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“If you can’t convince them, confuse them.”
–Harry S Truman

“It is more fun to talk with someone who doesn’t use long, difficult words but
rather short, easy words like, ‘What about lunch?”

–Winnie the Pooh





Abstract
Few-shot segmentation has in recent years gotten a lot of attention. The reason
is its ability to segment images from classes based on only a handful of labeled
support images. This opens up many possibilities when the need for a big
dataset is removed. To do this a few-shot segmentation network need to extract
as much quality information from each support image as possible.

In this thesis we are exploring if an existing few-shot segmentation network can
be improved by making the inference phase more target class specific. To do
this we are introducing our Inference Guided Few-Shot Segmentation (IGFSS)
method. It can be applied to an existing few-shot segmentation network. It
changes the inference phase from a static network to one that adapts certain
class specific parts of the network to each new target class. We tested our
method with the Self-Guided Cross-Guided (SGCG) network as backbone.
Here we optimized either the prototypes or the decoder. We used the Pascal
dataset to compare the results from both methods. This is done on a fixed list
from the dataset to be able to make a fair comparison.

In the 5-shot setup, where new classes are segmented based on 5 support
images. Here we get a solid improvement when our method is applied to both
the prototypes and the decoder. The mean IoU score was increased with 3.7%
and 7.5% respectively. The dataset was analysed with regard to image and
object distributions. This gives us a better understanding of the results of our
IGFSS method.

While our IGFSSmethod does benefit all classes this could be a first step towards
a Class-Adaptive Inference Guided Few-Shot Segmentation method.
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1
Introduction
Image analysis has had a fast development in the last few years together
with the rest of the field of machine learning. Improvement has come from a
steady stream of newmethods utilising new hardware-technologies that greatly
increases computation capabilities. This has solved a lot of previous problems
such as running image recognition networks in real time and being able to
train large scale networks. Nowadays face detection networks can run easily
in the background on a phone in real time without any problem. While large
networks such as DALL-E [19] with 3.5 billion parameters that can produce
high quality images from a written caption. Today the machine learning field
is working on other bottlenecks that are preventing further improvement. One
of them is the need for big labeled dataset. Without this training networks
becomes much harder and often impossible to get good results.

1.1 Semantic Image Segmentation

In this thesis we will take a close look at the image recognition technique
semantic image segmentation. This means that we want to classify each pixel
in an input image to either a target class or background. The applications for
semantic image segmentation range from self driving cars [44] to medical
diagnostics [14][16]. Self driving cars need to make quick decisions from
visual inputs to keep on the road as well as detecting and avoiding obstacles
[22]. In the medical field there are a lot of employees working with analysing
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2 chapter 1 introduction

different kinds of images while looking for diseases. If this could be completely
automated or at least give the employees a helping hand we could increase the
efficiency of the health system [15].

In recent years it has become more common that the absent of big quality
datasets is the main bottleneck [57][58]. Since the machine learning models
are learning from data, the performance of the model is highly correlated to
the quality of the dataset it has trained on. Generating big labeled datasets is
expensive, especially for image data labeled on a pixel level. This has led to an
increased interest in methods that are less dependent on large labeled datasets
for a specific task. There are many alternatives that remove the need for large
labeled datasets.

Unsupervised learning removes the labels all together from the datasets. This
way big datasets can still be accessed, but it is hard to implement good methods
and keep track of what they have learnt and why. The score on segmentation
tasks are generally much lower for unsupervised methods compared to super-
vised methods with limited training data [24].

Semi-supervised learning combines a small set of labeled data with a large
set of unlabeled data. These work good for one specific task with additional
unlabeled data. However they are not general enough to work on new classes
with with just a few training images [63].

An other alternative is to take an existing network and re-train it, often called
fine-tuning, on a new class. This can give good results if the new class is similar
to what the network originally trained on. However to get good results on a new
class it typically relies on more images to get good performance [45].

Few-shot learning is also a potential solution that addresses the problem with
large labeled datasets. Here the focus is to be able to just need use a hand
full of training images when a new class is introduced. This addresses both
problems from unsupervised and semi-supervised learning.

1.2 Few-Shot Segmentation

To solve the need for large datasets for labeled data the field of few-shot
segmentation has developed. In this thesis we will take a closer look at few-
shot methods and dive into the field of few-shot learning. The main reason
this field has gained an increased popularity the last few years is for its ability
to learn from a very small dataset of the target class [57]. With just one
training image from a new class we can still produce an accurate segmentation
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map.

With few-shot learning we are shifting the mindset from "learning a task" to
"learning how to learn tasks". So instead of having a fixed set of classes that
the network can label, few-shot networks can be given a new target class to
label. During the training phase the network will have be given small sets of
images from the same class. Some labeled and some to label, this structure
prepares the network to label unseen classes in the future. To do this we
are still dependent on having large labeled datasets of many classes to train
the models. Optimally the type of training inputs should be from a similar
environment to the target class we want to segment in the end. This means that
if the goal is to segment trees from satellite radar images, it is not preferred to
train on real life images of cats and dogs.

When the model is trained we can introduce a new class with only one or a
few labeled training examples. These training examples are often referred to
as support images. Since the model has a focus on "learning how to learn" it
can extract the information from the support images. This is then used by the
model to check each pixel in the input image, query image, if they are belonging
to the target class or background.

1.2.1 Limitations of Few-Shot Segmentation

Few-shot models are also dependent on a good training dataset for good
performance. They need to be very general in order to adapt to new classes
and tend to be class agnostic. It is still important that the classes the network
has been training on is somewhat close to the classes it should be used on.
Few-shot segmentation networks tend to have trouble if the type of images
vary to much from training to testing [5].

During the training phase we want to get the network as general as possible to
handle unknown new classes. Then we are interested in finding broad features
in the training dataset. Using too specific information from each training
example can make it hard to find common weights for the network that work
good for all classes.

In the inference phase however we want to maximize usage of the information
given from the few support images in the target class. So by using the network
in the same setting for the training and inference phase we risk to oversee
some information from the support set. Most few-shot segmentation do not
change anything in the inference phase. Therefore they do not fully leverage
the information from the support set. There have been some recent adaptations
to change the structure of the network in the inference phase [5]. This however
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has not been done for networks particularly designed for few-shot segmentation
networks.

1.3 Research hypothesis

We hypothesize that it is very important to use the information from the few
support images in the best possible way since they contain a new target class
to the network.
Our hypothesis is that:
The results from a few-shot network can be improved by utilizing the information
from the support set in the inference phase in a more extensive way. This can be
done by changing certain class specific parts of the network by optimizing it to
the current target class.

This would make it possible to explore different options after a computational
costly training process has been made. That means that the method can
be added to an existing pretrained model and potentially improve its results.
However to utilize more information from the support set we are likely needing
to increase the computations for each output from the inference phase.

1.4 Contribution

In this thesis we will explore the possibility to use the information from the
support set in a better way. We will also take a in depth look at the dataset to
be able to discuss the outcome from our results.

1.4.1 Primary contribution

We suggest to test our hypothesis by adding an addition step in the inference
phase. Where the network adapts the weights in certain key parts of the
network to the support images before the final prediction of the segmentation
map is made. Training the whole network on the support set is not feasible.
This would overfit the network quickly since there are simply to few images
to train on. Instead we believe that by training certain key parts that are
class specific we can improve the general performance without overfitting the
network. We call our method Inference-Guided Few-Shot Segmentation (IGFSS).
Our IGFSS will be applied to the Self-Guided Cross-Guided network (SGCG)
network [57], a recent state of the art few-shot segmentation network. It uses
prototypes to concentrate all the information from the support images and
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uses them to predict a segmentation map. It also uses a non linear upscaling
decoder to produce the segmentation map that could benefit from our IGFSS
method. This makes the SGCG network a good candidate to test our if our
hypothesis work on a established network.

To adapt the weights of the SGCG network we will use fine-tune either the
prototypes or the decoder. The prototypes have the combined information
from the support set and represents the target class as a whole. By changing
the prototypes they have potential to improve the information given from the
support set. The decoder is the last step for generating the final predicted
segmentation map. So changing this to be more specific for the target class
should have a potential big impact on the output.

The fine-tuning is done using the support images as a tiny training set to train
and only update that given part. This will increase the computations needed for
segmenting each image and have to be considered if the gained performance
is worth it. In contrast to fine-tune the whole network fine-tuning just a single
part of the network do not tend to overfit the network as fast.

To measure the improvement the results will be compared to the previous
non fine-tuned method. We will do this continuously during the fine-tuning
phase to get an understanding how it affects the results. This will give a direct
comparison between the original model and different stages of our alternative
model.

1.4.2 Secondary Contribution

We will also analyse the Pascal dataset [13]. We are not aware of an in-depth
analysis of this dataset with regard to few-shot segmentation. We will look at
how the classes are distributed on a image and pixel level. Starting with looking
the amount of images in each class for an overview of the dataset. Then we
will look closer at how different classes are distributed within the same image.
Finally the size ratio between class objects will be explored to see if it can have
any correlation with the result. This will give us a better understanding on the
behaviour of the change in results for different classes.

1.5 Structure

This thesis is structured as follows:
In Part I we will discuss the background theory to for Few-Shot segmentation
networks. This will be done by discussing the different important building
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blocks needed. Starting from the basics of neural networks in Chapter 2 and
how to optimize them in Chapter 3. We will then focus on networks for image
recognition and segmentation in Chapter 4 and 5. Then an introduction to
the few-shot learning field in Chapter 6 prepare us for more complex few-shot
segmentation networks in Chapter 7. Parts of the content is based on the
pre-thesis project [6].

In Part II we will take a closer look at our Inference Guided Few-Shot Seg-
mentation (IGFSS) method in Chapter 8. We will test it on a recent state of
the art Few-Shot segmentation model SGCG [57]. We look into how it can be
improved by utilizing more of the information given from the support images
by our IGFSS method. The Pascal dataset used for the experiments will be anal-
ysed in Chapter 9 for better understanding the results . We will then compare
the results from our Inference Guided model to the original SGCG model in
Chapter 10. Here we also discuss our improvements as well as how to develop
it further in the future. Finally we sumarize out thesis in Chapter 11.



Part I

Background
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2
Artificial Neural Networks
An artificial neural network (NN) can be seen as a simple function withmultiple
input values. The output size is fixed for a certain network but can vary a lot
from one to several output values depending on the structure of the network.
So a NN can be seen as a simple function

𝑓𝜃 (x) = y. (2.1)

Here x is the input values, y is the output value(s) and 𝑓 is the function
or network itself with parameters 𝜽 . A NN is constructed of several smaller
operations in a repeating pattern. These have parameters that need to be
optimized with respect to each other for the NN to give a good output. There
are linear operations with parameters 𝜽 that can be updated and gives the
network it is ability to adapt to the task. Then there are non linear operations
that are predefined without parameters that are changed for the task. These
non linear operations make sure that the whole network can find more then
just a complex linear transformation of the input data.

9



10 chapter 2 artif ic ial neural networks

2.1 Fully Connected Neural Networks

In a fully connected Neural Network (FCN) each of the linear operations is a
multi dimensional function between the nodes in the network. The structure
of a general FCN can be seen in Figure 2.1. Here each variable in the input
x is put through a linear transformation w𝑇 x + 𝑏 where x = [𝑥1, 𝑥2, . . . 𝑥𝑛]𝑇
and w = [𝑤1,𝑤2, . . .𝑤𝑛]𝑇 are column vectors and b is a scalar. The vector
multiplication results in a weighted sum between the product of each weight,
𝑤𝑖 , and it is corresponding 𝑥𝑖 value. The result, z, from the linear transformation
is a scalar that is sent to a non linear activation function, 𝜎 (•).

𝑧 = w𝑇 x + 𝑏
ℎ = 𝜎 (𝑧) = 𝜎 (w𝑇 x + 𝑏)

This is done for each node in each layer, with separate weights, w, and bias, b,
for each node. The process is repeated with the output from the previous layer
as the input to the current layer. This is done through all the 𝑙 hidden layers
and finally the output 𝑦 is calculated.

Figure 2.1: Structure of a fully connected neural network. With input x and output
𝑦 and hidden layers h1 to h𝑙 in between. Each box is a node with output
calculated by a linear function z = wx+𝑏 followed by a non linear activation
function h = 𝜎 (z). The output form each node is used in the layer further
right in the network until the output circles, y, is calculated.

More specifically we can look at Figure 2.1. On the left side the input, x, is
used to calculated a weighted sum for each node in the layer to the right, with
different weights for each node. Then the non linear activation function is
applied on each of the weighted sums. Note that each node uses all nodes in



2.2 activation functions 11

the previous layers as input. This is then repeated for all the layers moving
right until an output is achieved.

The operations between the nodes in the network can be summarizedwith:

ℎ𝑟 = 𝜎 (wh + 𝑏)

Since each node in one layer has the same input, x, but different weights, w,
we can summarize the weights to a matrix W. This can be used to express all
steps from the input x to the first hidden layer ℎ1 with h1 = 𝜎 (Wx + b). Or
more general from step r-1 to r:

h𝑟 = 𝜎 (W𝑟h𝑟−1 + b𝑟 ) (2.2)

Note that the bias, b, is now represented with a vector containing the bias for
each node in the first hidden layer. The activation function 𝜎 (•) is used on
each value in the input vector so we get the resulting vector h1 out. This can
then be repeated for each layer in the network and we have a quite compact
way of representing the network.

h1 = 𝜎 (W1x + b1)
h2 = 𝜎 (W2h1 + b2)
...

y = 𝜎 (W𝑙+1h𝑙 + b𝑙+1)

In the end we can express the whole network with a chain of functions depend-
ing on the output from the previous functions. The structure with alternating
linear functions with changeable weights and nonlinear static functions will
give the network ability for very complex transformations using a set of simple
equations.

2.2 Activation functions

Activation functions are non linear functions that are used after the linear trans-
formation in each node in networks. This results in a non linear transformation
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in each node of the network and makes it possible to find advanced feature
representations from the input.

The input range and the derivative of activation functions need to be defined
on the whole real line. This is to make sure that the network can handle all
types of input. The derivative is used for optimizing the network and will be
discussed further in the Section 3.2

There are several different activation functions, the most commonly used once
are Sigmoid, Tanh, Rectified Linear Unit (ReLU) and Softmax. These we can see
in the following table.

