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A Method for Calculating the Equation of Noon (an
English translation of Methodus Computandi

Aequationem Meridiei1)

Leonhard Euler

translator: Patrick Headley, Gannon University
109 University Square, Erie PA 16541

headley001@gannon.edu

Abstract

In this paper Euler presents a method for determining solar noon, the
time at which the Sun crosses the meridian. The method requires the times
of two observations of the Sun, one in the morning and one in the after-
noon, at equal altitudes above the horizon. Solar noon is approximately
the midpoint between two such observations, but, since the declination of
the Sun will have changed during the day, a correction term, called the
equation of noon, is required. Euler explains that this term is too large
to ignore and discusses the table of values constructed by de la Hire; this
table applies only at the latitude of Paris and relies on laborious calcula-
tions. For his own method, Euler describes the apparent motion of the
Sun using spherical trigonometry and then uses differentials to complete
the calculation with sufficient accuracy for his purposes. He provides ex-
amples and claims that his method makes it practical to construct a table
at whatever latitude is required.

All footnotes are comments by the translator.

1. In order to find the time of solar noon2, astronomers tend to use, among
other methods, two observations of the Sun at equal altitude, one of which is
made before noon, and one after. From such observations, the time of solar
noon would seem to be easily found by taking the mean of the times at which
these observations are made, just as the time of culmination for the fixed stars
is determined correctly by this method from two observations at equal altitude.
But, while this produces the proper result for fixed stars, it is inappropriate
for the Sun, as its declination continually changes. If the Sun, like the fixed

1Euler, L.(1741).”Methodus computandi aequationem meridiei”(E50), Commen-
tarii Academiae Scientiarum Petropolitanae 1741(8): 48-65. Reprinted in Opera
Omnia: Series 2, Volume 30, pp.13-25. Original text available online at
scholarlycommons.pacific.edu/euler/ (https://scholarlycommons.pacific.edu/euler/ ).

2In this translation, noon will always mean solar noon, the time at which the Sun crosses
the meridian, while twelve o’clock will refer specifically to a time shown on a clock. Euler’s
aim is to reset the clock so that it would have shown twelve o’clock at solar noon. Note that,
even when ignoring the issue of daylight savings, this is different from modern timekeeping
in two ways. First, since the interval between consecutive solar noons varies due to Earth’s
elliptical orbit, a mean solar time is now used so that every day has the same length. Second,
each location now uses a mean solar time fixed across its time zone, which is not necessarily
its own mean solar time.
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stars, always stayed in the same parallel, the mean time between these two
observations would be the time of solar noon, and we would have no need for
any correction.

2. However, as the Sun proceeds from one parallel to another, it is easily
seen that the mean time between the times at which the Sun is observed at
equal altitudes must be different from the time of solar noon. For if, as an
example, the Sun’s altitude is 30◦ at 9am while it ascends from Aries toward
Cancer3, then, at 3pm, with noon lying halfway between the two times, the
Sun’s altitude will be greater than 30◦, since, in the meantime, the Sun will
approach nearer the celestial pole, and thus nearer the zenith in our part of the
world. On account of this, the Sun only arrives at altitude 30◦ after 3pm, from
which it is seen that an error is made if the mean time between the times at
which the Sun is observed at altitude 30◦ is taken for solar noon. The mean
time in this case falls after noon; for this reason, it is necessary that something
be subtracted in order to find the true time of noon, and this is what will be
determined in this article.

3. By similar reasoning, if the Sun is descending from north to south,
the opposite occurs, and something must be added to the time. This small
amount of time that must be added or subtracted from the mean time between
observations is called the equation of noon. A table of equations of noon
contains these equations for every degree of solar declination and for various
intervals of time between the two observations, as calculated for a given latitude.
Such a table is of great necessity for an astronomer, since solar noon can be
found from the table by a method that is simple, not affected by refraction, and
capable of correcting clocks.

