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University of São Paulo, Brazil 

 

Abstract 

In a 1747 publication, De motu cymbarum remis propulsarum in fluviis (“On the motion of boats propelled 

by oars in rivers”), Leonhard Euler (1707-1783) works out various instances of a boat moving at constant 

speed across a stream flowing in straight streamlines at assigned speeds, in which one of these gives rise 

to a variational problem consisting of finding the quickest crossing path between two points on opposite 

side of the river banks, which is generally known as the navigation variational problem. This problem 

together with the well-known catenary and brachistochrone problems, are considered classical examples 

in the calculus of variations. Here, we shall present a brief account on Euler’s recurrent interests in calculus 

of variations, mainly laid out in three publications that span between 1738 and 1744. Particular focus will 

be given to Euler’s navigation variational problem. A brief account on Lagrange’s contributions to 

variational calculus is also presented.  

Keywords: calculus of variations, variational problems, functionals, Euler-Lagrange equation 

1. Introduction 

The calculus of variations is a line of research that began with the proposal of the brachistochrone 

problem, which is to find the shape of a wire joining two given points, so that a bead will slide down the 

wire under gravity from one point to the other (without friction) in the shortest time. The resulting curve 

is known as the curve of fast descent or the brachistochrone curve (from Ancient Greek brákhistos khrónos 

'shortest time'). The problem was first considered by Galileo Galilei (1564–1642) in 1638, but, lacking the 

necessary mathematical techniques, he concluded erroneously that the solution is the arc of a circle 

joining the two points. However, it was Johann Bernoulli (1667–1748) who made the problem famous 

when in June 1696 he challenged readers of the scientific journal Acta Eruditorum to solve it, reassuring 

them that the curve was well known to geometers. He also stated that he would demonstrate the solution 

at the end of the year, provided that no one else had. In December 1696, Bernoulli extended the time 

limit to Easter 1697, though by this time he was in possession of the solution by Gottfried Wilhelm Leibniz 

(1646–1716), sent in a letter dated 16 June 1696—Leibniz having received notification of the problem on 

9 June. Isaac Newton (1642–1727) also solved the problem quickly, apparently on the day of receipt, and 

published his solution anonymously.a However, Bernoulli immediately recognized the solution as 

Newton’s saying tanquam ex ungue leonem (we know the lion by his claw). 

Euler’s contributions to variational mathematics is concentrated in three publications: E27 Problematis 

isoperimetrici in latissimo sensu accepti solutio generalis (On isoperimetric problems in the widest sense) 

[1], written in 1732, published in 1738, E56 Curvarum maximi minive proprietate gaudientium inventio 

 
a https://www.open.edu/openlearn/pluginfile.php/1118521/mod_resource/content/3/Introduction%20to%20the%20calculus%20of%20variations_ms327.pdf, 
retrieved on May 15 2022 
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nova et facilis (New and easy method of finding curves enjoying a maximal or minimal property) [2], 

written in 1736, published in 1741, and E65 Methodus inveniendi lineas curvas maximi minimive 

proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti (A method for 

finding curved lines enjoying properties of maximum or minimum, or solution of isoperimetric problems 

in the broadest accepted sense) [3], written in 1743, published in 1744. 

Craig G. Fraser has made an extensive examination of these publications [4, 5], with an historical 

contextualization of other contributions on the subject by Jakob and Johann Bernoulli (1701, 1719), and 

Taylor (1715), concluding that [5, p. 139-140] “… the organization of the subject adopted by Euler in the 

Methodus inveniendi was taken over by Lagrange when he introduced his 𝛿-algorithm in the 1750s. 

