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ABSTRACT

Convolutional Neural Networks (CNNs) are propelling ad-
vances in a range of different computer vision tasks such as
object detection and object segmentation. Their success has
motivated research in applications of such models for medi-
cal image analysis. If CNN-based models are to be helpful
in a medical context, they need to be precise, interpretable,
and uncertainty in predictions must be well understood. In
this paper, we develop and evaluate recent advances in un-
certainty estimation and model interpretability in the context
of semantic segmentation of polyps from colonoscopy im-
ages. We evaluate and enhance several architectures of Fully
Convolutional Networks (FCNs) for semantic segmentation
of colorectal polyps and provide a comparison between these
models. Our highest performing model achieves a 76.06%
mean IOU accuracy on the EndoScene dataset, a considerable
improvement over the previous state-of-the-art.

Index Terms— Polyp Segmentation, Deep Learning,
Fully Convolutional Networks, Uncertainty Modeling, CNN
interpretability

1. INTRODUCTION

Colon cancer prevention is currently primarily done with the
help of regular colonoscopy screenings. However, depend-
ing on the size and type, roughly 8 − 37% of polyps are
missed during the process [1]. Missed polyps can have fatal
consequences, as they are potential precursors to colon can-
cer, which causes the third most cancer deaths globally [2].
Hence, increasing the detection rate of polyps is an impor-
tant topic of research. Towards this end, automated detection
procedures have been proposed [3, 4], which have the advan-
tage of not being influenced by factors such as the fatigue of
medical personnel towards the end of long operations. How-
ever, they present additional novel challenges. For instance,
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to enable effective use of such methods, medical staff should
be able to understand why the model believes that a specific
region contains a polyp (interpretability) and there should be
some notion of uncertainty in predictions.

The last couple of years have seen several works on auto-
matic procedures based on Deep Convolutional Neural Net-
works (CNN) for health domain tasks such as interstitial lung
disease classification [5], cell detection [6], estimation of car-
diothoracic ratio [7], and polyp detection [8]. CNNs have
improved the state of the art in a number of computer vision
tasks such as image classification [9], object detection [10]
and semantic segmentation [11, 12]. Recently, CNNs have
shown promising performance for the task of polyp segmen-
tation [2]. However, despite the promising results obtained
on polyp segmentation, model interpretability and uncertainty
quantification have been lacking, and recent advances in deep
learning have not been incorporated [2].

In this paper, we enhance and evaluate two recent CNN
architectures for pixel-to-pixel based segmentation of col-
orectal polyps, referred to as Fully Convolutional Networks
(FCNs). Furthermore, we incorporate and develop recent
advances in the field of deep learning for semantic segmen-
tation of colorectal polyps in order to model uncertainty and
increase model interpretability leading to novel uncertainty
maps [13, 14] in a polyp segmentation context as well as the
visualization of descriptive regions in the input image using
Guided Backpropagation [15]. To the author’s knowledge,
these techniques have not been previously explored in the
field of semantic segmentation of colorectal polyps.

2. ENHANCED FULLY CONVOLUTIONAL
NETWORKS FOR POLYP SEGMENTATION

We choose two architectures for the task of polyp segmenta-
tion, namely the Fully Convolutional Network 8 (FCN-8) [11]
and the more recent SegNet [16]. Previous use of FCNs for
polyp segmentation have shown promising results, and we
hypothesized that the inclusion of recent advances in deep
learning would improve these results further. SegNet has been
shown to achieve comparative results to FCNs in some appli-
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cation domains but is a less memory intensive approach with
fewer parameters to optimize.

The FCN is a CNN architecture particularly well suited to
tackle per pixel prediction problems like semantic segmenta-
tion. FCNs employ an encoder-decoder architecture and are
capable of end-to-end learning. The encoder extracts use-
ful features from an image and maps it to a low-resolution
representation. The decoder is tasked with mapping the low-
resolution representation back into the same resolution as the
input image. Upsampling in FCNs is performed using either
bi-linear interpolation or by transposed (or fractional strided)
convolutions, where the convolution filters are learned as part
of the optimization procedure. Learned upsample filters add
additional parameters to the network architecture, but tend to
provide better overall results [11]. Upsampling can further
be improved by including skip connections, which combine
coarse level semantic information with higher resolution seg-
mentation from previous network layers. Due to the lack of
fully connected layers, inference can be performed on images
of arbitrary size.

The SegNet architecture builds on the general idea of
FCNs but proposes a novel approach to upsampling. In-
stead of learning the upsampling, SegNet utilizes the pooling
indices from the encoder to upsample activations in the de-
coder, thereby producing sparse feature maps. These sparse
representations are then processed by additional convolu-
tional layers to produce dense activations and predictions.
The advantage of SegNet compared to FCN is the reduction
in learnable parameters, only 29.5 vs. 134.5 million, as the
upsampling filters in FCNs tend to be large.