4. However, the equation of noon depends first on the latitude of the
observer, then also on the difference in time between the two observations,
and finally on the motion of the Sun, from which the change in declination is
determined. Thus, different latitudes require their own tables for the equation
of noon; a table computed for this location4 is not of use in other locations
except for those lying in the same parallel. Furthermore, the table computed
for a given latitude will not always be valid, since the motion of the Sun has a
small annual variation in declination. However, this variation has such a small
effect that the equation would rarely increase or decrease by a second because
of it, at least in places within 60◦ of the equator. But differences of latitude
lead to great differences in the equation of noon; the equations corresponding
to this location are nearly twice as large as those for Paris. They are even larger
for locations nearer the poles, and become infinite at the poles themselves; this
is because noon is not defined there. Therefore, the closer the location of the

3Euler uses ascending or descending to mean increasing or decreasing in declination. Aries
refers to that part, or sign, of the ecliptic between ecliptic longitudes 0◦ and 30◦, and Cancer
to the part between 90◦ and 120◦. Due to precession of the equinoxes, this now-obsolete
system had little connection with the actual positions of the constellations by Euler’s time.

4This location is St. Petersburg, Russia.
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observer to one of the poles, the more this correction is necessary. In fact, for
St. Petersburg the error in the determination of noon can exceed 50 seconds
without this correction.

5. Mention of this correction is made in the second edition of the Astronom-
ical Tables of Philippe de la Hire, in which a method for finding the equation
for noon is also given. A table of equations of noon for the latitude of Paris is
also provided in the same book5, with the values calculated to the third6; this
is necessary if we do not want an error in the number of seconds, even if we
do not need to know the number of thirds. This table is computed for every
degree of solar declination, but it only extends from four hours to ten for the
interval between observations. Moreover, the table suffers from the error that
the equations have the same values for ascending signs and descending signs.
But the motion of the Sun in ascending and descending signs is not the same;
this produces differences in the number of thirds, but from these can arise differ-
ences in the number of seconds. For instance, the difference between 20′′, 35′′′

and 20′′, 25′′′ is 10′′′, but astronomers tend to accept 21′′ for the former and
20′′ for the latter, and this difference is an entire second.

6. La Hire’s method for computing the equation of noon is long and requires
much time to implement for a single case; the most efficient calculator would
have to work many months to construct a complete table of equations of noon.
Moreover, since we want to have these equations in thirds, our tables of sines
and tangents will not be sufficient; interpolation is always needed, generating
an incredible amount of work. Therefore, as this kind of table has recently been
sought for our observatory, I thought of another method for finding the equation
that was brief, and for which the tables of sines and tangents would be satisfac-
tory. To obtain such a method, I saw immediately that the equation should be
determined not from the differences of angles whose sines and tangents enter
the calculation, but from a certain angle or arc whose sine does not come into
consideration. For the usual tables of sines will not distinguish between angles
or arcs that produce differences in thirds of time. Interpolation, which I have
chosen to avoid, would be required to find them instead.

7. In order to devise a method of this kind, I combined spherical trigonome-
try and infinitesimal calculus, from which I quickly obtained a method with the
desired attributes. I made use of infinitesimal calculus in the following way: I
regarded the daily variation in the declination of the Sun as an infinitely small
quantity, since, at its maximum, it does not exceed 24′. An arc of 24′ can be
taken to be a small line segment, and, thus, as infinitely small with respect to
an arc of finite length, or to an entire circumference. With this assumption,

5de la Hire, P.(1727). Tabulae Astronomicae Ludovici Magni, 2nd edition. Paris, 1727.
Original text available online at Google Books (books.google.com). The problem is discussed
(in Latin) on pages 75-83 of the section Usus Tabularum, while the table itself is on page 81
of the tables that follow.

6A third is a sixtieth of a second for seconds of both time and arc. Thirds are indicated
with the notation ′′′.
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while working according to the rules of infinitesimal calculus, I obtained a brief
and simple formula producing the equation of noon, as several terms that could
be considered as differentials in seconds of arc dropped out of the calculation.
From this, therefore, not only was it easy to compute a table for this location,
but it will also be easy to calculate noon correctly without a table whenever and
wherever two observations of the Sun are made at equal altitudes.