Activation function f(x) Output range
Sigmoid 𝑓 (𝑥) = 𝑒𝑥

𝑒𝑥+1 = 1
1+𝑒−𝑥 {0, 1}

Tanh 𝑓 (𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 {-1, 1}

ReLu 𝑓 (𝑥) =𝑚𝑎𝑥{0, 𝑥} {0,∞}
Softmax 𝑓 (𝑥) = 𝑒𝑥𝑖∑ ∗𝐽𝑗=1𝑒𝑥𝑗 𝑓 𝑜𝑟 𝑖 = 1, ..., 𝐽 {0, 1}

Table 2.1: Most commonly used activation functions.

The softmax function is most commonly used for classification in the last layer in
a network. It will calculate the estimated probability for an input for belonging
to each of J different classes. Sigmoid and Tanh are used mostly in smaller
networks since they have some problems for scaling up in deep networks, more
on this in Chapter 3.5. ReLu is mostly used in deep networks since it is better
at handling this problem.



3
Network Optimisation
In the network there is a need for different parameters for each linear trans-
formation to get a flexible function with a fixed structure. This means that the
amount of parameters are related to the width and depth (amount of nodes in
each layer and number of layers) of the network. The amount of parameters
quickly exceeds thousands even for smaller networks so manually adjusting
them is not a viable option. Instead we want to optimize the network for a
certain task by minimize the difference between the predicted result and true
result. Since there are so many parameters optimizing the network by explor-
ing the whole parameter space is extremely computational demanding. Instead
we can look how the network is performing on data with known ground truth
result, 𝒚, and compare the ground truth with the output from the network,
𝒚. Then we can change the parameters in the network and see how it affects
the results. By using some clever techniques known as gradient decent and
backpropagation we can change the parameters so that the loss which is a
function of the difference between 𝒚 and 𝒚 gets smaller.

3.1 Loss function

By looking at the difference between 𝒚 and 𝒚 we can give a score on how
well the network performed called loss. In Equation 3.1 we have a general
expression for the loss function that does this

13
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L = 𝜖 (𝒚,𝒚) .

There is a variety of loss functions that can be used to calculate loss. Different
loss functions reward and penalize on different criterion when calculating the
loss. Some common ones are mean square error (MSE) and cross entropy [61]
loss

𝑀𝑆𝐸 =

𝑚∑︁
𝑖=1

(𝒚𝑖 −𝒚𝑖)2 (3.1)

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = −
𝑚∑︁
𝑖=1

(𝒚𝒊𝑙𝑛(𝒚𝒊)). (3.2)

3.2 Gradient decent

Gradient decent is an iterative method to find a local minimum by taking
repetitive steps in the opposite direction of the gradient. In our network
we want to minimize the loss function, this can be seen as minimizing the
difference between y and 𝒚. This is done by slightly changing all parameters
in the network step by step to find lower values of the loss [23].

By changing the parameters in the negative direction of it is derivative the loss
should decrease. Since we can not tell how much to move each parameter to
find its optimal value we will change all by scaling the derivative with a value
called step size. After all parameters have been updated the process can be
repeated until the loss do not improve by decreasing in value. Then we know
that we have found a local minimum. In Figure 3.1 we can see an example of a
loss with only one parameter.

Depending on where we start on this line we might end up in a local minimum.
In higher dimensions saddle points are more common then minimum points
so this problem is not all to important for neural networks [21]. This effect
also leads to that local minimums are generally closer in value to the global
minimum. So even if we get stuck in a local minimum we will have similar
results for the network compared to finding the global minimum.
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Figure 3.1: Example of gradient decent with one parameter, 𝜃 . Three steps, orange,
yellow, green each reducing the loss to the global minimum. The single
red star will get stuck in the local minimum.

3.2.1 Training in Batches

While the network is training we can choose how often we would like to update
all parameters. We can first consider both extremes, update after each input or
after all inputs. The first alternative will update after each input and is called
Stochastic Gradient Decent (SGD) if the GD optimiser is used. The downside
is that we will not know if the update is in the general direction of the training
data since it is specific to just one example. This tends to give an unstable
improvement of the networks performance. The second option, updating after
each epoch, where epoch refer to running through the whole training set once.
This will make sure that we update the parameters according to the general
direction of the training data. This however is very slow as we only do one
update for each epoch.

To get the benefits from both extremes a middle ground is often chosen. We
can update the weights when a certain amount of samples has made it trough
the network and the loss is calculated for each sample. This is referred to
as training in batches where each batch has 𝑚 samples. This can increase
the training efficiency significantly when utilizing tensor multiplication for
the whole batch at once [1][11]. The bottleneck of computational speed often
comes from the memory limit in the GPU used for the computations. Larger
batch size will generate larger tensor multiplications and for larger networks
these becomes very large. In addition to computational speed the training will
become smoother since it is updated with respect to a mean of each batch
instead of every sample.
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3.3 Adaptive Moment Estimation

One problem with Gradient decent is that it can be really slow, especially if the
loss surface is relatively flat. For some sections it might be better with a longer
step size. But if we use a too long step size we might get stuck overshooting
a minimum point if the loss surface is to steep. A solution to this is to use
an adaptive step size by using momentum. This means that we will use a
portion of the previous steps first derivative and adding it to the next step.
This makes the step size increase for continuous steps in the same direction.
A well used algorithm for this is ADAM short for Adaptive Moment Estimation
[25]. In addition to momentum ADAM also uses an adaptive factor, 𝑣 . This is
similar to momentum, 𝑚̂, but uses the second derivative. The adaptive factor
is used to scale the momentum such that big changes in the second derivative
gives lower effect of the momentum. The algorithm for this can be seen as the
following

𝒈𝑖−1 ← ∇𝜽𝜖 (𝜽𝑖−1)
𝑚𝑖−1 ← 𝛽1𝑚𝑖−2 + (1 − 𝛽1)𝒈𝑖−1
𝑣𝑖−1 ← 𝛽2𝑣𝑖−2 + (1 − 𝛽2)𝒈2

𝑖−1

𝑚̂𝑖−1 ←
𝑚𝑖−1
1 − 𝛽1

𝑣𝑖−1 ←
𝑣𝑖−1

1 − 𝛽2
𝜽𝑖 ← 𝜽𝑖−1 −

𝛾
√
𝑣𝑖−1 + 𝜉

𝑚̂𝑖−1.

(3.3)

𝒈𝑖−1 is the gradients of the parameter 𝜃 . The gradient is used to calculate 𝑚̂𝑖−1
and 𝑣𝑖−1 by adjusting 𝑚𝑖−1 and 𝑣𝑖−1 since they are biased estimators of the
gradient moments. 𝛽1, 𝛽2, 𝜉 and 𝛾 are hyperparameters with default values
suggested by the authors 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜉 = 10−8. The learning rate 𝛾
have to be adapted to the specific training case.

3.4 Backpropagation

When we know how the network is performed compared to the ground truth𝒚
we can calculate the derivative of the loss with respect to each parameter in the
network. That will tell us how much each parameter contributed to the loss. To
do this efficiently we use backpropagation [12], this utilises the chain structure
of the network to calculate the derivatives. This structure gives parameters
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dependencies to each other that can be used to calculate derivatives for one
layer at the time and not the whole network. By using the chain rule while
derivation we can calculate the derivative for each specific parameter in the
network.

𝜕L
𝜕W𝑙

=
𝜕L
𝜕𝒚

𝒚

𝜕𝑊𝑙

=
𝜕L
𝜕𝒚

𝜕𝜎 (𝑧𝑙 )
𝑧𝑙

W𝑇
𝑙
h𝑙−1 + 𝑏𝑙
𝜕W𝑙

𝜕L
𝜕W𝑙

=
𝜕L
𝜕𝒚
𝜎 ′(𝑧𝑙 )ℎ𝑙−1

Then for b:
𝜕L
𝜕b𝑙

=
𝜕L
𝜕𝒚

𝒚

𝜕𝑏𝑙

=
𝜕L
𝜕𝒚

𝜕𝜎 (𝑧𝑙 )
𝑧𝑙

W𝑇
𝑙
h𝑙−1 + 𝑏𝑙
𝜕b𝑙

𝜕L
𝜕b𝑙

=
𝜕L
𝜕𝒚
𝜎 ′(𝑧𝑙 )

Starting from the end of the network we can calculate the derivatives for the
last layer and use them to easily repeat the process for the previous layer. This
way we can get all the parameters derivatives efficiently by calculating one
layer at the time propagating backwards in the network.

3.5 Vanishing and exploding gradients

While doing the backpropagation in larger networks problems with vanishing
gradients or exploding gradients can occur [3]. This problem comes from that
the derivative is used in backpropagation over and over. So if the derivative is
continuously smaller then 1 in magnitude the effect of the backpropagation
will decrease exponentially. The opposite applies when the derivative is con-
tinuously larger then 1, then the effect will increase exponentially. In Table 3.1
we can see the range of the derivative of the most commonly used activation
functions. Note that Sigmoid will always be less then 1 and Tanh will only be
one while its output is close to 0.

This is the reason why ReLu [52] activation functions are commonly used
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Activation function Derivative range
Sigmoid [0, 0.25]
Tanh [0, 1]
ReLu 0 or 1

Table 3.1: Most commonly used activation functions and their derivative range.

in larger networks [1]. While Sigmoid and Tanh is often used in smaller
networks.

3.6 Over fitting and Regularization

When the network has been trained on a dataset it will learn how to solve the
tasks for that dataset. We would like the network to be general and work as
well as possible on new unlabeled similar data. It is common that by training
for to long we can get better and better results on the training data. But for new
data the performance is decreasing after a while. We then say that the network
is over fitted [55] on the training data. This means that the network has been to
optimized to solve a certain task. We can think of this as memorising the answer
to a question instead of understanding an overview of the subject.

To test this it is common to divide the labeled dataset into training, test and
validation datasets. Here the network is trained on the training data and the
network is updated from the errors to optimize all parameters in the network.
Then the validation data is used for checking the performance of the network
on "unseen" data. The networks are not updated from this. This can be used to
choose what settings to be used for hyperparameters1. Finally the test dataset
can be used as a final new unseen test after the whole training is completed.
This is done by measuring how the network is performing on data that has
never seen before. It represents a more realistic situation that is closer to a real
life situation.

If the validation or test results indicated that the network is over fitting, there
exists regularization techniques to improve the network. By regulating how
the network is training we can increase the variety for the networks tasks. This
can be done by introducing noise to the input of the network [4]. This prevents
the network for being too reliant on specific parts of the input. The idea of not
being reliant of parts of the network and still get good results comes again in
other regularization techniques as well.

1. Parameters that is chosen before the training is stated and are fixed for the whole training
session. Example: Batch size, training time and learning rate
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3.6.1 Dropout

During training the network can sometimes use some weights or filters more
than others. This could give a good result during training, especially on a small
training dataset as it might not need all parameters. However this can cause
bad result on the test dataset as the network do not become general enough
to tackle new data. Here dropout [43] can make sure that the network can not
rely on just some parts of the network. During training while using dropout the
network will set a chosen rate of parameters to 0. After each round through
the network a new set of parameters is set to 0. This will force the network
become independent of any specific parameter for its predictions making it
more general.

The training time while using dropout will increase as the optimization task
becomes harder when not all parameters is updated [10]. The end result
however can often be improved quite a bit on the test set making dropout well
used in many networks.

3.6.2 Batch normalization

Another technique that utilizes the batch structure while training a network
is batch normalization [20]. It can be used to improve its training properties
by smoothing out the parameter landscape and make the optimization faster
[38]. This also works as a regularization technique. The process is to normalize
every batch that goes into a layer, this makes the different samples less spread.
The mean is set to 0 and variance to 1 for the input 𝑋 in each batch. Then
two trainable parameters, 𝛾 and 𝛽 are used to scale and shift the standardized
batch.

X̂𝑖 =
1
𝑚

𝑚∑︁
𝑖=1

X𝑖 − 𝜇√
𝜎2 + 𝜖

(3.4)

Y𝑖 = 𝛾 X̂𝑖 + 𝛽 (3.5)

During training 𝜇 is the mean of the batch with 𝑚 samples in each batch.
𝜎2 is the variance of the batch and 𝜖 is small non 0 positive number that is
preventing division by 0. 𝛾 and 𝛽 are trainable parameters.

When the network is used in the test phase the global 𝜇 and 𝜎2 is optimal to
use. These can be calculated by a running mean while the network is training
to avoid extra calculations of computing it separately. This also gives the ability
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to stop before all batches are used and still have the global 𝜇 and 𝜎2 for the
batches used.



4
Convolutional Neural
Networks

A convolutional neural network (CNN) [28] is mostly used for its good qualities
on grid data inputs. They are able to process the information from all the pixels
in an image to a latent feature space. This representation can then be used for
classification, reconstruction or other tasks. In this chapter we will take a closer
look on how convolutions work and how they can be used in neural networks.
Then we will look at the architecture of some well used networks.

4.1 Convolutions in 2D

Convolution is done between two matrices, an image (larger matrix with
information in each pixel) and a filter (often 3x3 size). The convolution can be
seen as sliding the filter across the image and then calculate the sum of the
pairwise multiplication for each position. This will result in a scalar that can
be used as a single pixel value in the filtered image. The computation of the
convolution follows three steps:

• The filter will be places on positions where it can overlap each value in
the filter with the image.

21
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• Then a pairwise multiplication is made between the filter and the corre-
sponding pixels in the image.

• The sum of the multiplications is the resulting value in the filtered image,
with corresponding position to where the filter was placed.

The filter can then be repositioned on the image until a filtered version of the
whole image is calculated. These steps are summarized in Equation 4.3. Note
that these equations are in context of CNNs and not convolutions in signal
processing.

y = x ∗ 𝝎 (4.1)

𝑦 (𝑎.𝑏) =
ℎ𝜔−1∑︁
𝑖=0

𝑤𝜔−1∑︁
𝑗=0

𝑥 (𝑎 + 𝑖, 𝑏 + 𝑗)𝜔 (ℎ𝜔 + 1,𝑤𝜔 + 𝑗) (4.2)

𝑎 = 1, . . . , ℎy, 𝑏 = 1, . . . ,𝑤y (4.3)

Here * is the notation for convolution, X is the input, Y is the output and 𝝎 is
the filter.

How many positions the filter is moved across the image for each calculation
is called stride. For a two dimensional image one has to move with a stride of
minimum [1,1],where each number represent the stride in different dimensions.
The larger the stride is, the smaller the filtered image will become. Since by
moving the filter more it will cover the image faster and get fewer outputs for
the filtered image.