For our experiments, we propose an Enhanced FCN-8
(EFCN-8) architecture which leverages recent development
in the deep learning field. The architecture is depicted in
Figure 1. The second architecture that we propose is an En-
hanced variant of SegNet (ESegNet), depicted in Figure 2. To
improve overall performance, we propose to include several
recent advances in deep learning which were not present in
the original architectures. For the FCN-8, we make use of
Batch Normalization [17] after each layer. Batch Normaliza-
tion is a procedure that normalizes the output of each layer,
allowing for a larger learning rate that accelerate the training
procedure. For ESegNet, we include Dropout [18] after the
three central encoders and decoders inspired by [13]. Dropout
is a regularization technique that randomly set units in a layer
to zero and can be interpreted as an ensemble of several net-
works. Including Dropout serves two purposes. It regularizes
the model which encourage better generalization capabilities
and, as we will see in Section 3, enable estimation of uncer-
tainty in the model’s prediction. The encoder of both models
corresponds to the network VGG16 [19], which allows us to
initialize the encoder with pretrained weights from a VGG16
model that was previously trained on the ImageNet dataset,
an approach referred to as transfer learning. Utilizing pre-
trained weights was incorporated in the original architectures,

Fig. 1. An illustration of the Enhanced Fully Convolutional
Network-8. Color codes description: Blue - Convolution
(3x3), Batch Normalization and ReLU; Yellow - Upsampling;
Pink - Summing; Red - Pooling (2x2); Green - Soft-max.
Dropout was included according to [19].

but not included in recent work on segmentation of colorectal
polyp using FCNs [2].

3. UNCERTAINTY AND INTERPRETABILITY IN
FULLY CONVOLUTIONAL NETWORKS FOR

POLYP SEGMENTATION

Despite their success on a number of different tasks, CNNs
are not without their flaws. Most CNNs are unable to provide
any notion of uncertainty in their prediction and determining
what features in the input affect its prediction is challenging
as a result of the complexity of the model. Such limitations
have not stopped CNNs from being applied on many com-
puter vision tasks, yet they become especially apparent when
developing CNNs for medical applications. Most physicians
will be reluctant to make a diagnosis based on a single seg-
mentation map with no notion of uncertainty and indication as
to what features were the basis of the prediction. This section
will describe two recently proposed methods which address
the limitations just outlined.

3.1. Uncertainty

Modeling uncertainty is crucial for designing trustworthy au-
tomatic procedures, yet CNNs have no natural way of provid-
ing such uncertainties to accompany its prediction. In con-
trast, Bayesian models provide a framework which naturally
includes uncertainty by modeling posterior distribution for
the quantities in question. Given a dataset X = {x1, ...,xN}



Fig. 2. Depiction of the standard SegNet architecture ob-
tained from [16]. Our implementation include Dropout in the
three central encoders and decoders for regularization and to
enable uncertainty estimation.

with labels Y = {y1, ...,yN}, the predictive distribution of a
Bayesian neural network can be modeled as:

p(y|x,X,Y) =

∫
p(y|x,W)p(W|x,X,Y)dW (1)

where W refers to the weights of the model, p(y|x,W)
is the softmax function applied to the output of the model,
denoted by fW(x), and p(W|x,X,Y) is the posterior over
the weights which capture the set of plausible models param-
eters for the given data. Obtaining p(y|x,W) only requires a
forward pass of the network, but the inability to evaluate the
posterior of the weights analytically makes Bayesian neural
networks computationally unfeasible. To sidestep the prob-
lematic posterior of the weights, [20] proposed to incorpo-
rate Dropout [18] as a method for sampling sets of weights
from the trained network to approximate the posterior of the
weights. The predictive distribution in Equation 1 can then be
approximated using Monte Carlo integration as follows:

p(y|x,X,Y) ≈ 1

T

T∑
t=1

Softmax(fŴt(x)) (2)

where T is the number of sampled sets of weights and
Ŵt is a set of sampled weights. In practice, the predictive
distribution from Equation 2 can be estimated by running T
forward passes of a model with Dropout applied to produce
T predictions, which in turn can be used to estimate the un-
certainty associated with the sample in question. The authors
of [20] refer to this method of sampling from the posterior of
the predictive distribution as Monte Carlo Dropout.

3.2. Interpretability

Another desirable property that CNNs lack is interpretability,
i.e. being able to determine what features induces the network
to produce a particular prediction. However, several recent
works have proposed different methods to increase network
interpretability [21, 22]. In this paper, we evaluate and de-
velop the Guided Backpropagation [15] technique for FCNs
on the task of semantic segmentation of colorectal polyp in
order to assess which pixels in the input image the network

deems important for identifying polyps. We choose Guided
Backpropagation as it is known to produce clear visualiza-
tions of salient input pixels and is more straightforward to
employ compared to other methods.

