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Abstract

This thesis proposes a novel method to estimate the parameters of a suspended swinging load
using a 77GHz millimeter wave (mmWave) radar. An experimental scale model setup was
created in the lab to simulate a suspended load. The focus of this project is to achieve real-
time 2D localization of the swinging load including estimation of displacement, velocity and
angle. For this purpose, an AWR1843 mmWave radar was used to acquire two-dimensional
point cloud data. This data was compared to two reference measurement devices. An inertial
measurement unit (IMU) provides velocity and angle data and an IWR6843 mmWave radar
programmed to accurately measure range which is interpreted as x-position in this thesis.
A system was implemented using Robot Operating System (ROS) for data acquisition and
visualization. The visualization features a simulation of the real world experiment which
mirrors the physical system in real-time by using the processed point cloud data from the
measurement radar, as a step toward a digital twin. The proposed method has a root mean
square error for displacement of 3.0 [cm], 0.07 [rad] for angle and 0.127 [m

s
] for velocity com-

pared to the reference sensors. On the basis of these results, it is concluded that mmWave
radars may be applicable to determine parameters of physical systems.

Keywords: millimeter wave radar, point cloud processing, swinging load, robot operat-
ing system



Contents

Acknowledgements ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objective and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Swinging load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4
2.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Range Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Range resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Velocity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Angle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Point cloud processing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 RViz visualization software . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 URDF Unified Robotics Description Format . . . . . . . . . . . . . . 9

2.4 Geometry, translation, rotation . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Method 11
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 ROS setup and package configuration . . . . . . . . . . . . . . . . . . 14

3.2 Radar Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Radar firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Radar Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Interfacing ROS with radar hardware and IMU . . . . . . . . . . . . . . . . 16
3.3.1 AWR1843: ti_mmwave_rospkg . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 IWR6843: custom python parser script . . . . . . . . . . . . . . . . . 17
3.3.3 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Logging and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



3.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.1 Selection of bestX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Region of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.3 Conversion from range to angle . . . . . . . . . . . . . . . . . . . . . 22
3.5.4 Data clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 23
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Velocity and angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion 29
5.1 Data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 ROS as data acquisition and visualization platform . . . . . . . . . . . . . . 29
5.3 Radar mounting bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion 31
6.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A Code 32

B Other 44

Bibliography 46

v



List of Figures

2.1 Linear chirp where frequency increases over time . . . . . . . . . . . . . . . . 5
2.2 FMCW radar simplified block diagram . . . . . . . . . . . . . . . . . . . . . 5
2.3 Transmitter and receiver chirps as a function of time . . . . . . . . . . . . . 6
2.4 RViz main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Coordinate system with rotation arrows . . . . . . . . . . . . . . . . . . . . . 10

3.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Steel pipe crank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Aluminium radar mounting plate . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Experimental lab setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Three different objects were tested as swinging load. . . . . . . . . . . . . . . 13
3.6 Geometric considerations of the experimental setup. . . . . . . . . . . . . . 14
3.7 ROS Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 AWR1843BOOST Development Board . . . . . . . . . . . . . . . . . . . . . 15
3.9 IWR6843ISK Development Board . . . . . . . . . . . . . . . . . . . . . . . . 15
3.10 rostopic command line tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.11 IMU message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12 IMU message format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Screenshot from the SensorLog app interface. . . . . . . . . . . . . . . . . . . 19
3.14 RViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15 Schematic view of the URDF model . . . . . . . . . . . . . . . . . . . . . . . 21
3.16 Screenshot from the online URDF viewer mymodelrobot . . . . . . . . . . . 21

4.1 Data captured from measurement radar (AWR1843). Dataset A. . . . . . . . 23
4.2 Clustering the point cloud related to swinging load. Dataset A. . . . . . . . 24
4.3 Point cloud data from measurement radar. Dataset C. . . . . . . . . . . . . 25
4.4 Demonstration of range resolution of region (a) in figure 4.3. Dataset C. . . 25
4.5 X-position filtered to only include points within the egion of interest. Dataset

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Estimated displacement in x-direction from comparing against reference sen-

sor. Dataset A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Experiments to validate proposed method for displacement estimation and

rmse. Dataset A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8 Velocity. Dataset B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 Angle. Dataset B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Initial bracket design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Ball-and-socket joint as a part of the bracket . . . . . . . . . . . . . . . . . . 30

B.1 Data format with partial parsing . . . . . . . . . . . . . . . . . . . . . . . . 45
.

vi



List of Tables

3.1 ROS distribtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Radar firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Driver software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Output data from the /ti_mmwave/radar_scan ROS topic. . . . . . . . . . 17
3.5 Mapping of bytes to range estimates . . . . . . . . . . . . . . . . . . . . . . 18
3.6 IMU output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Region of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Results datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

.



Chapter 1

Introduction

The increased demand for automation in industrial environment calls for large variety of
sensors, controllers and actuators to accomplish the given tasks. In many cases it is desirable
to measure the related parameters e.g. distance, velocity, position and angular motion as
accurately as possible with minimal error. There are various methods to measure these
parameters. Typically piezoelectric, capacitive, null-balance, strain gauge, accelerometer
sensors are used to detect the vibrations [1]. However they suffer from electrical interference,
are contact based, cause loading effect, and cannot always be placed at the desired location.
Further with the rise in Industry 4.0 and making digital twin representations of physical
systems, it is desirable to measure the related parameters accurately. A digital twin of
a physical system require that the measurement from the real world be integrated in the
corresponding digital model, at the same time it can validate the real world measurement
based on the model. This two way flow of data and information from model to real world
thus help make the model synchronous to the physical system. This require novel sensing
techniques that measure the physical parameters. Non-contact sensing makes it possible to
acquire information about an object without having direct contact with that object. This
can be applicable in a variety of different situations. Non-contact sensing is when a sensor
emits its own energy to scan objects by measuring the energy that is reflected back to the
sensor. Examples of this is radar (Radio detection and ranging) and LIDAR (Laser imaging,
detection, and ranging) technology. At at fundamental level, these sensors measure the time
delay between emitting and receiving a signal in order to determine position, velocity and
angle of an object. In the context of this thesis, the focus will be on non-contact sensing
with the use of millimeter wave radars (mmWave radar).

Radars allows for data gathering in dangerous or inaccessible environments. The area
of application for radars is varied. Aerial traffic control, collection of meteorological data
and advanced driver-assistance systems are a few examples of what applications radars are
utilized for. Radar has found its application in distance measurement [2] and local positioning
[3]. The added advantages that mmWave radar brings is the integration of transmitter and
receiver on the same board, thus making the setup compact and robust, without the need to
align the transmitter and receiver. In addition, the the electromagnetic radiation emitted by
the radar are in millimeter wavelength range that can easily penetrate fog and can equally
be used under limited conditions [4].

There are multiple cases where this technology could be applied to potentially create
more efficient processes. An example of this is in offshore industries where crane vessels
have to handle a load. Due to these ships operating in offshore conditions, where they are
subjected to waves and wind, the load being handled will start swinging. In a case like this
it could be advantageous to accurately acquire the load’s parameters, which in turn can be
used in developing a control system solution to stabilize the load during operation.
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1.1 Research Questions

This thesis proposes using mmWave radar technology in order to accurately obtain param-
eters of a swinging load. This leads to the following research questions:

• Which parameters of a swinging load can be determined directly by a mmWave radar
sensor and which can be further derived by processing the raw data?

• How accurately can these parameters be determined?

• How can these parameters be efficiently acquired and further digitally represent the
physical system in real-time?

Experiments will be performed to see whether or not this technology is viable for oper-
ations where other sensors performance are less than optimal. In this case the sensors will
measure a suspended object. When subjected to forces the object will start to move, and
the goal is for the sensors to identify the position, velocity and angle of the object.

1.2 Objective and contribution

The objective of this thesis is to research the viability of using mmWave radar technology to
accurately determining the parameters on a swinging load. In other words, using mmWave
radars for acquiring point cloud data which provide measurements for displacement, velocity
and angle estimation. Thereafter, displaying the data visually through the use of ROS and
RViz.
The contributions made during the course of this project was as follows:

• Implementation of mmWave radars for accurate parameter estimation of a swinging
load.

• Visualising the recorded data with the use of ROS.

• Validation of the parameter estimations by using other sensors as reference.

1.3 State-of-the-art

This section introduces the current state of related topics to this thesis. A broad overview
is given of the field of radar technology and current techniques applied to swinging load
handling. In addition to this, aspects of related work are inspected in which methods they
have used and which results they have a achieved.

1.3.1 Radar

Radar detection has been around for decades. The technology applies electromagnetic waves
in the radio-frequency spectrum to measure range, velocity and angle for objects. The radio-
frequency spectrum ranges from about 3 [MHz] to 300 [GHz] [5], which means that the waves
emitted from the radar has weak interactions with fog, rain and snow. Therefore, radar func-
tions as an optimal sensor for detecting objects outside, even in extreme weather conditions.
This makes radars widely applied in fields such as air and marine control, meteorology and
automobile industry. Depending on the emitted signal form, radars can be divided into
pulsed and continuous wave. Pulsed radars emit high frequency pulses within given time
intervals, while continuous wave radars emit and detect continuous signals. If the emit-
ted radar waves are periodically frequency modulated it is called a Frequency-Modulated
Continuous-Wave (FMCW) radar. mmWave radar technology are radars that operate in
the 76-81 [GHz] range. These radars have the advantage of being relatively small, therefore
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having a small footprint. Since the introduction and hype of autonomous products both
LIDAR and radar technology have made huge progress. Lapland UAS publications [6] wrote
about radar and its importance to supporting autonomous driving. They state that the
76-81 [GHz] bandwidth has been established in the field. mmWave- technology is also used
in other applications such as aviation and marine transport.

