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Background 

Epidemiologists are generally interested in the effect of an exposure on an outcome, also 

called the exposure effect. A well-known epidemiological example is the study by Doll and 

Hill linking smoking to lung cancer (1). Throughout the decades, the use of statistical 

methods to estimate exposure effects has increased substantially (2). Often, generalized 

linear models (GLMs) are used to estimate these effects. GLMs were introduced in 1972 

by Nelder en Wedderburn and encompass multiple regression techniques, which all trace 

the outcome as a linear function of the exposure (3-5). The distribution of the outcome 

determines which regression technique is most appropriate to estimate the exposure 

effect. If the outcome is continuous (for example, blood pressure), then linear regression 

analysis can be used. For the analysis of a binary outcome (for example, 

hypercholesterolemia), logistic regression can be used. When analysing survival data (for 

example, the time till the development of depressive symptoms), then Cox regression 

analysis can be used. Logistic- and Cox regression require a transformation of the 

outcome variable to meet the linearity assumption. Because linear-, logistic- and Cox 

regression are the most common techniques applied in epidemiological research, these 

are described in more detail below.  

 

Linear regression 

A standard linear regression model is given by 

 

𝑌1 =  𝑖1 + 𝛽1𝑋 + 𝜀1 (1) 

 

where 𝑌1 represents the continuous outcome of interest and 𝑋 represents the exposure 

of any distribution. 𝜀1 is the error term (i.e., the variance of 𝑌1 not explained by exposure 

𝑋), and 𝑖1 and 𝛽1 represent the intercept and exposure effect, respectively (3, 6). The 

intercept is the mean outcome value if the exposure is zero, and the exposure effect is 

the average difference in the outcome for every one unit difference in the exposure. 

Because a linear relation is assumed between the exposure and the outcome, the 

exposure effect is the same for all one unit differences in the exposure values. If exposure 

𝑋 is a binary variable coded as 0 for the non-exposed individuals and 1 for the exposed 

individuals, then the intercept is the mean outcome value for the non-exposed 

individuals, and the exposure effect is the average difference in the outcome between 

the exposed and the non-exposed individuals (3, 6). Using the coefficients from equation 

1, it is possible to estimate the outcome for each individual given their exposure value. 
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Logistic regression 

Whereas linear regression doesn’t require any transformation to linearly relate the 

exposure to the outcome, in logistic regression the outcome is transformed into the 

natural logarithm of the odds (log odds or logit) of the outcome (3, 5-8). The odds of 

developing the outcome are given by 
𝑝

1−𝑝
, where 𝑝 represents the probability of 

developing the outcome of interest (i.e., Pr(𝑌 = 1)). A logistic model is given by  

 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌2 = 1)) = 𝑖2 + 𝛽2𝑋 (2) 

 

where 𝑙𝑜𝑔𝑖𝑡(Pr(𝑌2 = 1)) represents the log odds of the outcome. Like in equation 1, 𝑋 

represents the exposure of any distribution and 𝑖2 and 𝛽2 represent the intercept and 

exposure effect, respectively. Using the coefficients from equation 2, it is possible to 

estimate the probability of developing the outcome for each individual (3, 8). This is done 

by 

 

𝑝 =
1

1 + 𝑒−(𝑖2+𝛽2𝑋)
 (3) 

 

The interpretation of the intercept and exposure effect in logistic regression are similar 

to that in linear regression. The intercept is the mean log odds of the outcome if the 

exposure is zero, and the exposure effect is the average difference in the log odds of the 

outcome corresponding to every one unit difference in the exposure. Because a linear 

relationship is assumed, the exposure effect is the same for every one unit difference in 

the exposure. If the exposure is binary, then the intercept is the mean log odds of the 

outcome for the non-exposed individuals, and the exposure effect is the average 

difference in the log odds of the outcome between the exposed and the non-exposed 

individuals (6, 8).  

 

By taking the exponent of 𝑖2 and 𝛽2, the intercept is the odds of the outcome in the 

unexposed (i.e., 𝑋 = 0), and the exposure effect is an odds ratio (OR): the ratio of odds of 

the outcome between exposed and non-exposed individuals. If the OR equals one, then 

there is no association between the exposure and the outcome. If the OR is larger than 

one, then the exposure is associated with a higher odds of the outcome, whereas the 

exposure is associated with a lower odds of the outcome if the OR is smaller than one (7, 

9).  
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Cox regression 

Like binary outcomes, survival outcomes have to be transformed to allow for the 

estimation of a linear relation between the exposure and the outcome. In Cox regression, 

the outcome is modelled as the natural logarithm of the hazard function, which is the 

instantaneous probability per unit of time for the event of interest to happen given that 

the individual has not experienced the event up to that moment (9-11). That is, the hazard 

is the probability that an individual that is under observation at a specific moment in time 

experiences an event at that exact time. A Cox regression model is given by 

 

𝑙𝑜𝑔 (ℎ(𝑡)) = 𝑙𝑜𝑔 (ℎ0(𝑡)) ∗ 𝛽3𝑋 (4) 

 

where log(ℎ(𝑡)) represents the expected log hazard at time 𝑡, log(ℎ0) represents the 

baseline hazard (i.e., the hazard when the exposure 𝑋 equals zero) which varies with time, 

and 𝛽3 represents the exposure effect.  

 

Here, the exposure effect is the average difference in the log hazard of the event of 

interest at any point in time corresponding to every one unit difference in the exposure. 

If the exposure is binary, then the exposure effect is the average difference in the log 

hazard of the event of interest at any point in time between the exposed and the non-

exposed individuals. By taking the exponent, the exposure effect is a hazard ratio (HR): 

the ratio of hazards of the event of interest at any point in time between exposed and 

non-exposed individuals. If the HR is one, then there is no association between the 

exposure and the outcome. If the HR is larger than one, then the hazard of the event of 

interest increases, whereas the hazard decreases if the HR is smaller than one. In the 

latter case, the exposure has a protective effect on the outcome (10, 11). The HR is 

assumed to be constant over time (i.e., the proportional hazard assumption), meaning 

that the estimated effect is the same at every point in time (9). 

 

Bias 

In many epidemiological studies, the aim is to isolate the true effect of the exposure on 

the outcome. However, often the association between an exposure and an outcome is 

not entirely attributable to the exposure, i.e., the effect is biased (9, 12). Bias is defined as 

‘an error in the conception and design of a study – or in the collection, analysis, 

interpretation, reporting, publication, or review of data – leading to results or conclusions 

that are systematically (as opposed to randomly) different from truth’ (13). Thus, bias can 

occur in practically all stages of a study and can be both negative or positive, resulting in 
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an under- or overestimation of the true effect. It can also reverse the apparent direction 

of the effect. In this thesis, I focus on bias that can occur in the analysis stage of a study 

as a result of the incorrect application of linear-, logistic- and Cox regression models. 

Below is a description of potential sources of bias that appear in the chapters in this 

thesis. 

 

Non-linear effects 

Each model has certain assumptions that must be met for the estimated exposure effect 

to be an unbiased estimate of the true effect. An assumption that GLMs share is that the 

exposure is linearly related to the outcome (4). If this assumption is not met, i.e., if a linear 

relation is modelled between the exposure and the outcome when in reality this relation 

is non-linear, then the effect estimate is not a good representation of the true underlying 

effect and bias is introduced. 

 

In equations 1, 2 and 3, the effect estimates are obtained through univariable regression 

(Figure 1A), meaning that the outcome is modelled as a function of the exposure only. 

However, in observational data, associations are rarely that straightforward. There are 

multiple ways in which a third variable can distort the effect of the exposure on the 

outcome, one of which is if that variable is a confounder. A confounder is associated with 

both the exposure and the outcome, but does not lie in the causal pathway of the 

exposure on the outcome (Figure 1B). In this case, part of the effect of the exposure on 

the outcome is explained by the confounder (9). Ignoring the confounder leads to 

incorrect inference about the association between the exposure and the outcome. Thus, 

to obtain an unbiased exposure effect, it is necessary to adjust for this confounder. One 

of the ways in which this can be done is by regressing the outcome on the exposure and 

adding the confounder as a covariate, i.e., by using multivariable regression analysis (3). 

A multivariable linear regression model that does so is given by 

 

𝑌4 =  𝑖4 +  𝛽∗𝑋 + 𝛾𝐶 + 𝜀4 (5) 

 

where 𝑌4, 𝑋 and 𝐶 represent the outcome, exposure and confounder, respectively. 𝑖4 

represents the intercept, 𝜀4 is the error term and 𝛾 is the coefficient corresponding to 

confounder 𝐶. 𝛽∗ represents the confounder-adjusted exposure effect. 

 

The assumptions underlying a multivariable regression model are identical to the 

assumptions of a univariable regression model (3). Thus, in equation 5, the linearity  
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A  B  C  

 

 

 

 

 

 
Figure 1 Figures illustrating a univariable association between an exposure and an outcome (panel A), a single-

confounder model (panel B) and a single-mediator model (panel C)  

 

 

assumption not only applies to the association between the exposure and the outcome, 

but also to the association between the confounder and the outcome. It is common 

practice to assess the linearity assumption of the association between the exposure and 

the outcome, and there is a substantial body of literature that covers this topic (6, 14). 

However, the linearity of the association between the confounder and the outcome is 

less commonly assessed in practice. This is problematic, because if it is incorrectly 

assumed that that the confounder is linearly related with the outcome, then, in an 

attempt to remove bias by adjusting for the confounder, bias may actually be introduced.  

 

Other ways to adjust for confounding include propensity score methods, inverse 

probability weighting and double robust estimation (6, 15-18). Like with multivariable 

regression analysis, if the linearity assumptions underlying these methods are not met, 

bias may be introduced. 

 

If the linearity assumption does not hold, then the non-linear associations present in the 

data have to be modelled explicitly. There are different ways to do so, of which some 

simple methods such as categorization of the exposure variable and the use of higher 

order terms are widely used in epidemiological research, largely due to historical 

precedent (19). A more advanced and flexible method to model non-linear relations is by 

the introduction of spline functions in the regression model. Spline functions are 

transformations of the continuous independent variable (i.e., the variable that the 

outcome is regressed on) and are available in different forms such as linear spline (LSP) 

functions and restricted cubic spline (RCS) functions (6). In both LSP and RCS regression, 

the independent variable is divided into multiple intervals, and for each interval the 

relationship between the exposure and outcome is estimated separately (6, 20). If for 

each interval a linear relationship is estimated, then the spline functions results in LSP 

regression. If for each interval a third degree relationship is estimated and the tails are 

restricted, then the spline functions result in RCS regression (6, 21). Both LSP and RCS 

regression are implemented in most software packages commonly used by 
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epidemiologists. However, its use lags behind in applied research, possibly because the 

theory behind these methods is often presented in a complex and mathematical way (22, 

23).  

 

Noncollapsibility 

To identify confounders to adjust for in the analysis, researchers often use statistical 

methods to quantify the confounding bias. This is mostly done by comparing exposure 

effect estimates between a univariable- and a multivariable regression model (e.g., by 

comparing 𝛽1 from equation 1 with 𝛽∗ from equation 5). This is also called the change-in-

estimate criterion (24-26). Typically, a 10% difference in the exposure effect estimates is 

used in practice as an arbitrary threshold indicating confounding that needs to be 

adjusted for (25, 27).  

 

However, in logistic regression, adjusting for a third variable may lead to a change in the 

exposure effect estimate regardless of whether that variable is actually a confounder. 

That is because in logistic regression there are two mechanisms in which a third variable 

may affect the effect estimates: through confounding if that variable is associated with 

both the exposure and the outcome, and through noncollapsibility if that variable is 

associated with the outcome (28). This noncollapsibility effect stems from a change in 

scales that occurs in logistic regression when variables are added to the model (28). As a 

result of the change in scales, negative exposure effects become more negative, and 

positive exposure effects become more positive. Thus, in logistic regression, the 

difference between univariable- and multivariable exposure effect estimates may not 

only represent confounding bias but also a noncollapsibility effect (29, 30). Relying on the 

change-in-estimate criterion may then lead to wrong conclusions about the presence and 

magnitude of confounding bias.  

 

Causal mediation analysis 

Another way in which a third variable can affect the association between an exposure 

and an outcome is if that variable acts as a mediator (Figure 1C). A mediator (partially) 

explains the effect of the exposure on the outcome, as the exposure causes the 

mediator, and the mediator in turn causes the outcome (31). In contrast to confounders, 

mediators do not bias the exposure effect and adjustment for a mediator leads to 

overadjustment bias. Instead of adjusting for a mediator, mediation analysis can be used 

to decompose the total effect of the exposure on the outcome into an indirect effect 

through the mediator and a direct effect after removing the influence of the mediator 
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(32, 33). Two general methods for mediation analysis have been described in the 

literature: traditional mediation analysis and causal mediation analysis. In contrast to 

traditional mediation analysis, causal mediation analysis separates the causal effect 

definitions from the causal effect estimates. This allows for different estimation methods 

to be used to estimate the causal indirect-, direct- and total effect (34). These methods 

include regression, simulation, imputation and weighting.  

 

To estimate the causal effect of an exposure on an outcome, potential outcomes are 

compared between two exposure values (35, 36). These two exposure values are also 

called the causal contrast. Only the regression- and the simulation-based approach 

require the selection of a causal contrast, which is also reflected in the interpretation of 

the results: the indirect effect from the regression- and simulation-based approaches 

only apply to the two values selected for the causal contrast, whereas the imputation- 

and weighting-based approaches return the average difference in the outcome for every 

one unit difference in the exposure through the mediator.  

 

If the mediator and the outcome are both continuous, then all four estimation 

approaches provide the same causal effect estimates (37). That is, if all pathways in the 

mediation model are linear, then the effect estimates are the same for every causal 

contrast. However, if the exposure is continuous and the mediator is binary, then the 

different estimation approaches no longer provide the same effect estimates. In addition, 

because of the now non-linear relationship between the exposure and the mediator, for 

the regression- and simulation-based approaches the estimated mediation effects 

depend on the selected causal contrast. If researchers are unaware of the different 

approaches and the role of the causal contrast, then the mediation effect estimates may 

be interpreted incorrectly.  

 

Competing risks 

A potential source of bias in survival analysis are competing events. A competing event is 

an event that prevents the event of interest from happening (38). For example, if the 

event of interest is time till the development of depressive symptoms, then death is a 

competing event. In epidemiological research competing events are often ignored, and 

individuals that experience a competing event are censored. Censoring occurs when the 

exact survival time of an individual (i.e., the time till the event of interest) is unknown. This 

happens, for example, if an individual withdraws from the study or does not experience 

the event of interest before the end of the study (38, 39). One of the assumptions of Cox 
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regression is that of independent or noninformative censoring, meaning that individuals 

who are censored have the same future risk of the event of interest as the individuals 

that remain under observation (9). However, if someone experiences a competing event, 

then that individual does no longer have the same future risk for the event of interest. 

Thus, censoring these individuals goes against the assumption of noninformative 

censoring, and failing to account for competing risks generally leads to an overestimation 

of the effect of the exposure on the outcome (39, 40). Therefore, specific competing risk 

analysis should be applied to analyse survival data in the presence of competing risks. 

 

Aim 

Even though regression modelling is widely used in epidemiological research, 

researchers are often unaware of the many ways in which the incorrect application of 

these methods can introduce bias. Existing literature on these topics often contain a high 

level of technical and mathematical details (21-23, 29, 30, 41-43), which hampers the 

understanding, application and interpretation of correct methods by applied 

researchers. Therefore, the aim of this thesis is to describe situations in which bias can 

occur in regression analysis in a non-technical and non-mathematical way, and to 

propose solutions where possible.  

 

Data 

In each chapter, the theory is illustrated using an empirical data example. The data comes 

from the Longitudinal Aging Study Amsterdam (LASA) and the Amsterdam Growth and 

Health Longitudinal Study (AGHLS). LASA is an ongoing prospective cohort study among 

older adults in the Netherlands. The study started in 1992 and focusses on the 

determinants, trajectories and consequences of physical, cognitive, emotional and social 

functioning. A new round of measurements is conducted approximately every three 

years (44, 45). The AGHLS is an ongoing prospective cohort study that started in 1976 

with the aim to examine growth and health among Amsterdam teenagers. Later 

measurement rounds focus on the association between health and lifestyle measures, 

on the determinants of chronic diseases and on parameters for the investigation of 

deterioration in health with age (46). In addition to empirical data examples, some 

chapters also contain a simulation study. In a simulation study, data is created by pseudo-

random sampling in which ‘true’ effects are known. This allows for the evaluation of model 

performance and for the comparison of methods, for example in terms of bias (47, 48). 

Bias can then be expressed, among other things, as absolute bias (i.e., the absolute 
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difference between the exposure effect estimate and the true exposure effect) or relative 

bias (the absolute bias relative to the true exposure effect) (47). 

 

Outline 

Chapter two of this thesis demonstrates the importance of correctly specifying the 

confounder-exposure and confounder-outcome associations to estimate unbiased 

exposure effects if the confounder is a continuous variable. Four different confounder-

adjustment methods are reviewed and researchers are provided with an overview of 

tools to examine and correctly specify the functional form of the associations. One of the 

tools to correctly specify the functional form is the introduction of spline functions in the 

regression model. Chapter three compares spline regression to more traditional 

methods to deal with non-linear exposure effects and explains in detail what spline 

functions are, how they can be applied and how the results should be interpreted. 