8. For the work that I will present it is necessary to prepare with the
following7. For an arbitrary angle or arc AM let8 sine PM equal A, and Fig. 1
cosine CP equal a =

√
1−A2, taking the whole sine AC to be9 1. The arc

AM is increased by the very small arc Mm, and the augmented arc has sine
A+ a ·Mm and cosine a−A ·Mm. This is because the arc AMm has10sine
pm = PM +mN = A +mN , and, since the triangles CPM and mNM are
similar, CM : CP = Mm : Nm, or 1 : a = Mm : Nm, and thus Nm =
a ·Mm, and, equivalently, pm = A+a ·Mm. Similarly, MN = Pp is found to
be A ·Mm, and therefore the cosine of arc AMm is Cp = CP −Pp = a−Pp,
so that the cosine of the augmented arc AMm is a−A ·Mm. It is clear that
this is justified to the extent that arc Mm is small enough that it can be taken
to be a small line segment. Therefore, in what follows, as the solar declination
will change by less than half a degree between the two observations, and an
arc of half a degree is not very different from a line segment, we can safely
make this assumption in order to determine how the sine and cosine of the solar
declination increases or decreases. The error that can arise from the curvature
of such a small arc can be little more than a third at most; such an error, which
cannot affect the number of seconds, can be ignored.

9. With this established, consider the hemisphere APBE, in which the Fig. 2
point P represents the celestial pole and Z the zenith at the location where the
equation of noon is sought. The circle AEB is the equator, CD and cd are
parallels, and PZE the meridian at the proposed location. Furthermore, PZ is
the complement of the latitude, and for this reason the arc ZE of the meridian
is the latitude itself. If the Sun is observed before noon at S, the arc ZS is,
of course, the complement of the solar altitude; PS is the complement of the
solar declination, but this is an unknown, since the solar declination is found
for the exact moment of noon, and is not known for observations away from
the meridian. As the Sun ascends to the north from the equator, its declination
continually increases, and it will not move along the parallel CD, but instead
on an oblique path represented by the line SOT . Therefore, after noon, when
the Sun is observed at the same altitude, it will not be in parallel CD again, but
instead in another slightly higher parallel cd, and at point T , whose distance

7The figures for this article are on page 2 at eulerarchive.maa.org/docs/originals/E050.pdf
and are also reproduced at the end of this translation.

8Note that Euler is using A in two different ways, both as a point in Figure 1 and as the
length of the line segment PM in that figure.

9The whole sine is the radius, and what Euler calls the sine would now be considered the
product of the radius and the sine. As will be seen later, the whole sine is not 1 in the tables
that Euler uses for his calculations.

10The figure has H instead of N .
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ZT to the zenith is equal to ZS, because it is arranged that the solar altitudes
at S and T are equal, and ZS and ZT are the complements of these altitudes.

10. When these equal solar altitudes are observed, the times of observation
should be recorded as carefully as possible using a good pendulum clock. A
clock is called good if it moves uniformly and completes one period in twelve or
twenty-four hours, even if 12 o’clock does not correspond to solar noon, since
the difference between 12 o’clock and solar noon is investigated through these
very observations, by which the clock is perfectly corrected and adjusted to the
motion of the Sun. A good uncorrected clock allows us to find the interval
of time between the two observations, and converting this time to equatorial
degrees gives the angle SPT . However, the angle SPZ is desired, for converting
this angle to time gives the interval between the morning observation and solar
noon, from which the correction of the clock immediately follows. The meridian
arc PO, which is the complement of the solar declination at the instant of noon,
is known from ephemerides, but the arcs PS and PT are not since the angles
SPZ and TPZ are unknown.

