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Abstract
Sensor networks are frequently used to monitor our environment. From mon-
itoring the habitat of seabirds [1], to the structural integrity of bridges [2].
They can also be used to monitor the arctic tundra to help us monitor climate
change.

The arctic tundra does however place additional requirements on a monitoring
system. Low access to energy sources, human intervention, and networks to
transfer the results back, combined with a high likelihood of being destroyed by
the environment makes it difficult to successfully retrieve any measurements.
The nodes should therefore replicate any measurements among themselves
while minimizing the energy consumption.

In this thesis, we describe four approaches to schedule connections to share
data between a neighborhood of nodes. We also present the implementation
of a simulation to evaluate the approaches based on energy usage, broadcast-
latency and broadcast-throughput.

We conclude that scheduling connections in a ring-like or cluster structure
has in general the lowest energy usage at the cost of latency and throughput.
However, more work should be done to get a more accurate estimation of the
energy usage of the systems.





Acknowledgements
I would like to thankmymain advisor Professor Otto Anshus, andmy co-advisor
Associate Professor Issam Raïs for their valuable guidance and feedback.

Thank you to the Distributed Arctic Observatory (DAO) project funded by
theResearch Council of Norway, Project number 27067.

I would also like to thank my family and friends for their support and encour-
agement along the way.





Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

1 Introduction 1

2 Related work 3

3 System requirements 7
3.1 Long deployments with limited energy . . . . . . . . . . . . 7
3.2 Data-replication between nodes . . . . . . . . . . . . . . . . 8

3.2.1 Types of data dissemination . . . . . . . . . . . . . . 8
3.2.2 Recovering from node failures . . . . . . . . . . . . . 9

3.3 Communication technologies . . . . . . . . . . . . . . . . . 9

4 Spreading abstraction 11

5 Topologies 13
5.1 Connection schedules . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 Fully connected . . . . . . . . . . . . . . . . . . . . 14
5.1.2 Ring . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Methodology 19

7 Simulation 21
7.1 Schedule generation . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Simulation runner . . . . . . . . . . . . . . . . . . . . . . . 22

7.2.1 Node representation . . . . . . . . . . . . . . . . . . 22
7.2.2 Data representation . . . . . . . . . . . . . . . . . . 22

vii



viii contents

7.2.3 Simulated connection . . . . . . . . . . . . . . . . . 23
7.2.4 Recording the results . . . . . . . . . . . . . . . . . 23

8 Evaluation 25
8.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.2.1 Experiment parameters . . . . . . . . . . . . . . . . 26
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.3.1 Energy usage while idle . . . . . . . . . . . . . . . . 27
8.3.2 Energy usage under load . . . . . . . . . . . . . . . 29
8.3.3 Broadcast latency . . . . . . . . . . . . . . . . . . . 30
8.3.4 Throughput . . . . . . . . . . . . . . . . . . . . . . 32

9 Discussion 35
9.1 Implications for spreading systems in the arctic . . . . . . . 35
9.2 Limitations of simulation . . . . . . . . . . . . . . . . . . . 36
9.3 Energy estimation . . . . . . . . . . . . . . . . . . . . . . . 37

10 Future work 39
10.1 Measure energy usage . . . . . . . . . . . . . . . . . . . . . 39
10.2 Prioritizing broadcasts . . . . . . . . . . . . . . . . . . . . . 39
10.3 Replication beyond neighborhood . . . . . . . . . . . . . . . 39
10.4 Tiered clusters . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.5 Dynamically reconfigure schedules . . . . . . . . . . . . . . 40
10.6 Optimal fully connected schedule . . . . . . . . . . . . . . . 40

11 Conclusion 41

Bibliography 41



List of Figures
5.1 Connection schedule for four nodes with a fully connected

structure. The number next to each line corresponds to the
time-slot for the connection . . . . . . . . . . . . . . . . . . 14

5.2 Algorithm for generating a fully connected schedule . . . . . 15
5.3 Connection schedule of four nodes with a ring structure. The

number next to each line corresponds to the time-slot for the
connection. The arrows point at the direction of the data-flow 16

5.4 Connection schedule for four nodes with a cluster structure,
The number next to each line corresponds to the time-slot for
the connection . . . . . . . . . . . . . . . . . . . . . . . . . 17

8.1 Total amount of energy used by all nodes in 24 hours with no
broadcasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.2 Maximum amount of energy used by a node in 24 hours with
no broadcasts . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.3 Energy usage when a single node broadcasts 100mb . . . . . 29
8.4 Energy usage when every node performs a broadcast of 100mb 30
8.5 Time passed when nodes perform a broadcast of 1 byte. All

refers to the case when every node is performing a broadcast
each. Otherwise it is only a single broadcast . . . . . . . . . 30

8.6 Time passed when for a single broadcast of 100mb . . . . . . 31
8.7 Time passed when every node performs a broadcast of 100mb 32
8.8 The number of bytes/s which can be broadcast when only one

node is broadcasting at a time . . . . . . . . . . . . . . . . . 33
8.9 The number of bytes/s which can be broadcast when all nodes

are broadcasting simultaneously . . . . . . . . . . . . . . . . 33

ix





List of Tables
8.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . 27

xi





1
Introduction
Sensor networks are frequently used to monitor our environment. They have
been used to monitor seabird nesting environments [1], the impact of cooling
solutions in data centers [3], structural health [4] [2], and urban air quality
[5]. These systems could also be used to monitor the arctic tundra, gathering
data used in climate change models. However, the arctic tundra places extra
requirements on a potential monitoring system.