Chapter four describes how the traditional change-in-estimate criterion to determine the 

presence of confounding bias can lead to wrong conclusions when applied to logistic 

regression coefficients. The role of noncollapsibility in logistic regression is clarified and 

guidance is provided in determining the presence of confounding bias. Chapter five 

illustrates the difference between the causal estimation methods for mediation models 

with a continuous exposure and a binary outcome. Four estimation approaches are 

compared in terms of their performance and interpretation: the regression-, simulation-,  

imputation- and weighting-based approach. Chapter six introduces competing risk 

analysis to deal with competing events in survival data and explains how to analyse and 

interpret survival data in the presence of these competing events. Finally, chapter seven 

contains a discussion of the results presented in this thesis and provides 

recommendations for practice.  
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Abstract 

Background 

Confounding is a common issue in epidemiological research. Commonly used 

confounder-adjustment methods include multivariable regression analysis and 

propensity score methods. Although it is common practice to assess the linearity 

assumption for the exposure-outcome effect, most researchers do not assess linearity 

of the relationship between the confounder and the exposure and between the 

confounder and the outcome before adjusting for the confounder in the analysis. Failing 

to take the true non-linear functional form of the confounder-exposure and confounder-

outcome associations into account may result in an under- or overestimation of the true 

exposure effect. Therefore, this paper aims to demonstrate the importance of correctly 

specifying the confounder-exposure and confounder-outcome associations to estimate 

unbiased exposure effects. 

 

Methods 

A Monte Carlo simulation study was used to assess and compare the performance of 

confounder-adjustment methods when the functional form of the confounder-exposure 

and confounder-outcome associations were misspecified (i.e., linearity was wrongly 

assumed) and correctly specified (i.e., linearity was rightly assumed) under multiple 

sample sizes. An empirical data example was used to illustrate that the misspecification 

of confounder-exposure and confounder-outcome associations leads to bias. 

 

Results 

The simulation study illustrated that the exposure effect estimate will be biased when for 

propensity score (PS) methods the confounder-exposure association is misspecified. For 

methods in which the outcome is regressed on the confounder or the PS, the exposure 

effect estimate will be biased if the confounder-outcome association is misspecified. In 

the empirical data example, correct specification of the confounder-exposure and 

confounder-outcome associations resulted in smaller exposure effect estimates. 

 

Conclusion 

When attempting to remove bias by adjusting for confounding, misspecification of the 

confounder-exposure and confounder-outcome associations might actually introduce 

bias. It is therefore important that researchers not only assess the linearity of the 

exposure-outcome effect, but also of the confounder-exposure or confounder-outcome 

associations depending on the confounder-adjustment method used. 
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Introduction 

Unlike in randomized controlled trials, the observed exposure values in observational 

studies are often influenced by the characteristics of the study subjects. As a result, there 

might be an unintended difference in baseline characteristics between exposed and 

unexposed individuals. If these characteristics are also associated with the outcome, then 

these covariates are confounders of the exposure-outcome effect. In other words, a 

confounder is a common cause of the exposure and the outcome (1). A simple 

comparison of the outcome between exposure groups then results in a biased effect 

estimate (2, 3). Therefore, in observational studies, to obtain an unbiased estimate of the 

exposure effect it is necessary to remove the spurious part of the exposure-outcome 

effect caused by the confounders. 

 

There are different methods to obtain confounder-adjusted exposure effect estimates, 

such as multivariable regression analysis and various propensity score (PS) methods. In 

multivariable regression analysis the confounders are added to the model in which the 

outcome is regressed on the exposure (4). This way, the confounder-outcome association 

is removed. In propensity score methods a balancing score is created which can 

subsequently be used to adjust, stratify, or weight the exposure-outcome effect (2, 5). By 

creating this balancing score, the confounder-exposure association is removed and an 

unbiased exposure effect estimate can be obtained (6).  

 

When multivariable regression analysis is used to adjust for a continuous confounder in 

order to obtain an unbiased exposure effect estimate, both the exposure-outcome effect 

and the confounder-outcome association are assumed to be linear. It is common practice 

to assess the linearity assumption for the exposure-outcome effect and there is a 

substantial body of literature that covers this topic (4, 7). However, it seems less common 

practice to also assess the linearity of the confounder-exposure and confounder-

outcome associations (8, 9). When it is incorrectly assumed that the confounders are 

linearly related with the exposure and outcome (i.e., if the associations are misspecified), 

the exposure effect estimate might be over- or underestimated. Thus, in an attempt to 

remove bias, bias may actually be introduced. The bias that remains (or is introduced) 

after adjusting for confounding is also called residual confounding (7, 8, 10).  

 

In this study, we demonstrate the importance of correctly specifying the confounder-

exposure and confounder-outcome associations to estimate unbiased exposure effects 

if the confounder is a continuous variable. First, we describe how to examine the linearity 
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assumption for any association. Next, we review four well-known confounder-adjustment 

methods and lay out their respective functional form assumptions. Then, we illustrate the 

importance of the correct specification using a Monte Carlo simulation and an empirical 

data example. Finally, we discuss methods that can be used to correctly specify the 

confounder-exposure and confounder-outcome associations. 

 

Examination of the linearity assumption 

There are several ways to assess linearity of the effects. Assume there are two continuous 

variables A and B and that one is interested in examining the linearity of the A-B effect. 

The easiest way to assess linearity is by visual inspection: a scatterplot with variable A on 

the X-axis and variable B on the Y-axis provides an indication of the nature of the 

relationship between A and B (11). Figure 1 provides a hypothetical example of a linear 

relationship between variables A and B (panel A), and a non-linear relationship between 

those variables (panel B). In both panels, the dotted line represents the linear regression 

line, i.e., the line that describes a linear relationship between variables A and B. In panel 

A, the regression line fits the data very well. In panel B, however, the linear regression line 

is not a good representation of the non-linear relationship between A and B. Then, failing 

to take the non-linear nature of the relationship into account leads to a biased estimate 

of the A-B effect. 

 

Non-visual ways to assess linearity include adding a non-linear term to the model and 

categorization of the continuous independent variable. When adding a non-linear term 

(e.g. a quadratic function) to the model, variable B is modelled as a function of variable A 

and the non-linear term of that same variable A using linear regression. If the A-B effect 

 

 

 
Figure 1 Hypothetical example of the relationship between continuous variables A and B, where each point 

represents an observation. Panel A: linear relationship. Panel B: non-linear relationship. The dotted line represents 

the linear regression line for the relationship between variables A and B 
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is truly linear, then the coefficient corresponding to the non-linear term will be zero (4). 

Often, if the non-linear term is not significant, the effect is considered linear. When using 

categorization to assess linearity, variable B is modelled as a function of a categorized 

variable A. If the regression coefficients corresponding to the categories of variable A do 

not increase linearly, then this is also an indication of a non-linear A-B effect (7). Both non-

visual ways to assess linearity can also be applied when the outcome of interest is not 

continuous, but is, for example, dichotomous. In that case, logistic regression will be used 

to model continuous variable A and its non-linear term, or to model dichotomous variable 

B as a function of the categorized variable A. 

 

Confounder-adjustment methods 

Studies are often interested in estimating the average effect of an exposure on an 

outcome. In terms of potential outcomes, the average effect of the exposure on the 

outcome is defined as the difference between two expected outcome values under two 

exposure values, i.e., 𝐸[𝑌(1) − 𝑌(0)]. To obtain an unbiased estimate of this exposure 

effect it is necessary to adjust for any confounding. In this study we discuss four 

confounder-adjustment methods: multivariable regression analysis, covariate 

adjustment using the propensity score (PS), inverse probability weighting (IPW) and 

double robust (DR) estimation. As assessing the linearity assumption for the exposure-

outcome effect is common practice, throughout this paper we assume that the exposure-

outcome effect is always correctly specified as linear. However, we believe that the 

information in this paper also applies to models in which the exposure-outcome effect is 

(correctly specified as) non-linear. Table 1 shows which association (i.e., the confounder-

exposure or the confounder-outcome association, or both) has to be correctly specified 

for each method in order to obtain unbiased exposure effect estimates.  

 

Multivariable regression analysis 

With multivariable regression analysis, the outcome is modelled as a function of the 

exposure and the confounders (4) (equation 1): 

 

𝐸(𝑌|𝑋, 𝐶) = 𝑖1 + 𝛽1𝑋 + 𝛽2𝐶1 + ⋯ + 𝛽𝑛+1𝐶𝑛 (1) 

 

where 𝑌 and 𝑋 represent the continuous outcome and a dichotomous exposure, 

respectively, and 𝑖1 represents the intercept term. 𝛽1 is the multivariable confounder 

adjusted exposure effect estimate and 𝛽2 to 𝛽𝑛+1 are the coefficients that correspond to 

the continuous confounding variables 𝐶1 to 𝐶𝑛. 
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Table 1 Confounder-adjustment methods and the association(s) that need to be correctly specified to obtain 

an unbiased estimate of the exposure effect 

Confounder-adjustment methods 
Confounder-exposure 

association 

Confounder-outcome 

association 

Multivariable regression analysis n/a √ 

Covariate adjustment using the PS§ √ √* 

IPW§ √ n/a 

DR estimation§ Both associations need to be specified but estimators 

are consistent if either is correctly specified 

Abbreviations: PS: propensity score; IPW: inverse probability weighting; DR: double robust; *: PS-outcome effect; 

n/a: not applicable, §: requires a correctly specified propensity score (i.e., the log odds of the exposure is linear in 

the confounders) 

 

 

Multivariate regression analysis adjusts for confounding of the exposure-outcome effect 

by adding confounders 𝐶1 to 𝐶𝑛 to the equation. As a result, 𝛽1 represents the difference 

in the outcome between the exposed and unexposed groups, holding the confounders 

at the same value (4, 11). Strictly speaking, 𝛽1 is an estimate of the exposure-outcome 

effect conditional on confounders, i.e., 𝐸[𝑌(1) − 𝑌(0)|𝐶 = 𝑐], which is different from the 

average exposure-outcome effect defined earlier, i.e., 𝐸[𝑌(1) − 𝑌(0)]. However, 𝛽1 is an 

estimate of 𝐸[𝑌(1) − 𝑌(0)] when equation 1 is estimated with linear regression (12). 

 

In equation 1, a linear association is assumed between the exposure and the outcome, 

and between each confounding variable and the outcome (11). The confounder-

exposure association is not modelled, therefore no assumptions are made about the 

functional form of that association. 

 

Propensity score adjustment 

The PS is the predicted probability of endorsing exposure (equation 2):   

 

𝑃𝑆 = 𝑃(𝑋 = 1|𝐶1, … , 𝐶𝑛) =  
1

1 + 𝑒−(𝑖2+𝜆1𝐶1+⋯+𝜆𝑛𝐶𝑛)
 (2) 

 

where X represents the dichotomous exposure, 𝑖2 is the model intercept and 𝜆1 to 𝜆𝑛 are 

regression coefficients corresponding to confounders 𝐶1 to 𝐶𝑛.  

 

The propensity score is estimated in two steps. First, the exposure is modelled as a 

function of the confounders 𝐶1 to 𝐶𝑛 using a logistic regression model. Second, each 

individual’s predicted probability of endorsing the exposure is estimated, which is the 
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propensity score (2, 6, 13). The PS can be used in different ways to adjust for confounding. 

In this paper we discuss three of these methods: covariate adjustment with the PS, 

inverse probability weighting and double robust estimation. All three methods assume 

that the propensity score is correctly specified, i.e., that the log odds of the exposure is 

linear in the confounders. Details on the computation of the PS in general and other PS 

methods such as matching and stratification can be found elsewhere (2, 6, 13-20).  

 

Covariate adjustment using the propensity score 

Because the PS contains information on the confounders, it is possible to adjust for 

confounding by modelling the outcome as a function of the exposure and the PS (2, 13). 

Thus, instead of conditioning on confounding variables 𝐶1 to 𝐶𝑛 as in equation 1, we now 

condition on the PS (equation 3): 

 

𝐸(𝑌|𝑋, 𝑃𝑆) = 𝑖3 + 𝛽1
∗𝑋 + 𝛽2

∗𝑃𝑆 (3) 

 

where 𝑌 and 𝑋 represent the continuous outcome and the dichotomous exposure, 

respectively, and 𝑖3 represents the intercept term. 𝛽1
∗ is the PS confounder-adjusted 

exposure effect estimate and 𝛽2
∗ is the coefficient that corresponds to the propensity 

score 𝑃𝑆.  

 

Because in equation 3 the outcome is regressed on the exposure and the propensity 

score, linearity assumptions apply both to the exposure-outcome effect and the PS-

outcome association. Whereas all PS methods require the PS to be adequately specified, 

this is the only PS method that additionally makes assumptions about the linearity of the 

PS-outcome association (2, 4).  

 

Inverse probability weighting 

Inverse probability weighting uses weights based on the PS to create a pseudo-

population in which each confounder combination is balanced between the exposed and 

unexposed groups. When there is perfect confounder balance between the groups there 

is no longer an association between confounders 𝐶1 to 𝐶𝑛 and the exposure (4). With 

weighting, individuals who are underrepresented get larger weights assigned, whereas 

individuals who are overrepresented get smaller weights assigned.  

 

For exposed individuals the weight is calculated as 
1

𝑃𝑆
, whereas for unexposed individuals 

the weight is calculated as 
1

1−𝑃𝑆
 (2, 21). A potential issue with IPW is that the weights can 
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be unstable. This is because individuals with a PS close to 0 receive very large weights, 

whereas individuals with a PS close to 1 receive very small weights. Subjects with these 

large weights will then dominate the weighted analysis, resulting in a large variance of the 

IPW estimator (22). As an alternative, stabilized weights have been proposed (2). This 

reduces the weights of the treated individuals with a small PS and the untreated 

individuals with a large PS. For exposed individuals, these stabilized weights are 

calculated as 
𝑝

𝑃𝑆
 and for unexposed individuals stabilized weights are calculated as 

1−𝑝

1−𝑃𝑆
, 

with p being the probability of exposure without considering the confounders (2). After 

calculating the weights for all individuals the IPW confounder-adjusted exposure effect is 

estimated by performing a weighted regression analysis with the exposure as the only 

independent variable. 

 

IPW does not make any linearity assumptions about the confounder-outcome or PS-

outcome association (20). Thus, IPW only assumes a correctly specified propensity model. 

If the propensity model is misspecified this results in inappropriate weights and possibly 

a biased IPW confounder-adjusted exposure effect estimate (23). 

 

Double robust estimation 

Double robust estimation combines multivariable regression analysis and IPW and is 

done in two steps: first, a propensity model is specified and stabilized weights are 

calculated. Second, a weighted analysis in which the outcome is regressed on the 

exposure and the confounders is performed. 

Because the model is weighted by the stabilized weights, an adequately specified 

propensity model is needed. In addition, because the confounders are included in the 

regression analysis, linearity assumptions about the confounder-outcome association 

are made. However, only one of these two associations (i.e., either the confounder-

exposure associations in the propensity model or the confounder-outcome associations 

in the multivariable regression model) has to be correctly specified to obtain an unbiased 

exposure effect estimate (20, 23, 24). However, if both effects are misspecified, the DR 

exposure effect estimate may be even more biased than the estimate of a less robust 

single confounder-adjustment method such as multivariable regression or IPW (25, 26). 

 

Simulation study 

Simulation methods 

A simulation study was designed to assess and compare the performance of the four 

confounder-adjustment methods. Four different scenarios were considered based on 
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the (mis)specification of the confounder-exposure and confounder-outcome association 

(see Table 2). The R programming language version 4.0.3 was used to generate and 

analyse the data (27).  

 

To model both misspecified and correctly specified confounder-exposure and 

confounder-outcome associations, first two continuous confounders were generated. 

Confounder 𝑍 was generated from a standard normal distribution, and confounder 𝐶 

was its corresponding squared terms. The dichotomous exposure was generated from a 

binomial distribution conditional on confounder 𝑍 and its squared term 𝐶 (equation 4), 

and the continuous outcome was a function of the exposure and confounders 𝑍 and 𝐶 

(equation 5).  

 

𝑃(𝑋 = 1|𝑍, 𝐶) =  
1

1 + 𝑒−(𝑖4+𝛽1𝑍+𝛽1𝐶)
 (4) 

 

𝐸(𝑌|𝑋, 𝑍, 𝐶) = 𝑖5 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽2𝐶 (5) 

 

This way, the exposure and the outcome had a quadratic relation with each of the 

confounders. Next, we estimated the confounder-adjusted exposure-outcome effect 

using the four confounder-adjustment methods. In the scenarios in which the non-

linearity of the confounder-exposure and confounder-outcome association were 

correctly specified, the analysis was adjusted for confounders 𝑍 and 𝐶. This way, the 

underlying quadratic relation was modelled. In the scenarios in which the effects were 

misspecified, only confounder 𝑍 was included in the analysis. This way, only the incorrect 

linear relation was modelled. Sample sizes were 200, 500 and 1000. The parameter value 

for the exposure- outcome effect was set to 0.59 to mimic a large effect size. The 

parameter values for the confounder-exposure and confounder-outcome association 

were set to -0.14, -0.39, -0.59 and 0.14, 0.39 and 0.59 to mimic negative and positive  

Table 2 Overview of simulated scenarios 

Scenario Confounder-exposure association Confounder-outcome association 

Scenario 1 Correctly specified Correctly specified 

Scenario 2 Correctly specified Misspecified 

Scenario 3 Misspecified Correctly specified 

Scenario 4 Misspecified Misspecified 

When effects are correctly specified, confounders Z and 𝐶 are adjusted for in the analysis. When effects are 

misspecified, only confounder 𝑍 is adjusted for. 
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small, medium and large effect sizes, respectively (28). In total, 72 conditions were 

simulated (4 scenarios; 3 sample sizes; 6 confounder-exposure and confounder-

outcome effect sizes) with 1,000 repetitions per condition, resulting in 72,000 

observations. 

 

The performance of the confounder-adjustment methods was compared based on the 

absolute bias (AB) and the relative bias (RB) (29). AB is the absolute difference between 

the estimated exposure effect and the true exposure-outcome effect of 0.59. RB is the 

ratio of AB to the true exposure-outcome effect (29, 30). For both performance measures 

a lower score corresponds to a better performance. The simulation code is available in 

additional file A. 

