10.
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2
Deep learning
Deep learning is part of the representation learning field, where the goal is to
learn a data representation that is beneficial for performing some task [33, 34].
In deep learning, the new representation is created through a stack of succes-
sive transformations, where the transformations are parametrized by a neural
network. Neural networks are trained to find patterns in large sets of data by
adjusting its internal parameters to minimize some desired mathematical ob-
jective. The fact that neural networks can learn to automatically extract useful
features directly from raw data is one of the major advantages compared to
competing machine learning methods, which requires hand-crafted features
to achieve good performance.

Figure 2.1 illustrates how altering the representation of data can be beneficial
to perform a desired task. This example is concerned with binary classification
of 2-dimensional data that are not linearly separable. The input data is shown
in the leftmost plot in Figure 2.1. A simple neural network is trained to classify
samples into two classes. The middle plot shows how the input data is first
transformed into a 3-dimensional representation by the trained network. In
this representation, the two classes are now linearly separable and much easier
to distinguish. The rightmost plot shows the final transformation from the
3-dimensional representation to a 1-dimensional representation. Compared
to the original representation, the data is now easily separable with a linear
classifier. While the example shown in Figure 2.1 is simple, the core procedure
it depicts is the same as in larger and more complex neural networks used to
solve real-world tasks.

15
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Input representation Hidden representation Output representation

Figure 2.1: Illustration of how a simple neural network changes the data representa-
tion to solve a binary classification task.

The origin of deep learning is often traced back to the McCulloch-Pitts neuron
[35], the perceptron algorithm [36], and the first learning-based neurons by
Widrow and Hoff [37]. Some also argue that one could go back even further
[38], to works from the early 1800s. Early research on artificial intelligence was
inspired by biological systems, and neurons were designed to mimic neurons
and synapses in the human brain. It is based on such early research that
the name artificial neural networks first occurred, or simply neural networks.
Early artificial intelligence (ai) research showed some promise, but went into
a long period of little attention after a seminal paper by Minsky and Papert
[39]. Minsky and Papert showed that the perceptron was unable to solve the
XOR problem, a simple binary classification task. While this could potentially
be addressed by stacking multiple layers of perceptrons in succession, the
sentiment at the time was that the computational resources and algorithms
for training such models were too limited for neural networks to be successful.
The period following the work of Minsky and Papert is often referred to as the
first winter of AI.

In the late 1980s and early 1990s, the development of the backpropagation
algorithm [40, 41, 42] and improvements in computers brought new interest
in neural network-based AI research, a period called the first neural network
renaissance [43]. This era saw some initial papers on unsupervised training
of neural networks [44, 45, 46] and impressive performance on real-world
tasks such as in digit [47] and fingerprint recognition [48]. Despite such
improvements, deep neural networks remained hard to train, which hampered
their usability. Moreover, a milestone work by Hochreiter [49] identified the
vanishing and exploding gradient problem, a fundamental challenge related to
the training of neural networks. Following Hochreiter’s work, neural network
research entered the second winter of AI with support vector machines (svms)
[50, 51] and random forest algorithms [52, 53] taking the center stage.
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In the mid 2000s, unsupervised pretraining through restricted Boltzmann ma-
chines [54] and autoencoders [55] improved the stability and reliability in
training of deep neural networks. These improvements, combined with bet-
ter computational resources, more data, and theoretical advances in training
algorithms led to neural network-based AI research entering the second neu-
ral network renaissance [43], a period we are still experiencing today. The
convincing victory by Alexnet [14] in the 2012 edition of the ImageNet large
scale visual recognition challenge [56] is often recognized at the start of the
deep learning revolution. Alexnet was much deeper (had more layers) and
contained many more trainable parameters than previous networks, and this
increase in complexity has continued to the present day.

Today, deep learning is the de facto standard in important domains such as
computer vision [10, 57] and nlp [58, 59]. The Alexnet architecture that ush-
ered the current period was considered enormously complex at the time (in
terms of the number of parameters). But recent deep learning architectures
have increased the amount of parameters from millions to billions [58], and
it has been shown that this increase can be crucial for performance [60, 58].
Given this over-parametrization, deep learning ignores the dangers of overfit-
ting (memorizing the data) described in traditional learning theory [61], which
should lead to worse performance. This is not the case, since deep learning
regularly have more parameters than data points to train on and still show
excellent performance on unseen examples. At this time, there are no definite
explanations for the success of over-parametrized models, but an interesting
research direction is through the concept of an inductive bias in neural net-
works. Belkin et al. [62] recently provided evidence for the double-descent
phenomenon, in which heavily over-parametrized models that are capable of
perfectly fitting the training data defied the traditional bias-variance trade-off
and increased performance as the number of parameters increased. Belkin et al.
hypothesized that the specific optimization used to train neural networks can
lead to an inductive bias towards low-norm configurations that generalize well
to unseen data. Theoretical analysis of simple neural networks have shown the
presence of such an inductive bias [63, 64, 65, 66], but it remains to be shown
for more complex architectures used in real-world applications.

This chapter provides a brief review of the core components in deep learning,
which form the bedrock of this thesis.



18 chapter 2 deep learning

2.1 Multilayer perceptrons
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layer 1
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Figure 2.2: mlp with three hidden layers
consisting of four and two units
and one output unit.

Multilayer perceptrons (mlps) form
the basis for deep learning. They
are constructed by stacking layers of
transformations in succession. Each
layer contains a number of units, com-
monly referred to as neurons. For clar-
ity purposes, we will focus our discus-
sion on mlps in the setting of super-
vised classification. The goal of super-
vised learning is to learn a function
𝑓 that transforms data from an in-
put space 𝑋 to an output space 𝑌 , i.e.
𝑓 : 𝑋 ↦→ 𝑌 . This goal is achieved by
minimizing a loss function 𝐿(𝑓 (x), 𝑦)
using a finite dataset of 𝑁 sample
pairs 𝐷 = {(x𝑖, 𝑦𝑖), 𝑖 = 1, · · · , 𝑁 },
where x is a sample from the input space and 𝑦 is a sample from the output
space that indicates the desired output. In addition to minimizing the loss, 𝑓
should also generalize and perform well on unseen samples from the input
space. Figure 2.2 shows an example of a simple MLP.

The fundamental computation in a MLP takes place inside each unit. For a
single sample, unit 𝑗 in layer 𝑙 computes a weighted sum of the output from
the previous layer:

𝑎𝑙𝑗 = 𝜎

( 𝑘𝑙∑︁
𝑗=1

𝑘𝑙−1∑︁
𝑘=1

𝑤𝑙
𝑗𝑘
𝑎𝑙−1
𝑘

+ 𝑏𝑙𝑗
)
, (2.1)

where 𝑏𝑙𝑗 is the bias of the 𝑗 th unit in the 𝑙th layer,𝑤𝑙
𝑗𝑘

is the weight connecting
the 𝑘th unit in the (𝑙 − 1)th layer with the 𝑗 th unit in the 𝑙th layer, 𝑘𝑙 is the
number of units in the 𝑙th layer, 𝑘𝑙−1 is the number of units in the (𝑙 − 1)th
layer, 𝑎𝑙−1

𝑘
is the output of the 𝑘th unit in the (𝑙 − 1)th layer, and 𝜎 is the

activation function. The computation in Equation 2.1 is carried out for each
neuron in layer 𝑙 , such that all neurons in layer 𝑙 is connected with all neurons
in layer 𝑙 − 1. Therefore, a single layer in a MLP is often referred to as a fully
connected layer.

Activation function The activation function acts as an approximate unit
step function that indicates if the neuron is "firing", and enables the MLP to
learn non-linear transformations. Traditionally, the sigmoid activation function
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was often used (Equation 2.2). However, modern networks mostly use the
Rectified Linear Unit (relu) activation function (Equation 2.3), as it improves
the gradient flow and allows for training of deeper networks [67]

𝑓sigmoid(𝑥) =
1

1 + exp(−𝑥) (2.2) 𝑓ReLU(𝑥) = max(0, 𝑥). (2.3)

Additionally, an activation functions suited for the specific task is typically em-
ployed in the output layer. For the task of classification, the softmax activation
function, 𝑓softmax(𝑥)𝑐 = 𝑒𝑥𝑐/∑𝐶

𝑖=1 𝑒
𝑥𝑖 , is mostly used, where 𝐶 is the number of

classes. The softmax function maps the input values into the range (0, 1) and
guaranties that they sum to 1, such that the output of the softmax function can
be interpreted as pseudo-probabilities for each class.

Loss function and optimization The loss function assesses how well
the MLP is performing the desired task. In the setting of classification, the
cross-entropy loss functions is a popular option, and is defined as:

𝐿(𝑓 (x), 𝑦)𝐶𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑓 (x)𝑐 (𝑖) log(𝑦𝑐 (𝑖)). (2.4)

The loss function provides a signal that guides the training procedure, which
is typically conducted through some variant of gradient descent. A variant of
gradient descent that is used regularly is stochastic gradient descent (sgd),
but more sophisticated alternatives like the ADAM [68] or LARS optimizer [69]
are also popular choices. The core idea in any gradient descent optimizer is
to adjust the parameters in such a way that the loss function is minimized. In
deep learning, the gradient of the loss function with respect to all the learnable
weights and biases in the network is computed through the backpropagation
algorithm [40, 41, 42].

Regularization Deep learning algorithms can have a large number of learn-
able parameters that allow them to learn complex relationships. However, this
also enables them to fit the data they are trained on perfectly, which can result
in algorithms that do not generalize well to unseen data. The problem of
memorizing the training data is referred to as overfitting and is a fundamen-
tal problem in deep learning. Many techniques exists to combat overfitting,
and these techniques are referred to as regularization techniques. Below we
present two widely used regularization techniques that are also important in
the context of uncertainty modeling and learning from unlabeled data.
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Figure 2.3: Illustration of (a) dropout applied in a MLP and (b) common augmenta-
tions for natural images. Image is taken from the Imagenet dataset [70].

• Dropout is a stochastic regularization technique that randomly drops
units in the network during training [71]. The motivation for the dropout
procedure is to avoid co-adaptation in the units, but it can also consid-
ered as an ensemble approach of thinned networks [71]. A simple MLP
with dropout applied is illustrated in Figure 2.3. Dropout was originally
intended to be used during training. However, Gal and Ghahramani [72]
proposed that Dropout could be used after training to model uncertainty,
by sampling predictions from thinned versions of the trained network.

• Data augmentation is a technique to tackle overfitting by exploiting
known invariances in the data to increase the amount of training data.
For instance, if an object is invariant to rotation, i.e. it does not change
characteristics after being rotated, randomly rotating images can be
incorporated in training to create more training samples. This artificially
increases the size of the training data which makes it harder to fit
completely. A set of common augmentations are illustrated in Figure 2.3.
Furthermore, data augmentation also plays a key part in recent research
on self-supervised learning [30, 73], where useful representation are
learned by exploiting known invariances to common data augmentations.
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Figure 2.4: Illustration of simple CNN architecture.

2.2 Convolutional neural networks

A convolutional neural network (cnn) is a neural network where one or
more layers are convolutional layers, as illustrated in Figure 2.4. Convolutional
layers are layers that process the output from the previous layer through the
convolution operation. Mathematically, the convolution operation measures
the overlap of of two functions

𝑠∗(𝑡) = (𝑠 ∗ 𝑘) (𝑡) =
∫

𝑠 (𝑎)𝑘 (𝑡 − 𝑎)𝑑𝑎, (2.5)

where 𝑠 is the input signal, 𝑘 is a filter, and 𝑠∗ is the filtered version of 𝑠. Figure
2.5 displays an example where an image is convolved with a simple edge-
detecting filter, resulting in a filtered version of the original image. Different
types of filter will activate on different parts of the input, and can therefore
be used to extract information. Prior to deep learning, filters for extracting
information from e.g. image data were hand-crafted by researchers [74]. In
cnns, the filters in in each layers are learnt as a part of the optimization
procedure, which results in improved performance compared to hand-crafted
feature extractors [74].

*
1

=

Input image Filter Filtered image

2 1

0 0 0

-1 -2 -1

Figure 2.5: Image taken from PASCAL VOC [75] convolved with horizontal edge
detector.
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LeCun et al. [33] argue that there are some key motivations for convolutional
layers in deep learning architectures. First, in grid-like data such as time series,
images, and video, there is often high correlation between values in local areas
which form distinct motifs. These motifs can be detected by localized filters that
are slid across the input through the convolution operation, a process which has
several beneficial effects. It greatly reduces the number of learnable parameters
compared to a fully connected layer, since you avoid the need to connect each
neuron in one layer with the next. Also, the motifs can typically appear in
any region of the grid-like input data, which allows the filter to be reused and
parameters shared across the entire input. Lastly, the convolution operation
introduces spatial invariances into the network, since the filter detects an object
even if it has moved to another location in the input.

The second motivation is that many natural signals are composed in a hierar-
chical structure, where low-level features like edges and shapes are combined
into high-level features like motifs or object parts. The layerwise structure in
cnns allows the signal to be decomposed in a similar fashion. Filters in the
lower layers of cnns have been shown to resemble Gabor filters [14], and
detect basic components such as shapes and edges. Filters in the higher layers
combine these basic components into high-level features, which are then used
to identify objects in e.g. images or video.

A common component in cnns is the pooling operation, which computes
a summary statistic of a local region. Typical approaches to summarization
is taking the average across the region or the maximum value within the
region. The purpose of the pooling operation is twofold. First, summarizing
local regions introduces invariance to slight shifts in the input. Second, by
summarizing regions into points the spatial resolution of the input grid is
reduced, which reduces the computational demand. An illustration of the max
pooling operation is shown in Figure 2.6.

Input features Pooled features

8 4 3 5

7 9 3 4

5 6 6 3

9 7 2 5

max pooling
9 5

9 6

Figure 2.6: Illustration of max pooling operation.
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Explainability in deep
learning

Holzinger et al. [22] summarized the field of explainable artificial intelligence
(xai) as a tool to answer the question of "why?". Why does the algorithm
think an image contains a certain object? Why did it make a mistake on this
particular example? Why does it disagree with an experienced physicians for a
particularly challenging illness to diagnose? Such questions will arise in almost
all scenarios where automatic support systems are part of the decision process,
and particularly in a safety critical domain such as healthcare. Answering the
question of "why?" is crucial to create trustworthy, reliable, and informative
automatic decision systems.

The topic of explainability has been investigated for a long time [76, 77], and
explainability methods for neural networks were developed already in the mid
1990s [78]. But it was not until deep learning became a prominent force in
machine learning that the need for xai became critical. The lack of explain-
ability was one of the most common criticisms during the start of the second
neural network neural network renaissance [79]. Deep learning algorithms
were regularly referred to as "black boxes" [15, 80], and the missing trans-
parency was highlighted as a major obstacle for deep learning in healthcare
applications [17]. However, major advances in xai have been made over the
last couple of years, and the field is now an important branch of deep learning
research.

23
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Neural network "Sheep"

XAI

Figure 3.1: Example of explainability in the image classification setting. An image is
passed through a neural network and classified as sheep. xai allows for
inspection of what pixels influence the prediction, which in this case are
pixels associated with the sheep. Image is taken from PASCAL VOC [75].

Figure 3.1 illustrates a simple example of xai in the classification setting, where
an image is classified to the "sheep" class. Prior to the development of xai,
there were no way of investigating what features influenced the prediction
of the model. Nobody could be sure if the network had learned features that
actually correspond to the sheep or just some features associated with the
sheep. For instance, Ribeiro et al. [81] showed how a cnn classifier trained to
distinguish wolfs and huskies, learned to exploit the snowy background that
was commonly present for the wolf class instead of features corresponding
to the actual wolfs. But with the entrance of xai, deep learning algorithms
could now explain their predictions, and heatmaps such as the one shown in
the rightmost part of Figure 3.1 could be used to investigate what in the input
influenced the sheep prediction.

Why do we need explainability? The need for explainability in deep
learning is regularly highlighted, and in particular in data-driven healthcare
[18, 16]. But why do we need explainability? Lipton [82] motivates the need
for explainability through the following desiderata:

• Trust There are several ways to think about trust in the context of
deep learning. If the performance of a particular model is known to be
very high, it might be trusted to make correct predictions. But can it
be trusted in making predictions based on relevant input features? One
well-known limitation of deep learning algorithms is that they can exploit
confounding factors or artifacts in the data to make predictions, so called
Clever Hans predictors [19]. Figure 3.2 shows an example from Gautam
et al. [20] of a deep learning system that exploits artifacts in X-ray images
to make predictions. Such a system could perform well in the design
phase, but would fail when put into production. This example illustrates
how xai can be used to add another layer of trust to deep learning in
addition to having a system with high precision, namely ensuring that
predictions are based on relevant input features.
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• Causality An enticing prospect for xai is as a tool to establish causal
connections between input features and a particular phenomenon. Ma-
chine learning algorithms are trained to identify patterns and not to
establish causal relationships, but through xai they can be used to guide
domain experts towards identifying such relationships. In the context of
healthcare, a precise predictive model combined with xai could be used
to produce hypotheses about the relationship between input features
and a particular disease, which could later be investigated by domain
experts. However, care must be taken when constructing such hypothe-
ses, as several sets of input features might produce models with similar
performance due to the Rashomon effect [83].

• Transferability Deep learning algorithms are often evaluated by splitting
a dataset into a training and testing part. The model is trained using the
training part and evaluated using the testing part. In this setting, the
training and test data come from the same distribution, but this is often
not the case when applying algorithms in real-world applications. For
instance, a model trained on data from on hospital might vulnerable to
distributional shift in the data when applied on data from a new hospital.
xai can be used to investigate if a model has learned to use patterns that
can generalize to new settings or if they have picked up pattern that are
domain-specific.

• Informativeness Predictive algorithms are often used as tools in an ex-
ploratory setting to guide domain experts when investigating new data.
In such cases, providing more information than just a binary prediction is
important to make informed and reliable decisions. If a patient is identi-
fied as having a particular disease, this would provide some information
for the investigator. But if the algorithm also indicated that a particular
input feature was important for identifying the disease, it could guide
the investigator to look for similar patterns in other patients and aid in
decision making.

• Fair and ethical decision-making Deep learning is being integrated
into an increasing amount of domains where ethical concerns are of
critical importance. For instance, in criminal justice, machine learning
can be used to predict areas of potential criminal activity [84]. In this
setting, explainability is important to ensure that the system takes ethical
consideration into account, such as not making racially biased decisions.
In some cases it can also be a legal requirement to provide an explanation
for an automatic decision, such as the European Union’s general data
protection regulation ("right to an explanation") [85].
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Figure 3.2: A cnn classifier exploits spurious artifacts in the data to classify images
as pneumonia or non-pneumonia. Example from Gautam et al. [20] with
permission of author.

Model-aware versusmodel-agnostic explainability An important dis-
tinction in explainability models is whether or not they require access to the
inner workings of the model they want to explain. Methods that requires
such information are referred to as model-aware or white-box methods, while
methods that do not require information about the model are called model-
agnostic or black-boxmethods. Randomized input sampling explanation (rise)
[86] and local interpretable model-agnostic explanations (lime) [81] are two
well-known model-agnostic methods, while gradient-class activation mapping
(grad-cam) [87] and layerwise relevance propagation (lrp) [88] are widely-
used model-aware methods. The great advantage of model-agnostic methods
is that they are highly flexible and usually only require access to the predic-
tions of the model that they want to explain. This allows them to be easily
inserted into most deep learning-based systems. The disadvantage is that the
information from the inner-workings of the model can be beneficial and might
lead to explanations of higher quality [89].

Explainable versus non-explainable models Some machine learning
models are inherently explainable. These models are often simple models
where input features can be directly related to the prediction of a model. Linear
models and decision trees are some typical examples of explainable models.
The downside to using such models is that their simplistic nature often results
in worse performance compared to deep learning algorithms, a phenomenon
sometimes referred to as Occam’s dilemma [83]. A recent direction in xai is
creating neural network architectures that have explainability built into them
[90]. One well-known self-explainable architecture was proposed by Chen
et al. [91]. Their prototypical part network (protopnet) dissects an image
into prototypical parts that are later combined to make the final classification.
These prototypes allow the users to inspect what parts of the input influenced
the prediction, such that explainability is included into the model. However,
this comes at the cost of performance, since the protopnet achieves worse
performance compared to non-explainable baseline cnns.
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Local versus global explainability Both Figure 3.1 and 3.2 shows exam-
ples of local explanations. These are explanations that explain the prediction of
a model for a single input sample. Global explanations investigate the general
behaviour of the model and give an impression about the fundamental concepts
and motifs that the model have learned. The deep dream framework [92] and
partial dependence plots [93] are both global explanation methods that have
been used to analyse deep learning algorithms.

3.1 An XAI taxonomy

The field of xai has developed at a rapid pace, and a vast amount of methods
are now available. In a recent review by Samek et al. [21], 46 xaimethods were
mentioned and discussed, andMolnar [94] also lists a large number of available
approaches. In such a plethora of methods it can be useful with an overarching
structure to categorize differentmethods. In Figure 3.3,we propose a taxonomy
for xaimethods that encapsulates most of the major direction within xai. Each
branch of the taxonomy is discussed briefly below.

Explainable artificial intelligence

Propagation-based

Perturbation-based

Example-based

Surrogate-based

LRP
Saliency
Guided backpropagation

IBA
RISE
Meaningful perturbations

TCAV
ProtoPnet
Deep KNN

LIME
SHAP
KernelShap

Figure 3.3: A taxonomy of xai methods.

3.2 Propagation-based explainability

Propagation-based explainability are generally model-aware and local methods
that propagate some score or prediction backwards through the neural network
to the input. Using gradient information is a common propagation-based
strategy that has been used already for several decades [78] and also for
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explaining other machine learning methods such as kernel methods [95]. The
intuition for gradient-based methods is that we want to know how altering
the input might influence the output, which is exactly what is computed
through the gradient. In its most basic form, a gradient explanation can be
computed as e =

𝑑𝑦𝑐
𝑑x , where 𝑦𝑐 is the softmax output for class 𝑐 and e is a

vector indicated the importance of each input feature. A known limitation
with gradient-based explanations is that they can be noisy [21], due to the
shattered gradients problem [96]. Numerous works have attempted to tackle
this problem, for instance by clipping gradients in the backward propagation
process [97] or by adding noise in the parameter space and averaging across
several explanations [98]. Another important propagation-based methods is
lrp [88], which decomposed non-linear classifiers by propagating the output
scores back to the input. lrp has been further developed in later works by
Montavon et al. [99] and Kindermans et al. [100]. Lastly, class activation
mapping (cam) [101] is a popular propagation-based methods that exploits
the global average pooling layer often found in cnns. The cam explanation
indicates discriminative images regions that can later be used to identify
regions associated with particular objects.

The strength of propagation methods is usually their simplicity and low com-
putational demand, as they often require only a slight modification of the
backpropagation procedure and a single forward and backward pass through
the network. Their weakness is that they need access to the inner-working of a
model which reduces their flexibility in certain applications, and can sometimes
be noisy as described above.

3.3 Perturbation-based explainability

The common theme in perturbation-based explainability is to relate alteration
of the input with changes in the output from the network. An early work by
Zeiler and Fergus [102] showed how systematically occluding rectangular areas
in images and monitoring the changes in the prediction score could provide
coarse indications of input feature importance. Petsiuk et al. [86] introduced
a more sophisticated and efficient occlusion scheme leading to rise. While
most perturbation-based methods are model-agnostic, there are some methods
that insert noise into the layers of the network as opposed to the input, and
thus require information about the model. A recent example is the information
bottleneck approach of Schulz et al. [103], where the noise was injected into
the layers of cnns to provide explanations based on information theoretic
quantities. There is also a large body of research on learning an optimal set of
perturbations to identify the most relevant input features [104, 105, 106].
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Perturbation-based methods are often simple and highly flexible, which makes
them easy to use in analysis of many different models. On the other hand,
they often require extensive sampling of occlusion or noise injection which
can be computationally demanding. Also, perturbing inputs in a manner that
preserves its characteristics can sometimes be a challenging task, and care must
be taken when designing the perturbation scheme in these methods.