Lagrange developed his new method exclusively in reference to the examples of Chapters 2 and 3 of 

Euler’s treatise. The result was that in the later eighteenth century the isoperimetric theory became 

somewhat marginalized within variational mathematics. In his late treatise, the Leçons sur le calcul des 

fonctions of 1806, Lagrange formulated the method of multipliers, a powerful theoretical tool that 

provided a unified approach to the various problems of the subject.  This method forms the basis for the 

modern perspective on the problems and techniques considered in the present paper…” 

Ian Bruce has given a complete English translation of Methodus inveniendi,b in which he provides an 

overview of the publication as follows: “… This is another project involving one of Euler's favorite topics: 

the finding of curves satisfying maximum or minimum properties under various circumstances; in the first 

chapter, a general method of finding such curves is set out and numerous examples of its use presented. 

In the second and third chapters, the work examines increasingly complicated applications of what was 

later called the Calculus of Variations. At first determined functions are treated, in which the values of the 

derivatives of the curve are known at any point; later more abstract constructions are introduced in 

chapters 2 & 3 where Euler deals with functionals related by a general integral formula; for example, the 

theory developed can be used to find the shape of the curve a body can fall along in the minimum time 

subject to various forms of resistance, etc. Chapter 4, section 7 sets out the precepts for the 5 kinds of 

extrema considered; this is a very useful summary...” 

In Methodus inveniendi, Euler also develops what later became known as the Euler-Lagrange equation of 

the variational problem, which is much used in his examples and is fundamental to the whole theory. 

Most of the applications given by Euler in Methodus inveniendi deals with finding curves for which an 

integral formula shall have a maximum or minimum value. In the present work we review two of Euler’s 

examples of variational problems (the body of minimum resistance and the brachistochrone problem).  

We will also present an application of the Euler-Lagrange equation to the navigation problem, as laid out 

by Euler in E94 De motu cymbarum remis propulsarum in fluviis (On the motion of boats propelled by oars 

in rivers) [6], written in 1738, published in 1747.  

2. The derivation of the Euler-Lagrange equation by Euler 

In Chapter II of Methodus inveniendi, a curve in the plane joining the points 𝑎 and 𝑧 is given (Figure 1). 

The curve represents geometrically the analytical relation between the abscissa 𝑥 and the ordinate 𝑦. Let 

𝑀, 𝑁, 𝑂 be three points of the interval 𝐴𝑍 infinitely close together. We set 𝐴𝑀 =  𝑥, 𝐴𝑁 =  𝑥′, 𝐴𝑂 =  𝑥", 

 
b http://www.17centurymaths.com/contents/Euler'smaxmin.htm, retrieved on May 15 2022 
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and 𝑀𝑚 = 𝑦, 𝑁𝑛 = 𝑦′, 𝑂𝑜 =  𝑦". The differential coefficient or the derivative of 𝑝 is defined by the 

relation 𝑑𝑦 =  𝑝 𝑑𝑥. Euler then writes 

𝑝 =
𝑦′ − 𝑦

𝑑𝑥
, 𝑝′ =

𝑦′′ − 𝑦′

𝑑𝑥
, 

which give the values of 𝑝 at 𝑥 and 𝑥′ in terms of 𝑑𝑥 and the differences of the ordinates 𝑦, 𝑦′ and 𝑦". 

 
Figure 1: Geometrical elements used by Euler in the development of the Euler-Lagrange equation. 

(Source: Figure 4 of Methodus inveniendi) 

Suppose now that 𝑍 is some expression composed of 𝑥, 𝑦 and 𝑝. (The symbol 𝑍 was also used by Euler to 

denote the endpoint of the interval 𝐴𝑍.) The definite integral ∫ 𝑍 𝑑𝑥 corresponding to the interval from 

𝐴 to 𝑍 is 

∫ 𝑍𝑑𝑥  (𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝑀) + 𝑍𝑑𝑥 + 𝑍′𝑑𝑥 + ⋯, 

where 𝑍, 𝑍’, … are the values of 𝑍 𝑎𝑡 𝑥, 𝑦, 𝑝;  𝑥’, 𝑦’, 𝑝’, … . Suppose that the curve 𝑎𝑧 is such that this 

integral is a maximum or minimum. A comparison curve 𝑎𝑚𝑣𝑜𝑧 is then obtained by increasing the 

ordinate 𝑦’ by an infinitely small quantity 𝑛𝑣. By hypothesis, the change of the integral calculated along 

these curves is zero. The only part of the integral that is affected by varying 𝑦’ is 𝑍𝑑𝑥 + 𝑍′𝑑𝑥.  

