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The data-driven nature of deep learning (DL) models for semantic segmentation requires a large
number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often
unavailable for practical tasks. Recently, partially supervised methods have been proposed to utilize
images with incomplete labels in the medical domain. To bridge the methodological gaps in partially
supervised learning (PSL) under data scarcity, we propose Vicinal Labels Under Uncertainty (VLUU),
a simple yet efficient framework utilizing the human structure similarity for partially supervised
medical image segmentation. Motivated by multi-task learning and vicinal risk minimization, VLUU
transforms the partially supervised problem into a fully supervised problem by generating vicinal
labels. We systematically evaluate VLUU under the challenges of small-scale data, dataset shift,
and class imbalance on two commonly used segmentation datasets for the tasks of chest organ
segmentation and optic disc-and-cup segmentation. The experimental results show that VLUU can
consistently outperform previous partially supervised models in these settings. Our research suggests
a new research direction in label-efficient deep learning with partial supervision.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
∗ Corresponding author.
E-mail addresses: nanqing.dong@cs.ox.ac.uk (N. Dong),
ichael.c.kampffmeyer@uit.no (M. Kampffmeyer).

ttps://doi.org/10.1016/j.asoc.2021.108074
568-4946/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2021.108074
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.108074&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nanqing.dong@cs.ox.ac.uk
mailto:michael.c.kampffmeyer@uit.no
https://doi.org/10.1016/j.asoc.2021.108074
http://creativecommons.org/licenses/by/4.0/


N. Dong, M. Kampffmeyer, X. Liang et al. Applied Soft Computing 114 (2022) 108074

1

c
l
s
s
r
d
m
f
T
l
s
i
l
p
c
l
m
c

i

m
d
r
o
e
t
f
e
n
b
m
a
r
b

t
f
b
S

2

2

t
d
l
c
o
(
t
t
s
L
W
(
i
s
t
p
r

. Introduction

Convolutional Neural Networks (CNNs) have been a game-
hanger for the task of semantic segmentation [1–3], as they can
earn pixel-level mappings from the image space to the label
pace via end-to-end training. To learn these complex mappings,
tate-of-the-art CNNs usually leverage a large number of pa-
ameters and require the availability of large-scale fully labeled
atasets, which are often unavailable for real-life tasks. In the
edical domain, where annotations require substantial efforts

rom clinical experts, obtaining these datasets can be challenging.
his has led to an increasing interest in learning from partially
abeled data, when fully labeled data is not available. Partially
upervised learning (PSL) is still an open research question in med-
cal image segmentation [4–8]. From the perspective of multi-task
earning (MTL) [9], a semantic segmentation task can be decom-
osed into multiple sub-tasks corresponding to each semantic
lass of interest, which provides the theoretical foundations of
earning from partial ground truth. Given a medical image seg-
entation task with multiple classes of interest, it is common to
ollect and merge several available, smaller but relevant datasets
into a larger dataset under the challenges of small-scale data,
dataset shift, and class imbalance. These smaller datasets were
originally labeled for sub-tasks, such that only the objects related
to the specific sub-task are annotated, while other objects are
merged into the background. In other words, the training images
do not have complete annotations for all classes of interest but
are partially labeled. For example, in the task of abdominal organ
segmentation, a pancreas dataset and a liver dataset might be
available separately, where only the pancreas and the liver are
labeled, respectively.

A key challenge, leading to poor segmentation performance
when considering multiple partially labeled datasets, is that the
semantic classes of one dataset could be categorized as the back-
ground for another dataset that was annotated for a different
purpose. Traditional semantic segmentation models [1–3] can
therefore not be directly applied and trained end-to-end in a
supervised fashion. Further, given the small amount of partially
labeled data, deep learning (DL) models are prone to overfitting.

Recent studies in PSL [4–6,10,7,8] all assume that, for each
class of interest, enough training examples are accessible. How-
ever, considering the data scarcity in most practical medical tasks,
usually, only few training examples might be available, making
previous approaches impractical.

To bridge the methodological gaps when only small-scale par-
tially labeled data is available, we propose a simple yet efficient
framework Vicinal Labels Under Uncertainty (VLUU) by exploring
the statistical similarity of human structures (e.g. shape, size,
location) among different patients. See Fig. 1 for an illustration of
such a similarity. The proposed framework is motivated by vicinal
risk minimization (VRM) [11], where the fully labeled vicinal
examples are generated by linearly combining randomly sampled
partial labels with a weight randomly sampled from a Dirichlet
distribution. These vicinal examples allow us to transform the
partially supervised problem into a fully supervised one. That is
to say, we can utilize any existing supervised segmentation net-
works and loss functions to solve partially supervised problems.
The generated vicinal labels contain uncertainty regions where
classes of interest could potentially overlap. We utilize these
uncertainties in the training process to improve the robustness
of DL models.

Recent studies have shown that VRM can consistently im-
prove the performance of CNNs for image classification tasks [12,
13]. However, there is a lack of definition of VRM for dense
prediction tasks with incomplete labels, e.g. [12,13] cannot be
directly applied on partially supervised semantic segmentation
2

tasks. Instead, we revisit VRM, a long-ignored but particularly
efficient approach, to tackle this problem. Specifically, by defining
a generic vicinity distribution, VLUU learns a mapping from a
sequence of images to a vicinal label which is generated by
statisticallymixing up the corresponding partial labels of the input
mages.

We perform the first systematic study of partially supervised
ethods under data scarcity challenges, such as small-scale data,
omain shift or dataset shift [17], and class imbalance, on two
epresentative medical image segmentation tasks, namely chest
rgan segmentation and optic disc-and-cup segmentation. The
xperiments show that VLUU is more robust than previous par-
ially supervised methods under these settings. The proposed
ramework has five advantages over previous methods: (1) it is
asy to implement without relying on complex loss functions,
etwork architectures, and optimization procedures; (2) it can
e trained end-to-end in supervised settings with common seg-
entation networks and loss functions; (3) it does not require
ny fully labeled images in the training data; (4) it can efficiently
educe the risk of overfitting for small-scale data; and (5) it can
e easily extended to adversarial training.
Our main contributions can be summarized as follows:

1. We propose a simple yet robust framework for partially
supervised medical image segmentation, which is robust
when there is only limited partially labeled data.

