

Euleriana

Volume 2 | Issue 2

Article 6

2022

Euler Archive Spotlight

Cynthia Huffman Ph.D. *Pittsburg State University*, cjhuffman@pittstate.edu

Follow this and additional works at: https://scholarlycommons.pacific.edu/euleriana

Part of the Mathematics Commons

Recommended Citation

Huffman, Cynthia Ph.D. (2022) "Euler Archive Spotlight," *Euleriana*: *2*(2), p. 107, Article 6. DOI: https://doi.org/10.56031/2693-9908.1039 Available at: https://scholarlycommons.pacific.edu/euleriana/vol2/iss2/6

This Articles & Notes is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Euleriana by an authorized editor of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

Euler Archive Spotlight

Cynthia Huffman Pittsburg State University cjhuffman@pittstate.edu

Since approximately 80% of the works of Euler were published in Latin, the Euler Archive relies on the time and translation skills of many people to provide translations into modern languages. This issue we spotlight the translations of Jordan Bell, one of the most prolific translators for the Euler Archive.

Jordan Bell, MS in Mathematics from University of Toronto and Graduate Certificate in Analytics for Business Decision Making, began translating Euler's articles while an undergraduate student in Honours Mathematics in the School of Mathematics and Statistics at Carleton University in Ottawa, Ontario, Canada. He completed three translations in his second year, six translations in his third year, and four translations in his fourth year. Mr. Bell has continued translating and currently has 43 translations appearing in the Euler Archive.

The earliest of Euler's work translated by Jordan Bell is "<u>Observationes de</u> <u>theoremate quodam Fermatiano aliisque ad numeros primos spectantibus"</u> (E26, "Observations on a theory of Fermat and others on looking at prime numbers"). Written in 1732 and published six years later, E26 was Euler's first number theory article. [2] He refuted Fermat's claim that numbers of the form $2^{2^n} + 1$, now known as Fermat numbers, are prime, by observing that $2^{2^5} + 1 = 4,294,967,297$ is divisible by 641. (See Figure 1.)

Veritas iftius theorematis elucet, vt iam dixi, fi pro *m* ponatur 1, 2, 3 et 4, prodeunt enim hi numeri 5, 17, 257, et 65537, qui omnes inter numeros primos in tabula reperiuntur. Sed neício, quo fato eueniat, vt ftatim fequens nempe 2^{2^5} + 1 ceffet effe numerus primus, obfernaui enim his diebus longe alia agens posse hunc numerum diuidi per 641. vt cuique tentanti statim patebit.

Figure 1: Euler's counterexample of Fermat's claim that numbers of the form $2^{2^n} + 1$ are prime from E26.

E26 also contains six conjectures, which Euler calls "theorems." Two of these conjectures are special cases of the Euler-Fermat Theorem, which Euler proved in E271 in 1758. The Euler-Fermat Theorem, a generalization of Fermat's Little Theorem, states that if *a* and *n* are relatively prime, then $a^{\theta(n)} \equiv 1 \pmod{n}$, where the Euler totient function $\theta(n)$ is the number of positive integers less than *n* and relatively prime to *n*. It is interesting to note that at this point in time, the totient was not yet viewed as a function. See [3] for more on the origins of the Euler totient function.

Jordan Bell also translated "Evolutio producti infiniti (1-x)(1-xx)(1-x3)(1-x4)(1-x5)(1-x6) etc. in seriem simplicem" (E541, "The expansion of the infinite product $(1-x)(1-x^3)(1-x^4)(1-x^5)(1-x^6)$ etc. into a single series") and "De mirabilis proprietatibus numerorum pentagonalium," (E542, "On the remarkable properties of the pentagonal numbers"), a pair of number theory articles dealing with pentagonal numbers, which were both written in 1775 and published in 1783. The first six pentagonal numbers are pictured in Figure 2.

Figure 2: The first six pentagonal numbers 1, 5, 12, 22, 35, and 51.

In E541, Euler expanded the infinite product given in the title into a series in which some of the exponents are pentagonal numbers. The result is now known as the Pentagonal Number Theorem, which George E. Andrews [1] (a former president of the American Mathematical Society) calls, "one of Euler's most profound discoveries." In his next paper E542, Euler investigated properties of the pentagonal numbers $\frac{3nn-n}{2}$, along with numbers of the form $\frac{3nn+n}{2}$, and several related series.

2 The table below gives the current list of Jordan Bell's Euler translations, representing a substantial contribution to the <u>Euler Archive</u>. Such translations are vital to Eulerian scholarship. If you are interested in translating for the <u>Euler Archive</u>, please email the title and Eneström number of the work you propose to translate to Erik Tou (etou@uw.edu) or Chris Goff (cgoff@pacific.edu), with subject heading "Euler Translation Notice." Also, please consider submitting any completed translation

projects to the journal *Euleriana*.