 

In additional file E we show an extra condition in which the direction of the exposure 

effect changes if the non-linearity of the confounder-exposure and confounder-outcome 

associations is not modelled correctly.  

 

Simulation results 

Table 3 shows the mean estimated exposure effect, AB and RB for all models across the 

four simulated scenarios based on a sample size of 500 and positive confounder-

exposure and confounder-outcome associations. Results for sample sizes 200 and 1000 

can be found in additional files B and C, respectively. 

 

In scenario 1, where both the confounder-exposure and confounder-outcome 

associations were correctly specified, multivariable regression analysis, PS adjustment 

and DR estimation all performed well. When the confounder-outcome association was 

misspecified (scenario 2), multivariable regression analysis and DR estimation resulted in 

biased exposure effect estimates. PS adjustment still performed well, but had the PS-

outcome association been misspecified as well, then residual bias would also have been 

observed for that method. In both scenarios 1 and 2, bias was observed for IPW as IPW 

is a large sample technique (3). Increasing the sample size resulted in exposure effect 

estimates closer to the true effect. In scenario 3, where the confounder-exposure 

association was misspecified but the confounder-outcome association was correctly 

specified, multivariable regression analysis and DR estimation performed well, whereas 

PS adjustment and IPW resulted in biased exposure effect estimates. When both 

associations were misspecified (scenario 4), all methods resulted in biased exposure 

effect estimates. In all scenarios, the amount of bias depended on the strength of the 
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confounder-exposure and confounder-outcome associations: the weaker the 

associations were, the less biased was observed. The same patterns can be observed for 

negative confounder-exposure and confounder-outcome associations. For detailed 

results see additional file D 

 

Empirical data example 

To demonstrate the consequences of misspecification of the confounder-exposure and 

confounder-outcome association we used an illustrative example from the Amsterdam 

Growth and Health Longitudinal Study (AGHLS). The AGHLS is an ongoing cohort study 

that started in 1976 to examine growth and health among teenagers. In later 

measurement rounds, health and lifestyle measures, determinants of chronic diseases 

and parameters for the investigation of deterioration in health with age were measured 

(31). For this demonstration we use data collected in 2000, when the participants were 

in their late 30s.  

 

Using data from the AGHLS, we estimated the effect of overweight (BMI ≥ 25) on systolic 

blood pressure. We adjusted this effect for confounding by alcohol consumption 

(measured in number of glasses per week) and cardiorespiratory fitness (VO2max). Only 

subjects with complete data on all variables were included in the analyses (n = 359). Note 

that this data example is included for illustrative purposes only and therefore represents 

a simplified scenario. In reality, it is likely that there will be additional confounders and 

time-varying confounders. As a result, substantive interpretations should be approached 

with caution. 

 

First, we examined the linearity of the confounder-exposure and the confounder-

outcome associations. We did this by categorizing alcohol consumption and 

cardiorespiratory fitness, and separately regressing overweight and systolic blood 

pressure on the categorized confounders. In both cases, the regression coefficients 

corresponding to the categories of alcohol consumption and respiratory fitness did not 

increase linearly. Thus, both confounder-exposure and confounder-outcome 

associations were non-linear. Second, to demonstrate the consequences of 

misspecification, we modelled systolic blood pressure as a function of overweight, 

adjusting for alcohol consumption and cardiorespiratory fitness. We did this first by 

(falsely) assuming a linear relation between the confounders and overweight and 

between the confounders and systolic blood pressure. Next, we took these non-linear 

associations into account by adjusting for alcohol consumption and cardiorespiratory  
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Table 4 The effect of  overweight on systolic blood pressure, adjusted for alcohol consumption. 2nd column: 

linear confounder-exposure and confounder-outcome associations are assumed. 3rd column: non-linear 

confounder-exposure and confounder-outcome associations are modelled 

 Linearity assumed Linearity not assumed 

 𝜷 (95% CI) 𝜷 (95% CI) 

Multivariable regression analysis 3.589 (0.686; 6.493) 3.022 (0.136; 5.908) 

Covariate adjustment using the PS 3.739 (0.822; 6.656) 3.062 (0.164; 5.960) 

Stabilized IPW 4.121 (1.110; 7.132) 3.813 (0.807; 6.819) 

DR estimation 3.983 (1.262; 6.704) 3.585 (0.879; 6.291) 

Abbreviations: PS: propensity score; IPW: inverse probability weighting; DR: double robust; β: regression coefficient; 

CI: confidence interval 

 

 

fitness using 3-knot restricted cubic spline (RCS) regression, which has the ability to fit 

non-linear shapes. A detailed explanation of RCS regression can be found elsewhere (4). 

 

Although implementing RCS regression might still not equal perfect specification of both 

effects, it provides a better representation of the true non-linear relations than simply 

assuming linear confounder-exposure and confounder-outcome associations. The 

results of these analyses can be found in Table 4. 

 

With all four methods, the estimated exposure effects were greater when linearity was 

assumed than when non-linear confounder-exposure and confounder-outcome 

associations were modelled. The difference in estimated exposure effects between the 

two scenarios was largest for covariate adjustment using the PS and smallest for IPW.   

 

Discussion 

This paper aimed to emphasize the importance of checking and modelling the 

(non-)linearity of the confounder-exposure and confounder-outcome association when 

adjusting for a continuous confounder. Many epidemiologists are unaware that the 

functional form assumptions (e.g., the linearity assumption in regression analysis) also 

apply to the confounder-exposure and confounder-outcome associations. If these 

associations are incorrectly specified as linear, then bias might be introduced in an 

attempt to remove bias. Our simulation study showed that bias is introduced if the 

confounder-exposure and/or the confounder-outcome association are misspecified. The 

amount of bias also depended on the confounder-adjustment method and the strength 

of the confounder-exposure and confounder-outcome association. This was also 

illustrated in our empirical data example, in which we modelled the effect of overweight 
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on systolic blood pressure, adjusted for alcohol consumption and cardiorespiratory 

fitness. Taking the non-linearity of the confounder-exposure and confounder-outcome 

associations into account by using restricted cubic spline regression to model the effects 

resulted in smaller exposure effect estimates for all methods. The simulation study and 

the empirical data example both showed that merely adjusting for confounding is not 

enough, but that correct specification of all effects in the model is crucial to obtain 

unbiased exposure effect estimates. 

 

Correct specification of effects

There are several methods that can be used to model the non-linear shape of an effect, 

such as categorization, the use of higher order terms and the use of spline functions. An 

overview of the methods, their application and advantages and disadvantages can be 

found in Table 5.  

 

A great disadvantage of modelling a non-linear effect by categorization is that it assumes 

homogeneity of effects within groups (32-35). More concretely, this means that we 

assume that all individuals in a category have the same confounder-exposure or 

confounder-outcome association. Thus, a potential non-linear association within a 

category is not captured in the analysis. An example of the use of higher order terms can 

be found in the data generation process of our simulation study, where we generated 

the outcome as a function of the exposure, linear confounder 𝑍 and its quadratic term 

𝐶. Adding higher order terms increases the flexibility of the model, but also reduces the 

interpretability of the results (36). However, using higher order terms to approximate the 

non-linearity of the confounder-exposure or confounder-outcome association does not 

affect the interpretability of the exposure effect that’s our main interest. With spline 

regression, the confounding variable is also categorized, but a higher power function is 

fitted for each category separately making spline regression more flexible (4, 11, 37). The 

boundaries of the categories are called knots. For the 3-knot restricted cubic spline 

function in the empirical data example, the confounding variable alcohol consumption 

was first categorized into 4 categories, then cubic functions were fitted in each category 

and restricted in the tails. Next, a single spline variable was added to our model so that 

the outcome was regressed on the exposure and this spline function. Like with higher 

order terms, the interpretation of the coefficients can be complicated when spline 

functions are used (11). However, because we are not necessarily interpreting the 

coefficients of the confounder-exposure or confounder-outcome associations, spline  
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Table 5 Methods to approximate true non-linear effects 

Method Explanation Advantages Disadvantages 

Categorization The confounder is 

grouped (e.g. on pre-

specified percentile 

values such as quartiles) 

and subsequently the 

outcome is regressed on 

the exposure and the 

now categorical 

confounding variable 

Easy to apply Homogeneity of the 

effects is assumed 

within groups, 

resulting in severe 

loss of information 

and possibly 

residual 

confounding 

Higher order terms The outcome is 

regressed on the 

confounder and the non-

linear term of that same 

confounder, e.g., a 

quadratic term 

Easy to apply 

Adding higher 

order terms 

increases the 

flexibility of the 

model 

Coefficients are 

difficult to interpret* 

Linear spline 

regression 

First, the confounding 

variable is categorized 

and subsequently a first 

power function is fitted 

for each category 

separately. After fitting 

the spline functions 

these are added to the 

regression model 

Good 

approximation of 

the true effect 

Coefficients are 

easy to interpret 

 

 

Restricted cubic 

spline regression 

Same as linear spline 

regression, but instead a 

more flexible third power 

function is fitted for each 

category separately. To 

avoid instability in the 

tails where there’s not 

much data, restricted 

cubic splines are often 

used where at the tails a 

line is fitted rather than a 

curve.  

Good 

approximation of 

the true effect 

Adding higher 

order terms 

increases the 

flexibility of the 

model 

 

Coefficients are 

difficult to interpret* 

* This is not a hindrance when these methods are used to model non-linear confounder-exposure or confounder-

outcome associations as the corresponding coefficients will not be interpreted 
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functions are a good and efficient way to approximate the non-linear shapes of those 

effects. 

 

Reporting of confounding 

The results in this paper demonstrate that misspecification of the confounder-exposure 

and confounder-outcome associations may lead to additional bias. However, in practice 

residual confounding may often go unnoticed, as inappropriate reporting makes it 

difficult to assess the reliability and validity of study results. In 2007 the STROBE 

(Strengthening the Reporting of Observational Studies in Epidemiology) initiative 

published a checklist of items that should be addressed in reports of observational 

studies, including two items that address confounding (9 ‘Bias’ and 12 ‘Statistical 

methods’) (38). The explanatory and elaboration document of STROBE acknowledges that 

adjusting for confounding may involve additional assumptions about the functional form 

of the studied associations (39). Despite the publication of the STROBE checklist, the 

overall quality of reporting of confounding remains suboptimal (40, 41). To increase 

transparency on the risk of residual confounding, we advise researchers to report how 

the functional form of the confounder-exposure and confounder-outcome association 

was assessed and taken into account. 

 

Limitations 

The simulation study in this paper is a simplified representation of real world scenarios. 

We adjusted for one confounder, whereas in reality there might be multiple confounders. 

If there are multiple confounders, then the confounder-exposure and confounder-

outcome association of each of the confounders needs to be assessed and non-linear 

effects need to be modelled for confounders that are not linearly related to either the 

exposure or the outcome. In the PS methods, the PS-outcome association was linear, so 

no additional bias was observed in scenarios in which the confounder-outcome 

association was misspecified. However, if the PS-outcome association is also 

misspecified, residual bias would be observed. Therefore, the linearity of the relation 

between the PS and the outcome should always be checked. IPW is known to perform 

less well in small samples, which was also confirmed in our simulation (3). Last, in this 

paper we assume associations are either misspecified or correctly specified, whereas in 

reality, naturally, everything exists in shades of grey. In addition, there are other important 

contributors to residual confounding that researchers should be aware of, such as 

unobserved and mismeasured confounders. These contributors are described in detail 

elsewhere (42, 43).  
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Conclusion 

To summarize, in this study we showed the importance of correctly specifying the 

confounder-exposure and confounder-outcome associations to obtain unbiased 

exposure effect estimates. When these effects are misspecified, bias might actually be 

introduced in an attempt to remove bias. Thus, to estimate unbiased effects it is 

important to examine the linearity of the confounder-exposure or confounder-outcome 

association depending on the confounder-adjustment method used and to adjust the 

model accordingly. 
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Additional file A  Simulation code 

 

Step 1 – Generate data 

generate_data <- function(seed, reps, n, ix, iy, cx, xy, cy){ 
   
  # define total number of rows required to store data 
  rows <- reps * n 
   
  # create data frame to store data in 
  df <- as.data.frame(matrix(NA, nrow = rows, ncol = 13)) 
  colnames(df) <- c("ID",           # ID through entire data set 
                    "repnr",        # for each repetition 
                    "ID_repnr",     # ID through each repetition 
                    "n",            # number of observations 
                    "ix",           # intercept exposure 
                    "iy",           # intercept outcome 
                    "cx",           # confounder-exposure effect 
                    "xy",           # exposure-outcome effect 
                    "cy",           # confounder-outcome effect 
                    "C",            # continuous confounder (correctly  

  specified) 
                    "Z",            # continuous confounder  

  (misspecified) 
                    "X",            # dichotomous exposure 
                    "Y")            # continuous outcome 
   
  # define simulation parameters 
  df[, "ID"] <- seq(1:rows) 
  df[, "repnr"] <- rep(1:reps, each = n) 
  df[, "ID_repnr"] <- rep(seq(1, n), reps) 
  df[, "n"] <- n 
   
  # define intercepts ix and iy 
  df[, "ix"] <- ix 
  df[, "iy"] <- iy 
   
  # define coefficients cx, xy and cy 
  df[, "cx"] <- cx 
  df[, "xy"] <- xy 
  df[, "cy"] <- cy 
   
  # generate confounder Z from a standard normal distribution 
  # with mean = 0 and sd = 1 (misspecified) 
  df[, "Z"] <- rnorm(n = rows) 
   
  # generate confounder C (correctly specified) 
  df[, "C"] <- df[, "Z"]^2 
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# generate dichotomous exposure X 
  lpx <- ix + cx * df[, "Z"] + cx * df[, "C"] 
  prx <- 1/(1 + exp(-lpx)) 
  df[, "X"] <- rbinom(n = rows, size = 1, prob = prx) 
   
  # generate continuous outcome Y 
  df[, "Y"] <- iy + xy * df[, "X"] + cy * df[, "Z"] + cy * df[, "C"] +  
  rnorm(n = 1) 
   
  # return data frame 
  return(df) 
   
  rm(lpx, prx) 
   
} 
 
# define simulation parameters 
seed <- 20220718 
reps <- 1000 
n <- c(200, 500, 1000) 
ix <- 0 
iy <- 0 
confounder_effects <- c(-0.59, -0.39, -0.14, 0.14, 0.39, 0.59) 
xy <- 0.59 
 
# generate data sets for all parameters defined above and save each set  
# in folder '220119 Step 1 - Generated datasets' 
 
for(j in n){ 
  for(k in confounder_effects){ 
     
    df <- generate_data(seed = seed, 
                        reps = reps, 
                        n = j, 
                        ix = ix, 
                        iy = iy, 
                        cx = k, 
                        xy = xy, 
                        cy = k) 
     
    # save each file in folder 'Step 1 - Generated datasets' 
    save(df, file = paste0("Step 1 - Generated datasets\\", 
                           "n = ", j, ", cx = ", k, ", cy = ", k,  
                           ".RData"))  
  } 
} 
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Step 2 – Generate Models 

# in scenario 1, both the confounder-exposure and the confounder- 
# outcome effect are correctly specified 
scenario1 <- function(df){ 
   
  estimates <- as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
   
  # 1. multivariable regression analysis 
  model_multivar <- glm(Y ~ X + Z + C, data = df) 
  estimates[1, 1] <- model_multivar$coefficients[2] 
   
  # 2. covariate adjustment using the ps 
  ps <- predict(glm(X ~ Z + C, family = "binomial", data = df), type =  
        "response") 
  model_covadj <- glm(Y ~ X + ps, data = df) 
  estimates[1, 2] <- model_covadj$coefficients[2] 
   
  # stabilized IPW 
  ipw <- ifelse(df$X == 1, 1/ps, 1/(1-ps)) 
  sipw <- ipw/sum(ipw) 
  model_sipw <- glm(Y ~ X, weights = sipw, data = df) 
  estimates[1, 3] <- model_sipw$coefficients[2] 
   
  # DR estimation 
  model_dr <- glm(Y ~ X + Z + C, weights = sipw, data = df) 
  estimates[1, 4] <- model_dr$coefficients[2] 
   
  return(estimates) 
   
} 
 
# in scenario 2, the confounder-exposure effect is correctly specified    
# and the confounder-outcome effect is misspecified 
scenario2 <- function(df){ 
   
  estimates <- as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
   
  # 1. multivariable regression analysis 
  model_multivar <- glm(Y ~ X + Z, data = df) 
  estimates[1, 1] <- model_multivar$coefficients[2] 
   
  # 2. covariate adjustment using the ps 
  ps <- predict(glm(X ~ Z + C, family = "binomial", data = df), type =  
        "response") 
  model_covadj <- glm(Y ~ X + ps, data = df)  
  estimates[1, 2] <- model_covadj$coefficients[2] 
   
  # stabilized IPW 
  ipw <- ifelse(df$X == 1, 1/ps, 1/(1-ps)) 
  sipw <- ipw/sum(ipw) 
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  model_sipw <- glm(Y ~ X, weights = sipw, data = df) 
  estimates[1, 3] <- model_sipw$coefficients[2] 
   
  # DR estimation 
  model_dr <- glm(Y ~ X + Z, weights = sipw, data = df) 
  estimates[1, 4] <- model_dr$coefficients[2] 
   
  return(estimates) 
   
} 
 
# in scenario 3, the confounder-exposure effect is misspecified and the 
# confounder-outcome effect is correctly specified 
scenario3 <- function(df){ 
   
  estimates <- as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
   
  # 1. multivariable regression analysis 
  model_multivar <- glm(Y ~ X + Z + C, data = df) 
  estimates[1, 1] <- model_multivar$coefficients[2] 
   