The arctic tundra is a difficult place to deploy sensor nodes. The nodes must
be deployed in remote locations where there are no available power sources,
and no possibility of human intervention. The nodes must therefore spend long
periods of time sleeping to save power. Additionally, the nodes may easily be de-
stroyed by animals, snow, or other events such as flooding. As such, they should
also replicate measurements among themselves to increase the likelihood of
data being successfully retrieved despite nodes being destroyed.

In this thesis we describe four general non-opportunistic approaches to share
data between nodes in a neighborhood by scheduling connections. We imple-
ment a simulation to evaluate the four approaches by exploring their energy
usage, latency, and throughput. Finally we will discuss the results’ implications
for choosing an approach for the arctic tundra.
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2
Related work
There has been a lot of research on the efficient data dissemination between
nodes. Both in terms of minimizing latency, and to reduce the overall energy
consumption.

In [6] we looked at the effects of having the nodes opportunistically commu-
nicate whenever two nodes were awake at the same time. We found that this
caused a high latency for data dissemination when the nodes were mostly
sleeping as there was a low likelihood of two nodes being awake at the same
time. The latency could be improved by scheduling all the nodes to wake up at
the same time each day. However, this caused collisions where a single node
was contacted by multiple neighbors simultaneously, which wasted both time
and energy. In this thesis, we extend this work by looking at the effects of
creating a schedule of when the connections take place.

In [7] Niki Trigoni et al. introduces WaveScheduling, a methodology for trad-
ing energy vs latency in a sensor network. The idea is to schedule message
transmissions to avoid collisions in the MAC layer. Additionally, the schedule
allow nodes to turn off their radio in periods where they are not scheduled to
transmit data. They do this by creating a schedule where the node wake up in
a wave-like pattern. This lets the nodes sleep for long periods of time, while
also minimizing the latency of messages, as the message can "follow the wave".
In our work, we assume a radio-technology where there is no interference
if multiple nearby nodes transmit simultaneously. Additionally, we focus on
transmitting data to all nodes in a neighborhood, where every node is within

3
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radio distance of each other.

In [8] Nikolaos A. Pantazis et al. present a Time Division Multiple Access
(TDMA) scheduling scheme which achieves high levels of power conservation
while reducing the end-to-end transmission time from sensors to a gateway.
They do this by creating multi-hop paths from each node to the gateway. Then
they create a schedule such that each node is assigned a time-slot at an earlier
point than the next node in the path to the gateway. Additionally, instead of
instantly sending the content, they first send a wakeup message which tells all
the nodes in the path to the gateway to stay active until the data is transmitted.
In our work, we look at how to schedule node wakeups to efficiently transmit
data to all nodes in a neighborhood.

In [9], H. Sabbineni et al. presents location-aided flooding, an energy efficient
data dissemination protocol which uses location information to reduce the
number of redundant transmissions. They prevent redundant transmissions
by sending the ids of all nodes which has already received the message in
a message-header. They also prevent the header becoming too large by only
storing the ids of nodes in the current grid. In our work, we do not use any
headers to prevent redundant transmissions. Instead we schedule connections
such that there is always just one node responsible for sending a message to a
receiver, avoiding redundant transmissions.

In [10] Aasem Ahmad et al. presents a distributed TDMA scheduling algorithm
for ZigBEE-like cluster-tree topologies to meet timeliness and energy demands.
They create a tree of clusters, where each cluster is scheduled to be active in an
order which allows messages to be passed from a source to a sink node within
an end-to-end deadline. In this work, we explore how different topologies will
perform in terms of latency and throughput to evaluate potential alternatives
to using a cluster topology.

In [11] Michael J. Murphy et al. designed and deployed𝐶𝑂2 sensors in the arctic
tundra. They described the architecture and implementation of the system,
and described lessons learned from the deployment. The nodes were deployed
in an area with good LTE-M coverage, which allowed the nodes to transfer the
measurements back from the tundra. The nodes would wake up daily to take
measurements and send the results back. In our work, we do not consider how
and when to transfer the data back from the tundra. Instead, we explore how
the nodes can replicate the data between themselves to avoid losing data when
nodes are destroyed. We also do not rely on the nodes being deployed in an
area with a reliable back-haul network, as the nodes will only communicate
with each other to replicate the data.

In [12] Issam Raïs et al. report the tradeoffs between successful data dissemina-
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tion, and energy and uptime overheads resulting from loosely coupled policies.
These policies include extending the uptime of a receiver to complete a data
transfer, and receivers sharing hints of when the sender will be awake. In our
work the nodes do not wake up randomly. Instead, we create fixed schedules
of when the different nodes should communicate.





3
System requirements
The arctic tundra is a difficult environment to monitor. The observation nodes
must be placed in a remote and harsh environment, where there are limited pos-
sibilities for energy generation and human intervention, and a high likelihood
that nodes will be damaged or destroyed.