2. We provide theoretical interpretations for the proposed
framework based on vicinal risk minimization and multi-
task learning.

3. We systematically evaluate the robustness of partially su-
pervised methods and show that the proposed framework
can outperform state-of-the-art partially supervised meth-
ods under various data scarcity challenges.

The rest of this paper is organized as follows. Section 2 reviews
he relevant literature. Sections 3 and 4 describe the proposed
ramework and its properties. Section 5 describes the proposed
enchmark task and provides experimental results and analysis.
ection 6 summarizes this work.

. Related works

.1. Semi-supervised learning

In machine learning, semi-supervised learning (SSL) falls be-
ween supervised learning (SL), where only fully labeled training
ata are available, and unsupervised learning (UL), where no
abels are available. In semi-supervised learning, the training set
onsists of both labeled and unlabeled data. The robust state-
f-the-art semi-supervised methods include label propagation
LP) [18], graph neural networks [19,20], and cross consistency
raining [21]. Most semi-supervised methods cannot be applied
o PSL problems directly as they are required to minimize a
upervised loss, however, among these seminal SSL methods,
P [22] can be applied to tackle partially labeled data directly.
ith LP, pseudo-labels are generated based on prior information

partially labeled data). Then, the pseudo-labels are fine-tuned
teratively toward convergence [23]. LP is computationally expen-
ive and the quality of the pseudo-labels is highly dependent on
he number of training data. [6] has demonstrated that LP is a
owerful solution to PSL with fully labeled datasets as prior. As a
obust method tested by time, LP is a strong baseline in this work.
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Fig. 1. Annotated examples of different type of medical images (first row): (a) a posteroanterior X-ray image with the ground truth annotation of the left lung;
b) a sagittal MRI image with the ground truth annotation of the left ventricle; (c) an axial CT image with the ground truth annotation of the right atrium. The
abel distributions (normalized density heatmap) of the corresponding organs in public datasets (second row): (d) the left lungs in the JSRT dataset [14]; (e) the left
entricles in the MRI-WHS dataset [15]; (f) the right atriums in the CT-WHS dataset [16].
t
e

.2. Partially supervised learning

Closely related to SSL, partially supervised learning (PSL), or
he partial labels problem, describes the situation where each
xample has an incomplete label (e.g. only one semantic class
s annotated out of a few classes of interest). Concretely, given
collection of multiple small partially labeled datasets, each
ataset may only contain annotations for a proper subset of classes
f interest and these subsets are disjoint. In such a case, the
mages in the collection are partially labeled. A more rigorous
ormulation of the problem is presented in Section 3.2.

PSL is a topic of active research as the perfect fully labeled
raining datasets tend to be only available for specific research
asks. In recent studies, several methods have been proposed to
ddress semantic segmentation with partial labels from different
spects. [24] treats a grid of image patches as nodes and uses
onditional random fields to propagate information. However, as
result, the predicted segmentation masks will be unnatural due
o the patch-wise prediction. In DL, a common approach is to
reat the missing labels as the background. This approach can
e viewed as a naive form of noisy labels [25] and only works
hen the pixels of missing classes take up a much smaller portion
f the images, compared with the pixels of the background. For
enchmark datasets in computer vision such as PASCAL VOC [26]
nd MS COCO [27], there are only a few classes present in each
mage or the objects can be very small. Thus, merging unlabeled
ixels into the background might be an efficient solution for
hese datasets. In contrast, for commonmedical datasets, multiple
lasses can be present in each image and the objects of interest
e.g. organs) may take up the majority of the pixels. Another
ommon approach in DL is to ignore the cross entropy of the
issing classes during backpropagation [4,5]. The limitation of

his approach is that abandoning the pixel information of missing
lasses means that the learners (CNNs) will receive much less
upervision during the learning process, both from the image
pace and the label space. A direct result is that the learner cannot
iscriminate the classes of interest against the background. Re-
ently, PaNN [6] proposes a complex Expectation–Maximization
EM) algorithm with a primal–dual optimization procedure. How-
ver, PaNN requires the availability of fully labeled images as
rior, which is often unavailable. To address general semantic
egmentation [26,28,10] proposes to use a complex encoder–
ecoder architecture to condition the partial information within
he CNN, which requires a large dataset to comply with the large
umber of parameters. PIPO-FAN [7] proposes a complex pyramid
eature fusion mechanism and a target adaptive loss (TAL). Unlike
he other methods, PIPO-FAN has a demanding requirement in
he training process, i.e. the examples with the same partial labels
ust be trained together. It is worth mentioning that TAL also

reats the missing labels as the background. Recently, a state-of-
he-art work [8] tackles PSL by proposing a marginal loss and
n exclusion loss, which are designed for partially supervised
edical image segmentation. From the perspective of DL, [8]
 (

3

tries to address PSL at the last step of feed-forward propagation,
while this work addresses PSL at the data preparation step, which
is before the feed-forward propagation process. To sum up, all
of these methods are only applicable when substantial partially
labeled images or fully labeled images are available. In addition,
previous studies do not consider the practical situations such as
dataset shift and class imbalance. A detailed empirical analysis is
provided in Section 5.1.

2.3. Multi-task learning

By leveraging task-specific information, multi-task learning
(MTL) [9] can improve the model generalization when the tasks
of interest are somewhat related. In the era of DL, we aim to
use a neural network (NN) to map the input to the output,
given a task. In contrast to single-task learning, where each task
is handled by an independent NN, MTL can reduce the mem-
ory footprint, increase overall inference speed, and improve the
model performance. When the associated tasks contain comple-
mentary information, MTL can regularize each single task. For
dense prediction tasks, a good example is semantic segmentation,
where we always assume that the classes of interest are mutually
exclusive. Depending on the data modality, task affinity [29]
between sub-tasks and task fusion strategy, there are various
types of MTL. We depict several common MTL workflows that are
related to our work in Fig. 2. Semantic segmentation falls into
the category Fig. 2(d). As pointed out by [30], pixel-level tasks
in visual understanding often have similar characteristics, which
can be potentially used to boost the performance by MTL. We
argue that PSL problems can be reformulated as MTL problems
by utilizing human structure similarity.