  # 2. covariate adjustment using the ps 
  ps <- predict(glm(X ~ Z, family = "binomial", data = df), type =  
        "response") 
  model_covadj <- glm(Y ~ X + ps, data = df) 
  estimates[1, 2] <- model_covadj$coefficients[2] 
   
  # stabilized IPW 
  ipw <- ifelse(df$X == 1, 1/ps, 1/(1-ps)) 
  sipw <- ipw/sum(ipw) 
  model_sipw <- glm(Y ~ X, weights = sipw, data = df) 
  estimates[1, 3] <- model_sipw$coefficients[2] 
   
  # DR estimation 
  model_dr <- glm(Y ~ X + Z + C, weights = sipw, data = df) 
  estimates[1, 4] <- model_dr$coefficients[2] 
   
  return(estimates) 
   
} 
 
# in scenario 4, both the confounder-exposure and the confounder- 
# outcome effect are misspecified 
scenario4 <- function(df){ 
   
  estimates <- as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
   
  # 1. multivariable regression analysis 
  model_multivar <- glm(Y ~ X + Z, data = df) 
  estimates[1, 1] <- model_multivar$coefficients[2] 
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  # 2. covariate adjustment using the ps 
  ps <- predict(glm(X ~ Z, family = "binomial", data = df), type =  
        "response") 
  model_covadj <- glm(Y ~ X + ps, data = df) 
  estimates[1, 2] <- model_covadj$coefficients[2] 
   
  # stabilized IPW 
  ipw <- ifelse(df$X == 1, 1/ps, 1/(1-ps)) 
  sipw <- ipw/sum(ipw) 
  model_sipw <- glm(Y ~ X, weights = sipw, data = df) 
  estimates[1, 3] <- model_sipw$coefficients[2] 
   
  # DR estimation 
  model_dr <- glm(Y ~ X + Z, weights = sipw, data = df) 
  estimates[1, 4] <- model_dr$coefficients[2] 
   
  return(estimates) 
   
} 
 
# function generate_models returns for each repetition the simulation  
# details and the estimated treatment effects 
generate_models <- function(df){ 
   
  # create data frame to store effect estimates in 
  effects <- data.frame(matrix(NA, nrow = max(df$repnr) * 4, ncol =  
             10)) 
  colnames(effects) <- c("scenario", 
                         "repnr", 
                         "n", 
                         "cx", 
                         "xy", 
                         "cy", 
                         "coef_multivar", 
                         "coef_covadj", 
                         "coef_sipw", 
                         "coef_dr") 
   
  # store simulation characteristics 
  effects$scenario <- rep(seq(c(1:4)), max(df$repnr)) 
  effects$repnr <- rep(unique(df$repnr), each = 4) 
  effects$n <- unique(df$n) 
  effects$cx <- unique(df$cx) 
  effects$xy <- unique(df$xy) 
  effects$cy <- unique(df$cy) 
   
  # for loop to iterate through each repetition 
  repnr <- unique(effects$repnr) 
  for(i in repnr){ 
     
    temp <- df[df$repnr == i, ] 
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    # estimate exposure effects under each scenario 
    effects[effects$repnr == i & effects$scenario == 1, c(7:10)] <-  
    scenario1(temp) 
    effects[effects$repnr == i & effects$scenario == 2, c(7:10)] <-  
    scenario2(temp) 
    effects[effects$repnr == i & effects$scenario == 3, c(7:10)] <-  
    scenario3(temp) 
    effects[effects$repnr == i & effects$scenario == 4, c(7:10)] <-  
    scenario4(temp) 
     
  } 
   
  # return data frame with all simulation details and exposure effect  
  # estimates 
  return(effects) 
   
} 
 
# save path 
path <- "Step 1 - Generated datasets\\" 
 
# save all file names in files 
files <- list.files(path = path, 
                    pattern = "*.RData") 
 
# START FOR LOOP - loop through each file in the folder 
for(i in files){ 
   
  # load the data into the environment 
  load(paste0(path, i)) 
   
  # run function 
  effects <- generate_models(df) 
   
  # save each file in folder 'Step 2 - Generated models' 
  save(effects, file = Step 2 - Generated models\\", i)) 
   
} 
 

Step 3 – Model performance 

performance_measures <- function(data){ 
   
  # for each scenario, all estimates will be stored in a matrix 
  performance <- matrix(NA, nrow = 4, ncol = 3) 
  colnames(performance) <- c("mean(b)",  
                             "AB",  
                             "RB") 
  rownames(performance) <- c("Multivariable regression analysis",  
                             "Covariate adjustment using the PS",  
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                             "Standardized IPW",  
                             "DR estimation") 
   
  # functions to calculate the performance measures 
  # 1. absolute bias 
  AB <- function(data, variable){ 
    return(mean(variable - data$xy)) 
  } 
   
  # 2. relative bias 
  RB <- function(data, variable){ 
    return(mean((variable - data$xy)/data$xy)) 
  } 
   
  # run for loop 
  for(i in unique(data$scenario)){ 
     
    df <- data[data$scenario == i, ] 
     
    # mean exposure effect 
    performance[1, "mean(b)"] <- mean(df$coef_multivar) 
    performance[2, "mean(b)"] <- mean(df$coef_covadj) 
    performance[3, "mean(b)"] <- mean(df$coef_sipw) 
    performance[4, "mean(b)"] <- mean(df$coef_dr) 
     
    # absolute bias 
    performance[1, "AB"] <- AB(df, df$coef_multivar) 
    performance[2, "AB"] <- AB(df, df$coef_covadj) 
    performance[3, "AB"] <- AB(df, df$coef_sipw) 
    performance[4, "AB"] <- AB(df, df$coef_dr) 
     
    # relative bias 
    performance[1, "RB"] <- RB(df, df$coef_multivar) 
    performance[2, "RB"] <- RB(df, df$coef_covadj) 
    performance[3, "RB"] <- RB(df, df$coef_sipw) 
    performance[4, "RB"] <- RB(df, df$coef_dr) 
     
    # round to 4 digits 
    performance <- round(performance, 4) 
     
    # return scenario number and performance measures matrix 
    print(paste0("scenario number ", i)) 
    print(performance) 
     
  } 
} 
 
# save path 
path <- "Step 2 - Generated models\\" 
 
# save all file names in files 
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files <- list.files(path = path, 
                    pattern = "*.RData") 
 
# START FOR LOOP - loop through each file in the folder 
for(i in files){ 
   
  # load the data into the environment 
  load(paste0(path, i)) 
   
  # print scenario and all performance measures 
  print(i) 
  performance_measures(effects) 
   
} 
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Additional file B  Model performance for sample size 200 
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Additional file C  Model performance for sample size 1,000 

 

 
 



Misspecification of confounder-exposure and confounder-outcome associations 

 

57 

 

 

 

 

 



Chapter 2 

58 

 

Additional file D  Model performance for sample size 500 
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Additional file E Sign change as a results of misspecification of the confounder-

exposure and confounder-outcome associations 

 

In some scenarios, incorrect modelling of non-linear confounder-exposure and 

confounder-outcome associations may lead to a change of the direction of the exposure 

effect. In this illustration, we consider an exposure effect of -0.14 (a small negative effect), 

and confounder-exposure and confounder-outcome associations of 0.59 (a large positive 

effect). The sample size and the number of repetitions are both 1,000. 

 

Table E1 shows that, if the confounder-exposure association is misspecified (scenario 2), 

multivariable regression analysis results in a positive exposure effect estimate. If the 

confounder-outcome association is misspecified, a sign change occurs for covariate 

adjustment using the PS and stabilized IPW. If both associations are misspecified, all 

methods estimate a positive exposure effect. 

 

Table E1 Model performance across simulated scenarios for sample size 1000 and exposure effect -0.14 

Parameter value for the confounder-exposure and 

confounder-outcome associations: 0.59 

𝛽̂ AB RB 

Scenario 1: correct specification of cx-association & correct specification of cy-association 

Multivariable regression analysis -0.1400 0.0000 0.0000 

Covariate adjustment using the PS -0.1402 -0.0002 0.0016 

Stabilized IPW -0.1271 0.0129 -0.0925 

DR estimation -0.1400 0.0000 0.0000 

Scenario 2: correct specification of cx-association & misspecification of cy-association 

Multivariable regression analysis 0.2556 0.3956 -2.8261 

Covariate adjustment using the PS -0.1402 -0.0002 0.0016 

Stabilized IPW -0.1471 0.0129 -0.0925 

DR estimation -0.1087 0.0313 -0.2236 

Scenario 3: misspecification of cx-association & correct specification of cy-association 

Multivariable regression analysis -0.1400 0.0000 0.0000 

Covariate adjustment using the PS 0.2844 0.4244 -3.0313 

Stabilized IPW 0.3339 0.4739 -3.3849 

DR estimation -0.1400 0.0000 0.0000 

Scenario 4: misspecification of cx-association & misspecification of cy-association 

Multivariable regression analysis 0.2556 0.3956 -2.8261 

Covariate adjustment using the PS 0.2844 0.4244 -3.0313 

Stabilized IPW 0.3339 0.4739 -3.3849 

DR estimation 0.3120 0.4520 -3.2288 
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Abstract 

Objective 

Traditional methods to deal with non-linearity in regression analysis often result in loss 

of information or compromised interpretability of the results. A recommended but 

underutilised method for modelling non-linear associations in regression models is spline 

functions. We explain spline functions in a non-mathematical way and illustrate the 

application and interpretation to an empirical data example.  

 

Methods 

Using data from the Amsterdam Growth and Health Longitudinal Study, we examined the 

non-linear relationship between the sum of four skinfolds and VO2max, which are 

measures of body fat and cardiorespiratory fitness, respectively. We compared traditional 

methods (i.e., quadratic regression and categorization) to spline methods (1- and 3-knot 

linear spline (LSP) models and a 3-knot restricted cubic spline (RCS) model) in terms of 

the interpretability of the results and their explained variance (𝑟𝑎𝑑𝑗
2 ). 

 

Results 

The spline models fitted the data better than the traditional methods. Increasing the 

number of knots in the LSP model increased the explained variance (from 𝑟𝑎𝑑𝑗
2 = 0.578 

for the 1-knot model to 𝑟𝑎𝑑𝑗
2 = 0.582 for the 3-knot model). The RCS model fitted the data 

best (𝑟𝑎𝑑𝑗
2 = 0.591), but results in regression coefficients that are harder to interpret.  

 

Conclusion 

Spline functions should be considered more often as they are flexible and can be applied 

in commonly used regression analysis. RCS regression is generally recommended for 

prediction research (i.e., to obtain the predicted outcome for a specific exposure value), 

whereas LSP regression is recommended if one is interested in the effects in a 

population.  
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Introduction 

In epidemiological research, regression analysis is often used to examine the association 

between an outcome and an exposure (1). A principal assumption of regression analysis 

is that the continuous exposure is linearly related to the outcome. In other words, a one-

unit difference in the exposure is  associated with a fixed difference in the outcome, 

regardless of the values of the exposure (2). However, linearity should not be assumed 

without assessing that the association is indeed linear (3-5). If the linearity assumption is 

violated and associations are estimated as linear nonetheless, then the effect estimate 

might not be a good representation of the true underlying effect and bias might be 

introduced. In order to obtain unbiased effects, the non-linear association requires 

explicit modelling. Failing to estimate a truly non-linear relationship as non-linear may 

lead to over- or underestimation of the exposure effect. However, it is important to note 

that the estimation of complex models may come at cost of increase uncertainty, 

especially in small samples. Therefore, in practice, one may want to consider the balance 

between model complexity and model uncertainty when choosing an appropriate 

method to model non-linear relationships 

 

There are different methods available to model non-linear associations. Simple methods 

such as polynomial regression (e.g., quadratic or cubic regression) and categorization of 

the exposure variable are widely used, largely due to historical precedent (6). With 

quadratic regression, for instance, the outcome is modelled as a quadratic function of 

the exposure (i.e., as a function of exposure 𝑥 and the quadratic term 𝑥2) (2, 7, 8). Adding 

higher order terms (such as a quadratic term) to a basic linear function increases the 

flexibility of the model, but simultaneously complicates the interpretability of the results 

as the regression coefficients of the terms cannot be interpreted separately from each 

other.  

 

With categorization, the exposure variable is grouped (e.g., based on percentile values) 

and subsequently analysed as a categorical variable with one of the groups as the 

reference category. However, categorization is associated with multiple issues, such as 

loss of information, discontinuity in the estimated average outcome value when moving 

from one category to the other, and difficulties with comparing results across studies as 

the cut-off points may be data dependent (2, 6, 8-13). Filardo et al. found that study 

findings were inconsistent under different exposure categorization schemes identified in 

the literature, which suggests that the way the exposure is categorized may impact 
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conclusions (14). This emphasizes the importance of correctly modelling non-linear 

relationships.  

 

A different approach to model non-linear associations is the use of spline functions in the 

regression model (2, 3, 8, 11, 12, 15, 16). Spline functions are transformations of the 

continuous exposure variable and can be added to any regression analysis. They are 

available in different forms, such as simple linear spline (LSP) functions,  more complex 

restricted cubic spline (RCS) functions and B-splines (2). Spline functions estimate 

exposure effects for specific intervals of the exposure variable and are subject to 

continuity restrictions (i.e., the interval functions meet at the common interval edges so 

that - in contrast to categorization – there are no jumps in the line at these points) (17). 

In this paper, we focus on LSP and RCS functions. LSP functions assume that the 

exposure effects within each interval follow a linear shape, but across the intervals the 

effect may be non-linear. Therefore, LSP functions are more flexible than simple linear 

regression and categorization. RCS functions assume that the exposure effects within 

each category are cubic functions, allowing for more flexibility than other methods. 

 

Although spline functions are broadly accessible in the software packages commonly 

used by epidemiologists, they are not widely used (3, 18). Most papers published on 

spline functions present these as complex mathematical functions (15, 19, 20) and do 

not discuss their interpretation. This may be one of the reasons that researchers default 

to less optimal methods for estimating non-linear effects, such as quadratic terms and 

categorization. 

 

The aim of this paper is to describe linear and restricted cubic spline functions in a step-

by-step and non-mathematical manner, and to demonstrate the advantages of these 

methods over simple linear regression, quadratic regression and categorization using an 

empirical data example. First, we provide an introduction into spline regression and 

describe linear- and restricted cubic spline regression in the context of an empirical data 

example. Then, we illustrate the application of traditional methods and spline methods 

to model non-linear relationships to that same data example. Finally, we discuss the 

interpretation of the effect estimates from different methods and describe the context 

in which the use of LSP and RCS models may be relevant.  
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Methods 

Example dataset 

Spline functions will be explained by using an empirical data example from the 

Amsterdam Growth and Health Longitudinal Study (AGHLS). The AGHLS is an ongoing 

cohort study that was set up to examine the growth, health and lifestyle among teenagers 

(21). We use data from the third round of measurements, when the participants were 15 

years old, because it contains a clear non-linear relationship. 

 

Throughout this paper, we analyse the non-linear relationship between the sum of four 

skinfolds (SFS) and cardiorespiratory fitness (VO2max). SFS is an often used estimate of 

body fat and is calculated by summing the biceps-, triceps-, subscapular- and suprailiac 

skinfolds (in millimetres) (22). VO2max is defined as the absolute maximal oxygen uptake 

in centilitre per kilogram bodyweight (21). The relationship between SFS and VO2max in 

our data is shown in Figure 1. Only subjects with complete data on both variables were 

included in the analysis (n = 315, 6 subjects were excluded because of incomplete data). 

 

Spline functions 

Splines can be applied to any statistical model that linearly relates the exposure to the 

outcome, such as linear-, logistic- and Cox regression. With spline models, the continuous 

independent variable is divided into multiple intervals, and for each interval the 

relationship between the exposure and outcome is estimated separately. The 

relationship between the exposure and the outcome in each interval can, for example, 

be estimated with a linear function (resulting in linear spline regression) or with a cubic 

function (resulting in cubic spline regression). The use of so-called spline basis functions  

 

 

 
Figure 1 Non-linear relationship between SFS and VO2max in AGHLS data.  

Abbreviations: SFS: sum of four skinfolds; AGHLS: Amsterdam Growth and Health Longitudinal Study 
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makes it possible to estimate the relationship between the exposure and the outcome 

for each of the intervals in the same model. The values of the exposure based on which 

the intervals are created are referred to as knots. Thus, each knot defines the end of one 

interval and the start of the next. In 3-knot models, the exposure is divided into four 

intervals. Subsequently, for each interval the exposure effect is estimated, resulting in 

four spline coefficients. Corresponding confidence intervals can, for example, be 

calculated with the standard errors or be obtained by bootstrapping (23). 

 

In general, a small number of knots (i.e., 3 to 5) is sufficient to model a non-linear 

relationship. If the sample size is large and the relationship that is studied changes 

quickly, then more knots might be required (2, 24, 25). Increasing the number of knots 

generally improves the fit of the model, but may also lead to overfitting of the model to 

the data. If that is the case, the fitted function does not only follow the main features of 

the data but also small and random fluctuations (2, 7, 25). Wand presents an overview of 

statistical methods for establishing the number of knots (26). 

 

Often, the locations of the knots are pre-specified based on the quantiles of the 

independent variable. For 3-knot models, Harrell recommends knots at the 10th, 50th and 

90th percentile. For 4-knot models, they are recommended at the 5th, 35th, 65th and 95th 

percentile (2). In some cases, knot locations are suggested by theory or by study design 

(e.g., an interrupted time series design). However, generally the fit of a spline model is 

more dependent on the number of knots than on the knot locations (25). 