This section describes the requirements for our system, and the assumptions
made regarding what technologies will be available.

3.1 Long deployments with limited energy

We expect the nodes to be deployed for long periods of time, with little to no
possibility to generate energy while deployed.

The arctic tundra is remote, and it requires a lot of time and resources for
humans to travel and deploy the nodes. Current observations of the arctic
tundra are done through seasonal expeditions where they collect old and deploy
new equipment such as camera traps [11]. As such, the nodes should survive
at least one year without human intervention, and preferably longer.

However, there are limited options for energy generation. The nodes will be
deployed in different locations depending on what they are measuring. This
includes being under snow, rocks, or next to cliffs. These locations combined
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with bad weather and little sun during the winter makes the use of solar-panels
difficult. Additionally, there are regulations which may prevent the deployment
of larger installations such as wind-turbines [11]. Because of this, the nodes
must survive on battery-power alone the whole deployment, which can only
be achieved by aggressively saving energy where possible.

3.2 Data-replication between nodes

There is a high likelihood that nodes will be destroyed at some point during
a deployment. Nodes may be moved or destroyed by avalanches, or animals
playingwith the equipment. Theymay also be filledwithwater from themelting
snow. Measurements made by the node should therefore be replicated to other
nodes to increase the likelihood of successfully retrieving the data.

Some nodes may also have intermittent access to limited back-haul networks
which can be used to transmit data back for analysis. For instance, one might
fly a drone near the nodes to download the data, or skiers might have an
app installed on their phone which downloads data from any node within
connection range. However, the drone or app will most likely only discover
a small subset of the nodes, which means that the measurements should be
replicated at multiple nodes to increase the likelihood that it is successfully
transmitted.

3.2.1 Types of data dissemination

Nodes will take measurements at varying frequencies, and of varying data-sizes.
For instance, camera traps might have long periods where there are no animals
nearby, before finally taking a large picture which should be replicated. Other
nodes might regularly take small CO2 measurements [11] to observe how the
CO2 concentration in the air changes. This will cause the amount of data to
be replicated at a given moment to vary. We group the replication into three
types.

• No replication: There will be periods where nodes are not making any
observations which need replication. This will either be because it is
saving energy for later, or because there is nothing to measure at the
time.

• Small and regular replication: Nodes may regularly make small observa-
tions which should be replicated. For instance, it may do daily measure-
ments to see how something changes over a long period of time.
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• Bursty replication: Nodes may make several large observations in a short
period of time. For instance there might suddenly be a lot of animals in
the area which will cause the camera-trap to take multiple large pictures
which should be replicated.

Depending on what kind of sensors are being deployed, the system will have
different replication needs. The nodes must be energy efficient when there is
little to no data being replicated However, it should be able to replicate a large
chunk of data within a reasonable time. This is needed because the replication
must complete before the next burst to stop the data replication backlog from
becoming too large. Additionally, the data should be replicated before the node
is destroyed.

3.2.2 Recovering from node failures

As mentioned, there is a high probability of nodes being destroyed or running
out of energy. They may also temporarily be covered in snow or other debris,
blocking any radio signals. Any data dissemination protocol must therefore han-
dle nodes becoming temporarily or permanently unavailable. In this thesis, we
will not explore how to detect, prevent, or recover from such failures, however
this must be considered before deploying sensors on the arctic tundra.

3.3 Communication technologies

There already exist several technologies which can be used for communica-
tion between sensor nodes. These include LoRa [13], ZigBEE [14], BLE [15]
and several others [13]. Each come with different tradeoffs regarding energy
consumption, bandwidth and latency.

These technologies will improve, and we expect new technologies to be de-
veloped which have even lower energy-costs. Therefore, we will not assume
any specific technology in this work. Instead, we will make some assumptions
about what future technologies will allow us to do. The assumptions are as
follows:

• Nodes can form one-to-one connections with each other, where each
node can only have one active connection at time.

• There is little to no radio-interference between connections, even if the
nodes are near each other.
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Spreading abstraction
To fulfill the requirements of our system, we introduce a spreading abstraction
which describes how nodes are allowed to spread data. The abstraction defines
two terms. A grouping of related nodes called a neighborhood, and an operation
called a broadcast.

The neighborhood is defined as a set of nodes where every node is within
the connection range of every other node. A node is only part of a single
neighborhood at a time. Additionally, nodes will not leave or join neighborhoods
dynamically. Instead, the neighborhood is defined before they are deployed. If
a node is destroyed, or runs out of battery, we still consider it to be part of the
neighborhood.

When in a neighborhood, a node is allowed to replicate its data by doing
a broadcast. A broadcast consists of sending a chunk of data (one or more
measurements) to all nodes in the neighborhood. We assume that our radio
technology only permits one-to-one connections. A broadcast in this setting will
therefore require nodes to form multiple connections with different neighbors,
or forward data on behalf of other nodes.

11





5
Topologies
We propose four approaches to implement the spreading abstraction using
a Time Division Multiple Access (TDMA) based scheme where we schedule
connections between nodes.