3. Method

3.1. Preliminaries

In SL, given a training dataset S = {X, Y } with images X =

{xi}ni=1 and ground truth labels Y = {yi}ni=1, the empirical risk is
defined as

R(h) =
1
n

n∑
i

L(h(xi), yi), (1)

where L(·, ·) is the loss function and h ∈ H is the hypothesis. In
this work, we assume that L and h are universal as they can be any
loss function and model in a standard supervised setting. For ex-
ample, for a popular choice of semantic segmentation, L could be
he cross entropy and h could be a CNN. The minimization of the
mpirical risk R(h) is also known as Empirical Risk Minimization
ERM) in statistical learning literature [31].
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Fig. 2. Common MTL workflows for dense prediction tasks. The data modalities of the input are different: (a) The different tasks have separate networks, which
are linked through soft parameter sharing. Note, without soft parameter sharing, (a) depicts the standard multiple single-task learning. (b) The different tasks have
ndependent encoders and decoders but share the same network backbone (in purple), which is also known as hard parameter sharing. The data modalities of the
nput are identical: (c) Each task has independent output, which requires an independent decoder. (d) The tasks can share the same decoder.
Fig. 3. Illustration of the standard training pipeline. Here, we use the chest organ segmentation task as an example. Assume there are three classes of interest,
which are left lung, heart, and right lung. And there are three corresponding partially labeled sub-datasets, denoted as S1 , S2 and S3 . {(x1, y1), (x2, y2), (x3, y3)} are
randomly sampled from S1 , S2 and S3 , respectively. The vicinal example pair (x̃, ỹ) is generated by Eqs. (2) and (3) with K = 3. The segmentation network could be
any standard segmentation network such as FCN [1] or U-Net [2]. For simplicity, the background mask is not shown in the figure and we use grayscale images to
visualize the vicinal labels.
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3.2. Problem formulation

Assume there are K > 1 mutually exclusive semantic classes
of interest present in the same image, i.e. there is no hierarchical
relationship between classes and all classes are present. In this
work, we focus on the challenging situation that each image
is annotated for only one semantic class. For partially labeled
images, we can always split S into K sub-datasets where each
sub-dataset contains label information of only one class. Here, the
K datasets are mutually exclusive in terms of both images and
classes. Mathematically, we have S =

⋃K
j Sj, where Sj = {Xj, Yj}

denotes the partially labeled dataset with label information of
semantic class j. In Sj, Xj = {xji}

nj
i=1 is the image set of the images

with label information of the semantic class j and Yj = {yji}
nj
i=1

contains the corresponding partial labels. In addition, we define
Sj ⊂ Dj, where Dj denotes the source domain for Sj, and we define
d(Dj1 ,Dj2 ) ̸= 0 ∀j1 ̸= j2, where d(·, ·) measures the distributional
iscrepancy between two distribution. That is to say, dataset shift
xists. As a comparison, previous studies usually fail to validate
his assumption when using one fully labeled dataset to simulate
he partially labeled datasets.

Note, the problem formulation here describes the most general
ase as all other cases are trivial extensions. For example, when
n image has annotations for more than one semantic class,
uplicate image copies could exist in multiple datasets and the
bove mathematical formulation still holds.
 a

4

3.3. Vicinal labels under uncertainty

In a fully supervised setting, introducing statistical random-
ness [11] and using the convex combination of the training
data [12,13] are two efficient methods to improve the robustness
of DL models. However, as none of these methods can address
the missing class information, they have been ignored in multi-
class semantic segmentation with partial supervision for a long
time. In this work, we integrate and extend these two simple
ideas. Instead of designing complex networks [10,7] or loss func-
tions [8], we utilize the partial labels in a multi-task fashion. A
naive solution is to decompose the partially supervised multi-
class segmentation task into multiple binary segmentation tasks.
As both the input and the output share the same characteristics,
we want to use a shared encoder and decoder, similar to Fig. 2(d).
However, unlike semantic segmentation, where there is only a
single image as input and the corresponding label is based on
the same image, we now have images and labels from different
partially labeled datasets. We propose to fuse the tasks based on
the human structure similarity.

Let x be a 2D medical image with size H × W , represented by
2D array, which has been pre-processed via instance normal-

zation and optional spatial alignment. So y is the corresponding
artial label with one semantic class annotated, represented by a
D array (H×W ×(K+1)), where the last dimension corresponds
o the semantic classes. For each pixel in x, the corresponding ele-
ent in y is a (K +1)-element one-hot vector for the background
nd K semantic classes. For simplicity, we use y[k] to denote the
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inary label map for class k ≤ K (k = 0 denotes the background),
hich is the (k + 1)th semantic channel of y. Let (xj, yj) be a
andom sample from Sj, and so {(xj, yj)}Kj=1 is a K -element tuple
of such samples. We define

x̃ = concat({xj}Kj=1) (2)

ỹ =

⎧⎨⎩
wkyk[k]∑K

j=1 wjyj[j]+ϵ
k > 0

1 −
∑K

j=1 ỹ[j] k = 0,
(3)

where concat is the concatenate operation that concatenate {xj}Kj=1
long a new dimension. We have w = (w1, . . . , wK ) ∼

Dirichlet(α) with α = (α1, . . . , αK ) ∈ (0, ∞)K and ϵ > 0 is a
small number to ensure numeric stability, e.g. ϵ = 10−3. Without
prior information over the true label distributions, we setup α
as a constant vector, i.e. αk = α ∀1 ≤ k ≤ K . Given (x̃, ỹ), we
transform a partially supervised problem into a fully supervised
one and we can utilize any existing supervised segmentation
network and loss function. See Fig. 3 for the illustration of the
training pipeline. In each class channel of the vicinal label, the
continuous probabilities are transformed into grayscale pixels for
visualization. There are two origins of uncertainty for generat-
ing the vicinal labels when there is an overlap between partial
labels. First, the sampling of input images is stochastic. Second,
w is randomly sampled from a Dirichlet distribution (e.g. w =

(0.33, 0.41, 0.26) used in Fig. 3). See the upper right corner in
Fig. 3 for visual examples intuitively, where y2 and y3 have an
overlapping region.