1.3.2 Swinging load

Swinging load handling has traditionally been reliant on human involvement for accuracy
and avoiding unwanted motion of the payload [7]. The addition of remote sensing equipment
could reduce the need for human decision making, allowing for a faster and more accurate
process [8]. To reduce the pendular motions of a suspended payload, anti-swing control can
be studied by controlling cranes and corresponding servomotors. Prior research has shown
that the effect of turbulent wind on a payload’s motion is limited, but the motion of the
vessel is what dominantly affects the payload’s motion [8]. The payload’s shape, orientation
and mass distribution also adds a layer of complexity when designing an automated anti-
swing algorithm. This could potentially provide a safer and more reliable solution than the
current state of the art approaches. Furthermore, this technology can potentially offer a
much faster installation time when compared to current methods, thereby saving money and
time for the manufacturers. The hypothesis is that by using radar sensors, swinging load
handling will become a more efficient operation.

1.3.3 Related work

The emergence of high performance, low-cost mmWave radar and LiDAR technology has
seen interest from researchers for the purpose of using them in industrial applications. This
section addresses related work to this thesis within the fields of non-contact sensing and
modelling of a physical system. This includes parameter estimation for similar experiments
with different sensors and different approaches to processing the data. Common sensors
for non-contact sensing are CCD cameras, LiDAR and radar. A notable related scenario is
tracking a swinging load from a drone in flight, which multiple researchers have investigated.

Hu et al [9] proposes a method of estimating the sway angle of a swinging load in a
trolley crane. This method uses an 24 GHz mmWave radar for measurement and a LiDAR as
reference. The paper implements a Simulink model and a physical experiment. The physical
experiment features no clear results, but the method is equivalent to using the IWR6843
reference radar as measurement device, as it only measures the range of the object.

Optical techniques include paper [10] which uses a single smart phone camera for object
tracking and pose estimation. The authors achieve an average error of approximately ±1.4
cm for position and ±0.02 rad for angle. Camera based techniques has the advantage of
cheap and available sensors but requires accurate calibration and markers.

Authors in [11] has published a feasibility study of using a LiDAR to track a load swinging
from a drone in flight. This paper models the swinging load as a 3D pendulum. Their data
is filtered by using k-means clustering and applied in an Extended Kalman filter alongside
a nonlinear dynamic model to estimate the position of the payload. A angle estimation of
θ = ±0.02 rad was achieved using this technique.

In the field of simulating a swinging load, paper [12] implements a system in Gazebo to
describe a suspended load from a quadcopter. It models the swinging load similarly to how
it is implemented in this thesis by describing the system with an URDF model. This model
consist of a fixed base connected to the load by a ball-and-socket joint. The paper applies a
time-delayed feedback control Simulink model to the simulated system with a virtual IMU as
sensor for the swinging load. Attaching an IMU to the swinging load is used in this project
as a reference measurement, but in many applications this would not be an option.

3



Chapter 2

Theory

This chapter describes the theoretical background for the work performed in this project. The
physical fundamentals of Radar technology, as well as basic principles of Robot Operating
System is described.

2.1 Radar

Radar is an object-detection system capable of measuring the range, velocity and angle of an
object with the use of radio waves. A radar measures these parameters by having transmitter
antennas that emits electromagnetic waves, then receiver antennas capture the signals that
are reflected back from objects. The radar will then process this information to determine
the parameters of the objects that are detected.

There are different types of radars. These include Bistatic, Continuous-wave, Doppler,
Monopulse, Passive and Instrumentation radars[13]. The differentiating properties between
them is signal modulation and antenna functionality. The radar type that is utilized in this
project is the Frequency-Modulated Continuous Wave (FMCW) radar. These radars emit
continuous transmission signals, and can change their operating frequency while measuring.
Frequency modulation provides a time reference that makes it possible to determine the
distance of an object relative to the radar. The basic features of an FMCW is [14]:

• Ability to measure the distance to a target.

• Ability to simultaneously determine the velocity, angle and range of a target.

• High accuracy measurements

A complete mmWave radar system includes transmit (TX) and receive (RX) radio fre-
quency (RF) components, analog components such as clocking, and digital components such
as analog-to-digital converters (ADCs), microcontrollers (MCUs) and digital signal proces-
sors (DSPs).

2.1.1 Range Measurement

Radar systems functions by transmitting an electromagnetic signal that is reflected by objects
in its path. In a FMCW radar the frequency is increased linearly with time as shown in figure
2.1. A radar transmits a signal called a "chirp", which is a sinusoid where the frequency is
increased linearly with time. The radar has a synthesizer which generates the chirp, which
is then transmitted from a TX-antenna. When this chirp interacts with an object, it will
reflect off the object and the reflected chirp will be received by the RX-antenna. The RX
and TX signals of a single object combined results in an Intermediate Frequency (IF) signal.
A chirp signal is characterized by a start frequency (fc), bandwidth (B) and duration (Tc)
[15].
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Figure 2.1: Linear chirp where frequency increases over time

The FMCW radar operates as follows:
A synthesizer generates a chirp (Figure 2.1 shows the chirp amplitude as a function of time,
figure 2.3 (a) shows the chirp frequency as a function of time). The chirp is then transmitted
by the TX-antenna. The chirp is reflected by an object which is captured by the RX-antenna.
A "mixer" combines the TX and RX signals to produce an IF signal. This is illustrated in the
block diagram in figure 2.2. The frequency mixer is an electronic component that combines
two signals to create a new signal with a new frequency [15].

TX ant.

RX ant.

Mixer

IF signal

Synth

1

2

3

4

Figure 2.2: FMCW radar simplified block diagram

For two sinusoidal inputs x1 and x2:

x1 = sin(ω1t+ ϕ1) (2.1)

x2 = sin(ω2t+ ϕ2) (2.2)

The output xout has an instantaneous frequency equal to the difference of the instantaneous
frequencies of the two input sinusoids. The phase of the output xout is equal to the difference
of the phases of the two input signals:

xout = sin[(ω1 − ω2)t+ (ϕ1 − ϕ2)] (2.3)

Figure 2.3 represents the TX and RX chirps as a function of time for a detected object. The
RX chirp is a time-delayed version of the TX chirp. The time delay (τd) is defined as:

τd =
2d

c
(2.4)
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Figure 2.3: Transmitter and receiver chirps as a function of time

where:
d: distance of the detected object
c: speed of light

The distance between the two lines is fixed, meaning that the IF signal consists of a tone
with a constant frequency. As shown in figure 2.3 this frequency is defined as fIF = Sτ . The
IF signal is only valid in the time interval where the TX chirp and the RX chirp overlap.
The initial phase of the IF signal (Φ0) is the difference between the phases of the TX and
RX chirps at the time at the start of the IF signal [15].

ϕ0 = 2πfcτ (2.5)

Further derived:

ϕ0 =
4πd

λ
(2.6)

For an object at a distance d from the radar, the IF signal will be a sine wave:

Asin(2πfot+ ϕ0) (2.7)

where:
f0 = S2d

c

ϕ0 = 4πd
λ

At this point it has been assumed that the radar only detects one object. When the radar is
detecting multiple objects, the receiver will receive multiple chirps, where each of the chirps
are delayed by a different amount of time proportional to the distance of the corresponding
object. The different RX chirps translate to multiple IF tones, which each have a constant
frequency.
A Fourier transform is necessary for processing an IF-signal consisting of multiple tones in
order to separate the different tones. The result of the Fourier transform processing is a
frequency spectrum with separate peaks for each of the peaks that represents an object at a
specific distance [15].
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2.1.2 Range resolution

A radar’s ability to distinguish between two or more objects is known as range resolution.
When two objects are too close to each other, the radar will no longer be able to recognise
them as separate objects. By increasing the length of the IF signal, the resolution can be
increased. To increase the length of the IF signal, the bandwidth must also be increased
proportionally, which results in an IF spectrum with two separate peaks. Fourier transform
theory states that an observation window (T) can resolve frequency components that are
separated by more than 1/THz. Therefore, two IF signal tones can be resolved in frequency
as long as the difference in frequency satisfies the relationship given [15]:

∆f >
1

Tc

(2.8)

where Tc is the observation interval. The range resolution (dres) depends on the bandwidth
swept by the chirp:

dres =
c

2B
(2.9)

With a chirp bandwidth of a few GHz, an FMCW radar will have a range resolution in the
order of centimeters [15].

2.1.3 Velocity measurement

To measure velocity, two chirps have to be transmitted separated by a time interval Tc. The
reflected chirps are then processed through FFT to detect the range of the object. The peaks
of both chirps will be in the same location, but they will have different phases. The phase
difference corresponds to a motion in the object. The phase difference is [15]:

∆Φ =
4πvTc

λ
(2.10)

Rearranged to calculate velocity:

v =
λ∆Φ

4πTc

(2.11)

Given that the phase difference determines the velocity, there will be ambiguity. The mea-
surement is unambiguous if |∆Φ| < π.
The maximum relative speed (vmax) measured by two chirps spaced Tc apart is:

vmax =
λ

4Tc

(2.12)

If two objects are at the same distance from the radar at the time of measurement, the two-
chirp velocity measurement does not work. Because the objects are at the same distance
from the radar, they will generate chirps with identical IF-frequencies. Therefore the range-
FFT will result in a single peak, which represents the combined signal of all the objects at
equal distance [15].