The idea behind TDMA is to split time into equal-sized time-slots which are
grouped into frames. Nodes are assigned to sleep or wake up to connect to
a neighbor at specific slots within each frame to avoid transmission-collisions
between nodes in a neighborhood.

In our case, we assume that a node can only connect with a single neighbor at a
time. We therefore create a connection schedule where there is a maximum of
one connection per node per slot. However, we may assign multiple unrelated
connections in the same slot. The nodes will wake up for the slots they are
assigned a connection, but they will only initiate the connection if they have
data to replicate. The nodes will also stay awake for a short period at the start
of the slot to allow the neighbor to potentially initiate the connection.

13
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n1 n2

n4 n3

1

2

3 2 3

1

Figure 5.1: Connection schedule for four nodes with a fully connected structure. The
number next to each line corresponds to the time-slot for the connection

5.1 Connection schedules

5.1.1 Fully connected

The first approach is to schedule connections between every pair of neighbors.
Figure 5.1 shows a neighborhood of four nodes. Each arrow corresponds to a
connection between the nodes, and each number corresponds to the time-slot
they are assigned to connect. Note that there are multiple parallel connections
during the same slots. For instance we see that 𝑛1 and 𝑛2 has a scheduled
connection in the same slot as 𝑛3 and 𝑛4

With this scheme, a node will only transfer its own data to neighbors, which
means that each node is responsible for completing its own broadcasts.

The nodes could forward data on behalf of other nodes. However, this will
cause redundant data transfers between nodes unless the nodes send some
form of control messages. For instance, in Figure 5.1, if 𝑛1 is performing a
broadcast, 𝑛2 could in theory forward the message to 𝑛4 during slot 2 reducing
the time required for the broadcast to complete. However, 𝑛1 has no way of
knowing that this occurred, or whether it succeeded. As such 𝑛1 would have
to send some form of control message checking what data 𝑛4 has received,
which costs energy. In the arctic tundra, energy preservation is generally more
important than speed, which makes this approach unfeasible.

There are several approaches to compute a fully connected schedule. One
approach is to maximize the number of parallel connections, as this minimizes
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the time to complete a broadcast. However, calculating the optimal schedule
for this is an NP-complete problem [16]. Another extreme is to only allow for a
single connection in each slot.

Instead of calculating the schedule with the maximum number of parallel
connections, we used the algorithm shown in Figure 5.2.

func GenerateFul lyConnectedSchedule () {

// For each node in the neighborhood
fo r node := 0; node < numNodes ; node++ {

// For each remaining neighbor
f o r neighbor := node + 1; neighbor < numNodes ; neighbor++ {

// Check every po s s i b l e s l o t
f o r s l o t := 0; ; s l o t++ {

// Skip i f e i t h e r node has a l ready used the s l o t
i f s lo tUsed (node , s l o t ) || s lo tUsed ( neighbor , s l o t ) {

cont inue
}
// Ass ign connect ion to f r e e s l o t
ass ignConnect ion (node , neighbor , s l o t )
break

}
}

}
}

Figure 5.2: Algorithm for generating a fully connected schedule

We have not analyzed exactly howmuch parallelization this algorithm provides.
However,when generating schedules for up to 100 nodes, it generated schedules
with a maximum of (𝑁 −1) · 2−1 slots where 𝑁 is the number of nodes.

5.1.2 Ring

The second and third approach uses a ring-structure as shown in Figure 5.3.
Each node is placed in a ring where they only form connections with the next
and previous node in the ring. With this approach the nodes will both send
its own data, but also any data it receives from the previous node in the ring.
Using this structure, we achieve a broadcast by forwarding the data through
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n1 n2

n4 n3

1

2

3

4

(a) Ring with no parallel connections

n1 n2

n4 n3

1

2

1

2

(b) Ring with maximum number of parallel
connections

Figure 5.3: Connection schedule of four nodes with a ring structure. The number next
to each line corresponds to the time-slot for the connection. The arrows
point at the direction of the data-flow

the entire ring. The nodes will only transfer data forward through the ring
tracking what data has already been sent. This avoids redundant transfers
without sending any control messages.

As with the fully connected approach, there are several possible connection-
schedules which can follow the ring-structure depending on how many parallel
connections we want. We will look at two cases. The case with no parallel
connections as shown in Figure 5.3a, and with the maximum number of parallel
connections as shown in Figure 5.3b.

In the case of no parallel connections, we see that we require 𝑁 slots for all
the connections. With parallel connections, we need either two or three slots
depending on whether there are an odd or even number of nodes. In figure
5.3b we have an even number of nodes, requiring two slots. However, when
there are an odd number of nodes, 𝑛1 will be assigned to communicate with
both its next and previous on slot 1, which is not allowed. As such, we require
a third slot in each frame.

5.1.3 Cluster

The fourth approach uses a cluster-structure shown in Figure 5.4, where all the
nodes communicate with a single master. Themaster is responsible for receiving
and broadcasting messages from the other nodes in the neighborhood. The
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n1 n2

n4 n3

1

2
3

Figure 5.4: Connection schedule for four nodes with a cluster structure, The number
next to each line corresponds to the time-slot for the connection

master acts as a normal node, taking measurements and initiating broadcasts
as any other node. However, it has the additional responsibility of forwarding
data and completing broadcasts on behalf of its neighbors. This scheme does
not allow for any parallel connections, as the master node can only connect to
one node at a time. As such, this scheme requires 𝑁 − 1 slots.
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Methodology
There are several ways to evaluate our four approaches. These include simu-
lating, emulating, or creating a prototype of the systems.