3.4 Example-based explainability

Example-based methods explain a model by presenting examples that are
similar to a particular instance. The most basic form of example-based ex-
plainability is a nearest neighbour approach, where an instance is explained
by presenting the most similar examples in the training data. Papernot and
McDaniel [107] designed a deep learning framework for nearest-neighbour
learning with explainability as a key motivation. A more advanced form of
example-based explainability relates instances to concepts or prototypes, such
as the aformentioned protopnet [91]. Kim et al. [108] introduced testing
with concept activation vectors (tcavs), where neural networks could be ex-
plained through human-friendly concepts. A different example-based approach
is counterfactual explanations, where an instance is explained by creating
contradicting examples [109, 110]. For instance, if a patient is predicted to
obtain an infection after surgery, a counterfactual explanation might generate
a similar patient but with a lower measurement for some input feature. This
would indicate that this particular feature was important for the prediction and
that the generated patient would not be predicted to obtain an infection.

The great benefit of example-based methods is that they provide explanations
that are easy to comprehend for humans. For complex input data it might
be difficult to understand why a given set of input features are important
for a prediction and it might be easier to ascertain if two instances looks
similar or not. A downside of example-based methods is that they can be
computationally demanding for large datasets. Also, for some counterfactual
explanations it can be challenging to train a generator that provides high quality
examples. Another challenge is that the stochastic generation of counterfactual
explanations might produce contradicting examples,which can cause confusion
in the human user.
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3.5 Surrogate-based explainability

Surrogate methods exploit interpretable machine learning models to explain
black-box models. Perhaps the most well-known and widely used surrogate
explanation method is lime [81]. The core idea is to train an interpretable
model that locally approximates the black-box predictor. A dataset is gener-
ated by perturbing the input and collecting the prediction of the black-box
model, which in turn is used to train the interpretable model. Another popular
approach is Shapley additive explanations (shap) [111], which is based on
Shapely values from game theory. shap computes the contribution of each
feature to the prediction through a linear model.

Surrogate methods are simple to apply in most use-cases due to their highly
flexible model-agnostic nature. Also, since the surrogate model is typically a
simple machine learning model, it allows for a stronger theoretical analysis with
more guarantees on convergence and optimality of explanations, compared to
other approaches. One limitation of surrogate methods is that they require a
model to be trained for each instance,which can be computationally demanding
for complex instances or if we want to explain numerous instances. Another
limitation is that the stochasticity in model training can lead to less robust
explanations, as described by Alvarez-Melis and Jaakkola [112].



4
Uncertainty in deep
learning

Uncertainty modeling is a fundamental research area in machine learning. In
any real-world application, there will always be elements of uncertainty that
must be taken into account to provide safe and reliable automated systems. This
becomes especially apparent in healthcare applications, where decisions can
have fatal consequences. Very fewmedical practitioners will trust an automated
system without a notion of the systems confidence for a given case, which was
highlighted in a recent survey of clinicians [16].

Deep learning algorithms do not capture model uncertainty. In classification,
the softmax output is sometimes interpreted as model confidence, but this is
not advisable [72]. As illustrated in Figure 4.1, softmax probabilities can give
high confidence even if a sample lies far outside the data distribution, which
has also been shown in quantitative studies [113]. Therefore, deep learning
algorithms need to be modified in order to capture uncertainty.

Uncertainty is often categorized into two groups, aleatoric and epistemic un-
certainty [114]. Aleatoric uncertainty, the word alea meaning rolling of dice in
Latin, is the intrinsic randomness in a process that can not be reduced even if
more data is collected. Examples of aleatoric uncertainty can be sensor or mea-
surement noise. Epistemic uncertainty, the word episteme meaning knowledge
in Greek, is the uncertainty that stems from lack of knowledge. In classifica-
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Figure 4.1: Simple mlp for binary classification gives same softmax probability for
samples within and outside the data distribution.

tion, epistemic uncertainty can arise if one class is not well-represented in
the training data, but could be removed if more examples of said class was
collected. Aleatoric uncertainty can be divided further into homoscedastic
and heteroscedastic uncertainty [115]. Homoscedastic uncertainty is uncer-
tainty that is constant for different input, while heteroscedastic uncertainty is
dependent on the degree of noise being different for some inputs.

Here, we focus on three of the most widely used methods for modeling un-
certainty in deep learning algorithms; Bayesian, ensemble, and test-time aug-
mentation methods, all of which are described below. Additionaly, a high-level
overview of the different methods is presented in Figure 4.2.

Input Model Prediction

No uncertainty

Input Model Prediction

Bayesian uncertainty

Input Model Prediction

Ensemble uncertainty

Input Model Prediction

Test time augmentation uncertainty

Figure 4.2: High-level overview of methods to model uncertainty in deep learning.
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4.1 Bayesian methods

One of the most common approaches to uncertainty modeling in deep learning
is through Bayesian methods. Reasoning about uncertainties can be naturally
accomplished in a Bayesian setting by treating predictions or weights as dis-
tributions instead of point estimates. An early work by Blundell et al. [116]
proposed to capture uncertainty by modelling the posterior distribution of the
weights of a neural network. Due to the number of weights in most neural
networks used for real-world applications it is computationally intractable to
calculate the posterior distribution of the weights. Instead, they approximated
the posterior through variational inference, which is a family of techniques for
calculating intractable integrals. A widely used approach proposed by Gal and
Ghahramani [72] is Monte Carlo dropout, which performs Bayesian inference
to compute the posterior distribution of the prediction of a neural network. The
key idea is to use dropout [71] to sample sets of weights close to an optimal
weight configuration and average across predictions based on the sampled sets
of weights. However, this requires dropout to be present in the architecture,
which is not always the case. An alternative approach is Monte Carlo batch
norm [117], which leverages the batch normalization technique [118] to sample
sets of weights. This does require batch normalization to be present in the ar-
chitecture, but batch normalization is a much more common inclusion in recent
cnns compared to dropout and could therefore be more applicable.

An alternative approach to variational inference is using Laplace’s method [119]
to approximate the intractable posterior. The main idea of Laplace’s method is
to replace the intractable integral with an integral that can be computed ana-
lytically. Ritter et al. [120] proposed a Laplace-based approach to uncertainty
modeling which utilized a Kronecker factored Laplace approximation to model
the posterior distribution of the weights of a neural network.

Modeling uncertainty through Bayesian methods has the benefit of a strong
theoretical foundation. Also, averaging across distributions of models instead of
a single final model gives a natural framework for reasoning about uncertainties
in a model. The downside of a Bayesian approach is that modeling posterior
distributions in deep learning is generally not computationally feasible. There-
fore, it is necessary to estimate the posterior, which leads to a compromise
between obtaining a good approximation and computational demand. For in-
stance, assuming a particular distribution for the posterior can lead to efficient
computation and analytic expressions for desired quantities. However, the as-
sumption might not hold, which can lead to imprecise estimates. On the other
hand, approximating the posterior might require extensive sampling to obtain
good estimates, which limits its practicality. Determining how to model the
posterior is therefore a crucial component in Bayesian uncertainty modeling
that requires careful analysis of the data and model that is considered.
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4.2 Ensemble methods

The original goal of ensemble methods was not to capture uncertainty, but
rather improve performance by combining predictions from several statistical
models [121], typically referred to as ensemble members. However, ensembles
provide an intuitive approach to capturing uncertainty by aggregating sum-
mary statistics across the predictions of the ensemble. Essentially, uncertainty
estimates can be thought of as agreement between ensemble members. If all
members give a similar prediction, uncertainty will be low. On the other hand,
if there is much variation in the predictions of the members, uncertainty will
be high. Ensemble methods were among the first to model uncertainty in
deep learning [122], and showed good performance compared to competing
methods at the time [122]. An important aspect of ensemble methods is to
have variety among the ensemble members. Gawlikowski et al. [29] lists 4
approaches for introducing variety in ensembles for deep learning. First, vari-
ability can be introduced through the random initialization and optimization
of neural networks, since parameter configurations can converge to numerous
local optimas. Second, bagging and boosting are two well-known strategies for
ensuring variety in ensembles [121]. Bagging refers to uniformly resampling
the training data with replacement, and boosting is the process of training
models sequentially and optimizing based on the performance of prior models.
Third, data augmentation can be used both during training and inference to
introduce variation in the dataset. Lastly, variation can be introduced by having
different deep learning architectures as each ensemble member.

The strength of ensemble methods for uncertainty modeling lies in their sim-
plicity and their reliability. The only requirement for capturing uncertainty
with ensembles is simply to train several models. But despite their simplicity,
ensemble methods have been shown to provide state-of-the-art performance
when compared with more complex methods [123], even with only some en-
semble members. On the other hand, the limitation of ensemble methods is
the computational demand. For large and complex datasets that requires big
models to solve a task in a satisfactory manner, training a single model may
require significant amounts of compute. Introducing numerous such big models
will inevitably slow down both training and inference, and could in some cases
even not be accomplished due to memory constraints. Therefore, the usability
of ensemble methods for uncertainty quantification is highly dependent on the
data and task at hand.
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4.3 Test-time augmentation

Test time augmentation resembles the ensemble approach to uncertainty quan-
tification, but instead of aggregating across several models, the aggregation
is across numerous versions of the same input. Test-time augmentation aug-
mentation has been particularly well-used in the medical setting, with several
works demonstrating the benefits of obtaining uncertainties from augmenta-
tions [124, 125]. At its core, test-time augmentation amounts to generating
multiple versions of an input using a suitable data augmentation scheme. Each
version of the input is the passed into the deep learning system, and summary
statistics such as the mean and standard deviation can be extracted from the
prediction of each version.

The strength of test-time augmentation is again similar to that of the strength in
ensembles, namely its simplicity. The procedure does not require modification
to the algorithms and can be applied in a black-box manner, i.e. without
access to the inner workings of the network. For the limitations of test-time
augmentation methods, they suffer from similar computational restrictions
that ensemble methods suffer from. However, their restriction is limited to the
inference phase, but does not require extra resources during training. This is
due to need for creating numerous versions of the input and conducting several
forward passes through the network. However, they also have a limitation that
is unique to test-time augmentation methods, namely that correct predictions
might be altered from correct to incorrect due to the augmentation, as described
by Shanmugam et al. [123]. This could have severe effects in classification tasks,
since a correct decision might be altered by a component in the decision support
system as opposed to characteristics in the data. Therefore, it is important to
thoroughly analyze the augmentation used to obtain the uncertainty estimates
from the test time augmentation procedure.





5
Self-supervised deep
learning

Learning from unlabeled data through self-supervision has gained tremendous
attention recently and has achieved impressive results in field such as computer
vision [126],nlp [12], and time series analysis [127], in some cases even rivaling
the performance of supervised models [30, 73]. Self-supervised learning is part
of the representation learning field, and the goal is to learn a function that can
transform data into a "useful" representation, where the function is typically
modeled by a neural network. This is usually accomplished by exploiting known
invariances in the data, such as invariance to data augmentation in vision or
temporal invariance in time series. For brevity, we will limit this overview to
self-supervised learning in the field of computer vision.

The core idea in self-supervised learning, namely that of learning a represen-
tation by maximizing agreement between different views of the same data,
was introduced already in the early 1990s by Becker and Hinton [45]. Several
works followed in the coming years [46, 128, 129] that contained many of
the components seen in modern self-supervised frameworks, but the research
direction did not receive much attention. Despite some works in the beginning
of the second neural network renaissance such as by Dosovitskiy et al. [130], it
was not until the late 2010s that the field really started to receive interest again
[131, 132, 126]. Today, self-supervised learning with neural networks constitute
a major research direction in learning from unlabeled data. Recent studies have
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Figure 5.1: Illustration of a self-supervised framework. Image is taken from PASCAL

VOC [75].

shown that self-supervised learning frameworks benefit from bigger models
[60] and more data [133]. This can explain why self-supervised learning with
neural networks did not catch on until recently, since the data and resources
required for successful training were not available previously.

Numerous frameworks exist within contemporary self-supervised learning,
but some components are shared across most approaches. These components
are described below. Figure 5.1 displays an illustration of a self-supervised
framework where the components are depicted.

• Encoder The core of self-supervised learning is learning a function that
maps data into a new representation. In deep self-supervised learning,
this function is modelled by a neural network and often referred to as an
encoder. For computer vision, the encoder is often a large cnn [126, 30],
but recent works have explored the potential of vision transformers [134]
as the encoding unit [135]. After the encoder has been trained, it can later
be used to transform data into a new representation where a desired task
can be performed, or it can be used in transfer learning by initializing the
encoder for a new downstream task where limited amounts of labeled
data is available.

• Projection head The vast majority of current self-supervised framework
employ a projection head that maps the output of the encoder into a
new space where the loss is applied [30, 73, 31]. This projection head is
usually a small mlp consisting of only a couple of hidden layers. While
it has been shown in several works that the projection head is crucial for
high performance, it is only recently that the purpose of the projection
head has become clear. The mapping from the output of the encoder to
the projection head where the loss function is applied avoids dimensional
collapse in the representations of the encoder [136, 137], which facilitates
a more informative representation for downstream tasks.
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• Loss function The loss function is typically applied on the output of
the projection head, and provides the signal for the gradient-based opti-
mization of the learning framework. The two most common forms of loss
functions in current deep self-supervised learning are classification losses
like a cross-entropy loss with pseduo-labels [126, 31], or contrastive losses
where similarity between positive pairs are maximized and similarity
between negative pairs are minimized [30, 73].

• Data augmentation The purpose of data augmentation in self-supervised
learning is for creating positive pairs of samples by exploiting known
invariances in the data. Through one or several stochastic augmentations,
two different views are created from a single sample andwhich constitute
a positive pair. The two views must be sufficiently different such that the
encoder must learn a high quality representation in order to identify the
positive pairs, but also not too different such that the characteristics in
the original image are distorted. It is therefore of crucial importance to
carefully design the set of augmentations to obtain representations that
encodes useful information from the input data.

Numerous self-supervised frameworks have been proposed over the last couple
of years, but three variants are most commonly seen in the literature. These
are contrastive, clustering, and siamese approaches, which are described below.
Additionally, task-specific self-supervised framework have also been investi-
gated in the literature. For instance, a useful representation can be learned by
predicting the rotation of an image [138] or solving jigsaw puzzles [139], but
these approaches will not be discussed in this thesis.

5.1 Contrastive self-supervised learning

The goal in contrastive self-supervised learning is identifying positive pairs
among negative samples. This is achieved by attracting positive pairs and
repulsing negative pairs in the representation space. The positive pairs are
created through the data augmentation procedure. The negative pairs can be
constructed in different ways and prevents all samples from being mapped to
one point in the representation space (which would be the trivial solution),
a phenomenon known as representation collapse. Examples of some widely
used contrastive learning frameworks are SimCLR [30] and MoCo [73], which
mainly differ in how they create the negative samples.
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5.2 Clustering-based self-supervised learning

In clustering-based self-supervised learning, a clustering algorithm is used
to create pseudo-labels that the encoder learns to predict. Most frameworks
alternate between clustering and prediction, which enforces and enhances
the structure of the data in the new representation. The trivial solution in
clustering approaches would be to assign all samples to one cluster, which is
typically avoided by treating other cluster centroids as negative prototypes
that prevents collapse to one cluster. The DeepCluster framework is one of
the most well-known clustering-based self-supervised frameworks [126], where
pseudo-labels are created through k-means-clustering. The more recent SwAV
framework combines both contrastive and clustering-based learning [31],which
they demonstrate can be beneficial to performance.

5.3 Siamese self-supervised learning

Siamese approaches consist of two encoders that align different views of the
same sample, without the need for negative samples or pseudo-labels. For
siamese approaches, the trivial solution is to map all samples to the same point
in the representation space which would maximize alignment. This solution
is handled in different ways. Two of the most recent and successful siamese
approaches are the boostrap your own latent (byol) [140] and SimSiam [141]
frameworks. The BYOL framework employs a teacher-student setup while the
SimSiam framework uses a stop-gradient operation that avoid the need for
training two encoders. Both approaches have been shown to avoid the problem
of representation collapse [137].



6
Data-driven healthcare
The right to health is a fundamental human right 1, but numerous challenges
face those who wish to comply. A recent paper by Figueroa et al. [2] list a profu-
sion of obstacles in contemporary healthcare such as shortage of trained health
personnel, increases in costs and workload, aging population, and challeng-
ing diagnosis, to name a few. Tackling these and other problems is crucial to
provide high quality and reliable healthcare to people around the world.

Many researchers and healthcare professionals believe that data-driven health-
care has the potential to solve many of of these problems [142, 17]. Data-driven
methods are based on algorithms that learn to perform tasks by identifying
patterns in data, and often improve in line with the amount of data. Recent
advances in data-driven approaches based on deep learning have shown remark-
able performance in healthcare applications [5, 6], with some suggesting that
current ai methods will bring about the 4th healthcare revolution [1].

In the healthcare domain, ample amounts of data are collected each day, which
is a major reason for the optimistic view on data-driven healthcare. A diverse set
of measurements are collected during the treatment or assessment of patients.
Data can come in many forms, such as time series of blood samples, ct images
of organs, or composition of data types in electronic health records (ehrs). In
some cases, the data is accompanied by annotations from domain experts. This
could for instance be the diagnosis associated with a particular time series, or

1. https://www.ohchr.org/en/health
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a segmentation mask delineating a tumor in a pet image. But a much more
common scenario is that the data is not partnered with such information and
it must be processed without information from physicians.

There are numerous ways that data-driven healthcare can aid in solving press-
ing issues in healthcare. For instance, screenings programs examine many
patients without symptoms, with the goal of detecting cancer before it spreads.
Early detection is crucial to save lives, and also allows for a less exhaustive
and costly treatment procedure. However, processing the large amount of pa-
tients is both time and resource demanding. A system based on data-driven
algorithms could automatically process the data and indicate which samples
require extra attention from physicians, thus enabling better and more time
efficient treatment. Such screening systems have been investigated and shown
encouraging results in e.g. screening for breast [143, 144] and colorectal cancer
[145].

Another promising research area is data-driven decision support systems that
aid physicians with diagnosis of challenging diseases. This could be rare con-
ditions that require specialist knowledge to detect reliably, or it could be a
disease that is problematic to identify due to its complexity. Precise predictive
systems could guide practitioners in such demanding scenarios. There are
many examples of such systems with promising developments. One example
is predicting complications that might arise during surgery [146]. Another is
identifying cancer patients trajectories based on free text data [147].

Data-driven algorithms can also be used in the development of new medica-
ments that could be used to provide better, safer, andmore efficient treatment. A
recent survey by Kim et al. [148] showed that data-driven approaches have great
potential in aiding with selecting and designing potential drugs. Data-driven
algorithms can also play an important role in the development of vaccines, as
demonstrated in recent paper by Raeven et al. [149].

6.1 Deep learning in data-driven healthcare

Another important reason for the positive outlook for data-driven healthcare is
the recent advances in deep learning [9, 1]. Deep learning has the benefit of be-
ing able to process raw data without the need for complex pre-processing. Also,
the high precision that deep learning exhibit is often attributed to this ability
[74]. Furthermore, deep learning algorithms usually increase their performance
when presented with more data [4]. Since data is gathered continuously in the
healthcare sector, this means that systems can keep improving as time goes on.
An overview of data-driven healthcare is shown in Figure 6.1.
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Figure 6.1: Overview of data-driven healthcare. Images are taken from www.mostph
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The fieldwhere deep learning has had the biggest impact is in medical computer
vision. Across several imaging types such ct, pet, and X-ray images and
in numerous medical image related tasks, deep learning has brought great
improvements [150]. Campanella et al. [6] developed a deep learning algorithm
that could make predictions with a similar level of precision as domain experts
in pathology on whole slide images. Whole-slide images can be very large and
processing them is time consuming and challenging. A precise data-driven
system could automatically identify patients that require further inspection
by pathologist, thus reducing their workload and increasing the time spent
analysing patients that require more detailed care. Dong et al. [151] also
showed how deep learning can play a vital role processing whole-slide images,
e.g. to conduct fast and accurate breast cancer segmentation. Zhou et al. [152]
introduced a deep learning systems that could identify abnormalities in ct
scans of COVID-19 patients with high precision. Such a system could play a
vital role in fast and accurate treatment of patients infected by the coronavirus.
Kuttner et al. [8] proposed a deep learning solution automatically models
the arterial input function solely based on image data. Prior solutions relied
on blood sampling to correct the prediction of the arterial input functions.
But sampling blood is a challenging and painful procedure. Therefore, great
benefit in terms of cost and treatment efficiency can be gained from such a
solution.

www.mostphotos.com
www.mostphotos.com
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But deep learning has also lead to great improvements in other medical fields.
In medical nlp, Li et al. [153] introduced a transformer-based deep learning
system for processing text data in ehrs. When trained and evaluated on a
corpus of millions of patients, the system showed great improvements over
prior solutions when it comes to predicting the likelihood of a patient getting
a new medical condition in the future. In medical graph data, Choi et al.
[154] exploited the graph-like structure of diagnosis codes to train a deep
learning system that could conduct disease phenotyping with high accuracy.
And in medical time series, Harutyunyan et al. [155] proposed a multitask deep
learning system that demonstrated high performance across four clinical time
series prediction tasks.

Despite all of these promising developments, there are still somemajor obstacles
that needs to be overcome in order to achieve the full potential of deep learning
in data-driven healthcare. The lack of explainability is regularly listed as one
of the top challenges that needs to be tackled [18, 16]. Without explainability,
physicians will be reluctant to trust the data-driven system. For instance, it has
been shown in several studies that deep learning algorithms can exploit artifacts
and confounding factors instead of generalizable patters [19, 20]. This can have
detrimental affects, as systems might fail unexpectedly or report erroneous
evidence for a disease. Several recent works investigate xai in the context of
healthcare applications, as illustrated by a recent review by van der Velden
et al. [156]. For instance, Weina Jin [157] investigated how well explanation
fulfill clinical requirements in multi-modal medical imaging. Another work
by Thomas et al. [158] introduced an interpretable deep learning systems for
classification of non-melanoma skin cancer. Despite all of these advances, there
are some gaps in the xai literature. First, very little work have been done
on capturing uncertainty in explanations, apart from some preliminary works
[24, 25]. Without uncertainty, explanations might provide an unwarranted
trust in an automated system. Second, apart from some notable exceptions
[27], current xai methods mostly operate in the supervised setting on a score
or a prediction. But none of the current methods are capable of explaining
representation in the unsupervised setting, which can occur regularly in e.g.
self-supervised learning for medical data.

Another component that is missing in deep learning is uncertainty quantifica-
tion. Such a component is regularly highlighted as highly desired component
in any automatic support system for healthcare tasks [16, 28]. Being able to
reason about uncertainties is of utmost importance when operating in a set-
ting where decision can have fatal consequences. For a physician receiving
support from an automatic system it is important to know if the system is
providing a suggestion that is highly certain or not, since intrusive and ex-
haustive treatments might be recommend based on the suggestion. Several
works have looked into uncertainty quantification in deep learning-based sys-
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tems for healthcare applications. Carneiro et al. [159] showed how Bayesian
methods could be used to capture uncertainty in classification of polyps from
colonoscopy images. Herzog et al. [160] proposed to use Monte Carlo dropout
to asses the uncertainty in a deep learning system for stroke analysis based
on magnetic resonance images (mris). Leibig et al. [161] demonstrated how
leveraging uncertainty estiamtes could be used to improve diagnostic perfor-
mance. Nevertheless, very little attention have been given on how to capture
uncertainty in explanations.

