0‘\\\1 ERS/;;

22 UiT The Arctic University of Norway

&
cuit v

Faculty of Science and Technology
Department of Computer Science

Gurret: Decentralized data management using subscription-based
file attribute propagation

Sivert Johansen

INF-3990 Master's thesis in Computer Science - May 2022

This thesis document was typeset using the UiT Thesis IKTEX Template.
© 2022 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract

Research institutions and funding agencies are increasingly adopting open-data
science, where data is freely available or available under some data sharing
policy. In addition to making publication efforts easier, open data science
also promotes collaborative work using data from various sources around the
world.

While the research datasets are often static and immutable, the metadata of a
file can be ever-changing. For researchers who frequently work with metadata,
accessing the latest version may be essential. However, this is not trivial in
a distributed environment where multiple people access the same file. We
hypothesize that the publisher-subscriber model is a useful abstraction to
achieve this system.

To this, we present Gurret: a distributed system for open science that uses a
publisher-subscriber based substrate to propagate metadata updates to client
machines. Gurret offers a transparent system infrastructure that lets users sub-
scribe to metadata, configure update frequencies, and define custom metadata
to create data policies. Additionally, Gurret tracks information flow inside a
filesystem container to prevent data leakage and policy violations. Our eval-
uations show that Gurret has minimal overhead for small to medium-sized
files and that Gurret can support hundreds of custom metadata without losing
transparency.

Contents

Abstract i
List of Figures vii
List of Tables ix
List of definitions Xi
1 Introduction 1
1.1 ThesisStatement v v v v v v 3
1.2 Scope and Limitations 4
1.3 ContexXt. o v i e e e e e e e 4
1.4 Methodology, 4

1.5 Outline 5

2 Background 7
2.1 Filesystem 7
2.2 XFS . . o e e e e e e e 8
2.3 Btrfs e 9
2.4 F2FS e 10
2.5 extd ... e e e e e 11
2.5.1 ext4Structure 11

2.5.2 ExtentTrees 13

253 InlineData0 15

2.5.4 Directories 15

255 Journaling 15

2.6 FUSE 16
2.7 AccessControl 17
2.8 Discretionary Access Control 17
2.8.1 Access-Control List 17

2.8.2 Capability-Based Access Control 18

2.9 Mandatory Access Control 18
2.9.1 Lattice @ e e 19

2.9.2 The Bell-LaPadula Model 20

CONTENTS
2.9.3 TheBibaModel 20
2.9.4 Access-Control Limitations 21

2.10 Information Flow Control 21
2.10.1 Information Flow 21
2.10.2 FlowControl 22

21T Summaryo e e e e e e e e e e e e e e e 23

The Gurret System 25

3.1 Architecture e 25

3.2 Filesystem Container. 26

3.3 Filesystem Structure 27

3.4 StoringMetadata 28

3.5 GurretDaemon 000 28

3.6 Message Structure e e e e 29

3.7 Summaryo e e e e 29

Metadata 31

4.1 Metadatalnterface 31

4.2 Standard Metadata 32

4.3 CustomMetadata 32
4.3.1 Meta-Code Requirements 33

4.4 Creating Data Management Policies 35

4.5 MetadataUpdate 36
4.5.1 ReceivingUpdates 36
4.5.2 SendingUpdates 36

4.6 Summary e e e e 37

Metadata Subscriptions 39

5.1 Subscription Language, 40

5.2 Metadata-Field Querying 41

5.3 Sending Subscription Messages to the Backend 42
5.3.1 MetadataUpdate 42
5.3.2 GetSubscriptions 42
5.3.3 SetSubscriptions 43

5.4 How End-Users Subscribe to Metadata 44

5.5 Metadata Consistency Model 44

5.6 Summary 45

Data-Sharing and Notification Engine 47

6.1 Data-sharingservice 47

6.2 Notification Engine 48
6.2.1 SocketServer., 48
6.2.2 MetadataStore 48

6.2.3 QueryEngine. 49

CONTENTS

6.3 SUMMAry v o e e e e e e e e e e e e e

7 Taint Tracking
7.1 Taint Tracking
7.2 Taint TrackingRule
7.3 Implementing the Taint Tracking Rule
7.4 Tracking DataLineage
7.5 Forestof Trees
7.6 Intercepting Information Flow Related Syscalls
7.7 Storing the Forest of Trees and Broker
7.8 Taint Tracking Weaknesses
7.9 Implementing an Information Flow Control

7.10 Labels

7.11 Access-ControlRules
7.12 File Removal Policy
7.13 Information Flow Control System Use Cases
7.14Summary oL Lo e e e

8 Evaluation

8.1 Hardware Specification

8.1.1

Benchmarking Method

8.2 FUSEOverhead

8.2.1
8.2.2

Setup
Results

8.3 Metadata Benchmarks

8.3.1
8.3.2
8.3.3

Setup Lo
Checking MetadataResult
Updating MetadataResult

8.4 Filesystem Benchmark

8.4.1
8.4.2
8.4.3

Benchmarking Setup
File Benchmark Result
Extended AttributesResult

8.5 Filesystem Benchmark Result
8.6 File Subscription Benchmarks

8.6.1
8.6.2

Benchmarking Setup
Benchmarking Result

8.7 Summary e

Conclusion

9.1 RelatedWork

9.1.1
9.1.2
9.1.3
9.1.4

Distributed Data Management
Filesystems,
Publisher-Subscriber Model
Information Flow Control Systems

52

53
54
54
56
58
58
60
62
62
62
62
63
63
64
64

65
65
66
66
66
66
68
68
69
70
70
71
71
72
72
74
74
75
75

Vi CONTENTS
9.2 FutureWork 79
9.2.1 Filesystem Container 79

9.2.2 Filesystem, 80

9.2.3 False-Positive Information Flows 80

9.2.4 GurretDaemon 80

9.2.5 Distinguishing between Data Management Metadata . 81

9.2.6 Distributed Data-Sharing and Notification Service . . 81

9.3 ConcludingRemarks 82
Bibliography 83

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

7.1
7.2

Output from dumpe2fs. A lot of lines are omitted for clarity. . 12
Overview of the inode block pointers. Tripley indirect pointer

isomitted. L 14
The FUSE architecture. 16
Linear lattice with the values 1-4. 19
A more complicated lattice. 19
no-read-up, no-write-down rules. 20
no-read-down, no-write-uprules. 21
Overview of the Gurret system. 26
Creating and mounting a loop device containg ext4. 27
The pre-arranged filesystem structure. 27
Example metadata forafile.. 28
The structure of amessage. 29
Access metadata implementation. 33
Custom Metadata hierarchy. 34
Implementation of the FiveDays data policy 35
Algorithm for receiving metadata updates. 36
Algorithm for receiving metadata updates. 37
Pseudo-code for detecting metadata updates. 37
The Document structure of subscription messages. 40
Example message of the metadata update type. 42
Typical GetSubscriptions message. 43
Typical GetSubscriptions response message. 43
Basic SetSubscriptions message. 44
SetSubscriptions with threeusers 50
Hierarchy of async tasks idling 51
Hierarchy of async tasksonupdate 52
Architecture for handling flow transactions. 56
Lookup-table for data management metadata. 57

Vii

viii

LIST OF FIGURES

7.3 Forest of trees structure. 59
7.4 Simplified structure of the forestof trees. 59
8.1 FUSE overead reading. 67
8.2 FUSE overead writing. 67
8.3 FUSE overhead writing, logarithmic y scale. 68
8.4 Metadata checking time. 69
8.5 Custom metadata scaling with check store. 70
8.6 Metadataupdatetime.. 71
8.7 Filesystem writing benchmark. 72
8.8 Filesystem reading benchmark. 73
8.9 Filesystem extended attributes writing benchmark. 73
8.10 Filesystem extended attributes reading benchmark. 74

8.11 Time to check metadata for files that subscribes to n metadata. 75

List of Tables

2.1 Disk layout of ext4.
5.1 Avalable comparison operators

6.1 Table representing Figure 6.1

List of definitions

7.1
Let — be an explicit flow between two files
................................. 54
7.2
Let M(x) be the set of management metadata of x
................................. 54
7.3
Let ~» be the transfer of management metadata between two files
................................. 54
7.4
A — BA A~ B & flow transaction from A to B
For two files A and B
................................. 55

Xi

Introduction

Research institutions and funding agencies are increasingly adopting open-data
science, where data is freely available without restrictions such as copyright [1,
2], or available under some data policy [3]. Institutions that own data can host
it on a remote data repository for other researchers to find and use. If done
right, this approach enables highly collaborative work; however, problems can
emerge if institutions are not careful. Specifically, if institutions upload data
with varying formats and access methods, it can be challenging to use and
combine with other data. Seeing these issues and following the popularity
of open data, GO FAIR! proposed the FAIR guidelines [4]. The guidelines
intend to make it easier for researchers and machines to use public data. The
guidelines are:

* Findable: Data should be easy for humans and computers to find.

* Accesible: Data accessibility should be transparent. It should be easy for
a human or machine to know how to access data.

* Interoperable: In order to work well with other systems, the data should
be interoperable and represented using a well-known language/format.

* Reusable: Data and metadata should be well-described to make them
replicable and usable in other contexts.

1. The GO-FAIR website: https://www.go-fair.org

https://www.go-fair.org

2 CHAPTER 1 / INTRODUCTION

Since one of the core principles of the scientific method is to build upon knowl-
edge, it is essential for researchers that data is reusable and replicable. Services
like The Dataverse Project [5] and the Open Data Science Foundation [6] allow
institutions to upload data and research projects that follow the FAIR principles.
Dataverse, for instance, currently has 78— as of May 2022— data repositories
worldwide, hosting over 135 thousand datasets2.

For researchers to use datasets and build on previous work, the data importantly
need to be immutable. Immutable data follow the reusable principle in the FAIR
guidelines. Researchers consequently download the immutable data to use in
their research projects. This system of publishing and downloading data works
well, but only because the data is immutable and persistent. However, one
limitation is that the dataset’s meta properties continuously change— like last
access, access rights, usage counts, ownership, etc. For instance, Sharma et al.
[7] show that subjects in participatory research often change their perception
of privacy, which requires a frequent update to data access policies. Other
studies show that— depending on the workload— metadata operation could
make up over 50% of the operations [8]. Metadata changes can arbitrarily
occur by local modifications or remotely by the data owner or another file user.
These changes need to propagate to the users it affects.

In this thesis, we are interested in the class of metadata related to data man-
agement. Data management metadata is used to represent data management
policies, which garner the usage of the file, and they follow data as it is prop-
agated and processed in data-processing pipelines. Several different policies
can be specified using data management metadata, such as retention policies,
usage policies, processing policies, etc. For instance, a data retention policy
can specify that data usage is not allowed after five days since retrieval.

There is a small, finite amount of standard metadata, like Access, Create,
Modify in the Linux operating system. However, an infinite amount of data
management metadata exists since endless policies exist for files. Consider only
the policy that a file is only available for N days. We can make endless versions
of this policy by substituting N with ever-increasing numbers. Because of this,
data management metadata needs to be handled differently than standard
metadata. While all standard metadata can be represented individually, such
as defining an object in memory for each metadata, the same can not be
said for management metadata. A system for creating and defining custom
metadata is necessary to enable data management policies. Additionally, these
metadata fields must be tracked and transferred as data propagate. Suppose
a user creates a new file with the data from another file. Then, the new file
needs to cohere to the origin file’s policy since accessing the new file indirectly

2. The Dataverse Project website: https://dataverse.org/metrics

https://dataverse.org/metrics

1.1 / THESIS STATEMENT 3

accesses the original. If the policy does not transfer, then writing into a file
without a policy is a way to escape the original file’s policy.

Metadata tracking and transferring can be accomplished with tainting meth-
ods [9], often used in information flow control systems [10, 11]. However,
having a mechanism for tracking information flow is also helpful for manage-
ment policies. For instance, a data processing policy can specify that local
metadata changes must propagate back to the original source file.

Although many data management policy decisions can be made on local data
alone, some require global coordination. One such example is a restriction on
data access based on a count of data usage. For instance, a medical project
may restrict data access to not more than two parties at once. Another example
is differential privacy, where a global coordinator maintains and enforces a
global privacy budget.

We conjecture that metadata update propagation in open-data science fits well
with the Publisher-Subscriber (pub-sub) model [12]. In this model, publishers
categorize their messages into topics, instead of sending them directly to the
receivers. To receive messages, subscribers can subscribe to topics concerning
them. We adopt a model where the central data owner creates and defines
metadata fields as topics. The owner can make important topics, such as
access control, to be mandatory, and others optionally subscribable. Example
topics that could be optionally subscribable are last-access, creation time, usage
count, etc. Remote or local changes to metadata propagate to the affected file
observers.

1.1 Thesis Statement

The advantage of applying the pub-sub model is that the model is well-
established and heavily researched. Additionally, modeling metadata as cate-
gorizable messages is natural since metadata is usually composed of a unique
key and a value.

Our thesis is
that scalable decentralized data management for research data can
be constructed using a filesystem integrated pub-sub substrate for

metadata dissemination.

We support our thesis by implementing the Gurret prototype using a FUSE
filesystem that intercepts system calls to orchestrate metadata. We show that

4 CHAPTER 1 / INTRODUCTION

Gurret can support data management policies with custom metadata. The end
system is a substrate that users can use on top of their systems and/or as a base
system to build upon. It is therefore important that Gurret is transparent for
end-users. Working with files without the substrate should not be noticeably
faster than with the substrate. Additionally, we implement a reference monitor
that tracks information flow and metadata propagation.

1.2 Scope and Limitations

This thesis specifies the design, requirements, and evaluation of Gurret. We
develop the end-user client responsible for handling local metadata updates
based on the requirements and evaluate its different aspects. We propose a
scalable design for a backend service based on previously good designs; we
do not implement the backend in this thesis. The client we develop supports
connecting to a backend; however, we use mockups to simulate and verify the
correctness on the client-side.

Many system calls can lead to a flow of information in several ways. We limit
this thesis to only look at the system calls open, write, rename, unlink.

1.3 Context

This thesis is written in the context of the Cyber Security Group (CSG) work
at UIT The Arctic University of Norway. Recently, the group has done exten-
sive research related to Intel SGX, privacy in sports science, and participatory
research projects. On the latter, the Lohpi infrastructure [3, 13] has been
proposed, which serves as one of the inspirations of this thesis.

Lohpi is a data processing infrastructure for participatory research projects
designed to distribute and control datasets with dataset policies in mind. Users
interact with Lohpi and download datasets using the CLI 1h.

1.4 Methodology

In the Final Report of the ACM Task Force on the Core of Computer Science, the
task force divides the discipline of computing into three paradigms: Theory,
Abstraction, and Design [14]. All three paradigms present an infrastructure for
iterative progression on a subject. Individuals following one of the paradigms

1.5 / OUTLINE 5

are expected to adjust and iterate the steps when they discover a flaw.

Theory the paradigm theory is related to the study of mathematics and
is concerned with developing a sound theory. The steps involved are: (1) find
an object to study; (2) create a hypothesis; (3) test the hypothesis rigorously;
(4) interpret the results.