3.3.1. Theoretical interpretation
The proposed solution can be interpreted from two aspects,

namely vicinal risk minimization (VRM) [11] and MTL respec-
tively. In VRM, a vicinity distribution V is defined as the prob-
ability distribution for the virtual image-label pair (also known
as vicinal example) (x̃, ỹ) in the vicinity of (x, y). The vicinal risk
is defined as

RV (h) =
1
n

n∑
i

L(h(x̃i), ỹi). (4)

Eq. (3) factually defines a non-parametric anatomical prior for
the label distribution. In state-of-the-art VRM works for image
classification [12,13], the vicinal image is usually defined as the
convex combination of real images, where the parameters for the
convex combination are sampled from statistical distributions.
As a comparison, we utilize a CNN (h in Eq. (4)) to learn this
parametric convex combination jointly with semantic segmenta-
tion. Eq. (2) and the CNN jointly play the role of x̃ in Eq. (4). By
ombining Eq. (2) and (3), we inexplicitly define a generic V .
On the other hand, given K sub-tasks, we are using a CNN to

earn a K ↦→ K task mapping. Eq. (3) is a task-fusion process
hat fuses different but related task knowledge. We want to max-
mally share the network architecture from a MTL perspective.
o achieve this, the novelty here is that we utilize the human
tructure similarity to mix up the partial labels. Meanwhile, the
ncertainty regions in the vicinal labels, caused by the stochas-
ic convex combination of partial labels, can reduce the risk of
verfitting and improve the robustness when the training data is
mall.

.3.2. Extension to adversarial training
Compared with previous works in PSL [4–6,10,7,8], VLUU can

e potentially further improved through adversarial training. Ad-
ersarial training was first proposed by [32] and several break-
hroughs have been made through adversarial training in medical
mage segmentation [33–36]. However, adversarial training for
 s
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semantic segmentation is ill-defined when the ground truth la-
bels are missing [37]. As VLUU can transform the partially super-
vised problem into a fully supervised one, it is natural to consider
incorporating VLUU and adversarial training. Note, having com-
plete labels during training gives VLUU unparalleled advantages
in utilizing some well-known properties of adversarial training,
which is difficult for most partially supervised methods.

In standard adversarial training, the segmentation network
and the discriminator play a zero-sum game. The discriminator is
trained to discriminate the prediction masks produced by the seg-
mentation network from the ground truth masks. Meanwhile, the
segmentation network is trained to confuse the discriminator by
producing realistic prediction masks. Adversarial training benefits
from the human structure similarity as it makes the unknown
true label distributions easier to be caught by the discriminator
than for general objects [38]. In other words, there is smaller
instance-wise variation in the size, shape, and location of human
organs (or structures), as shown in Fig. 1, than for general objects.

Assume the segmentation network is parameterized by fθ and
he discriminator is parameterized by gφ . Given φ fixed, θ is
pdated by minimizing

θ = Lseg (fθ (x̃), ỹ) − λ log gφ(fθ (x̃)), (5)

here Lseg is the multi-class cross-entropy loss for standard
upervised semantic segmentation and λ controls the weight of
he adversarial loss. Given θ fixed, φ is updated by minimizing

φ = − log gφ(ỹ) − log(1 − gφ(fθ (x̃))). (6)

ee Fig. 4 for the illustration of adversarial training with the
icinal examples. We denote VLUU with adversarial training as
LUU-ADV.
Further, continuous vicinal labels have a built-in advantage

n stabilizing adversarial training. They alleviate the problem
hat there commonly is a clear discrepancy between the discrete
istribution of the ground truth and the continuous distribu-
ion of the pixel-wise predictions, which can be easily caught
y the discriminator [37] and destabilize training, leading to
scillating parameters [39]. Last but not least, with adversarial
raining, VLUU can further utilize unlabeled data in addition to
he partially labeled data. For the interested readers, the problem
ormulation and application of adversarial training for SSL can be
ound in [40].

. Theoretical analysis

In this section, we will discuss the theoretical advantages and
imitations of the proposed framework.

.1. Enlarged sample space

One of the main challenges for DL is overfitting caused by data
carcity. In this work, there are two aspects of data scarcity: (1)
ach image has an incomplete label, and (2) each Si has only a
mall number of images. For (1), Eqs. (3) and (2) generate fully
abeled vicinal example pairs, thus traditional end-to-end training
echniques in supervised learning can finally be applied.

For (2), with limited training data, state-of-the-art CNN ar-
hitectures can easily overfit to the training data. Let us first
solate the randomness effect caused by the Dirichlet distribu-
ion by setting wi =

1
K . The proposed framework enlarges the

sample space from
∑

i ni partially labeled examples to
∏

i ni fully
abeled example pairs. In fact, given {(xi, yi)}Ki=1, Dirichlet(α) can
heoretically generate an infinite number of ỹ determined by w.
e efficiently mitigate the overfitting problem by enlarging the

ample space of S̃.
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u

Fig. 4. Illustration of adversarial training pipeline. (x̃, ỹ) is generated by Eqs. (2) and (3). Same as Fig. 3, the background mask is not shown in the figure and we
se grayscale images to visualize the vicinal labels. The segmentation network is trained with (x̃, ỹ) in a supervised fashion. ypred is the output of the segmentation

network, which is the concatenation of (K+1) probability maps. An auxiliary discriminator is trained to identify whether ypred is sampled from the vicinal distribution,
i.e. discriminate ypred against ỹ. The segmentation network and the discriminator are trained alternatively. See Eqs. (5) and (6) for details.
4.2. Label smoothing

In semantic segmentation tasks, labels usually follow a dis-
crete distribution, while Eq. (3) defines a continuous distribution.
Even though the application of continuous label distributions is
rare in semantic segmentation, they have led to recent break-
throughs in image classification [41,12]. We expect Eq. (3) can
improve the robustness of the model as suggested by recent
theoretical analysis of continuous label distributions [42].