Euler then writes 

𝑑𝑍 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 + 𝑃𝑑𝑝, 

𝑑𝑍′ = 𝑀′𝑑𝑥 + 𝑁′𝑑𝑦′ + 𝑃′𝑑𝑝′. 

Evidently, where 𝑦’ is increased by 𝑛𝑣, 𝑑𝑥 = 𝑑𝑦 = 0 and 𝑑𝑦’ = 𝑛𝑣, and, then, 𝑑𝑝 =
𝑛𝑣

𝑑𝑥
 and 𝑑𝑝′ = −

𝑛𝑣

𝑑𝑥
, 

resulting in 

𝑑𝑍 = 𝑃
𝑛𝑣

𝑑𝑥
  , 

𝑑𝑍′ = 𝑁′𝑛𝑣 − 𝑃′
𝑛𝑣

𝑑𝑥
. 

The total change in ∫ 𝑍 𝑑𝑥(𝐴 𝑡𝑜 𝑍) equals to (𝑑𝑍 + 𝑑𝑍′)𝑑𝑥 = 𝑛𝑣(𝑃 + 𝑁′𝑛𝑣 − 𝑃′), which should be 

equated to zero. By setting 𝑃′ − 𝑃 = 𝑑𝑃 and replacing 𝑁′ by 𝑁, finally we have that 

𝑁 −
𝑑𝑃

𝑑𝑥
= 0, 
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from which the final equation of the curve is obtained. 

This expression was much used in several examples given by Euler, one of which is to find the shape of 

the body of minimum resistance (Example V, § 36 of Methodus inveniendi). In this case, it can be shown 

that the body resistancec is given by 

∫
𝑦𝑑𝑦3

𝑑𝑥2 + 𝑑𝑦2
. 

But since 𝑑𝑦 = 𝑝𝑑𝑥, this integral transforms into 

∫
𝑦𝑝3𝑑𝑥

1 + 𝑝2
= ∫ 𝑍𝑑𝑥 

which shall be a minimum. 

Therefore,  

𝑍 =
𝑦𝑝3

1 + 𝑝2
 and 𝑑𝑍 =

𝑝3𝑑𝑦

1 + 𝑝2
+

𝑦(3𝑝2 + 𝑝4)𝑑𝑝

(1 + 𝑝2)2
. 

From this expression, it can be seen that 𝑀 = 0, 𝑁 =
𝑝3

1+𝑝2 , and 𝑃 =
𝑝2𝑦(3+𝑝2)

(1+𝑝2)2 . 

Recall that 𝑁 −
𝑑𝑃

𝑑𝑥
= 0, or 𝑁𝑑𝑦 − 𝑝𝑑𝑃 = 0, which by integration gives 𝑁𝑦 + 𝑎 = 𝑝𝑃, where 𝑎 is a 

constant of integration. Substituting the expressions for 𝑁 and 𝑃, gives 
𝑦𝑝3

1+𝑝2 + 𝑎 =
𝑝3𝑦(3+𝑝2)

(1+𝑝2)2 , or 

𝑎(1 + 𝑝2)2 = 2𝑝3𝑦, which may be rewritten as 𝑦 =
𝑎(1+𝑝2)

2

2𝑝3 . 

Recalling that 𝑑𝑥 =
𝑑𝑦

𝑝
, which upon integration by parts gives  𝑥 = ∫

𝑑𝑦

𝑝
=

𝑦

𝑝
+ ∫

𝑦𝑑𝑝

𝑝2 . 