Abstraction the paradigm abstraction is an experimental paradigm for
investigating a phenomenon. The infrastructure presents four steps for validat-
ing a phenomenon: (1) form a hypothesis; (2) construct a model for predicting
the phenomenon; (3) create experiments and collect data; (4) analyze the
results.
Design the final paradigm: design is an engineering paradigm design
in the construction of a system. The four involved steps are: (1) state the
requirements; (2) state the specifications; (3) design and implement the system;
(4) test the system.
Again, the paradigms are designed to discover and solve flaws by going back
to a previous step and adjusting. This thesis is rooted in the last paradigm:
design. Throughout this thesis we

1. Define the properties (requirements) of the system.

2. Outline the specific details on how we implement said properties.

3. Define and conduct experiments.

4. Reflect over the result.

1.5 Outline

The rest of this thesis is structured as follows:

Chapter 2 details the technical background relevant to the thesis. The topics
we elaborate on are: filesystems, FUSE, access control, and information flow

control.

Chapter 3 describes the architecture of the Gurret system and gives implemen-
tation details for the Gurret client.

Chapter 4, 5, and 7 further elaborates on the design and implementation de-

6 CHAPTER 1 / INTRODUCTION

tails of the Gurret client. Namely, (1) how Gurret implements metadata, (2) how
end-users can subscribe to said metadata, (3) and how we use taint-tracking in
Gurret to enable data policy propagation to prevent| policy violations occurring
from an information flow.

Chapter 6 describes our design for the data-sharing and notification en-
gine.

Chapter 8 benchmarks and evaluates the Gurret client. We benchmark different
filesystems and core components of Gurret.

Chapter 9 contains related work, future work, and finally, a summary of our
important findings in the thesis.

Background

This chapter covers the necessary background before introducing the Gurret
system. We describe filesystems and how they store metadata, FUSE, access
control, and information flow control. We begin by describing filesystems and
focusing on how they store files and metadata.

2.1 Filesystem

Operating systems use filesystems to organize their data. Most operating
systems have a filesystem, like NTFS for Windows [15], APFS for Mac [16]. A
typical environment where filesystems are not present is embedded systems
and microcontrollers, where memory is limited. On Linux, multiple filesystems
are available, like ext4 and XFS, to name a couple.

Since this thesis focuses on filesystem technologies on Linux, we focus on the
filesystem available on that platform. We will describe their main features and
how they store data and metadata. The filesystems we consider are XFS [17],
Btrfs [18], F2FS [19], and ext4 [20]. We choose these filesystems because they
are among the most popular Linux filesystems ! and mature, well-established
filesystems [21]

1. According to https://www.maketecheasier.com/choosing-the-best-linux-
filesystem/ and https://linuxhint.com/best_linux_file_systems_5/

https://www.maketecheasier.com/choosing-the-best-linux-filesystem/
https://www.maketecheasier.com/choosing-the-best-linux-filesystem/
https://linuxhint.com/best_linux_file_systems_5/

8 CHAPTER 2 / BACKGROUND

We begin with the XFS filesystem.

2.2 XFS

Developed by Silicon Graphics, Inc, XFS’ purpose was to replace its previous
filesystem, EFS [22]. XFS is designed to be a general-purpose filesystem with
high scalability and the ability to store large files. Some of the main features
of XFS are allocation groups, its extensive use of B+ trees, and its file storage
capacity.

Allocation Groups

Allocation groups is one of the concepts introduced in XFS to address scalability.
Allocation groups are ranges of addresses— typically between 0.5 to 4 gigabytes
in size— where each group has control of the address range. One can think of
allocation groups as sub-filesystems. Each allocation group has data structures
for managing its address range. Allocation groups make XFS more scalable by
enabling multiple processes to access different allocation groups in parallel.
Silicon Graphics’ previous filesystem, EFS, used a single thread for allocating
and freeing blocks. This approach works fine for small workloads but scales
poorly. As the number of processes running I/0 operations increases, the single
thread increasingly becomes a bottleneck.

B+ Trees

XFS makes good use of B+ trees to increase performance and scalability. XFS
uses B+ trees to keep track of free blocks and directory indexes. The traditional
data structure to store this information are bitmaps and lookup tables. The
issue with these data structures is that their time complexity, O(n), scales
poorly. B+ trees, on the other hand, have a time complexity of O(logn).

Storage Capabilities

To support large files, XFS uses a 64-bit address space. This enables XFS to
address almost eight exbibytes of data (2% — 1 bytes).

2.3 / BTRFS 9

File and Metadata Storage

For many filesystems and most Linux-based filesystems, the inode is the data
structure that describes files and directories. The inode contains information
about the file/directory, such as access mode, ownership, type, and more 2.
Every available filesystem on Linux uses this inode structure internally; however,
filesystems usually create their own inode structure that contains the basic
inode. XFS’s inode xfs_inode contains XFS implementation-specific fields,
such as its size.

To store many files, XFS dynamically allocates inodes. The alternative is to
pre-allocate inodes when the filesystem is created. The disadvantage to pre-
allocation is that inodes can run out. The data itself is stored using extent trees.
This method utilizes trees to keep track of data. The method is very efficient
when data is spread across multiple blocks. Section 2.5.2 further elaborates on
the technique.

XFS stores file metadata in the inode. For additional metadata, XFS implements
extended attributes to allow arbitrary key-value pairs to be associated with files.
XFS can store extended attributes inline in the inode for small (*100 bytes)
attributes. Larger attributes are stored in a different data block. Increasing the
inode size when creating the filesystem enables larger inline attributes. XFS
has no limit on the number of extended attributes— unlike the ext family of
filesystems— however, XFS does have a limit on attribute size.

2.3 Btrfs

Btrfs is an open-source, copy-on-write (COW) filesystem that started develop-
ment in 2007. The goal of Btrfs is to work as a general filesystem capable of
being used efficiently for many different workloads and devices such as mobile
phones and servers.

Btrfs’s architectural design is a forest of trees. Each disk volume on the filesystem
is a B-tree, and a centralized B-tree root node (the superblock) contains all
of the sub-volumes as its children. Btrfs makes good use of B-trees’ O(log n)
operations to increase performance and scalability. One of the main features
in Btrfs is checkpoints.

2. https://elixir.bootlin.com/linux/latest/source/include/linux/fs.
h#L614

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L614
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L614

10 CHAPTER 2 / BACKGROUND

Checkpoints

Modifying files causes changes in the tree structure where the files reside.
Instead of writing the changes directly to the said tree, they are first stored
and captured as a new tree in the forest of trees. After a timeout (default
is 30 seconds), or if enough pages are modified, the new tree is written to
the disk, creating a checkpoint. The root node containing the forest of trees
then switches the pointer of the modified root to point to the new root. Btrfs
saves the old tree in case of a crash and data gets corrupted. In that case, the
filesystem can roll back to the previous three.

File and Metadata Storage

Btrfs represent their files and directories using inodes. Btrfs’s inode contains—
among others— information about which subvolume a file is contained in and
where the data is stored. Btrfs stores the data similar to XFS by using a tree
structure. Unlike XFS, Btrfs does not support inline extended attributes.

2.4 F2FS

F2FS is a filesystem developed by Samsung Electronics that specifically targets
flash storage. The goal of F2FS is to be a fast and reliable filesystem that can
outperform traditional filesystems, such as ext4 and XFS, under the assumption
that the host machines stores data on flash storage.

One of the ways F2FS makes use of flash storage is with a flash-friendly disk lay-
out. F2FS divides the disk into three logical units: segments, sections, and zones.
These units are configured to align well with the flash storage structure.

File and Metadata Storage

F2FS uses node blocks to represent inodes, direct nodes, and indirect nodes.
Each node block is assigned a unique identifier that references them. The
address of the node block can be located by indexing the Node Address Table
(NAT) using the node identifier.

F2FS stores file content using direct pointers, a technique we further elaborate
on in Secton 2.5; however, F2FS additionally support inline data and inline
extended attribute, storing them in the inode structure. By default, F2FS is
capable of inlining up to 3692 bytes of data and 200 bytes of extended attributes

2.5 / EXT4 11

one many many one one many many

block blocks blocks blocks block blocks blocks

The Su-| Group Reserved | Data inode inode Data

perblock | Descrip- | GDT Block Bitmap | Table Blocks
tors Blocks Bitmap

Table 2.1: Disk layout of ext4.

directly in the inode. The extended attribute size is configurable with the
inline_xattr_size mount option 3.

2.5 ext4

Since we use ext4 as our filesystem, we will spend more time on it than the
other filesystems to better understand it. ext4 is the fourth version of the ext
family of filesystems. The main improvement from the previous filesystem ext3
was more storage capability and better performance.

2.5.1 ext4 Structure

The filesystem is divided into a series of blocks. The size of each block is a
power of two, ranging from 1 KiB to 64 KiB, but typically the same size as a page.
On x86, this is 4KiB. Table 2.1 shows the basic disk layout for the filesystem.
In the table, each square represents a named segment in the layout, with the
size of the segment above. The following sections explain each segment in
detail.

The Superblock

The superblock contains metadata of the mounted filesystem, such as how
many blocks and inodes are on the filesystem, the filesystem’s status, and
more. An overview of the metadata contained in the superblock can be seen
by running the following command in a Linux terminal:

$ sudo dumpe2fs -h {Your mounted disk}

We run the command on our disk: /dev/nvmeOn1p2. Figure 2.1 show the output.

3. https://www.kernel.org/doc/html/latest/filesystems/f2fs.html

12 CHAPTER 2 / BACKGROUND

Last mounted on: /
Filesystem magic number: OxEF53
Filesystem features: has_journal ext_attr resize_inode dir_index

filetype needs_recovery extent 64bit flex_bg sparse_super
large_file huge_file dir_nlink extra_isize metadata_csum

Filesystem state: clean

Filesystem 0S type: Linux

Inode count: 31162368

Block count: 124645632

First block: 0

Block size: 4096

First inode: 11

Inode size: 256

Filesystem created: Mon Aug 23 13:17:04 2021

Figure 2.1: Output from dumpe2fs. A lot of lines are omitted for clarity.

The output has 58 lines of information; we omit many lines for clarity.

Group Descriptors and Reserved GDT Blocks

The group descriptor blocks contain information about the other blocks. It
contains the block numbers of the data block bitmap, inode bitmap, inode
table, and data blocks. The Reserved GDT blocks are used to add more group
descriptors to the table.

Data Block and inode Bitmap

The data block bitmap and inode bitmap holds the availability status of ev-
ery block and inode. By availability status, we mean if the block is in use
or free. The bitmaps are essentially two large arrays where index I specify
whether block/inode number I is occupied or not. They are bitmaps to preserve
space.

inode Table
ext4 uses inode to represent files and folders on the filesystem. The content of

the file is stored in data blocks. The inode has 15 pointers to blocks to access
the file’s content. A pointer in this context is just the unique block number of a

2.5 / EXT4 13

block. We can get the address on disk from a block pointer with :

BLOCK_ADDR = BLOCK_BASE_ADDR + BLOCK_POINTER X BLOCK_SIZE

The 15 pointers contained in the inode are:
* 12 pointers to blocks where data resides.
* 1 singly indirect pointer, pointing to a block containing block pointers

* 1 doubly indirect pointer, pointing to a block containing singly indirect
pointers.

* 1 triply indirect pointer, pointing to a block containing doubly indirect
pointers

Figure 2.2 shows an overview of the 15 pointers contained in the inode. Each
square represents a block, and the arrows indicate what is being pointed to.
The letter D is a shorthand for Data. Some arrows and the triply indirect pointer
are omitted for clarity.

This structure is very inefficient for storing large files. A file with content
spanning 10,000 blocks would require an indirect mapping to each of the
10,000 blocks. Reading the whole file from beginning to end using this structure
is also expensive.

Data Blocks

Data blocks contain the content of files and folders. This block group is by far
the largest in the system. Files and directories reference data blocks by using
the block pointers.

2.5.2 Extent Trees

To improve the inode’s block pointer structure, ext4 introduced extent trees.
Extent trees are trees where the leaf nodes in the tree specify where data begins
and how many blocks it spans. Using extent trees, storing big files within an
inode can be reduced to a single extent node specifying where it starts and
how many blocks it spans. If the file is fragmented and split into N chunks, the
extent tree would have N leaf nodes specifying the blocks’ location.

14 CHAPTER 2 / BACKGROUND

Data

Block Pointer

Block Pointer
Block Pointer Block Pointer——>» D

Block Pointer
-) [

Block Pointer

Singly indirect [

Doubly indirect |+ Block_Pointer] D
- - - Block Pointer
Triply indirect Singly Indirect] g .
Singly Indirectt— .
= Block Pointer
’]

Block Pointer
Block Pointer

> |

Singly Indirect]

RN

D

Block Pointer

Figure 2.2: Overview of the inode block pointers. Tripley indirect pointer is omitted.

2.5 / EXT4 15

2.5.3 Inline Data

Both file data and extended attributes can be stored in the ext4 inode for small
data sizes. The default inode size is 256 bytes. Increasing the inode size can
accommodate more space for inline data; however, increasing the size is only
possible when creating the filesystem.

2.5.4 Directories

ext4 represents directories as files. To distinguish between regular files and
directories, ext4 uses the type metadata field to mark inodes as either files
or directories. The content of Directories are blocks of directory entries. Di-
rectory entries contain information about the file, such as its inode number
and filename. To traverse into a sub-directory, the OS performs a linear scan
within the directory to find the inode number of the sub-directory. The linear
scan works fine for small to medium-sized directories. However, the linear
scan scales poorly because of the O(n) time complexity. ext4 allows directories
to use a B-tree hashmap instead of the linear collection of blocks to increase
scalability. The Hash Tree uses more space in memory, but scales better with
its O(log n) operations.

2.5.5 Journaling

To improve performance in the case of a crash or corruption, ext4 uses a
technique called Journaling. Instead of writing disk changes directly to disk,
they are first written to a special Journal file that keeps track of all changes. If a
crash occurs, the filesystem can recover by looking in the Journal and redoing
the tasks that left the filesystem in an inconsistent state. The alternative to
using Journaling is to do a filesystem check fsck [23]. The filesystem check
traverses the file system and checks for inconsistencies and corruption. The
problem with the filesystem check is its speed. It is slow since it has to traverse
a lot of memory and check for inconsistencies. It might not take too long for
small filesystems; however, it can take hours for larger filesystems [23] or even
days according to some accounts *.

4. https://serverfault.com/questions/966244/how-long-can-fsck-take-
on-a-30-tb-volume

https://serverfault.com/questions/966244/how-long-can-fsck-take-on-a-30-tb-volume
https://serverfault.com/questions/966244/how-long-can-fsck-take-on-a-30-tb-volume

16 CHAPTER 2 / BACKGROUND

User space Application FUSE Daemon

A 3

y y

Kernel space Virtual Filesystem [« > /dev/fuse

'

Kernel Filesystem

Figure 2.3: The FUSE architecture.

2.6 FUSE

FUSE is a framework for filesystems that run in user space rather than kernel
space. Working with kernel-level filesystems is hard. Filesystems usually have
extensive APIs and are difficult to debug since they live at the kernel level. A
mistake in a filesystem can result in a reboot or corrupted data.

FUSE simplifies creating a filesystem by having a simpler API and running it
in user space. Having the filesystem run in user space makes it easier to debug
since user space crashes usually do not require a system reboot.