A few examples with sizes of inputs, filters and corresponding output can be
seen in Figure 4.1

When the filter is moved to the edge of the image it has to stop to still overlap.
This will result in a cropping effect on the filtered image, with the cropping
size depending on the size of the filter. One way to handle the size reduction of
the filtered image is to use padding, it can reduce or remove the size reduction.
Padding will make the original image larger by adding extra pixels outside the
original image. Most commonly the added pixels are filled with the value 0
and is then called zero-padding. The thickness of the extra edge can vary, to
remove the cropping effect by adding half the filter size. By using padding the
filter can go over all pixels of the original image the same way, but it will result
in that the edges of the filtered image will get a frame of values close to the
values in the padding.



4.1 convolutions in 2d 23

Figure 4.1: Example of sizes before and after 2D convolutions with different stride
and filter size.

Figure 4.2: Illustration of transpose convolution or deconvolution. With three steps of
the filter process.

There are several factors that will decide the final size of the filtered image.
Equation 4.4 can be used to calculate it.

𝑤𝑜𝑢𝑡 =
𝑤𝑖𝑛 + 2𝑝 − 𝑓

𝑠
+ 1 (4.4)

Where 𝑤𝑜𝑢𝑡 is the filtered image size, 𝑤𝑖𝑛 is the original image size, 𝑝 is the
amount of padding, 𝑓 is the filter size and 𝑠 is the stride.

There are also ways to do convolutions to increase the size of input image, this
can, a bit simplified, be seen as backwards convolution. It is called deconvolution
or transpose convolution [40] and is done by zero padding around each of the
values in the image instead of the edge. As we can see in Figure 4.2 Then use
normal convolution on the padded image.



24 chapter 4 convolutional neural networks

4.2 Convolutional layer

In a convolutional neural network (CNN) [28] there are several convolutional
layers. They are organized the same way as in a fully connected network (FCN)
with weights changed to filters. In this section we will take a closer look on
how convolutional layers work.

The connections works similar to a FCN with some key differences. The weight
vector, 𝒘𝑖 , that transforms the input 𝑥𝑖 to 𝑧𝑖 is replaced with a filter for each
weight scalar. The nodes in the network are replaced with channels, 𝐶. In a
normal RGB the input channels are represented with a color, red, green or blue.
Then each input channel are filtered with a set amount of filters in each layer.
The amount of filters in each layer represent the amount of output channels
that layer has. So that the output channels for one layers is the input channels
for the next layer.

The convolution of a layer can be seen mathematically in Equation 4.5. Note
that we still have an activation function 𝜎 (•) that will introduce non-linearity
to the network.

𝒀 = 𝜎 (𝛀 ∗ 𝑿 + 𝑩) (4.5)

We want to use different filters in each layer of the network to find a variation
of features throughout the network.

So in Figure 2.1 we replace W with filters of size ℎ × 𝑤 . The bias term 𝐵

will be a filter for each output channel. All of these can be optimized with
backpropagation.

To filter an input with𝐶𝑜𝑢𝑡 amount of filters in one layer we will transform the
input of size 𝐶𝑖𝑛 ×𝑤𝑖𝑛 × ℎ𝑖𝑛 to 𝐶𝑜𝑢𝑡 ×𝑤𝑜𝑢𝑡 × ℎ𝑜𝑢𝑡 . We will need one filter for
each of the channels in the output. This can be represented with a tensor of
size 𝐶𝑜𝑢𝑡 ×𝑊 × 𝐻 that replaces the weight matrix, W, from the FCN.

The benefit of this is that we can use a filter on the whole input image instead
of having a single weight scalar for each pixel in the image. This largely
decreases the amount of parameters needed for a CNN compared to a FCN for
images.
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Figure 4.3: Visualization of convolution in the backpropagation in a CNN. Image from
[32].

4.3 Back-propagation in CNNs

Backpropagation in CNNs are quite similar to FCNs that were discussed ear-
lier with the main difference of the convolution operation. We can use the
convolution in the backpropagation to calculate the gradients and update
the parameters for each layer as before. In Figure 4.3 we can see how the
convolution is used in backpropagation.

We will change the order of the convolution so that the output is filtered to
the input. This will send one pixel through the filter to a larger grid. Thereby
keeping the dependencies between layers from the forward pass.

4.4 Receptive field and non-linearity

When using convolutions on images with one filter only linear representations
can be found of the input image. Non linear representations are found by
using convolutional layers with activation functions. Then as the input image
is filtered deeper in the network, more complex features are filtered out. By
having long chains of filters also benefits in the way that each filter gets input
from a larger part of the input image. Since we will compress the information
of several pixels into one pixel and repeat this the receptive field of the layer
will increase as the layers get deeper and deeper. The receptive field is the
amount of pixels that gives information to a single output pixel. Often the
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Figure 4.4: Example of Atrous filter made by expanding a 3x3 filter to 5x5 and 7x7 by
adding zeros (no color) between original values (with colors).

receptive field is notated as 𝑤 × ℎ where 𝑤 is the width and ℎ is the height of
the receptive field.

Example: A single 3×3 filter will have a receptive field of 3×3, while two 3×3
filters in a sequence will have a receptive field of 5 × 5. This means that each
pixel in the output will have inputs from 5 × 5 pixels from the input before
both filters.

The benefit of this compared to having just a single 5× 5 filter is that with two
filters we can start to find more complex representations then a single filter.
If we add a activation function after each filter we will be able to find more
advanced features with two small filter compared to one big. In addition to
finding more advanced features, the amount of parameters for the two 3 × 3
filters is 18 while a single 5 × 5 filter uses 25. This can significantly reduce the
computations needed for finding advanced features in a deep convolutional
network.

4.4.1 Atrous convolution

Another way to increase the receptive field is to use Atrous convolution [8].
Then a filter is increased in size by adding zeros between each value in the
filter as seen in Figure 4.4. This will result in a filter with larger size while
having the original edge values spread to edge of the new filter. This can be
beneficial for convolutional layers trying to find objects and classify them in
an image. There are however some drawbacks to this method as it generates
griding artifacts [56]. It exists methods to reduce this effect [56] but it is not
all ways necessary in a feature representation of an image.
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Figure 4.5: Architecture of VGG-16 network, the last output from the soft-max can be
altered to fit the amount of classes that should be predicted. Image from
towardsdatascience.com1.

4.5 Convolutional Classification Models

In recent years convolutional networks have been the most used for working
with images and grid data. They have proved to be well suited for the task
and quite intuitive to work with. There are a wide variety of structures and
applications and alternatives of each model. In this chapter we will look at two
well used models for image classification and there main features.

4.5.1 VGG-networks

VGG is a well used deep convolutional network that works good on grid data
[41]. There are several variations of VGG networks with different amount of
layers where 16 and 19 layers are the most common. The structure is based
on the same principles, in this chapter we will focus on the VGG-16 network
architecture.

VGG networks uses sequences of convolutional layers followed by amax pooling
layer. All convolutional filters have a size 3 × 3, stride 1 and padding to same
size. The max pooling layer has a size 2 × 2 with stride 2. This makes the
network easy to use since all blocks alter the the width and height of the input
in a predictive way. The structure can be seen in Figure 4.5

As we discussed in the previous section there are advantages with using several

1. Link to blog post where image is taken from:
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-
beginners-a833c686ae6c
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Figure 4.6: A building block in a ResNet with residual connection marked as identity.
Image taken from [18].

small filters. We can find more complex non linear features compared to having
one large filter. It is also more parameter efficient with several small filters
compared to larger filters.

The last three layers in all VGG networks are fully connected layers. the output
from these will be the same as the amount of classes that should be classified.
Finally a soft max function is used for classification after the last layer.

4.5.2 ResNet

ResNet has been a very popular network for image processing since it was
introduced in 2015 [18]. It addresses the problem that deeper CNNs do not
necessarily produce better results when more layers are used. Deep CNNs
(20+ layers) do not seem to give better results with more layers. In theory
deeper networks will find higher level features as the input gets more and
more processed. This however applies for the training of the network and it
is not guaranteed that this will transform to the test phase. In reality deeper
networks are harder to train due to problems like vanishing and exploding
gradients. These can make it almost impossible to optimize the early layers
in the network. This will make the training progress slow or even impossible
when no improvement is made.

ResNet solves this problem by using residual connections in the network en-
abling it to use more then 100 layers efficiently. In Figure 4.6 we can see a
block of 2 layers with a residual connection past them. This connection makes it
possible for the derivative to pass trough the backpropagation without passing
trough any activation function. Thereby it will effectively remove a big part of
the vanishing/exploding gradient problem. ResNet also uses batch normaliza-
tion between each convolution layer and activation function. This also helps
smoothing out the parameter space [20].
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Mathematically we can describe a block with a residual connection with Equa-
tion 4.6. Here F (𝒙, {𝑊𝑖}) is the block itself with convolutional layers. The
+𝑊𝑠𝒙 term is the residual connection that is passed on and unchanged by the
operations inside the block. Here𝑊𝑠 is a linear projection that is used if the
dimensions of 𝒙 and 𝒚 is not the same.

𝒚 = F (𝒙, {𝑊𝑖}) +𝑊𝑠𝒙 (4.6)

Due to its good properties ResNet is now very well known and used as a base for
many other machine learning networks. If the ResNet is used for classification
it will have a fully connected layer in the end to output the same size as the
possible classes.





5
Semantic Image
Segmentation

Semantic segmentation aims to classify each pixel in an image to a class
corresponding to the object that pixel belongs to, the result can be seen in
Figure 5.1. This is done to create a segmentation map that will represent each
class with a specific label. The label is often shown as a specific color when
presenting the segmentation map. If we are only interested in looking on one
or a few classes we can use a "background class" for all the pixels that are not
belonging to the classes of interest.

Image segmentation is useful for a variety of tasks, either to help a human in
decision making or fully automate a task. For medical images it can be used on
x-ray images to separate different organs or finding cancer [2]. In autonomous
vehicles it is used for helping the car understand the environment and separate
different objects [22]. Note that most methods do not separate between objects
from the same class. This means that two persons standing next to each other
will look like one big silhouette in the segmentation map.

A problem with training networks for semantic image segmentation is that
producing labels on a pixel level is quite resource expensive. There exist some
big open source datasets with corresponding segmentation maps available.
But for more specific image types it can be hard getting good results without
producing new training data.
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Figure 5.1: Sample from the PASCAL Context 2010 dataset. Up: The sample image.
Down: The segmentation map.

5.1 Encoder-Decoder approach to segmentation

To classify each pixel in an image there are several different approaches. One
way is to use fully convolutional layers followed by an interpolation layer in
the end to upscale the segmentation maps to the original size [31]. Another
common approach is to use deconvolution and un-pooling layers instead of
interpolation [36][34]. This can make it possible to do non linear up scaling
that can be trained for specific tasks.

5.1.1 Encoder

The strength of a CNN is that it is good to represent the important features
in an input image with just a few values. An encoder takes input and en-
codes(transforms) it from an input space to a feature space representation.
Where the feature space representation is a lower dimensional representation
of the data. This is normally impossible for humans to understand.

When we mention encoders in machine learning we often think of networks
that encode an input to a feature space in a given size of an input image. This
can be seen as compressing the information in the input image, while still
trying to keep as much information as possible. The encoder can then be used
for representing an input image with either one or several dimensions. This
means that we can represent the content in an image with a fixed size data
structure. These can then be compared to other encoded images or processed
further, by for example creating new images.
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There are a lot of similarities in the first part of a CNN for classifying images
and an encoder. By using a trained classification network we can use the first
part of the network to get a pretrained encoder. The amount of compression in
the encoder can be chosen by selecting the how many layers to use from the
classification network.

5.1.2 Decoder and deconvolution

While the encoder is good at compressing an input to a smaller size, a decoder
is good at expanding compressed information to a larger size. The encoder
can extracted a feature space representation of an image. Then we can use
a decoder to try to generate a segmentation map of the original input with
the original size. On images this is mostly done with deconvolutional layers.
The result can be compared to linear interpolation but with a non linear up
scaling. This means that the decoder network can use the structure of the
neighboring pixels to fill in the blank space, compared to just filling them
with a set transformation of the values at the closest pixels. Another crucial
advantage is that the decoder do not need to have an input from the same
amount of channels as the output. It can therefore be given an input straight
from a complex feature space rather then just a smaller version of the output
image.

5.2 Intersection over Union

When the network is trained it is important to be able to measure how well it
is performing by comparing the predicted results to the ground truth. The loss
function measures this in a way. Using the loss function to compare different
networks performance is not suitable. The loss function often dependent
on the size of the output and can be different for each network. To solve
this we need a standardized measurement that can be used on one or many
classes. It also needs to be normalized in the manner that it is independent of
how big representation each class has. The Standard way of doing this for a
segmentation map is the intersection over union (IoU). As the name implies, it
finds the ratio between the intersection and union between the prediction and
ground truth. The IoU is calculated with the following expression

𝐼𝑜𝑈𝑐 =
𝑃𝑟𝑒𝑑𝑐 ∩𝐺𝑇𝑐
𝑃𝑟𝑒𝑑𝑐 ∪𝐺𝑇𝑐

where we calculate the IoU for class 𝑐. Here 𝑃𝑟𝑒𝑑𝑐 is the pixels predicted to
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class 𝑐 and 𝐺𝑇𝑐 is the pixels belonging to class 𝑐 in the ground truth. It is also
possible to calculate the mean IoU for all classes. Then it is easier to look at
the IoU with regard to true positive (TP), false positive (FP) and false negative
(FN) as the following expression

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 .



6
Few Shot Learning
While humans can easily learn to recognise new kinds of objects by just looking
at one example, machines struggle with this [47]. This ability motivates the
exploration of the few shot learning field of machine learning. In this field of
machine learning the focus is to have a network that can learn to adapt with
very limited training data. While training the network, the focus is on "learning
how to learn" and not the learning of a specific task.

The goal is to have a network that can learn a new task with very limited
amount of examples of the task. This however does not remove the need of a
big dataset all together. We still need to train the network on a similar tasks
(classification, image segmentation etc.) to have a good base for the network
to learn quickly from.