Simulation is described in [17] as the imitation of a real-world process or system
which can be studied and used to draw inferences to how the real-world system
will behave. This is done by creating a model where we make assumptions
about how the system operates. Simulations are generally easier to implement
that the real world equivalent, which makes it suitable as an analysis tool when
designing the actual system since we can more easily test how changes will
impact the system performance.

Emulation, and its advantages and disadvantages compared to simulation has
been discussed in [18] by Ian McGregor. He describes emulation as being
similar to simulation, but where parts of the model is carried out by a real
system. He notes that there will always be a difference between the results of a
simulation, and the real world equivalent. This difference can be reduced using
emulation models, where parts of the model is based on real systems. However,
this forces the system to be emulated in real time, as it is based on a real
system making it harder and slower to run multiple tests with small changes.
Simulations on the other hand can make assumptions and simplifications which
allows it to fast forward through time, making it easier to run multiple tests.
As such, emulation is more suited to validate the characteristics of the system
as it is slower but generally more accurate.

19
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A final possibility is to implement a prototype. However, this is costly and takes
long to implement. It also forces you to make choices of which hardware and
software to use, which will have a measurable impact on the characteristics of
the system.

In our case we do not have the resources to create a prototype of the sensor
nodes. Similarly, as we have multiple approaches to test in multiple scenarios,
it is unfeasible to create an accurate emulation of the system. As such, we
have chosen to evaluate the system by creating a simulation for the different
topologies.

We had multiple choices regarding how to simulate the system. There is a large
number of simulation frameworks out there such as SimGrid [19], NS-3 and
OMNet++[20], each with their own pros and cons. There is also a learning
curve to use each of the frameworks as they are usually designed to create
detailed statistics of a wide variety of systems. It would therefore take a lot of
resources to find the correct framework and learn how to use it. Instead, we
chose to implement out own simulator for our specific needs.
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Simulation
To evaluate the system we implemented a custom simulation for the different
connection schedules. The simulation takes a topology and the number of nodes,
and computes how often each nodes perform different actions. Specifically, the
simulator tracks:

• Time spent sending data

• Time spent listening for and receiving data

• Total amount of data sent

• Number of slots used

• How much simulated time has passed

The basic idea of the simulation, is that it is given a list of all the scheduled con-
nections and their corresponding slots within a frame based on the connection
schedule for the topology. It then iterates over each scheduled connection, and
simulates the actions taken by the relevant nodes in that slot. The simulation
consists of two parts. A schedule generator, and a simulation runner.

21
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7.1 Schedule generation

The schedules are created as a list of all connections which should take place
within a frame. They are generated based on the topologies described in
chapter 5, and remain static for the entire simulation. The algorithms are
deterministic, and will create the same schedule for a given amount of nodes
every time.

7.2 Simulation runner

The simulation runner uses the generated schedule, and simulates the node
activities. This is done by iterating over the schedule, and simulating the
actions taken by each nodes during each slot. This includes activities such as
waking up according to the schedule, listening for the potential connection,
and performing the data transfer.

7.2.1 Node representation

Each node is represented as an object containing the relevant state for , and the
statistics for the activities performed by the node. The state includes:

• Data stored at the node

• Data sent to other nodes

• Statistics including:

– Time spent sending data

– Time spent listening for and receiving data

7.2.2 Data representation

The data is represented as a set of objects. Each object is given a size, and an
identifier in the form of a source-node, and a per-node-unique index. Each
object corresponds to a chunk of data which can be replicated between nodes.
This might represent a measurement like the air humidity. We assume that an
object can not be split up, but must be transferred as a whole to neighbors.
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7.2.3 Simulated connection

When simulating a connection, we do the following. The internal state of the
two nodes are checked to see if there is any data to transmit. This would
for instance be the case if one of the nodes are currently performing a broad-
cast, and the current neighbor has not yet received said broadcast. We also
check the nodes for what data it has already sent, to prevent redundant data
transfers.

If neither node has any data to transmit, we simulate that the nodes wake up,
wait a set amount of time for the neighbor to initiate the connection (which
in this case does not happen), and fall asleep again. We then increment the
listen-time counter accordingly.

If one or more of the nodes has data to transmit, we instead simulate that the
nodes wake up, connect, and transfer data. We assume that there is no form of
radio interference, and that the nodes are able to fully utilize the bandwidth of
the connection between them. We also assume that the nodes connect instantly,
allowing them to utilize the whole slot. We can therefore calculate exactly how
much time is required to transfer the data between the nodes. If both nodes
have data to send, the bandwidth is shared equally, allowing each to send as
much as they receive. After calculating how much is sent by each node, we
increment the transfer- and listen-time counters correspondingly.