Substituting the expression for 𝑦 just found into this expression, results in 

𝑥 =
𝑎(1 + 𝑝2)2

2𝑝4
+ 𝑎 ∫

(1 + 𝑝2)2

2𝑝5
𝑑𝑝 =

𝑎

2
(

3

4𝑝4
+

1

𝑝2
+ 1 + 𝑙𝑜𝑔𝑝) , 

which together with the expression  

𝑦 =
𝑎(1 + 𝑝2)2

2𝑝3
 

gives the parametric curve of the body of minimum resistance. 

 
c A derivation of this result can be found at https://www.youtube.com/watch?v=gEnMw55dYuQ, retrieved June 24 
2022. This problem is known as Newton's Minimal Resistance Problem, which is to find a solid of revolution which 
experiences a minimum resistance when it moves through a homogeneous fluid with constant velocity in the 
direction of the axis of revolution, named after Isaac Newton, who studied the problem in 1685 and published it in 
1687 in his Principia Mathematica. A historical account of this problem can be found at 
https://en.wikipedia.org/wiki/Newton%27s_minimal_resistance_problem, retrieved June 24 2022. 
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To write the Euler-Lagrange equation from 𝑁 −
𝑑𝑃

𝑑𝑥
= 0, it should be firstly recognized that 𝑀, 𝑁 and 𝑃 are 

differential coefficients, which are given by 𝑀 =
𝜕𝑍

𝜕𝑥
 , 𝑁 =

𝜕𝑍

𝜕𝑦
 , 𝑃 =

𝜕𝑍

𝜕𝑝
. By its turn, 

𝑑𝑃

𝑑𝑥
=

𝑑

𝑑𝑥
(

𝜕𝑍

𝜕𝑝
) =

𝑑

𝑑𝑥
(

𝜕𝑍

𝜕𝑦′
), 

and, then 𝑁 −
𝑑𝑃

𝑑𝑥
=

𝜕𝑍

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝑍

𝜕𝑦′
), giving the Euler-Lagrange equation as 

𝜕𝑍

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝑍

𝜕𝑦′
) = 0. 

Let us see how this equation can be used to find the shape of the curve down which a bead sliding from 

rest and accelerated by gravity will slip (without friction) from one point to another in the least time—this 

is the brachistochrone problem. 

The speed 𝑣 along the curve is given by a simple application of conservation of energy equating kinetic 

energy to gravitational potential energy, which gives 𝑣 = √2𝑔𝑦, where 𝑔 is the gravity and 𝑦 is the vertical 

coordinate. The element of the curve 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 = √1 + 𝑦′2𝑑𝑥, where 𝑦′ =
𝑑𝑦

𝑑𝑥
. 

The time 𝑡12 to travel from point 𝑃1 to another point 𝑃2 is given by the integral 𝑡12 = ∫
𝑑𝑠

𝑣

𝑃2

𝑃1
=

∫ √1+𝑦′2

2𝑔𝑦

𝑃2

𝑃1
𝑑𝑥. Then, function 𝑍 to be minimized is thus 𝑍 = (1 + 𝑦′2

)
1/2

(2𝑔𝑦)1/2. 

However, the function 𝑍 does not depend explicitly on 𝑥, and, therefore, 
𝜕𝑍

𝜕𝑥
= 0, and the Euler-Lagrange 

equation reduces to the so-called Beltrami identityd  

𝑍 − 𝑦′
𝜕𝑍

𝜕𝑦′
= 𝐶. 

Recognizing that 
𝜕𝑍

𝜕𝑦′ = 𝑦′(1 + 𝑦′2
)

−1/2
(2𝑔𝑦)−1/2, and subtracting 𝑦′ 𝜕𝑍

𝜕𝑦′ from 𝑍 = (1 +

𝑦′2
)

1/2
(2𝑔𝑦)1/2, and simplifying then gives 

1

√2𝑔𝑦√1 + 𝑦′2

= 𝐶. 