An additional challenge for deep learning-based data-driven healthcare is
learning without supervision. As mentioned above, most of the data that is
gathered in the healthcare sector is unlabeled. This constitutes a problem for
deep learning algorithms, since they struggle to obtain optimal performance
without label information [17]. Overcoming this problem is therefore of great
significance, as it would allow deep learning-based systems to exploit the
full amount of data available in the healthcare sector. This could potentially
increase performance and lead to more robust and reliable deep learning-
based support systems. Self-supervised learning have received an increasing
amount of attention in the healthcare domain. Hansen et al. [162] proposed
a new method for few-shot medical image segmentation that was based on
self-supervised learning. Bozorgtabar et al. [163] used self-supervised learning
to improve the performance in anomaly detection for X-ray images. Yang
et al. [164] showed how self-supervised learning could be used to effectively
exploit unlabeled histopathological images by learning. Dong and Voiculescu
[165] showed how the combination of contrastive and federated learning could
be used to effectively makes use of decentralized unlabeled medical data.
But no works have looked into how to incorporate domain-expertise into
self-supervised learning for cbir, nor have they been able to explain the
representations produced by a self-supervised framework.
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Paper I
Uncertainty and interpretability in convolutional
neural networks for semantic segmentation of
colorectal polyps

Kristoffer K. Wickstrøm, Michael C. Kampffmeyer, Robert Jenssen

Medical Image Analysis

To the best of our knowledge, this work is the first to estimate uncertainties in
explanations in the XAI field. We present a Bayesian approach that relies on a
variational approximation of the posterior distribution of explanations through
the dropout technique [71]. We leverage the guided backpropagation technique
[97] to obtain explanations. The usability of the proposed methodology is
demonstrated for semantic segmentation of colorectal polyps.

Experiments were conducted on two real-world datasets, which indicate that
deep models are utilizing the shape and edge information of polyps to make
their prediction. Moreover, inaccurate predictions show a higher degree of un-
certainty compared to precise predictions. Lastly, we investigate how uncertain-
ties in explanations of polyp prediction behave, and show that an explanation
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Figure 7.1: Illustration of explanation without (leftmost figure) and with (rightmost
figure) uncertainty estimates included. Example taken from Paper I.

can have varying degrees of uncertainty associated with different parts of an
explanation. Figure 7.1 illustrates one such example taken from Paper I, where
the uncertainty analysis reveals that parts of the explanation associated with
non-polyp pixels have a higher degree of uncertainty.

This work was presented as a part of an invited talk at the Big Insight center
for research-based innovation in Oslo. It was also featured during a spotlight
presentation at the Visual Intelligence center for research-based innovations.
Video recordings of both presentations are listed below, together with code
used in the paper.

u Invited talk at the Big Insight center for research-based innovation: https:
//www.youtube.com/watch?v=STInTtflcyU.

u Spotlight presentation at the Visual Intelligence center for research-based
innovation: https://www.youtube.com/watch?v=CluEu7lp3RM.

� Code: https://github.com/Wickstrom/uc-in-xai.git.

Contributions by the author

1. The idea was conceived by me and further developed with all co-authors.

2. The implementation and experiments were conducted by me.

3. I wrote the main draft of the paper.

https://www.youtube.com/watch?v=STInTtflcyU
https://www.youtube.com/watch?v=STInTtflcyU
https://www.youtube.com/watch?v=CluEu7lp3RM
https://github.com/Wickstrom/uc-in-xai.git
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Paper II
Uncertainty-aware deep ensembles for reliable
and explainable predictions of clinical time series

Kristoffer K. Wickstrøm, Karl Øyvind Mikalsen, Michael C. Kampffmeyer, Arthur
Revhaug, Robert Jenssen

IEEE Journal of Biomedical and Health Informatics

This paper presents a deep ensemble approach to capture uncertainty in ex-
planations of predictions for time series. Our core idea is to train an ensemble
of neural networks that produce a set of predictions and explanations, and
capture uncertainty by taking the standard deviation across the explanations.
The uncertainty estimates can be considered as a measure of disagreement be-
tween the ensemble members on what features are important to performed the
desired task. Moreover, we propose to use the uncertainty estimates to filter out
uncertain parts of an explanations, a method we refer to as uncertainty-filtered
explanations.

Using ensembles to capture uncertainty is motivated by two common charac-
teristics in clinical time series. First, clinical time series can be successfully
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Figure 8.1: Illustration of deep ensemble approach proposed in Paper II.

processed by deep learning architectures with low computational demand,
which allows for more members in the ensemble. Second, many clinical time
series datasets contain a limited amount of examples. This eases the computa-
tional demand and reduces the time needed to train the deep ensemble. We
chose to process the clinical time series using the fully convolutional network
(fcn) proposed by Wang et al. [166], due to its encouraging performance on
time series classification benchmarks [166]. Each member of the ensemble was
explained using the cam explanation method, as the structure of the fcn
architecture is particularly suitable for cam method. An illustration of the
proposed deep ensemble is shown in Figure 8.1.

Experiments were conducted on both synthetic and real-world datasets. Results
demonstrate that the proposed ensemble is more accurate in locating relevant
time steps and is more consistent across random initializations. Furthermore,
we also show how the proposed uncertainty-filtering can provide clearer and
more understandable explanations. The explanations from the deep ensemble
were also analysed with the aid of a domain expert. This analysis revealed that
the deep learning system had learned to identify patterns that closely agreed
with clinical knowledge, which illustrates how XAI can be used to establish
trust.

An extended abstract (paper 12) of preliminary work that lead to this paper
was presented at the 3rd Northern Lights Deep Learning Conference, Tromsø,
Norway in 2021. This work was also presented as a part of an invited talk at the
Big Insight center for research-based innovation in Oslo. Video recordings of
both presentations are listed below, together with code used in the paper.

u Invited talk at the Big Insight center for research-based innovation: https:
//www.youtube.com/watch?v=STInTtflcyU.

https://www.youtube.com/watch?v=STInTtflcyU
https://www.youtube.com/watch?v=STInTtflcyU
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u Oral presentation from the Norhern Lights Deep Learning Conference
2021: https://www.youtube.com/watch?v=Odv3YD1OFxE.

� Code: https://github.com/Wickstrom/TimeSeriesXAI

Contributions by the author

1. The idea was conceived by me and further developed with all co-authors.

2. The implementation and experiments were conducted by me.

3. The discussion and analysis was conducted in collaboration with domain-
expert Arthur Revhaug.

4. I wrote the main draft of the paper.

https://www.youtube.com/watch?v=Odv3YD1OFxE
https://github.com/Wickstrom/TimeSeriesXAI
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Paper III
RELAX: Representation Learning Explainability

Kristoffer K. Wickstrøm, Daniel J. Trosten, Sigurd Løkse, Ahcène Boubekki, Karl
Øyvind Mikalsen, Michael C. Kampffmeyer, Robert Jenssen

Submitted to International Journal of Computer Vision

The vast majority of XAI research have been focused on explaining scores and
predictions, but no methods are designed for explaining representations of
data. In this paper we present the first representation learning framework, en-
titled RELAX. RELAX is a perturbation-based method that works by measuring
similarities between representation of an input and a masked version of itself.
An illustration of the RELAX framework is presented in Figure 9.1. To provide
a better understanding of RELAX, we provide a theoretical analysis that links
the explanations of representations to linear scoring functions between data
points and a class-conditional mean. Also, we derived a bound on the number of
masks required to obtain precise and reliable explanations. Since no methods
have been developed to explain representations, we develop gradient-based
methods as baseline methods to compare RELAX with.
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Figure 9.1: Conceptual illustration of RELAX taken from Paper III.

The results on public datasets demonstrate the benefit of RELAX compared to
baseline methods across several metrics. Moreover, we show how RELAX can be
used in the context of multi-view clustering and to explain traditional feature
extraction methods commonly used prior to deep learning. Lastly, we also
conduct a user study with human examiners, with results indicating that the
RELAX explanations agreed the most with explanations from humans.

An abstract (paper 14) of preliminary work was presented at the NOBIM con-
ference, Oslo, Norway in 2021. Code used in the paper is listed below.

� Code: https://github.com/Wickstrom/RELAX

Contributions by the author

1. The idea was conceived by me and further developed with all co-authors.

2. The implementation and experiments were conducted by me.

3. I wrote the main draft of the paper.

https://github.com/Wickstrom/RELAX
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Paper IV
A clinically motivated self-supervised approach
for content-based image retrieval of CT liver
images

Kristoffer K. Wickstrøm, Eirik A. Østmo, Keyur Radya, Karl Øyvind Mikalsen,
Michael C. Kampffmeyer, Robert Jenssen

Submitted to Computerized Medical Imaging and Graphics

In this paper, we propose a self-supervised framework for cbir of ct liver
images. Current self-supervised frameworks often rely on data augmentations
that are designed for natural images and does not take into account the char-
acteristics of medical images. We propose a clinically motivated self-supervised
framework that exploits known invariances in ct liver images to train feature
extractors that focus on clinically relevant features. The main idea is to have
a narrow and wide clipping of the pixel intensities for different views of the
same image. This clipping should preserve the liver features but to a varying
degree remove non-liver pixels. This will encourage the feature extractor to
learn that pixels related to the liver are important and should receive attention.
Furthermore, we leverage the RELAX framework from Paper III to conduct a
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A clinically motivated self-supervised approach to exploit unlabeled data in content-based image
retrieval of CT liver images.

Exploit known characteristics of liver pixel intensities to increase focus on the liver in the feature
extraction process.

First representation learning explainability analysis in the context of content-based image retrieval of
CT liver images.

Improved performance across several metrics for real-world datasets, and clinically relevant use-
case on cross-examination image retrieval.

Explaining input pixel importance for representations

Proposed Houndsfield unit clipping-based framework for extracting liver features in CT images

Highlights:

Figure 10.1: Graphical abstract with figures taken from Paper IV.

novel representation learning explainability analysis in the context of cbir. A
graphical abstract of the paper can be viewed in Figure 10.1.

Experiments show that the proposed framework improve the retrieval per-
formance and leads to feature extractors that focus more on liver-related
features. Moreover, we present the first representation learning explainabil-
ity analysis in the context of cbir of ct liver images. Our analysis reveals
that feature extractors with seemingly similar performance can focus very dif-
ferent types of features, and that feature extractors trained on non-medical
datasets (Imagenet-pretrained feature extractors) focus on edge-information
and not organ-information. Lastly, we present a case-study where results of a
cross-examination CBIR analysis is compared with the analysis of a domain
expert. Our results show that the CBIR system can achieve high agreement
with domain experts.

Code used in the paper is listed below.

� Code: https://github.com/Wickstrom/clinical-self-supervised-
CBIR-ct-liver.git

Contributions by the author

1. The idea was conceived by me and further developed with all co-authors.

2. The implementation and experiments were conducted by me.

3. The discussion and analysis was conducted in collaboration with domain-
expert Keyur Radia.

4. I wrote the main draft of the paper.

https://github.com/Wickstrom/clinical-self-supervised-CBIR-ct-liver.git
https://github.com/Wickstrom/clinical-self-supervised-CBIR-ct-liver.git
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Concluding remarks
In this thesis, we advanced deep learning with emphasis on data-driven health-
care. We focused on addressing key challenges that limit the usability of deep
learning in data-driven healthcare; (1) the lack of explainability, (2) how to
model uncertainty, and (3) learning from limited labels.

A Baeysian approach was proposed to capture uncertainties in explanations,
thus working in the intersection of Challenge 1 and 2. The usability of the
new methodology was illustrated in the context of semantic segmentation of
colorectal polyps. Modeling uncertainty in explanation was also investigated
in the context of clinical time series, a common data modality encountered
in healthcare applications. Motivated by particular characteristics in clinical
time series, we proposed a deep ensemble approach that could capture un-
certainties in explanations. The uncertainty estimates were used to to create
uncertainty-filtered explanations, which were shown to have higher quality
and less ambiguity.

In the intersection between Challenge 1 and 3, the first framework for explain-
ing representations, as opposed to predictions. Using the new framework, we
showed how it allowed for new insights into self-supervised learning, multi-
view clustering, and traditional feature extraction techniques. Furthermore, we
proposed a new self-supervised framework that exploits domain-knowledge in
the data augmentation procedure to train deep learning architectures without
label information. The framework was used in cbir of ct liver images, and
results demonstrated how it was beneficial to performance and in extracting
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clinically relevant features. Lastly, we showed how explainability could give
insights into limitation and strengths of different feature extraction models in
the cbir setting.

The thesis has focused on healthcare applications, and we have demonstrated
how our contributions can be successfully applied across several tasks and data
modalities. But the proposed methodology in the included research paper is
not limited to healthcare applications, and could see use in other domains. We
believe that the advances introduced in this thesis can play an important role
in designing more reliable and trustworthy deep learning systems that can
effectively exploit data with little label information.

11.1 Limitations and future work

Any research paper will have both strengths and limitations. In this section, we
discuss the limitations of the papers included in this thesis. Furthermore, we
examine promising direction for future research related to the methodology
presented in this thesis.

Paper I The methodology proposed in Paper I relies on dropout being part of
the neural network architecture. This is not always the case, and simply adding
dropout to a network that has not been trained with such a regularization can
significantly alter the performance of the network. The purpose of dropout
in our methodology is to sample a set of weights from the trained network.
This could be achieved through other means. For instance, the Monte Carlo
batch normalization [117] procedure leverages batch normalization [118] to
sample predictions that could be used to capture uncertainty. Since batch
normalization is a more common inclusion in deep learning architecture this
could increase the flexibility of the methodology. Another approach could be to
inject noise into the parameters of the network as done by Bykov et al. [98], in
order to sample weights from the trained network. Such an approach would be
applicable for any neural network architecture, but also requires the selection of
the noise level. Lastly, quantitative evaluation of explanations was less evolved
during the development of Paper I, and therefore this work relied mainly on
qualitative analysis. A thorough quantitative analysis such as in Paper II and
III would provide further insights into the strengths and weaknesses of the
proposed methodology.

Paper II Using ensembles to capture uncertainty, as proposed in Paper II,
can be challenging in cases where it is necessary to use models with high
computational demand, for instance when processing 3D medical images. In
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such cases, the computational demand could be decreased in several ways.
One promising direction is quantization [167], where 32-bit floating-point
activations and weights are mapped to 8-bit integers to improve computational
efficiency. A more traditional approach is network pruning, where redundant
neurons are removed from the network. A recent paper by Shomron et al. [167]
showed how explanations could be used to prune cnns.

Paper III The RELAX framework introduced in Paper III provides an expla-
nation for the representation of an image. This explanation is computed by
numerous forward passes through the network. This can be computationally
demanding, particularly if a quantitative analysis across many images is to be
carried out. An interesting approach to build the representation explainability
into the network, thus only requiring a single-forward pass, is self-masking.
Such approaches have been developed in the context of classification [168, 169],
but not in a completely unsupervised setting. Another potential avenue for fu-
ture research is extending RELAX to new data modalities. This is not a trivial
task, since the masking must be tailored to the specific data type. For in-
stance, masking graph data could be carried out in numerous ways, and can
be performed on both the edges and nodes of a graph.

Paper IV Paper IV illustrated how feature extractors trained without labels
could learn to retrieve similar examples as domain experts. However, it also
showed that the feature extractors lacked spatial awareness due to being
trained only on single slice images. This could be improved by incorporating
neighbouring slices into the self-supervised training procedure, or by training
features extracts that process the full 3D ct volume. Another interesting
question to investigate is how the proposed wide and narrow clipping strategy
could be used to train feature extractors that focus on particular organs. Our
focus was on the liver, and the clipping was tailored to this purpose. But
other clipping strategies are possible, which could be used to improve the
performance of cbir for other organs.

Future directions The number of XAI methods have gone from only a
handful to several dozens during the last decade. The large selection of available
methods raises an interesting question; how do we determine what XAI method
to use? Or stated differently, how do we determine what makes an explanation
good? In general, there exists no "correct" explanation, and therefore it is not
possible no directly asses which explanation method is superior. As more XAI
methods emerge and deep learning becomes integrated into new domains with
requirements on explainability, the question of what make a good explanation
needs to be answered.
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At the moment, there are two main directions that stand out in answering this
question. First, quantitative analysis is becoming an increasingly important part
of XAI. Recently, Hedström et al. [170] introduced the Quantus toolbox, which
have collected and unified numerous quantitative measures that indirectly
evaluate how good an explanation is. Second, self-explainable model can
eliminate the question all together, since model can explain itself without
the need for external XAI methods. A notable work in this direction is the
protopnet described in Chapter 3, but more recent works have also shown
that self-explainable deep learning can be a promising direction [171].

Several uncertainty methods have been investigated in the research papers,
but they have all been considered in isolation. In Paper I and II, the uncertainty
stemming from the model was considered, while Paper III investigated uncer-
tainty in the data. An interesting avenue of research is modeling uncertainty
in both data and model simultaneously. This would require carefully coupling
of methods to ensure that the multiplicative effect of e.g. adding noise in both
the data and the model is kept under control.

The works presented in this thesis have mainly been focused on xai as a tool
that can be used after a model is trained. But xai can also be used to improve
the performance of a deep learning model. For instance Sun et al. [172] showed
how xai could be used to fine-tune a model for image captioning. Also, Silva
et al. [173] demonstrated how explanations could be used to guide a model for
cbir, leading to improved performance. Such approaches providing promising
avenues for future research. For instance, quantitative xai measures like those
collected in Quantus [170] could be used as part of the training objective, which
could lead to improved explanations and performance.
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Paper I
Uncertainty and interpretability in convolutional
neural networks for semantic segmentation of
colorectal polyps

Kristoffer Wickstrøm, Michael Kampffmeyer, Robert Jenssen

Medical Image Analysis
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a b s t r a c t 

Colorectal polyps are known to be potential precursors to colorectal cancer, which is one of the lead- 

ing causes of cancer-related deaths on a global scale. Early detection and prevention of colorectal cancer 

is primarily enabled through manual screenings, where the intestines of a patient is visually examined. 

Such a procedure can be challenging and exhausting for the person performing the screening. This has 

resulted in numerous studies on designing automatic systems aimed at supporting physicians during the 

examination. Recently, such automatic systems have seen a significant improvement as a result of an 

increasing amount of publicly available colorectal imagery and advances in deep learning research for 

object image recognition. Specifically, decision support systems based on Convolutional Neural Networks 

(CNNs) have demonstrated state-of-the-art performance on both detection and segmentation of colorec- 

tal polyps. However, CNN-based models need to not only be precise in order to be helpful in a medical 

context. In addition, interpretability and uncertainty in predictions must be well understood. In this pa- 

per, we develop and evaluate recent advances in uncertainty estimation and model interpretability in the 

context of semantic segmentation of polyps from colonoscopy images. Furthermore, we propose a novel 

method for estimating the uncertainty associated with important features in the input and demonstrate 

how interpretability and uncertainty can be modeled in DSSs for semantic segmentation of colorectal 

polyps. Results indicate that deep models are utilizing the shape and edge information of polyps to make 

their prediction. Moreover, inaccurate predictions show a higher degree of uncertainty compared to pre- 

cise predictions. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Colorectal Cancer (CRC) is one of the leading causes of cancer- 

related deaths worldwide ( Siegel et al., 2017; Chen et al., 2016; 

Larsen, 2016 ), with an estimated five-year survi val rate for an ad- 

vanced stage CRC diagnosis of 14%. The estimated survival rate for 

early diagnosis is 90% ( Larsen, 2016 ). Currently, the gold standard 

for CRC prevention is through regular colonoscopy screenings. One 

of the main tasks during a screening is to locate small abnormal 

growths called polyps, which are known to be possible precur- 

sors to CRC. Hence, increasing the detection rate of polyps is an 

important component for reducing mortality rates. However, such 

screenings are manual procedures performed by physicians and are 

therefore affected by human factors such as fatigue and experience. 

One study has estimated the polyp miss rate during a screening to 

∗ Corresponding author. 

E-mail address: kristoffer.k.wickstrom@uit.no (K. Wickstrøm). 
1 UiT Machine Learning Group ( http://machine-learning.uit.no ). 

be between 8–37%, depending on the size and type of the polyps 

( Van Rijn et al., 2006 ). A possible method for increasing polyp de- 

tection rate is to design Decision Support Systems (DSSs), which 

could aid physicians during or after the procedure. A dependable 

and robust DSS would have the advantage of not being influenced 

by human factors and could also provide a second opinion for in- 

experienced practitioners. 

One popular approach for developing DSSs has been through 

machine learning, with promising results on a range of different 

tasks like brain tumor segmentation ( Havaei et al., 2017 ), retinal 

vessel segmentation ( Guo et al., 2019 ), melanoma lesion segmen- 

tation ( Nida et al., 2019 ), and colorectal polyp detection ( Bernal 

et al., 2015; 2014; Liu, 2017; Ribeiro et al., 2016 ). In the context 

of CRC prevention, there have been a number of studies on the de- 

tection of polyps with encouraging results ( Tajbakhsh et al., 2016; 

Hwang et al., 2007; Alexandre et al., 2007; Wimmer et al., 2016; 

Häfner et al., 2015 ), but polyp segmentation has proven to be a 

challenging task and the necessary precision has been difficult to 

obtain ( Bernal et al., 2015; 2014; Condessa and Bioucas-Dias, 2012 ). 

https://doi.org/10.1016/j.media.2019.101619 

1361-8415/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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However, as a consequence of increasing amounts of publicly avail- 

able colon imagery combined with advances in deep learning re- 

search for image analysis, recent studies based on deep learning for 

colorectal polyp segmentation have shown promising results and 

a significant increase in precision ( Vázquez et al., 2016; Brandao 

et al., 2017; Urban et al., 2018 ). 

High precision is a crucial component of any reliable DSS, but 

other constituents are also vital in order to engineer dependable 

DSSs. Physicians are tasked with making decisions that can have 

fatal consequences and they go to great lengths in order to ensure 

that the decision they make is likely to have a favorable outcome. 

Therefore, a trustworthy DSS should provide a measure of uncer- 

tainty to accompany its prediction such that physicians can make 

well-informed decisions. Another integral part of a dependable DSS 

is to communicate to the user what factors influences a prediction. 

Without such information, the user can not determine if the model 

is detecting features that are actually associated with the disease 

in question or if it is exploiting artifacts in the data. For instance, a 

study by Zech et al. (2018) uncovered that a deep learning model 

tasked with diagnosing disease from x-ray images had learned to 

exploit information in metal tokens included in the x-ray images 

for inference instead of detecting disease-specifics features. When 

the model is then presented with an image without these artifacts 

the precision drops considerably. 

Despite the obvious benefit of increased performance, systems 

based on deep learning have no inherent way of representing the 

uncertainty associated with a model’s prediction nor do they pro- 

vide any indication as to what features in the input influences a 

particular prediction. This lack of theoretical understanding for the 

underlying mechanics of deep models have resulted in deep learn- 

ing based models often being referred to as ”black boxes” ( Alain 

and Bengio, 2017; Shwartz-Ziv and Tishby, 2017; Yu and Príncipe, 

2018 ). Multiple recent studies have proposed methods that, to 

some extent, address the lack of transparency ( Gal and Ghahra- 

mani, 2016; Kendall and Gal, 2017; Springenberg et al., 2015; Zeiler 

and Fergus, 2014; Bach et al., 2015; Simonyan et al., 2013 ), and 

they have seen some use in analysis of medical images ( Dubost 

et al., 2019; Zech et al., 2018 ) However, these methods have yet 

to be utilized in DSSs for colorectal polyp segmentation based on 

deep learning. 