As mentioned, the objects can not be split into smaller chunks for transfer.
This means that we only simulate transfers of entire objects. The nodes might
therefore go to sleep before their slot is over even though they have more data
to send if there is not enough remaining time in the slot to transfer a whole
object. We do however assume that the slots are long enough to transmit at
least one object per slot.

7.2.4 Recording the results

When the simulation is complete, the state of each node is recorded for later
analysis. The total amount of data broadcast, the number of slot used, and the
amount of simulated time which has passed is also stored.
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Evaluation
8.1 Metrics

The different approaches are evaluated using the following metrics.

• Energy used by all nodes while idle for 24 hours. The amount of energy
used by the nodes during 24 hours while no broadcasts are performed.
This includes the total amount of energy used, and the energy used by
the node with the highest energy consumption.

• Energy used during one broadcast of 100mb. This includes the total
amount of energy used, and the energy used by the node with the highest
energy consumption.

• Energy used when all nodes broadcast 100mb. This includes the total
amount of energy used, and the energy used by the node with the highest
energy consumption.

• Latency for broadcasts of one byte. This is the time passed from when
the broadcast is started until it is completed.

• Latency for broadcasts of 100mb. This is the time passed from the first
broadcast is started until all nodes has successfully completed their broad-
cast.
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• Throughput for a single node. The number of bytes broadcast per second
by a single node while all other nodes are silent.

• Throughput for all nodes. The number of bytes broadcast per second
when all nodes are broadcasting simultaneously.

8.2 Experiments

To evaluate the topologies, we perform five experiments for each topology.
These consisted of running the simulation for:

• 24 hours with no broadcasts.

• A single broadcast of 1 byte.

• Every node performing a broadcast of 1 byte.

• A single broadcast of 100mb.

• Every node performing a broadcast of 100mb.

8.2.1 Experiment parameters

The simulations do not consider any specific technologies. Only that there is
some way to transfer data between the nodes. However, during the simulations
we use the network bandwidth and energy usage from related literature.

Table 8.1 shows the parameters used in the simulations. As in [12], we consider
Raspberry Pi Zeros which communicate over LoRa, where we simulate the
energy consumption of sending and receiving data as being equal.

A slot length of 10 minutes was chosen for the following reasons. It is a long
slot which allows the nodes to transfer up to 30mb of data during a single
connection. Additionally, it lets the nodes sleep for long periods of time before
having the next scheduled connection. However, it also short enough that a
whole frame will complete within one day even if the neighborhood grows to
hundreds of nodes.

The nodes with scheduled connections will also have a listen period of 10
seconds before falling asleep again when there is no data to transmit. We
chose 10 seconds as related work has shown that the internal clock of a node
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may scew up to 10 seconds per day [21].

When estimating the total energy used by a node, we calculate the amount of
time spent in the listening- and transferring-states, and their corresponding
energy costs.

Bandwidth 50 kbps [12]
Transfer energy 0.56W [12]
Listen energy 0.56W [12]
Listen period 10s
Slot length 10 min

Table 8.1: Simulation parameters

8.3 Results

8.3.1 Energy usage while idle

Figure 8.1: Total amount of energy used by all nodes in 24 hours with no broadcasts

Figure 8.1 shows the total energy used by the neighborhood when deployed for
24 hours while performing no broadcasts. The energy usage in this case only
consists of the nodes listening for possible connections at the start of their slots.
As such, the energy used corresponds to how many parallel connections are
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scheduled. We see that the fully connected and the parallel ring topologies has
a high energy usage, with the parallel ring being the most expensive as they
schedule multiple connections per slot. The cluster and ring topologies on the
other hand has a low energy usage, as it only schedules a single connection
per slot.

Note that the variation in the parallel ring corresponds to whether there
is an odd or even number of nodes in the neighborhood, where an even
number of nodes allows for more parallel connections. The fully connected
schedule also varies depending on howmany parallel connections our algorithm
generates.

Figure 8.2: Maximum amount of energy used by a node in 24 hours with no broadcasts

Figure 8.2 shows the energy used by the node which used the most energy when
deployed for 24 hours while no broadcasts were performed. This corresponds to
the node which has the most scheduled connections per frame, as they spend
the most time listening for possible connections.

We see that the cluster-topology has the single node which uses the most energy.
Specifically the master-node. This is because it must be active for every slot
in every frame. We also see that the energy required is constant, no matter
how many nodes are in the neighborhood. The parallel ring, and the fully
connected topology also has a high maximum energy usage. However, it varies
depending on the size of the neighborhood, as some sizes creates schedules
where nodes are inactive for some slots.
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Finally, the ring-topology uses the least amount of energy during a day. This is
because each node only wakes up twice for each frame. Once for the connection
with the next, and once for the previous node in the ring. As the neighborhood
size increases, the time between each connection for a node increases, which
again reduces the amount of energy used by each node.

8.3.2 Energy usage under load

(a) Total amount of energy used by all the
nodes

(b) Maximum amount of energy used by a
node

Figure 8.3: Energy usage when a single node broadcasts 100mb

Figure 8.3 shows the energy used when a single node performs a broadcast
of 100mb. Figure 8.3a shows the total energy used by all the nodes. We see
that the schedules use a similar amount of energy. However as the number of
nodes increases we see that the fully connected topology uses more energy.
This is because nodes will have to wake up for scheduled connections with
every neighbor, even though only one of the neighbors are actually performing
a broadcast.