By squaring both sides and rearranging results in 

[1 + (
𝑑𝑦

𝑑𝑥
)

2

] 𝑦 =
1

2𝑔𝐶2
= 𝑘2, 

which after rearranging gives  

𝑑𝑦

𝑑𝑥
= √

𝑘2 − 𝑦

𝑦
. 

 
d The Beltrami identity, named after Eugenio Beltrami (1835 – 1900), is a special case of the Euler-Lagrange 
equation in the calculus of variations. More information about this development can be found at 
https://en.wikipedia.org/wiki/Beltrami_identity, retrieved June 25 2022. 
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This equation is solved by the parametric equations 

𝑥 =
𝑘2

2
(𝜃 − 𝑠𝑖𝑛𝜃), 

𝑦 =
𝑘2

2
(1 − 𝑐𝑜𝑠𝜃), 

which are seen to be the equations of a cycloid.  

3. Euler navigation problem 

In De motu cymbarum, Euler considers the following problem: “A boat with a perfect rudder moves at 

constant speed across a stream flowing in straight streamlines at assigned speeds. Assuming that the 

downstream velocity of the boat equals that of the river, how should the rudder be set so that the boat 

traverses a given path? He works out various instances, one of which gives rise to a variational problem, 

in detail.” (From Clifford Truesdell's An idiot's fugitive essays on science: methods, criticisms, training, 

circumstances.)  

The variational problem is the last problem dealt with by Euler in this publication (Problem 5), and it 

is posed as follows: Knowing the velocity of the river at every location, to find the quickest crossing line 

𝐴𝑀𝐶, in which the boat leaving from 𝐴, reaches C sooner than across any other line joining the points 𝐴 

and 𝐶.  

 
Figure 2: In this figure, 𝑎𝑀𝑏 represents the direction of the boat spine at this location, 𝐴𝑄𝐵 indicates 

the velocity of the river in each location (the river velocity profile), and 𝐴𝑀𝐶 is the quickest crossing line 

for a boat leaving from 𝐴 to reach point 𝐶 on the opposite bank of the river.   
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In the previous problem of this publication (Problem 4), Euler shows that the time that the boat takes to 

traverse the arc 𝐴𝑀 is given by 

∫
𝑢𝑑𝑦 − √𝑐2𝑑𝑠2 − 𝑢2𝑑𝑥2

𝑢2 − 𝑐2
, 

where 𝑢 is the velocity of the river, c is the velocity of the boat (supposed constant), 𝑦 and 𝑥 are the 

orthogonal coordinates, and 𝑑𝑠 is an element of the arc 𝐴𝑀, such that 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2. 

Therefore, the integral that should be minimized is  

∫ 𝑍𝑑𝑥 = ∫
𝑢𝑑𝑦 − √𝑐2(𝑑𝑥2 + 𝑑𝑦2) − 𝑢2𝑑𝑥2

𝑢2 − 𝑐2
𝑑𝑥 = ∫

𝑢𝑦′ − √𝑐2(1 + 𝑦′2) − 𝑢2

𝑢2 − 𝑐2
𝑑𝑥, 

and, then 

𝑍 =
𝑢𝑦′ − √𝑐2(1 + 𝑦′2) − 𝑢2

𝑢2 − 𝑐2
, 

where 𝑍 as a function of the variables 𝑢 and 𝑝 or 𝑥 and 𝑝, since 𝑢 depends on 𝑥 only. 

Euler gives the solution and only briefly summarizes the method that he used by saying “… Last year I 

shared a universal method for solving such questions…”. We shall now apply the Euler-Lagrange equation 

to recover Euler’s solution to this problem. 

Since the function 𝑍 does not depend explicitly on 𝑦, the Euler-Lagrange equation simplifies to 

𝜕𝑍

𝜕𝑦′
= 𝐶𝑜𝑛𝑠𝑡. 