Our contributions are the following: 2 

• We incorporate and develop recent advances in the field of 

deep learning for semantic segmentation of colorectal polyps 

in order to create deep models that provide uncertainty mea- 

sures along with their prediction. Results indicate that erro- 

neous predictions show a significantly higher degree of uncer- 

tainty compared to correct predictions. Furthermore, we model 

input feature importance to create interpretable deep models. 

Results show that our models are considering shape and edge 

information in order to segment polyps. 
• We propose a novel method for estimating uncertainty in the 

importance of input features, which we refer to as Monte Carlo 

Guided Backpropagation, and demonstrate how this method 

can be used in the context of colorectal polyp segmentation. 

To the authors’ knowledge, none of the above points have been 

previously explored in the context of semantic segmentation of 

colorectal polyps. 

2 This work significantly extends our preliminary study ( Wickstrøm et al., 2018 ) 

by: (1) Including U-Net in our analysis; (2) significantly extending our experimental 

section by including new experiments on the 2015 MICCAI polyp detection chal- 

lenge ( Bernal et al., 2017 ) and the Endoscene dataset ( Vázquez et al., 2016 ) (3) 

proposing a novel method for estimating uncertainty in the importance of input 

features and evaluating our proposed method on two polyp segmentation datasets; 

(4) providing a more thorough literature background discussion and placing our 

work into a broader context. 

2. Models and methods 

In this section we introduce Fully Convolutional Networks 

(FCNs) and describe the three architectures utilized in this study. 

Next, we explain how we incorporate uncertainty and inter- 

pretability in deep learning based DSSs ( Sections 2.2 and 2.3 ). Fi- 

nally, we present our method for estimating the uncertainty asso- 

ciated with the importance of input features ( Section 2.4 ). 

2.1. Fully convolutional networks 

FCNs are CNNs particularly suited to tackle per pixel prediction 

problems like semantic segmentation, i.e. providing a probability 

score for what class each pixel belongs to. For instance, in the case 

of semantic segmentation of colorectal polyps, each pixel is labeled 

as a polyp or as part of the colon (background class). Segmentation 

is considered a more challenging task than detecting or localizing 

an object in an image, but provides more information. The shape 

information provided by a meaningful segmentation map can for 

example be used to study anatomical structures or inspect other 

regions of interest ( Sharma et al., 2010 ). 

We investigate three architectures for the task of polyp seg- 

mentation, namely the Fully Convolutional Network 8 (FCN- 

8) ( Shelhamer et al., 2017 ), U-Net ( Ronneberger et al., 2015 ) and 

SegNet ( Badrinarayanan et al., 2017 ) for the following reasons. 

These networks have been applied in a number of different do- 

mains and are chosen to form a well-understood foundation for 

our studies. This enables uncertainty and interpretability experi- 

ments to be the main focus. Previous use of the FCN-8 for polyp 

segmentation has shown promising results ( Vázquez et al., 2016; 

Brandao et al., 2017 ). SegNet has been shown to achieve compara- 

ble results to the FCN-8 in some applications but is a less memory 

intensive approach with fewer parameters to optimize. U-Net has 

previously demonstrated encouraging results on medical tasks and 

does also contain fewer parameters than the FCN-8, thus providing 

a lightweight alternative. We include these different networks in 

this study in order to compare what features are considered im- 

portant by different models and how uncertainty estimates differ 

among networks. The interested reader can find a detailed descrip- 

tion along with figures of the three models in Appendix A . 

2.2. Uncertainty in fully convolutional networks 

Despite their success on a number of different tasks, CNNs are 

not without flaws. One of these flaws, which becomes especially 

apparent for medical applications, is their inability to provide any 

notion of uncertainty in their prediction. When a physician is con- 

sidering the symptoms of a patient and contemplates what medi- 

cation to prescribe there might be several viable options, and the 

final decision might spell the difference between a fatal or favor- 

able outcome. Since the stakes are so high, physicians will have 

to weight the different options and reflect on which choice is most 

likely to have a favorable outcome. If a physician decides to consult 

a DSS based on a CNN, she or he would be presented with a rec- 

ommendation that has no indication as to how likely a desirable 

outcome is, thus making it difficult for the physician to trust the 

system. Although the softmax output regularly found at the end of 

a CNN is sometimes interpreted as model confidence, this is gener- 

ally ill-advised ( Gal and Ghahramani, 2016 ) and other approaches 

must be considered. 

In contrast, Bayesian models provide a framework which 

naturally includes uncertainty by modeling posterior distri- 

bution for the quantities in question. Given a dataset D ≡{
x n ∈ R 

D , y n ∈ R 

C 
}N 

n =1 
, where x n denotes an input vector and y n 

denotes its corresponding one-hot encoded label vector, the pre- 

dictive distribution of a Bayesian neural network for a new pair of 
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Fig. 1. Illustration of the Monte Carlo Dropout procedure. The same input image is 

passed through a trained FCN with Dropout applied T times, resulting in T different 

predictions. The standard deviation of each pixel is then estimated based on these 

T predictions. 

samples { x ∗ , y ∗ } can be modeled as: 

p(y ∗| x ∗, D) = 

∫ 
p(y ∗| x ∗, W ) p(W | x ∗, D) dW (1) 

In Eq. (1) , W refers to the weights of the model, p ( y ∗ | x ∗ , W ) is 

the softmax function applied to the output of the model, denoted 

by f W 

( x ∗ ), and p(W | x ∗, D) is the posterior over the weights which 

capture the set of plausible model parameters for the given data. 

Obtaining p ( y ∗ | x ∗ , W ) only requires a forward pass of the net- 

work, but the inability to evaluate the posterior of the weights an- 

alytically makes Bayesian neural networks computationally infeasi- 

ble. To sidestep the problematic posterior of the weights, ( Gal and 

Ghahramani, 2016 ) proposed to incorporate Dropout as a method 

for sampling sets of weights from the trained network to approxi- 

mate the posterior of the weights. The predictive distribution from 

Eq. (1) can then be approximated using Monte Carlo integration as 

follows: 

p(y ∗| x ∗, D) ≈ 1 

T 

T ∑ 

t=1 

Softmax ( f W 

∗
t 
(x ∗)) (2) 

where T is the number of sampled sets of weights and W 

∗
t is a 

set of sampled weights. In practice, the predictive distribution from 

Eq. (2) can be estimated by running T forward passes of a model 

with Dropout applied to produce T predictions and then computing 

the standard deviation over the softmax outputs of the T samples. 

We will refer to these uncertainty estimates as uncertainty maps. 

This method of utilizing Dropout for sampling from the posterior 

of the predictive distribution is referred to as Monte Carlo Dropout, 

and the method is illustrated in Fig. 1 . 

2.3. Interpretability in fully convolutional networks 

Another desirable property which CNNs lack is interpretability, 

i.e. being able to determine what features induce the network to 

produce a particular prediction. For instance, a physician might be 

interested in discerning what information the prediction of a given 

DSS is based on, and if it concurs with medical knowledge. A CNN- 

based DSS has no inherent way of providing such an explanation. 

However, several recent works have proposed different methods 

to increase network interpretability ( Zeiler and Fergus, 2014; Bach 

et al., 2015 ). In this paper, we evaluate and develop the Guided 

Backpropagation ( Springenberg et al., 2015 ) technique for FCNs on 

the task of semantic segmentation of colorectal polyps in order to 

Fig. 2. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image shown in the leftmost column. Best 

viewed in color. 
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Fig. 3. Precision and recall vs uncertainty plot for background and polyp class on 

the Endoscene test set. 

assess which pixels in the input image the network deems impor- 

tant for identifying polyps. We choose Guided Backpropagation as 

it is known to produce clearer visualizations of salient input pix- 

els compared to other methods ( Zeiler and Fergus, 2014; Simonyan 

et al., 2013 ). We refer to these visualizations of salient pixels as 

interpretability maps. 

The central idea of Guided Backpropagation is the interpretation 

of the gradients of the network with respect to an input image. 

Simonyan et al. (2013) exploited that, for a given image, the mag- 

nitude of the gradients indicate which pixels in the input image 

need to be changed the least to affect the prediction the most. By 

utilizing backpropagation ( Rumelhart et al., 1988; Werbos, 1974 ), 

they obtained the gradients corresponding to each pixel in the in- 

put such that they could visualize what features the network con- 

siders essential. Springenberg et al. (2015) argued that positive gra- 

dients with a large magnitude indicate pixels of high importance 

while negative gradients with a large magnitude indicate pixels 

which the networks want to suppress. If these negative gradients 

are included in the visualization of important pixels it might re- 

sult in noisy visualization of descriptive features. In order to avoid 

noisy visualizations the Guided Backpropagation procedure alters 

the backward pass of a neural network such that negative gradi- 

ents are set to zero in each layer, thus allowing only positive gradi- 

ents to flow backward through the network and highlighting pixels 

that the system finds important. 

2.4. Monte carlo guided backpropagation: Uncertainty in input 

feature importance 

To determine the uncertainty associated with an input feature’s 

importance for the prediction, we propose a novel approach in- 

spired by Monte Carlo Dropout combined with Guided Backprop- 

agation. In Section 2.2 we discussed CNNs inability to produce 

any notion of uncertainty and described Monte Carlo Dropout, 

which provides a method to obtain approximate measures of un- 

certainty for CNNs by utilizing Dropout during inference. Accom- 

panying a model’s prediction with an uncertainty estimate adds 

the option to assess if a particular prediction is highly certain or 

a case that could require further analysis from a human expert. In 

Section 2.3 we described Guided Backpropagation, a technique de- 

veloped to visualize the relative importance of input features for 

CNNs by considering the positive gradients from a backward pass 

through the network. But, determining the importance of the in- 

put features based on gradients from a single backward pass en- 

counters the same issue we discussed regarding decisions based 

on predictions from a single forward pass. How confident are we 

that these features are important for the decision of the network? 

Given a new sample x ∗ , we want to find the gradients that cor- 

respond to the input features, denoted by δ0 . Taking a similar ap- 

proach as in Section 2.2 , the approximate predictive distribution 

for the gradients of the input features is given by 

q ( δ
0 | x ∗) = 

∫ 
p( δ

0 | x ∗, θ) q ( θ) d θ. (3) 

Calculating p ( δ0 | x ∗ , θ) is done through the backpropagation algo- 

rithm, i.e. computing the gradients with respect to the output of 

the network and then using the chain rule to work backward to- 

ward the input gradients. Also, we modify the backward pass such 

that negative gradients are canceled, following the Guided Back- 

propagation procedure. For clear notation, we denote this proce- 

dure as ∇ θ f gb ( x ∗ ; θ), where ∇ θ indicate finding the gradients of 

each layer with respect to the parameters of the network and 

f gb ( x ∗ ; θ) is the prediction of the model with the modified back- 

ward pass. The predictive distribution in Eq. (1) can then be ap- 

proximated using Monte Carlo integration as follows: 

q ( δ
0 | x ∗) = 

1 

T 

T ∑ 

t=1 

∇ θ f gb (x ∗; W 

∗
t ) . (4) 

In practice, this amounts to performing T forward and backward 

passes with Dropout applied and computing the standard deviation 

over the gradients of each input pixel over all T samples. We refer 

to this method of estimating gradient uncertainty as Monte Carlo 

Guided Backpropagation. 

3. Experiments 

3.1. Experimental setup 

We evaluate our methods on a recent benchmark dataset for 

polyp segmentation, namely the EndoScene dataset ( Vázquez et al., 

2016 ), which consists of 912 RGB images obtained from colono- 

scopies of 36 patients. Each input image has a corresponding an- 

notated (labeled) image provided by physicians, where pixels be- 

longing to a polyp are marked in white and pixels belonging to the 

colon are marked in black. We consider the binary task of classi- 

fying each pixel as polyp or part of the colon (background class). 

Following the approach of Vázquez et al. (2016) we separate the 

dataset into a training, validation, and test set. The training set 

consists of 20 patients and 547 images, the validation set consists 

of 8 patients and 183 images, and the test set consists of 8 patients 

and 182 images. All RGB input images are normalized to the range 

[0,1]. All models were trained using ADAM ( Kingma and Ba, 2014 ) 
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Fig. 4. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image shown in the leftmost column. Best 

viewed in color. 

Table 1 

Results on the EndoScene test dataset. 

Model # Parameters(M) IoU background IoU polyp Mean IoU Global Accuracy 

SDEM ( Bernal et al., 2014 ) - 0.799 0.221 0.412 0.756 

U-Net 27.5 0.945 0.516 0.723 0.945 

SegNet 29.5 0.933 0.522 0.727 0.935 

FCN-8 ( Vázquez et al., 2016 ) 134.5 0.946 0.509 0.727 0.949 

FCN-8 134.5 0.946 0.587 0.767 0.949 

with a batch size of 10 and a cross-entropy loss. We use the val- 

idation set to apply early stopping by monitoring the polyp IoU 

score with a patience of 30. For performance evaluation, we calcu- 

late the Intersection over Union (IoU) metric and global accuracy 

(per-pixel accuracy) on the test set. For a given class c , prediction 

ˆ y i and ground truth y i , the IoU is defined as 

IoU (c) = 

∑ 

i ( ̂  y i == c ∧ y i == c) ∑ 

i ( ̂  y i == c ∨ y i == c) 
(5) 

where ∧ is the logical and operation and ∨ is the logical or opera- 

tion. 

Additionally, we evaluated our proposed method for estimating 

uncertainty in input feature importance on the 2015 MICCAI polyp 

detection challenge ( Bernal et al., 2017 ). As the test images of this 

dataset are of high quality and our proposed approach is mostly 

a visual technique, assessing our method on this data will provide 

further validation of our method. 

3.2. Quantitative and qualitative results 

Quantitative results In Table 1 we report our results for the FCN- 

8, SegNet and U-Net along with the results of previous works on 

polyp segmentation from both traditional machine learning and 

deep learning based approaches. The traditional machine learn- 

ing method computes a histogram based on the pixel values and 

uses peaks and valleys information from the histogram to per- 

form segmentation. It is referred to as the Segmentation from En- 

ergy Maps (SDEM) algorithm ( Bernal et al., 2014 ). For the deep 

learning approach, segmentation is performed using the FCN-8, 

but without Batch Normalization or transfer learning. This ap- 

proach is referred to as FCN-8 in Table 1 . The results show that 

all deep learning approaches significantly outperform the more 

traditional machine learning approach, and the difference in per- 

formance between our implementation of the FCN-8 and that of 

Vázquez et al. (2016) demonstrates that including recent advances 

in deep learning methodology can improve performance. 

Qualitative results Fig. 2 (b) and 4 (b) displays some qualita- 

tive results on the test data for the FCN-8, SegNet and U-Net. 

Fig. 2 shows a typical example where a large, elliptical polyp is lo- 

cated with high precision by all three models. In Fig. 4 we present 

a more challenging example where all models fail to locate the 

small polyp present in the image. Interested readers can find addi- 

tional results in Appendixs B and C . 

3.3. Modeling uncertainty in prediction 

Figs. 2 (c) and 4 (c) present examples of uncertainty estimation 

for the FCN-8, SegNet and U-Net, respectively, using Monte Carlo 

Dropout. These uncertainty maps are obtained by sampling 10 pre- 

dictions from each model with a dropout rate of 0.5 and estimat- 

ing the standard deviation for each pixel. Pixels displayed in bright 

green are associated with high uncertainty while pixels displayed 

in dark blue are associated with low uncertainty. 

The example shown in Fig. 2 shows that all models have high 

confidence for most pixels in their prediction, with the exception 

of pixels around the border of the polyp itself. This is reasonable, 

as it is difficult to assess exactly where the polyp starts and the 

colon ends. In the example shown in Fig. 4 , where all models make 



6 K. Wickstrøm, M. Kampffmeyer and R. Jenssen / Medical Image Analysis 60 (2020) 101619 

Fig. 5. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the MICCAI dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 6. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the Endoscene dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 7. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the MICCAI dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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inaccurate predictions, the uncertainty estimates look notably dif- 

ferent, with large regions of uncertainty for all three models. The 

examples shown in Figs. 2 and 4 demonstrate how seemingly simi- 

lar predictions can have different uncertainty estimates for the dif- 

ferent types of networks investigated in this work, and that er- 

roneous predictions show distinctively different uncertainty esti- 

mates than correct predictions. 

Fig. 3 displays how precision and recall is related to uncer- 

tainty in predictions. It shows the overall precision and recall for 

each class on the Endoscene test dataset when pixel with a mean- 

class uncertainty above a certain threshold are excluded. The es- 

timated uncertainty for each class have been normalized into val- 

ues between 0 and 1. Results in Fig. 3 (a) display how precision 

decreases as more pixel predictions with high uncertainty are in- 

cluded. This connection between precision and uncertainty agrees 

with the qualitative examples in Figs. 2 and 4 discussed above. Re- 

sults in Fig. 3 (b) show how recall slightly increases for the polyp 

class at a low uncertainty threshold, but then remains unchanged 

for both classes. The interested reader can find a similar experi- 

ment on the MICCAI dataset in Appendix C . 

3.4. Modeling input feature importance 

Figs. 2 (d) and 4 (d) show examples where Guided Backpropa- 

gation has been used to analyze the FCN-8, SegNet and U-Net, re- 

spectively. Pixels displayed in bright green are associated with pix- 

els that are important to the prediction of the model while pixels 

displayed in blue are associated with pixels that are less important 

to the final prediction. 

Fig. 2 indicates that all models are considering the edges of the 

polyp to make their prediction, where particularly the leftmost and 

bottom edge of the polyp is highlighted as important by all mod- 

els. Fig. 4 , where all models fail to locate the polyp, displays more 

disagreement between the models as to what pixels are important. 

3.5. Modeling uncertainty in input feature importance 

In order to focus on the new methodology we only use one 

model to evaluate our proposed method. The overall best perform- 

ing segmentation model, FCN-8, was chosen to evaluate the pro- 

posed methodology for estimating uncertainty in input feature im- 

portance and demonstrate its merit. Figs. 5–7 presents examples of 

uncertainty estimation for input feature importance for the FCN-8 

using Monte Carlo Guided Backpropagation. These results are ob- 

tained by sampling 10 gradient estimates from each model with a 

dropout rate of 0.5. The figures display: (a) the input image; (b) 

the ground truth; (c) prediction with uncertainty overlaid; (d) in- 

put feature importance; and (e) uncertainty in input feature im- 

portance. For the uncertainty in input feature importance results, 

pixels colored green indicate that the features are important for 

the prediction of polyps and that the model is certain of its impor- 

tance. Pixels colored red indicate features that might be important 

for the prediction of polyps but the model is uncertain of its im- 

portance. Examples shown in Figs. 5 and 7 are from the test set of 

the MICCAI dataset while the example shown in Fig. 6 is from the 

test set of the Endoscene dataset. Interested readers can find addi- 

tional examples of uncertainty estimation for input feature impor- 

tance in Appendix B . 

Fig. 5 displays an example where the FCN-8 makes a successful 

segmentation. The interpretability map in Fig. 5 (d) indicates that 

there are two regions of importance in the input image, one cor- 

responding to the polyp and one region towards the leftmost part 

of the image. However, the uncertainty in the input feature impor- 

tance map in Fig. 5 (e) shows that the model is uncertain of the 

leftmost feature’s importance, while the features corresponding to 

the polyp itself have a high degree of certainty. 

Fig. 6 shows another example where the FCN-8 makes a suc- 

cessful segmentation, but also highlight important input features 

towards the leftmost part of the image, in addition to the polyp 

itself. Fig. 6 (e) displays that the FCN-8 is highly confident in the 

importance of the features corresponding to the polyp itself, but 

indicate a high degree of uncertainty for the highlighted regions 

towards the leftmost part of the image. 

Fig. 7 exhibits an example from the MICCAI dataset where the 

FCN-8 fails to locate the polyp present in the image, but instead 

segments a large portion of the colon as polyp. While the inter- 

pretability maps in Fig. 7 (d) show large regions of important pix- 

els, it is evident from Fig. 7 (e) that none of the regions have 

a high degree of importance. As the prediction with uncertainty 

overlayed in Fig. 7 (e) also indicates regions of uncertainty, practi- 

tioners would be wary to trust the model’s prediction in this case. 

4. Conclusion 

In this work we have demonstrated how DSSs based on deep 

learning can be interpretable and provide uncertainty estimates 

with their predictions. Moreover, we presented a novel method 

for estimating uncertainty in input feature importance and demon- 

strated how this technique can be used to model uncertainty in 

input pixel importance. Our results demonstrate that the models 

considered in these experiments exploit edge and shape informa- 

tion of polyps in order to make their predictions and that uncer- 

tainty differs significantly between false and correct predictions. 
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Appendix A. Network details 

In order to perform per pixel predictions, FCNs employ an 

encoder-decoder architecture and are capable of end-to-end learn- 

ing. The encoder network extracts useful features from an image 

and maps it to a low-resolution representation. The decoder net- 

work is tasked with mapping the low-resolution representation 

back into the same resolution as the input image. Upsampling in 

FCNs is performed using a fixed upsampling approach, like bi- 

linear or nearest neighbor interpolation, or by learning the upsam- 

pling procedure as part of the model optimization via transposed 

convolutions. Learned upsampling filters add additional parameters 

to the network architecture, but tend to provide better overall re- 

sults ( Shelhamer et al., 2017 ). Upsampling can further be improved 

by including skip connections, which combine coarse level seman- 

tic information with higher resolution segmentation from previous 

network layers. Due to the lack of fully connected layers, inference 

can be performed on images of arbitrary size. 

A1. FCN-8 

The FCN-8 was introduced by Shelhamer et al. (2017) and con- 

sists of an encoder network and a decoder network, where the en- 

coder network is based on the VGG-16 architecture ( Simonyan and 

Zisserman, 2015 ) and consists of five encoders. The decoder net- 

work consists of three decoders. Dropout ( Srivastava et al., 2014 ), a 

regularization technique that randomly set units in a layer to zero, 

is included between all layers of the first decoder. Upsampling is 
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Fig. A.8. An illustration of the FCN-8. Color codes description: Blue - Convolu- 

tion (3x3), Batch Normalization and ReLU; Yellow - Upsampling; Pink - Summing; 

Red - Pooling (2x2); Green - Soft-max. Dropout was included as proposed by 

Simonyan and Zisserman (2015) (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.). 

Fig. A.9. An illustration of the U-Net. Color codes description: Blue - Convolution 

(3x3), Batch Normalization and ReLU; Green - Soft-max; Yellow arrow - Upsam- 

pling; Black arrow - Concatenate; Red arrow - Pooling (2x2) (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.). 

performed using transposed convolutions at the end of each en- 

coder and skip connections are included between the three central 

encoders and the decoders. Note that we have added Batch Nor- 

malization ( Ioffe and Szegedy, 2015 ) in our implementation and 

that the encoder weights are initialized with pretrained weights 

from a VGG16 model ( Simonyan and Zisserman, 2015 ) that was 

previously trained on the ImageNet dataset ( Deng et al., 2009 ). 