Euler Translations by Jordan Bell

Eneström	Original Title	English Title
number		
<u>E26</u>	Observationes de theoremate	Observations on a theory of Fermat
	quodam Fermatiano aliisque ad	and others on looking at prime
	numeros primos spectantibus	numbers
<u>E30</u>	De formis radicum aequationum	Inferences on the forms of roots of
	cuiusque ordinis coniectatio	equations and of their orders
<u>E41</u>	De summis serierum reciprocarum	On the sums of series of reciprocals
<u>E47</u>	Inventio summae cuiusque seriei	Finding the sum of any series from a
	ex dato termino generali	given general term
<u>E100</u>	De numeris amicabilibus	On amicable numbers
<u>E153</u>	Demonstratio gemina theorematis	A double demonstration of a
	Neutoniani, quo traditur relatio	theorem of Newton, which gives a
	inter coefficientes cuiusvis	relation between the coefficient of
	aequationis algebraicae et	an algebraic equation and the sums
	summas potestatum radicum	of the powers of its roots
	eiusdem	
E158	Observationes analyticae variae	Various analytical observations about
	de combinationibus	combinations
<u>E164</u>	Theoremata circa divisores	Theorems about the divisors of
	numerorum in hac forma paa±qbb	numbers contained in the form
	contentorum	paa±qbb
<u>E243</u>	Observatio de summis divisorum	An observation on the sums of
		divisors
<u>E244</u>	Demonstratio theorematis circa	A demonstration of a theorem on the
	ordinem in summis divisorum	order observed in the sums of
	observatum	divisors
<u>E262</u>	Theoremata circa residua ex	Theorems about the remainders left
	divisione potestatum relicta	by division by powers
<u>E275</u>	Annotationes in locum quendam	Annotations to a certain passage of
	Cartesii ad circuli quadraturam	Descartes for finding the quadrature
	spectantem	of the circle
E335 (with	Sur les rentes viagères	On life annuities
Christian	_	
Léger)		
E394	De partitione numerorum in	On the partition of numbers into a
	partes tam numero quam specie	number of parts of a given type
	datas	

	1	
<u>E428</u>	Observationes circa bina	Observations about two biquadratics,
	biquadrata, quorum summam in	of which the sum is able to be
	duo alia biquadrata resolvere	resolved into two other biquadratics
	liceat	
<u>E445</u>	Novae demonstrationes circa	New demonstrations about the
	resolutionem numerorum in	resolution of numbers into squares
	quadrata	
<u>E507</u>	De infinities infinitis gradibus tam	On the infinity of infinities of orders
	infinite magnorum quam infinite	of the infinitely large and infinitely
	parvorum	small
<u>E522</u>	De formatione fractionum	On the formation of continuous
	continuarum	fractions
<u>E541</u>	Evolutio producti infiniti (1–x)(1–	The expansion of the infinite product
	xx)(1–x ³)(1–x ⁴)(1–x ⁵)(1–x ⁶) etc. in	$(1-x)(1-xx)(1-x^3)(1-x^4)(1-x^5)(1-x^6)$
	seriem simplicem	etc. into a single series
<u>E542</u>	De mirabilis proprietatibus	On the remarkable properties of the
	numerorum pentagonalium	pentagonal numbers
<u>E561</u>	Variae observationes circa angulos	Various observations about angles
	in progressione geometrica	proceeding in geometric progression
	progredientes	
<u>E564</u>	Speculationes circa quasdam	Speculations about certain
	insignes proprietates numerorum	outstanding properties of numbers
<u>E565</u>	De plurimis quantitatibus	On highly transcendental quantities,
	transcendentibus, quas nullo	which may not be expressed in any
	modo per formulas integrales	way by integral formulas
	exprimere licet	
<u>E596</u>	De summa seriei ex numeris	On the sum of the series of numbers
	primis formatae $1/3 - 1/5 + 1/7 +$	of the form $1/3 - 1/5 + 1/7 + 1/11 - 1/5 + 1/7 + 1/11$
	1/11 – 1/13 – 1/17 + 1/19 + 1/23 –	1/13 – 1/17 + 1/19 + 1/23 – 1/29 +
	1/29 + 1/31 etc. ubi numeri primi	1/31 etc. in which the prime numbers
	formae 4n–1 habent signum	of the form $4n-1$ have positive signs,
	positivum, formae autem 4 <i>n</i> +1	and those of the form 4 <i>n</i> +1 have
5642	signum negativum	negative signs
<u>E643</u>	Methodus generalis investigandi	A general method for investigating all
	radices omnium aequationum per	the roots of an equation by
5655	approximationem	approximation
<u>E655</u>	Observationes generales circa	General observations about series, of
	series, quarum termini secundum	which the terms arising for the sines
	sinus vei cosinus angulorum	or cosines of multiplied angles come
FCC1	multiplorum progrediuntur	
<u>E001</u>	variae considerationes circa series	Several considerations about
1	riypergeometricas	invpergeometric series