FUSE works by intercepting system calls— e.g., READ, WRITE— and handling
them according to a virtual filesystem specification. The virtual filesystem is
mounted with FUSE on top of a folder. This allows the virtual filesystem to
intercept system calls within the folder. Probably the simplest system one can
build with FUSE is a passthrough. A passthrough is a filesystem that forwards
system calls to the OS. A more practical and well-known example is sshfs, which
allows users to mount remote directories on their machine using ssh [24]. It
achieves this by intercepting various system calls, running them remotely, and
sending the results back.

The basic FUSE architecture consists of a kernel-level module and a user-level
daemon process. The two components communicate using the device file
/dev/fuse.

When a user-level application triggers a system call within a FUSE-mounted
directory, they are translated into a FUSE request and put into the device
file by the virtual filesystem. Afterward, the user application will go to sleep,
and the FUSE-daemon will read the request from the device file. The daemon
then handles the request, writes the result back to the device file, and wakes
the application up again to continue execution [25]. Figure 2.3 show the
architecture of FUSE.

2.7 / ACCESS CONTROL 17

One drawback with FUSE is the overhead of intercepting system calls. In a
simple passthrough implementation, system calls need to be communicated and
translated through the /dev/fuse file, in addition to the actual file operation.
We measure the overhead associated with FUSE in Section 8.2.

2.7 Access Control

Access Control is a security technique concerned with allowing and limiting
access to resources based on an access policy. There are two main access control
model categories: discretionary access control (DAC) and mandatory access
control (MAC) [26]. The main difference between the two categories is who
decides the access control policy. In DAC, the owner of a resource decides
the access policy. In MAC, however, additional rules and frameworks play a
role in the policy. Filesystems and social media are typical places where DAC
is used. On the other hand, MAC is typically used in large corporations and
institutions.

2.8 Discretionary Access Control

In DAC, the owner/creator of a resource decides the access policy. Examples of
systems under DAC are Access-Control List (ACL) and Capability-Based Access
Control (CBAC)

2.8.1 Access-Control List

In an ACL system, the resource owner has a list that determines the permissions
for other users to the resource. Many filesystems implement ACL; examples in-
clude ZFS, ext3, and ext4. ext4 sets ACL with the setfacl commands. Example
usage:

$ setfacl -m "u:alice:rw" messages

This command gives the user alice read and write permissions to the messages
file. The command getfacl is used to retrieve the ACL for a file:

$ getfacl messages
file: messages
ouwner: {ouner}t
group: {group}

18 CHAPTER 2 / BACKGROUND

user: :rw-—
user:alice:rw—

group: :r—-
mask: :rw—
other::r—-

2.8.2 Capability-Based Access Control

In CBAC, access to a resource is evaluated using a capability. A capability is
a unique tuple containing a reference to a resource and a set of permissions
to the resource. For instance: (/user/messages, {READ,WRITE}). To use a
resource, the capability is validated by an authority or ambient authority [27].
An important point in CBAC is the ability to share capabilities. For instance, the
example tuple above should be possible to share among processes in a CBAC
system.

One of the use cases for CBAC is the confused deputy problem (CDP) [28]. The
confused deputy problem is when an elevated/privileged program is exploited
to do something malicious. In the classical CDP example [28], a Fortran compiler
is given elevated privileges to write debug information to a file in the root
folder. The exploit occurs when a user specifies that the output file should have
the same name as a privileged file in the root folder. For instance:

$ fortcc file.f90 -o /etc/passwd

A solution to the problem would be to introduce capability-based access con-
trol. Using CBAC, the compiler only has the capability to the debug file, e.g.,
(/root/debug, {READ, WRITE}). Trying to do the same exploit will not work
since the compiler only has access permission to the debug file.

2.9 Mandatory Access Control

In contrast to discretionary access control, in MAC, an institution creates a
structure/hierarchy of labels assigned to resources. Users are given a clearance
level that determines what they can access. For instance, a MAC system could
define the labels: top-secret, secret, and unclassified. Then, for a user
to access a secret resource, they would need a clearance of secret as well. The
hierarchy of labels and clearances is usually implemented using a lattice. We
further explore two popular MAC models: The Bell-LaPadula and the Biba
models.

2.9 / MANDATORY ACCESS CONTROL 19

Figure 2.4: Linear lattice with the values 1 - 4.

4

3.a 3.b

2.a 2.b

1

Figure 2.5: A more complicated lattice.

2.9.1 Lattice

A lattice is a partially ordered set in which every pair of elements has a greatest
lower bound and a least upper bound [29]. Bounded lattices have the additional
requirements that the set is also finite. Although we continue to only use the
word lattice what we mean is a bounded lattice. More formally:

L is a lattice &

WL € w
@Vx,yel3dz:x>2z&y=>z
B)Vx,ye LIz:x<z&y<z

An example of a lattice structure are all positive numbers from o to 100 e.g
{x : x > 0 & x < 100}. With lattices, simple restriction levels such as the
linear restriction level seen in Figure 2.4, as well as more complicated ones
such as Figure 2.5, can be described using lattices.

20 CHAPTER 2 / BACKGROUND

High

Write Read

Low

Figure 2.6: no-read-up, no-write-down rules.

2.9.2 The Bell-LaPadula Model

The Bell-LaPadula model [30] is a MAC model that is concerned with data
confidentiality. The purpose of the model is to avoid data leaking from a higher
security label, say top-secret, to a lower level, secret, for instance. To prevent
this, the model defines the rules: no read up and no write down.

The purpose of the first rule: no read up is to avoid users with a lower clearance
reading a more classified resource. For instance, a user with unclassifide clear-
ance should not be able to read top-secret resources. The second rule: no write
down is to disallow resources leaking to a lower level. For instance, the content
of a top-secret file should not be able to be written to a secret file. Figure 2.6
displays the rules in the model.

2.9.3 The Biba Model

In contrast to Bell-LaPadula, the Biba model [31] is concerned with data in-
tegrity. The Biba model has similar rules as Bell-LaPadula. The rules in the
model are: no read down and no write up. To understand why these rules pre-
serve data integrity, consider a lattice hierarchy with the labels unclassified
and secret. If users are allowed to use content from an unclassified document
and write it to a secret document, then the document would be less secret.
Figure 2.7 shows the rules in the model.

2.10 / INFORMATION FLOW CONTROL 21

High

Write Read

Low

Figure 2.7: no-read-down, no-write-up rules.

2.9.4 Access-Control Limitations

One limitation of access control is that access control can only be used to check
whether access is valid or not. In order to monitor information flow and data
provenance, other mechanisms are needed [32].

2.10 Information Flow Control

Information Flow Control (IFC) is a security measurement concerned with ac-
cess control and—more importantly— data provenance [33]. Data provenance
is how data flows in a system between classes. Class, in this context, is some
actor trying to access a resource, e.g., user, file, process. IFC systems are useful
when data have a policy associated with them. The data policies define how
classes are allowed to use the data.

2.10.1 Information Flow

A flow in an IFC system is the transfer of data from one class to another. We
define the symbol "—" to mean the relation of information flow between two
classes. Consequently, A — B indicates a flow from class A to class B. Flows

come in two flavors: explicit and implicit.

A flow X — Y is explicit if the data of X is directly used to assign Y. For
example:

X = True

22 CHAPTER 2 / BACKGROUND

Y = IX

A flow X — Y is implicit if Y is related to the data of X through program
control flow (e.g., if, else, while, etc). Consider the example:

X = # True or False
Y = True
if X = True

then Y = False

Even though X never assigns Y, we can still infer both variables knowing only
one.

2.10.2 Flow Control

Each flow in an IFC needs to be verified by a reference monitor to ensure classes
follow data policy. A reference monitor is an external component that monitors
and verifies flow between classes.

There are two main ways to verify flows: statically and dynamically.

Statically

Denning and Denning [34] showed that it is possible to do static analysis
and create a language that, at compile-time, checks for flow violations. The
advantage of this method is that the enforcement does not affect the program’s
runtime since programs that successfully compile do not need runtime checks;
however, dynamic runtime checks can still be necessary to guard against hard-
ware malfunction. Multiple programming languages do static enforcement,
one of which is Jif [35].

One limitation with static enforcement is that everything needs to be known
at compile time. In a dynamic system where class labels can change arbitrarily,
static enforcement might not be sufficient.

Dynamically
The reference monitor inspects data flow at runtime to detect flow violations

in dynamic enforcement. Dynamic enforcement is more flexible than static
enforcement; however, it comes with a runtime overhead. Another advantage

2.11 / SUMMARY 23

of dynamic enforcement is that special programming languages—Ilike Jif— are
unnecessary.

2.11 Summary

This chapter has explored different topics necessary to understand our sys-
tem, Gurret. We have explored topics within different filesystem alternatives
on Linux, ext4 in particular; FUSE; Access Control; and Information Flow
Control.

The Gurret System

This chapter describes the Gurret system: a distributed system that uses the pub-
sub model at the filesystem level to distribute management metadata. First, we
give a general overview of the architecture of Gurret, before describing specific
details about the implementation of the Gurret client. Further expositions on
specific details of Gurret can be found in later chapters.

3.1 Architecture

Gurret is a distributed system consisting of two main components: (1) a dis-
tributed data-sharing and notification engine; (2) the Gurret client, hereafter
referred to just as Gurret, running on end-user machines. Figure 3.1 shows an
overview of the system.

The data-sharing and notification engine— or the backend— runs in the cloud
and is responsible for distributing data and metadata. The backend stores data
that follows the FAIR principles, i.e., they are findable, accessible, interoperable,
and reusable. End-users send requests to the backed when they want access
shared data. The other part of the backend is the notification engine, which
collects and distributes metadata to the affected users.

Gurret is a user client composed of a filesystem container and a daemon,
both running on end-user machines. The filesystem container is a mounted

25

26 CHAPTER 3 / THE GURRET SYSTEM

Data-Sharing and
notification engine

Cloud

End-user machine

Gurret

Filesystem Gurret
Container daemon

Figure 3.1: Overview of the Gurret system.

file/loop device containing a filesystem. The Gurret daemon is a daemon that
intercepts system calls, orchestrates metadata, and tracks information flow
within the filesystem container. The backend and the Gurret client communicate
to exchange metadata updates.

The rest of this chapter focuses on the architecture of the Gurret client and the
implementation decisions. We elaborate on the backend in Chapter 6.

3.2 Filesystem Container

Gurret uses a mounted file/loop device containing a filesystem to store down-
loaded files from the backend. The file initially has 1 GB of storage capacity
and grows if a file demands more space than available. Gurret stores files on a
loop device for three main reasons: (1) we have more control over when the
data is available. The content inside the file is not available as long as the file
is not mounted; (2) we have a well-defined, isolated area for placing files; (3)

3.3 / FILESYSTEM STRUCTURE 27

$ dd if=/dev/zero of={your-file} bs=1G count=1
$ sudo mkfs.ext4 {your-file}
$ sudo mount -o loop {your-file} {destination-path}

Figure 3.2: Creating and mounting a loop device containg ext4.

-- files
-- .custom—metadata
{side-car-files}

Figure 3.3: The pre-arranged filesystem structure.

the file is easy to share.

The filesystem on the loop device is ext4. The primary reasons for using ext4
are its mature and well-established support for inline extended attributes [21].
Storing metadata inline in the inode requires fewer reads from the operating
system, increasing performance. There are many alternative filesystems to use,
such as XFS, that also support storing inline extended attributes; however, the
benchmarks in Chapter 8 show that the performance of different filesystems is,
in general, very similar. Figure 3.2 illustrates the process involved in creating
and mounting a loop device with ext4.

3.3 Filesystem Structure

The filesystem comes with a simple pre-arranged file structure. The structure
contains two folders and some sidecar files, as shown in Figure 3.3, where we
use -- to denote directories. This section describes this filesystem structure.

The files folder contains the files downloaded from the backend. Users are free
to move files around and create folders; however, the files folder is the default
download location.

The .custom-metadata folder contains custom metadata. Custom metadata is
arbitrary metadata fields defined by the data owner. Section 4.3 covers this
topic in more depth.

Gurret stores many internal data structures in sidecar files in the format . {name-
of-structure}. We mention these files as they appear.

28 CHAPTER 3 / THE GURRET SYSTEM

{
"Access": 1644396257,
"Access-Label", "private",
"Access-List", ["UiT", "VU"]
}

Figure 3.4: Example metadata for a file.

3.4 Storing Metadata

Gurret stores metadata for files using extended attributes. The metadata stor-
age format is JSON. Gurret represents metadata as key-value pairs, where the
key is the name of the metadata and the value is the value of the metadata.
Figure 3.4 shows an example of the metadata format.

Some filesystems allow extended attributes to be stored inline in the inode.
The available space depends on the size of the inode. In the ext4 filesystem we
currently use, the default inode size is 256 bytes. However, the inode only uses
160 of the 256 bytes. This leaves 256 — 160 = 96 bytes available for storing
extended attributes. The filesystem store the extended attributes in other data
blocks if the extended attributes use more space than available. The inode
size can be increased to accommodate more space for extended attributes.
For instance, an inode size of 4096 would leave 3936 bytes for extended
attributes. However, the inode size can only be changed when creating the
filesystem.

3.5 Gurret Daemon

The Gurret daemon is a daemon mounted on top of the filesystem container.
Gurret intercepts system calls within the directory and communicates metadata
updates with the backend. To track data provenance, the Gurret daemon inter-
cepts the system calls: open, write, rename, and unlink inside the filesystem
container. Chapter 7 goes into depth about how Gurret handles each system
call. The Gurret daemon is implemented in the Rust programming language ?!
and the FUSE interface [25].

1. https://www.rust-lang.org/

https://www.rust-lang.org/

3.6 / MESSAGE STRUCTURE 29

Message Size (MS): 4 bytes

Message Body: {MS} bytes

Message Type

i Body :

Figure 3.5: The structure of a message.

3.6 Message Structure

The backend and Gurret communicate by writing messages to a socket. The
first four bytes in a message is the message size. The next N bytes in the socket,
where N is the message size, is the body of the message. The body contains
two fields: the type of message and the message itself. The message body uses
JSON format. Figure 3.5 shows an overview of the message structure.

We represent the message type with an enum. The possible values are: MetadataUpdate,
GetSubscriptions, and SetSubscriptions. Although the names are quite
explanatory, Chapter 4 explains the purposes for each type.

3.7 Summary

This chapter focuses on an overview of the entire system and implementa-
tion details of Gurret. The following chapters describe the other parts of the
system in more detail: how Gurret defines and handles metadata, how end-
users subscribe to metadata, the backend design, and finally, taint tracking in
Gurret.

Metadata

Gurret uses metadata to represent data management policies. We support
various policies by allowing users to define custom metadata that represents
their policy. This chapter describes the implementation details of how Gurret
represents metadata, how users can create data management policies, and
how metadata is received and updated to and from the backend. Since we
implement the Gurret client in Rust, the code figures are in Rust. First, we
explain how Gurret represents metadata before explaining how Gurret and
the data-sharing and notification engine (the backend) communicate.