 

In this paper, for illustrational purposes, we demonstrate 1- and 3-knot linear spline 

models and a 3-knot restricted cubic spline model using the knot locations 

recommended by Harrell. Figure 2 shows the most important properties of a spline 

model. The grey points in Figure 2 represent the observed data, and the black line is the 

fitted 3-knot linear spline model. The vertical dotted lines represent the three knots 

(labelled as k1, k2 and k3) and the lines in between the knots represent the estimated 

exposure effect for the four intervals between the knots. Spline models are based on 

continuity restrictions, which ensures that the line is smooth at the knots. For example, 

the line for the first interval is smoothly connected to the line of the second interval, and 

the line of the second interval is smoothly connected to the line of the third interval, 

etcetera. An interactive visualization of LSP and RCS models and the influence of the 

continuity restrictions, number of knots and location of knots on the estimated line can 

be found elsewhere (27, 28). 
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Figure 2 Graphical depiction of the important properties of a spline model. The grey points represent the 

observed data, and the black line is the fitted linear spline model. The vertical dotted lines represent the knots 

(located at k1, k2 and k3). i1, i2, i3 and i4 represent the four intervals for which the exposure effect is estimated. 

 

 

Linear spline models 

In the 1-knot LSP model, the knot is located at the 50th percentile (𝑆𝐹𝑆 = 330 𝑚𝑚). The 

corresponding linear spline model is 

 

𝑉𝑂2 max =  𝛽0 + 𝛽1 ∗ 𝑆𝐹𝑆 + 𝛽2
∗ ∗ (𝑆𝐹𝑆 − 330)+ + 𝜀 (1) 

 

where 𝛽0 represents the intercept and 𝜀 represents an error term. To provide valid 

inference via e.g. confidence intervals for coefficients, it  is assumed that the error terms 

for each observation are  uncorrelated and follow a Gaussian distribution with expected 

value of zero. The term (𝑆𝐹𝑆 − 330)+  represents the spline basis function. This function is 

assigned a value of zero when 𝑆𝐹𝑆 − 330 ≤ 0. Because of this, coefficient 𝛽1 represents 

the exposure effect estimate for individuals whose SFS is equal to or less than 330 mm. 

Coefficient  𝛽2
∗ represents the difference in the effect estimates between the individuals 

whose SFS is equal to or less than 330 mm and those whose SFS is greater than 330 mm. 

Thus, for individuals whose SFS is greater than 330 mm, their exposure effect estimate is 

represented by 𝛽1 + 𝛽2
∗. The 95% confidence interval corresponding to 𝛽2

∗ can be used to 

assess whether the slopes for the two intervals of SFS are statistically significantly 

different. 

 

In the 3-knot LSP model, the knots are located  at the 10th, 50th and 90th percentiles, i.e., 

at SFS = 212 mm, 330 mm and 621.4 mm, respectively. The corresponding LSP model is 
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𝑉𝑂2𝑚𝑎𝑥 = 𝛽0 + 𝛽1 ∗ 𝑆𝐹𝑆 + 𝛽2
∗ ∗ (𝑆𝐹𝑆 − 212)+ + 𝛽3

∗ ∗ (𝑆𝐹𝑆 − 330)+

+𝛽4
∗ ∗ (𝑆𝐹𝑆 − 621.4)+ + 𝜀 (2)

 

 

In equation 2, spline coefficient 𝛽2
∗ is only used whenever an individuals’ SFS value is larger 

than 212, otherwise it is multiplied by zero and thus plays no role in the equation. For 

coefficient 𝛽3
∗ this is for 𝑆𝐹𝑆 > 330 and for coefficient 𝛽4

∗ this is for 𝑆𝐹𝑆 > 621.4, 

respectively. Thus, coefficient 𝛽1 represents the exposure effect estimate for individuals 

whose SFS is equal to or less than 212 mm, while 𝛽1 + 𝛽2
∗ represents the effect estimate 

for individuals whose SFS is greater than 212 and equal to or less than 330 mm. The 

exposure effect estimates for individuals in the third and fourth interval (i.e., individuals 

whose SFS is greater than 330 mm and equal to or less than 621.4 mm, and individuals 

whose SFS is greater than 621.4 mm) are represented by 𝛽1 + 𝛽2
∗ + 𝛽3

∗ and 𝛽1 + 𝛽2
∗ + 𝛽3

∗ +

𝛽4
∗, respectively.  

 

For both the 1- and 3-knot LSP models, fitting the spline models is straightforward once 

the spline basis functions have been established. Appendix A contains a step by step 

description of how to estimate these models, including R software code.  

 

Restricted cubic spline models 

Although LSP models can approximate many relationships, they do not draw smooth 

lines and do not fit highly curved relationships well. This can be resolved by fitting a cubic 

spline model, which joins smoothly at the knot locations because the slopes are restricted 

to be equal at the boundaries (8). To improve the performance of the spline model in the 

tails of the exposure variable, where little data is located, additional constraints are 

imposed in restricted cubic spline models. In RCS models, the spline functions are linear 

in the tails (i.e., before the first and after the last knot) (2, 29). Whereas in LSP models 

each interval is represented by a spline basis function, in RCS models 𝑘 − 2 spline 

variables are fitted, where 𝑘 is the number of knots. Thus, in a 3-knot restricted spline 

function, a single spline basis function is fitted (equation 3) 

 

𝑉𝑂2𝑚𝑎𝑥 =  𝛽0 + 𝛽1 ∗ 𝑆𝐹𝑆 + 𝛽2
† ∗ 𝑆𝐹𝑆2

† + 𝜀 (3) 

 

where 𝑆𝐹𝑆2
† and 𝛽2

† represent the spline basis function and corresponding cubic spline 

coefficient (2). Each participant’s value for the spline basis function is estimated as a 

function of the observed exposure value and the knot locations (i.e., SFS = 212, 330 and 

621.4, respectively). The exact formula with which spline basis function 𝑆𝐹𝑆2
† is calculated 

is presented in Appendix B. Equation 3 can also be expressed as equation 4, which 
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contains the interval functions and has the same form as the 3-knot LSP model. The only 

difference between the LSP and RCS models is that for RCS regression all spline basis 

functions are raised to the power of three: 

  

𝑉𝑂2𝑚𝑎𝑥 = 𝛽0 + 𝛽1 ∗ 𝑆𝐹𝑆 + 𝛽2
∗ ∗ (𝑆𝐹𝑆 − 212)+

3 + 𝛽3
∗ ∗ (𝑆𝐹𝑆 − 330)+

3

+ 𝛽4
∗ ∗ (𝑆𝐹𝑆 − 621.4)+

3 + 𝜀
(4) 

 

Equation 5 to 7 can be used to convert cubic spline coefficient 𝛽2
† into regression 

coefficients for each of the intervals: 

 

𝛽2
∗ =

𝛽2
†

(621.4 − 212)2  (5) 

 

𝛽3
∗ =

𝛽2
∗ ∗ (212 − 621.4)

(621.4 − 330)
 (6) 

 

𝛽4
∗ =

𝛽2
∗ ∗ (212 − 330)

(330 − 621.4)
 (7) 

 

In equation 5, 𝛽2
∗ represents the coefficient for the interval between the first and the 

second knot and 𝛽2
† is the cubic spline basis function coefficient from equation 3. In 

equation 6, 𝛽3
∗ represents the coefficient for the interval between the second and third 

knot and 𝛽2
∗ is the regression coefficient from equation 4. In equation 7, 𝛽4

∗ represents 

the coefficient for the interval after the third and 𝛽2
∗ is the regression coefficient from 

equation 4. Subsequently, coefficients 𝛽2
∗, 𝛽3

∗ and 𝛽4
∗ can be plugged into equation 4  

 

Like in quadratic regression, the exposure effect estimates differ across exposure values, 

which makes it less straightforward to interpret the coefficients from an RCS model.  

 

Results 

We illustrate the interpretation and compare the performance of different methods to 

model non-linear relationships using the data example from the AGHLS. Table 1 presents 

the regression coefficients for each method. For the spline models, these regression 

coefficients are used to calculate the effects for each interval of SFS. These effects are 

presented under ‘interval coefficient‘. Table 2 presents the adjusted 𝑟2 (i.e., the 

proportion of variance in VO2max explained by SFS) of each method (30). 
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Table 1 Regression- and interval coefficients for the relationship between VO2max and SFS derived from linear- 

and quadratic regression, categorization, 1- and 3-knot linear spline regression and 3-knot restricted cubic spline 

regression 

Estimate 
Regression 

coefficient 
Interval coefficient 

Linear regression 

𝛽0 64.0658  

𝛽1 -0.0304  

   

Quadratic regression 

𝛽0 73.2212  

𝛽1 -0.0746  

𝛽2 0.00004  

   

Categorization 

𝛽0 60.1339  

𝛽1 -4.9870  

𝛽2 -10.0695  

𝛽3 -15.1727  

   

1-knot linear spline regression 

𝛽0 77.5648  

𝛽1 -0.0810 𝑆𝐹𝑆 ≤ 330: − 0.0810 

𝛽2
∗ 0.0632 𝑆𝐹𝑆 > 330: − 0.0810 + 0.0632 = −0.0178 

   

3-knot linear spline regression 

𝛽0 64.1788  

𝛽1 -0.0156 𝑆𝐹𝑆 ≤ 212: − 0.0156 

𝛽2
∗ -0.0671 212 < 𝑆𝐹𝑆 ≤ 330: − 0.0156 − 0.0671 = −0.0827 

𝛽3
∗ 0.0601 330 < 𝑆𝐹𝑆 ≤ 621.4: − 0.0156 − 0.0671 + 0.0601 = −0.0226 

𝛽4
∗ 0.0128 𝑆𝐹𝑆 > 621.4: − 0.0156 − 0.0671 + 0.0601 + 0.0128 = −0.0098 

   

3-knot restricted cubic spline 

𝛽0 75.9306  

𝛽1 -0.0738  

𝛽2
† 0.0740 𝛽2

∗: 0.0000004 

  𝛽3
∗: -0.0000006 

  𝛽4
∗: 0.0000002 

𝛽2
∗, 𝛽3

∗ and 𝛽4
∗ represent spline coefficients that correspond to spline basis functions. 𝛽2

† represents the cubic spline 

coefficient that corresponds to spline variable 𝑆𝐹𝑆2
† 
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Table 2 Explained variance of each model 

Model Adjusted 𝒓𝟐 

Linear regression 0.487 

Quadratic regression 0.558 

Categorization  0.537 

1-knot linear spline regression 0.578 

3-knot linear spline regression 0.582 

3-knot restricted cubic spline regression 0.591 

 

 

For illustrative purposes we first estimated a simple linear regression model. Linear 

regression fits a straight line to the data (Figure 3A) and assumes that the effect of the 

exposure on the outcome is the same for every value of the exposure. In our data, the 

exposure effect estimate was -0.0304, meaning that a 1 mm difference in SFS was 

associated with a 0.0304 cl/kg lower VO2max, regardless of the compared values of SFS. 

Naturally, this regression line was not a good representation of the relationship between 

SFS and VO2max, which was also reflected in the lowest explained variance (𝑟𝑎𝑑𝑗
2 =  0.487) 

of all estimated models.  

 

Quadratic regression 

With quadratic regression, VO2max was estimated by SFS and the quadratic term 𝑆𝐹𝑆2. 

As shown in Figure 3B and reflected in the explained variance (𝑟𝑎𝑑𝑗
2 = 0.558), the quadratic 

model fitted the form of the relationship between SFS and VO2max quite well relative to 

the other models. However, the regression coefficients do not have a straightforward 

interpretation because the effect of SFS on VO2max is a function of both regression 

coefficients. That is, the effect of a one unit difference in SFS on VO2max differs across 

SFS. For example, the average difference in VO2max was -0.0506 cl/kg when SFS changed 

from 300 to 301 (i.e., (−0.0746 ∗ 301 + 0.00004 ∗ 3012) − (−0.0746 ∗ 300 + 0.00004 ∗

3002)), while the average difference in VO2max was -0.0266 cl/kg when SFS changed from 

600 to 601 (i.e., (−0.0746 ∗ 601 + 0.00004 ∗ 6012) − (−0.0746 ∗ 600 + 0.00004 ∗ 6002)). 

Compared to simple linear regression (Figure 3A), the confidence interval for the line 

estimated using quadratic regression becomes wider for higher values of SFS (Figure 3B). 

This reflects the additional uncertainty in the effect estimates from quadratic regression 

for higher SFS values. However, the wider confidence interval does not affect the 

conclusion that SFS is associated with VO2max. 
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Categorization 

We divided SFS into four intervals based on quartiles. Because we used the lowest 

quartile as the reference category, the intercept represented the mean VO2max in cl/kg 

for individuals in that interval. The regression coefficients represented the mean 

difference in VO2max between individuals in the lowest quartile and the other quartiles. 

For example, -4.9870 was the mean difference in VO2max in cl/kg between subjects in 

the first and second quartile. The explained variance was slightly lower relative to the 

other models (𝑟𝑎𝑑𝑗
2 = 0.537). 

 

Figure 3C illustrates the assumed homogeneity within groups and the discontinuity in 

VO2max (i.e., the change in average VO2max value) when moving from one quartile to 

the next. For example, measures of SFS in the last quartile ranged between 458 and 1153 

mm, but all individuals had the same estimated VO2max of 44.9612 cl/kg (i.e., 60.1339 −

15.1727). 

 

1-knot linear spline model 

For individuals whose SFS was equal to or less than 330 mm, a 1 mm difference in SFS 

was associated with a 0.0810 cl/kg lower VO2max. The mean difference in the effect 

estimate between individuals in both intervals was 0.0632, meaning that for individuals 

whose SFS was greater than 330 mm, a 1 mm difference in SFS was associated with a 

0.0178 cl/kg lower VO2max (i.e., −0.0810 + 0.0632). Thus, for individuals whose SFS was 

greater than 330 mm the association between SFS and VO2max was less strong than for 

individuals whose SFS was equal to or less than 330 mm. This is also illustrated in Figure 

3D. The 𝑟𝑎𝑑𝑗
2 was 0.578. This indicates that the 1-knot linear spline model is a better fit to 

the data than both quadratic regression and categorization. 

 

3-knot linear spline model 

For individuals whose SFS was equal to or less than 212 mm, a 1 mm difference in SFS 

was associated with a 0.0156 cl/kg lower VO2max. For individuals whose SFS was 

between 213 and 330 mm, a 1 mm difference in SFS was associated with a 0.0827 cl/kg 

lower VO2max (i.e., −0.0156 − 0.0671). The interval coefficients for the other intervals can 

be found in Table 1.  

 

Increasing the number of knots from 1 to 3 resulted in a slightly higher explained variance 

(𝑟𝑎𝑑𝑗
2 = 0.578 versus 𝑟𝑎𝑑𝑗

2 = 0.582, respectively). Furthermore, compared to simple linear 

regression (Figure 3A) and the 1-knot model (Figure 3D), the confidence interval for the 
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line estimated using a 3-knot model becomes wider for higher values of SFS (Figure 3E). 

This reflects the additional uncertainty in the effect estimates from the 3-knot model for 

higher SFS values. However, the wider confidence interval based on the 3-knot model 

does not affect the conclusion that SFS is associated with VO2max. 

 

3-knot restricted cubic spline regression 

Like with quadratic regression, separate interpretation of the coefficients is of no practical 

value with RCS regression, as the effect of SFS on VO2max is a function of multiple 

regression coefficients. For example, the average decrease in VO2max was 0.0644 cl/kg  

 

 

 
Figure 3 The estimated association between SFS and VO2max plotted against the observed values, with the 

shading representing the 95% confidence intervals based on standard errors. Panel A: simple linear regression, 

panel B: polynomial regression, panel C: categorization, panel D: 1-knot LSP regression, panel E: 3-knot LSP 

regression, panel F: 3-knot RCS regression. Abbreviations: SFS: sum or four skinfolds; LSP: linear spline; RCS: 

restricted cubic spline 
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when SFS changed from 300 to 301 mm (i.e., (75.9306 − 0.0738 ∗ 301 + 0.0000004 ∗

(301 − 212)3) − (75.9306 − 0.0738 ∗ 300 + 0.0000004 ∗ (300 − 212)3)), while the 

average decrease in VO2max was 0.0244 cl/kg when SFS changed from 600 to 601 mm 

(i.e., (75.9306 − 0.0738 ∗ 601 + 0.0000004 ∗ (601 − 212)3 − 0.0000006 ∗ (601 − 330)3) −

(75.9306 − 0.0738 ∗ 600 + 0.0000004 ∗ (600 − 212)3 − 0.0000006 ∗ (600 − 330)3). 

Figure 3F illustrates the ‘restrictions’ (i.e., the function is linear for 𝑆𝐹𝑆 ≤ 212 and 𝑆𝐹𝑆 >

621.4) and shows that the model fits the data quite well. This is also reflected in the 

explained variance (𝑟𝑎𝑑𝑗
2 = 0.591). 

 

Discussion 

The aim of this paper was to explain linear and restricted cubic spline functions in a step-

by-step and non-mathematical manner and to demonstrate the advantages of these 

methods over simple linear regression, quadratic terms and categorization using an 

empirical data example. Although spline regression is easy to implement with most 

statistical programs, epidemiologists still often apply traditional methods (e.g.,  quadratic 

regression and categorization) to model non-linear relationships.  

 

In the data example, the spline models resulted in higher explained variance than the 

traditional methods. Both categorization and spline regression divided the continuous 

exposure variable into intervals. Categorization only allows for variation between 

categories, so that the estimated outcome is the same for each individual in an interval 

regardless of their individual exposure value. This explains the stepwise pattern in Figure 

3C. Spline regression, on the other hand, allows for variation between and within 

intervals. As a result, the regression line shifts between knot locations, and regression 

lines meet at the knot locations. Although polynomial regression is easy to model, it 

suffers from a lack of smoothness and can lead to implausible curvatures, in particular at 

the edges. Splines provide a good alternative as they control for this curvature via the 

continuity restrictions. In addition, RCS models are linear before and after the last knot. 