4.3. Computational cost

The training process of the proposed framework is almost
identical to the training process for a fully supervised task,
i.e. given a segmentation network, there is no additional op-
timization cost such as multi-stage training [6]. Similarly, the
proposed method utilizes the same memory footprint in terms
of CNN weights. As a comparison, a semi-supervised method
such as label propagation and knowledge transfer will require the
training of multiple segmentation networks to generate pseudo-
labels. For the proposed method, the major overheads arising
from the data generation process are the random sampling and
the element-wise operations on low-dimensional arrays, which
are negligible compared to the backpropagation cost. Eqs. (3)
and (2) can be easily implemented by any scientific computing
frameworks supporting broadcasting, such as NumPy, PyTorch,
and TensorFlow.

4.4. Limitations

The main purpose of the proposed framework is to train DL-
based segmentation models with partial labels in an efficient way.
As discussed in Section 3.2, the design of Eqs. (3) and (2) makes
a strong assumption that all classes of interest are present in
each image and there is no hierarchical relationship between the
semantic classes, i.e. the classes of interest are mutually exclusive,
e.g. organs in the same body part or sub-structures under the
same structure. The situation where the semantic classes have
a hierarchical structure, e.g. liver and liver tumor, is beyond the
scope of discussion.

Note, the proposed framework is designed for DL tasks on only
a few images without complete annotations. When fully labeled
data is available, state-of-the-art supervised and semi-supervised
6

methods have obvious advantages over the proposed framework.
However, the proposed framework fills the gap when supervised
and semi-supervised methods fail.

5. Empirical analysis

The purposes of the experimental design are threefold. First,
there is no known empirical study of PSL with limited data. We
want to investigate the impact of limited partial labels on DL.
Second, we want to systematically evaluate the robustness of
the representative partially supervised methods in a controlled
environment. Third, we want to demonstrate the effectiveness
of VLUU in situations where only a few partially labeled images
are available. Thus, the choice of the network backbone or loss
function is independent of the proposed learning framework. In
addition, the simulated experiments are solely to demonstrate
the challenges of data scarcity in a controllable environment.
We consider two medical image segmentation tasks, chest organ
segmentation and optic disc-and-cup segmentation.

5.1. Chest organ segmentation

The task of chest organ segmentation is a simple benchmark
task in medical image segmentation. In this task, we consider
three semantic classes, namely left lung, right lung, and heart.
We can easily control the environment to get an insight into
the impact of the limited partial labels on various representative
partially supervised methods and the efficiency of VLUU. Without
specification, the experimental comparison is conducted in such
a way that different models use the same network backbone, loss
function, training strategy, and the set of hyperparameters.

5.1.1. Datasets
We use two public datasets to simulate the realistic situations

that each partially labeled dataset is annotated for a different
semantic class and is collected from an independent source. Un-
like [8], which only consider partially labeled datasets, we use
two fully labeled datasets to better understand the influence of
partial labels.

The JSRT dataset, released by the Japanese Society of Radio-
logical Technology (JSRT), is a benchmark dataset for chest organ
segmentation [14]. JSRT contains 247 grayscale CXRs with pixel-
wise annotations of lungs and hearts. Each CXR has a size of
2048 × 2048.
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Fig. 5. Visual comparison of three partially labeled training sets and one fully
labeled test set with corresponding annotations.

The Wingspan dataset was collected by Wingspan Technol-
gy for the study of transfer learning and unsupervised domain
daptation in chest organ segmentation [40]. Wingspan contains
21 grayscale CXRs with pixel-wise annotations of lungs and
earts. The CXRs were collected from 6 hospitals with different
maging protocols. Wingspan expresses a large variety in the data
odalities including brightness, contrast, position, and size.
We use three partially labeled datasets as the training set and

ne fully labeled as the test set, where the four datasets are
ollected from four different sources. We choose this setup to
imulate the practical scenarios where dataset shift exists, which
s a challenging situation for DL models. We use the JSRT dataset
s the left lung dataset, denoted as L. We use a subset of the
ingspan dataset containing 18 CXRs as the right lung dataset,
enoted as R. We use another subset of the Wingspan dataset

containing 18 CXRs as the right lung dataset, denoted as H. We
se the rest of the Wingspan dataset as the fully labeled test
et, which contains 185 CXRs, and denote it as T. The visual
omparison of the data modalities of the four sets can be viewed
n Fig. 5. Note, all four sets are collected from 4 different sources
hospitals with different imaging protocols).

.1.2. Baseline models
For a fair comparison, we use the same segmentation network

or all methods, which is a FCN [1] with a ResNet18 [43] back-
one. Considering the data scarcity situation, we choose ResNet-
CN as it can both achieve promising results on chest organ
egmentation tasks [40] and avoid overfitting. We choose the
ollowing representative approaches as the baseline models.

Fully Supervised Learning Approach To illustrate the effect
f limited partial labels on DL models, we consider two practical
pproaches in computer vision that are commonly used during
arge-scale training. As discussed in Section 2.2, two methods can
e used to train end-to-end methods in a supervised fashion. The
irst one is to categorize the uncertain (missing) classes as the
ackground in the training, which can be considered as a naive
olution with noisy labels. We denote the first baseline as MBG
ecause we mix uncertain pixels with the background pixels.
he second baseline is to ignore the cross-entropy of the missing
lasses during the backpropagation. This method is motivated by
he nature of multi-task learning for neural networks. We denote
his method as IMBP. It is worth mentioning that MBG and IMBP
urther motivate many recently proposed methods for PSL [4,5,7].