4.1 Metadata Interface

On the file level, Gurret represents metadata with key-value pairs and stores
it in the extended attributes of files. Internally, on the other hand, Gurret
represents metadata by an interface (called ’traits’ in Rust). The interface has
three methods: check, update, and access.

trait Metadata
{
type Item;
fn check(&self, op: Operation) -> io::Result<bool>;
fn update(&self) -> io::Result<()>;
fn access(&self) -> io::Result<Self::Item>;

31

32 CHAPTER 4 / METADATA

}

Check tests whether a system call (e.g., open, write) triggered a metadata
change, update updates the metadata, and access accesses the metadata field.
The access method returns a generic type Item to support multiple types of meta-
data. The most common, however, are integers and strings. The check method
takes in an enumeration value representing all possible system calls.

enum Operation

{
Open,
Read,
Write,
// etc.
}

Gurret defines and implements the interface for two types of metadata: stan-
dard metadata and custom metadata. Standard metadata is metadata that
every file in Unix comes with—Access, Modify, Birth. The stat command can
be used on a file to view the standard metadata. Custom metadata is file
specific and is— as the name implies— customizable by end-users. We explain
how we implement the interface for the two types.

4.2 Standard Metadata

We implement the metadata interface for the Access metadata field for files.
The access field stores the last time a user accessed a file. In Gurret, we define
access as when an open system call is performed on a file. The check returns
true only if the operation was open. The update method updates the extended
attribute value with the latest system time, and the access method fetches the
value. Figure 4.1 show the full implementation. The process for implementing
the interface for the other standard metadata is the same.

4.3 Custom Metadata

Meta-code are small programs that Gurret dynamically execute during run-
time [36, 37]. End-users use meta-code to define and specify the behavior of
custom metadata. Custom metadata is highly extensible metadata that end-
users can create and are associated with files. Many types of metadata require
additional steps to check or update. For instance, suppose a file has a label that

4.3 / CUSTOM METADATA 33

struct Access(PathBuf); // name of the file assoctiated with this metadata
impl Metadata for Access

{
type Item=u32;
fn check(&self, op: Operation) -> io::Result<bool>
{
Ok (op == Open)
}
fn update(&self) -> io::Result<()>
{
set_ext_attr_field(&self.0, "Access", SystemTime::now())
+
fn access(&self) -> io::Result<Self::Item>
{
get_ext_attr_field(&self.0, "Access")
}
}

Figure 4.1: Access metadata implementation.

only resides on a trusted third-party machine. The only way to access such
a label would be to send a request to the machine. Custom metadata allows
users to create metadata that conforms to these types of behavior. End-users
can create custom metadata for a file f by first creating a folder inside the
.custom-metadata folder with the name of f. All custom metadata fields for
files are defined inside a folder with the same name as the file. Then, create a
folder with the custom metadata’s name inside the file’s folder, e.g.,

—-—- .custom—metadata
-- {file}
-- {new-metadata}

This new folder should contain three other folders: check, update, and access,
that correspond to the metadata interface. Three meta-codes: one that checks
whether an update occurred, one that updates metadata, and one that accesses
metadata, should be contained in the corresponding folder. Figure 4.2 shows
the hierarchy of the folders.

4.3.1 Meta-Code Requirements

Gurret runs meta-code during runtime in a separate process. Gurret commu-
nicates with meta-code by using stdin and stdout. The meta-code that checks

34 CHAPTER 4 / METADATA

.custom-metadata
{file}
{new-field}

check
{check-meta-code}

update
{update-meta-code’

access
{access-meta-code}

Figure 4.2: Custom Metadata hierarchy.

for updates receives the intercepted system call through stdin and responds
by writing to the stdout. A check that resulted in a metadata change should
communicate this back to Gurret by writing "true" to stdout, or "false" if no
update occurred. The update meta-code receives optional arguments through
stdin; however, it does not write any result to stdout. Gurret assumes that the
update meta-code always runs successfully. The access meta-code receives no
arguments and writes the result of the access to stdout. As previously men-
tioned, we store metadata in extended attributes; however, custom metadata
has the option to store them differently, such as on a remote server.

The meta-code can look at the file structure to figure out which file and field
it concerns. For instance, suppose an update meta-code is contained in the
following filestructre

-- .custom-metadata
-- sportsData
-— Access-List
-— update
main.rs

The meta-code can deduct that it needs to change the Access-List field for
the sportsData file.

We supply a metadata interface implementation that uses Rust files as meta-
code. However, any program that conforms to the specified meta-code re-
quirements and implements the metadata interface can be used to implement
custom metadata. Therefore, an implementation using python, C/C++, Java,
or even raw executables, could easily be added.

4.4 |/ CREATING DATA MANAGEMENT POLICIES 35

struct FiveDays;
impl Metadata for FiveDays

{

type Item=bool;

fn check(&self, _: Operation) -> io::Result<bool>

{
// reads filename from the current working directory
let file = get_file();
let create = get_create_time(file);
let today = SystemTime::now() ;
let seconds_since_create = today.duration_since(create)?.as_secs(Q);
Ok (seconds_since_create >= 5 * SECS_PER_DAY) ;

}

fn update(&self) -> io::Result<()>

{
set_ext_attr_field(get_file(), "five-days", true)

}

fn access(&self) -> io::Result<Self::Item>

{
get_ext_attr_field(get_file(), "five-days")

}

+

Figure 4.3: Implementation of the FiveDays data policy

4.4 Creating Data Management Policies

Data owners can create data management policies with custom metadata.
We show how this is possible by creating a policy FiveDays that only allows
access to a file for five days. We represent the metadata with a boolean value
representing whether five days have passed. The value is initially zero. We
store the value in extended attributes, and the access method returns the
stored value. The check method checks and responds with "true" if five days
have passed since the file was created. Since Gurret only invokes the update
meta-code after five days, it can simply change the value stored in extended
attributes to true. Figure 4.3 shows the implementation. For this particular
metadata, the operation does not matter. To enforce this policy, Gurret needs
a reference monitor similar to the one in Chapter 7.

36 CHAPTER 4 / METADATA
loop
thread: :sleep(T);

let messages = read_socket();
for message in messages

{
if message.type == MESSAGE_TYPE_METADATAUPDATE
{
let mut xattr = read_xattr(&message.body.name) ;
for (field, value) in message.body.updates
{
xattr[field] = value;
}
write_xattr(&message.name, xattr);
}
}

Figure 4.4: Algorithm for receiving metadata updates.

4.5 Metadata Update

Gurret defines two components for metadata updates. One to receive and
update metadata, and one to send local metadata changes to the remote.

4.5.1 Receiving Updates

Gurret communicates with the remote backend using a TCP socket. Gurret
regularly checks the socket for updates after a configurable timeout T (default
is 30 seconds). Metadata updates for files are received in the form of the
MetadataUpdate message type, containing the file and the changed fields. To
update a file’s metadata, Gurret reads the old metadata stored in extended
attributes and replaces the old values with the new for each changed field.
Figure 4.4 shows the algorithm.

4.5.2 Sending Updates
We define a MetadataHandler interface to deal with local metadata changes.

The interface has two methods: changes and update_remote. Figure 4.5
contains simplified code for the interface.

4.6 / SUMMARY 37

trait MetadataHandler

{
fn changes(&self, file: Path, operation: Operation)
-> Vec<Metadata>;
fn update_remote (&self);
b

Figure 4.5: Algorithm for receiving metadata updates.

// is called on the system call open
fn open(file: Path)

{
/o
for changes in metadata_handler.changes(file, Operation::0Open)
{
change.update() ;
b
b

Figure 4.6: Pseudo-code for detecting metadata updates.

The changes method checks whether a system call triggers metadata updates.
The arguments for the methods are the path to the file being operated on
and the operation itself. The operation type is an enum that enumerates all
the possible systems calls, like open and write. The changes method calls
the metadata check method in Section 4.1 for each metadata defined on the
file and returns the ones that returned true. The resulting list (if any) is then
iterated over, and the update method is called for each file. Additionally, any
file whose metadata changes is stored in an internal data structure. Figure 4.6
shows pseudo-code for the described metadata checking procedure.

Gurret has a dedicated thread that batch uploads metadata updates to the
remote system. After a timeout of 30 seconds, the update_remote method is
invoked, which compiles every recorded metadata change into messages and
writes them to the socket connection with the backend.

4.6 Summary

This chapter has explained how Gurret represents standard and custom meta-
data, the meta-code requirements, how users can create data management
policies, and how Gurret and the backend communicate updates.

Metadata Subscriptions

Gurret effectively distributes metadata by using the pub-sub pattern, where
end-users subscribe and configure the topics they want to receive updates on.
We believe the pub-sub model is a good architecture and natural to use in
systems like Gurret. There are two primary reasons for this.

First, users of Gurret likely follow a workflow that heavily utilizes metadata.
However, users do not necessarily want all metadata, and not necessarily always.
For instance, a file might have hundreds of metadata fields, and some workflows
might only require updating one field; on a daily basis. These requirements
can be expressed naturally with subscriptions to metadata fields [38].

Second, the publisher-subscriber pattern facilitates highly scalable and flexible
systems [38]. These are essential traits for the data-sharing and notification
engine system since it must be capable of serving potentially thousands of
end-users simultaneously.

This chapter focuses on how end-users subscribe to metadata and how users
can change the update frequency.

39

40 CHAPTER 5 / METADATA SUBSCRIPTIONS

{ "name": <filename>, "options": [
// subscription options
{"name" <metadata-field>, "filters": <filters>},
{"name" <metadata-field>, "filters": <filters>},
Y/

13

Figure 5.1: The Document structure of subscription messages.

5.1 Subscription Language

Gurret uses a simple JSON/document-based language— inspired by MongoDB’s
query language MQL— to subscribe to metadata. Documents have two main
fields: (1) the name of the file the end-user wants to subscribe/unsubscribe to;
(2) the metadata subscription options. The file’s name is a unique identifier
that the backend data-sharing system distributes. The subscription options is
an array with the fields the users wish to subscribe to and the filters for the
field. Filters are simple patterns that specify how often (if ever) users wish
to receive updates for fields. Many scalable and expressive languages already
exist to specify filters, like GEM [39]; however, we choose to use a very simple
Document-based language.

the filters array contains individual filters for fields. The available filters are
are: status, interval, and count. The status field specifies whether users wish to
subscribe or unsubscribe to a field. The other fields: interval and count specify
how often the end-user should be notified. For instance, count specifies how
many times a metadata field need to change before notifying the user. We
go into more depth on the optional fields count and interval in Section 5.2.
We represent individual filters as JSON objects with the name of the filter
(e.g., status, count) and the value of the option. Figure 5.1 show the complete
document structure.

Gurret and the notification engine use this format to communicate subscriptions.
However, some fields have a different meaning for Gurret clients when they
are sent vs. when they are received. When receiving filter option from the
backend, the name field is the name of the filter, and the value field specifies
whether it is required or optional. For status, this is:

{ "name": "status", "value": <"optional" | "required"> }

We use the ({option1}|{option2}) construct to mean that the value is either
{option1} or {option2}

5.2 / METADATA-FIELD QUERYING A1

When sending filters, the name is the name of the filter, however, the value is
the user’s choice for that filter. For the status filter, the available choices are
subscribe and unsubscribe.

{ "name": "status", "value": <"subscribe" | "unsubscribe"> }

5.2 Metadata-Field Querying

Some metadata-field filters specify how often end-users should receive meta-
data updates. The justification for this is that some users may wish to limit the
number of updates. For instance, suppose a file receives hundreds of updates
each minute; this amount can be too big for users with low bandwidth.

Currently, the only available update limiting filters are: count and interval.
Both limit how often end-users receive updates on the fields. The count filter
specifies how many times a metadata field has to change before sending an
update, and the interval filter specifies how often (timewise) an update should
occur. The syntax for the two filters are:

"name": <"count" | "interval">, "value": <query-expr> }

The query expression takes inspiration from MQL and uses JSON objects/doc-
uments to express the query. The syntax for the <query-expr> is

{ <comparison-operator>: <value> }
For instance, the query to receive updates after (at least) 1 hour is

{

"name": "interval", "value": {
"$gte": 3600

¥

The comparison operators <, >, <, >, = are available through the $le, $gt,

—s >

$1te, $gte, and $eq strings. Table 5.1 shows the full list of operators.

At the time of writing, Gurret only has two update limiting filters; however,
because of JSON’s dynamic nature, it would be easy to imagine other options
being available to end-users or even the option for end-users to create new
ones.

42 CHAPTER 5 / METADATA SUBSCRIPTIONS

Mathematical operator | JSON operator
< $le
< $1te
> $gt
> $gte
= $eq

Table 5.1: Avalable comparison operators.

{
"name": "sportsData.csv",
"updates": [
{ "name": "Access", "value": 1644396257 },
{ "name": "Access-Label", "value": "private" }
]
3

Figure 5.2: Example message of the metadata update type.

5.3 Sending Subscription Messages to the
Backend

Gurret and the backend exhange metadata information by writing messages
to a socket connection. We define three types of message: MetadataUpdate,
GetSubscriptions, and SetSubscriptions.

5.3.1 MetadataUpdate

The backend and Gurret use the MetadataUpdate message type to communi-
cate metadata updates. The Gurret client receives metadata update messages
when remote users change metadata for a shared file. Gurret sends metadata
update messages backend when one of its metadata changes. The message
uses JSON format and contains the name of the file and the updated fields and
their values. Figure 5.2 show an example of a message of the MetadataUpdate

type.
5.3.2 GetSubscriptions

GetSubscriptions is used to list the available subscriptions options for a
file f. The Gurret client sends a GetSubscriptions message to the backend

5.3 / SENDING SUBSCRIPTION MESSAGES TO THE BACKEND 43

{
"name": "sportsData.csv"
}
Figure 5.3: Typical GetSubscriptions message.
{
"name": "sportsData.csv",
"options": [
"name": "Access", "filters": [
{ "name": "status", "value": "optional" }
1},
"name": "Access-Label", "filters": [
{ "name": "status", "value": "required" }
1},
{ "name": "Open-Count", "filters": [
"name": "status", "value": "optional" },
{ "name": "count", "value": "optional"}
1},
]
}

Figure 5.4: Typical GetSubscriptions response message.

with f’s name and receives a GetSubscriptions message with the available
subscription options for f. The response is encoded using the format we
described in Section 5.1. Figure 5.3 shows an example of a GetSubscriptions
message to be sent to the backend and Figure 5.4 shows a typical response.
In the response message, two fields are optionally subscribable: Access and
Open-Count, while Access-Label is required. Additionally, Open-Count have
filters available.

5.3.3 SetSubscriptions

Gurret sends a SetSubscriptions message to the backend to subscribe or
unsubscribe to (optional) metadata fields. The messages use the previously
defined format (Section 5.1). The only mandatory filter when subscribing to
metadata fields is the status field, which specifies if the user wants to subscribe
or unsubscribe to a field. Figure 5.5 shows a basic set subscription message. In
the message, the user subscribes to the Access field and unsubscribes to the

44 CHAPTER 5 / METADATA SUBSCRIPTIONS

{
"name": "sportsData.csv",
"options": [
{ "name": "Access", "filters": [
"name": "status", "value": "subscribe" }
13,
"name": "Open-Count", "filters": [
"name": "status", "value": "unsubscribe" }
1}
]
}

Figure 5.5: Basic SetSubscriptions message.

Open-Count field.