2.1.4 Angle detection

An FMCW radar system can estimate the angle of a reflected signal with the horizontal
plane. This angle is known as the Angle of Arrival (AoA). Angular estimation is based on
the observation of a small change in the peak of the range-FFT or Doppler-FFT. At least
two RX antennas is required to perform this estimation. The differential distance from an
object to each of the antennas results in a change in the FFT peak. The phase change makes
it possible to estimate the AoA [15].
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The phase change is calculated as:

∆Φ =
2π∆d

λ
(2.13)

The AoA can therefore be expressed as:

θ = sin−1(
λ∆Φ

2πl
) (2.14)

where l is the distance between the antennas. The angle estimation accuracy is dependent
on AoA and is more accurate when θ has a small value.
The maximum angular field of view is defined by the maximum AoA that the radar can
estimate. Unambiguous measurement of angle requires |∆ω| < 180◦. By applying this to
2.14 [15]:

2πlsin(θ)

λ
> π (2.15)

The maximum field of view that two antennas spaced l apart can detect is:

θmax = sin−1(
λ

2l
) (2.16)

2.2 Data Processing

2.2.1 Fast Fourier transform

Fast Fourier transform (FFT) is an algorithm for computing the discrete Fourier transform
of a sequence [16]. This technique is used to convert time series data into frequency domain,
which in the context of radar technology can be applied to received chirp signal to determine
the parameters discussed in the previous sections. Zoom-FFT is a technique for signal
processing used for analysing a portion of a FFT spectrum at high resolution [17].

2.2.2 Point cloud processing

The information acquired from 3D sensors is used to create point clouds. A point cloud is
a collection of data points in a 3D space. Each point has an x-, y-, and z-coordinate, as
well as intensity information. The intensity is the representation of the energy reflected by
an item. A point cloud is limited to a certain resolution. In 3D space, the resolution is
not fixed, and a nonuniform distribution of points may occur. A higher point density in a
region means higher computing cost for processing that region. Radar sensors, as most other
sensors, induce noise. The noise can cause inaccurate results in a point cloud. There are
multiple processing methods to reduce unwanted noise in the point cloud. A simple solution
is to filter the data points with regards to intensity or velocity [18].

2.3 ROS

Robot Operating System (ROS) enables communication between software components and
hardware devices through an open source software framework. ROS can assist with inter-
facing hardware with advanced software features such as motion planning, computer vision,
simulation and artificial intelligence. ROS mainly supports programming with C++ and
Python through the libraries roscpp and rospy [19].

The way information is transmitted in ROS is through nodes. A node is a process that
performs computations. Depending on whether information is sent or received, a node either
subscribes or publishes to a topic. The data type that a topic is holding is called a message.
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When a node is sending information, it publishes, and when it is receiving information, it
subscribes.

Multiple different distributions of ROS exist. New distributions are released yearly and
long term support versions (LTS) are released biannually. The ROS ecosystem is split into
ROS 1 and ROS 2, where ROS 2 is redesigned in many aspects. Table 3.1 displays a list of
current ROS distributions and their advantages as of April 2022. Older ROS distributions
has the benefits of a well developed software library, while newer distributions has longer
future support and newer features.

2.3.1 RViz visualization software

RViz(short for ROS Visualization) is a 3D
visualization tool which is a part of the
ROS environment. This tool can visualize
sensor data, algorithms and robots. RViz
has built in support for a wide range of
data, but also supports plugins for spe-
cialized applications [20]. RViz features a
graphical user interface which is displayed
in figure 2.4.

Figure 2.4: RViz main window

2.3.2 URDF Unified Robotics Description Format

Unified Robotics Description Format (URDF) is a specification for describing the mechanics
of a multibody system [21]. The format uses Extensible Markup Language (XML) to describe
how links and joints are connected relative to each other, and how these joints behave.

• Links define the geometry of a system, and can be basic shapes such as boxes and
cylinders or use custom meshes modeled in 3D modelling software.

• Joints define how the links are allowed to move. There are five types of joints that
restricts linear and rotational movement: continuous, revolute, prismatic, planar and
floating(unconstrained) [22].

An URDF can also contain physical properties and collision mechanics.

2.4 Geometry, translation, rotation

In the context of describing the position, displacement and rotation of objects within a
system, various techniques within the field of geometry can be applied. The concept Six
degrees of freedom is a description of a rigid body movement in three-dimensional space.
This movement can be determined by six parameters divided into two classes:

Translational:

1. Surge: movement along the X-axis

2. Sway: movement along the Y-axis

3. Heave: movement along the Z-axis

Rotational:

4. Roll α: rotation around the X-axis
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Figure 2.5: Coordinate system with rotation arrows

5. Pitch β: rotation around the Y-axis

6. Yaw γ: rotation around the Z-axis

The terms roll, pitch and yaw (RPY) is collectively known as Euler angles and are used
to describe rotation of objects in 2D or 3D space. Different conventions for nomenclature
and usage of Euler angles exist, therefore only the scheme described in this chapter is used
in this report. The main advantage of Euler angles is that they are intuitive to understand,
as all rotations are described as amount of degrees/radians of rotation around each axis [23].

Quaternions

A different approach to describing rotation in three dimensional space is by using quaternions.
Quaternions are generally represented in the form:

a+ bi + cj + dk (2.17)

where a, b, c, d are real numbers and i, j, k are the basic quaternions.
From a mathematical point of view, quaternions can be considered as an extension of

complex numbers which is written in the form a + bi. Quaternions extends this to include
a cj and dk term [24]. In computer systems, quaternions are often described as a four
dimensional vector where xyzw is used instead of abcd :

q = [x, y, z, w] (2.18)
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Chapter 3

Method

3.1 Overview

The following sections describes in detail how the experiments was performed, which equip-
ment was used and how the programming was conducted.

3.1.1 Hardware

The hardware used in this project consist of a three sensor devices connected to a common
computer for data logging and analysis. Figure 3.1 describes how these devices are connected
during experiments. The main hardware are the two FMCW radars AWR1843 and IWR6843
which are used in different configurations to improve precision and accuracy. These radars
are connected to a computer running Ubuntu 18.04 with ROS Melodic Morenia installed. A
phone is used as a reference IMU for comparison with the data provided by the radars.

Main equipment list:

• AWR1843BOOST development board, described in section 3.2

• IWR6843ISK development board, described in section 3.2

• An iPhone 8 as IMU, described in section 3.3.3

• Laptop running ROS

The AWR1843 radar was used as a starting point for this project. After performing pre-
liminary experiments and testing, it was determined that the sensor had potential but needed
configuration and its data needed further processing. The testing was done by following the
guide which is supplied with the ti_mmwave_rospkg package.

An IMU was connected to provide reference measurements. Due to availability and
features, an iPhone 8 was used. A wireless IMU was highly preferential due to the nature of
a swinging load, as adding a cable connected device could interfere its movement. A cable
could also have interfered with radar signals, however this was not tested and may not have
been a significant issue. Due to the preference of having a wireless IMU, it is also implied
that it needs to be battery powered. A phone fulfills all these requirements, along with
advantages such as ease of connectivity and data quality.

As a another reference measurement device, the IWR6843 radar was used. Although
it being similar in specification, it has the advantage of supporting TIs High Accuracy
Measurement firmware which significantly increases the range resolution(x-axis) in its range
measurement, at the cost of providing no data for bearing(y-axis), elevation(z-axis) and
velocity. This made it suitable for reference measurements.
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Figure 3.1: Hardware setup

3.1.2 Experiment

An experimental setup in the lab was created. This experimental setup is a steel pipe
suspended by a strap to represent a swinging load. Figure 3.4 shows a picture from the real
setup. Measures were taken to reduce external noise from other objects in the area. This
was done by moving objects that could interfere away from the testing setup and only taking
measurements when no other people were around the testing area.

A mount was made for the two radars in order to have repeatable and precise results.
This mount were made from an aluminium plate and is displayed in figure 3.3. Figure 3.6
describes the physical dimensions of the experimental setup. The steel pipe was positioned
at a 1.00 meter distance from the radar antenna, as this was determined to be a convenient
location while giving acceptable results. The steel pipe had a diameter of 48mm and a
length of 0.7 meters. A feature of the steel pipe was a crank to fine adjust its angle, which
is displayed in figure 3.2. A larger plastic pipe (figure 3.5c) was tested in the setup, but it
yielded poor results likely due to worse reflections for the radar. A box steel pipe (3.5b)
was also tested, but it was ultimately decided that the cylindrical pipe (3.5a) was more
convenient.

Figure 3.2: Steel pipe crank Figure 3.3: Aluminium radar mounting plate
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Figure 3.4: Experimental lab setup. To the left is the aluminium mounting bracket for the two
radars, and to the right is the cylindrical steel pipe that was used during experiments. The pipe
is connected to a steel beam with a strap. The steel beam is overhead and is not in frame of this
picture.

(a) Cylindrical steel pipe (b) Box steel pipe (c) Plastic tube

Figure 3.5: Three different objects were tested as swinging load.
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3.1.3 ROS setup and package configuration

For the purpose of both logging data and real time visualisation, ROS was determined to be
a suitable platform. Selection of ROS over other systems is further discussed in section 5.2.
The ROS distribution Melodic Morenia was determined to be well suited for this project,
mainly due to it supporting TI’s ROS package. Figure 3.1 displays and overview of currently
active ROS distributions and their features. Multiple features of ROS were used including
driver software for the AWR1843, rosbag, and RViz. Figure 3.7 displays a chart of the
configuration of ROS that was used.

Picture Distribution name Year ROS version Features EOL

Melodic Morenia 2018 ROS 1 Old but extensive
package support May 2023

Noetic Ninjemys 2020 ROS 1 Last ROS 1 release May 2025

Foxy Fitzroy 2020 ROS 2 Current ROS 2 LTS release May 2023

Galactic Geochelone 2021 ROS 2 Newest ROS developement
version Nov 2022

Table 3.1: ROS distribtions as of April 2022[25][26]
. The distribution used in this project is highlighted in gray.
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Figure 3.7: ROS workspace. The package created for this project is highlighted in green, while
downloaded resources are highlighted in yellow.