Evaluating  

𝜕𝑍

𝜕𝑦′
=

𝑢

𝑢2 − 𝑐2
−

𝑐2𝑦′

(𝑢2 − 𝑐2)√𝑐2(1 + 𝑦′2) − 𝑢2

, 

which after substitution gives 

𝑢

𝑢2 − 𝑐2
−

𝑐2𝑦′

(𝑢2 − 𝑐2)√𝑐2(1 + 𝑦′2) − 𝑢2

= 𝐶𝑜𝑛𝑠𝑡. =
1

𝑔
 

or, since 𝑦′ = 𝑝, this expression can be rewritten as 

𝑔𝑢√𝑐2 + 𝑐2𝑝2 − 𝑢2 − 𝑐2𝑔𝑝 = (𝑢2 − 𝑐2)√𝑐2 + 𝑐2𝑝2 − 𝑢2, 

which by squaring results in  

𝑝 =
𝑐2 + 𝑔𝑢 − 𝑢2

𝑐√(𝑔 − 𝑢)2 − 𝑐2
. 
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Since we have that 𝑑𝑦 = 𝑝𝑑𝑥, the desired curve will be expressed as 𝑑𝑦 =
(𝑐2+𝑔𝑢−𝑢2)𝑑𝑥

𝑐√(𝑔−𝑢)2−𝑐2
, from which, 

because the variables are separated from one another, the curve can be constructed by integration, and, 

then, 

𝑦 = ∫
(𝑐2 + 𝑔𝑢 − 𝑢2)

𝑐√(𝑔 − 𝑢)2 − 𝑐2
𝑑𝑥, 

such that 𝑥 vanishes for 𝑦 = 0, knowing that, in general, 𝑢 = 𝑢(𝑥). 

4. Lagrange contributions to variational calculuse  

Variational calculus is a fundamental instrument for analyzing problems of optimization, and as such, is a 

fundamental topic in physics, economics, engineering, etc. Its origin traces back to a typical engineering 

problem—the problem of minimum resistance posed by Newton in 1685—, which was discussed earlier. 

Solutions to optimization problems were all essentially geometric in nature, and very ad hoc. Even though 

Euler’s treatment was systematic for the first time, his approach as we saw earlier, was somewhat 

geometric. Lagrange, despite being greatly influenced by Euler’s Methodus inveniendi, was somewhat 

dissatisfied, which motivates him (then only at the age of 19 years) to write an article published in 1762 

[7] and describing Euler’s method as “… an ingenious and fertile as its method is, we must admit that it 

has not all the simplicity that one might wish in a work of pure analysis. The author [Euler] himself seems 

to feel this, by his words: it seems desirable to find a method that is independent of geometry …’’ 

S. Serfaty [8] considers that “… [Lagrange] was able to find anew the results of Euler while freeing himself 

from geometric intuition (displacing the graph of the function), and replacing it with a ‘‘machinery’’ of 

operations of calculus. He had seen that Euler’s calculus led to defining a new type of differential calculus, 

in which the objects are no longer functions of real variables, but functions of functions (today called 

functionals). This crucial conceptual leap (seeing the functions themselves as variables) is truly due to 

Lagrange, and can be seen as one of his fundamental contributions …” 

Here is what Lagrange says about his method in the Essai [7]: “… Now here is a method that requires only 

a very simple use of the principles of differential and integral calculus, but first of all I must remark that, 

as this method requires that the same quantities vary in two different ways, so as not to confuse these 

variations, I introduced in my calculations a new character 𝛿. Thus, 𝛿 expresses a difference of 𝑍 which is 

not the same as 𝑑𝑍, but will be however formed by the same rules …” Later on, in the preface of the 

Mécanique Analytique he says: “… One will find no figures in this work. The method here expounded 

demands neither constructions nor geometric arguments, but only algebraic operations subject to a 

regular and uniform procedure …” 

In the brachistochrone problem, one wishes to minimize in the graphs 𝑦(𝑥) the quantity  

𝐹(𝑦) = ∫ √
1 + 𝑦′2

2𝑔𝑦

𝑃2

𝑃1

𝑑𝑥, 

 
e This section is a summary of an article by S. Serfaty [Ref. 8].  
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called the Lagrangian, which depends on a curve.  