11. If the solar declination did not change, and the Sun always stayed in the
same parallel CD, the afternoon observation would occur when the Sun was at
t, from which point the distance Zt to Z would be the same as the distance
SZ. For this case, in which likewise PS = Pt, the meridian PZE bisects the
angle SPt, and when this angle is converted to the interval of time between the
two observations, it is clear that dividing the interval into two parts will produce
the time of solar noon. On the other hand, from this it is seen that, when the
solar declination changes, the mean time between the two observations cannot
be noon, since angle TPZ is larger than angle SPZ, the difference being angle
TPt. Therefore, something must be subtracted from the mean time between
the two observations in order to find the time of solar noon, and this small
amount of time, converted to an equatorial arc, is half the angle TPt. Thus,
it will be necessary for us to find the size of angle TPt; with this done we will
have the equation of noon. Half of this angle, when converted to time, gives
the amount of time to be subtracted from the mean between the observations
in our case, which has the Sun placed in ascending signs. In descending signs
the amount of time is found in the same way, but it should be added to the
mean time between the observations.

12. In order to calculate this value, let the sine of arc PZ equal11 A , its
cosine equal a, and let the radius be 1. Let the sine of the complement of the
solar declination, or the sine of the arc PO, equal B, and its cosine equal b,
so that B2 + b2 = 1. Furthermore, let angle SPT equal 2N degrees, and then
half the angle SPT will be N degrees. Let the sine of this half-angle equal
C, and its cosine equal c; then, likewise C2 + c2 = 1. Next, let dt be the
amount by which the solar declination increases in one day; in descending signs

11Euler uses A as both a point and a length in Figure 2 just as in Figure 1, and now also
does the same for B and C.
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dt will represent the amount by which the declination decreases. This increase
or decrease must be given in seconds as accurately as possible, if we want to
find the equation of noon in thirds. However, since ephemerides usually only
display the solar declination in minutes, I will later give a method based on the
daily motion of the Sun, which is commonly given in seconds. The daily change
in declination can then also be computed in seconds, so that it is not necessary
to use interpolation in the customary tables of sines and tangents. I will let
dx be half of the desired angle TPt; therefore, dx, converted to time, will give
the desired equation of noon. I will take dt, the daily change in declination,
and dx, half the angle TPt, to be differentials, since the quantities are so small
that they can be taken as infinitely small with respect to the other arcs, and
the equatorial arcs corresponding to dt and dx can be regarded as small line
segments.

13. By estimating that the solar declination changes at an equal rate over
one day, the change in declination during the interval between two observations
can be found from the daily change in declination. Just as an interval of 24
hours is to the interval between the observations, so is 360 degrees to the angle
SPT , or 2N ; for this reason, express the ratio 360 to 2N as dt to Ndt

180 , which
will be the increase in declination as the Sun moves around the pole through
angle SPT . Therefore, this quantity Ndt

180 is equal to the difference between

PS, or Pt, and PT , and hence PS − PT = Pt− PT = Ndt
180 . Next, the angle

TPt has been set equal to 2 dx; thus, the angle SPt equals 2N −2 dx, and the
angle SPO or tPO, which is half of this, equals N − dx, and the angle TPO
equals N + dx. Thus, reasoning as before, the change in declination while the
sun moves through angle SPO is found from 360 : N − dx = dt : Ndt

360 −
dt dx
360 ,

where the term dt dx
360 can be left out, since it corresponds to a differential in

seconds of arc. Just as for PS−PO, the value Ndt
360 is acceptable for PO−PT .

But the formula12 does not turn out to be more complicated if one wishes to
use Ndt−dt dx

360 for PS − PO and Ndt+dt dx
360 for PO − PT ; in fact, it will not

change.

14. Now, as the sine of arc PO equals B, and the cosine equals b, by
the argument given earlier13 the sine of arc PS, or PO + Ndt−dt dx

360 , equals

B + bNdt−b dt dx
360 , and the cosine equals14 b+ −BNdt+Bdt dx

360 , and these are also

the sine and cosine of arc Pt. The sine of the arc PT , or PO + −Ndt−dt dx
360 ,

equals B + −bNdt−b dt dx
360 , and the cosine is b + BNdt+Bdt dx

360 . Moreover, as the
angle SPO, or tPO, equals N − dx, and N has sine C and cosine c, the
sine of angle SPO or tPO equals C − c dx, and the cosine equals c + C dx.
Similarly, the sine of angle TPO equals C+c dx, and the cosine equals c−C dx.
Therefore, assuming dx is given, in the spherical triangle tPZ the sides PZ and
Pt are given together with the angle ZPt, and, similarly, in the spherical triangle
TPZ the sides PZ and PT are given together with the angle TPZ. Since three