The core difference is that in a few shot learning network we can add a new
class with just a few examples [51]. We will not achieve as good results as
having big labeled dataset of a new class and use supervised learning methods.
With few shot learning methods we can get decent result with as little as
one to five training examples of a new target class. For many problems the
datasets does not exist and make the standard supervised learning methods
unusable. Also the labor needed for creating a big dataset with labeled images
or even labeled segmentation maps is expensive for a large dataset [37]. Some
datasets requires medical experts to label them, an example is x-ray images
while looking for certain diseases.

35
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6.1 Terminology

When we talk about few shot learning the terminology shot and way is often
used, ex: 5-shot 3-way. Here the amount of shots are referring to the amount of
training data for each class and ways are the amount of classes. In this example
there are only 5 ∗ 3 = 15 training samples, also called support set. The test set
is called query, note that the query can be an single image in the test phase of
a 1-shot network.

Few show learning can be seen as solving the following problem:
We are looking at one image, query, and want to classify it by comparing it
to another set of images, support set. We can only choose one class from the
support set and therefore need to learn what the query is most similar to in
the support set.

6.2 Few-shot classification via prototypical
learning

There aremany differentways of solving a few-shot learning problem [26][27][33],
in this section we will discuss one method that can be extended for use in few
shot segmentation as well.

When training a few-shot network episodes are often used. An episode is a
small set of training data that should represent how the network get data
for the inference phase. So if a few-show network gets 5 support images to
classify one query image the training data is divided into episodes of 6 images,
5 support and 1 query.

In few-shot networks it is common to use encoders as the first step in the
network. The encoder can find a feature space representation for both the
support and query image. To reduce the training time needed for the encoder
using a pretrained network that is trained on a similar task but on different
data is popular. Here a VGG-16 or ResNet are common examples for image
data.

The pretrained network can be modified to an encoder by removing layers from
the end of the network. The amount of layers removed will effect how narrow
the output from the encoder will be. If only a few of the first layers the network
will produce a low level feature representation of the input. This will represent
the general traits of the input rather then specific details. Deeper in the network
the receptive field increases and high level features are found. These are more
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Figure 6.1: Visual example of prototypes from image inputs represented by arrows in
two dimension, 𝑝1 and 𝑝2. The mean of normalized prototypes of each
class is represented by a star.

complex shapes, for examples eyes in photos or specific animals. Since we are
interested in being able to find new classes we want to use low level feature
representation to have a more general view of the input [58].

This feature mapping can be used to compare different inputs by checking
for similarities. By taking the global mean of each pixel in the encoded input,
we will get a vector representing the feature space mapping of the input.
This vector representation is called a prototype and can be used to compute
similarity score between different prototypes. We will discuss in more detail
the commonly used similarity score cosine similarity in the next section. The
prototype can be calculated by

𝑝𝐶 =
1
𝑊

1
𝐻

𝑊∑︁
𝑤=1

𝐻∑︁
ℎ=1

𝐼𝐶×𝑊 ×𝐻

and will have the mean value of each filter used in the last layer. The main
idea is that inputs that represent the same class will have similar prototypes.
Therefore they will be mapped together in the prototype space as seen in the
Figure 6.1.

Since each vector corresponds to a certain input image we can find a repre-
sentation for each class by taking the mean of vectors from the same class.
These mean vectors are then normalized to make sure they are comparable.
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By just running our few training samples and taking the normalized mean for
each class, we can compare them to each other. If we then want to classify a
new input test image we can pass it through the network and see what class
vector it is closest to. Since all vectors are normalized one can also use the
cosine similarity to just compare the direction of the new test vector from the
new image with the mean class vectors. In the next chapter cosine similarity
is explained in more details.

This method does not need any training on the specific query set that we are
interested in. We can make a pretrained model by using a network that has
been trained on classification on a similar input dataset as the query dataset.
The pretrained network can then be used as the encoder for the prototype
network model described above.

Few-shot models are still dependent on big labeled datasets to generate a good
variety of episodes for training. Lacking this can result in a network that has
difficulties in adapting to new classes. A network might not be general enough
to be able to find good prototype vectors if it gets images from a new domain
[5].
Ex: A network trained on personal images from the Flickr dataset will most
likely have trouble with finding good prototypes from medical images.

The pretrained model can be improved by using fine tuning with the support
set that is available. The accuracy can be improved compared to not using fine
tuning [9]. This will help if the pretrained model is trained on a dataset that
has a different type of images then the support set.

6.3 Cosine similarity

Cosine similarity is a distance metric, used to measure similarity between
two non-zero vectors of an inner product space. It can be derived from the
Euclidean dot product formula:

A𝑇 · B = |A| · |B|𝑐𝑜𝑠 (𝜃 )

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠 (𝜃 ) = A𝑇 · B
|A| · |B| (6.1)
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Finding the cosine of an angle, 𝜃 , between two vectors is the same as finding
the normalized inner product of the vectors. This is a useful method to test
how similar vectors in feature space are to each other. Looking at the angle
instead of the distance between points tends to be more stable in higher
dimensions.





7
Few Shot Segmentation
The few-shot classification approach can also be extended to solve few-shot
segmentation problems. Here we want to make a segmentation map of a
query image, while we just have a few support images with corresponding
segmentation maps. For quite a lot of cases it can be interesting to just look
at one class and compare it to the background. In that way we can filter out
an interesting object from an image. For example this can be applied to find
diseases in medical images [14]. The basic idea is to classify each pixel in
the image to either one of the classes from the support set or as background.
Few-shot segmentation will be the main topic of this thesis and in this chapter
we will take a closer look how it is done.

7.1 Non-parametric vs Decoder-based Approach

There are two main directions for doing few-shot segmentation. The first non-
parametric direction focuses on comparing the prototype with each pixel in
the query image using a fixed distance function like the cosine similarity. This
is a very general approach and have little tendency to overfit. Here we can
have networks with very limited amount of trainable parameters. We can use
a pretrained encoder to get a feature space representation of the input images.
The encoder can be trained to make the network perform better but in theory
it can be used it without any training. For upscaling the feature space sized
prediction, a linear algorithm is often used for the predicted segmentation map.

41
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This makes non-parametric networks easy to train and understand, here PANet
[49] is a representative example for the first direction. This direction however
has its limitations, since it is so general it can have trouble with performing on
more complex classes. It is not adapting for each new target class and therefore
not using all information from the support set.

The second direction is the decoder-based direction which are often larger net-
works with more parameters. Here the fixed upscaling functions are changed
to a decoder which can learn non linear upscaling. This makes the decoder-
based networks harder to train but also increases its potential. The distance
function used to compare prototypes to feature space pixels is often changed
to a parameter based module that can be trained. A typical example of the
decoder-based direction is CANet [58]. Here the network is using the support
set more for active training and adapts to a specific target class. Some parts
of the network adapt iteratively according to the support set to give a more
specialised output.

We will take a closer look at both examples, PANet and CANet. Then we will
dig deeper into the second decoder-based direction. We are interested in this
direction since it has bigger potential to extract more usable information from a
new support set. It also uses decoders for the upscaling that can be specialised
for a certain target class. We are interested in finding ways to improve the class
specific parts in few-shot segmentation networks.

7.1.1 Non-parametric Direction, PANet

Based on a similar method as a prototypical classification network [42] PANet
uses prototypes from the feature representation of the input to produce seg-
mentation maps. PANet also introduce an extra step, prototype alignment
regularization (PAR). Where the produced segmentation map is reused as the
ground truth in a second pass of the network. An overview of the method can
be seen in Figure 7.1.

We will have a support set with images and their corresponding true segmen-
tation maps. Each image is pass through a convolutional network that works
as an encoder. PANet uses the first five layers of a VGG-16 network pretrained
on Image-net. The encoder has the same weights for all images independent
whether they come from support or query. These are then masked with a
one hot encoded mask for each class in the segmentation map. The mask is
downsized to the same size as the feature space by max pooling to keep the
one hot encoded structure of the mask. After the feature representation has
been masked by class, they are globally average pooled. The result is a vector
for each class, a prototype vector that represent the average pixel value for that
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Figure 7.1: An overview of a 1-shot PANet example. The input from support and query
are both mapped to the same feature space(left side). Then block (a) per-
forms a support-to-query few-shot segmentation. Where the prototypes
are calculated by masked average pooling and the query image is seg-
mented by cosine similarity (cos in figure). The loss L𝑠𝑒𝑔 is calculated
between between the segmentation result and the ground truth mask.
Then the process is repeated in block (b) with swapped rolls for support
and query. The generated segmentation result is then used as ground truth
mask when the loss L𝑝𝑎𝑟 is calculated. Image from [49].

class after the encoder.

Then the query image is also passed through the same encoder, the feature
space representation can then be compared pixel wise with the prototypes for
each class. The cosine similarity is calculated between each pixel and the set
of prototype vectors. Each pixel will be mapped to represent the most similar
class. Then the segmentation map will be up scaled with linear interpolation to
match in input size. This is the output from the network while it is in the test
phase. The test phase is described in left side of Figure 7.1, with the VGG-16
encoder and (𝑎)𝑆𝑢𝑝𝑝𝑜𝑟𝑡 −→ 𝑄𝑢𝑒𝑟𝑦.

The second part of the network (𝑏)𝑄𝑢𝑒𝑟𝑦 −→ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 is only used in the
training phase. Here the procedure is repeated with the tasks for the query and
support swapped. The feature space representation of the support and query
is reused to calculate new prototypes. The segmentation map generated from
part (a) is used as the ground truth to mask the query image to calculate the
new prototypes. Then the same procedure as in (a) is used. Cosine similarity be-
tween each pixel from the encoded support images to find segmentation maps.
These segmentation maps can then be compared to the original segmentation
maps for the support set.

Then the loss is calculated by adding the loss from part (a) and (b). First the
segmentation loss from part (a) is calculated by
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L𝑠𝑒𝑔 = −
1
𝑁

∑︁
𝑥,𝑦

∑︁
𝑝 𝑗 ∈𝑃

1[𝑀 (𝑥,𝑦)𝑞 = 𝑗]𝑙𝑜𝑔(𝑀̃ (𝑥,𝑦)
𝑞,𝑗
).

Here 𝑥 and 𝑦 are the indexes for the spatial locations, N is the total number
of spatial locations, 𝑥 × 𝑦. 𝑃 contains the 𝐶 different classes {𝑝1, ..., 𝑝𝐶−1, 𝑝𝑏𝑔}
including the background class 𝑝𝑏𝑔. 1[• = •] is the indicator function1.𝑀 (𝑥,𝑦)𝑞
is the ground truth segmentation map and its estimate 𝑀̃ (𝑥,𝑦)

𝑞,𝑗
is a probability

map calculated by

𝑀̃
(𝑥,𝑦)
𝑞,𝑗

=
𝑒𝑥𝑝 (−𝛼𝑑𝑐𝑠𝑠 (𝐹 (𝑥,𝑦)𝑞 , 𝑝 𝑗 ))∑

𝑝 𝑗 ∈𝑃 𝑒𝑥𝑝 (−𝛼𝑑𝑐𝑠𝑠 (𝐹
(𝑥,𝑦)
𝑞 , 𝑝 𝑗 )) .

Here 𝛼 is a scaling parameter and 𝑑𝑐𝑠𝑠 is the cosine similarity distance metric
function. 𝐹𝑞 denotes the query feature map and 𝑝 𝑗 is the prototype from class
𝑗 .

Then the loss for part (b) is calculated by:

L𝑃𝐴𝑅 = − 1
𝐶𝐾𝑁

∑︁
𝑐,𝑘,𝑥,𝑦

∑︁
𝑝 𝑗 ∈𝑃

1[𝑀 (𝑥,𝑦)𝑞 = 𝑗]𝑙𝑜𝑔(𝑀̃ (𝑥,𝑦)
𝑞,𝑗
)

Where 𝑘 = 1, ..., 𝐾 are the support images.

Then the total loss is calculated as a sum of both losses with L𝑃𝐴𝑅 scaled by
parameter 𝜆.

L = L𝑠𝑒𝑔 + 𝜆L𝑃𝐴𝑅

While training the network the parameters in the encoder are updated. These
are the only trainable parameters in the network. The rest of the network
does not have trainable parameters and only uses fixed functions. The loss
function is calculated in two parts, one from the first part of the network and
one from the second. The first part the loss is calculated between the generated
query segmentation map and the query ground truth segmentation map. The
second part of the network the loss is calculated between the generated support
segmentation map and the support ground truth segmentation map. Both the
query and support losses are simply added together to generate the complete
loss that can be backpropagated to improve the network.

1. A function that is either 0 or 1, can be seen if test where True is 1 and False is 0.
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Figure 7.2: An overview of 1-shot CANet for semantic segmentation. (a) The network
structure. (b) The Dense Comparison Module. (c) The Iterative Optimiza-
tion Module. Image from [58].

7.1.2 Decoder-based Direction, CANet

The second direction of few-shot segmentation is well represented by the CANet
network. It iterativly improves the the query segmentation map by a step by
step improvement guided by the support set. This decoder-based approach
have the ability to improve the results over time.

CANet is divided into two parts, a dense comparison module (DCM) and an
interative optimization module (IOM). The DCM extracts the information in
the support set and the query image and the IOM generates segmentation
maps for the query iterative with improving results. An overview of the method
can be seen in Figure 7.2

In the DCM the encoder uses the first three blocks from a ResNet pretrained on
ImageNet to map the images to feature space. The weights are shared for the
encoder for both query and support set. The feature space representation of the
support set is then point wise multiplied with the corresponding segmentation
map. This is then global average pooled to a vector that is expanded to the
same size as the feature space. The result is a representation of the support set
that has the same prototype vector for each pixel location. Finally the expanded
prototype tensor is concatenated with the encoded query image. This is passed
through a convolutional layer with a ReLu activation function. The result is the
output from the DCM.
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Figure 7.3: Attention mechanism for k-shot semantic segmentation. The softmax func-
tion is used on the scalar output to normalize the it so that all scalars from
support examples sum to 1. Image from [58].

If there is more then one support image, the amount of information used for
each image has to be decided. Here attention is calculated for all the images
and used as a scaling for the the output of the DCM. In Figure 7.3 we can
see how attention is used to scale the contribution from each support image
output. The attention part consists of 2 convolutional layers, the last one only
has 1 filter and is followed by global average pooling. This results in a scalar
that is used in a softmax function to get a weight for each support image. Then
the output from each support image is added together to make one output for
the DCM.