Semi-Supervised Learning Approach We adopt a strong SSL
aseline, label propagation (LP) [18], to solve PSL problem. LP is
ot an end-to-end method as there are multiple training stages.
t first generates noisy pseudo-labels for the unlabeled classes
ased on the partially labeled data. Then the pseudo-labels and
round truth labels are trained together to make the final pre-
iction. However, the quality of the noisy pseudo-labels is highly
ependent on the quality of the partially labeled examples and
oisy labels might harm the later fine-tuning stage. In this work,
e use K independent binary segmentation networks to generate
he initial pseudo-labels.
7

Multi-Task Learning Approach A classical way to address
TL problems is to fuse knowledge extracted from each indi-
idual sub-task [44], which is also known as knowledge transfer
KT) in the transfer learning literature. We train K binary seg-
mentation networks with a shared ResNet feature extractor but
independent deconvolutional layers. We alternatively optimize K
binary segmentation networks on the corresponding K partially
labeled datasets. The final prediction masks is generated by fusing
K binary prediction masks. For each pixel, if all classes of interest
have probabilities less than the threshold 0.5, we treat it as the
background. Otherwise, the pixel is categorized as the class with
the highest probability.

Partially Supervised Learning Approach We consider the
state-of-the-art partially supervised method exclusion loss (EL) [8],
which is designed for the same problem formulation in Sec-
tion 3.2. EL has shown superior performance over recent partially
supervised methods, such as PaNN [6] and PIPO-FAN [7], in all
aspects. Unlike EL, recent partially supervised methods rely on
either large training data [4,5,10,7] or fully labeled data as a
prior [6], which are not applicable for some situations. Similar
to our approach, EL can be applied to any existing segmentation
networks. So they can be compared with VLUU in a fair setting.

5.1.3. Implementation
The image size is fixed to be 256 × 256. We pre-process the

raw images by instance normalization. Given an image x, we
obtain the normalized image x̂ by x̂ij =

xij−µ(x)
σ (x) , where (i, j) is

he position of the pixel in a 256 × 256 image, and µ and σ are
he mean and standard deviation of the pixels of x. In this study,
we do not apply other pre-processing techniques as there is no
obvious difference in the relative position of objects in each image
and the proposed framework is robust against slight misalign-
ment. In practice, when partially labeled datasets are acquired
from different imaging protocols, pre-processing techniques such
as registration, resizing, and cropping are necessary. There are
no fully labeled images in the training set and we consider the
setting where each training image only has an annotation of one
semantic class, as described in Section 3.2.

All experiments are implemented in PyTorch on an NVIDIA
Tesla V100. For a fair comparison, all the networks are initialized
with the same random seed and trained from scratch. We use
a standard multi-class cross-entropy as the loss function for all
the experiments. The batch size is 8. The models are trained
to converge with an Adam [45] optimizer and a fixed learning
rate of 10−3. The performance metric in this study is the mean
Intersection-Over-Union (mIOU) between the prediction masks
and ground truth masks over the three classes of interest. For
VLUU, we set α = 0.1.

5.1.4. Comparison under small-scale data
Because the partially labeled datasets are collected from dif-

ferent sources, we will focus on the challenges of data scarcity
and class imbalance. As we want to examine how the size of the
partially labeled datasets affects the DL models, we only include
n examples of each partially labeled dataset for a quantitative
comparison. We provide the performance of the segmentation
networks trained on the same training data but with complete
annotations as an Oracle to provide a reference for the perfor-
mance. The results are shown in Table 1. Supervised methods
fail to address the partial labels due to overfitting. As shown
in Fig. 6, MBG tends to predict every pixel as the background
while IMBP fails to identify the background, which follows the
discussion in Section 2.2. LP, KT, and EL mitigate the partial labels
problem from different perspectives and achieve much better
performance than supervised methods. However, these seminal
methods suffer from the limited training data and multi-source
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uantitative comparison (mIOU) on partially supervised chest organ segmenta-
ion with small-scale data. The segmentation network is ResNet-FCN. n denotes
he number of images in each partially labeled dataset.
Method Type n = 5 n = 10 n = 15

MBG SL 0.3187 0.3221 0.2715
IMBP [4] SL 0.2715 0.3161 0.3218
LP [18] SSL 0.5821 0.7444 0.7588
KT [44] MTL 0.6478 0.6686 0.7071
EL [8] PSL 0.6306 0.6591 0.7506
VLUU PSL 0.7063 0.7462 0.7615
Oracle SL 0.7860 0.8395 0.8487

domain shift. Among the baseline methods, LP is the most com-
putationally expensive method as it requires considerably more
training time and memory footprint than all other methods. In
addition, LP is more sensitive to the size of the training set. In
practice, semi-supervised models expect a large set of unlabeled
data, which is not aligned with the problem formulation in this
work. Compared with semi-supervised methods, MTL methods
usually consume a much smaller memory footprint depending
on the number of shared layers. By comparing KT and VLUU, we
can see that VLUU has more shared neural architectures than
KT, which can reduce the memory footprint and substantially
improve the model performance. As the state-of-the-art partially
supervised method, EL purely relies on using a modified loss
function to extract knowledge from the training. When there
is not enough training data, EL performs worse than KT and
VLUU. In contrast to the baseline methods, VLUU achieves the
best performance on small-scale data. Without acquiring any new
supervision, VLUU incorporating a coarse anatomical knowledge
by uniquely utilizing human structure similarity.

It is worth mentioning that, MBG, IMBP, EL, and VLUU are
nd-to-end methods, i.e. they do not require any auxiliary NNs
r multi-stage training procedures. We provide the qualitative
omparison of end-to-end methods in Fig. 6. VLUU tends to
utput more realistic masks than the STOA method EL in terms
f the location and shape.