LSP models provide a good balance between modelling the non-linear association and 

providing results that are relatively easy to interpret. Furthermore, RCS models provide a 

flexible method for modelling the non-linearity of an association, but come at the cost of 

regression coefficients that are less easy to interpret than LSP models. In our data 

example, the explained variance in the LSP model and the RCS model were comparable. 

If one is interested in reporting the association between sum of four skinfolds and 

VO2max, then LSP models provide easier interpretations than the RCS models.  
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For both quadratic regression and RCS models, the increased complexity of the 

interpretation of the regression coefficients makes it less straightforward to summarize 

the exposure effect at the population level, because the exposure effect estimates differs 

in magnitude across exposure values. However, this is not necessarily a problem when 

the aim of a study is to make individual-level predictions of the outcome, as it remains 

relatively straightforward to compute the predicted outcome value for a specific 

exposure value using equation 7 (8). Thus, in our data example, if one is interested in 

predicting VO2max based on specific values of the sum of four skinfolds, then RCS 

models may be preferred. Two things that might help with interpreting the results are the 

reporting of figures (such as Figure 3) and calculating the effect for a number of different 

exposure contrasts (i.e., the two exposure values that are being compared). The latter 

was done for the interpretation of the 3-knot RCS model, and showed that the decrease 

in VO2max was greater when SFS changed from 300 to 301 mm, then when it changed 

from 600 to 601 mm. 

 

A strength of this paper are the non-mathematical explanations of LSP and RCS models. 

Although there are many other sources that describe spline models, most of these 

sources contain a high level of mathematical detail, which may discourage applied 

researchers from learning about these methods. In this paper, we tried to explained 

spline functions in a non-mathematical manner and in the context of an empirical data 

example. Furthermore, although we illustrated the application of spline models using 

cross-sectional data and within a linear regression context, the spline functions 

presented can be applied to all kinds of regression models, for example logistic and Cox 

regression. Further, they can also be used in longitudinal models such as generalized 

linear mixed models (GLMM) and generalized estimation equations (GEE).  

 

Besides the methods discussed in the present paper, there are also other methods 

available that can be used to estimate non-linear associations. A method that we did not 

discuss is quadratic spline regression, in which the spline basis functions are quadratic 

functions. Although quadratic splines are often overlooked and not mentioned in known 

reference books (2), like cubic splines they result in smooth functions at the knot locations 

and can occur in restricted and unrestricted form. When the number of degrees of 

freedom are the same and the knots are located at comparable exposure values, 

restricted quadratic and cubic spline models might even yield similar results (31). SAS 

code for the estimation of restricted quadratic splines is provided by Howe et al. (31). 

Furthermore, we also did not discuss generalized additive models (GAMs), LOESS 
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smoothing, penalized splines and fractional polynomials (32, 33), which are all capable of 

capturing non-linear relationships. However, these methods are relatively complicated 

and therefore, not much used in practice. 

 

In this paper, we explained spline models based on a single exposure. However, in 

practice, researchers may want to adjust their association model for potential 

confounders of the exposure-outcome association. Most researchers are unaware that, 

if these confounders are continuous, then the linearity assumption also applies to these 

variables (34). Failing to explicitly model a non-linear confounder-outcome association 

may result in an under- or overestimation of the true exposure effect. Therefore, the 

linearity assumption should be assessed for each continuous confounder in a regression 

model, and splines can be applied when necessary. 

 

Spline regression is easy to implement with most statistical software programs often used 

by epidemiologists. Table 3 contains a (non-exhaustive) overview of packages and macros 

available in different software programs. The analyses in this paper were conducted using 

the R programming language version 4.0.3 (35) and the ‘rms’ package by Harrell (23). The 

R package ‘splines’ is part of the basic distribution of R (29). Other frequently downloaded 

packages include ‘gss’ (36) and ‘polspline’ (37). An overview of spline methods and other 

R packages that may be used to fit spline models is presented elsewhere (29). In STATA, 

spline functions can be fitted using, among others, the STATA package ‘rmkspline’ and the 

user-made package ‘RCsplines’ (38). In SPSS, spline functions have to be fitted by hand 

and can be applied using the REGRESSION procedure. In SAS, the ‘effect’ statement in 

‘proc glimmix’ provides an automated implementation for fitting splines. Documentation 

including syntax commands are available from the IBM support page (39) and the SAS 

Help Center (40). 

 

Although splines are easy to implement, they require certain choices to be made by the 

researcher. This concerns, for example, the number and location of the knots and the 

 

 

Table 3 Spline regression options by software program 

Software program Packages/procedures 

R rms, splines, gss, polspline 

STATA mkspline, RCsplines 

SPSS REGRESSION 

SAS TRANSREG 
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type of basis function (2). In addition, not all non-linear relations are ‘equally harmful’ and 

the choice of spline model (e.g., linear or cubic) might depend on what’s considered more 

important: LSP models might be used to model relations that only have a slight bend and 

that can be approximated by piecewise linear functions, whereas RCS might be used for 

maximum model accuracy. Another thing to consider is that some choices, such as 

increasing the number of knots, might introduce additional uncertainty to the model, 

especially in small samples. If the number of knots is too large, then the model overfits 

the data: it then describes the random error rather than the relationship between the 

variables. This affects the generalizability of the model outside of the data that it is based 

on (29). In our example, the confidence intervals were generally wider for more complex 

models, illustrating the additional model uncertainty introduced by more complex 

models. In some situations, the additional uncertainty might be a reason to use a more 

simple model. 

 

Conclusion 

Spline functions should be considered more often in the analysis of non-linear 

relationships as they allow for more flexibility in estimating non-linear associations than 

traditional methods such as quadratic regression and categorization and can be used in 

all kinds of regression analyses. With RCS models the exposure effect estimates differ 

across exposure values, making them more suitable for prediction (i.e., to obtain the 

predicted outcome for a specific exposure value). If one is interested in the effects in a 

population, then LSP models are more suitable due to the straightforward interpretation 

of the regression coefficients. 
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Appendix A Fitting 1-knot and 3-knot linear spline models (by hand) 

including R software code 

 

library(rms) 

attach(data) 

 

1-knot linear spline model 

Determine knot location according to 50th percentile of SFS 

t1 <- quantile(SFS, 0.50) 

 

Compute SFS spline basis function xt1 and recode so that 𝑆𝐹𝑆 − 𝑡1 = 0 if 𝑆𝐹𝑆 ≤  𝑡1 

xt1 <- SFS – t1 

xt1[xt1 <= 0] <- 0 

 

Linear regression analysis including spline basis function xt1 

ols(VO2max ~ SFS + xt1) 

 

Automated implementation using the rms package 

ols(VO2max ~ lsp(SFS, quantile(SFS, 0.5)), data = data) 

 

 

3-knot linear spline model 

Determine knot locations according to 10th, 50th and 90th percentile of SFS 

t1 <- quantile(SFS, 0.10) 

t2 <- quantile(SFS, 0.50) 

t3 <- quantile(SFS, 0.90) 

 

Compute SFS spline basis functions xt1, xt2 and xt3 and recode  

xt1 <- SFS - t1 

xt1[xt1 <= 0] <- 0 

 

xt2 <- SFS - t2 

xt2[xt2 <= 0] <- 0 

 

xt3 <- SFS - t3 

xt3[xt3 <= 0] <- 0 

 

Linear regression analysis including spline basis functions xt1, xt2 and xt3 

ols(VO2max ~ SFS + xt1 + xt2 + xt3) 
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Automated implementation using the rms package 

ols(VO2max ~ lsp(SFS, quantile(SFS, c(0.1, 0.5, 0.9))), data = data)  
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Appendix B Formula to calculate spline variable 𝑺𝑭𝑺𝟐
† 

 

𝑆𝐹𝑆2
† =

(𝑆𝐹𝑆 − 212)+
3 − (𝑆𝐹𝑆 − 330)+

3 ∗
(621.4 − 212)
(621.4 − 330)

+ (𝑆𝐹𝑆 − 621.4)+
3 ∗

(330 − 212)
(621.4 − 212)

(621.4 − 212)2    

 

where 𝑆𝐹𝑆2
† is the spline variable and 𝑆𝐹𝑆 is the original exposure variable. Values 212, 

330 and 621.4 represent the first, second and third knot location, respectively.    
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Appendix C  Fitting a 3-knot restricted cubic spline model (by hand)  

including R software 

 

library(rms) 

attach(data) 

 

Determine knot locations according to 10th, 50th and 90th percentile of SFS 

t1 <- quantile(SFS, 0.10) 

t2 <- quantile(SFS, 0.50) 

t3 <- quantile(SFS, 0.90) 

 

Compute SFS spline basis functions xt1, xt2 and xt3 and recode  

xt1 <- SFS - t1 

xt1[xt1 <= 0] <- 0 

 

xt2 <- SFS - t2 

xt2[xt2 <= 0] <- 0 

 

xt3 <- SFS - t3 

xt3[xt3 <= 0] <- 0 

 

Compute spline variable SFS_RCS using equation B1 

SFS_RCS <- (xt1^3 - xt2^3 * ((t3 - t1)/(t3 - t2)) + xt3^3 * ((t2 - t1)/(t3 

– t1)))/(t3 - t1)^2 

 

Linear regression analysis including spline variable SFS_RCS 

fit <- ols(VO2max ~ SFS + SFS_RCS) 

 

Assign cubic spline coefficient, corresponding to spline variable SFS_RCS, to object csc 

b0 <- fit$coefficients[1] 

b1 <- fit$coefficients[2] 

csc <- fit$coefficients[3] 

 

Transform cubic spline coefficient csc into regression coefficients b2, b3 and b4 

corresponding to spline basis functions xt1, xt2 and xt3 using equations 4 to 6 

b2 <- csc/(t3 - t1)^2 

b3 <- (b2 * (t1 - t3))/(t3 - t2) 

b4 <- (b2 * (t1 - t2))/(t2 - t3) 
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The complete regression formula becomes 

VO2max = b0 + b1 * SFS + b2 * xt1^3 + b3 * xt2^3 + b4 * xt3^3 

 

Automated implementation using the rms package 

ols(VO2max ~ rcs(SFS, 3), data = data) 
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Abstract 

Background 

Confounding bias is a common concern in epidemiological research. Its presence is often 

determined by comparing exposure effects between univariable- and multivariable 

regression models, using an arbitrary threshold of a 10% difference to indicate 

confounding bias. However, many clinical researchers are not aware that the use of this 

change-in-estimate criterion may lead to wrong conclusions when applied to logistic 

regression coefficients. This is due to a statistical phenomenon called noncollapsibility, 

which manifests itself in logistic regression models. This paper aims to clarify the role of 

noncollapsibility in logistic regression and to provide guidance in determining the 

presence of confounding bias. 

 

Methods 

A Monte Carlo simulation study was designed to uncover patterns of confounding bias 

and noncollapsibility effects in logistic regression. An empirical data example was used to 

illustrate the inability of the change-in-estimate criterion to distinguish confounding bias 

from noncollapsibility effects. 

 

Results 

The simulation study showed that, depending on the sign and magnitude of the 

confounding bias and the noncollapsibility effect, the difference between the effect 

estimates from univariable- and multivariable regression models may underestimate or 

overestimate the magnitude of the confounding bias. Because of the noncollapsibility 

effect, multivariable regression analysis and inverse probability weighting provided 

different but valid estimates of the confounder-adjusted exposure effect. In our data 

example, confounding bias was underestimated by the change in estimate due to the 

presence of a noncollapsibility effect. 

 

Conclusion 

In logistic regression, the difference between the univariable- and multivariable effect 

estimate might not only reflect confounding bias but also a noncollapsibility effect. Ideally, 

the set of confounders is determined at the study design phase and based on subject 

matter knowledge. To quantify confounding bias, one could compare the unadjusted 

exposure effect estimate and the estimate from an inverse probability weighted model. 
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Background 

In observational studies, the exposure levels are often influenced by characteristics of 

the study subjects. As a result, differences in background characteristics between 

exposed and unexposed individuals may exist. If these characteristics are also associated 

with the outcome, crude comparison of the average outcomes in both exposure groups 

does not yield an unbiased estimate of the exposure effect (1-5). Therefore, to obtain 

unbiased effects, adjustment for this imbalance in background characteristics is 

necessary. This is also called adjustment for confounding. 

 

When selecting confounders for adjustment, researchers often use statistical methods 

to quantify the confounding bias. That is, oftentimes the confounding bias is quantified 

by comparing the exposure effect between a univariable- and a multivariable regression 

model, also called the change-in-estimate criterion (4, 6, 7). However, this method may 

lead to wrong conclusions about the presence and magnitude of confounding bias, as in 

logistic regression covariates may affect the effect estimate through two separate 

mechanisms: through confounding when covariates are associated with both the 

exposure and the outcome, and through noncollapsibility which is present when 

covariates are associated with the outcome (8). The total difference between the effect 

estimate from a univariable- and multivariable regression model may therefore be 

decomposed into an estimate of confounding bias and an estimate of the 

noncollapsibility effect (7, 9). Furthermore, even in the absence of confounding the 

exposure effect coefficients from both models might still differ. Thus, the change-in-

estimate may misrepresent the true confounding bias (4). 

 

Various rescaling methods have been proposed in the social sciences literature, which 

aim to equalize the scales of the effect estimates from a univariable and a multivariable 

regression model (10-13). However, when applied to effect estimates from a logistic 

regression, these rescaling measures are approximate rather than exact (10, 11, 14). 

Janes et al. (9) and Pang et al. (7) proposed an exact measure of confounding bias for 

logistic regression models. This measure is based on the comparison of the effect 

estimates from a univariable regression model and an inverse probability weighted (IPW) 

model. The latter is another popular method to adjust for confounding. 

 

Noncollapsibility may not only affect the differences between the effect estimates from a 

univariable- and multivariable regression model, it also causes differences between the 

effect estimates from a multivariable regression model and an IPW model. Whereas 
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multivariable regression and IPW provide the same effect estimates in linear regression, 

this does not necessarily hold for logistic regression (7, 9, 15). That is, when a 

noncollapsibility effect is present, multivariable regression adjustment and IPW both yield 

valid estimates of the confounder-adjusted exposure effect, but their magnitude and 

interpretation differ (7, 16, 17). Therefore, the difference between the effect estimates 

from a multivariable regression model and IPW can be used to quantify the magnitude of 

noncollapsibility. 

 

Because noncollapsibility is a relatively unknown mechanism among clinical researchers, 

many are unaware that the change-in-estimate criterion may lead to wrong conclusions 

about the presence and magnitude of confounding bias. Therefore, this paper aims to 

clarify the role of noncollapsibility in logistic regression and to provide guidance in 

determining the presence of confounding bias. First, we review the different confounder-

adjustment methods and provide a detailed explanation of the noncollapsibility effect. 

Then, we use a Monte Carlo simulation study to uncover patterns of confounding bias 

and noncollapsibility effects in logistic regression. Subsequently, using an empirical data 

example, we demonstrate that the change-in-estimate criterion to determine 

confounding bias may be misleading. Finally, we provide guidance in determining the set 

of confounders and quantifying confounding bias. 

 

Confounder adjustment and noncollapsibility 

The presence and magnitude of confounding bias for models with a binary outcome is 

commonly determined by comparing the exposure effect estimates from a univariable- 

(equation 1) and multivariable (equation 2) logistic regression model: 

 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌 = 1|𝑋)) =  𝑖1 + 𝛽1𝑋 (1) 

 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌 = 1|𝑋, 𝐶1, … , 𝐶𝑛)) =  𝑖2 + 𝛽1
′𝑋 + 𝛽2

′ 𝐶1 + ⋯ +  𝛽𝑛+1
′ 𝐶𝑛 (2) 

 

where in both equations, 𝑌 and 𝑋 represent the outcome and exposure variables and 𝑖1 

and 𝑖2 represent the intercept terms, respectively. In equation 1, 𝛽1 represents the 

unadjusted exposure effect estimate. In equation 2, 𝛽1
′  represents the multivariable 

confounder-adjusted exposure effect estimate and 𝛽2
′  to 𝛽𝑛+1

′  are the coefficients 

corresponding to observed background covariates 𝐶1 to 𝐶𝑛. When 𝐶1 to 𝐶𝑛 are truly 

confounders, then 𝛽1 will be a biased estimate of the causal exposure-outcome effect. 

Assuming that equation 2 contains all confounders of the exposure-outcome effect, 𝛽1
′  
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will have a causal interpretation. In practice researchers often determine the magnitude 

of confounding as the change in estimate, which is computed as the difference between 

𝛽1
′  and 𝛽1. When using the change-in-estimate criterion to determine the presence of 

confounding bias typically a 10% difference between 𝛽1
′  and 𝛽1 is used in practice as an 

arbitrary threshold indicating confounding due to covariates 𝐶1 to 𝐶𝑛 in the association 

between 𝑋 and 𝑌 (6, 18, 19). 