It is always possible put this expression in the form 𝐿(𝑦, 𝑦′) while trying to minimizef  

𝐹(𝑦) = ∫ 𝐿(𝑦, 𝑦′)𝑑𝑥
𝑥1

𝑥0

, 

Whereas ordinary differential calculus makes it possible to say that if a function 𝑓 of a variable 𝑥 reaches 

its minimum in 𝑥, then the derivative of 𝑓 must be null in 𝑥, the question dealt with by the calculus of 

Lagrange is thus to give a meaning to the equation 𝐹′(𝑦) = 0, in analogy with ordinary differential 

calculus. 

The fundamental idea of Lagrange is to make, in analogy to the variation 𝑥 →  𝑥 +  ℎ used in differential 

calculus, variations on the function 𝑦 itself, by transforming 𝑦(𝑥) into 𝑦(𝑥) + ℎ𝜈(𝑥), where 𝜈 is another 

function and ℎ a small number. 

The optimal curve 𝑦 =  𝑦(𝑥) can thus be compared to the curve after the small variation 𝑦 = 𝑦(𝑥) +

ℎ𝜈(𝑥). For Lagrange, ℎ𝜈 is a 𝛿𝑦, and that the derivative of the variation ℎ𝜈 is equal to ℎ𝜈′, that is, it is the 

variation of the derivative, 𝑑𝛿 = 𝛿𝑑.  

If 𝑦 is a minimizing function of 𝐹, then  

lim
ℎ→0

𝐹(𝑦 + ℎ𝜈) − 𝐹(𝑦)

ℎ
= 0, 

if that limit exists.  

This is equivalent to  

𝛿𝐹

𝛿𝑦
= 0. 

Then, the formal calculation of this limit and from other mathematical considerations leads to 

𝜕𝐿

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) = 0, 

which is the Euler–Lagrange equation associated with the problem of minimization. 

Lagrange also introduced the method of multipliers—today called Lagrange multipliers—which makes it 

possible to treat problems with constraints [8]. One example is the geodetic problem with an obstacle: to 

find the shortest path from 𝐴 to 𝐵 that goes around an obstacle. Lagrange’s method of variation tells us 

that the geodesic ‘‘takes off’’ from the obstacle in such a way that it remains tangent to it. This is a 

particular case of a variational problem, called the ‘‘obstacle problem’’ (Fig. 3).  

The general framework [8] is to try to minimize a function of the type 

𝐹(𝑦) = ∫ 𝐿(𝑦, 𝑦′)𝑑𝑥
𝑥1

𝑥0

, 

 
f We have simplified somewhat the original notation of Ref. [8].  
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under an integral constraint of the type 

𝐺(𝑦) = ∫ 𝐾(𝑦, 𝑦′)𝑑𝑥.
𝑥1

𝑥0

 

 
Figure 3: The obstacle problem. 

The idea is to allow variations 𝑦 = 𝑦(𝑥) + ℎ𝜈(𝑥) that do not affect (in first order) the constraint, that is, 

such that 
𝛿𝐺

𝛿𝑦
(𝜈) = 0. By carrying out the calculations as above, one finds that there is a constant 𝜆, such 

that 

𝛿𝐹

𝛿𝑦
= 𝜆

𝛿𝐺

𝛿𝑦
, 

where 𝜆 is called the Lagrange multiplier. The method never gives its value, but this can be found by 

indirect means [8]. 

5. Conclusion  

Euler’s contributions to the calculus of variations are reviewed by presenting Euler’s derivation of the 

Euler-Lagrange equation from geometrical arguments, as found in Euler’s publication Methodus 

inveniendi, and by presenting two classical variational problems considered by Euler—the body of 

minimum resistance and the brachistochrone. Another less known variational problem considered by 

Euler in another publication De motu cymbarum is also reviewed. Finally, a brief account on Lagrange 

contributions to variational calculus is presented, including his derivation of the Euler-Lagrange equation, 

and Lagrange’s general framework of variational problems with constraints, which leads to the method of 

Lagrange multipliers.     
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