A2. U-Net 

One of the first networks to build upon FCNs was the U- 

Net ( Ronneberger et al., 2015 ), which is comprised of an encoder 

network consisting of five encoders and a decoder network con- 

sisting of four decoders. U-Net introduced an alternative method 

to recover the resolution of the data where the feature maps pro- 

duced in the fifth encoder is upsampled by a factor of two using 

transposed convolution and concatenated with the feature maps 

produced by the fourth encoder. These combined feature maps are 

passed into the first decoder, which in turn is upsampled and con- 

catenated with the feature maps of the third encoder. This process 

is repeated until the resolution of the input feature map is recov- 

ered. The final decoder is followed by a 1 × 1 convolutions that 

maps the feature vector into the desired number of classes and a 

softmax function. Dropout is applied after each layer of the final 

encoder. We included Batch Normalization after each layer, except 

for layers preceding a transposed convolution and the final layer. 

A3. SegNet 

Both the FCN-8 and the U-Net rely on transposed convolutions 

to recover feature maps with the same resolution as the input fea- 

tures. SegNet ( Badrinarayanan et al., 2017 ), instead, presents an- 

other option and is made up of a symmetrically structured en- 

coder decoder network, where the encoder network consists of five 

encoders based on the VGG-16 ( Simonyan and Zisserman, 2015 ) 

and the decoder consists of five decoders. The decoder network is 

identical to the encoder network but with the max-pooling opera- 

tion replaced by a max-unpooling operation. When a feature map 

is downsampled the max-pooling indices are stored and used at 

a later stage to perform non-linear upsampling, a procedure with 

several advantages. Firstly, it produces sparse feature maps that are 

computationally attractive and implicit feature selectors. Secondly, 

it removes the need to learn additional filter for upsampling, thus 

reducing the number of parameters in the model. Dropout was 

included after the three central encoders and decoders inspired 

by Kendall et al. (2015) . 

Fig. A.10. An illustration of SegNet, originally obtained from Badrinarayanan et al. (2017) . Color codes description: Blue - Convolution (3x3), Batch Normalization and ReLU; 

Green - Soft-max; Yellow arrow - Upsampling; Black arrow - Concatenate; Red arrow - Pooling (2x2) (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.). 
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Appendix B. additional qualitative results 

Figs. B.11–B.13 display additional results on test images from the Endoscene dataset for the FCN-8, SegNet and U-Net, respectively. 

Each row represents, from top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. Results were 

obtained using the same procedure as described in the main paper. 

Figs. B.14–B.16 display additional results of estimating uncertainty in input feature importance for the FCN-8. These results are also 

obtained following the same procedure described in the main paper. 

Fig. B.11. Figure displays FCN-8’s predictions, the uncertainty map associated with the predictions, and the input features the network deems important. Each row represents, 

from top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. White pixels are classified as polyps and black pixels are classified 

as background class. For the uncertainty maps, dark blue pixels are associated with low uncertainty and bright green pixels are associated with high uncertainty. For the 

interpretability maps, bright green pixels are considered important to the prediction of the network. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. B.12. Figure displays SegNet’s predictions, the uncertainty map associated with the predictions, and the input features the network deems important. Each row rep- 

resents, from top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. White pixels are classified as polyps and black pixels are 

classified as background class. For the uncertainty maps, dark blue pixels are associated with low uncertainty and bright green pixels are associated with high uncertainty. 

For the interpretability maps, bright green pixels are considered important to the prediction of the network. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. B.13. Figure displays U-Net’s predictions, the uncertainty map associated with the predictions, and the input features the network deems important. Each row represents, 

from top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. White pixels are classified as polyps and black pixels are classified 

as background class. For the uncertainty maps, dark blue pixels are associated with low uncertainty and bright green pixels are associated with high uncertainty. For the 

interpretability maps, bright green pixels are considered important to the prediction of the network. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. B.14. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the MICCAI dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. B.15. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the Endoscene dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. B.16. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the Endoscene dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Appendix C. Additional Qualitative Results on MICCAI dataset 

Fig. C.17 and C.18 display additional results on test images from the MICCAI dataset for the FCN-8, SegNet and U-Net, respectively. 

Results were obtained using the same procedure as described in the main paper. Fig. C.19 displays how precision and recall is related to 

uncertainty in predictions on the MICCAI test data, similar to the experiment described in Section 3.3 . 

Fig. C.17. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image from the MICCAI dataset shown in 

the leftmost column. Best viewed in color. 

Fig. C.18. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image from the MICCAI dataset shown in 

the leftmost column. Best viewed in color. 
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Fig. C.19. Precision and recall vs uncertainty plot for background and polyp class on the MICCAI test set. 
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Abstract

Despite the significant improvements that self-supervised representation learning has led to when
learning from unlabeled data, no methods have been developed that explain what influences the
learned representation. We address this need through our proposed approach, RELAX, which is
the first approach for attribution-based explanations of representations. Our approach can also
model the uncertainty in its explanations, which is essential to produce trustworthy explanations.
RELAX explains representations by measuring similarities in the representation space between an
input and masked out versions of itself, providing intuitive explanations and significantly outper-
forming the gradient-based baselines. We provide theoretical interpretations of RELAX and conduct
a novel analysis of feature extractors trained using supervised and unsupervised learning, provid-
ing insights into different learning strategies. Moreover, we conduct a user study to assess how well
the proposed approach aligns with human intuition and show that the proposed method outper-
forms the baselines in both the quantitative and human evaluation studies. Finally, we illustrate
the usability of RELAX in several use cases and highlight that incorporating uncertainty can be
essential for providing faithful explanations, taking a crucial step towards explaining representations.

Keywords: representation learning, explainability, uncertainty, self-supervised learning

1 Introduction

Interpretability is of vital importance for design-
ing trustworthy and transparent deep learning-
based systems (Pedreschi et al, 2019; Tonekaboni
et al, 2019), and the field of explainable artifi-
cial intelligence (XAI) has made great improve-
ments over the last couple of years (Antoran
et al, 2021; Schulz et al, 2020). However, there
exists no methods for attribution-based explana-
tions of representations, despite the tremendous

advances in representation learning using e.g self-
supervised learning (Chen et al, 2020; Caron et al,
2020; He et al, 2020). This lack of explainabil-
ity makes representation learning less trustworthy
and dependable, and there is therefore a need
for representation learning explainability. To be
able to explain learned representations would pro-
vide crucial information in several use-cases. For
instance, a typical clustering approach is apply-
ing K-means to the representation produced by a
feature extractor trained on unlabeled data (Lin

1
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Fig. 1 Conceptual illustration of RELAX. An image is
passed through an encoder that produces a new vector
representation of the image. Similarly, masked images are
embedded in the same latent space. Input feature impor-
tance is estimated by measuring the similarity between the
representation of the unmasked input with the representa-
tions of numerous masked inputs.

et al, 2021; Wen et al, 2020; Yang et al, 2017), but
there is no method for investigating which features
are characteristic for the members of a cluster.

Representation learning explainability would
also allow for a new approach for evaluating rep-
resentation learning frameworks. Representation
learning frameworks are typically evaluated by
training simple classifiers on the representation
produced by the feature extractor or through a
downstream task (Chen et al, 2020; He et al, 2020;
Caron et al, 2020). However, such approaches pro-
vide only limited information about the features
used by the models, and might ignore important
distinctions between them. For instance, a similar
accuracy on some downstream task does not nec-
essarily equate to the representations being based
on the same features. This highlights the need for
an explanatory framework for representations, as
many of the current evaluation methods are not
sufficient for illuminating differences in the what
features are used by different feature extractors.

However, any explanatory framework can
make over or under-confident explanations. Hence,
uncertainty is a key component for designing
trustworthy models, since trusting an explanation
without knowing the uncertainty of the expla-
nation might lead to an unjustified trust in the
model. A recent survey where clinicians were asked
what was necessary for making trustworthy mod-
els, found that explainability alone was not enough
and that uncertainty was also of high importance

(Tonekaboni et al, 2019). Our experiments show
that uncertainty can be used to increase the faith-
fulness of explanations, by removing uncertain
parts of an explanations. Nevertheless, little work
has been done on uncertainty in explanations of
representations.

In this work, we present the first framework
for explaining representations, entitled REpresen-
tation LeArning eXplainability (RELAX), which
is also equipped with uncertainty quantification
with respect to its own explanations. The frame-
work is illustrated in Figure 1. RELAX measures
the change in the representation of an image
when compared with masked versions of itself. The
core idea is that when informative parts of the
input are masked out, the representation should
change significantly. When averaging over numer-
ous masks, RELAX reveals the important regions
of the input. RELAX is an intuitive and highly
versatile framework that can explain any repre-
sentation, given a suitable similarity function and
masking strategy. To provide insight into the geo-
metrical properties of RELAX, we show that the
importance of a pixel can be seen as the result
of a scoring function based on an inner product
between the input and the mean of the masked
representations in the representation space. Figure
2 shows an example where RELAX is used to
investigate the explanations and the correspond-
ing uncertainties for a selection of widely used fea-
ture extraction models, which demonstrate that
RELAX is a versatile framework for highlighting
the emphasis that feature extractors put on pixels
and regions in the input (top row).

Our contributions are:

• RELAX, a novel framework for explaining rep-
resentations that also quantifies its uncertainty.

• A threshold approach called U-RELAX that
removes uncertain parts of an explanation and
increases the faithfulness of the explanations.

• A theoretical analysis of the framework and an
estimation of the number of masks needed to
obtain a given level of confidence.

• A comprehensive experimental section that
compares widely used supervised and self-
supervised feature extraction models and eval-
uates a number of hyperparameters.

• A user study that examines how well the expla-
nations align with human evaluation.
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Fig. 2 The figure shows the RELAX explanation and its uncertainty for the representation of the leftmost image for
three widely used feature extractors. The first row displays the explanations for the representation and the second row
shows the uncertainty associated with the different explanations. Red indicates high values and blue indicates low values.
In this example, two objects are present in the image, one bird prominently displayed in the foreground, and another
more inconspicuous bird in the background. The plots show that all models emphasize the bird in the foreground with low
uncertainty. On the other hand, there is more disagreement on how much emphasis to put on bird in the background, also
with a differing degree of uncertainty. The example illustrates that different feature extractors utilize different features in
the representation of the image, and with different amounts of uncertainty. The image is taken from VOC (Everingham
et al, 2009).

• Two use cases for RELAX. First, RELAX
enables explainability in state-of-the-art incom-
plete multi-view clustering. This illustrates the
usability of RELAX in recent cutting-edge
research. Second, RELAX allows for explana-
tion of classic computer vision techniques such
as Histogram of Oriented Gradients (HOG).
This demonstrates that RELAX is a flexible
framework, which is capable of explaining rep-
resentations produced by any method, not just
those produced by deep neural networks.

Code for RELAX is available at https://gith
ub.com/Wickstrom/RELAX.

2 Related Work

In this section, we present the previous works that
are most closely related to our work. The focus
will be on attribution-based explanations where
each input feature is assigned an importance.
Therefore, we will not consider other explainabil-
ity methods such as example-based explanations

(Koh and Liang, 2017; Karimi et al, 2020) or
global explanations (Mordvintsev et al, 2015).

Occlusion-based explainability. There
exist a number of occlusion-based explainability
methods. Systematically occluding an image with
a gray rectangle and then measuring the change
in activations could be used to provide coarse
explanations for CNNs (Zeiler and Fergus, 2014).
A more sophisticated occlusion approach can
improve explanations, in which smooth masks are
generated and accumulated to produce explana-
tions for the prediction of a model (Petsiuk et al,
2018). A slightly different approach is meaningful
perturbations, where a spatial perturbation mask
that maximally affects the model’s output is
optimized (Fong and Vedaldi, 2017). A follow up
work proposed extremal perturbations, where a
perturbation can be considered extremal if it has
maximal effect on the network’s output among
all perturbation of a given, fixed area (Fong et al,
2019). On a different note, an information theo-
retic approach to XAI has been proposed, where
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noise is injected in order to measure the informa-
tion in different regions of the input (Schulz et al,
2020). Similarly, Kolek et al (2021) introduced
a rate-distortion perspective to explainability.
Note that none of these methods are capable of
providing explanations for representations.

Explaining representations. Attribution-
based explainability methods are extensively used
to explain specific sample predictions (Bach et al,
2015; Petsiuk et al, 2018; Schulz et al, 2020). How-
ever, to the best of our knowledge, no attribution-
based explainability method exists for explaining
representations. While initial attempts have been
made to explain representations such as the Con-
cept Activation Vectors (Kim et al, 2018), which
uses directional derivatives to quantify the model
prediction’s sensitivity, these explanations only
relate the representations to high-level concepts
and require label information. Similarly, network
dissection has been proposed to interpret repre-
sentations (Bau et al, 2017), but requires pre-
defined concepts and label information without
indicating the importance of individual pixels. A
different direction is designing models that have
the capability to explain their own decisions built
into the system (Chen et al, 2019; Alvarez-Melis
and Jaakkola, 2018). Two drawbacks of such an
approach is that it might lead to models with
weaker performance and does not explain repre-
sentations. Another approach maps semantic con-
cepts to vectorial embedding (Fong and Vedaldi,
2018). However, this requires segmentation masks
that are not available in the unsupervised set-
ting. Representations have also been investigated
from learnability and describability perspectives
(Laina et al, 2020), but this was achieved through
human-annotators that are typically not available.
Lastly, the inspectability of deep representations
have been investigated through an information
bottleneck approach (Losch et al, 2021), but with
a focus on segmentation and predefined concepts.

Uncertainty in explainability. Modeling
uncertainty in explainability is a rapidly evolv-
ing research topic that is receiving an increasing
amount of attention. One of the earliest works
proposed to use Monte Carlo Dropout (Gal and
Ghahramani, 2016) in order to estimate the uncer-
tainty in gradient-based explanations (Wickstrøm
et al, 2018, 2020), which was later followed by

a similar approach that was based on Layer-
wise Relevance Propagation (Bykov et al, 2020).
Uncertainties that are inherent in the widely used
LIME method (Ribeiro et al, 2016) have been
explored (Zhang et al, 2019). Also, ensemble-
based approaches, where uncertainty estimates
are obtained by taking the standard deviation
across the ensemble, have also been proposed
(Wickstrøm et al, 2021). Recently, Counterfactual
Latent Uncertainty Explanations (CLUE) was
presented (Antoran et al, 2021), where uncertainty
estimates from probabilistic models can be inter-
preted. Nevertheless, none of these approaches
were designed for quantifying the uncertainty in
explanations of representations, as they either
require label information or are computationally
impractical.

3 Representation Learning
Explainability

We present RELAX, our proposed method for
explaining representations, equipped with uncer-
tainty quantification. Furthermore, we leverage
RELAX’s ability to quantify uncertainty and
introduce as a new concept a method for filter-
ing out uncertain parts of the explanations, which
we entitle U-RELAX. This is important, as uncer-
tain explanations might give an unwarranted trust
in the model. Our framework is inspired by RISE
(Petsiuk et al, 2018). However, RISE was designed
for explaining predictions and is not transfer-
able for explaining representations or quantifying
uncertainty. Note that the proofs of the theorems
in this section are given in Appendix C.

3.1 RELAX

The central idea of RELAX is that when infor-
mative parts are masked out, the representation
should change significantly. Let X ∈ RH×W rep-
resent an image1 consisting of H ×W pixels, and
f denote a feature extractor that transforms an
image into a representation h = f(X) ∈ RD. To
mask out regions of the input, we apply a stochas-
tic mask M ∈ [0, 1]H×W , where each element Mij

is drawn from some distribution.

1To enhance readability, we do not include image channels,
but this can be easily included by letting the masks span the
channel dimension.
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The stochastic variable h̄ = f(X⊙M), where
⊙ denotes element-wise multiplication, is a rep-
resentation of a masked version of X. Moreover,
we let s(h, h̄) represent a similarity measure
between the unmasked and the masked represen-
tation. Intuitively, h and h̄ should be similar if M
masks non-informative parts of X. Conversely, if
informative parts are masked out, the similarity
between the two representations should be low.

Motivated by this intuition, we define the
importance Rij of pixel (i, j) as:

Rij = EM

[
s(h, h̄)Mij

]
. (1)

Equation (1) is core to our framework as it com-
putes the importance of a pixel (i, j) as a weighted
similarity score for masked versions of a given
image. However, integrating over the entire sup-
port of M is not computationally feasible. There-
fore, we approximate the expectation in Equation
(1) by sampling N masks and computing the
sample mean:

R̄ij =
1

N

N∑

n=1

s(h, h̄n)Mij(n). (2)

Here, h̄n is the representation of the image masked
with mask n, andMij(n) the value of element (i, j)
for mask n. The explanations of RELAX are com-
puted through Equation (2), and an illustration
of RELAX is given in Figure 1. As a similarity
measure we use the cosine similarity

s(h, h̄) =
⟨h, h̄⟩
∥h∥∥h̄∥ , (3)

where ∥·∥ denotes the Euclidean norm of a vec-
tor. There are several motivations for this choice.
First, Liu et al (2021) argued that angular infor-
mation preserves the essential semantics in neural
networks, in contrast to magnitude information.
Since the cosine kernel normalizes the represen-
tation, essentially discarding magnitude informa-
tion, such a similarity measure would be suited
to capture key information encoded in the rep-
resentations. Second, the cosine kernel does not
rely on hyperparameters that must be selected,
which may be beneficial in an unsupervised set-
ting where we cannot do cross validation. Third,
a large portion of feature extractors trained using
self-supervised learning use the cosine kernel in
their loss function (Chen et al, 2020; Chen and
He, 2021). Therefore, it is the natural choice for

measuring similarities in their latent space. How-
ever, based on the two first points, the cosine
kernel is still suitable for models trained without
the cosine kernel. Lastly, other alternatives for the
kernel functions, such as the radial basis function
or polynomial kernel, requires careful tuning of
hyperparameters. We consider an investigation of
such alternatives and their hyperparameters as a
direction for future research.

Note that we recognize that the masking strat-
egy can introduce a shift in the distribution of
pixel intensities. However, in our experiments, we
observed that this potential shift did not impact
the explanations. An experiment where the distri-
bution is approximately preserved is included in
Appendix A.
Masking distribution. There are several ways
to sample the masks in Equation (2), for instance
by letting each Mij(n) be iid. Bernoulli. However,
sampling masks with the same size as the input
results in a massive sample space, and simultane-
ously makes it challenging to create smooth masks
that cover different portions of the image 2.

To avoid these problems, we generate masks as
suggested by Petsiuk et al (2018). Binary masks of
smaller size than the input image are generated,
where each element of these smaller masks is sam-
pled from a Bernoulli distribution with probability
p. These masks are then upsampled using bilin-
ear interpolation to the same size as the image.
The distribution for Mij is then a continuous dis-
tribution between 0 and 1. Specifically: we sample
N binary masks, each with size h × w, where
h < H and w < W . We upsample these masks to
size (h + 1)CH × (w + 1)CW , where CH × CW =
⌊H/h⌋×⌊W/w⌋ is the size of the cell in the upsam-
pled masks. Lastly, we crop the final masks of size
H×W randomly from the (h+1)CH ×(w+1)CW

masks.
Number of masks required. In order to

minimize the computational cost of RELAX, we
derive the following lower bound on the number
of masks required for a certain estimation error.

Theorem 1. Suppose s(·, ·) is bounded in (0, 1).3

Then, for any δ ∈ (0, 1) and t > 0, if N in

2See Appendix B for evaluation of masking strategies.
3This holds for the cosine similarity, since the represen-

tations considered are assumed to be ReLU outputs (non-
negative).
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Equation (2), satisfies:

N ≥ − ln(δ/2)

2t2
, (4)

we have P(|R̄ij −Rij | ≥ t) ≤ δ.

Theorem 1 states that if N satisfies Equation
(4), we are able to estimate Rij to an absolute
error of less than t with probability at least 1 −
δ. See Appendix C for proof and verification of
bound. In all of our experiments, we generate 3000
masks, which ensures an estimation error below
0.01 with a probability of 0.99.

RELAX from a kernel perspective. To
provide insights into the geometrical properties
of RELAX, we present a kernel viewpoint of
Equation (2).

Theorem 2. Suppose the similarity function
s(·, ·) is a valid Mercer kernel (Mercer, 1909).
The importance R̄ij then acts as a linear scor-
ing function between h, and the weighted mean of
h̄1, . . . , h̄N , in the reproducing kernel Hilbert space
(RKHS) induced by s(·, ·). That is:

R̄ij = ⟨ϕ(h), 1

N

N∑

n=1

ϕ(h̄n)Mij(n)⟩H, (5)

where ϕ : Rd → H is the mapping to the RKHS,
H, induced by the kernel s(·, ·), and ⟨·, ·⟩H is the
inner product on H.

Theorem 2 provides interesting insight, as
many scoring functions are based on inner-
products, e.g. between points of interest and
class-conditional means (e.g., Fisher discriminant
analysis, Bayes classifier under Gaussian distribu-
tions with equal covariance structure). This means
that even though RELAX is a novel approach,
it is founded in well-known statistical concepts
(McCullagh and Nelder, 1989).

Additionally, RELAX has the following inter-
pretation from non-parametric statistics

Theorem 3. Suppose s(·, ·) is a valid Parzen
window (Theodoridis and Koutroumbas, 2009).
Then:

R̄ij ∝ pij(h), (6)

where pij(·) is a weighted Parzen density esti-
mate (Parzen, 1962) of the density of the masked
embeddings:

pij(·) =
1

∑N
n′=1 Mij(n′)

N∑

n=1

s(·, h̄n)Mij(n). (7)

A high RELAX score is obtained when the
unmasked representation h is close to mean of
masked representations, which aligns well with out
intuition for RELAX.

3.2 Uncertainty in Explanations

Trusting an explanation without a notion of uncer-
tainty can lead to an unjustified faith in the model.
Therefore, we introduce an approach that allows
uncertainty quantification to be incorporated into
the RELAX framework. Our intuition for this
approach stems from what happens when infor-
mative and uninformative parts are masked out.
If informative parts are masked out, the similar-
ity score will not only drop, but drop with varying
degree. If there is a big variation in the similarity
scores for a given pixel, it indicates that the expla-
nation for said pixel is uncertain. Based on this
intuition, we propose to estimate the uncertainty
in input feature importance as:

Uij = VarM[s(h, h̄)Mij ]. (8)

Again, it is not feasible to integrate over all of M
and Uij is therefore approximated by the sample
variance:

Ūij =
1

N

N∑

n=1

(s(h, h̄n)− R̄ij)
2Mij(n). (9)

Equation (9) estimates the uncertainty of the
RELAX-score for pixel (i, j) by measuring the
difference between the similarity score and the
explanations. To estimate Equation (9), we must
first estimate the importance of a pixel. The uncer-
tainty estimates provided in Equation (9) can be
thought of as measuring the spread of pixel impor-
tance values in relation to importance estimated
using Equation (2). There are several benefits of
our method. First, it requires no labels, which
is sometimes used in other uncertainty estima-
tion methods (Antoran et al, 2021). Secondly, it
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avoids computationally intense sampling methods,
for instance through Monte Carlo sampling (Teye
et al, 2018; Gal and Ghahramani, 2016). Lastly,
the uncertainty estimation can be combined with
the computation of Equation (2), as explained in
Section 3.4.