 

When based on logistic regression, 𝛽1
′ − 𝛽1 may not only represent confounding bias but 

also a noncollapsibility effect. This noncollapsibility effect is sometimes also referred to 

as a form of the Simpson’s paradox (16). The noncollapsibility effect is caused by a 

difference in the scale on which 𝛽1 and 𝛽1
′  are estimated. In linear regression, the total 

variance is the same for nested models: when the explained variance increases through 

adding a covariate to the model, the unexplained variance decreases by the same 

amount. As a result, effect estimates from nested linear models are on the same scale 

and thus collapsible. In logistic regression, however, the unexplained variance has a fixed 

value of 3.29 (8). Adding covariates that are associated with the outcome (e.g., 

confounders) increases the explained variance and forces the total variance of Y to 

increase. When the total variance of Y increases, the scale of the estimated coefficients 

changes, causing negative exposure effects to become more negative and positive 

exposure effects more positive. This change in scales is called the noncollapsibility effect 

(5, 7, 8). Thus, to determine confounding bias, exposure effect estimates cannot be simply 

compared between nested logistic regression models as the difference might not only 

reflect confounding bias but also a noncollapsibility effect (8). The noncollapsibility effect 

also occurs when a covariate is associated with outcome Y but not with exposure X (i.e., 

when the covariate is not a confounder). The change in estimate then represents the 

noncollapsibility effect only, falsely indicating the presence of confounding bias. To 

preserve space in the main text, a hypothetical example illustrating how the change in 

estimate might be affected by the noncollapsibility effect in the absence of confounding 

is given in additional file A. An explanation of noncollapsibility based on a contingency 

table is provided by for example Pang et al. (7). 

 

Recent studies by Janes et al. and Pang et al. presented an exact estimate of confounding 

bias unaffected by noncollapsibility based on logistic regression (7, 9), using the 

difference between the univariable exposure effect estimate and the effect estimate from 

an IPW model. With IPW, confounding bias is eliminated by creating a pseudo-population 

in which each covariate combination is balanced between both exposure groups (20-22). 
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When there is perfect covariate balance there is no longer an association between 

covariates 𝐶1 to 𝐶𝑛 and exposure status 𝑋. This pseudo-population can be created by 

weighting subjects so that for each combination of baseline covariates the sums of 

contributions for both exposure groups are equal (1, 20). These weights are the inverse 

of the probability that a subject was exposed, i.e. the inverse of a propensity score (23).  

 

The propensity score is the predicted probability of endorsing the exposure, which can 

be estimated using equation 3: 

 

𝑃𝑆 = 𝑃𝑟(𝑋 = 1|𝐶) =  
1

1 + 𝑒−(𝑖3+𝜆1𝐶1+⋯+𝜆𝑛𝐶𝑛)
 (3) 

 

where X represents exposure, 𝑖3 is the model intercept and 𝜆1 to 𝜆𝑛 are regression 

coefficients corresponding to covariates 𝐶1 to 𝐶𝑛. The propensity score methodology can 

also be extended to continuous exposure variables using the Generalized Propensity 

Score (GPS), which has a similar balancing property to the classic propensity score. For 

more information on how to perform propensity score analysis with a continuous 

exposure variable, see Hirano (2004) and Imai (2004) (24, 25). 

 

For exposed subjects, the weight is calculated as 
1

𝑃𝑆
 and for unexposed subjects as 

1

1−𝑃𝑆
 

(1, 20, 22). Using these calculations, subjects with a propensity score close to 0 end up 

with large weights, and subjects with a propensity score close to 1 end up with small 

weights. Because in some situations these weights cause the IPW model to be unstable, 

stabilized weights have been proposed (26). For exposed subjects, the stabilized weight 

is calculated as 
𝑝

𝑃𝑆
 and for unexposed subjects as 

1− 𝑝

1−𝑃𝑆
, where p is the probability of 

exposure without considering covariates 𝐶1 to 𝐶𝑛 (2, 26). Subsequently, a weighted 

regression analysis with exposure X as the only independent variable is carried out. We 

call the confounder-adjusted exposure effect estimate from the IPW model 𝛽1
∗. 

 

Difference between IPW- and multivariable confounder-adjusted exposure effect estimates 

Multivariable regression adjustment and IPW provide identical exposure effect estimates 

when based on linear regression, but not when based on logistic regression (15, 27). The 

difference between the IPW confounder-adjusted exposure effect estimate 𝛽1
∗ and the 

multivariable confounder-adjusted exposure effect estimate 𝛽1
′  is caused by 

noncollapsibility, and the difference between the unadjusted exposure effect estimate 𝛽1 

and 𝛽1
∗ provides a measure of confounding bias (7, 9, 14). This is because in an IPW model 
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the total variance remains equal to the total variance of the unadjusted model, while in a 

multivariable regression model the addition of variables to the model leads to higher 

variance, changing the scale of the exposure effect estimate. This means that when there 

is confounding in a logistic regression model, multivariable regression analysis and IPW 

lead to different confounder-adjusted estimates of the exposure effect. Although 𝛽1
′  and 

𝛽1
∗ are both valid estimates, they apply to different target populations and have their own 

respective interpretation (8, 27).  

 

Simulation study 

Simulation methods 

A Monte Carlo simulation study was designed to investigate patterns of confounding bias 

and noncollapsibility effects in logistic regression. The R programming language version 

4.0.2 (28) and STATA statistical software release 14 (29) were used to generate and 

analyze the data, respectively. 

 

Three continuous covariates were generated from a standard normal distribution. The 

dichotomous exposure and outcome were generated from a binomial distribution 

conditional on the covariates and the covariates and exposure, respectively. Sample sizes 

were 250, 500, 750 and 1000. The parameter values for the exposure-outcome effect, 

confounder-exposure effect and the confounder-outcome effect were set to -1.42, -0.92, 

-0.38, 0, 0.38, 0.92 and 1.42. This way, the conditions reflected situations with 

combinations of zero effects, and positive and negative small (-0.38 and 0.38), medium (-

0.92 and 0.92) and large (-1.42 and 1.42) effect sizes were mimicked (30). The total 

number of conditions was 1,372 with 1,000 repetitions per condition, resulting in 

1,372,000 observations. Subsequently, we estimated the unadjusted exposure effect 

estimate 𝛽1, the multivariable confounder-adjusted exposure effect estimate 𝛽1
′  and the 

IPW confounder-adjusted exposure effect estimate 𝛽1
∗ based on the simulated data. From 

these effect estimates we computed the change in estimate, the confounding bias and 

the noncollapsibility effect. The simulation code is available in additional file B. 

 

Simulation scenarios 

We expected to observe four scenarios based on the simulated data. In the first scenario 

(Figure 1A), the covariates are associated with both the exposure and the outcome. In 

this scenario there will be both confounding bias (𝛽1 – 𝛽1
∗) and a noncollapsibility effect 

(𝛽1
∗ – 𝛽1

′ ). Because the exposure-outcome effect is simulated to be positive and negative,  
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A Confounding and noncollapsibility B Confounding without noncollapsibility 

 

 

 

 

C Noncollapsibility without confounding D Neither confounding nor noncollapsibility 

 

 

 

 

Figure 1 Directed acyclic graphs of the four possible scenarios into which each simulated condition can be 

classified. Panel A: both confounding and noncollapsibility. Panel B: confounding without noncollapsibility. Panel C: 

noncollapsibility without confounding. Panel D: neither confounding nor noncollapsibility. C represents three 

continuous covariates, X represents the dichotomous exposure and Y represents the dichotomous outcome. The 

dotted line in panel D between the covariates and the exposure and between the exposure and the outcome 

indicate there may or may not be an association.  

 

 

we also expect to see positive and negative noncollapsibility effect estimates. This means 

that 𝛽1
′ − 𝛽1 might result in an under- or overestimation of the true confounding effect 

(8). In the second scenario (Figure 1B) the covariates are associated with both the 

exposure and outcome, but exposure and outcome are not associated with each other. 

In this scenario, any differences between 𝛽1
′  and 𝛽1 are fully explained by the covariates, 

so there is confounding bias without a noncollapsibility effect (8, 15). In the third scenario 

(Figure 1C), the covariates are only associated with the outcome. In this scenario there is 

a noncollapsibility effect but no confounding bias. In real-life situations with this structure, 

using the change-in-estimate criterion may lead one to conclude that the covariates are 

confounders in the relation between the exposure and the outcome although the 

difference between 𝛽1
′  and 𝛽1 is caused entirely by the noncollapsibility effect (7, 8). In the 

fourth scenario (Figure 1D), the covariates may be associated with the exposure, but not 

with the outcome. In this scenario, there is neither confounding bias nor a 

noncollapsibility effect and 𝛽1, 𝛽1
′  and 𝛽1

∗ are identical. This scenario is also called strict 

collapsibility (15, 31, 32). 
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Simulation results 

The difference between 𝛽1
′  and 𝛽1 can be negative, zero or positive, depending on the 

magnitude of the confounding bias and the noncollapsibility effect (Table 1). Only when 

there was no noncollapsibility effect (i.e., 𝛽1
∗ − 𝛽1

′ = 0), the change in estimate equaled the 

estimate of confounding bias. The noncollapsibility effect was zero when the exposure-

outcome effect was zero and the confounder-exposure and confounder-outcome effects 

were both non-zero. When the exposure-outcome effect was also non-zero, the 

difference between 𝛽1
′  and 𝛽1 reflected both confounding bias and the noncollapsibility 

effect. In those situations, the change-in-estimate criterion could both under- and  

 

Table 1 Difference between univariable- and multivariable exposure effects as combination of confounding bias 

and the  noncollapsibility effect  

Difference between 

multivariable- and 

univariable effect 

estimate (𝜷𝟏
′ − 𝜷𝟏) 

Confounding bias 

(𝜷𝟏 − 𝜷𝟏
∗ ) 

Noncollapsibility effect 

(𝜷𝟏
∗ − 𝜷𝟏

′ ) 

Negative 

Negative value Negative value 

Zero Negative value 

Negative value Zero 

Positive value Greater negative value than the  

positive confounding bias value 

Greater negative value than the 

positive noncollapsibility effect 

value 

Positive value 

Zero 

Zero Zero 

Equal positive value as the 

negative noncollapsibility effect 

value 

Equal negative value as the 

positive confounding bias value 

Equal negative value as the 

positive noncollapsibility effect 

value 

Equal positive value as the 

negative confounding bias 

value 

Positive 

Positive value Positive value 

Zero Positive value 

Positive value Zero 

Negative value Greater positive value than the 

negative confounding bias 

value 

Greater positive value than the 

negative noncollapsibility effect 

value 

Negative value 
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overestimate the true confounding bias. When the confounding bias and noncollapsibility 

effect had  similar signs, i.e. both were positive or negative,  𝛽1
′ − 𝛽1 overestimated the 

true confounding bias. When the confounding bias and noncollapsibility effect had 

opposites signs, i.e. one was positive while the other was negative, the true confounding 

bias could be under- or overestimated by 𝛽1
′ − 𝛽1, depending on the magnitude of the 

confounding bias and noncollapsibility effect. Thus, when the exposure-outcome effect 

is non-zero, the change-in-estimate criterion might falsely indicate the presence of 

confounding or it might under- or overestimate the true confounding bias. Patterns of 

confounding bias and the noncollapsibility effect were similar across sample sizes and 

will be described below. 

 

Confounding bias 

Figure 2 plots confounding bias (𝛽1 − 𝛽1
∗) as a function of the confounder-outcome effect 

with the lines in panel A representing positive confounder-outcome effects of various 

magnitudes and the lines in panel B representing negative confounder-outcome effects 

of various magnitudes. Confounding bias was positive when the confounder-exposure 

effect and the confounder-outcome effect were both positive (panel A, first quadrant) 

and when they were both negative (panel B, second quadrant). When the effects had 

opposite signs, confounding bias was negative. The magnitude of confounding bias 

increased as the confounder-exposure or confounder-outcome effect increased in 

magnitude. There was no confounding bias when one or both effects equaled zero. 

 

 

 

A  B  

 

 

 

 
Figure 2 True confounding bias (𝛽1 − 𝛽1

∗) as a function of the confounder-outcome effect collapsed over all 

sample sizes. Panel A: each line represents a positive confounder-exposure effect. Panel B: each line represents a 

negative confounder-exposure effect. 
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A  B  

 

 

 

 
Figure 3 The noncollapsibility effect (𝛽1

∗ − 𝛽1
′) as a function of the confounder-outcome effect collapsed over all 

sample sizes. Panel A: each line represents a positive exposure-outcome effect. Panel B: each line represents a 

negative exposure-outcome effect. 

 

 

The noncollapsibility effect 

Figure 3 plots the noncollapsibility effect (𝛽1
∗ − 𝛽1

′ ) as a function of the confounder-

outcome effect with the lines in panel A representing positive exposure-outcome effects 

of various magnitudes and the lines in panel B representing negative exposure-outcome 

effects of various magnitudes. The noncollapsibility effect and the exposure-outcome 

effect were inversely related: when the latter effect was positive, the noncollapsibility 

effect was negative, and vice versa. The noncollapsibility effect increased in magnitude as 

both the exposure-outcome effect and the confounder-outcome effect increased in 

magnitude. When either effect was zero, there was no noncollapsibility effect, regardless 

of the magnitude of the other effect. 

 

Empirical data example 

To illustrate how the noncollapsibility effect might affect conclusions about confounding 

bias in practice we use an example from the Amsterdam Growth and Health Longitudinal 

Study (AGHLS). The AGHLS started in 1976 with the aim was to examine growth and 

health among teenagers. Over the years, health and lifestyle measures, determinants of 

chronic diseases and parameters for the investigation of deterioration in health with age 

have been measured (33). The data in this example were collected in 2000, when the 

participants were in their late 30s. Using data from the AGHLS we investigated the 

association between hypercholesterolemia and hypertension, potentially confounded by 

physical activity. Using multivariable regression analysis and IPW we estimated the 

confounder-adjusted effect of hypercholesterolemia on hypertension in our sample, 𝛽1
′   
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Figure 4 The assumed relations between hypercholesterolemia, hypertension and physical activity 

 

 

and 𝛽1
∗, respectively. To quantify the magnitude of confounding bias and the 

noncollapsibility effect, we also estimated the unadjusted exposure effect 𝛽1 using 

univariable regression analysis. Cut-offs for hypercholesterolemia and hypertension were 

based on guidelines from the U.S. National Institutes of Health (NIH) and NIH’s National 

Heart, Lung and Blood Institute, respectively (34, 35). Physical activity was defined as the 

total hours per week spent on light, moderate or vigorous activities. Only subjects with 

complete data on the variables were considered in the analysis (n = 349). Figure 4 

provides a graphical representation of the assumed relations among the variables. 

 

Table 2 shows the effect estimates from univariable- and multivariable regression 

analysis and IPW. The unadjusted effect estimate 𝛽1 was 0.90, corresponding to an odds 

ratio (OR) of 2.46. The multivariable confounder-adjusted exposure effect estimate 𝛽1
′  

was 0.93, corresponding to an OR of 2.53. The IPW confounder-adjusted exposure effect 

estimate 𝛽1
∗ was 0.99, corresponding to an OR of 2.69. The difference between 𝛽1

′  and 𝛽1 

was -0.03, or 3.3%. If one would use the change-in-estimate criterion with a cut-off of 10% 

to determine the presence of confounding, then physical activity would not be  

 

 

Table 2 Relationship between hypercholesterolemia and hypertension estimated using univariable- and 

multivariable regression analysis and IPW 

𝛽 𝑆𝐸(𝛽) 95% 𝐶𝐼 𝑝

Univariable exposure effect 

Hypercholesterolemia 0.90 0.23 0.47; 1.35 < 0.01 

     

Multivariable confounder-adjusted exposure effect 

Hypercholesterolemia 0.93 0.23 0.48; 1.38 < 0.01 

Physical activity 0.01 0.01 -0.02; 0.03 0.60 

     

IPW confounder-adjusted exposure effect 

Hypercholesterolemia 0.99 0.16 0.69; 1.30 < 0.01 

Abbreviations: SE: standard error; CI: confidence interval 
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considered a confounder. Using the difference between 𝛽1 and 𝛽1
∗, the estimate of 

confounding bias was 0.90 – 0.99 = -0.09. This corresponds to a 10% change in the 

exposure effect estimate. The noncollapsibility effect estimate was 0.99 – 0.93 = 0.06. 

Because of this noncollapsibility effect, the estimate of the true confounding bias of 

physical activity was considerably larger than it seemed based on the difference between 

𝛽1
′  and 𝛽1. Thus, in our data example, the conventional method to determine the 

presence of confounding led to an underestimation of the true confounding bias of 

physical activity. 

 

Discussion 

This paper aimed to clarify the role of noncollapsibility in determining the magnitude of 

confounding bias in logistic regression. Because the difference between 𝛽1
′  and 𝛽1 reflects 

both confounding bias and a noncollapsibility effect, in logistic regression the change-in-

estimate criterion should not be used to determine the presence of confounding. This 

was illustrated in our data example, in which confounding bias was underestimated 

because of the magnitude of the noncollapsibility effect. Our simulation study showed 

that confounding was mainly determined by the combination of the magnitude of the 

confounder-exposure and confounder-outcome effects, whereas noncollapsibility was 

mostly determined by the magnitude of the combination of the exposure-outcome and 

confounder-outcome effects. In situations in which confounding approached zero and 

noncollapsibility was non-zero, the change-in-estimate criterion wrongly indicated the 

presence of confounding bias, when in reality the difference between 𝛽1
′  and 𝛽1 was 

caused solely by the noncollapsibility effect. 

 

Recommendations for practice 

Rather than using an arbitrary statistical rule such as the 10% cut-off based on the 

change-in-estimate criterion, it is generally recommended to determine the confounder 

set based on subject matter knowledge. Directed acyclic graphs (DAGs) are helpful to 

determine which set of confounders should be adjusted for to eliminate confounding 

bias (36, 37). DAGs are causal diagrams in which the arrows represent the causal relations 

among variables. Therefore, DAGs contain information about the causal model that 

cannot be provided by statistical methods. For example, assuming the DAG is a correct 

representation of the causal relations among variables, it clarifies what the minimally 

sufficient set of confounders is to block any backdoor paths (i.e., confounding paths) from 

the exposure to the outcome. The amount of confounding bias could be quantified by 

looking at the difference between the unadjusted univariable exposure effect estimate 
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𝛽1 and the IPW confounder-adjusted exposure effect estimate 𝛽1
∗ as proposed by Pang 

et al. (7) and Janes et al. (9). Bootstrap confidence intervals can be used to determine the 

statistical significance of the confounding bias. 