The central idea of Guided Backpropagation is the inter-
pretation of the gradients of the network with respect to an
input image. In [23] they noted that, for a given image, the
magnitude of the gradients indicate which pixels in the input
image need to be changed the least to affect the prediction the
most. By utilizing backpropagation, they obtained the gradi-
ents corresponding to each pixel in the input such that they
could visualize what features the network considers essential.
In [15] they argued that positive gradients with a large mag-
nitude indicate pixels of high importance while negative gra-
dients with a large magnitude indicate pixels which the net-
works want to suppress which, if included in the visualization
of important pixels, can result in noisy images. To avoid this,
Guided Backpropagation alters the backward pass of a neural
network such that negative gradients are set to zero in each
layer, thus allowing only positive gradients to flow backward
through the network and highlighting pixels which the system
finds important.

4. RESULTS

In this section, we present quantitative and qualitative results
on semantic segmentation of colorectal polyps for both archi-
tectures, along with details regarding the training of the two
models. We also present the results of using Monte Carlo
Dropout to model the uncertainty associated with the predic-
tions and the results of using Guided Backpropagation to vi-
sualize which pixels are considered important.

4.1. Training Approach

We evaluate our methods on the EndoScene [2] dataset for
semantic segmentation of colorectal polyps, which consists
of 912 RGB images obtained from colonoscopies from 36
patients. For each of the input images comes a correspond-
ing annotated image provided by physicians, where pixels be-
longing to a polyp are marked in white and pixels belonging to
the colon are marked in black. The first row of Figure 3 and 4
display examples from the dataset. We consider the two-class
problem, where the task is to classify each pixel as polyp or
part of the colon (background class). Following the approach
of [2] we separate the dataset into training/validation/test set,
where the training set consists of 20 patients and 547 images,
the validation set consists of 8 patients and 183 images, and
the test set consists of 8 patients and 182 images. All RGB
input image are normalized to range [0, 1].

For performance evaluation, we calculate Intersection
over Union (IoU) and global accuracy (per-pixel accuracy)
on the test set. For a given class c, prediction ŷi and ground
truth yi, the IoU is defined as



IoU(c) =

∑
i(ŷi == c ∧ yi == c)∑
i(ŷi == c ∨ yi == c)

(3)

where ∧ is the logical and operation and ∨ is the logical
or operation.

We initialize the decoder weights of both EFCN-8 and
ESegNet using HeNormal initialization [24] and employ pre-
trained weights for the encoders, as mentioned previously. All
models were trained using ADAM [25] with a batch size of
10 and cross-entropy loss [11]. We use the validation set to
apply early stopping and monitor polyp IoU score with a pa-
tience of 30. Class balancing was not applied as it gave no
significant improvement and no weight decay was used.

Data augmentation was applied according to best prac-
tices to increase the number of training images artificially. We
utilize a dynamic augmentation scheme that applies cropping,
rotation, zoom, and shearing. During training, we crop im-
ages into 224x224 patches randomly chosen from the center
or one of the corners, following the example of [9]. We apply
random rotation between -90 and 90 degrees, random zoom
from 0.8-1.2 and random shearing from 0-0.4.

4.2. Quantitative and Qualitative Results

In this section, we present the results for both architectures.
Table 1 presents the quantitative results for our EFCN-8 and
ESegNet on the test set along with previous results on this
dataset obtained for a vanilla FCN-8 [2] and a previously
state-of-the-art methods based on non-deep learning meth-
ods [4]. Row two of Figure 3 and 4 displays predictions from
both models based on samples from the test set.

Model # P(M) IoU B IoU P IoU M Acc M
SDEM [4] << 1 0.739 0.221 0.480 0.756
FCN-8 [2] 134.5 0.946 0.509 0.728 0.949
ESegNet 29.5 0.933 0.522 0.728 0.935
EFCN-8 134.5 0.946 0.587 0.767 0.949

Table 1. Results for the two-class problem of the EndoScene
dataset. Abbreviations are: # P(M) = number of parameters in
millions, IoU (Background, Polyp and Mean) and Accuracy
Mean.

4.3. Uncertainty and Interpretability Results

The third row of Figure 3 and 4 show the estimated standard
deviation of each pixel in the predictions of both models. Us-
ing Monte Carlo Dropout, we obtain ten predictions which
we used to estimate the standard deviation of each pixel. Row
four of Figure 3 and 4 displays the results of using Guided
Backpropagation to highlight what pixels in the input image
both models consider important to their prediction.