3.3 U-RELAX: Uncertainty Filtered
Explanations

All parts of an explanation do not have the same
level of uncertainty associated with it. In such
cases, it could be beneficial to remove input fea-
tures that are indicated as important but also have
high uncertainty, while only keeping important
input features with low uncertainty. This could
increase the faithfulness of an explanation and
provide clearer explanations. Therefore, we pro-
pose a thresholding approach where explanations
with high uncertainty are removed from the expla-
nation. We define our U-RELAX importance score
as:

R̄′
ij =

{
R̄ij , if Ūij < ϵ

0, otherwise
, (10)

where ϵ is a threshold chosen by the user. Essen-
tially, Equation (10) provides the possibility to
only consider explanations of a particular cer-
tainty level, depending on ϵ. We propose two ways
of choosing epsilon. First as:

ϵ =
γ

HW

H∑

i

W∑

j

Ūij , (11)

that is, the average uncertainty for a particular
image, weighted by hyperparameter γ. This pro-
vides a simple and intuitive way of selecting the
threshold, which is motivated by only wanting
to consider pixels that have high importance and
low uncertainty. Alternatively, ϵ can be computed
by taking the median uncertainty for a particular
image.

We refer to this uncertainty-filtered version of
RELAX as U-RELAX. Figure 3 shows an exam-
ple of the U-RELAX explanation compared with
the RELAX explanation. In this case, the empha-
sis on the bird in the background is removed as
the uncertainty was too high for this part of the
explanation.

3.4 One-Pass Version of RELAX

Computing Equation (9) requires first comput-
ing Equation (2), since the uncertainty estima-
tion requires an estimate of the importance in
order to be computed. This introduces additional
computational overhead. We refer to computing
Equation (2) followed by Equation (9) as the
two-pass version of RELAX. To improve compu-
tational efficiency, we propose an online version
of RELAX where importance and uncertainty is
computed simultaneously, which we refer to as the
one-pass version of RELAX. One-pass RELAX
is based on well-known estimators of running
mean and variance (West, 1979). Importance is
computed as:

R̄
(n)
ij =R̄

(n−1)
ij +

Mij(n)
s(h, h̄n)(n)− R̄

(n−1)
ij

Wij(n)
,

(12)

where R̄
(n)
ij is the importance of pixel (i, j) at

mask n, and Wij(n) =
∑n

n′=0 Mij(n
′) is the sum

of the mask elements (i, j) for the first n masks.
Uncertainty is computed as:

Ū
(n)
ij =Ū

(n−1)
ij +Mij(n)(s(h, h̄n)−

R̄
(n)
ij )(s(h, h̄n)− R̄

(n−1)
ij ),

(13)

where Ū
(n)
ij is the uncertainty in the importance

of pixel (i, j) after the nth mask. Pseudo-code is
shown in Algorithm 1. All experiments are car-
ried out using the one-pass version of RELAX.
See Appendix D for a comparison of the one-pass
versus two-pass version.

4 Evaluation and Baseline

4.1 Evaluation of Explanations

Evaluation is a developing subfield of XAI, and a
unifying score is not agreed upon Doshi-Velez and
Kim (2017), even more so for explanations of rep-
resentations. To evaluate the explanations, we use
two of the most widely used explainability evalu-
ation scores, namely localisation and faithfulness
(Samek et al, 2017; Petsiuk et al, 2018; Fong et al,
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Input RELAX U-RELAX

Fig. 3 Comparison of RELAX and U-RELAX on an image taken from PASCAL VOC, where red indicates high importance
and blue indicates low importance. In this case, the emphasis on the bird in the background is removed as the uncertainty
was to high for this part of the explanation.

Algorithm 1 Pytorch-like pseudocode for
RELAX.

# f - feature extractor
# X[1,C,H,W]- input image
# R[H,W] - importance (init as zeros)
# U[H,W] - uncertainty (init as zeros)
# W[H,W] - sum of masks (init with
# small positive number)<
for mask in mask_generator: # [1,1,H,W]

W += mask
h, h_mask = f(x), f(x*mask)
s = cosine_similarity(h, h_mask)
R_prev = R
R += m*(s-R)/W
U += (s-R)*(s-R_prev)*m

return R, U/(W-1)

2019; Schulz et al, 2020). All scores are computed
using the Quantus toolbox 4.

Localisation. The explanations should put
emphasis on input regions corresponding to the
objects present in an image. Localisation mea-
sures to which degree the explanation agrees with
the ground truth location of an object. High per-
formance in localisation indicates that the expla-
nations often align with the bounding boxes or
segmentation masks provided by human annota-
tors. We consider three localisation scores, the
pointing game (Zhang et al, 2017), top-k inter-
section, and relevance rank accuracy (Arras et al,
2022). The pointing game measures whether the
pixel with the highest importance is located within
the object location. Top-k intersection considers
the binarized version of the top-k most impor-
tant pixels and measures the intersection with

4https://github.com/understandable-machine-intelligence-l
ab/Quantus

the ground truth mask. Relevance rank accuracy
is measured by taking the ratio of high inten-
sity relevances within the ground truth mask.
Since RELAX operates in the unsupervised set-
ting we do not have explanations for individual
classes. Therefore, the bounding boxes/segmenta-
tion masks are collected into one unified bounding
box/segmentation mask. This results in unsuper-
vised version of localisation that is suitable for
explaining representations.

Faithfulness. Pixels assigned with high
importance should be indicative of ”true” impor-
tance. Faithfulness is typically measures by mon-
itoring the classification accuracy of a classifier
as input features are iteratively removed. High
faithfulness indicates that the explanation is capa-
ble of identifying features that are important for
classifying an image correctly. We measure faith-
fulness using the monotonicity score. Nguyen and
Martinez (2020) proposed to measure monotonic-
ity by computing the correlation of the absolute
values of the attributions and the uncertainty in
the probability estimation. This will indicate if
an explanation is correctly highlighting important
features in the input.

4.2 Representation Explainability
Baseline

While there are are no existing methods that
provide attribution-based explanations for repre-
sentations, it is possible to adopt certain methods
to provide such explanations. One of the most
common baselines in the field of explainability is
saliency explanations (Springenberg et al, 2015;
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Input RELAX Saliency

Fig. 4 Comparison of RELAX and saliency explanation for an image from PASCAL VOC. The example shows how both
explanations focus on the dog, but the saliency explantion is much more erratic and unfocused than the RELAX explanations.

Input RELAX Saliency

Fig. 5 Comparison of RELAX and Saliency explanation for an image from PASCAL VOC. The example shows how RELAX
captures information about both objects, while the saliency explanation is focused on the gap in between the two objects.

Adebayo et al, 2018), which utilize gradient infor-
mation to attribute importance. An explanation
is obtained by computing the gradient for a pre-
diction with respect to the input. However, it is
not trivial to extend such methods for explain-
ing representations. We propose the following for
a saliency approach:

S =
1

D

D∑

d=1

∇f(X)d, (14)

where D is the dimensionality of the representa-
tion and Sij is the importance of pixel (i, j) for the
given representation. The gradient for each dimen-
sion of the representation will give an explanation,
and Equation (14) takes the mean across all expla-
nations. This is the most straight-forward and
intuitive approach for explaining representations
with gradients. It also illustrates the challenges
that arise when adopting gradient-based explana-
tions for representation, as some form of agglomer-
ation of the explanations is required. Figure 4 and

Figure 5 shows a qualitative comparison between
the RELAX and saliency explanation for a rep-
resentation of an image. Both Figures illustrate
how RELAX provides more intuitive and clear
explanations that are able to capture informa-
tion related to the objects in the image, when
compared with the saliency explanation.

Once the saliency approach from Equation
(14) have been established, it is also possible
to adopt improvements of the standard saliency
explanations. For instance, Guided Backpropa-
gation is a widely used explainability technique
that uses gradient information (Springenberg
et al, 2015). Guided Backpropagation differs from
Equation (14) by zeroing out negative gradients in
the backward pass of the backpropagation scheme.
We define the Guided Backpropagation procedure
for representations as:

Sgb =
1

D

D∑

d=1

∇gbf(X)d. (15)
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Second, SmoothGrad is another gradient-based
explainability method that can be adopted from
Equation 14 (Smilkov et al, 2017). SmoothGrad
injects noise into the input and produces an expla-
nation by averaging over multiple explanations.
We define SmoothGrad for representation as:

Ssg =
1

M

M∑

m=1

1

D

D∑

d=1

∇f(Xm)d, (16)

where M is the number of explanations computed
based on the noisy input.

5 Experiments

To evaluate RELAX, we conduct numerous exper-
iments and report both quantitative and qualita-
tive results. We evaluate several features extrac-
tion models, both deep and non-deep, and trained
with and without supervision. Our experiments
show the advantageous of RELAX compared to
the baselines, and illustrates how RELAX enables
new approaches for analysing and understanding
representation learning.
Implementation details. For the supervised
model, we use the pretrained model from Pytorch
(Paszke et al, 2019). For the models trained with-
out labels but with self-supervision, we use the
SimCLR (Chen et al, 2020) and SwAV (Caron
et al, 2020) frameworks, both of which have seen
recent widespread use. These methods are cho-
sen to represent two major types of self-supervised
learning frameworks, namely contrastive instance
learning (SimCLR) and clustering-based learning
(SwAV). For SimCLR and SwAV, we use the
pretrained models from Pytorch Lightning Bolts
(Falcon and Cho, 2020). We use a ResNet50 (He
et al, 2016) as the backbone for the feature extrac-
tors, and all models are trained on ImageNet
(Deng et al, 2009).

Similarly as in previous works (Fong et al,
2019; Schulz et al, 2020), we use the test split of
the PASCAL VOC07 (VOC) (Everingham et al,
2009) and the validation split of MSCOCO2014
(COCO) (Lin et al, 2014) for evaluating the
localisation scores, since they contain information
about the location of the objects in the images. For
the faithfulness score, we use the validation set of
ImageNet (Deng et al, 2009). For all datasets, we
randomly sample 1000 images for evaluation and

repeat all experiments 3 times. Since we are inter-
ested in investigating how RELAX and U-RELAX
varies due to the stochastic masking process, we
use the same 1000 images across the repeated
experiments. We generate 3000 masks to ensure
a low estimator error. We set h = w = 7 and
resize all images to H = W = 224, as suggested
by Zhang et al (2017). For the monotonicity score,
we use Alexnet (Krizhevsky et al, 2012) as the
classifier, as suggested by Samek et al (2017). We
also experiment with the VGG13 (Simonyan and
Zisserman, 2015) as the classifier for monotonicity
score. These results are reported in Appendix F.
The threshold for U-RELAX is determined with
median aggregation and γ = 1.0, based on the
empirical evaluation conduced in Section 5.4.

5.1 Qualitative Results

Figure 2 and 6 displays the explanation and
the uncertainty in the explanations provided by
RELAX for an image from the PASCAL VOC and
MS COCO dataset, respectively. See Appendix G
for additional qualitative results. The input to the
feature extractors is shown on the left, the first
row shows the explanations, and the second row
shows the uncertainties.

Are all instances of the same object
equally important?

Figure 2 shows an example with two objects,
one bird prominently displayed in the foreground,
and another more inconspicuous bird in the back-
ground. An interesting question that RELAX
allows us to answer is: are both of these birds
important for the representation of this image?
And, are both of them equally important? First,
all models indicate that the bird in the foreground
is important, and that the explanations for this
bird have low uncertainty. Second, SimCLR puts
little emphasis on the bird in the background.
In contrast, both the supervised feature extrac-
tor and SwAV are highlighting the second bird as
having an influence on the representation. How-
ever, the uncertainty estimates for the second bird
is slightly higher than those of the first bird, but
still low compared to the remaining parts of the
image.
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Fig. 6 The figure shows the RELAX explanation and its uncertainty for the representation of the leftmost image for a
number of widely used feature extractors. The first row displays the explanations for the representation and the second row
shows the uncertainty associated with the different explanations. Red indicates high values and blue indicates low values.
In this example, three elephants are visible in the image. The results show that all models highlight the elephant in the
foreground as important for the representation, but there is more disagreement about the elephants in the background.
Moreover, the uncertainty of the explanation for the elephant in the foreground is very low compared to the remaining
regions of the image. Image is taken from MS COCO.

What features are important in
complex images with numerous
objects?

Figure 6 shows an image with 3 elephants, one in
the foreground and two in the background. Addi-
tionally, the background is more diverse and the
objects have different lighting and perspective.
Again, RELAX enables investigation of interest-
ing aspects of the representations, such as: are the
models capable of recognizing all elephants and
utilizing the information? Does the models focus
on background information instead of the objects?
All models highlight the elephant in the fore-
ground as important with high certainty. However,
there is little emphasis on the shaded elephant,
and the associated region of the image also has
a high degree of uncertainty. Both the supervised
model and SwAV put some importance on the
third elephant with some degree of certainty, while
SimCLR uses little or no information about the
third elephant.

In both Figure 2 and 6, the SwAV feature
extractor is focusing on several regions in the
input, but with some regions of high uncertainty.

While it is difficult to say exactly why, we hypoth-
esize that it can be related to its self-supervised
training procedure. SwAV relies on matching
image views to a set of prototypes. Therefore, dif-
ferent parts of the input can be related to different
prototypes, which we conjecture can lead to SwAV
considering several regions of the input.

5.2 Quantitative Results

Table 1 and 2 displays the quantitative evaluation
of our proposed methodology compared with the
gradient-based baselines described in Section 4.2.
The results show how the proposed method out-
performs the baselines across all scores. The low
standard deviation for RELAX show that the pro-
posed methodology is robust to the stochasticity
in the masks. Furthermore, the feature extrac-
tor trained using supervised learning achieves
the highest performance compared to the feature
extractors trained using self-supervised learning,
which illustrates that label information does pro-
vide additional useful information for these scores.

For the localisation scores, RELAX provides
the highest performance. The segmentation masks
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Scores Methods Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

pointing
game

Saliency 67.1±0.0 82.8±0.0 59.9±0.0 75.9±0.0 60.0±0.0 76.3±0.0
Smooth Saliency 62.8±0.0 79.5±0.0 60.1±0.0 75.9±0.0 59.8±0.0 76.4±0.0
Guided Saliency 66.6±0.0 82.9±0.0 58.4±0.0 73.3±0.0 59.5±0.0 75.8±0.0
RELAX 72.6±0.1 86.6±0.2 68.7±0.3 85.2±0.3 67.8±0.2 84.7±0.2
U-RELAX 72.1±0.3 86.4±0.4 68.6±0.2 85.0±0.5 66.7±0.7 84.1±0.4

top k

Saliency 62.2±0.0 80.1±0.0 56.5±0.0 71.3±0.0 56.5±0.0 71.4±0.0
Smooth Saliency 59.2±0.0 74.1±0.0 56.4±0.0 71.1±0.0 56.4±0.0 71.3±0.0
Guided Saliency 62.2±0.0 80.2±0.0 55.1±0.0 69.0±0.0 56.3±0.0 71.1±0.0
RELAX 72.8±0.4 86.9±0.1 69.0±0.3 85.6±0.2 68.1±0.4 85.1±0.2
U-RELAX 72.2±0.4 86.5±0.2 68.8±0.4 85.3±0.1 66.6±0.4 84.2±0.3

relevance
rank

Saliency 46.8±0.0 59.5±0.0 41.2±0.0 53.6±0.0 40.9±0.0 53.4±0.0
Smooth Saliency 42.6±0.0 54.6±0.0 41.1±0.0 53.4±0.0 40.9±0.0 53.3±0.0
Guided Saliency 46.8±0.0 59.8±0.0 40.6±0.0 53.0±0.0 40.9±0.0 53.3±0.0
RELAX 56.4±0.0 70.2±0.1 54.2±0.2 69.8±0.1 52.4±0.1 69.1±0.0
U-RELAX 52.4±0.0 64.7±0.1 50.7±0.1 63.3±0.1 46.2±0.1 59.5±0.0

Table 1 Pointing game, top k, and relevance rank scores in percentages and averaged over 3 runs. Higher is better and
bold numbers highlight the top performance. Results show that our method improves on the baseline across all scores.

Scores Methods Supervised SimCLR SwAV

monotonicity

Saliency 12.8±0.2 14.8±0.5 14.6±0.3
Smooth Saliency 15.4±0.1 14.3±0.3 14.0±0.3
Guided Saliency 15.3±0.3 15.3±0.2 14.2±0.6
RELAX 18.3±0.5 20.2±0.4 21.3±0.4
U-RELAX 23.6±0.4 22.9±0.1 18.3±0.6

Table 2 Monotonicity scores averaged over 3 runs. Higher is better and bold numbers highlight the top performance.
Results show that our method improves on the baseline.

or bounding boxes can in many cases be large, and
U-RELAX might remove uncertain points close to
the boundaries of the segmentation masks. This
might be desirable from a human perspective, as
it provides clearer explanations with less uncer-
tainty, but it will decrease the localisation scores.
For the faithfulness score, U-RELAX provides a
significant boost in performance for two encoders.
The removal of uncertain explanations allows the
classifier to focus on a smaller subset of highly
relevant features. This can lead to the classifier
having a more stable decrease in accuracy and a
higher faithfulness score.

5.3 Human Evaluation

The localisation and faithfulness scores are both
proxies for human evaluation that allow for quan-
titative analysis. However, the ultimate goal of
XAI is to provide explanations that are under-
standable for people and align well with human
intuition. Therefore, we conduct a user study with
human evaluation of explanations. In this user
study, 13 people were asked to select their pre-
ferred explanation from a selection of explanations
across 10 different images. See Appendix E for a
detailed description of the user study.

Table 3 reports the results of the human eval-
uation. The results clearly indicate that RELAX
and U-RELAX were the methods that aligned
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RELAX U-RELAX Saliency Smooth Saliency Guided Saliency Random

Counts 79 29 9 4 8 1

Table 3 Human evaluation of representation explainability methods across 10 images from the PASCAL VOC dataset.
Results show that the majority of the votes were cast for RELAX and U-RELAX.

most closely with human intuition. Some partic-
ipants highlighted that when both RELAX and
the gradient-based methods indicated an object as
important, they often preferred the more object
focused explanation of RELAX, as opposed to the
more edge focused explanations of the baselines.
It was also noted that for some images the par-
ticipants disagreed with most explanations, and
would have provided a different explanation if pos-
sible. We believe that these are valuable insights
that will be useful for improving explainability
methods and also for designing future user studies.

5.4 U-RELAX Hyperparameter
Evaluation

Table 4 and 5 reports localisation and faithfulness
scores for different values of the hyperparameters
in U-RELAX. Mean versus median aggregation is
considered, and a selection of values for γ. The
results indicate that setting γ to less than 1, typi-
cal degrades performance. This can be understood
by the thresholding being to strict and remov-
ing to many pixel indicated as important. Also,
the differences between mean and median aggre-
gation of the uncertainties is mostly low, but
median aggregation gives a slight improvement,
particularly for the relevance rank score and the
monotonicity score.

5.5 Use Case I: Multi-View
Clustering

To further illustrate the ability of RELAX to
obtain insights into new tasks, we conduct an
experiment on multi-view clustering. We learn a
feature extractor using the Completer framework
(Lin et al, 2021), which uses an information theo-
retic approach to fuse several views into a new rep-
resentation. Completer uses individual encoders
for each view, and concatenates the representation
from each encoder to produce a unified representa-
tion. Clustering is performed by applying K-means
to the learned representations. To adopt RELAX
for such a setting, we generate individual masks

Fig. 7 RELAX explanation and uncertainty for the rep-
resentation of an example from Noisy MNIST image for
a number of widely used feature extractors. The first row
displays input, explanation, and uncertainty for view 1,
and the second row for view 2. Red indicates high values
and blue indicates low values. The Figure shows that Com-
pleter is extracting complementary information from the
two views for creating its unified representation.

for each view and monitor the change in the rep-
resentation in the unified representation space.
While there is no way to investigate which parts
of the different views that influence the unified
representation in the Completer framework, using
RELAX allows us to answer this question. Figure
7 shows an example on Noisy MNIST (Wang et al,
2015), where one view is a digit and the other view
is a noisy version of the same digit. The result
shows that the Completer framework is exploiting
information from both views to produce a new rep-
resentation, even if one view contains more noise.
Such insights would not be obtainable without
RELAX.

5.6 Use Case II: Explaining HOG
Features

RELAX is not limited to representations pro-
duced by deep neural networks. It can be used
to explain the representation produced by any
function that transform an image into a vec-
tor representation. To illustrate the versatility of
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Scores (aggregation, γ) Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

pointing
game

(mean, 0.95) 71.1±0.4 86.5±0.2 67.6±0.1 83.9±0.3 63.3±0.7 81.1±0.5
(mean, 0.99) 71.8±0.4 86.4±0.5 68.6±0.4 85.0±0.4 66.4±0.6 84.2±0.4
(mean, 1.0) 71.7±0.1 86.5±0.2 68.6±0.1 85.0±0.3 66.7±0.7 84.1±0.2
(median, 0.95) 71.2±0.2 86.6±0.1 67.6±0.4 84.2±0.2 63.6±0.2 80.9±0.1
(median, 0.99) 71.8±0.3 86.5±0.4 68.8±0.3 85.0±0.2 66.3±0.6 84.0±0.3
(median, 1.0) 72.1±0.3 86.4±0.4 68.6±0.2 85.0±0.5 66.7±0.7 84.1±0.4

top k

(mean, 0.95) 71.3±0.4 86.2±0.2 67.1±0.1 83.2±0.3 62.8±0.2 79.5±0.4
(mean, 0.99) 72.2±0.4 86.6±0.2 68.8±0.3 85.2±0.2 66.4±0.2 84.0±0.3
(mean, 1.0) 72.2±0.4 86.5±0.2 68.8±0.4 85.3±0.1 66.7±0.4 84.3±0.2
(median, 0.95) 71.2±0.4 86.1±0.2 67.1±0.2 83.2±0.4 62.7±0.2 79.1±0.4
(median, 0.99) 72.2±0.4 86.5±0.2 68.7±0.3 85.2±0.2 66.4±0.2 83.9±0.3
(median, 1.0) 72.2±0.4 86.5±0.2 68.8±0.4 85.3±0.1 66.6±0.4 84.2±0.3

relevance
rank

(mean, 0.95) 45.9±0.0 55.7±0.0 41.6±0.1 52.3±0.1 39.6±0.1 51.0±0.0
(mean, 0.99) 50.3±0.0 61.2±0.1 48.6±0.1 59.8±0.1 44.0±0.1 56.0±0.1
(mean, 1.0) 51.4±0.1 63.0±0.1 50.3±0.1 62.2±0.1 45.6±0.1 58.2±0.1
(median, 0.95) 46.8±0.0 57.2±0.1 42.4±0.1 53.3±0.1 40.4±0.1 52.1±0.0
(median, 0.99) 51.2±0.0 63.0±0.1 49.1±0.1 60.8±0.1 44.6±0.1 57.3±0.1
(median, 1.0) 52.4±0.0 64.7±0.1 50.7±0.1 63.3±0.1 46.2±0.1 59.5±0.0

Table 4 Evaluation of U-RELAX hyperparameters in terms of pointing game, top k, and relevance rank scores in
percentages and averaged over 3 runs. Higher is better and bold numbers highlight the top performance

Scores (aggregation, γ) Supervised SimCLR SwAV

monotonicity

(mean, 0.95) 16.3±0.5 11.8±0.3 12.4±0.3
(mean, 0.99) 22.2±0.2 20.4±0.5 16.2±0.3
(mean, 1.0) 23.2±0.1 21.8±0.3 18.0±0.0
(median, 0.95) 17.9±0.7 12.8±0.2 13.5±0.2
(median, 0.99) 23.0±0.7 21.1±0.1 17.1±0.4
(median, 1.0) 23.6±0.4 22.9±0.1 18.3±0.6

Table 5 Evaluation of U-RELAX hyperparameters in terms of monotonicity score in percentages and averaged over 3
runs. Higher is better and bold numbers highlight the top performance

RELAX, we explain representation produced by
the Histogram of Oriented Gradients (HOG) fea-
ture extraction method (Dalal and Triggs, 2005),
which have been used extensively in the com-
puter vision literature. Figure 8 and 9 shows two
examples where the explanation for the HOG rep-
resentation is compared with the SimCLR and
SwAV representations. We consider the represen-
tations from these two methods since they are also
unsupervised like the HOG features.