12That is, the formula for dx, and thus for the equation of noon itself.
13This refers to Section 8.
14Euler actually writes this as b − BNdt+Bdt dx

360
. Similar expressions that would appear

incorrect given the modern order of operations have been similarly altered.
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values are given in these triangles, it will be possible to find the sides Zt and
ZT . As these arcs are equal, they will give equations from which dx can be
determined.

15. We thus have two spherical triangles to solve, for both of which two
sides and the angle between them are given, and the third side is required.
Before finding the third side from the given values, I will present a rule in
which dropping a perpendicular is not necessary. If sides ZP and TP to-
gether with angle ZPT are given in spherical triangle ZPT , then15cosZT = Fig. 3
cosZPT sinZP sinPT + cosZP cosPT . This rule is easy to derive from
the results in trigonometry contributed by the late Professor Maier to Vol-
ume 2 of this Commentary16. Thus, by this rule, cosZt = ABc + ab +
ABC dx+ ABcN dt−aBN dt+aB dt dx−Abc dt dx+AbCN dt dx

360 , and from the other tri-
angle cosZT = ABc+ ab−ABC dx+
−AbcN dt+aBN dt+aB dt dx−Abc dt dx+AbCN dt dx

360 . However, since Zt = ZT , the
cosines are equal, and the following equation is obtained: ABC dx+
AbcN dt−aBN dt

360 = 0. From this, dx = N dt
360

(
a

AC −
bc
BC

)
, and, if the arc dt is

converted into thirds of time, then dx is immediately expressed in thirds, as is
the equation of noon itself.

16. In order to examine this formula more clearly, we replace the symbols
with the letters of the figure, and the equation of noon becomes17

ang. SPT · dt
720◦

(
1

tanPZ sin 1
2SPT

− 1

tanPO tan 1
2SPT

)
.

When doing the calculations for this rule, note that the whole sine must be set
equal to 1, whereas in tables of sines and tangents it is 10000000. To adjust for
this, the square of the whole sine should replace 1 in the numerator. However, I
can change the formula so that the numerator and denominator have the same
number of dimensions, and then this adjustment is not necessary. For, when
the whole sine is 1, then 1

tanPZ = cotPZ = tanZE, which is the tangent of
the latitude, and 1

tanPO = cotPO = tanOE, which is the tangent of the solar
declination. Making this substitution, the equation of noon will be

ang. SPT · dt
720◦

(
tanZE

sin 1
2SPT

− tanOE

tan 1
2SPT

)
.

From this formula it is immediately apparent that the equation becomes in-
finitely large at the pole, since ZE is 90◦, for which the tangent is infinitely
large. At the equator, however, tanZE disappears, and the equation of noon is
negative; it should be added, when otherwise it should be subtracted, unless OE

15Euler uses
∫

for sin here and in other places. This notation seems too confusing to
maintain in this translation.

16The citation is Maier, F.C.(1727). “Trigonometrica”, Commentarii Academiae Scien-
tiarum Imperialis Petropolitanae 1727)(2): 12-30. It can be found online at the pages begin-
ning from https://www.biodiversitylibrary.org/item/38525#page/24/mode/1up .

17Euler uses tang. or just t. for tangent.
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is negative, or the sun is descending toward the south. The formula just found
applies to northern declinations, but if the declination is southern on account
of OE being negative, then the equation of noon is

ang. SPT · dt
720◦

(
tanZE

sin 1
2SPT

+
tanOE

tan 1
2SPT

)
; with this small change the calcu-

lation is done correctly.