In the IOM part of the network convolution layers with skip connections are
used to further process the output from the DCM. After 3 blocks with 2 layers
in each, the input are processed with an Atrous Spatial Pyramid Pooling (ASPP)
[8] layer. Here different 3x3 filters are up scaled to a bigger size while leaving
just 0 on the additional spots in the filter, as seen in Figure 7.4. This helps with
finding bigger patterns in the image by increasing the receptive field while not
increasing the amount of parameters compared to a 3x3 filter. The size and
spread of the values in the ASPP vary for different filters.

Finally after the ASPP the IOM uses a few convolutional filters to generate the
output segmentation map.
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Figure 7.4: Atrous Spatial Pyramid Pooling (ASPP). It is classifying the center pixel
(orange) by exploiting multi-scale features using multiple parallel filters
with different rates. The receptive field are shown in different colors on
the feature map. The figure is taken from [8].

This IOM part of the network is then iterativly repeatedwhere the segmentation
map is concatenated before the first convolutional layer. This is to make the
network improve on the first prediction. To prevent it to overfit and rely on
the previous segmentation map a form of dropout is used so that some of the
returned segmentation maps just 0 as value.

7.1.3 Decoder-based Direction, PFENet

The Prior Guided Feature Enrichment Network (PFENet) [46] also uses the
decoder-basedmethod to segment images. It focus on using prior segmentation
maps, 𝑌𝑄 , to guide the decisions for generating the query segmentation map.
An overview of the PFEnet can be seen in Figure 7.5.

The motivation to use prior segmentation maps is that they can allow to use
deeper encoders that generate higher level features. These are according to the
authors [46] more class specific and are therefore bad at generalizing to other
unseen classes after training. The prior segmentation map, 𝑌𝑄 , is therefore
made from an encoder that has not been fine-tuned by training the few shot
learning network. By having the encoder fixed it will not be biased to any of
the classes in the training set.

To calculate 𝑌𝑄 a encoder, F , is used. It is made from a pretrained ResNet
with the first 4 layers for extracting high level features. The encoder is used
on the support and query input images, I𝑆 and I𝑄 to generate the feature
representations 𝑋 ′

𝑆
, 𝑋𝑄 . Then the support segmentation map, 𝑀𝑆 , is rescaled

and pointwise multiplied on 𝑋 ′
𝑆
to get 𝑋𝑆 . We have
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Figure 7.5: Overview of the Prior Guided Feature Enrichment Network, with the prior
generation and Feature Enrichment Module. White blocks marked with M
and H represent the middle- and high-level features from the backbone.
Image taken from [46].

𝑋𝑄 = F (I𝑄 )
𝑋𝑆 = F (I𝑆 ) •𝑀𝑆

where • represents the pointwise multiplication. Since we have masked 𝑋𝑆 so
that the background is zero it is removed from the feature representation of
the support image.

Then the maximum of the cosine similarity between each pixel in 𝑋𝑄 and all
pixels in 𝑋𝑆 is used in the corresponding pixel in 𝑌 ′

𝑄

𝑌 ′
𝑄 [𝑠,𝑡 ] =

𝑚𝑎𝑥

ℎ,𝑤 ∈ {1, 2, ..., 𝐻, 1, 2, ...,𝑊 } (𝑐𝑜𝑠 (𝑋𝑄 [𝑠,𝑡 ], 𝑋𝑆 [ℎ,𝑤 ])),

here 𝑐𝑜𝑠 (∗, ∗) represent the cosine similarity 6.1.

Finally 𝑌𝑄 is computed by normalizing 𝑌 ′
𝑄
with min max normalization

𝑌𝑄 =
𝑌𝑄 −𝑚𝑎𝑥 (𝑌𝑄 )

𝑚𝑎𝑥 (𝑌𝑄 ) −𝑚𝑖𝑛(𝑌𝑄 ) + 𝜖
,

where 𝜖 is set to 1𝑒 − 7.

𝑌𝑄 will then be used as an input in the Feature Enrichment Module (FEM) to
produce the generated segmentation map for the query image. An overview of
the module can be seen in Figure 7.6.
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Figure 7.6: Example of the FEM module (dashed box) with four scales and a top-
down path. C represent concatenation, 1x1 is a convolution and Circled M
represent inter-scale merging module. All activation functions are ReLu.
Image taken from [46].

There are two other inputs for the FEM produced from the query and support
image. Both are encoded with a different encoder from the one used for the
prior mask. The new encoder is produced in the same way but with fewer
layers to produce mid-level features for better generalization.

The encoded support image is then masked with the support mask and GAP
is the used to produce a prototype as we have seen in CANet and PANet. For
the encoded query image a 1 × 1 convolution is used before it enters the
FEM.

In the FEM there are three different stages, Inter-Source Enrichment, Inter-Scale
Interaction and Information Concentration. The first, Inter-Source Enrichment,
scales in the inputs to a set of 𝑛 spatial sizes, 𝐵 = [𝐵1, 𝐵2, ..., 𝐵𝑛], where
𝐵1 > 𝐵2 > ... > 𝐵𝑛. The three different inputs are scaled to each of the 𝑛 sizes
in 𝐵. The support prototype is simply expanded to the correct size. Adaptive
average pooling is used on the query features and the prior mask is resized to
fit each size by bi-linear interpolation. When we have n different scales of each
of the three inputs they are concatenated to 𝑛 different blocks and sent to the
next stage in the FEM.

In the Inter-Scale Interaction stage of the FEM a top down approach is used for
combining information from each of the 𝑛 different scales. Here information is
passed from finer features to the more coarse ones as the inputs are more and
more compressed. This is shown in Figure 7.6 as the circled 𝑀 with how the
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Figure 7.7: Visual illustration of the inter-scale merging module M. C is concatenation
and + is pixel-wise addition. 𝛼 means 1×1 convolution and 𝛽 represents
two 3×3 convolutions. If a features do not have auxiliary features, no
concatenation with the auxiliary feature is made and the refined feature is
produced only by the main feature with 𝛼 and 𝛽. All activation functions
are ReLU. Image taken from [46].

information is passed down. The module can be seen as

𝑋 𝑖𝑄,𝑛𝑒𝑤 =M(𝑋𝑀𝑎𝑖𝑛,𝑖
𝑄,𝑚

, 𝑋
𝐴𝑢𝑥,𝑖

𝑄,𝑚
),

where 𝑋 𝑖
𝑄,𝑛𝑒𝑤

is the refined feature for the scale 𝑖, 𝐵𝑖 . 𝑋𝑀𝑎𝑖𝑛,𝑖
𝑄,𝑚

and 𝑋𝐴𝑢𝑥,𝑖
𝑄,𝑚

is the
main and auxiliary feature inputs for 𝐵𝑖 .

We take a closer look at this module in Figure 7.7 where the two inputs Auxiliary
Feature comes from the previous layer and the Main Feature comes from the
current layer. In the module both inputs are concatenated and put through a
1 × 1 convolution, 𝛼 . Then the Main Feature input are pointwise added to the
result. This is followed by another pointwise addition between the previous
result and a 3 × 3 convolution, 𝛽, of it to produce the refined feature map,
𝑋 𝑖
𝑄,𝑛𝑒𝑤

. Note that for the first layer the auxiliary feature input does not exist,
this is then replaced with an empty tensor of the same size.

In the final step, Information Concentration, all 𝑋 𝑖
𝑄,𝑛𝑒𝑤

are reshaped to the
output size of ℎ ×𝑤 × 𝑐 and concatenated with each other. Then a final 1 × 1
convolutional filter is used to produce the output query map, 𝑋𝑄,𝑛𝑒𝑤 . The
Information Concentration step can be seen as

𝑋𝑄,𝑛𝑒𝑤 = F (𝑋 1
𝑄,𝑛𝑒𝑤 ⊕ 𝑋 2

𝑄,𝑛𝑒𝑤 ... ⊕ 𝑋𝑛𝑄,𝑛𝑒𝑤) .

The loss functions is calculated with cross entropy loss, this is done for each of
the refined feature maps, 𝑛 𝑋 𝑖

𝑄,𝑛𝑒𝑤
, in the FEM module to get L𝑖1. Then again

for the final prediction, L2. The total loss is computed by calculating the mean
of the 𝑛 L𝑖1 and and adding the last loss,

L =
1
𝑛

𝑛∑︁
𝑖=1

L𝑖1 + L2.
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7.2 Self-guided and Cross-guided network

The self-guided and cross-guided network (SGCG) [57] addresses the problem
that some information is unavoidably lost from the masked Global Average
Pooling (GAP) when obtaining the prototypes. SGCG introduces two proto-
types; one primary and one auxiliary that represent the networks correct and
incorrect segmentation map prediction on the support set. These help guiding
the prediction of the query image. An overview of the whole model can be seen
in Figure 7.8.

The SGCG network is based on prototypes like PANet. SGCG uses the same
encoder for both support and query images as before. It also uses decoders later
in the network that also share weights for support and query. The problem of
lost information from the prototypes is solved by a Self Guided Module (SGM).
The SGM will generate a loss for the support image and two prototypes for the
true and false predicted support mask. The two prototypes are then used with
the encoded query image to produce a predicted segmentation mask for the
query image.

This method can be applied to different existing networks by using them as a
backbone. The backbone is used in the query and support Feature Processing
Module (FPM) and decoder as we calculate the segmentation maps in different
parts of the SGCG network.

Self-Guided Module

Here we will take a closer look at the Self-Guided Module (SGM), an overview
can be seen in Figure 7.9.

To get the inputs to the the SGM a masked GAP is used on the encoded support
image, 𝐹𝑠 , to produce a prototype,

𝑣𝑠 =

∑ℎ𝑤
𝑖=1 𝐹𝑠 (𝑖)1[𝑀𝑠 (𝑖) = 1]∑ℎ𝑤
𝑖=1 1[𝑀𝑠 (𝑖) = 1]

.

Here 𝑖 is the spatial position and ℎ𝑤 is the height and width of the encoded
image. 𝐹𝑆 is the encoded support image and 1[•] is the indicator function.𝑀𝑠

is the binary segmentation map for the support image downsampled to the
same size as 𝐹𝑠 .

Then the SGM uses the encoded support image, 𝐹𝑠 , the prototype from 𝐹𝑠 , 𝑣𝑠 ,
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Figure 7.8: Overview of Self-Guided Cross-Guided (SGCG) network. It uses the en-
coded support image, 𝐹𝑠 to generate a prototype, 𝑣𝑠 . These are used by
the Self-guided Module to produce two new prototypes, 𝑣𝑝𝑟𝑖 and 𝑣𝑎𝑢𝑥 .
These are used with the encoded query image in the Feature Processing
Module (FPM) to generate the predicted segmentation mask, 𝑀̂𝑠 .

and the mask to the support image, 𝑀𝑠 as inputs. First 𝑣𝑠 is expanded to the
size of 𝐹𝑠 , ℎ ×𝑤 × 𝑑, and becomes 𝑉𝑠 . It is then duplicated to size ℎ ×𝑤 × 2𝑑
and concatenated with 𝐹𝑠 to become

𝐹𝑠𝑣 = 𝐶𝑜𝑛𝑐𝑎𝑡 ( [𝐹𝑠,𝑉𝑠,𝑉𝑠]) .

Then 𝐹𝑠𝑣 is passed through the support Feature Processing module (FPM). This
module changes depending on the backbone of the network. If the decoder in
the backbone are taking a single feature map as input [58][54] the Single-Scale
FPM is used. Then if the decoder for the backbone needs several feature map
inputs [46] the Multi-Scale FPM will be used.

The decoder then produces the predicted segmentation map for the support
image, 𝑀̂𝑠 . The decoder consists of two blocks of two convolutional layers
in each, the blocks are followed by an ASPP layer and lastly a convolutional
layer. In each block the first layer in the is a convectional layer followed by
a convolutional layer with the same output size as input. The output from
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Figure 7.9: Detailed overview of the Self-Guided Module, (SGM). It uses the encoded
feature map, 𝐹𝑠 , from the support image and its masked GAP prototype,
𝑣𝑠 as inputs. The SMG outputs two new prototypes, 𝑣𝑝𝑟𝑖 and 𝑣𝑎𝑢𝑥 . It also
calculate two losses, L𝑠1𝑐𝑒 and L𝑠2𝑐𝑒 . The first is from the ground truth
segmentation map, 𝑀𝑠 and the predicted segmentation map by using 𝑣𝑠 ,
𝑀̂𝑠 . The second is from 𝑀𝑠 and the predicted segmentation map by using
𝑣𝑝𝑟𝑖 and 𝑣𝑎𝑢𝑥 .

each layer is then element-wise added together as the output for one block.
A soft-max function is then used on the decoded image to get a predicted
probability mask

𝑃𝑠1 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (D(𝐹𝑃𝑀𝑠 (𝐹𝑠𝑣))).

To get a binary predicted segmentation mask we will use the argmax function
on 𝑃𝑠1 to get

𝑀̂𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃𝑠1).

This prediction is used to calculate a first cross-entropy loss with



54 chapter 7 few shot segmentation

L𝑠1𝑐𝑒 = −
1
ℎ𝑤

ℎ𝑤∑︁
𝑖=1

∑︁
𝑐 𝑗 ∈[0,1]

1[𝑀𝑠 (𝑖) = 𝑐 𝑗 ]𝑙𝑜𝑔(𝑃𝑠1𝑐 𝑗 (𝑖)) (7.1)

Here 1 is the target class and 0 is the background class. 𝑃𝑠1𝑐𝑒 (𝑖) is the prediction
of pixel 𝑖 belonging to class 𝑐 𝑗 .

The network will then compare 𝑀̂𝑠 and𝑀𝑠 to find two new binary masks. One
for where the true predicted pixels for class 𝑐 𝑗 = 1, called the Main mask in
Figure 7.9.

𝑀𝑀𝑎𝑖𝑛 = 1[𝑀𝑆 = 𝑀̂𝑠]1[𝑀𝑆 = 1] .

Then one for where the predicted pixels for class 𝑐 𝑗 = 1 where false, called the
Loss mask

𝑀𝐿𝑜𝑠𝑠 = 1[𝑀𝑆 ≠ 𝑀̂𝑠]1[𝑀𝑆 = 1] .