The data owner can decide to set some metadata fields as required, and the
Gurret client automatically subscribes to these fields. The remote ignores any
attempt to unsubscribe to a required field. The users must explicitly subscribe
to optional fields to get access to them.

5.4 How End-Users Subscribe to Metadata

Users can get and set subscription options using the provided Gurret CLI tool.
The CLI command takes two positional arguments: (1) the operation, either
get or set; (2) a JSON file with the message body. The CLI sends the message
to the server and prints the response to the stdout. However, since the backend
is not implemented, we mock the server and respond with a mock response.
We imagine a website where users can manage their subscription options in
the future. Suppose we have a file options with Figure 5.5’s content. We set
the subscription options by doing:

$ gurret set options

5.5 Metadata Consistency Model

Gurret uses eventual consistency since metadata updates can occur at arbitrary
times— configurable by the subscription query language. Updates occur in no

5.6 / SUMMARY 45

particular order, as long they do not involve the same metadata field. Receiving
updates in the order

[file#1] [field] [new-value]
[file#2] [field] [new-value]

Vs

[file#2] [field] [new-value]
[file#1] [field] [new-valuel

Does not matter. However, receiving updates following order does matter:

[file] [field] [new-value#1]
[file] [field] [new-value#2]

VS

[file] [field] [new-value#2]
[file] [field] [new-value#1]

Gurret timestamps the messages sent to the end-users and discards older
messages received out of order.

5.6 Summary

In this chapter, we explain that the pub-sub is a valuable model because
of its scalability and natural integration in Gurret, where users request ac-
cess to different metadata. Additionally, we outline how end-users describe
their subscription options and the protocol between the Gurret clients and
the backend—with the different message types—to coordinate users’ subscrip-
tions.

Data-Sharing and
Notification Engine

The data-sharing and notification engine distributes files and acts as a broker
for metadata subscriptions. One key trait for the backend is scalability, since
it needs to handle potentially thousands of requests per second. Although
the implementation of the backend is outside the scope of this thesis, we
propose a design that draws inspiration from other distributed systems. This
chapter outlines the design of the data-sharing service and the notification
engine.

6.1 Data-sharing service

The data-sharing service stores and distributes data/files accessible to end-
users. Some of the files in the data-sharing service might require special
authentication. For instance, users might need to authenticate with an organi-
zation using OpenlID [40] to access its files. We leave it up to the organizations
to handle authentication.

We assume the data-sharing service runs on trusted hardware to avoid potential

data leaks. Hosting data on untrusted devices is possible using encryption, as
shown by OceanStore [41]; however, for simplicity, we assume trusted devices.

47

48 CHAPTER 6 / DATA-SHARING AND NOTIFICATION ENGINE

Data in the data-sharing service must follow the FAIR principle. That is, it must
be findable, accessible, interoperable, and resusable.

The service is optimized for distributing read-only files, since only the metadata
is mutable. Many other distributed system makes similar assumptions, like
OceanStore’s archive objects [41] and the work of Fu et al. [42].

6.2 Notification Engine

The notification engine receives metadata updates from Gurret and forwards
them to the users it concerns. Our design has horizontal scaling in mind
to meet demands in traffic with more instances. Additionally, we design the
system to be able to work well with cloud computing services, such as Microsoft
Azure [43], Amazon Web Services [44], and Google Cloud Platform [45]. That
way, we can leverage the cloud computing services directly to automatically
scale the number of instances for our system to meet demand. Additionally,
basing the design on cloud services can, in many cases, especially for small and
medium-sized businesses, be cheaper and more effective [46].

The notification engine has three primary services to collect and distribute
metadata: (1) the distributed socket server; (2) the metadata store; (3) the
query engine.

6.2.1 Socket Server

The socket server is a distributed server whose primary purpose is to commu-
nicate with the Gurret clients. The server uses asynchronous sockets to com-
municate with the end-users since updates can occur arbitrarily. The socket
connections immediately yield after connecting to an end-user to preserve com-
puting power and are restored when the socket becomes active. For instance,
when an end-user or the backend writes to the socket.

6.2.2 Metadata Store

When an end-user sends metadata updates to the backend, the backend needs
to store the metadata for later use. The metadata needs to be stored in a dis-
triuted database since potentially many updates can occur at a given time from
multiple different sources. Several distributed databases exist. For instance,
DynamoDB [47], MongoDB[48], MySQL Cluster [49], and Cassandra [50];
however, because of metadata’s key-value nature, using a document-based sys-

6.2 / NOTIFICATION ENGINE 49

tem, such as MongoDB, or key-value-based, such as DynamoDB, is very natural.
Besides storing metadata, the metadata store also needs to track which users
have access to which files. To this, we propose a simple JSON document that
contains the name of the file and the users accessing it.

"name": "sportsData.csv",
"users": [

¥

The simplest feasible way to represent the users in the JSON document is
probably a static IP address or a MAC address. Alternatively, if we need more
information about the users, we can store a unique identifier in the document
leading to a separate JSON document for each user.

6.2.3 Query Engine

The query engine orchestrates update propagation to users. We design the
engine to support multiple users with various subscription options efficiently.
Multiple users subscribing to multiple metadata fields can quickly become
convoluted. For instance, consider the situation depicted in Figure 6.1. The
figure contains three users’ subscription option. The first user subscribes to
the Access metadata field and wants to receive updates after each 1000th
access. The second user subscribes to (1) the Access field, and wants to receive
each update; (2) the Access-List field and wants to receive updates every
10 minutes. The third user subscribes to the Access-List field and wants to
receive an update for each 1oth user access. Table 6.1 succinctly outline the
users subscription.

To figure out which users need updates, the query engine stores each end-users
metadata-filed options for every file on the backend. We propose a design
where the backend has a document with the users and their options for each
file.

"name": <file>,
"users": [
// object for each user and their subscription options

50 CHAPTER 6 / DATA-SHARING AND NOTIFICATION ENGINE

/* user 1 SetSubscriptions */

{
"name": "sportsData",
"subscriptions": [
{ "name": "Access", "options": [
"name": "status", "value": "subscribe" },
{ "name": "count", "value": { "$gt": 1000 } }
1}
]
}
/* user 2 SetSubscriptions */
{
"name": "sportsData",
"subscriptions": [
{ "name": "Access", "options": [
"name": "status", "value": "subscribe" },
1},
"name": "Access-List", "options": [
"name": "status", "value": "subscribe" },
"name": "interval", "value": { "$gt": 600 } }
1}
]
}
/* user 3 SetSubscriptions */
{
"name": "sportsData",
"subscriptions": [
"name": "Access-List", "options": [
"name": "status", "value": "subscribe" },
{ "count": "status", "value": { "$gt": 10 } }
1}
]
}

Figure 6.1: SetSubscriptions with three users

6.2 / NOTIFICATION ENGINE 51

User 1
Access After each 1000 access
User 2
Access When they occur
Access-List Every 10 minutes
User 3
Access-List | After each 10 user accesses

Table 6.1: Table representing Figure 6.1

Sleeping Async Method

[]
[]

Active Async Method

Figure 6.2: Hierarchy of async tasks idling

One weakness with the Query Engine’s design is that files are represented
as a singular object. This can potentially become a bottleneck if many users
change their subscription options simultaneously. To mitigate this, we shard
the documents over multiple servers to enable concurrent access [51]. Some
databases, such as MongoDB, natively support sharding.

To determine when users should receive updates, we propose a design that
has a hierarchy of asynchronous tasks. At the top level is a task for each file.
The backend delegates an asynchronous task for each file that immediately
yields. The backend wakes the task up when an update occurs on it. Inside
the task, other tasks are delegated for each metadata field. The file task wakes
the field task when an update occurs on the specific field. Finally, when a
metadata field update occurs, the field task queries the database and figures
out which users should receive updates. The updates are then sent to the socket
server and communicated to the end-users. Figure 6.2 show the hierarchy of
the asynchronous tasks idling. Figure 6.3 shows what happens when a field is
updated, and end-users need to be notified about the update.

52 CHAPTER 6 / DATA-SHARING AND NOTIFICATION ENGINE

[]
[]

Sleeping Async Method

Active Async Method

Figure 6.3: Hierarchy of async tasks on update

6.3 Summary

This chapter specifies the design of the Gurret backend system as required by
the client. Implementation and verification of the backend system are outside
the scope of this thesis.

Taint Tracking

In this thesis, we are particularly concerned with the class of metadata related
to data management. Management metadata defines access and usage patterns
allowed on files. Some examples of management metadata are access policies,
usage policies, and processing policies. Importantly, on data propagation—
when an explicit information flow occurs— these metadata fields need to
propagate to the new file.

To show why this is important, consider a data usage policy that specifies that
only one person can access a file at one instance. Suppose a flow occurs from
a file with the policy to a file without the policy. In that case, the usage policy
must transfer to the new file since accessing it implicitly accesses the original
file. Suppose the management metadata does not transfer to the other file. In
that case, more than one person could access the original file’s content— since
the content is located on both files from the flow— breaking the data usage
policy.

This chapter outlines how Gurret handles this issue— by using taint tracking—
and the rules Gurret enforces on processes to disallow policy violations resulting
from an explicit flow. Finally, we implement a simple information flow control
system to demonstrate how one could use Gurret.

53

54 CHAPTER 7 / TAINT TRACKING

7.1 Taint Tracking

Gurret employs taint tracking— a technique often used in information flow
control— to solve the issue of policy violations occurring from explicit flows,
like in the example above. In taint tracking, data is marked/tainted in order
to follow the data throughout the system and to check and verify that the
data is not misused [52]. Gurret taints processes that access files containing
management metadata. There are two reasons for this: prevent situations such
as the one described above and transfer management metadata when explicit
flows occur.

7.2 Taint Tracking Rule

To prevent policy violations from occurring from an information flow— e.g.,
implicitly violating a file policy by accessing its content from two sources—
Gurret only allows explicit flows from a source to a destination if the manage-
ment metadata is also transferred. To express this more mathematically, we
give the following definitions:

Definition 1.

Let — be an explicit flow between two files

Gurret defines an explicit flow to be a process that (1) opens a file A and (2)
writes the content to another file B. Using this notation, for two files A and B,
we can write A — B if a flow occurred from A to B.

Definition 2.

Let M(x) be the set of management metadata of x

For instance, suppose a file f has an access label of private. We can express
this as M(f) = {(AccessLabel, private)}, where we use the tuple notation
(K, V) to express a key-value metadata.

Definition 3.

Let ~» be the transfer of management metadata between two files

7.2 / TAINT TRACKING RULE 55

An alternative way to express ~» is with the definition A »» B = Vx(x €
M(A) = x € M(B))

With this notation, we define Gurret’s taint tracking rule to
Rule 1.

A—>B=>A~B

That is, the management metadata of the source file must propagate to the
destination file whenever an explicit flow occurs. The metadata propagation
should cascade down to every file affected. For instance:

A—->B—->C—>D=>A~B~w(C~D

A useful abstraction for the behavior in the rule is transactions. A transaction
is a set of operations that are: consistent, atomic, and durable [53]. For us,the
atomic property is very important, stating that either all operations occur, or
none of them. For Gurret, in order for A — B, then A ~» B must also occur.
We define a flow transaction as the transaction of the operations — and ~» for
two files.

Definition 4.
A — BA A~ B & flow transaction from A to B
For two files A and B

Finally, we use the notation A trans B to mean a flow transaction from A to
B.

Importantly, flow transactions need to be atomic because the result of one
transaction can affect the next one. Suppose we have three files: A, B, and C.
Suppose that A trans B leads to B trans C becoming illegal. This will lead
to a policy violation if the operations are not atomic and we allow Gurret to
interleave operations.

For instance, suppose that Gurret interleave the operations in A trans B and
B trans C, to:

A— B
B—C
A~ B
B~ C

This would be a policy violation if A trans B invalidates B trans C.

56 CHAPTER 7 / TAINT TRACKING

e

Publishers SpotsData PrivFile

Broker

local
e weather

Figure 7.1: Architecture for handling flow transactions.

Anonymous

SportsData PublicFile

Subscribers

7.3 Implementing the Taint Tracking Rule

We use the publisher-subscriber model to implement Rule 1. Every file publishes
its management metadata information to an internal broker. When A —
B occurs, Gurret transfer the metadata to B by automatically subscribing B
to A’s management metadata. When the metadata for a file f needs to be
accessed, Gurret first checks to see if f owns the metadata. If it does not,
Gurret then checks the metadata f subscribes to. Introducing pub/sub to
implement the taint tracking rule is effective because it allows Gurret to manage
subscriptions for files dynamically. For instance, many explicit flows can occur
to and from files during Gurret’s runtime. Using the pub/sub model allows
files to alleviate the metadata management to the broker instead of each file
managing its metadata. Figure 7.1 show the pub-sub architecture. The squares
in the figure represent files, and the arrows indicate subscription. For instance,
Anonymous SportsData might subscribe to SportsData through the broker.
Notably, the subscribers in the figures are publishers; however, we omit this in
the figure for clarity.

Internally, we implement the broker using a lookup table with structs of file
metadata information, called metadata source. The metadata source includes
the file’s metadata and the metadata it subscribes to; in the form of an ID to
the matching publishers. The broker creates IDs dynamically whenever files’
metadata are published. Given two files A and B, Gurret can subscribe B to
A’s metadata by adding A’s ID to the subscriptions of B. That is:

7.3 / IMPLEMENTING THE TAINT TRACKING RULE 57
type Metadatald = u64;

struct MetadataSource

{
subscriptions: Vec<Metadatald>,
own: PathBuf
}
struct Broker
{
available_id: Metadatald,
table: Vec<MetadataSource>,
table_index: HashMap<PathBuf, Metadatald>
}
impl Broker
{
/.
fn subscribe(&mut self, file: PathBuf, source: PathBuf) { /* ... */ }
fn publish(&mut self, file: PathBuf) { /* ... */ }
}

Figure 7.2: Lookup-table for data management metadata.

fn subscribe(broker: &mut Broker, A: PathBuf, B: PathBuf)

{
let b_id = broker.table_id(B);
let a_id = broker.table_id(A);
broker.table[b_id] .subscriptions.push(a_idx);
}

If an end-user creates or downloads a file, Gurret will automatically publish its
management metadata to the broker. Publishing its management metadata is
simple and only consists of creating a new metadata source, assigning an ID
to it, and adding it to the broker’s table. Figure 7.2 show a simplified code of
the broker and metadata information.

A naive way to transfer metadata is to copy the entire file structure of the
metadata and the metadata itself. This would free the need for a broker
and table structure. Gurret does not adopt this approach for two reasons: (1)
copying the whole file structure and metadata can be expensive. Depending
on the number of metadata fields in the source file, the copying instructions

58 CHAPTER 7 / TAINT TRACKING

can use significant time and resources. Additionally, copying the metadata uses
more space since identical metadata is duplicated. Gurret will use N times
more space than necessary if a shared file has a flow to N different files. (2)
any upstream metadata changes on a file f need to be copied downstream to
the files that received a flow from f. For instance, consider five files that share
metadata with a common file and a metadata field for the common file changes.
In that case, Gurret must copy the new metadata to all five files.