Figure 8.3b shows the energy used by the node which used the most energy.
We see that the fully connected and cluster topologies require a single node
(the sender in the fully connected, and the master in the cluster) to do all of
the data transfers.

Figure 8.4 shows the energy used when every node performs a broadcast of
100mb each. Figure 8.4a shows the total amount of energy used by all of
the nodes. We see that all the topologies in total use the same amount of
energy since they are sharing the same amount of data with no redundant
sends. Figure 8.4b shows the energy used by the node which used the most
energy. Here we see that the cluster topology requires the master node to use
significantly more energy as it has to perform all the broadcasts on behalf of the
rest. On the other hand, the other topologies has a much lower, and therefore



30 chapter 8 evaluation

(a) Total amount of energy used by all
nodes

(b) Maximum amount of energy used by a
node

Figure 8.4: Energy usage when every node performs a broadcast of 100mb

more evenly distributed per node energy usage.

8.3.3 Broadcast latency

Figure 8.5: Time passed when nodes perform a broadcast of 1 byte. All refers to the
case when every node is performing a broadcast each. Otherwise it is only
a single broadcast

Figure 8.5 shows the time to complete a broadcast of 1 byte. The labels starting
with all is for when every node is performing a broadcast simultaneously.
The broadcasts happen concurrently, where the nodes does not wait for other
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broadcast to complete before starting its own. The time is measured from the
when the first broadcast begins, until they have all completed. The parallel ring
had the same latency for both scenarios.

We see that performing a single broadcast is quickest. out of the single broad-
casts, the cluster, ring, and fully connected approaches takes the same amount
of time. The parallel ring however takes longer depending on whether there is
an odd or even amount of nodes.

Performing multiple broadcasts is generally slower. This is because we require
multiple frames for the broadcast to complete. For instance, when every node
performs a broadcast in a ring-topology, the last node in the ring can only start
its broadcast at the end of the first frame. We can therefore see that the ring
and cluster topologies takes twice as much time to complete all the broadcasts
than their single-broadcast alternatives.

Figure 8.6: Time passed when for a single broadcast of 100mb

Figure 8.6 shows the time taken for a single node to broadcast 100mb. We see
that the parallel ring is the fastest, and the fully connected is generally slowest.
We also see that the ring and cluster topologies are very similar, however the
ring cluster is slightly quicker.

Figure 8.7 shows the time required for every node to complete a broadcast
of 100mb. We see that the ring and clustered topologies become significantly
slower as we increase the number of neighbors. This is because all the data has
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Figure 8.7: Time passed when every node performs a broadcast of 100mb

to be passed through a single node.

8.3.4 Throughput

Figure 8.8 shows the amount of data which can be broadcast per second
by a single node. We see that overall, increasing the number of nodes in
the neighborhood will reduce the throughput. This is because it takes more
connections per broadcast. However, we see in Figure 8.9, that when multiple
nodes perform a broadcast simultaneously, then the overall throughput does not
decrease for the fully connected and parallel ring topologies. This is because
they utilize the multiple parallel connections in the schedules. The ring and
cluster topologies on the other hand do not have any parallel connections,
which reduces the throughput.
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Figure 8.8: The number of bytes/s which can be broadcast when only one node is
broadcasting at a time

Figure 8.9: The number of bytes/s which can be broadcast when all nodes are broad-
casting simultaneously
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Discussion
9.1 Implications for spreading systems in the

arctic

The results show several aspect which must be considered when deploying a
system in the arctic tundra.

First, is the energy usage. This is important as this is the leading factor deciding
how long the system can be deployed before requiring human intervention to
recharge the nodes. The total amount of energy consumed by all the nodes
decides how much energy storage (batteries) must be brought to the field.
However, the distribution of the energy consumption is also important. If one
node requires significantly more energy than the rest, then it must be given a
larger energy-capacity to stay active as long as the rest.

We found that when idle, the ring and cluster topologies overall used the least
amount of energy. However, the cluster approach places most of that energy
usage on the master node. Similarly, under load, the ring and cluster approach
used either the same or less energy as the other topology, but the cluster causes
the master node to expend a large amount of energy. This means that when
using a cluster approach, we must take into consideration the additional energy
consumption of the master. On the other hand, the fully connected and parallel
ring approach uses more energy while idle. It should also be noted that the
fully connected topology is more fair, as in that the node which is initiating
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the broadcasts is the node which expends the most energy. This will in some
cases be advantageous, as we can predict which node requires more energy
depending on the frequency of the measurements.

The second factor is the latency and throughput of the system. If nodes are
making frequent and large measurements which are broadcast, the systemmust
have a high enough throughput to transfer all of the data without creating a
large backlog. Additionally, if the data is important, we want a low latency to
reduce the likelihood of data being lost if a node is destroyed.

We found that when only a single node is performing broadcasts, the differ-
ent topologies has similar characteristics, with the parallel ring having slightly
lower latency and higher throughput. However, when multiple nodes are broad-
casting, the fully connected and parallel ring has the lowest latency and highest
throughput since they allow for multiple connections in a single slot. Because
of this, if multiple nodes are taking large measurements of high importance,
with high frequency, then a fully connected or parallel ring approach should
be considered.