These masks are used for masked GAP of 𝐹𝑠 to calculate two prototypes. One
primary 𝑣𝑝𝑟𝑖 from the Main mask by

𝑣𝑝𝑟𝑖 =

∑ℎ𝑤
𝑖=1 𝐹𝑠 (𝑖)1[𝑀𝑀𝑎𝑖𝑛 (𝑖) = 1]∑ℎ𝑤
𝑖=1 1[𝑀𝑀𝑎𝑖𝑛 (𝑖) = 1]

and one auxiliary 𝑣𝑎𝑢𝑥 from the Loss mask

𝑣𝑎𝑢𝑥 =

∑ℎ𝑤
𝑖=1 𝐹𝑠 (𝑖)1[𝑀𝐿𝑜𝑠𝑠 (𝑖) = 1]∑ℎ𝑤
𝑖=1 1[𝑀𝐿𝑜𝑠𝑠 (𝑖) = 1]

.

When we have computed the new prototypes, we want to use them by using
them to generate a new segmentation map for the support image. This is done
by repeating the previous process, stacking the prototypes to size ℎ ×𝑤 × 𝑑
and concatenate them by

𝐹𝐴𝑠 = 𝐶𝑜𝑛𝑐𝑎𝑡 ( [𝐹𝑠,𝑉 𝑝𝑟𝑖𝑠 ,𝑉 𝑎𝑢𝑥𝑠 ]) .
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Then the same Feature Processing Module is used with a decoder to produce a
second prediction probability map,

𝑃𝑠2 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (D(𝐹𝑃𝑀𝑠 (𝐹𝐴𝑠𝑣))).

That is used to calculate a second cross-entropy loss for the support im-
age,

L𝑠2𝑐𝑒 = −
1
ℎ𝑤

ℎ𝑤∑︁
𝑖=1

∑︁
𝑐 𝑗 ∈[0,1]

1[𝑀𝑠 (𝑖) = 𝑐 𝑗 ]𝑙𝑜𝑔(𝑃
𝑐 𝑗
𝑠2 (𝑖)) (7.2)

Using the query

In the last part of the network we will use the query image to generate a
segmentation much like we did in the first part. We encode the query image
to generate the feature representation, 𝐹𝑞. Then the two prototypes, 𝑣𝑝𝑖𝑟 and
𝑣𝑎𝑢𝑥 are stacked and concatenated with 𝐹𝑞

𝐹𝐴𝑞 = 𝐶𝑜𝑛𝑐𝑎𝑡 ( [𝐹𝑞,𝑉 𝑝𝑟𝑖𝑞 ,𝑉 𝑎𝑢𝑥𝑞 ]) .

Then 𝐹𝐴𝑞 is put through the query FPM, which has the same structure as
the support FPM but different filters. The output is passed through the same
decoder as previously to generate the predicted probability mask, 𝑃𝑞, and
predicted binary segmentation mask, 𝑀̂𝑞, for the query image.

𝑃𝑞 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (D(𝐹𝑃𝑀𝑞 (𝐹𝐴𝑞 ))).

𝑀̂𝑞 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃𝑞) . (7.3)

During training we can use 𝑀𝑞 to calculate the stochastic-gradient loss for the
query

L𝑞𝑐𝑒 = −
1
ℎ𝑤

ℎ𝑤∑︁
𝑖=1

∑︁
𝑐 𝑗 ∈[0,1]

1[𝑀𝑞 (𝑖) = 𝑐 𝑗 ]𝑙𝑜𝑔(𝑃
𝑐 𝑗
𝑞 (𝑖)) . (7.4)
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With that we can also add all losses in the network to a total loss

L = L𝑠1𝑐𝑒 + L𝑠2𝑐𝑒 + L
𝑞
𝑐𝑒 .

Here L𝑠1𝑐𝑒 and L𝑠2𝑐𝑒 are the loss from Equation 7.1 and 7.2.

Cross-guided for k-shot

To change from 1-shot to k-shot2 we do not need to retrain the network but
we will do some modifications. The Cross-Guided Module (CGM) is based on
calculating the predicted probability mask for each support image and finding
a weights sum of that. Here each weight represent how good the model thinks
that corresponding predicted probability mask is. Then a softmax function of
the sum and the argmax function generates the final predicted segmentation
map for the query image.

First we have to change some of the notations from the 1-shot case. We will
have a set of k support images, {𝐼1𝑠 , 𝐼2𝑠 , ..., 𝐼𝐾𝑠 }. With corresponding ground truth
segmentation maps, {𝑀1

𝑠 , 𝑀
2
𝑠 , ..., 𝑀

𝐾
𝑠 }. The predicted probability mask 𝑃𝑘 can

be calculated by our 1-shot model for query 𝑃𝑘𝑞 and support 𝑃𝑘𝑠 .

G(𝐼𝑞 |𝐼𝑠) = 𝑃𝑘 . (7.5)

We can utilize that we have k support image to find the best 𝑀̂𝑘
𝑠 for each of the

k 𝐼𝑠 . This is done by using one by one 𝐼𝑠 as query, 𝐼
𝑞
𝑠 , and calculating a 𝑀̂𝑞 |𝑘

𝑠 for
each of the k-1 𝐼𝑠 not in use as query. Then the mean IoU between each 𝑀̂𝑞 |𝑘

𝑠

and 𝑀𝑞
𝑠 is calculated

𝑈 𝑘𝑠 =
1
𝐾

𝐾∑︁
𝑖=1

𝐼𝑜𝑈 (𝑀̂𝑖 |𝑘
𝑠 |𝑀𝑖

𝑠 ) (7.6)

and used as the weight for that 𝐼𝑞𝑠 .

When this is done for all k 𝐼𝑠 we can calculate the predicted probability mask,
𝑃𝑘𝑞 , for the true query. These are used to calculate the predicted probability
mask for the query by

2. k-shot indicates that k>1 so that there are several support images.
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𝑃𝑞 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
1
𝐾

𝐾∑︁
𝑘=1

𝑈 𝑘𝑠 G(𝐼𝑞 |𝐼𝑘𝑠 )). (7.7)

To get the final predicted segmentation map for the query we use the argmax
function

𝑀̂𝑞 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃𝑞)

as in the 1-shot case.

7.3 Transductive Inference

As models for Few-shot learning have improved and become more complex, the
results have somewhat stagnated [7]. One approach to overcome this is to look
into the inference phase. The models which we explored in this thesis focused
on meta learning where they focus on the "learning to learn" concept. This
focus can have the effect of an inductive approach to the problem. Meaning
that instead of solving the segmentation problem of the current target class
the networks tries to find a solution for segmenting all possible classes. Getting
a general solution is great if possible but for few-shot learning the results are
limited by the small support set.

To solve this, a more transductive approach can be used in the inference phase
of few-shot learning networks. This means that the network will only try to
solve the problem for the current target class. Removing the need for being a
general network, the results on the target class could improve. During training
we do not want to change the inductive approach. We want to have a general
network capable of handling new unseen classes. During the inference phase
however, the network can make small changes to the weights to segment the
new target class better.

These changes aims to tweak the parameters in certain components of the
network by fine-tuning them. Fine-tuning a network network is closely related
to transfer learning, where we focus on transferring knowledge from one
network to another. This can be done by using a pretrained network as a base
to retrain it for a new dataset. Fine-tuning an existing network can improve
the training time significantly compared to training a network from scratch,
especially if the new dataset is similar to the one used before.
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The limitations for fine-tuning is that we need the network we are interesting
in using to be trained all ready. This limits the use significantly, however we
can use parts of a pretrained network as a part of a new network. We have
seen examples of this in the encoders in the few-shot segmentation networks
described previously.

The fine-tuning for transductive inference is done by using the support set as
a training set while freezing all parameters outside the ones in the certain
component. One example is the Region Proportion Regularized Inference
network (RePRI) [5]. This network is fine-tuning the last classification layer
of a non few-shot segmentation network [62]. By doing this a network that
is not meant for few-shot segmentation tasks can get good performance in a
few-shot segmentation setting.

Using fine-tuning in the inference phase for few-shot segmentation tasks has
previously been limited to general segmentation networks, such as [5]. We
hypothesize that the improvements can also be obtained for decoder-based
few-shot segmentation networks. This would switch the inductive approach of
a few-shot segmentation network to a transductive approach, making it more
target class specific and potentially improve the results.

In Part II of this thesis we will look in detail on our method that can apply
a transductive inference phase to an inductive few-shot segmentation net-
work.
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Method and Results
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8
Method
In this chapter we will discuss our Inference Guided Few-Shot Segmentation
method (IGFSS). In particular in the context with the Self-Guided Cross-Guided
network (SGCG) [57] as backbone. However, note that this approach can be
generalized to other prototype or decoder based networks as well. Our network
is inspired by the Transductive Inference–RePRI [62] that fine-tune the last
classification layer in the inference phase. Our IGFSS network will instead focus
on improving the inference phase for decoder-based Few-Shot segmentation
networks.

We will first go through the underlying idea of our IGFSS method. Then we will
take a closer look on how it is applied to the SGCG backbone network. Starting
with how the prototypes can be improved by our IGFSS method, followed by
how it is applied to the decoder.

8.1 Inference Guided Few-Shot Segmentation

Our Inference Guided Few-Shot Segmentation method is designed to improve
the inference phase for few-shot segmentation networks. We aim to make the
inference phase more class specific to improve the results by utilizing more
information from the support set. This is done by optimizing the parameters in
certain class specific parts of the network. The changed parts will be optimized
for the current target class. The rest of the network is left unchanged.

61
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The SGCG backbone network is ameta learning few-shot segmentation network
that focus on "learning to learn" training. This makes the network capable of
segmenting new target classes with just a few support images. However, the
inference phase is limited to the same segmentation approach as in the training
phase. With our new Inference Guided method applied the SGCG network
should be able to adapt to new complex classes better.

All the information that the network gets to segment a new target class query
image is contained in the prototypes from the support images. This crucial
class specific part is therefore a good candidates to optimize with our IGFSS
method. The encoder and decoder also has an important role in interpreting
the input image to feature space and back. The decoder is the last step for
generating the predicted segmentation map and have a big impact on the final
results. When the SGCG network is trained on the Pascal dataset it is trained
without the target class and therefor not optimized for that. This indicates that
there is room for improvement in this part of the SGCG network.

Since the encoder has its backbone from a pretrained ResNet trained on a very
large and variable dataset it is assumed that it is quite general. It should be
robust enough to handle new classes which the SGCG has not been trained on
directly. It is not unlikely that the pretrained ResNet in the encoder have had a
class similar to a new target class during its training phase. Therefore we have
not explored the possibility for fine-tuning this part of the network, but rather
focused on the other two alternatives, the decoder and prototypes.

8.1.1 Inference Guided Prototypes

The goal is to improve the output by fine-tuning the primary and auxiliary
prototype on the support image before it is used on the query image. The
prototypes are the only information about the target class passed on to the
query part of the network. It is therefore crucial that it contains as much high
quality information about the target class as possible. Inference guiding the
prototypes will increase computing expenses for the network. But since this
will only be done after the training of the network it will not affect the time
consuming training phase.

When our IGFSS method is applied the support images are passed through the
whole network to obtain the primary and auxiliary prototype. The fine-tuning
will then be done by freezing all parameters in the network except the primary
and auxiliary prototype. Then the query part of the network is used with
the support image as query image during the fine-tuning phase. The setup
used can be seen in Figure 8.1 and compared to the full version in Figure 7.8.
During the fine-tuning process only using a small part of the network is used
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Figure 8.1: Structure of our IGFSS method applied to the Self-Guided Cross-Guided
network [57] to fine-tune its prototypes. With the weights frozen in blue.

so it is a reasonable fast process, especially compared to retraining the whole
network.

To update the weights, a single cross entropy loss is calculated like before
between the predicted output, 𝑀̃𝑠 , and the true support mask 𝑀𝑠 . This is
backpropagated through the frozen network and only updates the primary and
auxiliary prototypes.

The method above describes well the 1-shot case where we have a few hyper-
parameters that we can change to affect the end result. Here the number of
epochs for fine-tuning combined with the step size will be important to give
a new result compared to the method without fine-tuning. Too many epochs
will make the network overfit on the single support image and give bad results
on the true query image.

For the 5-shot case we will have more options since we get a tiny dataset
for fine-tuning. Here two main decisions have to be made. A visualization of
the combinations can be seen in Table 8.1 and will be refereed to in the next
paragraph.
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A B C 1 2 1 set of prototypes 5 sets of prototypes
Use mean 1 A 2 A
Use fixed IoU as scale 1 B 2 B
Use updated IoU as scale 1 C 2 C

Table 8.1: Overview of options for 5-shot fine-tuning.

First we choose the number of primary and auxiliary prototype to be used.
Either a single set of primary and auxiliary prototypes for all support images (1)
or a separate set for each of the 5 support images (2). If separate sets are used
the query output is obtained by first calculating a query prediction for each
prototype set and then taking a mean of all those predictions. Secondly we
choose how much the loss from each support image should affect the updating
of the prototypes. The simplest and most computational efficient way is to
treat all support images equal by using a standard mean of the losses (A).
Taking inspiration from [5] as described in Section 7.3 we can use a weighted
average of the different losses. The IoU calculated between the support image
prediction and its true label can also be used as weight. The IoU for each
support image can then decide how much the loss for that support image
should be scaled. This will make the loss from a well predicted support image
have more effect on the fine-tuning. The support IoU for scaling the losses can
either be calculated once in the beginning (B) or updated for each fine-tuning
epoch (C).

To choose what method that should be used for the inference guided prototypes
we need to consider the dataset we want to segmentate. On a general basis
one set of prototypes should give a more stable training as it is training in a
batch setting. This will give a more robust network that can handle outliers
better. The quality of the support images are uncertain so it can be wise to
use a safe method, with the mean of all losses. Using IoU as weights can be
beneficial for some classes, but not necessary for all classes.

8.1.2 Inference Guided Decoder

Another part of the network that can be fine-tuned to change the output is the
decoder. This is the last part of the network and will have a big impact on the
final segmentation map. By using our IGFSS method on the decoder we hope
to make it more class specific. In that way an improvement on trickier target
classes can hopefully be achieved.

The decoder can be fine-tuned in a similar manner as the prototypes as dis-
cussed previously. Here we will also freeze most of the network and only use
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Figure 8.2: Overview of our IGFSS method applied to the Self-Guided Cross-Guided
network [57] with modifications for fine-tuning its decoder. Only the
bottom part of the network is used during the fine-tuning phase.

the final part of the network when fine-tuning the decoder. An overview can
be seen in Figure 8.2.