17. The calculation of this formula is done most conveniently in the following
way. The number of hours between the observations is multiplied by 15 in order
to obtain the number of degrees in the angle SPT , and the logarithm of this
number is taken. Then the daily change in the declination in seconds is found
by the method to be described later. This number is multiplied by18 4, and the
logarithm of the product is added to the prior logarithm. Next, the logarithm

of 720 is subtracted from this sum so that the logarithm of
ang. SPT · dt

720◦
is obtained. After that, the logarithm of the sine of half the angle SPT is
subtracted from the logarithm of the tangent of the latitude. The number

corresponding to this difference in a table of logarithms will be
tanZE

sin 1
2SPT

.

Similarly, the logarithm of the tangent of half the angle SPT is subtracted
from the logarithm of the tangent of the solar declination, and the number

corresponding to this difference in a table of logarithms will be
tanOE

tan 1
2SPT

.

In the case of a northern declination this number is subtracted from the one
before; alternatively, in the case of a southern declination the numbers are added
together. Again, the logarithm of the number produced is taken and added to

the logarithm of
ang. SPT · dt

720◦
found previously. The number corresponding

to the sum of these logarithms will be the equation of noon in thirds.

18. This procedure would seem to be lengthy enough to require a large
amount of time for calculation of a table of the equation of noon. But anyone
who has a little experience in calculating will immediately see that it is not
necessary to repeat the whole operation for each equation; many numbers from
one calculation are retained for other calculations. At any rate, I can claim to
have devoted fewer than four whole days to the entire table for this location,
even though this table is six times larger than the one for the latitude of Paris
in la Hire’s tables. For my own tables were prepared for both ascending and
descending signs, doubling the amount of work. Furthermore, my table extends
from an interval of one hour between observations to an interval of eighteen
hours, while the table for Paris extends from four hours to ten.

19. Before I illustrate this rule with an example, it is necessary to present
the method by which the daily increase or decrease of the Sun’s declination may
be found from its daily motion in the ecliptic. The change in declination must

18The 4 is needed to convert from arc to time, since there are 4 times as many thirds in a
day as there are seconds in a circle.

74

Euleriana, Vol. 2 [2022], Iss. 2, Art. 3

https://scholarlycommons.pacific.edu/euleriana/vol2/iss2/3
DOI: 10.56031/2693-9908.1034



be in seconds, so the motion of the Sun in the ecliptic must be in seconds as
well. Let R be the pole and AB the equator in hemisphere ARBA, and let
EC be the ecliptic, its angle ACE with the equator being 23◦, 29′. Let the Sun Fig. 4
be at M and its declination the arc PM . In one day the Sun proceeds in the
ecliptic through arc Mm, which we call dk. The increase in declination will be
mp−MP = mN = dt. If, as before, we let the sine of arc PM equal b and the
cosine equal B, the sine of arc mp will equal b+Bdt. Let the sine of angle ACE
be e, so that19e : 1 = sinPM : sinCM = b : sinCM , and therefore sinCM
will be b

e . Let the cosine of arc CM equal f , and then sinCm = b
e + fdk.

But then sinACE : whole sine = e : 1 = sin pm : sinCm = (b + Bdt) :(
b
e + fdk

)
, or efdk = Bdt. From this it is found that dt = efdk

B . Therefore,
with e = sin 23◦, 29′, f equal to the cosine of the distance of the Sun from the
equinox, and B equal to the cosine of the solar declination, dt is defined from
dk. Since dk is known in seconds from ephemerides, dt can also be expressed
in seconds.