3.2 Radar Hardware: AWR1843BOOST and IWR6843ISK

Two different FMCW radars were used for this project. Both are development boards made
by Texas Instruments which feature a radar chip with supporting electronics for data pro-
cessing and USB communication. The AWR1843 radar was used as measurement radar while
the IWR6843 was used as a reference for range measurement.

AWR1843BOOST

AWR1843BOOST is a radar development board from Texas Instruments and uses a AWR1843
single-chip 76-81 GHz FMCW radar. It features 4 receivers and 3 transmitters and uses a
standard micro-USB B cable to interface with a computer. This development board requires
an external power supply which is specified to be rated at 5V minimum 2.5A. The version
of the board that was used is an early revision of the chip, which is no longer supported by
TI. A consequence of this were that only older firmware would work on it [27]. Figure 3.8
features a picture of the development board.

IWR6843ISK

IWR6843ISK is a radar development board from Texas Instrumentsand uses a IWR684
single-chip 60-64 GHz FMCW radar. It features 4 receivers and 3 transmitters and uses
a standard micro-USB B cable to interface with a computer [28]. Figure 3.9 displays the
IWR6843 development board.

Figure 3.8: AWR1843BOOST Develop-
ment Board

Figure 3.9: IWR6843ISK Development
Board

3.2.1 Radar firmware

Two different radar firmware editions were used in this project. Both editions are intended
to work on both the AWR1843 and the IWR6843 radars. However due to the AWR1843
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being an early revision of the chip, Texas Instruments did not support it. These firmware are
acquired from Texas Instruments mmWave Industrial Toolbox version 4.10.1[29]. Table 3.2
displays which firmware were used for the radars and the features of the different firmware
versions.

Radar Firmware Features

AWR1843 "Out of box demo" For general radar applications. Outputs point
cloud data Highly configurable.

IWR6843 "High Accuracy Level Sensing"
For sub-millimeter precision measurements.
Uses zoom-fft to increase resolution. Outputs
range-FFT and the three strongest peaks.

Table 3.2: Radar firmware

3.2.2 Comparison between AWR1843BOOST and IWR6843ISK

A distinguishing difference between the two radars is that the model name starts with the
letter A or I which correspondingly stands for Automotive and Industrial specification [30].
The practical meaning of this is that the devices are rated for different operating environ-
ments(mainly temperature) and does not have any impact of the experiments performed
in this project. Regarding physical differences, AWR1843BOOST has a larger PCB foot-
print, has a port for CAN-bus communication and requires an external power supply while
IWR6843ISK does not. Along several minor technical differences between the two devices, a
major difference is that AWR1843BOOST operates at frequencies ranging from 76-81-GHz
while IWR6843ISK operates at 60-64-GHz.

3.3 Interfacing ROS with radar hardware and IMU

Each hardware sensor required different approaches to be connected with ROS. To be con-
nected with ROS essentially means that the sensors data is published by a node as a topic
through ROS. This requires driver software that can either be sourced from a software repos-
itory if it already exist, or needs to be written if no compatible driver software is available.
Table 3.3 displays an overview of the driver software that was used in this project and
the topics they publish. Figure 3.10 displays a list of active topics while the hardware is
connected and corresponding driver software is running.

Figure 3.10: The command line tool rostopic used to list active topics while the system is running.

Section 3.3.1, 3.3.2 and 3.3.3 describes implementation and usage of the driver software for
each device.
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Device Driver package
Node name Published topics

AWR1843BOOST ti_mmwave_rospkg
ti_mmwave

/ti_mmwave/radar_scan
/ti_mmwave/radar_scan_pcl

IWR6843ISK radar_pose detection
readData_IWR6843ISK /joint_states

iPhone 8 IMU imu_from_ios_sensorlog
imu_from_ios_sensorlog_node /imu_iphone

Table 3.3: Driver software

3.3.1 AWR1843: ti_mmwave_rospkg

To communicate with the AWR1843 board, the ROS package ti_mmwave_rospkg was down-
loaded. This package connects to the AWR1843 radar and publishes its data as the ROS
topic /ti_mmwave/radar_scan. Table 3.4 displays a simplified overview of the data that is
a part of this topic. First a version provided by radar-lab on GitHub was tested[31] which
worked decently, however it did not publish the values of range, doppler_bin, bearing,
intensity to the ROS system. This was fixed by switching to a forked version made by
user Claud1234 on GitHub[32], which patched the DataHandlerClass.cpp file to provide
full support for the AWR1843 radar. The ti_mmwave_rospkg ROS package is designed to
work with the "Out of box demo" firmware for AWR1843.

Data type Explanation

Position Position of detected object in coordinates relative to the radar antenna
[x, y, z] in meters

Range Range to detected point in meters
Bearing Angle of the detected object relative to the x-axis from the radar antenna in [rad]
Intensity Intensity of detected point based on signal-to-noise ratio
Velocity Speed of the detected object in [ms ]

Table 3.4: Output data from the /ti_mmwave/radar_scan ROS topic.

3.3.2 IWR6843: custom python parser script

Due to the IWR6843 running a specific firmware the only available way to read and display
this data was through Texas Instruments own High Accuracy Visualizer version 2.0.0 [33].
Although it does provide the functionality to log data this feature is limited and the data
would be challenging to synchronise with the data from the AWR1843 and the IMU for
comparison. It was therefore necessary to write a script to parse the data sent over serial
USB. The procedure for this in broad steps was:

1. A script performing a similar task was found on GitHub[34]

2. Unnecessary parts of the script was removed or edited to fit the IWR6843.

3. The C source code of the IWR6843 High accuracy firmware was inspected to determine
the data format.

4. The JavaScript source code of the High Accuracy Visualizer was inspected to determine
how the data was parsed.

5. Raw data was logged to a spreadsheet and manually performed calculations on to verify
if the format was interpreted correctly.

6. Code for parsing was implemented.
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7. ROS node was created to publish the data to the ROS system.

Figure in appendix B.1 displays the starting section of a parsed message from the IWR6843ISK
running high accuracy measurement firmware. The first column is a label and has the name
of the data structure internally in the firmware source code. The second column contains the
raw data read from the serial port where each row has two bytes of data in decimal format.
The third column has partial interpretations and annotations of the data. The data structure
MmwDemo_detectedObj contains three range estimates, x1, x2, x3, separated into 9 fields.
Table 3.5 describes the mapping of these fields to the corresponding bytes. Note that the
mapping is not in the same order as the data received over serial, as the fields peakVal and
dopplerIdx are switched. The labels rangeIdx, peakVal and dopplerIdx only contain in-
formation about range estimates, and are likely reused variable names from different firmware
versions. The three range estimates are calculated according to the following formula:

xest =
(bytesA · 20 + bytesB · 28 + bytesC · 216) · 1.36

1048576
(3.1)

For the dataset provided in figure B.1, this would then give a range estimate value of:

x1 =
(53 · 1 + 68 · 28 + 25 · 216) · 1.36

1048576
= 2.14764[meter] (3.2)

Range estimate bytesA bytesB bytesC
x1 rangeIdx_1 rangeIdx_2 x1
x2 peakVal_1 peakVal_2 x2
x3 dopplerIdx_1 dopplerIdx_2 x3

Table 3.5: Mapping of bytes to range estimates, referencing the values in figure B.1.

3.3.3 IMU

For the lab experiments, an iPhone 8 was used as an IMU. The IMU hardware is a custom
sensor from Bosch Sensortec[35]. Although there exist many options for logging motion data,
this was determined to be a reasonable choice due to multiple reasons:

• The data is preprocessed to be unbiased, meaning environmental factors such as the
effect of gravity is removed[36].

• The device has built in wireless communication(Wi-Fi) and a battery for wireless op-
eration.

• Software was already available to enable communication between the iPhone 8 and
ROS: imu_from_ios_sensorlog ROS package and the SensorLog app.

This data can be sampled at up to 100 Hz, but a rate of 60 Hz was used in this project to
match the framerate that was used in RViz. For visualization purposes, 60 Hz is suitable as
it is the standard refresh rate of computer monitors [37]. For an industrial application in a
control system, a higher IMU refresh rate would be desired. The output data from the IMU
is described in table 3.6.
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Data type Format

Orientation Quaternion
[x, y, z, w]

Angular Velocity Vector in rad/s
[x, y, z]

Linear Accelatration Vector in m/s^2
[x, y, z]

Table 3.6: Output data from the /imu_iphone topic.

Figure 3.11: IMU message Figure 3.12: IMU message format

The app SensorLog[38] was used to transmit the mo-
tion data from the phone to ROS. This was done by
configuring a local Wi-Fi hotspot on the host machine
and connecting the phone to it. The SensorLog app was
then configured to act as a TCP server to enable stream-
ing of data from the phone to the host computer. The
IP address of the phone was noted and inserted into the
imu_from_ios_sensorlog launch file. When the node
was launched with the command line tool roslaunch,
then sensor data was available as a ROS topic. Figure
3.13 displays a screenshot from the SensorLog app inter-
face, while table 3.6 has an overview of the data that is
output by the /imu_iphone topic. The SensorLog app
outputs device orientation in RPY format, which is con-
verted to quaternions by the imu_from_ios_sensorlog
package. The RPY values could have been used directly
in RViz without conversion back and fourth through
quaternions, but due to the standard ROS IMU mes-
sage format using quaternions, it was performed this
way. Figure 3.12 displays the data structure of a stan-
dard ROS IMU message, while figure 3.11 displays an
IMU message with data.

Figure 3.13: Screenshot from the Sen-
sorLog app interface.