7.4 Tracking Data Lineage

The broker is well-suited for accessing metadata; however, it has poor down-
stream traversal. Downstream traversal is traversing information flow from a
root file to the files that have received flows from it. In some instances, like if an
upstream file is invalidated, Gurret might have to travel down the affected files
and perform an action. To do this efficiently, Gurret needs another structure
besides the broker to track data lineage.

7.5 Forest of Trees

To effectively traverse downstream, we create a forest of trees structure to track
data lineage. The tree structure consists of root nodes representing files, with
the node’s children representing files where an information flow occurred.
Figure 7.3 illustrates the structure. The nodes in the figure are individual files,
and the arrows symbolize a flow from one file to another. Root nodes are files
where no flows have occurred. By default, Gurret considers all files downloaded
from the backend as root nodes.

We implement the forest of trees using a key-value store. The key is the file’s
path, like ~/gurret/downloads/sportsData.csv, and the value is a node
structure that contains information about the file. Figure 7.4 shows a simplified
version of the forest of trees structure.

Internally; if a file has multiple data sources, both sources store the child in their

internal data structure. Since we implement Gurret in rust, we use reference
counting? to allow multiple sources to reference the same node.

1. https://doc.rust-lang.org/std/rc/index.html

https://doc.rust-lang.org/std/rc/index.html

7.5 / FOREST OF TREES 59

Figure 7.3: Forest of trees structure.

struct Node

{
children: HashMap<PathBuf, Node>,
parents: Vec<PathBuf>
3
struct ForestOfTrees
{
roots: HashMap<PathBuf, Node>
b

Figure 7.4: Simplified structure of the forest of trees.

60 CHAPTER 7 / TAINT TRACKING

7.6 Intercepting Information Flow Related
Syscalls

Gurret updates and manages the broker and forest of trees whenever system
calls related to information flow occurs. Many system calls can lead to an
information flow, for various reasons. We limit this thesis to only consider the
system calls open, write, rename, and unlink. The rest of this section explains
and gives a mathematical/pseudo-code description of how Gurret handles each
system call.

* open
We denote the set of opened files for a process P with Files(P). Gurret
tracks every file that a process opens in an internal data structure. When
P opens a file F, then Gurret adds F to P’s opened files.

P open F = Files(P) « Files(P) U {F}

* write
Gurret considers every open followed by a write to be an explicit flow
from the open files of the process to the destination file being written
into. If a process P writes to a file F, then Gurret considers this a flow
from every file in Files(P) to F.

P write to F = Vf € Files(P) = f —» F

The forest of trees and the broker’s state are updated when an explicit
flow occurs. The destination file is added as a child in the forest of trees
for every opened file. For the broker, Gurret subscribes the destination
file to every opened file.

for open_file in process.open_files()

{
forest_of_trees[open_file].children.add(destination)
broker.subscribe(destination, open_file);
}
* rename

Rename occurs when a file inside the filesystem container is renamed

7.6 / INTERCEPTING INFORMATION FLOW RELATED SYSCALLS 61

or moved. The 'name’ in rename refers to the full path of the file; thus,
the system-call rename refers to a change in the file’s path. For instance,
both mv foo bar andmv foo ../foo are renames. Gurret changes the
file’s name in the forest of trees and broker if an upstream file is renamed
or moved within the filesystem container.

* unlink
An unlink occurs when a file is removed/deleted. For the forest of trees,
because some metadata may result in changes downstream, Gurret marks
the node representing the file as removed instead of removing the node
entirely.

if unlink

{

forest _of trees[unlink file].removed = true;

For the broker, if a file R is removed, then Gurret remove the table entry
and ID for R and every subscription to R.

Vf € {f | R € Subscriptions(f)} =
Subscriptions(f) « Subscriptions(f) \ {R}

Gurret uses the forest of trees to find the files that subscribe to R.

One issue Gurret does not address is: what should happen to the chil-
dren of the removed file? Removing them seems like a bad idea; since
researchers working on collaborative work would not be happy if Gurret
removes all their work. And removing only the content of the deleted
file from the children is (1) not trivial and (2) would again leave users
unhappy.

The alternative is to do nothing, but this could lead to a policy violation.
For instance, if a new policy specified that the data is no longer available.
Indeed, what should happen to the removed files is a delicate issue. We
suggest a solution where the policy defines the removal strategy, but
Gurret does not currently support this.

62 CHAPTER 7 / TAINT TRACKING

7.7 Storing the Forest of Trees and Broker

Gurret periodically flushes and stores the content of the forest of trees and
broker to a .forest and .broker sidecar file to preserve the structures in case
of a crash. Gurret stores both structures in JSON format and loads and re-
instantiated the structs on startup.

7.8 Taint Tracking Weaknesses

One weakness with how Gurret classifies information flows— an open followed
by a write— is that false-positive flows can occur. Consider a reclassification
process that takes a file with a private label and strips it of all private information
to create a public file. However, besides stripping the private info, it also logs
the time to some logging file. If the open order of the program is:

let log = File::open("log");

let private = File::open("private");

let strip = strip_file_of_private_information(private);
let new_file = File::new("public");
write_into_new_file(new_file, strip);

Then Gurret would wrongly assume an information flow occurred from the log
file to the public file, even though nothing from the log is present in the new
file. We discuss a possible solution to this issue in Section 9.2.3

7.9 Implementing an Information Flow Control

As a proof of concept for taint tracking, we implement a simple IFC system
using a reference monitor on top of the Gurret daemon. The reference monitor
enforces a data access policy using labels. The access policy follow the Bell-
LaPadula model [30] with the rules no read up and no write down.

7.10 Labels

We represent labels using a simple lattice structure. A lattice is a partially
ordered set, where each element pair in the set have a greatest lower bound
and a least upper bound. The lattice have the values private, sensitive, and
public; with private having the higest value.

7.11 / ACCESS-CONTROL RULES 63

All files and processes have a label associated with them. For files, Gurret stores
the labels in a custom metadata named Access-Label. Gurret store the labels
of processes in an internal data structure. Initially, a process label equals the
user’s clearance level; however, Gurret taints the process if it reads a file with
a lower label. Gurret store the user’s clearance in a . clearance file inside the
filesystem container.

7.11 Access-Control Rules

Following the Bell-LaPadula rules, users can only read files whose labels are
lower or equal to their clearance. For instance, a user with a clearance of
private can read files with a label lower or equal to theirs, like public
and sensitive. The reference monitor enforces this by comparing the user
clearance and the file label in the open system call and only giving access if
the clearance is higher or equal. A permission denied error is returned if the
clearance is lower than the file label.

Gurret enforces the no write down rule by comparing the (potentially tainted)
label of the process and the label of the file being written into. There are two
cases when writing to a file: the file is new, and the file already exists. If the file
was new, Gurret gives the file a label equal to the process’ (potentially tainted)
label. If the file already existed, Gurret will only allow the write to occur if
the process’ label is lower or equal to the files’. For instance, a process with a
private label cannot write its content to a file with a public label since this
would mean writing down. Gurret determines whether a file is new or not by
assuming any file without a label is a new file.

7.12 File Removal Policy

We experiment by defining what should occur to the children of removed files in
the access policy and using the reference monitor to enforce it for demonstrative
purposes. We use a simple policy that removes the children. To implement the
removal policy, the reference monitor removes the children of the file in the
procedure for updating the forest of trees. The removal function is recursive
such that all files with an ancestor to the original file are removed.

04 CHAPTER 7 / TAINT TRACKING

7.13 Information Flow Control System Use Cases

Users can deploy Gurret’s IFC system in the class of problems where the Bell-
LaPadula model fits. For instance, a natural place to use the system would be in a
medical research institution where collaborative work occurs on restricted files
involving private patient information. In such an environment, only researchers
with a high enough clearance can work on the files in the system.

Another example is in a military environment where data confidentiality is
critical. Only personnel with the correct label can access confidential files using
our system. More importantly, data leaking to a lower level (e.g., from secret
to public) is impossible. Finally, if an external system marks a data source as
invalid, then Gurret will automatically remove the affected files.

7-14 Summary

In this chapter, we explain how Gurret uses taint-tracking and IFC techniques to
enforce metadata propagation. We go into depth about how Gurret intercepts
and handles systems calls and what internal data structure Gurret uses. Finally,
we give some example scenarios where one could use the Gurret system.

Evaluation

One of the non-functional requirements of Gurret is to be transparent to the
user with respect to performance. This enforces strict limitations in execution
times for certain operations. For instance, opening a file in the filesystem
container should not take noticeably longer than in the regular filesystem. We
evaluate and adjust our implementation accordingly to verify that our system
upholds these non-functional requirements. We measure FUSE and metadata
overhead, filesystem performance, and subscription overhead. This chapter
outlines the benchmark and evaluation results and potential adjustments to
Gurret.

8.1 Hardware Specification

All benchmarks are run on the following hardware:

oS Debian GNU/Linux 11 (bullseye) x86 64
Kernel 5.10.0-9-amd64
CPU Intel i7-8700T (12) @ 4.000GHz
GPU Intel CometLake-S GT2 [UHD Graphics 630]
RAM 16 GB
Storage device type SSD
Native Filesystem ext4

65

66 CHAPTER 8 / EVALUATION

8.1.1 Benchmarking Method

Most benchmarks involve creating a file of some size S and benchmarking an
operation’s performance, such as reading and writing. We benchmark how the
system scale by performing the operation for different file sizes. The file size
is double the previous file size. The form of the file size is 2V UB, where N is
the number from 1 up to some upper limit L, N € {1,2,...,L}. The variable
U denotes the unit of the file size. In some benchmarks, we use bytes, and in
other benchmarks, mega-bytes. We run each benchmark at least 30 times to
get the most consistent measurements.

8.2 FUSE Overhead

Using FUSE comes with a time cost due to intercepting system calls. We
benchmark FUSE compared to the native filesystem to find this cost. Since
reading and writing operations are widespread when working with files, we
benchmark and compare the reading and writing speed of FUSE compared to
the native filesystem (ext4).

8.2.1 Setup

We write 2V MB of data, where N € {1...10}, into a newly created file with
the same size to benchmark the writing performance. The reading performance
is measured by reading the same file back.

8.2.2 Results
Figure 8.1 and Figure 8.2 show the results from the benchmarks.

The reading results show that FUSE is just as fast as the underlying filesystem,
up until 512 MB. However, FUSE is increasingly slower in the writing benchmark.
To see how much, we plot the graph in Figure 8.3, only with a logarithmic
y-axis. The graph shows that both graphs scale exponentially, with FUSE having
a higher exponent.

We tried to increase the writing speed by enabling asynchronous read/writes
and increasing the max_write size; however, this made no noticeable difference
when re-running the benchmarks.

8.2 / FUSE OVERHEAD

time (seconds)

time (seconds)

o
N

15.00 —— native FS
12.5 —}— fuse

10.0

o
o)

—— native FS
—}— fuse

o
o))

©
>

o
o

2 4 8 16 32 64 128 256 512 1024
file size (MB)

Figure 8.1: FUSE overead reading.

NN
u o WU

———

2 4 8 16 32 64 128 256 512 1024
file size (MB)

o
o

Figure 8.2: FUSE overead writing.

67

68 CHAPTER 8 / EVALUATION

10| —— native FS
fuse
3 100
C
(@)
O
$1071
£
51072
1073

2 4 8 16 32 64 128 256 512 1024
file size (MB)

Figure 8.3: FUSE overhead writing, logarithmic y scale.

8.3 Metadata Benchmarks

We check how much metadata a file can have without having a noticeable slow-
down. We define noticeable to be over half a second. Card et al. [54] define
immediate response as one second; however, we believe the modern users have
become more accustomed to faster than one-second responses. At least in
applications not bound by remote server connections. We split this section into
two benchmarks: (1) the time it takes to check whether an update occurred;
(2) the time it takes to update metadata (in the case of an update).

8.3.1 Setup

We benchmark how metadata scales. We start with an empty file with one
custom metadata and record the time it takes to: (1) check the field; (2) update
the field. Then, we create a new file with two custom metadata fields, and
so forth, up to and including ten. Additionally, we run the test N times for
each benchmark for reasons that will become apparent later. For instance, we
trigger and update metadata for the first file with one custom metadata N
times. We use an N of 11 in our benchmarks. That means that Gurret will check
and update the metadata for a file f 11 times for each benchmark.

We use the simplest possible custom metadata in the benchmark. The checking
meta-code immediately returns "true", and the update meta-code updates
the same field with a constant value.

8.3 / METADATA BENCHMARKS 69

=
U

time (seconds)
=
=)

o
8

1 2 3 4 5 6 7 8 9 10 11
Number of runs
—_— 1M — 3M — 5M ™ 9M
—2M — 4M — 6M —— 8M —— 10M

Figure 8.4: Metadata checking time.

// checking meta-code
fn main()

{

println! ("true");

// update meta-code

fn main()

{
let file = // ...
update_field(file, "field", "O0");

8.3.2 Checking Metadata Result

Figure 8.4 show the result of the metadata check benchmark. The label NM
is the benchmark for the file with N (custom) Metadata. For instance, 3M
represents a file with three custom metadata.

We can see that the operation is noticeable at three custom metadata. This is
because Gurret compiles the checking meta-code each time, which is costly. To
mitigate this, Gurret can store the compiled meta-code for later use in a cache.
This assumes the meta-code does not change during runtime. However, Gurret
can re-compile the meta-code if it changes. Figure 8.5 shows the resulting
graph from caching the check meta-code.

70 CHAPTER 8 / EVALUATION

—~ -—M\—A
nl.5 |\
©
S
]
9 1.0
2
20.5
€
S
0.0 - - -
1 2 3 4 5 6 7 8 9 10 11
Number of runs
— 1M — 3M 5M —— cache 7M cache 9M
—— cache 1M —— cache 3M —— cache 5M — M — 9M
—— cache 2M 4M — 6M — 8M cache 10M
— 2M —— cache 4M - cache 6M —— cache 8M — 10M

Figure 8.5: Custom metadata scaling with check store.

Although the first run is just as slow, the following is close to zero using
this method. To further improve this and remove the first hunch, Gurret can
preemptively compile each meta-code on a separate thread during startup or
runtime.

8.3.3 Updating Metadata Result

We have a similar result for updating metadata. Initially, Gurret compiles
the updating meta-code each time it executes. However, when we introduce
a cache, the time is significantly improved. Figure 8.6 shows the result of
the benchmark. For clarity, we only display the benchmarks for ten custom
metadata since the results closely resemble the previous benchmark.

Again, the first run is noticeable slow; however, preemptive compilation can
improve run times. Alternatively, using an implementation with pre-compiled
binaries or an interpreted language such as python can also mitigate the initial
compile time.

8.4 Filesystem Benchmark

We benchmark the reading and writing speeds of different filesystems. Different
filesystems have other pros and cons. We want to determine if switching
to an alternative filesystem better suited for Gurret’s workload can improve

8.4 / FILESYSTEM BENCHMARK 71

time (seconds)
= = N
o u (@)

o
%)

o
o

1 2 3 4 5 6 7 8 9 10 11
Number of runs

—— normalM cacheM

Figure 8.6: Metadata update time.

performance. This section benchmarks reading and writing for files and reading
and writing for extended attributes.