Features produced by deep neural networks
are typically allow for higher performance than

those from algorithms such as HOG and other
handcrafted feature extraction methods. RELAX
provides insights into why this is. In Figure 8,
both the SimCLR and the SwAV feature extrac-
tors focus on the cat in the center of the images.
The HOG algorithm has a more widespread focus.
Also, much of the emphasis is put on the cord
going along the staircase. Since the HOG algo-
rithm is utilizing gradient information, these sharp
lines will have a big influence on the representa-
tion, and it is therefore not surprising that the
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Fig. 8 The figure shows the RELAX explanation for two deep learning-based feature extractors compared with the tradi-
tional HOG algorithm. Figure shows how HOG features focus on more indistinct regions in the input, while deep learning
methods focus mainly on the cat. Image is taken from PASCAL VOC.

Fig. 9 The figure shows the RELAX explanation for two deep learning-based feature extractors compared with the tradi-
tional HOG algorithm. Figure shows how HOG features puts little attention on the bird and mostly focus on the background.
Image is taken from PASCAL VOC.

cat receives less attention. In Figure 8, both Sim-
CLR and SwAV focus on the bird, while the HOG
features are more focused on other regions in the
image. For instance, the iron rod and a tree in
the background and are indicated as being impor-
tant for the representation of this image. Both
examples provide insights into why HOG features
lead to inferior performance, when compared with
features produced by deep neural networks. This
information would not be available without the
proposed RELAX framework.

6 Conclusion

In this work, we presented RELAX, a framework
for explaining representations produced by any
feature extractors. RELAX is based on masking
out parts of an image and measuring the similar-
ity with an unmasked version in the representation
space. We introduced a principled approach to
quantifying uncertainty in explanations. RELAX
was evaluated by comparing several widely used
feature extractors. Results indicate that there can

be a big difference in the quality of the explana-
tions. It was shown that filtering out parts of an
explanation based on its uncertainty can improve
the faithfulness, and that RELAX can have a
facilitating role, providing explainability for sev-
eral downstream applications such as multi-view
clustering. We believe that RELAX can be an
important addition in the intersection between
XAI and representation learning.
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Appendix A

An alternative approach for creating the random
variable h̄ is the following:

h̄ = f(X⊙M−D(1−M)), (A1)

where each element of D follows N(µxij
, σxij

).
The mean µxij

and standard deviation σxij
is esti-

mated by averaging across all samples in the data.
Such a strategy could avoid potential distribution
shifts that might occur when zeroing out large
parts of the image, but also required determining
the mean and variance of the data distribution.

Table A1 displays localisation scores scores the
two masking strategies outlines in Section 3.1,
namely zero masking or insertion of normally dis-
tributed noise. While there is some variation in
the results, masking out with zeros provide the
highest performance overall.

Appendix B

Figure B1 shows alternative strategies for mask-
ing out part of the input. One alternative is to
apply Bernoulli noise to the input, which is equiv-
alent to using Dropout (Srivastava et al, 2014)
on the input. However, However, this does not
introduce noise with spatial awareness, and there-
fore results in failing to explain the representation
of the image. Another option is to drop regions
of the input, such that objects could be fully or

partially removed from the input. This could be
achieved using the DropBlock algorithm (Ghiasi
et al, 2018). However, this requires tuning the size
of the mask on the input, which will be highly
dependent on the objects present in the image.
Such a per-image tuning would be impractical in
most scenarios.

Appendix C

In this section we present the proofs for all theo-
rems in the main paper.

C.1 Proof of Theorem 1

Proof First, let the Bounded difference assumption be
defined as follows:

Definition 3.1 (Bounded difference assumption). Let
a be some set and f : AN f : AN → R. The function f
satisfies the bounded differences assumption if if there
exists real numbers c1, . . . , cN ≥ 0 so that for all i =
1, . . . , N ,

sup
x1,...,xN ,xi∈A

|f(x1, . . . , xN , x′i)− f(x1, . . . , xN , x′i)|

(C2)

We then have the following lemmas:

Lemma 3.1 (McDiarmid’s inequality). Let
X1, . . . , XN be arbitrary independent random vari-
ables on set A and f : AN → R satisfies the bounded
difference assumption. Then, for all t > 0

P (|f(X1, . . . , XN )− E[f(X1, . . . , XN )|] ≥ t)

≤2e
−2t2∑N
n=1 c2n

(C3)

Proof See McDiarmid (1989). □

Lemma 3.2. Let X1, . . . , XN and f be defined as in
Lemma 3.1, then if each Xn satisfies Xn ∈ (an, bn)

and f(X1, . . . , XN ) =
∑N

n=1 Xn, then cn = bn − an.

Proof See McDiarmid (1989). □

We are now ready to prove the theorem. First, let

Xn =
s(h, h̄n)Mij(n)

N
, (C4)

and

f(X1, . . . , Xn) =

N∑

n=1

Xn. (C5)
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Scores Methods Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

pointing
game

RELAX (zeros) 72.6±0.1 86.6±0.2 68.7±0.3 85.2±0.3 67.8±0.2 84.7±0.2

RELAX (noise) 72.0±0.5 86.0±0.3 66.6±0.1 84.3±0.7 67.7±0.5 85.1±0.3

top k
RELAX (zeros) 72.8±0.4 86.9±0.1 69.0±0.3 85.6±0.2 68.1±0.4 85.1±0.2

RELAX (noise) 72.4±0.4 86.5±0.1 66.0±0.3 84.2±0.2 68.2±0.3 85.3±0.2

relevance
rank

RELAX (zeros) 56.4±0.0 70.2±0.1 54.2±0.2 69.8±0.1 52.4±0.1 69.1±0.0

RELAX (noise) 56.7±0.0 70.1±0.1 53.5±0.1 68.5±0.0 52.8±0.1 69.2±0.0

Table A1 Evaluation of zero versus noise masking strategy in terms of pointing game, top k, and relevance rank scores
in percentages and averaged over 3 runs. Higher is better and bold numbers highlight the top performance. Results
indicate that zero masking provides the best performance.

Input RELAX Dropout Block Dropout (mask size = 8) Block Dropout (mask size = 50)

Fig. B1 Comparison of different masking strategies. Leftmost image shows input, and second to left is the RELAX
explanations with the masking presented in the main paper. The center image is with Bernoulli-noise (Dropout) directly on
the input, and the remaining two images are with Block Dropout with different block size. The example illustrates that other
masking strategies either fail completely, or require per-image parameter tuning, which is impractical in most scenarios.

Since s(·, ·) is bounded in (0, 1) (we use the cosine
similarity between vectors with non-negative elements
(ReLU outputs)), we have an = 0 and bn = 1/N ,
which gives cn = 1/N by Lemma 3.2.

Now, observe that

f(X1, . . . , Xn) =
1

N

N∑

n=1

s(h, h̄n)Mij(n) = R̄ij .

(C6)

Combining Lemmas 3.1 and 3.2 then gives

P (|R̄ij −Rij |] ≥ t) ≤ 2e
−2t2∑N

n=1(1/N)2 (C7)

for all t > 0. Inserting N = − ln(δ/2)/2t2 gives

P (|R̄ij −Rij |] ≥ t) ≤ 2e
−2t2∑N

n=1(1/N)2 (C8)

= 2e
−2t2

(
− ln(δ/2)

2t2

)
(C9)

= 2eln(δ/2) (C10)

= δ, (C11)

which concludes our proof. □

In Figure C2 we show an empirical valida-
tion the bound. We calculate the absolute error

as the number of masks increase, averaged over
10 randomly sampled images from the PASCAL
VOC dataset. To obtain a value for Rij , we use
10000 masks and average over 10 runs for a sin-
gle sample. The results indicate that the true
error is much lower than the proposed bound,
which we attribute to setting an = 0. While it
is possible to obtain a similarity of 0, it is highly
unlikely since our masking strategy never removes
all information in an image.

C.2 Proof of Theorem 2

Proof Since s(·, ·) is a valid Mercer kernel, we can
write s(h, h̄n) = ⟨ϕ(h), ϕ(h̄n)⟩H. This gives

R̄ij =
1

N

N∑

n=1

⟨ϕ(h), ϕ(h̄n)⟩HMij(n) (C12)

= ⟨ϕ(h), 1

N

N∑

n=1

ϕ(h̄n)Mij(n)⟩H (C13)

by the bilinearity of the inner product on H. □



Springer Nature 2021 LATEX template

18 Article Title

Fig. C2 Empirical evaluation of the derived bound for the
number of masks necessary for low estimation error. We cal-
culate the absolute error as the number of masks increase,
average over 10 randomly samples images from the PAS-
CAL VOC dataset. To obtain a value for Rij , we use 10000
masks and average over 10 runs for a single sample. Results
indicate that the estimation error is much lower than the
predicted bound.

C.3 Proof of Theorem 3

Proof Observe that

R̄ij ·
N

∑N
n′=1 Mij(n′)

(C14)

=
N

∑N
n′=1 Mij(n′)

· 1

N

N∑

n=1

s(·, h̄n)Mij(n) (C15)

=
1

∑N
n′=1 Mij(n′)

N∑

n=1

s(·, h̄n)Mij(n) (C16)

= pij(h) (C17)

R̄ij is therefore proportional to pij(h). □

Appendix D

We investigate the potential differences between
the one-pass and two-pass version of RELAX. For
a given image, we calculate the absolute error
between the one-pass and two-pass estimates for
different number of masks. The results are shown
in Figure D3 and illustrate that the difference
between the two methods is very small, particu-
larly as the number of masks increases. However,
since the one-pass version computes both the
importance and uncertainty in one pass through
the data, it requires only half the number of masks
compared to the two pass version, thus increasing
the computational efficiency of RELAX.
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Fig. D3 Absolute error of one-pass versus two-pass ver-
sion of RELAX for importance (leftmost figure) and uncer-
tainty (rightmost figure), averaged over 50 images from the
VOC dataset. The figure shows how the difference between
the versions is small for both the importance and uncer-
tainty estimates.

Appendix E

The user study in the main manuscript was con-
ducted by having a group of participants select
among competing explanations for a random selec-
tion of images from the PASCAL VOC dataset.
The group of participants consisted of men and
women, where some had knowledge of machine
learning and other were uneducated. None of the
participants have been involved in the develop-
ment of this work. Figure E4 displays an example
from the study. The participants were shown an
image with 6 competing explanations, and asked
to chose which one they preferred. To determine
which explanation each participant judged to be
the ”best”, they were told to ask themselves the
following questions:

”Which of these explanations agree the most with
how you would explain the important content in the
given image?

For each image, the explanations were shuffled
randomly. The participants were shown 10 images,
and asked to only pick on explanation. Overall, 13
people participated in the study.

There are several limitations. Both the number
of images and the number of participants could
have been greater. The participants had to chose
one explanation, when in some cases they might
have wanted to select none or more explanations.
Also, the images could have been selected from
other datasets. There are also potential biases
with the study. Most participants are from one
country and from a limited age segment. Lastly,
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Fig. E4 Example from the human evaluation experiment. Participants were asked to select which explanation they preferred
out of the 6 alternatives. For each of the images, the explanations were shuffled in a random order. One of the explanations
for each image was randomly sampled from random noise, in order to assess if any participants would select a nonsensical
explanation.

we did not control the type of screen that partici-
pants performed their evaluation on, which could
also have an undesirable affect.

Appendix F

Appendix G

This section presents additional qualitative
results. Figure G5 to G14 displays examples
of explanations and their associated uncertainty,
provided by RELAX, for images from the VOC
and COCO dataset. Figure G5 displays an exam-
ple where all feature extractors agree in terms of
importance, but the degree of uncertainty varies.
Figure G6 shows an example where only SwAV
highlight both objects as important for the repre-
sentation. Similarly, Figure G7 displays an exam-
ple where only SwAV is considering both the
person and the car as important for the represen-
tation. Figure G7 to G14 shows similar examples
where RELAX provides insights into the different
feature extractors.
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Fig. G5 Example from the VOC dataset.
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Fig. G6 Example from the COCO dataset.
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Fig. G7 Example from the VOC dataset.
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Fig. G8 Example from the COCO dataset.
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Fig. G9 Example from the VOC dataset.
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Fig. G10 Example from the COCO dataset.
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Fig. G11 Example from the VOC dataset.
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Fig. G12 Example from the COCO dataset.
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Fig. G13 Example from the VOC dataset.
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Fig. G14 Example from the COCO dataset.
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A B S T R A C T

Deep learning-based approaches for content-based image retrieval (CBIR) of CT liver
images is an active field of research, but suffers from some critical limitations. First,
they are heavily reliant on labeled data, which can be challenging and costly to acquire.
Second, they lack transparency and explainability, which limits the trustworthiness of
deep CBIR systems. We address these limitations by (1) proposing a self-supervised
learning framework that incorporates domain-knowledge into the training procedure
and (2) providing the first representation learning explainability analysis in the context
of CBIR of CT liver images. Results demonstrate improved performance compared
to the standard self-supervised approach across several metrics, as well as improved
generalisation across datasets. Further, we conduct the first representation learning ex-
plainability analysis in the context of CBIR, which reveals new insights into the feature
extraction process. Lastly, we perform a case study with cross-examination CBIR that
demonstrates the usability of our proposed framework. We believe that our proposed
framework could play a vital role in creating trustworthy deep CBIR systems that can
successfully take advantage of unlabeled data.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Content-based image retrieval (CBIR) is a core research area
in medical image analysis, with numerous studies across many
different image modalities (Barata and Santiago, 2021; Ramal-
hinho et al., 2021; Haq et al., 2021). CBIR supports clinicians
in retrieving relevant images from a large database compared
to a query image, which reduces labor-intensive manual search
and aids in diagnosis. For instance, a physician might want to
investigate how patients in a large database with a similar dis-
ease as a new patient, such as liver metastasis, were diagnosed.

∗Corresponding author: kristoffer.k.wickstrom@uit.no;

The information from the previous diagnoses can then be used
to determine the proper treatment for the new patient. In anal-
ysis of CT image of the liver, CBIR have been an active and
important area of medical image analysis for many years (Zhao
et al., 2004; Chi et al., 2013; Yoshinobu et al., 2020). CBIR
has the potential to make labour intensive tasks in the clinical
workflow more time efficient, as illustrated in Section 7.3.

Currently, deep learning-based CBIR, or deep CBIR, consti-
tute the state-of-the-art of CBIR (Silva et al., 2020; Yoshinobu
et al., 2020; Haq et al., 2021), due to its high precision and effi-
ciency. However, deep CBIR suffers from some critical limita-
tions. First (1), current deep CBIR for CT liver images rely on
labeled data for training (Yoshinobu et al., 2020). Obtaining la-
beled data can be costly and time-consuming, which therefore
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Fig. 1: Illustration of content-based image retrieval.

limits the usability of deep CBIR systems. However, recent
works have shown how self-supervised learning can leverage
unlabeled data to improved CBIR systems (Siradjuddin et al.,
2019; Monowar et al., 2022), but such approaches have not been
explored in the context of CBIR of CT liver images. Second
(2), deep CBIR suffer from a fundamental lack of explainabil-
ity. This can have detrimental effects in a clinical setting, since
deep learning-based systems are known to exploit confounding
factors and artifacts to make their predictions. For instance,
Gautam et al. (2022) showed that a deep-learning-based system
learned to use tokens and artifacts in X-ray images to makes
its predictions instead of clinically relevant features. These to-
kens and artifacts would not be present for new patients, and
such a system would not work as intended if put into clinical
practice. Therefore, it is not advisable to blindly trust the re-
trieved images from the deep CBIR system without investigat-
ing what input features influence the retrieval process through
an explainability analysis.

A promising direction to address the first limitation is learn-
ing from unlabeled data through self-supervision. Recent self-
supervised learning frameworks have shown remarkable re-
sults, in some cases even rivalling supervised learning (Chen
et al., 2020; Caron et al., 2020; Chen and He, 2021). In a nut-
shell, contemporary self-supervised approaches train a feature
extractor that extract informative representations by exploiting
known invariances in the data. These representations can then
be used for other tasks, such as CBIR by taking similarities be-
tween the new representation to retrieve similar images. These
self-supervised approaches have been show to improve perfor-
mance in the context of chest X-ray (Truong et al., 2021; Azizi
et al., 2021) and dermatology classification (Azizi et al., 2021),
organ andcardiac segmentation (Hansen et al., 2022), and whole
heart segmentation (Dong et al., 2021), but have yet to be de-
veloped for CBIR of CT liver images.

In this paper, we propose a clinically motivated self-
supervised framework for CBIR of CT liver images. Our pro-
posed framework incorporates domain knowledge that exploits
known properties of the liver, which leads to improved per-
formance compared to well-known self-supervised baselines.

Concretely, a novel Houndsfield unit clipping strategy that re-
moves non-liver pixels from the input and allows the system to
focus on the liver is incorporated into the self-supervised train-
ing. While the focus in this paper is on the liver in CT images,
our proposed framework could also be used to focus on other
organs by altering how the Houndsfield units are clipped.

For the second limitation, great improvements have been
made in the field of explainable artificial intelligence (XAI)
over the last couple of years, and numerous studies have shown
how XAI can improve the reliability and trustworthiness of
deep learning-based systems in healthcare (Silva et al., 2020;
Gautam et al., 2022). However, the majority of these improve-
ments have been in algorithms that can explain models which
produce decisions, such as classification or similarity scores.
When learning from unlabeled data through e.g. self-supervised
learning, such a score or similarity measure might not be avail-
able and standard XAI techniques cannot be applied. But the re-
cent field of representation learning explainability (Wickstrøm
et al., 2021) aims at explaining vector representations, and can
therefore tackle the lack of explainability in deep CBIR. But
such a representation learning explainability analysis has not
been performed in the context of CBIR of CT liver images.

Our contributions are:

• A clinically motivated self-supervised framework specifi-
cally designed to extract liver specific features.

• A novel explainability analysis that explains the represen-
tations produced in the feature extraction process.

• Thorough evaluation on real-world datasets.

• A case-study where images from the same patient are re-
trieved across different examinations.

2. Related work

2.1. Content-based image retrieval
The goal of content-based image retrieval (CBIR) is to find

similar images from a large-scale database, given a query im-
age. CBIR is an active area of research that span numerous



Kristoffer Wickstrøm et al. /Computerized Medical Imaging and Graphics (2022) 3

medical imaging domains, such as X-ray (Haq et al., 2021;
Silva et al., 2020), dermatology (Barata and Santiago, 2021;
Ballerini et al., 2010), mammography (Jiang et al., 2014), and
histopathology (Peng et al., 2019; Zheng et al., 2019). An illus-
tration of a CBIR system in the context of CT liver images is
shown in Figure 1.

2.2. Content-based image retrieval of CT liver images
CBIR of CT liver images have been extensively studied.

Early studies relied on handcrafting features based on certain
properties in the images. Gabor filters have been used to extract
texture information (Zhao et al., 2004). Texture information
have also been combined with density information in the con-
text of focal liver lesion retrieval (Chi et al., 2013). Histogram-
based features extraction have been explored to retrieve CT
scans with similar liver lesions. Manifold learning have been
utilized to facilitate CBIR of CT liver images (Mirasadi and
Foruzan, 2019). Lastly, a Bayesian approach has been studied
in connection with multi-labeled CBIR of CT liver images (Ra-
malhinho et al., 2021).

Recently, deep learning-based feature extraction have im-
proved performance significantly in CBIR of CT liver images.
The most straight forward approach for deep CBIR is to train a
neural network for the task of CT liver image classification and
use the intermediate features prior to the classification layer for
calculating similarities. This has been demonstrated to produce
good results when the network was trained for the task of focal
liver lesions detection (Yoshinobu et al., 2020). However, all
these approaches need labeled data to train the deep learning-
based feature extractor.

2.3. Self-supervised learning
Learning from unlabeled data is a fundamental problem

in machine learning. Recently, self-supervised learning have
shown promising results in computer vision (Chen et al., 2020;
Chen and He, 2021), natural language processing (Devlin et al.,
2019; Brown et al., 2020), and time series analysis (Franceschi
et al., 2019; Wickstrøm et al., 2022). Furthermore, recent stud-
ies have also demonstrated that self-supervised learning can im-
prove performance across several imaging domains in medical
image analysis (Azizi et al., 2021; Truong et al., 2021; Hansen
et al., 2022; Dong et al., 2021).

For computer vision, there are three main approaches to self-
supervised learning. First, contrastive self-supervised learn-
ing is performed by sampling positive pairs and negative sam-
ples and learning a representation where the positive pairs are
mapped in close proximity and far from the negative samples.
The SimCLR framework (Chen et al., 2020) is one of the most
widely used approaches in this category. Second, clustering-
based self-supervised learning utilizes clustering algorithms to
produce pseudo-labels which in turn are used to learn a useful
representation of the data. DeepCluster (Caron et al., 2018) and
the SwAV framework (Caron et al., 2020) are two of the most
widely used clustering-based self-supervised approaches in the
literature. Lastly, siamese self-supervised approaches learns
how to produce a useful representation by maximizing agree-
ment between positive pairs of samples. The two main con-
temporary approaches in siamese self-supervised approaches is

the SimSiam framework (Chen and He, 2021) and the BYOL
framework (Grill et al., 2020).

2.4. Explainability

Explainability is of vital importance for machine learning
systems in healthcare. Without it, clinicians cannot fully trust
the algorithms decision and the system becomes less reliable.
Many recent studies have shown how explainability can be in-
corporated into deep learning systems for medical image anal-
ysis, ranging from diabetic retinopathy (Quellec et al., 2021),
dermatology (Barata and Santiago, 2021; Gu et al., 2021), X-
ray (Khakzar et al., 2021), and endoscopic images (Wickstrøm
et al., 2020; Vasilakakis et al., 2021).

Most of the widely used explainability techniques typically
leverage the classification or similarity score to ascertain in-
put feature importance (Springenberg et al., 2015; Schulz et al.,
2020; Plummer et al., 2020), and such approaches have been ex-
plored in the context of deep CBIR. For models trained for clas-
sification tasks, explanations through gradient information have
been shown to both provide new insights and improve perfor-
mance for X-ray images (Silva et al., 2020). For models trained
to output a similarity score, it has been shown how the sim-
ilarity score can be used to provide explanations (Dong et al.,
2019; Plummer et al., 2020). Similarity score explanations have
been explored for X-ray images (Hu et al., 2022). Lastly, it has
been shown that explanation by examples can be effective in
histopathological images (Peng et al., 2019).

In the unlabeled setting where only the feature extraction
model is available, these techniques are not applicable. In such
cases, it is desirable to explain the vector representation of an
image, since the decision is not available. Representation learn-
ing explainability is a very recent field of XAI, that has yet to
be developed for CBIR. In this work, we leverage the RELAX
framework (Wickstrøm et al., 2021) to explain the feature ex-
tractors trained using self-supervised learning. RELAX is the
first method that allows for representation learning explainabil-
ity and has been shown to provide superior performance to com-
peting alternatives (Wickstrøm et al., 2021).

3. A clinically motivated self-supervised approach for CT
liver images

In this section, we present our proposed clinically-motivated
self-supervised approach and the SimSiam framework for self-
supervised learning.