(a) input image (b) Ground truth

(c) EFCN-8 prediction (d) ESegNet prediction

(e) EFCN-8 uncertainty (f) ESegNet uncertainty

(g) EFCN-8 interpretability (h) ESegNet interpretability

Fig. 3. Qualitative results on the Endoscene test set. The
first row, from left to right, displays input image and its cor-
responding ground truth. The second row displays the predic-
tion of both models. The third row displays the uncertainty
associated with the prediction for both models and the fourth
row displays which features are highlighted as important for
both models.

5. DISCUSSION

From Table 1 it is evident that the deep learning based models
provide predictions of higher precision compared to previous
methods based on traditional machine learning techniques.
Also, the difference in performance between [2] FCN-8 and



(a) input image (b) Ground truth

(c) EFCN-8 prediction (d) ESegNet prediction

(e) EFCN-8 uncertainty (f) ESegNet uncertainty

(g) EFCN-8 interpretability (h) ESegNet interpretability

Fig. 4. Qualitative results on the Endoscene test set. The
first row, from left to right, displays input image and its cor-
responding ground truth. The second row displays the predic-
tion of both models. The third row displays the uncertainty
associated with the prediction for both models and the fourth
row displays which features are highlighted as important for
both models.

our EFCN-8 indicated that the inclusion of recent techniques
such as transfer learning and Batch Normalization is vital to
increase the capabilities of deep models. Furthermore, ESeg-
Net can achieve comparable results to the FCN-8 even though
it has far fewer parameters. However, when recent techniques
are included, we get a gap in performance between ESegNet

and the EFCN-8. This might imply that the increased com-
plexity of the EFCN-8 is beneficial to performance.

For the qualitative results, Figure 3 displays an example
where both models produce a correct prediction while Fig-
ure 4 shows an example where both models correctly segment
the polyp present in the input image, but ESegNet also pre-
dicts a polyp where there is none. We have included the first
example to illustrate that both models are capable of produc-
ing precise and correct predictions. The second example is
included to highlight the difficulty when comparing models.
For instance, given the predictions in Figure 4 and no ground
truth, which prediction would you trust? We know the EFCN-
8 achieved a higher performance on the test set, but that does
not necessarily mean that it is correct in this particular case.
Without further information, it would be difficult to choose
between the two models without consulting a medical expert
to asses the images.

However, if we could say something about the uncertainty
of the two predictions we might choose the prediction with the
lowest uncertainty associated with it. For the uncertainty esti-
mates shown in row three of Figure 3, where both models suc-
cessfully segment the polyp in the image, we see that the only
pixels associated with high uncertainty are those around the
border of the prediction. Such uncertainties are understand-
able as even physicians are unable to state precisely where the
colon ends and the polyp starts. However, the uncertainty esti-
mates which are shown in row three of Figure 4 tell a different
story. Notice that both models exhibit similar uncertainty for
the region where they both correctly segment a polyp, but ES-
egNet also has a large area of uncertainty for pixels associated
with a ridge going along the colon. The falsely segmented
polyp lies on this ridge of uncertainty, which might indicate
that we should be careful about trusting the polyp prediction
toward the bottom right of the image.

Another interesting question is, what pixels in the input
image is influencing these predictions? In row four of Fig-
ure 3, we see that pixels associated with the edges of the polyp
are highlighted, indicating that the models are leveraging edge
information to identify the polyp. Also, notice that the EFCN-
8 considers the entire top edge of the polyp while ESegNet
only considers the left edge of the polyp, which might imply
that the EFCN-8 has obtained a deeper understanding of the
shape and form of polyp and can extract more useful informa-
tion from the input image. In row four of Figure 4 we again
see that both models are reacting to edges in the input image.
But while the EFCN-8 can correctly identify pixels which be-
long to an actual polyp, ESegNet is also considering pixels
which correspond to ridges of the colon.

Visualizing important pixels and modeling uncertainty is
not just important to design automatic procedures which are
trustworthy but also, as we have seen, allows for model anal-
ysis and model comparison. Of course, the results of such
methods are still somewhat open to interpretation, and deep
learning would benefit from a more theoretical framework for



analyzing models, yet including techniques such as Monte
Carlo Dropout and Guided Backpropagation can lead towards
a better understanding of CNNs.

6. CONCLUSION

In this paper, we improved and applied two established CNN
architectures for pixel-wise segmentation, evaluated their per-
formance on colorectal polyp segmentation and conclude that
CNNs can achieve high performance in this context of med-
ical image analysis. We also argued that modeling the un-
certainty of the networks output and visualizing descriptive
image regions in the input image can increase interpretability
and make models based on deep learning more applicable for
medical personnel.

The field of deep learning is continually improving and
several recent architectures for semantic segmentation such
as [26] show promising results. Increasing network inter-
pretability is an active field of research where Relevance
Propagation [22] is a particularly interesting approach for fu-
ture experimentation. Post-processing procedures have also
shown to improve performance of CNNs and including Con-
ditional Random Fields could improve spatial coherence [12].
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