In the arctic tundra, the most important aspect is achieving low energy usage.
Based on these conditions, the ring topology has several advantages. It uses
the least amount of energy while idle, and does not put extra strain on specific
nodes in the neighborhood during broadcasts. All the while having similar
latency and throughput as the cluster approach. However, if we know that
there will be a significant amount of data that will be replicated continually,
then the more energy-consuming fully connected and parallel ring alternatives
should be considered.

9.2 Limitations of simulation

There are several limitations with how the nodes are simulated. The simulation
assumes an ideal scenario where the nodes always wake up at the correct
time and successfully form a connection with its neighbor instantly. This will
in practice be impossible. The nodes will for instance be affected by clock-
scew[21] which will cause the nodes to wake up sooner or later than expected,
and therefore have to wait for the connection.

We also assume that the bandwidth of the connections are always optimal.
However, in practice, the quality of the connection will vary due to several
factors. Weather such as rain and snow may block the radio signals, and
interference from other radio transmitters may reduce the bandwidth of the
connection.
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The simulation also does not account for time and energy used by the nodes
for start-up and shutdown. Depending on the software/hardware on the node
this will vary, however most systems require some form of boot sequence to
initialize the hardware, which takes both time and energy.

When exchanging data, the nodes always shared the bandwidth with a perfect
50/50 split (except if a node had no data to send). In practice, this would be
hard to do without also sending some form of control-messages which would
take time to send and receive.

9.3 Energy estimation

The energy estimation is rudimentary, and does not give a full picture of the
actual energy usage of the nodes. In this work we consider the time spent
listening and transmitting data. However, there are several other factors which
will affect a nodes energy usage. For instance, processing the data received,
and tracking what data is already sent uses extra energy. Additionally, the
frequent start-ups and shutdowns of nodes will require extra energy usage. We
can therefore not use these results directly to estimate how much energy we
need to deploy a sensor network. However we can still use it to compare the
energy usage between the different possible approaches.





10
Future work
10.1 Measure energy usage

The current work estimated the energy usage based onmeasurements of certain
technologies in related literature. Specifically an idle raspberry pi Zero [12] [22],
and the energy-use of LoRa [23]. In the future we should create a prototype
of the system and measure the actual energy usage as this will be much more
accurate than our current simulations.

10.2 Prioritizing broadcasts

Currently, all data broadcast is treated identically. This means that there is no
way to prioritize important, or urgent data. The system should be extended
to allow setting a priority for the data, allowing more important broadcasts
complete quicker.

10.3 Replication beyond neighborhood

Currently, we only considered broadcasts to replicate data within a single
neighborhood. However, natural disasters may destroy a whole area. This
means that the data should be replicated physically further away from the
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source node. We should therefore also explore how to replicate the data
outside a nodes neighborhood. For instance, we may specify that some nodes
must act as bridges between nearby neighborhoods. This will require the
connection-schedules to be modified so that the bridge-nodes has available
slots to communicate.

10.4 Tiered clusters

The clustered approach currently has a single master node which has the
highest energy-requirements and ends up being a bottleneck when there is a
high number of broadcasts. This could potentially be improved by creating a
form of tiered clusters, where multiple nodes share the role of master.

10.5 Dynamically reconfigure schedules

Wehave currently not explored how the nodesmight reconfigure the connection
schedules dynamically in response to nodes being destroyed or running out of
battery. This is especially important for the cluster and ring-like approaches,
as these have single points of failure before a broadcast will be impossible.
Reconfiguring the connection schedules will also let us spread the energy
usage more evenly in the cluster topology, as this will allow us to dynamically
change the master. We should therefore look into ways of allowing the nodes
coordinate and reconfigure their schedules.

10.6 Optimal fully connected schedule

In our current experiments, we have used a simple heuristic to create the
connection schedule for the fully connected topology. However, we have not an-
alyzed exactly how many parallel connections this algorithm generates. There
may also be algorithms which produce a higher number of connections per slot,
and smaller frame-sizes. We have also not evaluated the energy cost of these
algorithms which may be useful when reconfiguring the schedules dynami-
cally. We should therefore explore algorithms to create the fully connected
connection schedules, and evaluate their energy requirements.



11
Conclusion
In this thesis we have introduced four non-opportunistic approaches to share
data between nodes in a neighborhood by scheduling connections. These were
evaluated using a simulation to calculate the energy consumption, latency and
throughput of the networks while idle, while performing broadcasts of 1 byte,
and while performing broadcasts of 100mb.

The experiments showed that a ring or clustered approach will use the least
amount of energy at the cost of higher latency and lower throughput. On the
other hand, the parallel ring and fully connected topologies are more costly
while idle, but allows for lower latency and higher throughput during high
loads. It also showed that a clustered and fully connected approaches place
more of the energy requirements on a specific nodes, which must be taken into
consideration when deciding the energy-capacity of each node.

In the arctic tundra, energy conservation is most important. As such, a ring or
clustered approach should be considered unless the amount of data to broadcast
is high.
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