3.4 Logging and Visualization

The command line tool rosbag [39] was used for logging purposes in this project. This tool
enables all active ROS topics to be saved to a file, which can later be replayed or converted to
a csv file. The main advantage of this is that the dataset from an experiment can be replayed
and further investigated after the physical experiment has taken place. Furthermore, the
package rosbag_to_csv was used to convert rosbag files to csv files for further data analysis.
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An URDF robot model file was created to represent the physical experimental setup in
the lab. The main advantage of this is to be able to verify visually in real time the quality of
the data that is being logged. Figure 3.15 displays a simplified version of an URDF file that
was used in this project. A ball-and-socket joint is modeled by combining three separate
revolute joints. The URDF format requires each joint to connect to two links, therefore
dummy links are inserted between the revolute joints. Each joint takes as input a value in
radians that corresponds to a rotation displayed in RViz.

Figure 3.14: RViz

Figure 3.14 is a screengrab from RViz during real-time operation of the system.

• The spheres colored in the range from white to dark blue represents the raw point-cloud
data from the radar. An advantage of including this data is that it makes sure that
the radar sensor is located (0, 0, 0) in the coordinate system. The color is based on
intensity of the signal(Signal-to-noise ratio) where dark blue is weak while white is the
strongest. The scale is automatically set by RViz, therefore the white dot is always the
strongest signal.

• The gray cylinder represents the data from the IMU. This uses essentially raw data,
where the only processing that is done is converting the quaternions that the IMU
outputs to euler angles that are accepted by the URDF model.

• The blue cylinder represents the filtered and processed data from either the AWR1843
or the IWR6843 radar.

• Additionally, a gray beam is included at the top to represent the geometry of the
system. It has no technical purpose, and is only there for visualisation purposes.
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Figure 3.15: Schematic view of the URDF
model. Dummy links are inserted between
each joint as the URDF format has no ball-
and socket joint predefined.

Figure 3.16: Screenshot from the online
URDF viewer mymodelrobot. The joint
base_to_pipe_x is rotated. This exact
model can be interacted with at [40].

3.5 Data Processing

The following sections describe the data processing techniques and algorithms used to process
the data from the experiments.

3.5.1 Selection of bestX

As the IWR6843 outputs the three strongest peaks from the range FFT, it was needed to
select which of these to use in an automated manner. The three values x1, x2 and x3 from
the IWR6843 switches which object they represent continuously while data logging. An
algorithm for determining which value of xn was most likely to be the swinging load was
therefore implemented. This algorithm is based on finding the xn value is closest to 1 [m],
due to the starting position of the swinging load being 1 [m]. Appendix A lines 285-300
contains the implementation of this in Python.

3.5.2 Region of Interest

As the radars captures data from a wide field of view beyond the measurement subject, a
region of interest (ROI) was defined for the experiment. This excludes and discards data
points that not within the potential range that the swinging load cloud move. The ROI that
was used in general is defined in table 3.7, and is based on empirical values.

Min Max
x 0.4 [m] 1.5 [m]
y -0.7 [m] 0.9 [m]

Table 3.7: Region of Interest
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This ROI was used for both the plotted graphs and also during real-time operation in RViz.
Additionally, velocity was also used as a metric in the ROI. Any points that had a velocity
of zero was discarded during operation in RViz.

3.5.3 Conversion from range to angle

In order to measure the angle of the swinging load, the range measurements have to be used.
When knowing the position of the load, trigonometry can be applied to calculate the angle
β. The geometry of the system is described in figure 3.6. The value of β is estimated using
the inverse tangent trigonometric function:

β = tan−1 x− 1

L
(3.3)

3.5.4 Data clustering

The data collected from the radar included noise. An algorithm (see algorithm 1) was
therefore used to sort the swinging load data from the noise. This is a DBSCAN (Density
Based Spatial Clustering of Applications with Noise) algorithm [41], which groups together
points that are closely packed together. These groups of points are referred to as clusters.
Multiple clusters can be identified, and points belonging to no cluster are identified as noise.

Algorithm 1 Displacement and velocity estimation using radar.

Input: data from radar, ppp = [pppi]
N
i=1, pppi = [pxi pyi ] ▷ radar point cloud consisting of x and y

co-ordinate of all points in its field of view. pppi ∈ R1×2 and ppp ∈ RN×2

Output: displacement, ddd ▷ displacement of the swinging load. ddd ∈ RN ′×2 (where, N ′ < N).
Each column gives displacement in x and y direction, ddd = [dddx dddy], such that dddx = [dxi ]

N
i=1,

dddy = [dyi ]
N
i=1

1: zzz ← cluster(ppp) ▷ apply density based clustering. zzz = [zi]
N
i=1, where zi is radar point to cluster

assignment, known as cluster label of pi
2: K ← max(zzz) ▷ total number of cluster
3: for k=1 to K do
4: ccck ← [pppi]i:zi=k ▷ cluster k contains all the points (pipipi) whose cluster label (zi) is k
5: oook ← mean(ccck) ▷ mean of each cluster. oook =

[
oxk oyk

]
, where oxk, o

y
k is the x and y

component.
6: σσσk ← var(ccck) ▷ variance of each cluster. σσσk =

[
σx
k σy

k

]
, where σx

k , σ
y
k is the x and y

component.
7: end for
8: ccck ← [ccck]k:oook<1.5 & σσσk!=0 ▷ select the clusters

that meet these conditions. First conditions is based on the resolution obtained experiments to
acquire the relevant data and second conditions selects the points in cluster k that are dynamic
(filtering the static points).

9: ccck ← [ccck]k:max(σx
k )

▷ select the points in cluster k that has maximum
variance in x direction. ccck contains all the points corresponding to swinging load. ccck = [pppi]

N
i=1

′,
where N ′ < N and pppi = [pxi pyi ] ∀i

10: dddx ←ccck[:, 1] ▷ first column in cluster ccck contains the x-displacement of swinging load
11: dddy ←ccck[:, 2] ▷ second column in cluster ccck contains the y-displacement of swinging load
12: ddd ←[dddx dddy] ▷ displacement in both x and y plane
13: return ddd
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Chapter 4

Results

In this chapter, the results of the work done will be presented.

4.1 Datasets

Dataset Explanation

Dataset A Dataset from AWR1843 and IWR6843 measuring the
swinging load during a pendular motion[42].

Dataset B Range and velocity measurements from AWR1843 and IMU during
pendular motion[42].

Dataset C Random data collected to cover of the of field of view of the
AWR1843 radar[43].

Table 4.1: The three different datasets that are addressed in the results section. Dataset A contains
multiple experiments.

4.2 Clustering

The point cloud captured from the measurement radar (AWR1843) using experimental setup
is shown in figure 4.1. This figure contains detected points in the x-y plane in dataset A.
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Figure 4.1: Data captured from measurement radar (AWR1843). Dataset A.
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As shown in the previous figure, some of the data points that were recorded does not
belong to the swinging load. Figure 4.2 shows the same data as figure 4.1, and specifies
the cluster of points belonging to the swinging load. The acquired data contains multiple
clusters related to the swinging load, sparse data points and static background. By filtering
the data points based on algorithm 1, the cluster corresponding to swinging load is filtered
from rest of the objects (shown in figure 4.1(up)) and its corresponding x and y position
(down). This cluster contains the information related to the spatial location of swinging
load in x-y plane.
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Figure 4.2: Clustering the point cloud related to swinging load. Dataset A.
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Figure 4.3 shows that the point cloud data that contains the position of object in x-y plane.
It is visible that the acquired data can be differentiated in three regions - (a) contains the
information about the swinging load where the data are dynamic and densely distribute, (b)
contains the sparsely data that contain very little information about the swinging load and
(c) refers to the static background. Further, figure 4.4 gives the exploded view of the region
(a) where the data points are distributed with the resolution of 0.03 [m] in x-direction.
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Figure 4.3: Point cloud data from measurement radar. Dataset C.
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Figure 4.4: Demonstration of range resolution of region (a) in figure 4.3. Dataset C.
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4.3 Displacement

Figure 4.5 shows the measurement and reference radar data for dataset A, when filtered by
the ROI.
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Figure 4.5: X-position filtered to only include points within the egion of interest. Dataset A.

The retrieved displacement in x-direction compared with the reference radar sensor (IWR6843)
is shown in figure 4.6. Although the proposed method and algorithm is capable to estimate
the displacement in x- and y-direction, the reference radar sensor is only capable to measure
the displacement in x-direction (along its axis). So the validation is limited to x-direction
only. The root mean square error (rmse) obtained from displacement estimated from the
proposed method and the standard reference radar sensor is 3 [cm].
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Figure 4.6: Estimated displacement in x-direction from comparing against reference sensor. Dataset
A.

26



To validate the proposed method, four experiments were performed with different am-
plitudes. These are shown in figure 4.6 and figure 4.7. For each case the displacement is
estimated using the proposed method and compared with the reference radar sensor. The
rmse in each case is summarized in Fig 4.7.
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Figure 4.7: Experiments to validate proposed method for displacement estimation and rmse.
Dataset A.

4.4 Velocity and angle

The IMU that was attached to the swinging load during operation provided very accurate
measurements. Therefore, it was used as a reference for comparing and verifying the radar
measurements. As shown in figure 4.8, the radar’s measurements were fairly accurate during
velocity estimation. However, the radar had a better capability of measuring the velocity
when the load was swinging away from it, then it had when the load was swinging towards
it. This deviation seemed to decrease as the swinging load slowed down. The rmse in this
case was 0.1268 [m

s
].

27



0 2 4 6 8 10 12 14 16

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
e
lo

c
it
y
 [
m

/s
]

measurement radar

IMU reference

Figure 4.8: Velocity. Dataset B.