E664	Exercitatio analytica	Analytical exercises
E675	De valoribus integralium a	On the values of integrals where the
	termino variabilis x=0 usque ad	variable term is extended from x=0
	x=∞ extensorum	all the way to x=∞
<u>E699</u>	Utrum hic numerus 100009 sit	Inquiring on whether or not the
	primus necne inquiritur	number 100009 is prime
<u>E706</u>	De novo genere serierum	On a new type of rational and highly
	rationalium et valde	convergent series, by which the ratio
	convergentium, quibus ratio	of the periphery to the diameter is
	peripheriae ad diametrum exprimi	able to be expressed
	potest	
<u>E709</u>	De evolutione potestatis	On the expansion of the power of any
	polynomialis cuiuscunque (1 + x +	polynomial $(1 + x + x^2 + x^3 + x^4 + \text{etc.})^n$
	$x^{2} + x^{3} + x^{4} + $ etc.) ⁿ	
<u>E718</u>	Facillima methodus plurimos	An easy method of finding several
	numeros primos praemagnos	rather large prime numbers
	inveniendi	
<u>E725</u>	Illustratio paradoxi circa	An illustration of a paradox about the
	progressionem numerorum	idoneal, or suitable, numbers
	idoneorum sive congruorum	
<u>E727</u>	Accuratior evolutio problematis	A more accurate treatment of the
	de linea brevissima in superficie	problem of drawing the shortest line
	quacunque ducenda	on a surface
<u>E731</u>	Solutio problematis ob singularia	The solution of a memorable
	calculi artivicia memorabilis	problem by a special artifice of
		calculation
<u>E732</u>	Solutio facilior problematis	An easier solution of a Diophantine
	Diophantei circa triangulum, in	problem about triangles, in which
	quo rectae ex angulis latera	those lines from the vertices which
	opposita bisecantes rationaliter	bisect the opposite sides may be
	exprimantur	expressed rationally
<u>E746</u>	Methodus succincta summas	A method for gathering the sums of
	serierum infinitarum per formulas	infinite series by investigating
	differentiales investigandi	differential formulas
<u>E750</u>	Commentatio in fractionem	A commentary on the continued
	continuam, qua illustris La Grange	fraction by which the illustrious La
	potestates binomiales expressit	Grange has expressed the binomial
		powers
<u>E769</u>	Solutio problematis Fermatiani de	A solution to a problem of Fermat, on
	duobus numeris, quorum summa	two numbers of which the sum is a
	sit quadratum, quadratorum vero	square and the sum of their squares

	summa biquadratum, ad mentem	is a biquadrate, inspired by the
	illustris La Grange adornata	Illustrious La Grange
<u>E794</u>	Theorema arithmeticum eiusque	A theorem of arithmetic and its proof
	demonstratio	
<u>E795</u>	De quadratis magicis	On magic squares
<u>E808</u>	Problema algebraicum de	An algebraic problem of finding four
	inveniendis quatuor numeris ex	numbers with the sum of the three
	datis totidem productis	others
	uniuscuiusque horum numerorum	
	in summas trium reliquorum	

References

[1] Andrews, George E. (1983), "Euler's Pentagonal Number Theorem," *Mathematics Magazine*, Vol. 81, pp. 279-284.

[2] Sandifer, C. Edward (2007). *The Early Mathematics of Leonhard Euler*, Washington, D.C.: Mathematical Association of America.

[3] Tou, Erik R. (2017) "Math Origins: The Totient Function," *Convergence* (September 2017), DOI:10.4169/convergence20170923.

[E26] Euler, Leonhard (1738). "Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus," *Commentarii academiae scientiarum Petropolitanae*, Volume 6, pp. 103-107. Reprinted in *Opera Omnia*: Series 1, Volume 2, pp. 1-5. Original text available online, along with an English translation by David Zhao and another by Jordan Bell, at the <u>Euler Archive</u>.

[E541] Euler, Leonhard (1783). "Evolutio producti infiniti $(1-x)(1-xx)(1-x^3)(1-x^4)(1-x^5)(1-x^6)$ etc. in seriem simplicem," Acta Academiae Scientiarum Imperialis Petropolitanae, Volume 1780: I, pp. 47-55. Reprinted in Opera Omnia: Series 1, Volume 3, pp. 472-479. Original text available online, along with an English translation by Jordan Bell and a German translation, at the <u>Euler Archive</u>.

[E542] Euler, Leonhard (1783). "De mirabilis proprietatibus numerorum pentagonalium," *Acta Academiae Scientiarum Imperialis Petropolitanae*, Volume 1780: I, pp. 56-75. Reprinted in *Opera Omnia*: Series 1, Volume 3, pp. 480-496. Original text available online, along with an English translation by Jordan Bell, at the <u>Euler Archive</u>.