20. We will demonstrate the operations just described in the following
example. At latitude 52◦, 27′ the Sun’s altitude is observed at 8:21am, and the
sun returns to the same altitude at 3:49pm, as noted using a good, but not
corrected, clock. On that day the ephemerides show the Sun at20á16◦, 35′, 6′′,
and its declination as 16◦, 49′. The question is to find the time at which solar
noon occurred as indicated by the clock. From the ephemerides it is found
that the daily motion of the sun is 57′, 4′′ = 3424′′, and therefore dk = 3424′′.
Furthermore, the distance from the Sun to the nearest equinox is 46◦, 35′, for
which the cosine is equal to f . Also, e = sin 23◦, 29′ and B = cos 16◦, 49′.
From this dt is found as follows21:

l e = l sin 23◦, 29′ = 9.6004090
l f = l cos 46◦, 35′ = 9.8371456
l dk = l 3424 = 3.5345338

l efdk = 22.9720884
l B = l cos 16◦, 49′ = 9.9810187

12.9910697

For the purpose of consistency, the logarithm of the whole sine, 10, should
be subtracted, as there are two sines in the numerator but only one in the
denominator. This will leave 2.9910697 = l dt.

21. It is not necessary to find the number corresponding to this loga-
rithm, since it is the logarithm itself that is used in the other formula. Nev-
ertheless, dt = 979′′ = 16′, 19′′ can be found from tables, and this is the
daily change in declination. If 979′′ is multiplied by 4, the number of thirds

19Euler is using the spherical law of sines: the ratio between the sines of two angles of a
spherical triangle is equal to the ratio of the sines of the arcs opposite the angles.

20The symbol represents the sign Taurus, corresponding to ecliptic longitudes 30◦ through
60◦. Thus, the ecliptic longitude would now be given as 46◦, 35′, 6′′.

21Euler uses l in the following computations to represent the base-10 logarithm. Also, while
the whole sine was 107 in the tables mentioned in Section 16, it is 1010 in the tables Euler
uses here for logarithms of trigonometric functions.
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of time corresponding to dt is obtained. Thus, with dt expressed in sec-
onds, the other formula can be multiplied by 4, and the equation of noon

becomes
ang. SPT · dt

180

(
tanZE

sin 1
2SPT

− tanOE

tan 1
2SPT

)
in thirds of time. Now

ZE = 52◦, 27′ and OE = 16◦, 49′ in the formula, and, since the interval be-
tween the two observations is 7 hours, 28 minutes, the angle SPT is 112◦, and
1
2SPT = 56◦. With these preparations made, the work is done as follows:

l. ang. SPT = l112 = 2.0492180
l.dt = 2.9910697

5.0402877
l.180 2.2552725

l.
ang. SPT ·dt

180 = 2.7850152

The other part is found in this way:

l. tanZE = l. tan 52◦, 27′ = 10.1142350
l. sin 1

2SPT = l. sin 56◦ = 9.9185742

l.
tanZE

sin 1
2SPT

= 0.1956608

Therefore,

tanZE

sin 1
2SPT

= 1.569 .

Furthermore22,

l. tanOE = l. tan 16◦, 49′ = 9.4803451
l. tan 1

2SPT = l.t.56◦ = 10.1210126

l.
tanOE

tan 1
2SPT

= −1.3593325

where the negative sign marks just the characteristic 1, and the rest of the digits
are not affected 23 Therefore,

tanOE

tan 1
2SPT

= 0.229

and so

tanZE

sin 1
2SPT

− tanOE

tan 1
2SPT

= 1.340

which has logarithm = 0.1271048

which, added to l.
ang. SPT ·dt

180 = 2.7850152
gives the logarithm of the equation of solar noon = 2.9121200

Therefore, the equation will be 817 thirds. That is to say, the equation of noon
corresponding to this case is 13′′, 37′′′, where seconds and thirds of time are
denoted.

22The value of log tan 56◦ in the following computations is incorrect in the original text.
There should be a 7 in place of the 2 in the hundredths place.

23What Euler means is that the number should be read as −1 + 0.3593325.
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22. Since the Sun is in Taurus in this observation, its declination is increas-
ing, and for this reason the equation that has been found should be subtracted
from the mean time between the two observations to produce the time of solar
noon. The mean time is found by adding the times of the observations

8h.21′

3h.49′

together with 12 hours 12h.
24h.10′

and taking half of this sum 12h.5′

If 13′′, 37′′′ is subtracted from this time, the time of solar noon is found to be
12 hours, 4′, 46′′, 23′′′, from which a clock can be corrected as accurately as
possible.
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