Figure 4.9 shows the angle measurements of the swinging load in motion. The AWR1843’s
measurements were somewhat accurate during the angle estimations. However, there were
significant deviation in the measurements at certain points. The rmse in this case was 4.3821
[deg] or 0.07 [rad].
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Figure 4.9: Angle. Dataset B.
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Chapter 5

Discussion

5.1 Data quality

In this thesis it has been emphasized to get as high-quality data from the AWR1843 radar
as possible. This has been done by investigating which configurations provides the highest
range resolution, highest framerate, and lowest noise levels. In addition to this the physical
setup was adjusted to increase data quality, by testing different objects as swinging load and
removing interfering objects in the field of view of the radar. A source of noise was other
people moving in the lab while experiments were conducted. The datasets which include
noise from people moving were therefore discarded.

5.2 ROS as data acquisition and visualization platform

ROS was chosen as a platform to develop the system on, but other approaches could have
been taken. Two alternative platforms to implement a system with would be only using
Python or MATLAB:

• Only Python: In this project, python was used as a part of ROS but could also have
been used alone without ROS. This would have the advantage of better platform porta-
bility of the code as Python can be used in any Windows/MacOS/Linux environment
while ROS is dependent on specific Linux distributions.

• MATLAB: A lot of code would need to be written to connect and parse the data from
the senors, but MATLAB also has the advantage of being easy to develop with and
having good tools built-in for presenting and analyzing data. MATLAB would also
have a portability advantage over ROS similar to Python.

• Another alternative for data capture would be using the sample tools provided by TI
(mmwave demo vizualizer and High accuracy Vizualizer), however these are limited to
very simple logs without timestamps. The source code of these tools are available and
could be modified to behave as desired, but this would require significant development
effort to get familiar with their frameworks. It was therefore determined that using
more standard engineering tools would be better.

ROS is a layer on top of Python and C++ which adds complexity, but also provides useful
tools to interact with the data from the sensors. MATLAB and Python has good capabilities
for plotting data, but does not have a tool like Rviz which ROS has. The logging tool rosbag
is also more powerful than logging that would be easily possible with MATLAB or Python,
which would be limited to reading and writing csv files, without more extensive development.
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Figure 5.1: Initial bracket design
Figure 5.2: Ball-and-socket joint as a
part of the bracket

5.3 Radar mounting bracket

Two different radar mounting brackets was made for the experiment:

1. An aluminium plate with drilled holes for experiment 1 displayed in figure 3.3

2. A 3D printed bracket with a ball-and-socket joint for experiment 2 displayed in figure
5.1 and 5.2

An aluminium plate was used for the experiment, which worked as intended. Figure
5.1 displays the first 3D printed bracket design, which features a slide in boltless slot and
a ball-and-socket joint(figure 5.2) for adjustable angle. The socket joint worked as intended
under light load, but it was determined that it was not stiff enough for reliable operation.
The slide in slot was too small for the AWR1843 radar to fit, and two different brackets
would be needed to made for both radars to be mounted simultaneously.

The design process for creating the bracket was:

1. Both AWR1843 and IWR6843ISK circuit boards were measured with calipers.

2. A sketch was made by hand on paper based on the measurements of the radars.

3. A 3D model was created in SolidWorks and exported as a 3D-printer compatible .stl
file.

4. The brackets was then printed on the University’s Ultimaker 2+ 3D-printers using PLA
filament.

5. The final 3D printed part was cleaned for print artifacts using hand tools.

The bracket was printed using fine printer settings(0.15mm layer height, 30% infill) as
the tolerances and strength of the socket joint was critical.
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Chapter 6

Conclusion

The goal of this thesis was to use mmWave radars for non-contact parameter estimation
of a swinging load. This was achieved by performing experiments in a lab environment
while using an AWR1843 radar for data acquisition. ROS was used to log and visualize the
data. An IWR6843 radar and an IMU was used as reference sensors in order to validate the
measurements performed by the AWR1843. The IWR6843 was used to validate the position
estimations, while the IMU was used to validate velocity and angle estimations.

The validation of the position estimations were performed only in one dimension, along
the radars x-axis. This was due to the IWR6843 using the "High accuracy Level Sensing"
firmware, which provided a higher range resolution than the AWR1843. However, this was at
the cost of the IWR6843 providing no data for y- and z-direction or velocity. Therefore, the
IWR6843 was used as a reference sensor during position estimations in x-direction. Using the
proposed method gave a root mean square error of 3 [cm]. For velocity and angle estimations
the IMU was used as reference. For velocity estimations this gave a rmse of 0.1268 [m

s
] and

for angle estimations it gave an rmse of 4.3821 [deg].

6.1 Further work

There is room for improvement for the work done in this thesis. The methods are not
fully developed, which causes the results to be less than optimal. Additional work can be
performed on the project to improve the performance of the system. A step that could be
taken to improve on the quality of the radar data is taking an embedded systems approach.
By programming the radars instead of using firmware provided by the manufacturer TI,
results can potential be improved. This could significantly increase the performance in
terms of both resolution and sample rate.

Given that the methods utilized in this project were improved, the data acquired from
the sensors could be used to develop anti-swing control systems. This could for example be
used for load handling in offshore environments like monopile installations or ship-to-ship
transfers. The measured radar data could be implemented in a crane controller in order to
negate the wave-induced heave motion that affects a suspended load at sea.
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Appendix A

Code

Key code files are included in this section. The full radar_pose_detection package along
with other project files are available on GitHub[44].

1. listener_radar.py: coverts radar point cloud data to RViz compatible joint states

2. pile-setup-imu-radar.urdf: URDF file to represent the experimental lab setup

3. readData_IWR6843ISK.py: IWR6843ISK driver, parses serial data, logs to CSV and
converts to RViz compatible joint states

4. display_radar_imu.launch: A ROS launch file to start multiple nodes with a specific
configuration at the same time.

listener_radar.py
1 #!/usr/bin/env python2.7
2
3 ## Converts /imu_iphone quaternions to euler angles for "pile-setup.urdf"
4 ## Sets /joint_states
5
6 import rospy
7 from ti_mmwave_rospkg.msg import RadarScan
8 from std_msgs.msg import Float64
9 from sensor_msgs.msg import JointState

10 from sensor_msgs.msg import Imu
11 from tf.transformations import euler_from_quaternion
12 from math import pi
13 from math import atan
14
15
16 class CommandToJointState:
17 def __init__(self):
18 self.joint_state = JointState()
19 self.joint_state.name.append("base_to_pipe_x_radar")
20 self.joint_state.name.append("base_to_pipe_y_radar")
21 self.joint_state.name.append("base_to_pipe_z_radar")
22 rospy.loginfo("Publishing joint_states for " + ...

str(self.joint_state.name))
23 self.joint_state.position.append([0.0, 0.0, 0.0])
24 self.joint_state.velocity.append(0.0)
25 self.joint_pub = rospy.Publisher("joint_states", JointState, ...

queue_size=1)
26 self.command_sub = rospy.Subscriber("/ti_mmwave/radar_scan", ...

RadarScan, self.command_callback, queue_size=1)

32



27
28
29
30 def command_callback(self, msg):
31 # Filter based on x value and velocity
32 if msg.x < 1.3 and msg.y > -1 and msg.y < 1 and (msg.velocity > 0 ...

or msg.velocity < 0):
33
34 # Calculate position with atan(x/ pipe length)
35 # msg.x-1 : 1 meter is subtracted as the pile is placed 1 ...

meter from the radar
36 self.joint_state.position = (atan(msg.y/0.5), ...

-atan((msg.x-1)/0.5), 0)
37 rospy.loginfo("thetaX:" + str(-atan((msg.x-1)/0.5)*(180/pi)) + ...

" \tthetaY: " + str(atan(msg.y/0.5)*(180/pi)) + " ...
\t\tIntensity: " + str(msg.intensity) + " point_id: " + ...
str(msg.point_id) + " velocity: " + str(msg.velocity))

38 #rospy.loginfo_throttle(1, "X: " + str(msg.x) + " Y: " + ...
str(msg.y))

39 self.joint_state.header.stamp = rospy.Time.now()
40 # Publish to topic
41 self.joint_pub.publish(self.joint_state)
42
43
44 if __name__ == '__main__':
45 rospy.init_node('command_to_joint_state_radar')
46 command_to_joint_stateX = CommandToJointState()
47 rospy.spin()

pile-setup-imu-radar.urdf
1 <?xml version="1.0"?>
2 <robot name="materials">
3
4 <material name="silver">
5 <color rgba="0.7 0.7 0.7 1"/>
6 </material>
7
8 <material name="blue">
9 <color rgba="0 0 0.9 1"/>