To fine-tune the decoder we will use the support images as query images, as for
the prototype fine-tuning. In the 1-shot case the support image will be trained
on itself. For the 5-shot case each support image will have all support images
as support images including itself.

In both cases we will then save the output from the Query Featuring Processing
Module (FPM) for each support as query image. This will speed up the actual
fine-tuning process since we do not need to use the whole network in each
step.

Since the decoder is in the last step of the network it can be seen as a small
network trained on a dataset with only 5 images. This will make the fine-tuning
fast after the initial run through the whole network to get the input to the
decoder. The loss is calculated with cross entropy between the labeled support
mask and the output from the decoder. Then the decoder is updated with
backpropagation.
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In this method we are only focusing on the decoder in the query step of the
network. Note that this decoder is also used in the self guided module for for
finding the loss between the generated support prediction and its label. This is
only done when training the whole network and not affecting the query output
in the test phase.



9
Dataset Analysis
In this chapter we will take a closer look at the 𝑃𝑎𝑠𝑐𝑎𝑙 −5𝑖 dataset proposed by
OSLSM [39], combining the PASCAL VOC 2012 [13] and SBD dataset [17]. In
this thesis we are referring to the 𝑃𝑎𝑠𝑐𝑎𝑙 − 5𝑖 dataset as just the Pascal dataset.
It is a dataset with labeled segmentation maps for each image in the dataset.
The dataset contains everyday images from a wide range of scenarios. There
are 20 different classes in the dataset, cat, dog etc. A full overview can be seen
in Table 9.2 and some example images can be seen in Figure 9.1

We will take a closer look at how the different classes in the dataset are
distributed. This will give us a better chance to interpret the result from
different models in Chapter 10.

Figure 9.1: Example of images from the Pascal dataset.
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Figure 9.2: A visual overview of how the classes in the Pascal dataset are distributed.

9.1 Image distribution

Together the two datasets have 5953 unique images, labeled on pixel level with
20 different classes. When using the dataset for training the SGCG network the
dataset is split into 4 splits with 5 classes in each split. Here one split is used
as a validation set and the remaining 3 splits as a training set.

Split # Validation classes in split
0 1, 2, 3, 4, 5
1 6, 7, 8, 9, 10
2 11, 12, 13, 14, 15
3 16, 17, 18, 19, 20

Table 9.1: Overview of the data splits with their corresponding validation class. The
remaining classes are used as training classes.

The class label and the amount of sample images in each class can be seen
in Table 9.2. Here the classes are sorted in alphabetic order. It can be several
classes in a single picture but normally not more then four different classes in
one picture.

The dataset is cleaned by only using images where a class has at least 2*32*32
labeled pixels following the procedure of [57]. This is done since the SGCG-
encoder downsizes the image to 1/32 of the original size. The cleaning will
remove images containing mostly background except for small objects labeled
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Class number Class # Sample images after
removing small objects

1 aeroplane 307
2 bicycle 246
3 bird 351
4 boat 230
5 bottle 223
6 bus 225
7 car 506
8 cat 555
9 chair 564
10 cow 157
11 dining table 293
12 dog 613
13 horse 252
14 motorbike 261
15 person 1856
16 potted plant 222
17 sheep 174
18 sofa 292
19 train 289
20 tv-monitor 287

Table 9.2: Overview of pascal dataset with amount of images in each class.

to a class. In this procedure 213 images are removed and 5740 images remain
with the class distribution shown in Table 9.1 and for a visual reference in
Figure 9.2.

The labeled segmentation map for each image is a gray scale image with values
for each pixel according to is class label. Here pixels with value 15 are labeled
as class 15 "person" and so on. All pixels that do not belong to a class is classified
as background with label 0. Each labeled object also has a border defined 255,
this can be used as ignore pixels when training on segmentation of images. As
the name implies these border pixels are ignored by the network since they are
easily missclassified both by the network and the human labeling the pixel in
the first place. Hence instead of arguing about what class these should belong
to we can simply ignore them.

We can clearly see from Figure 9.2 that the "Person" class is over represented
with 3 times the amount of the second largest class. The smallest class are the
"Cow" class with less then a 1

10 of the images in the "Person" class and a 1
4 of

the images in the second larges class. This will suggest that for getting a good



70 chapter 9 dataset analysis

Figure 9.3: An overview of the the classes in the Pascal dataset are distributed. Here
we can see how often other classes appears in images from the target
class. The amount of images in each class can be read from the diagonal.
Note that the background class, 0, is almost present in every image.

mean IoU score it is much more important to do well on the "Person" class than
the rest. This however is not always an easy task since it is quite a bit variation
within the person class. The reason for this is different clothing and postures,
sometime its even appearing as commercial signs on top of other classes.

9.2 Image and Pixel Ratio

The amount of images in each class have given us a good indication on how the
images are distributed in the Pascal dataset. Now we will focus more on the
ratio how multiple classes are distributed within the images. This will give us
a better understanding on how classes are distributed within the same images.
Later we will look at the ratio between classes on a pixel level too. Dominant
classes will have large objects compared to other classes and make them easier
to segment. This is since large objects can easily be represented with high level
features such as shapes [50].

We will start by taking a closer look at how multiple classes are distributed
within the same images in Figure 9.3. Here we can see how often other classes
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Figure 9.4: An overview of how the pixel ratio between classes in the Pascal dataset
are distributed. Here we can see for each "Target class" how many pixels
in percent are distributed compared with the other classes. Note that the
background class, 0, is left out when calculating the percent rate and
therefore exceeds 100% on its own.

appears in images from the target class. On the white diagonal we can see the
amount of images in each class. Then the row represents where other classes
are in those images. Note that class 0 is the background class and are almost
present in every image.

It is easy to see that class 15 "Person" stands out with much more color and are
often represented with other classes. It is present in a significant part of almost
every other class. It is also the largest additional class to every other class. This
indicates that class 15 strongly affects the dataset and the performance of the
networks trained on segmenting images from it.

We can then look at the pixel ratio in the images to see how much each class
is represented. This can give an indication if a class is the main objective of
images it is part of. An overview is seen in Figure 9.4, here class 15 "Person"
stands out as well but not as dominant as before. Here the extreme cases are
class 5 ("Bottle"). Here there are more pixels labeled "Person" than "Bottle" in
the bottle images. Other extreme cases are class 1 and 19 ("Aeroplane" and
"Train") that are almost exclusive labeled objects in there images. It is still clear
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that class 15 has much to say as it is still the largest class in addition to the the
"Target Class" when we look at pixel ratio.

When training a network for segmenting images from the Pascal dataset the
class score will have very mixed contributions to the overall score. This will be
an important factor when we look at the results in the next chapter.



10
Experiments and results
In this chapter we will look at experiments with our Inference Guided Few-Shot
Segmentation method (IGFSS), with the Self-Guided Cross-Guided network
(SGCG) [57] as background. We will start with the reproduction of the SGCG
network. Then we will look at how our IGFSS method affects the results of the
SGCG network. Finally we will compare and discuss the results.

10.1 Reproduction of the Self-Guided
Cross-Guided network

To make sure that the SGCG network give consistent results we tried to repro-
duce the results claimed by the authors. This will also give an indication on
the spread of the results form different training runs and test sets.

The trained SGCG model will be used as a baseline to be able to compare it to
our IGFSS method with SGCG as backbone. We will test two sets of weights
for the baseline model. The reproduced model we trained and the weights
provided from the original authors of the SGCG network. These will later
be referred to as Reproduced weights and Original weights. Using two sets of
weights will give an indication if our method gives consistent results.
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Split 1 Split 2 Split 3 Split 4 Mean
SGCG 1-shot 63.0 70.0 56.5 57.7 61.8
Replicated 1-shot 61.8 70.0 56.1 55.7 60.9

Table 10.1: Result from 1-shot training of the Self-Guided Cross-Guided network with
the result from the paper on the first row and our represented result on
the second row.

10.1.1 Experimental Setup Self-Guided Cross-Guided
network

The SGCG network was trained on the Pascal dataset with the recommended
hyperparameters from the provided code at https://github.com/zbf1991/SCL.
There was one exception for the hyperparameters, the batch size was set to 1
instead of 4. This was due to a memory constrain on our available hardware.
The backbone used for the SGCG network was the PFENet network [46], this
was chosen since it gave the best mIoU score.

During training and validation common practice was followed and the dataset
was split in the same 4 splits with classes divided in alphabetic order as the
authors. In the training phase the network was validated on 1000 pairs of
support-query images that are sampled randomly from the validation set. The
evaluation is made with the IoU metric comparing the foreground-background
overlap. The SGCG network was only trained in the 1-shot setting following
the method of the authors. The same weights where used for evaluation on
both the 1-shot and 5-shot setting.

10.1.2 Results Self-Guided Cross-Guided network

The reproduced result were slightly worse than the ones claimed by the authors.
The best results were given at epoch 99, 36, 33 and 63 for split 1-4. A comparison
is seen in Table 10.1 where we see that our reproduction matched the reported
results in [57] exactly for split 2, while being close for the other splits.

To reduce uncertainty in the results a fixed list of validation data is used. This
list is generated from an random sampling from the dataset. Since this split
contains images from all classes in the dataset we have to make sure to use
the model not trained on the class of the current image. So for the fine-tuning
validation four trained models are used on the fixed validation set. This makes
sure that the model always get a new class that its never been training on.
However it is likely that the model have seen object from that class in training
but then the object have been labeled as background. This especially true for
class 15 ("People") since it is appearing in all other classes as we discussed in

https://github.com/zbf1991/SCL
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the Chapter 9.

For the rest of the results the fixed list of query-support pairs was used for a
fair comparison between different setups of our IGFSS method. The results
from the fixed list can be seen in Table 10.2. Here we can see that there is quite
a big spread in IoU score for different classes. Here class 15 stands out with the
lowest score, this is also by far the largest class in the dataset as we discussed
in Chapter 9. This also makes class 15 have the largest potential to increase the
overall performance for the network from a single class.

The IoU score tends to stay in the same range between different setups of
weights and amount of shots. This is a good indication of small variance
coming from change of weights or amount of support images.

Note that the results from our fixed list are lower then the first reproduction.
This comes from the fact that our random selected list includes challenging
examples.

10.2 Inference Guided Few-Shot Segmentation
on Prototypes

The prototypes are carrier of the information given by the support set, improving
them should be able to increase the IoU score. In this section we will take a
closer look at the results from our IGFSS method used on the prototypes.

10.2.1 Experimental Setup Prototypes

When using our IGFSS method on the SGCG network we keep all hyperparam-
eters the same as for the reproduction setup. The additional learning rate for
the fine-tuning of the prototypes was added. It is set to 0.025 for the 1-shot
case and increased to 1.0 for the 5-setup to compensate for slower learning.
This can be compared to the 0.0025 learning rate for the original training.
It is a substantial difference but for the fine-tuning we are not interested in
the optimal solution for the support set since this would most probably overfit
the network. Instead we are looking for a slightly more target class specific
prototype.

To fine-tune the prototypes one pass through the whole network is done once.
This give us a benchmark of the same query-support set used for comparison
later. The prototypes are saved and all other weights are frozen. When the
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class Name
1-shot
original

1-shot
reproduced

5-shot
original

5-shot
reproduced

1 aeroplane 80 81 81 82
2 bicycle 36 37 36 37
3 bird 78 82 76 82
4 boat 70 65 66 66
5 bottle 57 42 63 46
6 bus 88 89 86 89
7 car 63 65 65 66
8 cat 92 90 92 89
9 chair 21 26 26 29
10 cow 92 93 92 93
11 dining table 25 18 22 16
12 dog 88 88 87 85
13 horse 86 89 88 89
14 motorbike 79 77 82 81
15 person 9 10 8 9
16 potted plant 35 34 34 35
17 sheep 92 92 92 92
18 sofa 76 62 68 64
19 train 81 83 82 83
20 tv-monitor 39 36 37 36
mean 58 58 59 58

Table 10.2: Result for the SGCG network on the fixed list of query support set. On the
rows we can see IoU score for each class and mean IoU on the last row.
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Figure 10.1: Results from our IGFSS 1-shot method on the prototypes with repro-
duced weights and the learning rate is set to 0.025.
The rows represent a Target class from the dataset, the last row is the
mean for all classes. The columns will represent the fine-tuning epoch.
The first column, IoU Start, is the IoU score in % before any fine-tuning
has been done. The other values in the matrix are the difference between
the fine-tuned and non-fine-tuned IoU score in %.

support images are used as query to fine-tune the prototypes only the query
part of the network is used to save computation time. We are also continuously
comparing our IGFSS method to the SGCG original to get good overview on
the improvement of our method.

10.2.2 Results Prototypes 1-Shot

In the 1-shot setting for the prototypes our IGFSS method did not manage to get
an significant improvement of the mIoU score. It was expected that our model
would have some trouble since it only got one support image. The results also
indicated that our method starts over-fitting quite fast.

In Figure 10.1 a comparison of the results before and after our IGFSS method



78 chapter 10 experiments and results

was applied to the SGCG network can be seen. Here the mIoU peaks in the
first few epochs with an 0.6% increase before it drops to consistent negative
results after 16 epochs. There are some significant improvements in IoU score
for class 5 and 11 and significant decreasing IoU score for class 7, 9 and 16 The
negative overall trend is consistent after the first 50 epochs with only class 11
still having significant positive change in IoU score.

10.2.3 Results Prototypes 5-shot

When we look at the results from the 5-shot IGFSS method we were expecting
better results than for the 1-shot cases. All 6 different 5-shot alternatives where
tested, one or several sets of prototypes and IoU score as weights. The best
result was given from alternative 1A where we used one set of prototypes and
the mean loss. For the 1B alternative we got similar improvements in IoU score,
but as big as for 1A. A before and after comparison with our IGFSS method on
both alternative 1A and 1B can be seen in Figure 10.2 Otherwise there were no
significant increase in mIoU score for the other alternatives, so we will focus
on them further in this thesis.

The time needed to fine-tune each picture increased around 5 times as expected.
In the 5-shot case the fine-tuning took much longer to get a peak result. To
compensate for this the learning rate was increased from 0.025 to 1.0. This
is a substantial increase in learning rate to get a peak in mIoU score of 4.9%
at epoch 480. The result seem to be quite stable after 320 epochs. After 500
epochs the mIoU score decreases.