.1.5. Comparison under class imbalance
Considering the availability of the medical data and the diffi-

ulty of annotating certain organs or structures, we simulate the
 p

8

Table 2
Quantitative comparison (mIOU) of methods on chest organ segmentation with
class imbalance. The segmentation network is ResNet-FCN. η denotes the ratio
of the number of images in the dataset L or R to the number of images in the
ataset H.
Method Type η = 1 η = 2 η = 3

MBG SL 0.3187 0.3633 0.3433
IMBP [4] SL 0.2715 0.3052 0.3029
LP [18] SSL 0.5821 0.6344 0.6555
KT [44] MTL 0.6478 0.6511 0.6446
EL [8] PSL 0.6306 0.7263 0.7347
VLUU PSL 0.7063 0.7268 0.7365
Oracle SL 0.7860 0.8208 0.8340

class imbalance situations in PSL. Here, we use η to control the
class imbalance. As the heart is more difficult to annotate than
the two lungs [33], we set the partially labeled dataset for the
heart (H) to have n = 5 and the partially labeled datasets for the
wo lungs (L and R) to both have ηn examples. The results are
hown in Table 2. Compared with Table 1, the class imbalance
oes have a severe negative impact on the baseline methods
BG, IMBP, and KT, as more training data could even decrease

he performance. While LP, EL, and VLUU could benefit from
ore training data, LP achieves much lower performance than EL
nd VLUU. VLUU can generally achieve comparable performance
ith EL while outperforming EL by a large margin with small n.
ompared with the baseline methods, VLUU mitigates the class
mbalance by utilizing human structure similarity to generate a
alanced vicinal label distribution.

.1.6. Ablation studies
Impact of Network Complexity Under the data scarcity chal-

enge, the complexity of the segmentation network will usually
lay an important role. The network complexity is determined by
he number of parameters and the network architecture. For su-
ervised tasks, U-Net should outperform ResNet-FCN because U-
et has more parameters than ResNet-FCN1 and a better network
rchitecture design for medical image segmentation tasks [2].

1 U-Net has 38.8M parameters and FCN with a ResNet18 backbone has 13.3M
arameters.
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able 3
he impact of network complexity on VLUU with ResNet-FCN as the seg-
entation network. n denotes the number of images in each partially labeled
ataset.
Network n = 5 n = 10 n = 15

FCN [1] 0.7063 0.7462 0.7615
U-Net [2] 0.5411 0.7261 0.7799

Table 4
Robustness of VLUU under different random initiations. The performance (mean
mIOU ± standard deviation) of VLUU is more stable than the performance of EL
Method n = 5 n = 10 n = 15

EL [8] 0.6313 ± 0.1997 0.2587 ± 0.3966 0.7506 ± 0.1576
VLUU 0.7058 ± 0.1226 0.7399 ± 0.1200 0.7609 ± 0.1036

Fig. 7. Sensitivity of α to n. Overall, VLUU is robust for various α.

learly, there is a trade-off in the network selection between the
etwork complexity and network performance when the partially
abeled datasets are small. Here, we evaluate VLUU with both FCN
nd U-Net, and results are shown in Table 3. We hypothesize
hat complex networks have a negative impact on VLUU when
here is only limited data. Given a small amount of training data,
omplex networks could have both performance gain due to more
arameters and delicate architectures, and performance drop due
o overfitting, depending on the amount of training data.

Sensitivity to α The performance of a ResNet-FCN trained by
LUU with different α is shown in Fig. 7. Overall, VLUU is not
ensitive to α as there are only small differences between the
erformance for different α values. Note, Dirichlet(α) is asymptot-
cally close to a uniform distribution when α → ∞, i.e. wi =

1
K .

n addition, there is a trade-off in selecting the optimal α. Small α
indicates a larger variation in the label distribution, which means
larger uncertainty. So, for tasks such as chest organ segmenta-
tion where the organs have relatively fixed locations and similar
shapes, a large α might help. However, a small α should be more
robust as it introduces more uncertainty when K is large. In this
work, we use α = 0.1 for consistency.

Effect of Random Initiation To examine the sensitivity of the
proposed framework to the effect of random initiation, we repeat
the experiments in Table 1 for EL and VLUU for 5 times each.
This time, the backbone network is randomly initiated at each
time. Unlike the results in Table 1, which are the highest mIOU,
we report the mean and standard deviation of mIOUs in Table 4.
Compared with the loss-based partially supervised method EL,
the label-based partially supervised method VLUU is more robust
with smaller standard deviation.

Adversarial Training For VLUU-ADV, we use a standard
ResNet binary classifier as the discriminator as we use a ResNet-
FCN as the segmentation network. In fact, the choice of the
discriminator is a research question in its own right [38]. [46]
9

Table 5
Quantitative comparison (mIOU) between VLUU and VLUU-ADV with ResNet-
FCN as the segmentation network. n denote the number of images in each
partially labeled dataset.
Method n = 5 n = 10 n = 15

VLUU 0.7063 0.7462 0.7615
VLUU-ADV 0.7171 0.7412 0.7630

shows that having the same backbones for the segmentation
network and the discriminator can increase the stability of ad-
versarial training. We follow the training scheme in Section 3.3.2,
where the adversarial loss [37] in Eq. (5) is weighted by λ =

0.001. We report the results of VLUU and VLUU-ADV in Table 5,
where VLUU-ADV shows slightly better results than VLUU. We
conclude that ADV can be used as an add-on module for VLUU
with appropriate α and delicate design of the network architecture
for the discriminator.

5.2. Optic disc-and-cup segmentation

In addition to chest organ segmentation, another task where
all classes of interests are present in each image is the optic disc-
and-cup segmentation. As an important step of early screening of
glaucoma, optic disc-and-cup segmentation on the fundus images
localizes the optic disc-and-cup for the analysis of the optical
nerve head [47]. An increase in the optic cup-to-disc ratio could
be an indicator of the presence of glaucoma [48]. The annotation
of the optic disc is more difficult than that of the optic cup. In
addition, the optic disc and optic cup have a unique geometric
property that the optic cup is always enclosed by the optic disc.
That is to say, if we want to annotate the optic disc, we have
to annotate the optic cup first. Although this is not the stan-
dard problem formulation, VLUU can be applied to this situation
directly as discussed in Section 3.2.