10 </material>
11
12
13 <material name="grey">
14 <color rgba="0.9 0.9 0.9 1"/>
15 </material>
16
17 <link name="ti_mmwave">
18 <visual>
19 <geometry>
20 <box size="3 0.1 0.1"/>
21 </geometry>
22 <material name="grey"/>
23 <origin xyz="1 0 0.5"/>
24 </visual>
25 </link>
26
27 <joint name="base_to_pipe_x" type="continuous">
28 <parent link="ti_mmwave"/>
29 <child link="steel_pipe_x_dummy"/>
30 <axis xyz="1 0 0"/>
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31 <origin xyz="1 0 0.5"/>
32 </joint>
33
34 <link name="steel_pipe_x_dummy" />
35
36 <joint name="base_to_pipe_y" type="continuous">
37 <parent link="steel_pipe_x_dummy"/>
38 <child link="steel_pipe_y_dummy"/>
39 <axis xyz="0 1 0"/>
40 <origin xyz="0 0 0"/>
41 </joint>
42
43 <link name="steel_pipe_y_dummy" />
44
45 <joint name="base_to_pipe_z" type="continuous">
46 <parent link="steel_pipe_y_dummy"/>
47 <child link="steel_pipe"/>
48 <axis xyz="0 0 1"/>
49 <origin xyz="0 0 0"/>
50 </joint>
51
52 <link name="steel_pipe">
53 <visual>
54 <geometry>
55 <cylinder length="0.7" radius="0.05"/>
56 </geometry>
57 <origin xyz="0 0 -0.5"/>
58 <material name="silver"/>
59 </visual>
60 </link>
61
62 <joint name="base_to_pipe_x_radar" type="continuous">
63 <parent link="ti_mmwave"/>
64 <child link="steel_pipe_x_dummy_radar"/>
65 <axis xyz="1 0 0"/>
66 <origin xyz="1 0 0.5"/>
67 </joint>
68
69 <link name="steel_pipe_x_dummy_radar" />
70
71 <joint name="base_to_pipe_y_radar" type="continuous">
72 <parent link="steel_pipe_x_dummy_radar"/>
73 <child link="steel_pipe_y_dummy_radar"/>
74 <axis xyz="0 1 0"/>
75 <origin xyz="0 0 0"/>
76 </joint>
77
78 <link name="steel_pipe_y_dummy_radar" />
79
80 <joint name="base_to_pipe_z_radar" type="continuous">
81 <parent link="steel_pipe_y_dummy_radar"/>
82 <child link="steel_pipe_radar"/>
83 <axis xyz="0 0 1"/>
84 <origin xyz="0 0 0"/>
85 </joint>
86
87 <link name="steel_pipe_radar">
88 <visual>
89 <geometry>
90 <cylinder length="0.7" radius="0.05"/>
91 </geometry>
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92 <origin xyz="0 0 -0.5"/>
93 <material name="blue"/>
94 </visual>
95 </link>
96
97 </robot>

readData_IWR6843ISK.py
1 import serial
2 import time
3 import numpy as np
4
5
6 # ROS imports
7 import rospy
8 from ti_mmwave_rospkg.msg import RadarScan
9 from std_msgs.msg import Float64

10 from sensor_msgs.msg import JointState
11 from sensor_msgs.msg import Imu
12 from math import pi
13 from math import atan
14
15 # ROS joint state class
16 class CommandToJointState:
17 def __init__(self):
18 self.joint_state = JointState()
19 self.joint_state.name.append("base_to_pipe_x_radar")
20 self.joint_state.name.append("base_to_pipe_y_radar")
21 self.joint_state.name.append("base_to_pipe_z_radar")
22 rospy.loginfo("Publishing joint_states for " + ...

str(self.joint_state.name))
23 self.joint_state.position.append([0.0, 0.0, 0.0])
24 self.joint_state.velocity.append(0.0)
25 self.joint_pub = rospy.Publisher("joint_states", JointState, ...

queue_size=1)
26
27
28
29
30
31
32 # Change the configuration file name
33 configFileName = 'high_accuracy_demo_68xx.cfg'
34
35 CLIport = {}
36 Dataport = {}
37 byteBuffer = np.zeros(2**15,dtype = 'uint8')
38 byteBufferLength = 0;
39
40
41 # ------------------------------------------------------------------
42
43 # Function to configure the serial ports and send the data from
44 # the configuration file to the radar
45 def serialConfig(configFileName):
46
47 global CLIport
48 global Dataport
49
50 # Linux
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51 CLIport = serial.Serial('/dev/ttyUSB0', 115200)
52 Dataport = serial.Serial('/dev/ttyUSB1', 921600)
53
54 # Read the configuration file and send it to the board
55 config = [line.rstrip('\r\n') for line in open(configFileName)]
56 for i in config:
57 CLIport.write((i+'\n').encode())
58 print(i)
59 time.sleep(0.01)
60
61 return CLIport, Dataport
62
63 # ------------------------------------------------------------------
64
65 # Function to parse the data inside the configuration file
66 def parseConfigFile(configFileName):
67 configParameters = {} # Initialize an empty dictionary to store the ...

configuration parameters
68
69 # Read the configuration file and send it to the board
70 config = [line.rstrip('\r\n') for line in open(configFileName)]
71 for i in config:
72
73 # Split the line
74 splitWords = i.split(" ")
75
76 # Hard code the number of antennas, change if other configuration ...

is used
77 numRxAnt = 4
78 numTxAnt = 3
79
80 # Get the information about the profile configuration
81 if "profileCfg" in splitWords[0]:
82 startFreq = int(float(splitWords[2]))
83 idleTime = int(splitWords[3])
84 rampEndTime = float(splitWords[5])
85 #freqSlopeConst = float(splitWords[8])
86 numAdcSamples = int(splitWords[10])
87 numAdcSamplesRoundTo2 = 1;
88
89 while numAdcSamples > numAdcSamplesRoundTo2:
90 numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2;
91
92 digOutSampleRate = int(splitWords[11]);
93
94 # Get the information about the frame configuration
95 elif "frameCfg" in splitWords[0]:
96
97 chirpStartIdx = int(splitWords[1]);
98 chirpEndIdx = int(splitWords[2]);
99 numLoops = int(splitWords[3]);

100 numFrames = int(splitWords[4]);
101 framePeriodicity = int(splitWords[5]);
102
103
104 # Combine the read data to obtain the configuration parameters
105 numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops
106 configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt
107 configParameters["numRangeBins"] = numAdcSamplesRoundTo2
108 #configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * ...

1e3) / (2 * freqSlopeConst * 1e12 * numAdcSamples)
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109 configParameters["rangeResolutionMeters"] = 1
110 #configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) ...

/ (2 * freqSlopeConst * 1e12 * configParameters["numRangeBins"])
111 configParameters["rangeIdxToMeters"] = 1
112 configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 ...

* (idleTime + rampEndTime) * 1e-6 * ...
configParameters["numDopplerBins"] * numTxAnt)

113 #configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 * ...
freqSlopeConst * 1e3)

114 configParameters["maxRange"] = 1
115 configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * ...

(idleTime + rampEndTime) * 1e-6 * numTxAnt)
116
117 return configParameters
118
119 # ------------------------------------------------------------------
120
121 # Funtion to read and parse the incoming data
122 def readAndParseData14xx(Dataport, configParameters):
123 global byteBuffer, byteBufferLength
124
125 # Constants
126 OBJ_STRUCT_SIZE_BYTES = 12;
127 BYTE_VEC_ACC_MAX_SIZE = 2**15;
128 MMWDEMO_UART_MSG_DETECTED_POINTS = 1;
129 MMWDEMO_UART_MSG_RANGE_PROFILE = 2;
130 maxBufferSize = 2**15;
131 magicWord = [2, 1, 4, 3, 6, 5, 8, 7]
132
133 # Initialize variables
134 magicOK = 0 # Checks if magic number has been read
135 dataOK = 0 # Checks if the data has been read correctly
136 frameNumber = 0
137 detObj = {}
138
139 x1 = 0
140 x2 = 0
141 x3 = 0
142
143 # Global for reusing old value if new is not good enough
144 global bestX
145
146
147 readBuffer = Dataport.read(Dataport.in_waiting)
148 byteVec = np.frombuffer(readBuffer, dtype = 'uint8')
149 byteCount = len(byteVec)
150
151 # Check that the buffer is not full, and then add the data to the buffer
152 if (byteBufferLength + byteCount) < maxBufferSize:
153 byteBuffer[byteBufferLength:byteBufferLength + byteCount] = ...

byteVec[:byteCount]
154 byteBufferLength = byteBufferLength + byteCount
155
156 # Check that the buffer has some data
157 if byteBufferLength > 16:
158
159 # Check for all possible locations of the magic word
160 possibleLocs = np.where(byteBuffer == magicWord[0])[0]
161
162 # Confirm that is the beginning of the magic word and store the ...

index in startIdx
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163 startIdx = []
164 for loc in possibleLocs:
165 check = byteBuffer[loc:loc+8]
166 if np.all(check == magicWord):
167 startIdx.append(loc)
168
169 # Check that startIdx is not empty
170 if startIdx:
171
172 # Remove the data before the first start index
173 if startIdx[0] > 0 and startIdx[0] < byteBufferLength:
174 byteBuffer[:byteBufferLength-startIdx[0]] = ...

byteBuffer[startIdx[0]:byteBufferLength]
175 byteBuffer[byteBufferLength-startIdx[0]:] = ...

np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype ...
= 'uint8')

176 byteBufferLength = byteBufferLength - startIdx[0]
177
178 # Check that there have no errors with the byte buffer length
179 if byteBufferLength < 0:
180 byteBufferLength = 0
181
182 # word array to convert 4 bytes to a 32 bit number
183 word = [1, 2**8, 2**16, 2**24]
184
185 # Read the total packet length
186 totalPacketLen = np.matmul(byteBuffer[12:12+4],word)
187 # Check that all the packet has been read
188 if (byteBufferLength >= totalPacketLen) and (byteBufferLength ...

!= 0):
189 magicOK = 1
190 #print(f"magicOK = {magicOK}")
191
192 # If magicOK is equal to 1 then process the message
193 if magicOK:
194 # word array to convert 4 bytes to a 32 bit number
195 word = [1, 2**8, 2**16, 2**24]
196
197 # Initialize the pointer index
198 idX = 0
199
200 # Read the header
201 magicNumber = byteBuffer[idX:idX+8]
202 idX += 8
203 version = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
204 idX += 4
205 totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word)
206 idX += 4
207 platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
208 idX += 4
209 frameNumber = np.matmul(byteBuffer[idX:idX+4],word)
210 idX += 4
211 timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word)
212 idX += 4
213 numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word)
214 idX += 4
215 numTLVs = np.matmul(byteBuffer[idX:idX+4],word)
216 idX += 4
217 #idX += 4
218 #print(f"magicNumber = {magicNumber} \t version = {version} \t ...

totalPacketLen = {totalPacketLen} \t platform = {platform} \t ...
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frameNumber = {frameNumber} ")
219 #print(f"timeCpuCycles = {timeCpuCycles} \t\t numDetectedObj = ...