For alternative 1A our IGFSS method significantly increased the IoU score for
class 2, 11 and 15 with 3-26 %. These were to begin with low scoring classes,
so the potential increase was high. The decrease in score where significant
for class 5, 9, 14, 1 and 18, with around 4-10% decrease in IoU score. Overall
we have more classes with decreasing score but the mIoU was still increasing
much with help of class 15. This class is much larger then the other classes as
discussed in Chapter 9.

The 1B alternative got similar results but with some notable differences, here
there is a strong increase for class 2, 5, 11 and 20 compared to alternative 1A.
Class 15 has less of an increase but still at 21% increase.

It seems like more classes has a good response on the weighted loss of alterna-
tive 1B. But the overall score increases more from the mean loss of alternative
1A, with a high contribution of the dominant class 15.
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(a) 5-shot 1A

(b) 5-shot 1B

Figure 10.2: Results from our IGFSS 5-shotmethod on the prototypeswith alternative
(a)1A and (b)1B, the learning rate is set to 1.0.
The rows represent a Target class from the dataset, the last row is the
mean for all classes. The columns will represent the fine-tuning epoch.
The first column, IoU Start, is the IoU score in % before any fine-tuning
has been done. The other values in the matrix are the difference between
the fine-tuned and non-fine-tuned IoU score in %.
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10.3 Inference Guided Few-Shot Segmentation
on Decoder

Our IGFSS method was also applied to the decoder in the SGCG network. The
decoder is the last step for producing the final segmentation, so making the
decoder a bit more specialised on the target class could improve the results. We
will first look at the results for the 1-shot case and then the 5-shot case.

10.3.1 Experimental Setup Decoder

Similar to the prototype case we set all hyperparameters according to the
SGCG authors setup to get the best comparison. The additional learning rate
for the fine-tuning of the decoder are set to 0.025 for both the 1-shot and 5-shot
case.

When our IGFSS method is used we start with passing the query-support set
through the whole network. Then all weights are frozen except for the decoder.
We use the whole network to segment each support image as query image one
by one. To save computation time, the inputs for the decoder are saved for each
support image. In the fine-tuning process the decoder is then used as a small
network with the saved prepossessed support images as input. This greatly
decreases the training time compared to using the whole network.

We are continuously comparing our IGFSS method to the SGCG original every
tenth epoch. This will give us a good overview on the improvement of our
method.

10.3.2 Results Decoder 1-shot

For the 1-shot case the network only has one support image to train on, so
we are not expecting great results. In Figure 10.3 we can see an comparison
before and after applying our IGFSS method to the SGCG network. The results
still looks a promising with a consistent increase of mIoU score 1.4% after 40+
epochs. It seems like most of this improvement comes from class 2, 11 and
15. Here we can consider class 15 as the main contributor for the increasing
overall performance since it is the largest class and has the highest increase
in IoU score, 14%. It is also worth noting that all of the classes with a large
improvement had a low IoU before our Inference Guided method.

Even if the mIoU score increased, most classes had a decrease in IoU score.
Here class 8 and 18 sticks out with more then 10% decrease followed by class
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Figure 10.3: Results from our IGFSS 1-shot method on the decoder with reproduced
weights and the learning rate is set to 0.025.
The rows represent a Target class from the dataset, the last row is the
mean for all classes. The columns will represent the fine-tuning epoch.
The first column, IoU Start, is the IoU score in % before any fine-tuning
has been done. The other values in the matrix are the difference between
the fine-tuned and non-fine-tuned IoU score in %.

6, 7, 9, 12, 14 and 19 who all decreased around 5%. This shows how big impact
a large class can have if it is performing very poorly from the start.

10.3.3 Result Decoder 5-Shot

When using five support images instead of one we are expecting more im-
provement from our IGFSS method. It is very easy to overfit on just one image,
having a few more should make parameter optimization more general.

Our IGFSS method seems to work good in general for the Pascal data set as
we can see in Figure 10.5. With a substantial improvement for the mIoU after
around 60 epochs that is quite consistent the rest of the way to 200 epochs.
The increase in mIoU is mostly contributed from class 2, 11 and 15 which had
week results from before. Class 15 stands out significantly with the initially
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Figure 10.4: Example images before and after Inference Guided method. Here green
is the true label that has not been predicted, yellow is true prediction,
red is wrongly predicted areas and gray is ignored pixels. The first row is
bad examples from the SGCG network that got improved with our IGFSS
method in the second row. The third row is good examples from the
SGCG network that got worse with our IGFSS method in the forth row.

lowest IoU score and the highest increase. For the reproduced weights the IoU
score for class 15 started at 8.9% and increased with 40% IoU score to 49%!
The results for the original weights also follows this pattern with a little less
increase.

Not all low scoring classes has been improved, class 9 and 16 started with a low
IoU score of 29% and 36% and decreasedwithmore than 10%. In Figure 10.4 we
can see some examples of images with overlaying predicted segmentation maps.
These are examples with significant changes to the predicted segmentation
map after 200epochs with IoU score going in both directions. Here yellow
is correctly classified, green is ground truth and res is wrong predictions. In
the top section we have images that improved and the bottom images with
decreasing results.
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(a) Original weights.

(b) Reproduced weights.

Figure 10.5: Results from our IGFSS 5-shot method on the decoder with (a)original
and (b)reproduced weights and the learning rate is set to 0.025.
The rows represent a Target class from the dataset, the last row is the
mean for all classes. The columns will represent the fine-tuning epoch.
The first column, IoU Start, is the IoU score in % before any fine-tuning
has been done. The other values in the matrix are the difference between
the fine-tuned and non-fine-tuned IoU score in %.
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Figure 10.6: Comparison between class IoU score (SGCG in blue and IGFSS in green)
and class pixel ratio from Figure 9.4 . The class pixel ratio is the amount
of pixels in the target class compared to other labeled classes, excluding
the background class. The numbers represent class numbers. There is
a strong correlation between both axis, 0.805 and 0.860 for SGCG and
IGFSS respectively.

10.3.4 IoU and Object Size Correlation

The results from the class IoU score have a lot of variation between classes. The
reason for this seems to be correlated to the size of the target class object in
each image. Images with a larger object compared to the other labeled classes
tend to give a better IoU score.

In Figure 10.6 we can see how the different classes are distributed with respect
to pixel ratio and IoU score from SGCG network and our IGFSS method. The
pixel ratio is comparing the amount of pixels from a target class against all
other labeled classes. The background class is ignored for this metric. There
is a strong positive correlation between pixel ratio and IoU score. When our
IGFSS method is applied to the SGCG network the correlation is increasing
from 0.805 to 0.860.

This correlation could be a good factor for deciding if our IGFSS method should
be applied to an existing method or specific target class.
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Method mIoU Epoch Learning rate
SGCG(PFENet) 1-shot 58.2 – –
IGFSS (SGCG) 1-shot prototypes 58.8 8 0.025
IGFSS (SGCG) 1-shot decoder 59.6 80 0.025
SGCG(PFENet) 5-shot 58.5 – –
IGFSS (SGCG) 5-shot prototypes 1A 63.4 480 1.0
IGFSS (SGCG) 5-shot prototypes 1B 62.2 375 1.0
IGFSS (SGCG) 5-shot prototypes 1C 60.4 320 1.0
IGFSS (SGCG) 5-shot prototypes 2A 58.8 440 1.0
IGFSS (SGCG) 5-shot prototypes 2B 58.6 160 1.0
IGFSS (SGCG) 5-shot prototypes 2C 58.8 160 1.0
IGFSS (SGCG) 5-shot decoder 65.4 70 0.025

Table 10.3: Mean IoU score for different alternatives of our IGFSSmethod on the SGCG
network on our fixed query-support list. The learning rate and epoch is
for the fine-tuning in the inference phase. All other parameters are shared
for all alternatives.

10.4 Result comparison and discussion

We have now looked at the results from our IGFSS method used on both the
prototypes and decoder one by one. We will now summarize and compare the
results from the different setups. We will also see how they compare to recent
state of the art networks. Then we will look at the the results in relation to our
previous data analyse to see if we can understand the behaviour of our IGFSS
method better. An overview of the mIoU score for all alternatives of our IGFSS
model can be found in Table 10.3.

1-shot

For our IGFSS method on both the prototypes and decoder we did not expect
any big improvements in the 1-shot setting. Most likely it would overfit on
the single support image quite fast. A bit surprisingly our IGFSS method
manages to increase the result in both cases. However it is debatable if the
prototype became any better with such a short span of improvement until it
had a decreased mIoU score.

The decoder had better results in the 1-shot case, here we got some consistent
improvement of mIoU after 40 epochs. After this not much changes for either
the mIoU or for the class IoU. This is a good sign as it makes the method
less sensitive for tuning the right number of epochs in the inference phase on
unseen data.
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For both the prototypes and the decoder the positive results are however
well spread between the classes. For most classes we have a negative result
which indicates that it is not worth using this method for all cases. If possible
the results from our IGFSS and its backbone should be compared to a small
validation set.

5-shot

In the 5-shot case we expected our IGFSS method to do a much better result.
Here we are less likely to overfit and have the possibility to get some more
general learning while fine-tuning on the support set.

For the prototypes we manged to get a significant improvement of mIoU that
was consistent after 200 epochs with a learning rate increased to 1.0. The mIoU
score is positive all the way which is a good indication of the method. But as
with the 1-shot setups the increase in mIoU comes mostly from the increase in
just a few classes and mostly class 15.

The decoder got even better results with consistent increase in mIoU for all
epochs. This mostly comes from a very large increase in the IoU of class 15.
There is some significant increase of IoU score for a few other classes as well.
But the majority of classes sees a small decrease in IoU score like all other
setups. Some classes also have a significant decrease in IoU score.

Compared to other networks

To get a reference point on how this performance compares to previous net-
works we can look at Table 10.4. Here we can see how previous state of the
art methods performed few-shot segmentation on the Pascal dataset. On our
fixed list of query-support images the SGCG network had worse results then
the ones stated by [57]. So for a fair comparison we have the mIoU score for
our IGFSS method and the SGCG network on the same fixed list marked with
*.

Computation speed

To apply the method to a real problem it is also important that it can be done
efficiently. For the prototypes our IGFSS method needed many epochs to obtain
a solid improvement. The combination of more epochs and a larger network
to back propagate through led to a quite long inference phase for the 5-shot
setup. The decoder work more like a mini network here where we can back
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Method Backbone 1-shot 5-shot
OSLSM (BMVC’17) [39] vgg16 40.8 44.0
SG-One [60] vgg16 46.3 47.1
PANet (ICCV’19) [49] vgg16 48.1 55.7
PGNet (ICCV’19) [59] resnet50 56.0 58.5
CRNet (CVPR’20) [29] resnet50 55.7 58.8
RPMMs (ECCV’20) [53] resnet50 56.3 57.3
FWB (ICCV’19) [35] resnet101 56.2 59.9
PPNet*(ECCV’20) [30] resnet50 51.5 62.0
DAN (ECCV’20) [48] resnet101 58.2 60.5
CANet (CVPR’19) [58] resnet50 55.4 57.1
PFENet (TPAMI’20) [46] resnet50 60.8 61.9
SGCG (PFENet) [57] resnet50 61.8 62.9
SGCG* (PFENet) [57] resnet50 58.2 58.5
ours IGFSS-Prototype* (SGCG) resnet50 58.8 62.2
ours IGFSS-Decoder* (SGCG) resnet50 59.6 65.4

Table 10.4: Overview of the mIoU score from few shot segmentation networks on the
Pascal dataset with 1-shot and 5-shot settings.
* Tested on our fixed list.

propagate only to the weights being updated. This gives the decoder setup a
significantly faster inference speed. It is also worth considering the amount
of epochs needed to get consistent positive results. The prototypes got better
results after 200 epochs while the decoder had stable good results after 50-70
epochs.

In our experiments we have used a single Nvidia 1080titan graphics card. In
the 5-shot cases it takes 2 seconds per image for the standard SGCG network.
When we apply our IGFSS method to the prototypes it takes 47 second per
image in the inference phase to fine-tune 200 epochs. This can be compared
to the decoder setup which only takes 12 seconds. Note that these inference
times should only be seen as guidelines as the code has not been optimized for
performance.





11
Future work and
Conclusion

In this chapter we will discuss how our IGFSS method can be further improved
in the future. Then we will end this thesis with a short conclusion.

11.1 Future work

Our IGFSS method have shown that it can be used to improve the overall results
and in particular the results for some specific classes. There is however always
room for improvement, that can be considered in future work. In particular,
current short comings are the decreased IoU score for some classes. Tominimize
the negative results of specific classes and in the same time maximizing the
positive results a class specific stop criterion could be introduced. This could
be done in the form of an early stopping, where we stop the fine-tuning when
a specific criterion is met for each query support set.

Finding the optimal criterion would require further experiments, some possible
candidates are when the value from a loss function or IoU score increases. To
test these criterion we can’t use the query image, since we do not have the true
label. In the 5-shot setting we could use the support images as query one by
one while having the remaining 4 as support.
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We could also set a epoch by analysing the class data, here object size seem to
have a large impact on the potential improvement and could be a good candi-
date. This approach would work for both the 1-shot and 5-shot setting.

To future evaluate the generalizability of our purposed method, a test on a
different dataset such as the COCO dataset could be done. Since this is a
larger and more variable data set than the Pascal dataset it should give a good
indication on how reliable our new IGFSS method is. Another way to further
test the generalizability would be to use our IGFSS on a new backbone.

In our experiments we used the same hyperparameters as the SGCG. Our
additional learning rate for the fine-tuning was set to 0.025 and 1.0 after a
minor parameter search. Future exploration of the hyperparameter space could
benefit the results but is considered to be out of the scope of this thesis.

11.2 Conclusion

In this thesis we have focused on few-shot segmentation networks. We intro-
duced our Inference-Guided Few-Shot Segmentation (IGFSS) that can be applied
to an existing decoder-based few-shot segmentation network. Our method
aims to improve the usage of information from the support set in the inference
phase. This is done by fine-tuning either the decoder or the prototypes in the
inference phase of a pretrained backbone network. We evaluated our IGFSS
method on the Self-Guided Cross-Guided (SGCG) [57] network. Our IGFSS
method outperforms the SGCG baseline with a considerable margin in the
multi-shot case, both when applied to the prototypes and the decoder.

Moreover we analysed the Pascal dataset [13] used in our experiments to better
understand the results. Here we discovered a strong correlation between the
IoU score and object size of the target class. When our IGFSS method was
applied the correlation increased even more.
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