5.2.1. Datasets
We use the REFUGE dataset2 to simulate the experiments

for optic disc-and-cup segmentation. As there are two classes of
interest, there should be at least two partially labeled datasets.
However, as explained before, it is less practical to have a partially
labeled dataset for optic disc. Instead, we have one larger partially
labeled dataset for optic cup (denoted as P) and one smaller fully
labeled dataset (denoted as F) as the training set. This motivation
ehind is twofold. First, the annotation of optic cup requires less
uman effort and is much cheaper to acquire than the annotation
f optic disc. Second, we want to introduce the class imbalance.
s REFUGE is collected from multiple sources, we create two sub-
atasets from two sources to simulate the dataset shift in the
raining set. We use the validation set of REFUGE as the test set
denoted as T), which contains 400 fundus images.

As REFUGE is collected from multiple sources, the fundus
mages have various image size. The images are pre-processed by
egistration, cropping, and resizing to have a fixed resolution of
56 × 256. So the pre-processed images contain the whole region
f the optical nerve head. See Fig. 8 for examples of the training
et and the test set.

.2.2. Implementation
Based on the results in the previous section, we only compare

L and VLUU, as EL and VLUU consistently outperform other
ethods. In addition, we use a new baseline PaNN [6]. PaNN

equires that there is a small fully labeled dataset in the training
et to learn the prior, which fits our task setup in Section 5.2.1

2 https://refuge.grand-challenge.org.

https://refuge.grand-challenge.org
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Fig. 8. Visual comparison of the fundus images in the training set and the test set. The training set consists of a partially labeled dataset for optic cup only and a
fully labeled dataset for both optic disc and optic cup. (a) A fundus image from the dataset P. (b) The corresponding ground truth mask of (a) with the optic cup
nnotated as black. (c) A fundus image from the dataset F. (d) The corresponding ground truth mask of (c) with the optic disc annotated as gray and the optic cup
nnotated as black. (e) A fundus image from the test set T. (f) The corresponding ground truth mask of (e). Note, there are clear dataset shifts among the three
atasets.
Fig. 9. Qualitative comparison on partially supervised optic disc-and-cup segmentation with n = 3. GT denotes the ground truth. The segmentation network is
esNet-FCN. n denotes the number of images with optic disc annotated. A FCN trained with VLUU and partial labels can generate prediction masks which are
ualitatively comparable with the masks predicted by a FCN trained with complete labels.
erfectly. Again, for a fair comparison, we use a ResNet-FCN as
he network backbone and use the same set of hyperparameters
n Section 5.1.3. The performance metric is the mIOU between the
nprocessed3 prediction masks and ground truth masks on optic
isc and optic cup.
In contrast to CXRs, the fundus images are color images with

GB channels. To generate a vicinal image, we concatenate two
ampled images from the two partially labeled datasets along the
GB channels, i.e. the vicinal images now have 6 (3K where K =

) channels. Eqs. (2) and (3) still hold. In the training of VLUU,
e rearrange the training data as two partially labeled datasets.
he small fully labeled dataset is split into two sub-datasets
ontaining the same images, where one sub-dataset only contains
abels for the optic disc and is treated as the new partially labeled
ataset for the optic disc. The other sub-dataset with only labels
or the optic cup is added into the partially labeled dataset for the
ptic cup.

.2.3. Results
Compared with the experiments in Section 5.1, we use a more

xtreme setting to test the limit of partially supervised methods.
e use only 10 images from P (i.e. 10 images with optic cup

nnotated) and n images from F (i.e. n images with both optic
isc and optic cup annotated). There is a severe class imbalance

3 In practice, the prediction masks could be further improved by image
rocessing techniques.
10
Table 6
Quantitative comparison (mIOU) of PSL methods on partially supervised optic
disc-and-cup segmentation with class imbalance. The segmentation network is
ResNet-FCN. n denotes the number of images with optic disc annotated.
Method Type n = 1 n = 2 n = 3

EL [8] PSL 0.1395 0.1596 0.1991
PaNN [6] PSL/SSL 0.5976 0.5999 0.6299
VLUU PSL 0.6452 0.7605 0.7945
Oracle SL 0.6677 0.7045 0.7713

here, as the ratio of the number of labels for cup to the number
of labels for disc is 10+n

n . The results measured in mIOU between
the prediction masks and ground truth masks on optic disc and
optic cup are presented in Table 6. With much smaller data size
than before, EL fails. Besides, as EL is not designed for fully labeled
datasets, the images with complete labels (from F) actually have
a negative influence on the training. Meanwhile, PaNN cannot
easily learn the image prior based on only a few fully labeled
images. VLUU outperforms EL and PaNN by a large margin. Essen-
tially, EL and PaNN do not solve the data scarcity problem, while
VLUU can generate new vicinal examples. Moreover, a segmen-
tation network trained with VLUU can even achieve comparable
performance with the same network trained with complete labels
(i.e. more supervision). Considering the existence of class imbal-
ance and dataset shift, we conclude that VLUU is more robust
on small-scale data. The visual comparison between PaNN, VLUU
and Oracle is shown in Fig. 9. It can be seen that PaNN generates
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nrealistic shapes for the optic disc and optic cup if not enough
ully labeled data is available learn a reasonable image prior. Note,
lthough VLUU can achieve comparable performance with Oracle

in numerical results, there are artifacts caused by the uncertainty
of the vicinal labels, e.g. as shown in Fig. 9, VLUU may generate
optic cup predictions outside the optic disc.

6. Conclusion

In this paper, we discuss the robustness issue of partially
supervised methods under the challenge of data scarcity. We
present VLUU, an easy-to-implement framework, for medical im-
age segmentation tasks with only small partially labeled data.
Compared with previous methods, VLUU efficiently utilizes the
human structure similarity. The experimental results show that
VLUU is more robust than state-of-the-art partially supervised
methods under various data scarcity situations. Our research sug-
gests a new research direction in label-efficient DL with partial
supervision by tackling the problem from the perspective of VRM.
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