3.1. A clinically motivated self-supervised approach for CT
liver images

We propose to incorporate clinical knowledge into our self-
supervised framework to learn more clinically relevant features.
In self-supervised learning, known invariances in the data are
used to train a feature extractor that extracts relevant features
from the input images. For instance, the liver can occur on both
the left and right hand side of an image, depending on which
direction the patient is inspected. Therefore, the feature extrac-
tor should be invariant to horizontal flips in the images, and this
invariance can be learned by incorporating horizontal flipping
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into the self-supervised learning procedure. Identifying these
invariances is crucial to make the self-supervised system work
properly and focus on clinically relevant features in the input
images. Our motivation is based on the knowledge that the pixel
intensities of the liver lay within a certain range for CT images.
A standard pre-processing step is to clip the pixel intensities of
the CT images (Li et al., 2018a), such that unimportant pixels
are removed prior to learning. The pixel intensities of CT im-
ages represent a physical quantity, namely the Houndfield unit.
The same clipping is usually applied to all images. However, if
this clipping was incorporated into the self-supervised learning
procedure, the network could be guided to learn which feature
are liver features and which ones are not. In a sense, we are ex-
ploiting the knowledge that the liver should be invariant to pixel
intensity clipping for a certain range of clipping.

Based on this motivation, we propose a Houndsfield clipping
strategy where the pixel values for the same image are clipped
and scaled based on different ranges of Houndsfield units. Fig-
ure 2 shows how our proposed clipping scheme affects an im-
age. The leftmost image has no clipping applied, and illustrates
why it is important to remove some pixel intensities in order to
highlight relevant structures in the images. The middle images
show the narrow clipping strategy between 50 and 150 Hounds-
field units. Notice how only the liver and some other organs are
now visible in the image. The rightmost image shows the wide
clipping strategy between -200 and 300 Houndsfield units. In
this case, some redundant structures are removed, but more or-
gans are left visible compared to the middle image. The images
considered in this paper are intra venous contrast enhanced im-
ages taken in the portal venous phase. These two ranges were
chosen based on the following. First, it is known that the liver
typically has Houndsfield units in the range 50-60 (Tisch et al.,
2019). Furthermore, we have collected all pixel intensities for
the liver in the Decathlon dataset. These values are shown in
Figure 3, and illustrates how the narrow clip will remove some
of the liver pixels but keep the main proportion, while the wide
clip will keep almost all liver pixels apart from some outliers.
Our proposed framework for learning representations that focus
on liver features is shown in Figure 4. Each image is clipped
with the wide and narrow range, before the data augmentation
is applied. Afterwards, we follow the SimSiam approach de-
scribed below. During testing, we use the wide clipping to en-
sure that most liver pixels are kept in the images.

No clippingNo clip Narrow clip Wide clip

Fig. 2: Effect of Houndsfield unit clipping on CT liver images. From left to
right, no clipping, narrow clip (50, 150), and wide clip (-200, 300).

Fig. 3: Distribution of pixel intensity values for liver pixel from the Decathlon
dataset and the two clipping strategies used in our proposed framework.

3.2. SimSiam framework
In this work, we build on the SimSiam framework. The

main motivation for this choice is that both contrastive and
clustering-based self-supervised approaches requires a large
batch size during training to provide high quality representa-
tions (Chen et al., 2020; Caron et al., 2020). This can be com-
putationally challenging, especially if the medical images in
question are large. However, the siamese-approaches (Chen
and He, 2021) are less sensitive to the batch size used during
training. Furthermore, we opt for the SimSiam approach over
BYOL to avoid training both a student and a teacher network
used in BYOL, again to avoid additional computational over-
head.

Let X ∈ RH×W represent an input image with height H and
width W and f a feature extractor that transforms X into a new
d-dimensional representation h ∈ Rd, that is f (X) = h. Next,
two views X1 and X2 are constructed by augmenting the orig-
inal image. The task performed in SimSiam to learn a useful
representation, is to maximize the similarity between the two
views. The representation h is the new representation that can
be used for downstream tasks, such as the CBIR. However, the
loss is not computed directly on the output of the feature extrac-
tor f . Instead, a multilayer perceptron-based projection head g
transforms h into a new representation z, that is g(h) = z, where
the loss is computed. This projector is a crucial component in
most self-supervised frameworks (Chen et al., 2020; He et al.,
2020), as it avoid dimensional collapse in the representation h
(Jing et al., 2022), which is the one that will be used for down-
stream tasks such as CBIR. The learning is performed by mini-
mizing the negative cosine similarity between the two views:

D(z1, z2) = − z1

∥z1∥2 ·
h2

∥h2∥2 , (1)

where ∥·∥2 denotes the ℓ2-norm.

L = D(z1,h2) + D(z2,h1) (2)

An important component of the the SimSiam framework is
a stop-gradient (stopgrad) operation, which is incorporate in
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Fig. 4: Illustration of proposed self-supervised framework.

Equation 2 as follows:

L =
1
2

D(z1, stopgrad(h2)) +
1
2

D(z2, stopgrad(h1)) (3)

The stop-gradient operation is applied to the projector network,
such that the encoder on X2 no gradient from h2 in the first term,
but it recieves gradients from z2 (and similarly for X1). The
stop-grad operation allows SimSiam to mimic a teacher-student
setup, but avoid the need to store two networks. Furthermore, it
has been shown that the stop-grad operation is critical to avoid
the problem of complete collapse in the representations (Tian
et al., 2021).

Data augmentation. The prior knowledge inject through the
data augmentation is of paramount importance to ensure that
the models learns relevant features. The data augmentation used
in SimSiam is similar to the standard approach in recent self-
supervised learning (He et al., 2020; Chen et al., 2020):

1. Crop with a random proportion from [0.2, 1.0], and resize
to a fixed size.

2. Flip horizontally with a probability of 0.5.
3. Color augmentation is performed by randomly adjusting

the brightness, contrast, saturation, and hue of each image
with a strength of [0.4, 0.4, 0.4, 0.1]

4. Randomly convert image to gray scale version with a prob-
ability 0.2.

Note that the input images are converted to pseudo RBG im-
ages by stacking the input image 3 times along the channel axis.
Prior works have shown that the augmentation scheme listed
above can lead to increased performance across several medi-
cal image related tasks (Azizi et al., 2021; Truong et al., 2021;
Hansen et al., 2022; Dong et al., 2021), albeit not in the context
of CBIR of CT liver images. However, these augmentations are
selected with natural images in mind, and do not take into ac-
count the properties of CT liver images. Our proposed Hounds-
field unit clipping scheme takes into account the particular char-
acteristics of CT images of the liver, which we hypothesize can
improve the self-supervised framework.

4. Explaining representations

Explainability is a critical component for creating trustwor-
thy and reliable deep learning-based systems. For deep CBIR,
we want to know what information the feature extractor is using
to create the representation that the retrieval is based on. This
requires explaining the vector representations produced by the
feature extractor, which can not be accomplished with standard
explainability techniques since they require a classification or
similarity score to create the explanation. However, the recent
field of representation learning explainability address the prob-
lem of explaining representations (Wickstrøm et al., 2021). In
this work, we leverage the RELAX (Wickstrøm et al., 2021)
framework to explain the representations used in the CBIR sys-
tem.

4.1. RELAX

RELAX is an occlusion-based explainability framework that
provides input feature importance in relation to a vector repre-
sentation, as opposed to a classification or similarity score. The
core idea of RELAX is to evaluate how the representation of an
image changes as parts of the image are removed using a mask.
Let M ∈ [0, 1]H×W represent a stochastic mask used for remov-
ing parts of the image. Next, h̄ = f (X ⊙M), where ⊙ denotes
element-wise multiplication, is the representation of a masked
version of X and s(h, h̄) is a similarity measure between the
unmasked and the masked representation. The intuition behind
RELAX is that when informative parts are masked out, the sim-
ilarity between the two representations should be low, and vice
versa for non-informative parts. Finally, the importance Ri j of
pixel (i, j) is defined as:

R̄i j =
1
N

N∑

n=1

s(h, h̄n)Mi j(n). (4)

Here, h̄n is the representation of the image masked with mask
n, and Mi j(n) the value of element (i, j) for mask n. The simi-
larity measure used in the cosine similarity, as proposed in prior
works Wickstrøm et al. (2021). The RELAX framework is il-
lustrated in Figure 5.

The mask generation is a crucial component in RELAX. In
this work, we follow the strategy used in previous studies (Pet-
siuk et al., 2018; Wickstrøm et al., 2021). Binary masks of size
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Fig. 5: Illustration of RELAX. A feature extractor produces a new representa-
tion of an input image, and RELAX determines what input features are impor-
tant for the representation.

h × w, where h < H and w < W, are generated, where each
element of the mask is sampled from a Bernoulli distribution
with probability p. To produce smooth and spatially coherent
masks, the small masks are upsampled using bilinear interpola-
tion to the same size as the input image. Furthermore, the num-
ber of masks required to obtain reliable estimates of importance
is an important hyperparameter. In this work, we generate 3000
masks to obtain an explanation for a single image, as suggested
in a prior work (Wickstrøm et al., 2021).

5. Evaluation

We introduce the set of scores utilized to provided quantita-
tive evaluation of our proposed framework.

5.1. Evaluating quality of CBIR

A standard approach to evaluate the quality of a CBIR system
is to measure the class-consistency in the top retrieved images
(Silva et al., 2020; Li et al., 2018b). One of the most common
approaches to evaluate the class-consistency is through mean
average precision (MAP):

MAP =
1
N

N∑

n=1

1
K

K∑

k=1

precision(k)n, (5)

where N is the number of test samples (query images), K is the
top-K retrieved images for each query image, and precision is
defined as:

precision(k) =
|relevant images ∩ k-retrieved images|

|k-retrieved images| . (6)

MAP evaluates the precision of the retrieved images across sev-
eral values of K, which makes it robust towards fluctuations
among the top retrieved images.

5.2. Evaluating quality of representations

The most widespread approach for evaluating the represen-
tation produced by a self-supervised learning framework is to
train a simple classifier on the learned representations (Chen
et al., 2020; Caron et al., 2020; He et al., 2020). The motiva-
tion for this, is that a simple classifier is highly dependent on the
representation it is given in order to perform the desired task. In
this work, we follow recent studies that use a k-nearest neigh-
bors (KNN) classifier (Caron et al., 2021, 2020) to evaluate the
quality of the representation. We opt for a KNN classifier over
a linear classifier as it does not require any training, which can
lead to ambiguities in the results (Kolesnikov et al., 2019), and
has minimal hyperparameters to tune.

5.3. Evaluating the quality of explanations

Great improvements have been made in the field of XAI over
the last couple of years. In contrast, the field of evaluation for
explanations is still under active development (Doshi-Velez and
Kim, 2017). However, recent advances have introduced new
methods for providing quantitative evaluation of explanations.
In this work, we use the relevance rank accuracy score (RR)
(Arras et al., 2022). RR measures how many of the top-M rel-
evant pixels lies within the ground truth segmentation mask. It
can be considered a proxy for how well the explanation agrees
with a human explanation for a given images. Let RM denote
the M most relevant pixels in an explanation, and S the segmen-
tation mask for the liver. RR can then be defined as:

RR =
1
N

N∑

n

|RM(n) ∩ S (n)|
|S (n)| . (7)

The RR is computed using the Quantus toolbox (Hedström
et al., 2022).

6. Data

In this section, we present the data used to evaluated our pro-
posed framework.

6.1. Decathlon data

The medical segmentation decathlon is a biomedical image
analysis challenge where several tasks and modalities are con-
sidered (Antonelli et al., 2021). One of the datasets in this chal-
lenge is a CT liver dataset acquired from the IRCAD Hopitaux
Universitaires and consists of 201 contrast-ehanced CT liver
images from patietns with mostly cancers and metastaic liver
disease. However, we exclude 70 of these images as they do
not include label information. Using every slide from each vol-
ume is computationally intractable. Therefore, we construct a
slice-wise dataset as follows. From each volume, we sample
5 slices with no liver and 5 slices with liver. We construct the
training set from the first 100 volumes and the test set from the
remaining 31 volumes. This results in a balanced dataset with
1310 training images and 310 test images.
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Fig. 6: From left to right, mean average precision, knn accuracy, and relevance rank scores versus epochs across 5 training runs on the test images from the Decathlon
dataset The plot show how performance increase with training time, and that the proposed framework learns faster with better results.

Fig. 7: From left to right, mean average precision, knn accuracy, and relevance rank scores versus epochs across 5 training runs on the test images from the UNN
dataset. The plot show how performance increase with training time, and that the proposed framework learns faster with better results.

6.2. UNN data

The UNN dataset is from an extensive database of CT scans
from The University Hospital of North Norway (UNN). It is
under development through a close collaboration between UiT,
The Arctic University of Norway, and UNN. The database con-
tains CT volumes of 376 patients surgically treated for rectal
cancer from 2006 to 2011 in North Norway. The examinations
were conducted for diagnostic and routine follow-up purposes.
The full dataset consists of CT with coronal, sagittal, and axial
slices of mainly the thorax, abdomen, and pelvis. Examinations
were conducted with different scanners and protocols at eight
different hospitals in North Norway in the period 2005 to 2020.

From the full dataset a subset of 3347 axial volumes from
368 patients was selected based on descriptive keywords and
DICOM metadata to limit it to contain mostly volumes of the
liver and abdomen. This subset is similar to the CT liver par-
tition of the medical segmentation decathlon dataset in terms
of image resolutions and contents, but more diverse in terms
of image quality, contrast enhancement levels, and artifacts be-
cause it is only curated using keywords and metadata, and not
by manual assessment.

From the UNN subset 10 randomly selected volumes from
10 different and randomly selected patients with liver tumors
were manually labeled with segmentation masks of the liver and
metastatic regions by a clinician (co-author K.R.) to be used in
our study. In addition, two volumes from a patient that had been
treated with liver surgery to remove a metastatic liver segment
were included. One volume was before the surgery, and one

after the surgery. The study of these pre- and post-operative
images is conducted as a use-case of cross-examination CBIR.

7. Experiments

We present the results of the experimental evaluation of our
proposed framework. All models were trained with a batch size
of 32 and for 250 epochs. Optimization was carried out using
stochastic gradient descent with momentum=0.9, weight de-
cay=0.0001, and learning rate=0.05 * batch size / 256, as used
in the SimSiam framework (Chen and He, 2021). As in previ-
ous works (Chen et al., 2020; Chen and He, 2021), a ResNet50
(He et al., 2016) was used as the feature extractor, with the
output of the average pooling layer as the final representa-
tion. For both the KNN classifier and the MAP we set K=5.
Code is available at https://github.com/Wickstrom/

clinical-self-supervised-CBIR-ct-liver.git.

7.1. Quantitative results
Table 1 and 2 presents the MAP, accuracy of a 5NN clas-

sifier, and the RR on the test data from the Decathlon and
UNN datasets. The results show that the proposed framework
outperforms the standard self-supervised approach across most
scores. Furthermore, self-supervised learning greatly improves
upon simply using the feature extractor trained on the Ima-
genet dataset. Also, the improvements are transferable across
datasets, as the feature extractors trained on the Decathlon data
also leads to improved performance in the UNN data.
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Figure 6 and 7 presents the evolution of MAP, accuracy of a
5NN classifier, and the RR on the test data from the Decathlon
and UNN datasets across training. The plots highlight how the
scores improve as training progresses and stabilizes. However,
an interesting observation is that the MAP and KNN accuracy
achieves its highest value earlier in training on the UNN dataset.

Table 1: Mean and std of mean average precision, knn accuracy and relevance
rank score across 5 training runs on the test images from the Decathlon dataset.
Results show that the proposed framework outperforms the baselines. Bold
numbers indicates the highest performing model.

pretraining MAP ACC RR

IN 79.4 80.3 5.00
IN + SS (baseline) 87.7 ± 1.0 88.8 ± 2.0 13.6 ± 2.5
IN + SS (ours) 89.1 ± 1.3 90.6 ± 1.4 16.2 ± 3.1

Table 2: Mean and std of mean average precision, knn accuracy and relevance
rank score across 5 training runs on test images from the UNN dataset. Results
show that the proposed framework outperforms the baselines. Bold numbers
indicates the highest performing model.

pretraining MAP ACC RR

IN 80.7 83.0 4.34
IN + SS (baseline) 84.1 ± 2.3 86.8 ± 1.6 17.5 ± 4.0
IN + SS (ours) 85.1 ± 1.7 87.6 ± 1.9 17.5 ± 3.0

7.2. Explaining representations - qualitative results
The relevance rank scores in Table 1 and 2 show that the pro-

posed framework utilizes liver features in the image to a larger
degree than the baseline approaches. However, the scores are
far from perfect, which means that other parts of the image are
also being used. Also, the feature extractor that is only trained
on the Imagenet dataset has a very low relevance rank score,
meaning that it is putting little attention on the liver. All of
these observations can be investigated through XAI. In this sec-
tion, we illuminate these observations through a new explain-
ability analysis for CBIR by leveraging the RELAX framework
that was described in Section 4.1. We show 4 qualitative ex-
amples, where the first example shows explanations for the fea-
ture extractor trained using Imagenet, and the remaining three
examples shows explanations for the feature extractor trained
using the proposed framework. In all examples, we show a
query from the test set and the 5 retrieved images by CBIR
system. Additionally, we show the explanation for the query
and retrieved images. The explanation show which features in
the input are the most important for the representation of the
image, where important pixels are highlighted in red and non-
important pixels in blue.

Example 1: the feature extractor pretrained on Imagenet
focuses on hard edges such as the spine. Figure 8 displays an
example where 2 of the 5 the retrieved images do not contain
parts of the liver. When inspecting the explanations, it is clear
that the feature extractor is not focusing on the liver, but rather
on the tailbone. We hypothesize that since the feature extractor
has never been presented with CT images, it utilizes prominent

features with hard edges such as spine, as opposed to organs
with softer boundaries. The behaviour discovered in this exam-
ple is important, as it might also result in unexpected or poor
retrievals for other queries.

Example 2: the feature extractor trained using the pro-
posed framework focuses on liver features. Figure 9 shows
an example where all the retrieved images contain liver. Addi-
tionally, it is evident that the feature extractor is putting more
emphasis on the liver for all the images, which illustrates how
the proposed self-supervised framework has enabled the feature
extractor to focus on clinically relevant features.

Example 3: the feature extractor trained using the pro-
posed framework uses features from organs that often co-
occur with the liver. Figure 10 displays an example where
CBIR system retrieves 5 images that contain the liver, but where
the explainability analysis shows that it not focusing on part of
the images where the liver is present. Instead, it puts atten-
tion on the kidneys, which are quite prominent in all images.
The kidneys often occur together with the liver in many CT
images, and it also has similar pixel intensities as the liver (in
terms of Houndsfield units). Therefore, it is not surprising that
the feature extractor has learned to utilize both liver and kid-
ney features, which also explains the behaviour in this example.
Such insights would not be obtainable without conducting the
explainability analysis.

Example 4: the feature extractor trained using the pro-
posed framework focuses on liver features, also for images
from a different dataset. Lastly, Figure 11 shows and exam-
ple from the UNN dataset. This example illustrates that also
on this new and unseen dataset, the feature extractor is basing
the representation of these images features associated with the
liver.

7.3. Case study: cross-examination CBIR

A typical scenario in clinical practice is comparing a newly
conducted examination with one ore more previous examina-
tions. For instance, one might want to compare a particular slice
from the new examination with a selection of slices from one
or several previous examinations. Such a comparison can help
physicians understand how a diseases has progress since the
previous examination, such as the development of liver metas-
tasis. But when conducting such a comparison, the physician
must manually inspect the new examination, and potentially
several previous examinations. The CT scans are often taken
with different settings across examinations, and it is therefore
not possible to simply select the same slice from different ex-
aminations, as this can image completely different parts of the
patient. A precise and reliable CBIR system could make such
a cross-examination more efficient, by automating the retrieval
process for the physician.

A typical scenario in clinical practice is comparing a newly
conducted examination with one or more previous examina-
tions. Such as development, progress, or effect of treatment of
liver metastasis, the status of liver cirrhosis, auto-immune dis-
eases in the liver, or any morphological or anatomical changes
in the liver over the course. One might want to compare a re-
gion of interest in the slice from the current examination with
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Query Retrived images

Fig. 8: Example (1): CBIR example from Decathlon dataset with feature extractor pretrained on Imagenet dataset. Top row shows, from left to right, the query and
the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red and less important in blue.
Some of the retrieved images do not contain the liver, and the explainability analysis shows that the feature extractor is focusing on the spine and rib cage instead of
the organs. This information is important to understand why non-relevant images are retrieved, and would not be available without the explainability analysis.

Query Retrived images

Fig. 9: Example (2): CBIR example from Decathlon dataset with feature extractor pretrained using the proposed self-supervised framework. Top row shows, from
left to right, the query and the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red
and less important in blue. All retrieved images contain the liver, and the explainability analysis shows that the feature extractor is focusing on the liver.

previously conducted examinations. The comparison result will
be applicable for evaluating the disease over the long course. In
routine clinical practice, the selection of slices from the previ-
ous examinations is made manually to achieve the comparison,
which is very time-consuming. CT scans taken over time are
often conducted in an inconsistent sequence and contain unlike
body regions in the same array of slices; therefore, selecting
the identical arrays of slices from the different examinations
is inaccurate. A precise and transparent CBIR system could
make a cross-examination more efficient through the automatic
retrieval process.

Figure 12 displays an example of such a cross-examination.
The query is selected from a recent examination, and the re-
trieved images are from the previous examination of the same
patient. This patient is from the UNN dataset and was selected
since liver metastasis has been developed between the two ex-

aminations. The query was selected by an experienced physi-
cian (co-author K.R.), which also selected five images to exam-
ine from the previous examination. Ideally, the CBIR system
should align well with the image selected by the physician. In
this example, the CBIR system produces a successful retrieval,
as it identifies the same images as the physician. However, an
interesting observation is that the CBIR retrieved are not sorted
in the same manner as the physician’s retrievals. Probably this
deviation is due to the CBIR system being trained on single
slices without a sense of spatial coherence. Future works could
address this by incorporating neighboring samples as positive
pairs in the self-supervised training.
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Query Retrived images

Fig. 10: Example (3): CBIR example from Decathlon dataset with feature extractor pretrained using the proposed self-supervised framework. Top row shows, from
left to right, the query and the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red
and less important in blue. All retrieved images contain the liver, but the explainability analysis reveals that the focus is on the kidneys, not the liver.

Query Retrived images

Fig. 11: Example (4): CBIR example from UNN dataset with feature extractor pretrained using the proposed self-supervised framework. Top row shows, from left
to right, the query and the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red and
less important in blue. All retrieved images contain the liver and the feature extractor is focusing on the liver, which illustrates that the feature extractor trained on
the Decathlon dataset transfers well to the UNN dataset.

8. Conclusion

We propose a clinically motivated self-supervised framework
for CBIR of CT liver images. Our proposed framework exploits
the properties of the liver to learn more clinically relevant fea-
tures, which results in show leads to improved performance.
Moreover, we leverage the RELAX framework to provide the
first representation learning explainability analysis in the con-
text of CBIR of CT liver images. Our analysis provides new
insights into the feature extraction process and shows how self-
supervised learning can provide feature extractors that extract
more clinically relevant features compared to feature extrac-
tors trained on non-CT liver images. Our experimental eval-
uation also shows how the proposed framework generalizes to
new datasets, and we present a clinically relevant user study.
In future works, we intend to investigate how the proposed ap-
proach can be extended to extract features specific to other or-

gans based on clipping strategies catered specifically to the de-
sired organ. We believe that the proposed framework can play
an essential role in constructing reliable CBIR that can effec-
tively utilize unlabeled data.
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