{numDetectedObj} \t numTLVs = {numTLVs} \t\t idX = {idX}")
220 #np.savetxt("bytes.txt", byteBuffer)
221
222 # Read the TLV messages
223 for tlvIdx in range(numTLVs):
224
225 # word array to convert 4 bytes to a 32 bit number
226 word = [1, 2**8, 2**16, 2**24]
227
228 # Check the header of the TLV message
229 tlv_type = np.matmul(byteBuffer[idX:idX+4],word)
230 idX += 4
231 tlv_length = np.matmul(byteBuffer[idX:idX+4],word)
232 idX += 4
233 #print(f"tlv_type = {tlv_type} \t ...

MMWDEMO_UART_MSG_DETECTED_POINTS = ...
{MMWDEMO_UART_MSG_DETECTED_POINTS}")

234 # Read the data depending on the TLV message
235 if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS:
236
237 # word array to convert 4 bytes to a 16 bit number
238 word = [1, 2**8]
239 tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word)
240 idX += 2
241 tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word)
242 idX += 2
243
244 # Initialize the arrays
245 rangeIdx = np.zeros(numDetectedObj,dtype = 'int16')
246 dopplerIdx = np.zeros(numDetectedObj,dtype = 'int16')
247 peakVal = np.zeros(numDetectedObj,dtype = 'int16')
248 x = np.zeros(numDetectedObj,dtype = 'int16')
249 y = np.zeros(numDetectedObj,dtype = 'int16')
250 z = np.zeros(numDetectedObj,dtype = 'int16')
251 #print(f"tlv_numObj = {tlv_numObj}")
252 for objectNum in range(numDetectedObj):
253
254 # Read the data for each object
255 rangeIdx[objectNum] = ...

np.matmul(byteBuffer[idX:idX+2],word)
256 idX += 2
257 dopplerIdx[objectNum] = ...

np.matmul(byteBuffer[idX:idX+2],word)
258 idX += 2
259 peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
260 idX += 2
261 x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
262 idX += 2
263 y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
264 idX += 2
265 z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
266 idX += 2
267 #print(f"rangeIdx[{objectNum}] = {rangeIdx[objectNum]} ...

\t dopplerIdx[{objectNum}] = ...
{dopplerIdx[objectNum]} \t peakVal[{objectNum}] = ...
{peakVal[objectNum]} \t x[{objectNum}] = ...
{x[objectNum]} \t y[{objectNum}] = {y[objectNum]} ...
\t z[{objectNum}] = {z[objectNum]} \t")

268
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269 # x1: 6 bytes: rangeIDX1, rangeIDX2*256, x*65536
270 # x2: 6 bytes: peakval1, peakval2*256, y*65536
271 # x3: 6 bytes: dopplerIdx1, dopplerIdx2*256, z*65536
272
273 x1 = rangeIdx[objectNum] + x[objectNum]*65536
274 x2 = peakVal[objectNum] + y[objectNum]*65536
275 x3 = dopplerIdx[objectNum] + z[objectNum]*65536
276
277 # Multiply by 1.36 and divide by 1048576 to get number ...

to meters
278
279 x1 = round((x1*1.36)/1048576, 4)
280 x2 = round((x2*1.36)/1048576, 4)
281 x3 = round((x3*1.36)/1048576, 4)
282
283
284 # Check which range value is closest to 1 meter
285 strongestPeaks = [x1, x2, x3]
286 myNumber = 1
287 closestValue = min(strongestPeaks, key=lambda ...

x:abs(x-myNumber))
288
289 # For average
290 oldX = bestX
291
292
293 # Check if new value is usable
294 if closestValue > 1.5 or closestValue < 0.7:
295 bestX = bestX
296 else:
297 bestX = closestValue
298
299 #Average with previous value
300 avg = ((oldX + bestX)/2)
301
302 #avg = -atan((avg-1)/1)
303
304
305 print(f"x1: {x1} \t x2: {x2} \t x3: {x3} \t avg: ...

{oldX} Deg: {round(bestX*(180/pi),4)}")
306
307 # Calculate position with atan(x/ pipe length)
308 # msg.x-1 : 1 meter is subtracted as the pile is ...

placed 1 meter from the radar, length of pendulum ...
is 1 meter

309 command_to_joint_stateX.joint_state.position = (0, ...
avg, 0)

310
311 command_to_joint_stateX.joint_state.header.stamp = ...

rospy.Time.now()
312 # Publish to topic
313 command_to_joint_stateX.joint_pub.publish(command_to_joint_stateX.joint_state)
314
315 dataOK = 1
316
317
318 # Remove already processed data
319 if idX > 0 and byteBufferLength > idX:
320 shiftSize = totalPacketLen
321
322 byteBuffer[:byteBufferLength - shiftSize] = ...

40



byteBuffer[shiftSize:byteBufferLength]
323 byteBuffer[byteBufferLength - shiftSize:] = ...

np.zeros(len(byteBuffer[byteBufferLength - ...
shiftSize:]),dtype = 'uint8')

324 byteBufferLength = byteBufferLength - shiftSize
325
326 # Check that there are no errors with the buffer length
327 if byteBufferLength < 0:
328 byteBufferLength = 0
329
330
331 return dataOK, frameNumber, x1
332
333 # ------------------------------------------------------------------
334
335 # Funtion to update the data and display in the plot
336 def update():
337
338 dataOk = 0
339 global detObj
340 x = []
341 y = []
342
343
344
345 # Read and parse the received data
346 dataOk, frameNumber, x1 = readAndParseData14xx(Dataport, configParameters)
347 #print(f"dataOK = {dataOk}")
348 #if dataOk and x1:
349 # print(detObj)
350 # x = -detObj["x"]
351 # y = detObj["y"]
352 #plt.clf()
353 #plt.axis([0, 4, 0, 1])
354 #plt.scatter(x1, 0.5)
355 #plt.pause(0.01)
356 #s.setData(x,y)
357 #QtGui.QApplication.processEvents()
358
359 #return dataOk
360
361
362 # ------------------------- MAIN ...

-----------------------------------------
363
364 # Configurate the serial port
365 CLIport, Dataport = serialConfig(configFileName)
366
367 # Get the configuration parameters from the configuration file
368 configParameters = parseConfigFile(configFileName)
369
370 # START QtAPPfor the plot
371 """
372 app = QtGui.QApplication([])
373
374 # Set the plot
375 pg.setConfigOption('background','w')
376 win = pg.GraphicsWindow(title="2D scatter plot")
377 p = win.addPlot()
378 p.setXRange(-0.5,0.5)
379 p.setYRange(0,1.5)
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380 p.setLabel('left',text = 'Y position (m)')
381 p.setLabel('bottom', text= 'X position (m)')
382 s = p.plot([],[],pen=None,symbol='o')
383
384 win.show()
385 app.exec_()
386 """
387 #plt.show()
388
389 #plt.axis([0, 15, 0, 1])
390
391
392 # Main loop
393 detObj = {}
394 frameData = {}
395 currentIndex = 0
396
397 rospy.init_node('command_to_joint_state_radar')
398 command_to_joint_stateX = CommandToJointState()
399 #rospy.spin()
400
401
402 while True:
403 try:
404 # Update the data and check if the data is okay
405 dataOk = update()
406
407
408 if dataOk:
409 # Store the current frame into frameData
410 frameData[currentIndex] = detObj
411 currentIndex += 1
412
413 time.sleep(0.033) # Sampling frequency of 30 Hz
414
415 # Stop the program and close everything if Ctrl + c is pressed
416 except KeyboardInterrupt:
417 CLIport.write(('sensorStop\n').encode())
418 CLIport.close()
419 Dataport.close()
420 #win.close()
421 break

display_radar_imu.launch
1 <launch>
2
3 <arg name="model" default="$(find ...

radar_pose_detection)/urdf/pile-setup-imu-radar.urdf"/>
4 <arg name="gui" default="false" />
5 <arg name="rvizconfig" default="$(find ...

radar_pose_detection)/rviz/urdf.rviz" />
6
7 <!-- Input arguments -->
8 <arg name="device" value="1642" doc="TI mmWave sensor device type [1443, ...

1642]"/>
9 <arg name="config" value="2d" doc="TI mmWave sensor device configuration ...

[3d_best_range_res (not supported by 1642 EVM), 2d_best_range_res]"/>
10 <arg name="max_allowed_elevation_angle_deg" default="90" doc="Maximum ...

allowed elevation angle in degrees for detected object data [0 > ...
value >= 90]}"/>
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11 <arg name="max_allowed_azimuth_angle_deg" default="90" doc="Maximum ...
allowed azimuth angle in degrees for detected object data [0 > value ...
>= 90]}"/>

12
13 <!-- Static transform from map to base_radar_link for visualization of ...

stand-alone mmWave sensor using Rviz -->
14 <node pkg="tf" type="static_transform_publisher" ...

name="static_tf_map_to_base_radar_link" args="0 0 0 0 0 0 ...
ti_mmwave_pcl ti_mmwave 30"/>

15
16
17 <param name="robot_description" command="$(find xacro)/xacro $(arg ...

model)" />
18
19 <node if="$(arg gui)" name="joint_state_publisher" ...

pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" />
20 <node name="robot_state_publisher" pkg="robot_state_publisher" ...

type="robot_state_publisher" />
21 <node name="listener_imu" pkg="radar_pose_detection" ...

type="listener_imu.py" />
22 <node name="listener_radar" pkg="radar_pose_detection" ...

type="listener_radar.py" />
23 <node name="rviz" pkg="rviz" type="rviz" args="-d $(arg rvizconfig)" ...

required="true" />
24
25 </launch>
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Appendix B

Other
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Figure B.1: Data format with partial parsing. The first column contains the data type from the C
source code. The second column contains raw data in bytes, while the third column is annotations.
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