8.4.1 Benchmarking Setup

The filesystems we consider are ext4, XFS, Btrfs, and F2FS. We create a filesystem
container and run the benchmarks inside it for each filesystem. For the extended
attribute benchmark, we write and read 2N bytes, where N € {1, ..., 10}, into
the extended attribute of a file f. For the file benchmark, we write and read
2N MB into a file f, with the same N.

8.4.2 File Benchmark Result
Figure 8.8 and Figure 8.7 show the file reading and writing benchmarks.

F2FS performs significantly better than the other filesystems on the writing
benchmark. This is likely because the host system uses an SSD to store data,
which F2FS specifically targets. On the other hand, the filesystem with the
poorest scalability overall was the filesystem we currently run, ext4.

F2FS had the best performance on the reading benchmark, but only marginally.
The most surprising result, however, was Btrfs. Btrfs has very poor reading
performance compared to the other file systems. The difference between Btrfs
and other filesystems is that Btrfs is a copy-on-write filesystem with modern

72 CHAPTER 8 / EVALUATION

—}— xfs
btrfs

—— f2fs

—}— ext4d

o o o
A O o

time (seconds)

©
N

©
o

2 4 8 16 32 64 128 256 512 1024
file size (MB)

Figure 8.7: Filesystem writing benchmark.

data integrity features, such as checksums and checkpoints. Whenever Btrfs
reads a data block, a checksum is calculated to verify integrity. We suspect
this is one of the reasons Btrfs has a slower reading performance. Turning
this feature off is possible; however, it would defeat one of the main design
points of Btrfs. Therefore, comparing Btrfs in this regard is arguably not a fair
comparison.

8.4.3 Extended Attributes Result

Figure 8.9 and Figure 8.10 show the results for the extended attributes bench-
marking result. The different filesystems have very similar performance, and
no particular filesystem performed better or worse than the others. This is
despite the fact that some of the filesystems support inline extended attributes.
The similar behavior is likely because the content size— 1 up until 1024 bytes—
is not so large. We wanted to test for larger sizes; however, some filesystems
have limitations on the extended attribute size.

8.5 Filesystem Benchmark Result

The most performant filesystem in the benchmarks is the F2FS filesystem. F2FS
performs better or just as good as the other filesystems on the benchmarks,
making it the best choice. However, the hardware we performed the benchmarks
on was an SSD- F2FS main target. We have not done the same benchmarks

8.5 / FILESYSTEM BENCHMARK RESULT

= =
o ul

time (seconds)
o
u

o
o

—— xfs

—— Dbtrfs
—— f2fs
—}— ext4

2 4 8 16 32 64 128 256 512 1024
file size (MB)

Figure 8.8: Filesystem reading benchmark.

0.0060

0.0055

(seconds)

0.0050

ime

t

0.0045

W

—}— xfs

—— btrfs
—— f2fs
—}— ext4

0.0040

2 4 8 16 32 64 128 256 512 1024
file size (Bytes)

Figure 8.9: Filesystem extended attributes writing benchmark.

73

74 CHAPTER 8 / EVALUATION

0.0180
0.0175

0.0170

o A 4
0.0165

—— xfs
0.0160 btrfs
0.0155 T fafs
—— ext4
0.0150 5 4 g

time (seconds)

16 32 64 128 256 512 1024
file size (Bytes)

Figure 8.10: Filesystem extended attributes reading benchmark.

using an HDD. Whether these results also apply to HDD is therefore not known.
Ext4 and XFS performed better than F2FS on a HDD in SQLite insertions in
2018, according to Phoronix !. But this is a different workload. Further tests
are needed to get a definitive answer.

8.6 File Subscription Benchmarks

Files whose content comes from an information flow subscribe to the file
metadata of the source. We want to investigate how many subscriptions a file
can have before end-users notice. Again, we define end-users notice as over half
a second. We benchmark the time it takes for a file to check its metadata and
the metadata it subscribes to.

8.6.1 Benchmarking Setup

We create 100 files, each with a simple check meta-code that returns true.
The files are: fo, f1,..., foo. The first file, fy, does not subscribe to any file
metadata. File f;, subscribe to the metadata of every file with a smaller n. That
is, fa-1, fa—2, .-, fo. With this, a given file f, has the metadata of itself, and
every file with a smaller n.

1. https://www.phoronix.com/scan.php?page=article&item=f2fs-hdd-
test&num=2

https://www.phoronix.com/scan.php?page=article&item=f2fs-hdd-test&num=2
https://www.phoronix.com/scan.php?page=article&item=f2fs-hdd-test&num=2

8.7 / SUMMARY 75

0.02

0 15 30 45 60 75 90
Number of subscriptions

Figure 8.11: Time to check metadata for files that subscribes to n metadata.

We compile every meta-code before running the benchmarks by triggering
an update for the last file. We do this to avoid compiling each file’s check
meta-code, which would pollute the benchmarks.

8.6.2 Benchmarking Result

Figure 8.11 shows the results of the benchmark. The benchmarks show a clear
linear relationship. We consider the performance of 70 milliseconds for 100
subscriptions well under an acceptable level. We imagine that a file with over
ten subscriptions is pretty uncommon, let alone 100. The scalability is linear,
as expected since the algorithm is linear. By averaging the difference in time
between file n and n — 1, we find that an additional subscription, on average,
adds 0.485 milliseconds.

8.7 Summary

In this chapter, we benchmark and evaluate the Gurret client. We consider
the FUSE overhead, metadata scalability, filesystem performance, and file sub-
scription scalability. We adjust or implement when necessary, for instance, the
meta-code cache.

Conclusion

This chapter discusses related work to Gurret, future work, and our conclud-
ing remarks, summarizing the problem statement and our important find-
ings.

9.1 Related Work

Gurret borrows and implements many common ideas in different fields within
computer science and systems. The four main fields are distributed data man-
agement, filesystems, publisher-subscriber model, and information flow control
systems. The following sections will discussion common ideas between and
those found in the research litterature.

9.1.1 Distributed Data Management

Similar to Gurret, Dynamic Metadata Management for Petabyte-Scale File
systems (DMM-FS) separates file data and metadata [55]. DMM-FS stores
metadata on disk in a cluster of metadata servers. Metadata accesses are
subsequently read from disk; however, unlike Gurret, DMM-FS utilizes an in-
memory cache to retrieve hot metadata quickly. Metadata is distributed across
the cluster such that end-users doing typical workloads (Scientific workloads,
general computing workloads, etc.) can access and utilize multiple servers

77

78 CHAPTER 9 / CONCLUSION

simultaneously.

OceanStore [41] and Gurret both distribute and shard data across servers.
OceanStore is designed to be run on potentially untrusted hardware, unlike
Gurret, which assumes trusted devices. Gurret shard metadata across multiple
machines for high availability, similar to how OceanStore shard archive/read-
only document; however, OceanStore shard data to several orders of magnitude
more Servers.

9.1.2 Filesystems

Perhaps one of the papers Gurret shares the most with is the Low-bandwidth
Network File System [56] (LBFS). LBFS divides files into smaller chunks, which
are indexable via a hash value. LBFS efficiently sends files of a low-bandwidth
network by only sending the chunks an end-user does not have. Initially, the
server sends every chunk in the file; however, only the changed chunks are
transferred as the file changes. Similarly, Gurret only sends the metadata that
changed over to the end-users. LBFS uses a timer-based read lease to determine
if an update has occurred. A read lease is a contract between the server and
client that ensures the client receives updates for a file as long as the lease is
active. Read leases are similar to Gurret’s interval, only the inverse. Instead
of promising updates after an interval, read leases promises updates within
the time interval. End-users have a local cache in memory containing chunks.
End-users check the local cache for chunks before sending a request to the
server. LBFS can reconstruct files with similar chunks using the chunks in the
cache from another file. For instance, LBFS can use license declaration chunks
in several files with license text, e.g., GPL, MIT. Reconstructing/using data
from another file to save resources is similar to how Gurret avoids storing
metadata for derived files by subscribing files to their source files’ metadata.
The consistency LBFS provides is close-to-open consistency. Changes for a file
that has been closed are guaranteed to be reflected in subsequent opens
for other users. Gurret differs by having a more relaxed consistency model;
configurable by the count and interval subscription options.

NFS version 4 [57] uses a COMPOUND RPC procedure to group multiple filesystem
operations together. Instead of sending operations such as LOOKUP, ACCESS,
and READ individually, NFS4 batch uploads them, sending them in one request.
Similar to how Gurret batch uploads local metadata changes.

LoNet [36] and Gurret both use meta-code. Gurret uses meta-code to imple-
ment the metadata interface 4.1, while LoNet link them in a policy file that
specifies what meta-code should run in different events and transitions.

9.2 / FUTURE WORK 79

9.1.3 Publisher-Subscriber Model

Gurret’s metadata-field filters are similar to Siena’s [38] filters and patterns;
however, Gurret cannot use the field as an expression. While Gurret can receive
updates when a field has changed N times, or after an interval of T, it cannot
receive updates based on the field F. The architecture we propose is similar
to Siena’s Hierarchical Client/Server Architecture, where our version of the
master/root servers is the database storing metadata information.

9.1.4 Information Flow Control Systems

The PASS storage system [58] detects and stores data lineage for files stored
in it, similar to how Gurret tracks lineage inside its filesystem container. PASS
stores lineage information as a DAG, unlike Gurret, which stores the forest of
trees. Although not common, in Gurret, two files can subscribe to each other,
unlike in a DAG. One key difference between PASS and Gurret is that PASS
provides utilities to query the lineage information. Chimera [59] provides a
similar service as PASS and Gurret and lets users query lineage information.
Chimera differs from Gurret in that they store lineage information in a SQL
database, unlike Gurret, which uses a sidecar file. Although more complex, this
storage option scales better as the number of lineage information increases.
Chimera does not specify how data dependency information is produced, unlike
PASS and Gurret. Perhaps the most similar to Gurret is SPADE [60], which, just
like Gurret, leverages FUSE in order to track data lineage. SPADE defines an
interface to store data, allowing any form of persistent storage to be used. This
lets end-users optimize how data is stored based on the expected workload. For
instance, end-users can use Neo4j [61, 62] if they expect to do many graph-like
operations, such as joins.

9.2 Future Work

Although significant work has been done on the Gurret client, more work is
needed to have a complete system. This section explores parts of Gurret that
could be improved and parts that are missing.

9.2.1 Filesystem Container

One weakness with Gurret’s filesystem container is that it is possible to move
files outside the container. Simply executing mv file <outside-location>
would completely bypass any information flow control check and, in some cases,

80 CHAPTER 9 / CONCLUSION

could crash the Gurret daemon. For instance, consider a custom metadata
field that collects information about a file’s data sources. If the source is
moved from the container without the Gurret daemon noticing, the metadata
might crash because of an file not found error. Solving this would involve
making the Gurret daemon aware of rename system calls (e.g., mv) outside
the container. For instance, one solution might be to mount the whole root or
home directory instead of only the filesystem container. This, however, could
introduce other issues related to security and data integrity if Gurret is allowed
full access.

9.2.2 Filesystem

The filesystem container uses ext4 as its primary filesystem despite the bench-
marks in Chapter 8 showing that F2FS is the fastest. We continue to use ext4
because we do not have a comparison for the benchmarks with an SSD and an
HDD. We need additional benchmarks running the same tests on HDDs and
SSDs alike before switching and committing to a different filesystem such as
F2FS.

9.2.3 False-Positive Information Flows

Gurret wrongly assumes that a flow occurred from one file to another in some
instances. For instance, if a process opens a log file before doing an explicit flow,
then Gurret would assume a flow from the log file as well. This is the result
of what Gurret constitutes as a flow. One solution to this problem is to use a
config file to specify which files a process opens should ignore. For instance,
something similar to ignore = ["log", "token"]. However, this is not so
elegant since this might require end-users to fiddle with config files. A more
interesting solution would be to: (1) prepend the data with some identifier to
the data source whenever a read occurs; (2) when writing data to a file, check
if the data is prepended with an identifier(s) and only add the file as children
of the identifiable file(s).

9.2.4 Gurret Daemon

The Gurret client running on top of the filesystem container have poor read-
ing and writing performance for larger files. A better implementation of the
filesystem or an entirely different method of intercepting and handling system
calls can probably reduce the overhead associated with FUSE.

9.2 / FUTURE WORK 81

9.2.5 Distinguishing between Data Management Metadata

Currently, Gurret copies all dynamic metadata over to the destination file
when an information flows occurs. Indeed, there are many ways to distinguish
between metadata that should and should not propagate to new files. One
of the simplest ways would be to copy all metadata where a file named
data-management was present. However, a more sophisticated system might
be more appropriate if Gurret is expected to copy different metadata in certain
situations.

9.2.6 Distributed Data-Sharing and Notification Service

The backend data-sharing and notification service is the most significant part
of Gurret left unimplemented. The implementation would need to consider
several hard questions within distributed systems. For instance, how should
the backend handle:

* Two or more updates to a field at the same time

* Consistency conflicts

* Replication

* Fault Tolerance

* Geo-distribution
And probably much more. Luckily, many distributed databases implement
solutions to some of these issues, such as MongoDB; however, a decision on
the configuration is still required. Additionally, Sharma et al. [63] outlies many
additional relevant requirements for a system like Gurret, some of which include
logging each operation and automatic garbage collection for data contained
on unsolicited machines.
We can only do a complete benchmark once the backend is implemented.
For the full system benchmark, we propose benchmarking and testing the

following:

* Benchmarks for the backend: How long do common operations such
as Set/Get-Subscription take, and how does it scale.

* Finding and sending updates to end-users: For a popular file, when
an update occurs, how long does it take to find the recipients of the new

82 CHAPTER 9 / CONCLUSION

update.

* Scaling: Test the overall scalability of the system as the number of users,
files, and subscription options increase.

* Stress test: Stress testing the whole system to figure out how many
concurrent users/request it can handle.

Without these benchmarking results, a complete system evaluation is not
possible.

9.3 Concluding Remarks

Our thesis, as stated in Section 1.1, was to show that scalable decentralized
data management is possible using pub-sub at the filesystem level. We show
that this is possible by prototyping and benchmarking the Gurret client: the
end-user CLI to interact with the Gurret system.

Our findings suggest that pub-sub is a valuable abstraction for distributing and
querying metadata for several reasons: (1) Metadata for a particular file can be
represented as topics and is easy to represent and store because of its key-value
nature. (2) End-users can use the subscription language to specify—with fine
granularity— which fields they are interested in and how often they want
to receive updates. (3) The pub-sub model is shown to be highly expressive,
extensive, and scalable [38]; all traits that are desirable in a distribution service
for potentially thousands of files and end-users.

Gurret efficiently propagates metadata whenever information flows occur by
using taint tracking and the pub-sub model. Custom metadata is implemented
using meta-code, which allows for highly specialized metadata, such as data
management metadata. Our evaluation shows that Gurret supports hundreds
of propagated metadata with minimal overhead. Finally, we implement a
reference monitor to enforce an access policy based on the Bell-LaPadula
model.

Although not complete, we show the Gurret client and Gurret system can be a
widely used distributed system for files following the FAIR principles. Because
of Gurret’s unique concept of metadata distribution, Gurret could be especially
relevant in environments where metadata operations are an important part of
the workflow.

Bibliography

[1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

Katrin Braunschweig, Julian Eberius, Maik Thiele, and Wolfgang Lehner.
The state of open data limits of current open data platforms. 2012.

Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits,
adoption barriers and myths of open data and open government. Infor-
mation Systems Management, 29:258 — 268, 2012.

Aakash Sharma, Thomas Bye Nilsen, Katja Pauline Czerwinska, Daria
Onitiu, Lars Brenna, Dag Johansen, and Havard Dagenborg Johansen. Up-
to-the-minute privacy policies via gossips in participatory epidemiological
studies. Frontiers in Big Data, 4:14, 2021.

RDA FAIR Data Maturity Model Working Group et al. Fair data maturity
model: specification and guidelines. Research Data Alliance. DOI, 10, 2020.

Danny Brooke. Community built infrastructure: The dataverse project.
In EGU General Assembly Conference Abstracts, page 12006, 2020.

Erin D Foster and Ariel Deardorff. Open science framework (osf). Journal
of the Medical Library Association: JMLA, 105(2):203, 2017.

Aakash Sharma, Katja P Czerwinska, Lars Brenna, Dag Johansen, and
Havard D Johansen. Privacy perceptions and concerns in image-based
dietary assessment systems: Questionnaire-based study. JMIR Hum Fac-
tors, 7(4):e19085, Oct 2020. ISSN 2292-9495. doi: 10.2196/19085. URL
http://humanfactors. jmir.org/2020/4/e19085/.

Drew Roselli, Jacob R Lorch, and Thomas E Anderson. A comparison
of file system workloads. In 2000 USENIX Annual Technical Conference
(USENIX ATC 00), 2000.

Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish
Narayanasamy. Iodine: Fast dynamic taint tracking using rollback-free op-

timistic hybrid analysis. In 2019 IEEE Symposium on Security and Privacy

33

http://humanfactors.jmir.org/2020/4/e19085/

84

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

(SP), pages 490-504, 2019. doi: 10.1109/SP.2019.00043.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N
Sheth. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):1—29, 2014.

Benjamin Davis and Hao Chen. {DBTaint}:{Cross-Application} informa-
tion flow tracking via databases. In USENIX Conference on Web Application
Development (WebApps 10), 2010.

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM computing surveys
(CSUR), 35(2):114-131, 2003.

Aakash Sharma, Thomas Bye Nilsen, Lars Brenna, Dag Johansen, and
Hévard D Johansen. Accountable human subject research data processing
using lohpi. 2021.

Peter J. Denning, Douglas E Comer, David Gries, Michael C. Mulder, Allen
Tucker, A. Joe Turner, and Paul R Young. Computing as a discipline.
Computer, 22(2):63—70, 1989.

Fu-Hau Hsu, Min-Hao Wu, Syun-Cheng Ou, and Shiuh-Jeng Wang. Data
concealments with high privacy in new technology file system. The
Journal of Supercomputing, 72(1):120-140, 2016.

Thomas Gobel, Jan Tiirr, and Harald Baier. Revisiting data hiding tech-
niques for apple file system. In Proceedings of the 14th International
Conference on Availability, Reliability and Security, pages 1-10, 2019.

Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto,
and Geoff Peck. Scalability in the xfs file system. In USENIX Annual
Technical Conference, volume 15, 1996.

Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS), 9(3):1-32, 2013.

Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
{F2FS}: A new file system for flash storage. In 13th USENIX Conference
on File and Storage Technologies (FAST 15), pages 273—286, 2015.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger,

BIBLIOGRAPHY 85

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linux symposium, volume 2, pages
21—33. Citeseer, 2007.

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. A study of linux file system evolution. In 1ith USENIX
Conference on File and Storage Technologies (FAST 13), pages 31-44,
San Jose, CA, February 2013. USENIX Association. ISBN 978-1-931971-
99-7. URL https://www.usenix.org/conference/fast13/technical-
sessions/presentation/lu.

Marshall K McKusick, William N Joy, Samuel J Leffler, and Robert S Fabry.
A fast file system for unix. ACM Transactions on Computer Systems (TOCS),
2(3):181-197, 1984.

Val Henson, Zach Brown, Theodore Ts’o, and Arjan van de Ven. Reducing
fsck time for ext2 file systems. In Proceedings of the Linux Symposium,
pages 395—408. Citeseer, 2006.

Matthew E Hoskins. Sshfs: super easy file access over ssh. Linux Journal,
2006(146):4, 2006.

Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To
{FUSE} or not to {FUSE}: Performance of user-space file systems. In 15th
{USENIX} Conference on File and Storage Technologies ({FAST} 17), pages
59-72, 2017.

RS Sandhu, EJ Coyne, HL Feinstein, and CE Youman Role-Based. Access
control models. IEEE computer, 29(2):38—47, 2013.

Mark S Miller, Ka-Ping Yee, Jonathan Shapiro, et al. Capability myths de-
molished. Technical report, Technical Report SRL.2003-02, Johns Hopkins
University Systems Research ..., 2003.

Norm Hardy. The confused deputy: (or why capabilities might have been
invented). ACM SIGOPS Operating Systems Review, 22(4):36—38, 1988.

Dorothy E Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19(5):236—243, 1976.

D Elliott Bell and Leonard J LaPadula. Secure computer systems: Math-
ematical foundations. Technical report, MITRE CORP BEDFORD MA,

1973.

https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu

86

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

BIBLIOGRAPHY

Kenneth J Biba. Integrity considerations for secure computer systems.
Technical report, MITRE CORP BEDFORD MA, 1977.

Andrew C Myers and Barbara Liskov. A decentralized model for informa-
tion flow control. ACM SIGOPS Operating Systems Review, 31(5):129-142,
1997.

Deian Stefan, Alejandro Russo, John C Mitchell, and David Maziéres.
Flexible dynamic information flow control in haskell. In Proceedings of
the 4th ACM Symposium on Haskell, pages 95-106, 2011.

Dorothy E Denning and Peter J Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504-513, 1977.

Andrew Myers, Owen Arden, Tom Magrino, et al. Jif 3.5: Java information
flow, 2016. URL https://www.cs.cornell.edu/jif/. Accessed: 2022-Jan-
03.

Hévard D Johansen, Eleanor Birrell, Robbert Van Renesse, Fred B Schnei-
der, Magnus Stenhaug, and Dag Johansen. Enforcing privacy policies with
meta-code. In Proceedings of the 6th Asia-Pacific Workshop on Systems,
pages 1-7, 2015.

Dag Johansen and Joseph Hurley. Overlay cloud networking through
meta-code. In 2011 IEEE 35th Annual Computer Software and Applications
Conference Workshops, pages 273—278. IEEE, 2011.

Antonio Carzaniga, David S Rosenblum, and Alexander L Wolf. Design
and evaluation of a wide-area event notification service. ACM Transactions
on Computer Systems (TOCS), 19(3):332—383, 2001.

Masoud Mansouri-Samani and Morris Sloman. Gem: A generalized
event monitoring language for distributed systems. Distributed Systems

Engineering, 4(2):96, 1997.

David Recordon and Drummond Reed. Openid 2.0: a platform for user-
centric identity management. In Proceedings of the second ACM workshop
on Digital identity management, pages 11-16, 2006.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weather-
spoon, Westley Weimer, et al. Oceanstore: An architecture for global-scale
persistent storage. ACM SIGOPS Operating Systems Review, 34(5):190—201,
2000.

https://www.cs.cornell.edu/jif/

BIBLIOGRAPHY 87

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Kevin Fu, M Frans Kaashoek, and David Mazieres. Fast and secure dis-
tributed {Read-Only} file system. In Fourth Symposium on Operating
Systems Design and Implementation (OSDI 2000), 2000.

Roger Jennings. Cloud computing with the Windows Azure platform. John
Wiley & Sons, 2010.

Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Sala-
manca, Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia,
Angee Zambrano, and Mery Lang. Infrastructure cost comparison of
running web applications in the cloud using aws lambda and monolithic
and microservice architectures. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 179-182,
2016. doi: 10.1109/CCGrid.2016.37.

Ekaba Bisong. Building machine learning and deep learning models on
Google cloud platform: A comprehensive guide for beginners. Apress, 2019.

Maricela-Georgiana Avram. Advantages and challenges of adopting cloud
computing from an enterprise perspective. Procedia Technology, 12:529—

534, 2014.

Swaminathan Sivasubramanian. Amazon dynamodb: a seamlessly scal-
able non-relational database service. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages 729-730,
2012.

Kristina Chodorow. Scaling MongoDB: Sharding, Cluster Setup, and Ad-
ministration. " O’Reilly Media, Inc.", 2011.

Ammar Fuad, Alva Erwin, and Heru Purnomo Ipung. Processing perfor-
mance on apache pig, apache hive and mysql cluster. In Proceedings of
International Conference on Information, Communication Technology and
System (ICTS) 2014, pages 297—302, 2014. doi: 10.1109/ICTS.2014.7010600.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review, 44(2):
35—40, 2010.

Yimeng Liu, Yizhi Wang, and Yi Jin. Research on the improvement of
mongodb auto-sharding in cloud environment. In 2012 7th International
Conference on Computer Science Education (ICCSE), pages 851-854, 2012.
doi: 10.1109/ICCSE.2012.6295203.

88

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

BIBLIOGRAPHY

Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible
security enforcement using dynamic data flow analysis. In Proceedings of
the 15th ACM conference on Computer and communications security, pages
39-50, 2008.

Jim Gray et al. The transaction concept: Virtues and limitations. In VLDB,
volume 81, pages 144-154, 1981.

Stuart K Card, George G Robertson, and Jock D Mackinlay. The informa-
tion visualizer, an information workspace. In Proceedings of the SIGCHI
Conference on Human factors in computing systems, pages 181-186, 1991.

Sage A Weil, Kristal T Pollack, Scott A Brandt, and Ethan L Miller. Dy-
namic metadata management for petabyte-scale file systems. In SC’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, pages
4—4. IEEE, 2004.

Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-
bandwidth network file system. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 174-187, 2001.

Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow.
The nfs version 4 protocol. In In Proceedings of the 2nd International
System Administration and Networking Conference (SANE 2000, 2000.

Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. Provenance-aware storage systems. In Usenix annual technical
conference, general track, pages 43-56, 2006.

Ian Foster, Jens Vockler, Michael Wilde, and Yong Zhao. Chimera: A virtual
data system for representing, querying, and automating data derivation.
In Proceedings 14th International Conference on Scientific and Statistical
Database Management, pages 37—46. IEEE, 2002.

Ashish Gehani and Dawood Tariq. Spade: Support for provenance au-
diting in distributed environments. In ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Process-
ing, pages 101-120. Springer, 2012.

Mattias Finné, Anders Nawroth, Misha Demianenko, Pontus Melke, et al.
Neo4j enterprise edition 4.4.5. Software, Neo4j, Inc., March 2002. URL

https://github.com/neo4j/neo4j.

Florian Holzschuher and René Peinl. Performance of graph query lan-

https://github.com/neo4j/neo4j

BIBLIOGRAPHY 89

guages: comparison of cypher, gremlin and native access in neo4j. In
Proceedings of the Joint EDBT/ICDT 2013 Workshops, pages 195204, 2013.

[63] Aakash Sharma, Thomas Bye Nilsen, Sivert Johansen, Dag Johansen, and
Héavard D Johansen. Designing a service for compliant sharing of sensitive
research data. In International Conference on Risks and Security of Internet
and Systems, pages 155-161. Springer, 2022.

	Abstract
	List of Figures
	List of Tables
	List of definitions
	1 Introduction
	1.1 Thesis Statement
	1.2 Scope and Limitations
	1.3 Context
	1.4 Methodology
	1.5 Outline

	2 Background
	2.1 Filesystem
	2.2 XFS
	2.3 Btrfs
	2.4 F2FS
	2.5 ext4
	2.5.1 ext4 Structure
	2.5.2 Extent Trees
	2.5.3 Inline Data
	2.5.4 Directories
	2.5.5 Journaling

	2.6 FUSE
	2.7 Access Control
	2.8 Discretionary Access Control
	2.8.1 Access-Control List
	2.8.2 Capability-Based Access Control

	2.9 Mandatory Access Control
	2.9.1 Lattice
	2.9.2 The Bell-LaPadula Model
	2.9.3 The Biba Model
	2.9.4 Access-Control Limitations

	2.10 Information Flow Control
	2.10.1 Information Flow
	2.10.2 Flow Control

	2.11 Summary

	3 The Gurret System
	3.1 Architecture
	3.2 Filesystem Container
	3.3 Filesystem Structure
	3.4 Storing Metadata
	3.5 Gurret Daemon
	3.6 Message Structure
	3.7 Summary

	4 Metadata
	4.1 Metadata Interface
	4.2 Standard Metadata
	4.3 Custom Metadata
	4.3.1 Meta-Code Requirements

	4.4 Creating Data Management Policies
	4.5 Metadata Update
	4.5.1 Receiving Updates
	4.5.2 Sending Updates

	4.6 Summary

	5 Metadata Subscriptions
	5.1 Subscription Language
	5.2 Metadata-Field Querying
	5.3 Sending Subscription Messages to the Backend
	5.3.1 MetadataUpdate
	5.3.2 GetSubscriptions
	5.3.3 SetSubscriptions

	5.4 How End-Users Subscribe to Metadata
	5.5 Metadata Consistency Model
	5.6 Summary

	6 Data-Sharing and Notification Engine
	6.1 Data-sharing service
	6.2 Notification Engine
	6.2.1 Socket Server
	6.2.2 Metadata Store
	6.2.3 Query Engine

	6.3 Summary

	7 Taint Tracking
	7.1 Taint Tracking
	7.2 Taint Tracking Rule
	7.3 Implementing the Taint Tracking Rule
	7.4 Tracking Data Lineage
	7.5 Forest of Trees
	7.6 Intercepting Information Flow Related Syscalls
	7.7 Storing the Forest of Trees and Broker
	7.8 Taint Tracking Weaknesses
	7.9 Implementing an Information Flow Control
	7.10 Labels
	7.11 Access-Control Rules
	7.12 File Removal Policy
	7.13 Information Flow Control System Use Cases
	7.14 Summary

	8 Evaluation
	8.1 Hardware Specification
	8.1.1 Benchmarking Method

	8.2 FUSE Overhead
	8.2.1 Setup
	8.2.2 Results

	8.3 Metadata Benchmarks
	8.3.1 Setup
	8.3.2 Checking Metadata Result
	8.3.3 Updating Metadata Result

	8.4 Filesystem Benchmark
	8.4.1 Benchmarking Setup
	8.4.2 File Benchmark Result
	8.4.3 Extended Attributes Result

	8.5 Filesystem Benchmark Result
	8.6 File Subscription Benchmarks
	8.6.1 Benchmarking Setup
	8.6.2 Benchmarking Result

	8.7 Summary

	9 Conclusion
	9.1 Related Work
	9.1.1 Distributed Data Management
	9.1.2 Filesystems
	9.1.3 Publisher-Subscriber Model
	9.1.4 Information Flow Control Systems

	9.2 Future Work
	9.2.1 Filesystem Container
	9.2.2 Filesystem
	9.2.3 False-Positive Information Flows
	9.2.4 Gurret Daemon
	9.2.5 Distinguishing between Data Management Metadata
	9.2.6 Distributed Data-Sharing and Notification Service

	9.3 Concluding Remarks

	Bibliography