 

Because of the noncollapsibility effect, multivariable regression analysis and IPW provide 

different estimates of the exposure effect. Multivariable regression analysis results in a 

conditional exposure effect estimate (16, 38), whereas IPW results in a population-average 

or marginal exposure effect estimate (16, 38-40). Marginal exposure effects can also be 

estimated with standardization using G-computation. A step-by-step demonstration of 

G-computation can be found elsewhere (41). It is often suggested that a population-

average effect estimate should be reported when the target population is the entire study 

population, while the conditional exposure effect should be reported if the target 

population is a subset of the study population (7, 8, 16, 38, 39, 42, 43). Although this 

distinction is known from the literature, when it comes to the practical application, the 

exact differences between the two exposure effect estimates and their respective 

interpretations remain unclear.  

 

In this study, we assume correct specification of both the confounder-exposure and the 

confounder-outcome effect. When these are not correctly specified, bias might be 

introduced and the difference between the unadjusted univariable exposure effect 

estimate and the IPW confounder-adjusted exposure effect estimate might not only 

reflect confounding bias but also the misspecification of the underlying models. 

Therefore, correct specification of all effects is necessary to estimate unbiased exposure 

effects and correctly quantify confounding bias. 

 

Conclusion 

To summarize, in this study we showed that in logistic regression the difference between 

univariable- and multivariable effect estimates may reflect both confounding bias and a 

noncollapsibility effect. To avoid wrong conclusions with respect to the magnitude and 

presence of confounding bias, confounders are ideally determined based on subject 

matter knowledge. To quantify confounding bias, one could look at the difference 

between the unadjusted univariable exposure effect estimate and the IPW confounder-

adjusted exposure effect estimate. 
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Additional file A  Hypothetical example 

 

This hypothetical example involves three dichotomous variables: the exposure variable 

weight (not overweight vs. overweight), the event of interest diabetes and the potential 

confounding variable sex. The total population consists of 200 individuals. The data can 

be summarized according to Table A.1.  

 

Of these 200 individuals, half are overweight and half are not overweight. A total of 80 

individuals have diabetes and 120 individuals do not have diabetes. The unadjusted 

exposure effect, estimated with univariable regression analysis, is 1.299. This 

corresponds to an odds ratio of 3.667.  

 

The sexes are evenly distributed over the weight groups: both groups consist of 50 males 

and 50 females. Because there are equal numbers of males and females in the 

overweight and not overweight group, weight status is not influenced by sex. In contrast 

to sex and weight, sex and diabetes are associated. Of the 100 women, 30 have diabetes 

and 70 do not, whereas for males half have diabetes and half do not. Because 

confounding requires the covariate to be associated with both the exposure and the 

outcome, sex is not a confounder in the relation between weight and diabetes, as it is not 

associated with weight.  

 

Since sex is not a confounder of the exposure-outcome effect, adjustment for sex should 

not affect the exposure-outcome effect estimate. However, the adjusted exposure effect 

estimate, estimated with multivariable regression analysis, is 1.366, corresponding to an 

odds ratio of 3.921. This is different from the unadjusted effect estimate of 1.299. The 

results from all analyses are shown in Table A.2.  

 

Although sex is not a confounder, the effect estimates from univariable- and multivariable 

regression analysis still differ. This difference of 0.067 is entirely caused by 

noncollapsibility. This example illustrates that, even in the absence of confounding, the 

univariable and multivariable exposure effect estimates might differ. Therefore, the 

change-in-estimate  based on logistic regression coefficients may lead to wrong 

conclusions when used to determine the presence of confounding. 
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Table A.1 Hypothetical data example 

Exposure Event Sex n 

Not overweight No diabetes Female 45 

Not overweight Diabetes Female 5 

Not overweight No diabetes Male 30 

Not overweight Diabetes Male 20 

Overweight No diabetes Female 25 

Overweight Diabetes Female 25 

Overweight No diabetes Male 20 

Overweight Diabetes Male 30 

Abbreviations: n: sample size 
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Additional file B  Simulation code 

 
Step 1 – generate data 

generate_data <- function(seed, reps, n, ix, iy, cx, xy, cy){ 
   
  # define total number of rows required to store data 
  rows <- n * reps 
   
  # create data frame to store data in 
  df <- as.data.frame(matrix(NA, nrow = rows, ncol = 14)) 
  colnames(df) <- c("ID",            # ID through entire data set 
                    "repnr",         # for each repetition 
                    "ID_repnr",      # ID through each repetition 
                    "n",             # number of observations 
                    "ix",            # intercept exposure 
                    "iy",            # intercept outcome 
                    "cx",            # CX effect 
                    "xy",            # XY effect 
                    "cy",            # CY effect 
                    "C1",            # confounder 1 
                    "C2",            # confounder 2 
                    "C3",            # confounder 3 
                    "X",             # dichotomous exposure 
                    "Y")             # dichotomous outcome 
   
  # define simulation parameters 
  df[, "ID"] <- seq(1:rows) 
  df[, "repnr"] <- rep(1:reps, each = n) 
  df[, "ID_repnr"] <- rep(seq(1, n), reps) 
  df[, "n"] <- n 
   
  # define intercepts ix and iy 
  df[, "ix"] <- ix 
  df[, "iy"] <- iy 
   
  # define coefficients a, b and c 
  df[, "cx"] <- cx 
  df[, "xy"] <- xy 
  df[, "cy"] <- cy 
   
  # generate confounders C1, C2 and C3 
  df[, "C1"] <- rnorm(n = rows) 
  df[, "C2"] <- rnorm(n = rows) 
  df[, "C3"] <- rnorm(n = rows) 
   
  # generate dichotomous exposure X 
  lpx <- ix + cx * df[, "C1"] + cx * df[, "C2"] + cx * df[, "C3"] 
  prx <- 1/(1 + exp(-lpx)) 
  df[, "X"] <- rbinom(n = rows, size = 1, prob = prx) 
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  # generate dichotomous outcome Y 
  lpy <- iy + xy * df[, "X"] + cy * df[, "C1"] + cy * df[, "C2"] + cy *    
  df[, "C3"] 
  pry <- 1/(1 + exp(-lpy)) 
  df[, "Y"] <- rbinom(n = rows, size = 1, prob = pry) 
   
  # transform X and Y into factor variables 
  df[, "X"] <- factor(df[, "X"]) 
  df[, "Y"] <- factor(df[, "Y"]) 
   
  # return data frame 
  return(df) 
   
} 
 
# define simulation parameters 
seed <- 20200908 
reps <- 1000 
n <- c(250, 500, 750, 1000) 
ix <- 0 
iy <- 0 
cx <- c(-1.42, -0.92, -0.38, 0, 0.38, 0.92, 1.42) 
xy <- c(-1.42, -0.92, -0.38, 0, 0.38, 0.92, 1.42) 
cy <- c(-1.42, -0.92, -0.38, 0, 0.38, 0.92, 1.42) 
 
for(i in n){ 
  for(j in cx){ 
    for(k in xy){ 
      for(l in cy){ 
         
        df <- generate_data(seed = seed, 
                            reps = reps, 
                            n = i, 
                            ix = ix, 
                            iy = iy, 
                            cx = j, 
                            xy = k, 
                            cy = l) 
         
        # save each file in folder 'Step 1 - Generated datasets' 

 save(df, file = paste0("Step 1 - Generated datasets\\", 
        "n = ", i,", cx = ", j, ", xy = ", k, ", cy = ", l, ".RData")) 
         
      } 
    } 
  } 
} 

 

Step 2 – generate models 

library(dplyr) 
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generate_models <- function(data){ 
   
  # create data frame to store effect estimates in 
  effects <- data.frame(matrix(NA, nrow = max(data$repnr), ncol = 8)) 
  colnames(effects) <- c("repnr",  
                         "n", 
                         "cx", 
                         "xy", 
                         "cy", 
                         "coef_univar", 
                         "coef_multivar", 
                         "coef_ipw") 
   
  # store simulation characteristics 
  effects$repnr <- unique(data$repnr) 
  effects$n <- unique(data$n) 
  effects$cx <- unique(data$cx) 
  effects$xy <- unique(data$xy) 
  effects$cy <- unique(data$cy) 
   
  # FIT MODELS 
  # 1. univariable regression model 
  estimates <- data %>% 
    group_by(repnr) %>% 
    do(model_univar = glm(Y ~ X, family = "binomial", data =  
    .)$coefficients[2]) 
   
  effects$coef_univar <- unlist(estimates$model_univar) 
   
  # 2. multivariable regression model 
  estimates <- data %>% 
    group_by(repnr) %>% 
    do(model_multivar = glm(Y ~ X + C1 + C2 + C3, family = "binomial",  
    data = .)$coefficients[2]) 
   
  effects$coef_multivar <- unlist(estimates$model_multivar) 
   
  # 3. inverse probability weighting 
  estimates <- data %>% 
    group_by(repnr) %>% 
    do(ps = predict(glm(X ~ C1 + C2 + C3, family = "binomial", data =  
    .), type =  
    "response")) 
   
  data$ps <- unlist(estimates$ps) 
   
  data$weights <- ifelse(data$X == 1, 1/data$ps, 1/(1 - data$ps)) 
  data$stab_weights <- data$weights/sum(data$weights) 
     
  estimates <- data %>% 
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    group_by(repnr) %>% 
    do(model_ipw = glm(Y ~ X, weights = stab_weights, family =  
    "binomial", data =  
    .)$coefficients[2]) 
   
  effects$coef_ipw <- unlist(estimates$model_ipw) 
   
  # return data frame with simulation characteristics and treatment  
  effects 
  return(effects) 
   
} 
 
# save path 
path <- "Step 1 - Generated datasets\\" 
 
# save all file names in files 
files <- list.files(path = path, pattern = "*.RData") 
 
# loop through each file in the folder 
for(i in files){ 
   
  # load the data into the environment 
  load(paste0(path, i)) 
   
  # run function 
  effects <- generate_models(df) 
   
  # save each file in folder 'Step 2 - Generated models' 
  save(effects, file = paste0("Step 2 - Generated models\\", i)) 
   
} 

 
Step 3 – merge data 

# save path 
path <- "Step 2 - Generated models\\" 
 
# save all file names in files 
files <- list.files(path = path, pattern = "*.RData") 
 
# load first dataset (effects) of files 
load(paste0(path, files[1])) 
 
# rename dataset (effects) to df 
df <- effects 
rm(effects) 
 
# append all other files to current file df 
for(i in paste0(path, files[-1])){ 
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  load(i) 
  df <- rbind(df, effects) 
  rm(effects) 
   
} 
 
# add scenario number for each scenario (total = 1372) 
df$scenario <- rep(seq(from = 1, to = nrow(df)/1000), each = 1000) 
 
# change column order 
df <- df[c("scenario", "repnr", "n", "cx", "xy", "cy", "coef_univar", 
"coef_multivar", "coef_ipw")] 
 
# save appended file df in folder 'Step 3 - Appended file' 
save(df, file = "Step 3 - Appended file\\Appended file (all scenarios - 
all effect measures).RData") 

 
Step 4 – confounding decomposition 

# df contains the treatment effects derived from the 3 methods,  
# calculated for each repetition (n = 1000) within each scenario (n =  
# 1372) 
load("Step 3 - Appended file\\Appended file (all scenarios - all effect 
measures).RData") 
 
# calculate the difference between the unadjusted exposure effect and 
the conditional exposure effect 
df$diff <- df$coef_univar - df$coef_multivar 
 
# calculate the true confounding effect 
df$true_conf <- df$coef_univar - df$coef_ipw 
 
# calculate the amount of non-collapsibility 
df$non_collaps <- df$coef_ipw - df$coef_multivar 
 
# save file containing the confounding decomposition in folder 'Step 4 
- Confounding decomposition' 
save(df, file = "Step 4 - Confounding decomposition\\Final 

dataset.RData") 
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Abstract 

Although causal mediation analysis clarifies causal effect estimation, little attention has 

been devoted to the differences between causal estimation approaches. This paper 

illustrates the difference between the causal estimation approaches for mediation 

models with a binary mediator. Using a Monte Carlo simulation study and an empirical 

data example we show that the regression- and simulation-based approaches provide 

indirect and total effect estimates that are dependent on the chosen causal contrast, 

while the imputation- and weighting-based approaches provide overall effect estimates. 

The results underline the importance of choosing an estimation approach that provides 

estimates of the causal effect of interest.  
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Introduction 

Mediation analysis is popular in many fields, including medical and social sciences. With 

mediation analysis, the total effect of the exposure on the outcome can be decomposed 

into a direct and an indirect effect (1, 2). For example, cholesterol concentration may be 

a mediator of the effect of body mass index (BMI) on blood pressure as higher BMI is 

associated with higher cholesterol, and, in turn, higher cholesterol is associated with 

higher blood pressure. The positive association between BMI and blood pressure may 

then be (partially) explained by cholesterol. The direct effect is the effect of the exposure 

on the outcome after removing the influence of the mediator, i.e., the effect of BMI on 

blood pressure after removing the influence of cholesterol. The indirect effect is the effect 

of the exposure on the outcome through the mediator, i.e., the effect of BMI on blood 

pressure through cholesterol 

 

In the past decade, causal mediation analysis methods gained in popularity and are now 

implemented in most software packages (3). Whereas traditional mediation analysis 

defines and estimates the direct and indirect effects in terms of regression coefficients, 

causal mediation analysis separates the causal effect definitions from effect estimation 

(4). It defines causal effects as the differences between two potential outcomes, i.e., the 

outcome that would be observed for a certain exposure (5, 6). For example, if we treat 

BMI as a binary exposure (i.e., overweight versus healthy weight), then two potential 

outcomes could be observed: a certain blood pressure if a person is overweight, and a 

certain blood pressure if the same person has a healthy weight. The difference between 

these two potential outcomes is the causal effect of weight status on blood pressure at 

the individual level. If we treat BMI as a continuous exposure, potential outcomes could 

be observed for any BMI value. To estimate the causal effect of BMI on blood pressure, 

we choose two BMI values for comparison. For example, we may want to compare 

someone’s blood pressure value if BMI equals 21 to the same person’s blood pressure if 

BMI equals 20. The two compared values for the exposure are also called the causal 

contrast. 

 

However, in practice it is impossible to observe both potential outcomes for the same 

individual simultaneously. Therefore, the causal mediation effects are estimated on the 

population-average level as the expected differences between two population-average 

potential outcomes (5, 7, 8). Different estimation approaches can be used to estimate the 

population-average causal mediation effects (9, 10). In this paper we focus on four 

estimation approaches: regression, simulation, imputation and weighting. If the mediator 
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and outcome are both continuous, then all estimation approaches provide the same 

causal effect estimates (3). Furthermore, assuming that all pathways (i.e., the exposure-

mediator, the mediator-outcome and the exposure-outcome associations) in the 

mediation model are linear, the mediation effect estimates will be the same for every one 

unit difference in a continuous exposure variable. Thus, the indirect effect of BMI on 

blood pressure through cholesterol will be the same when comparing a BMI of 21 and 

20, or a BMI of 26 and 25, and so on. 

 

The different estimation approaches do not necessarily provide the same indirect and 

total effect estimates when the exposure is continuous and the mediator is binary. In this 

situation, the causal indirect and total effect estimates from the regression-based and 

simulation-based approaches depend on the chosen causal contrast. That is, when the 

mediator is binary, such as hypercholesterolemia, the indirect effect based on a 

comparison of BMI 21 and 20 will differ in magnitude from the indirect effect based on 

BMI 26 and 25. This is not the case for the imputation- and weighting-based approaches, 

as these will still provide mediation effect estimates that are the same for every one unit 

difference in the continuous exposure variable. 

 

Recent reviews showed that the uptake of causal mediation analysis remains low (11-13). 

Reasons for this may be the high level of technical detail in the seminal papers on causal 

mediation analysis and unfamiliarity with potential outcomes notation (11, 12, 14). 

Furthermore, previous studies showed that traditional and causal mediation analysis 

provide the same effect estimates for models with a continuous mediator and outcome 

(15, 16), but not necessarily for models with a binary mediator or outcome (17, 18). 

Furthermore, applied researchers may not be aware that the different causal estimation 

approaches provide different effect estimates when the outcome is binary. To stimulate 

the correct application of causal mediation methods, tutorial papers are needed that 

clarify causal effect estimation for mediation models commonly encountered in practice. 

 

This paper demonstrates that four commonly-used causal estimation approaches 

provide different effect estimates with different interpretations for mediation models 

with binary mediators. First, we provide a brief introduction into causal mediation analysis 

and review the different estimation approaches and the role of the causal contrast in 

each approach. Then, using a Monte Carlo simulation study, we investigate the 

performance of the regression-, simulation-, imputation- and weighting-based 

approaches. Subsequently, using an empirical data example, we illustrate the 
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consequences of the used estimation approach and the selected causal contrast for the 

interpretation of the results. Finally, we discuss the interpretation of the effects for the 

different approaches and the practical implications of this paper.  

 

Causal mediation analysis 

In this section, we provide a brief introduction into causal mediation analysis, including 

the regression-, simulation-, imputation- and weighting-based estimation approaches. 

Throughout this section we use the running example of hypercholesterolemia as a binary 

mediator of the effect of BMI on blood pressure. 

 

Causal mediation analysis uses a general notation for the potential outcomes: 𝑋 denotes 

the exposure, and 𝑌 denotes the outcome (5, 6). The exposure levels of interest, i.e., the 

causal contrast, are represented by 𝑥 and 𝑥∗. Based on these exposure levels, two 

potential outcomes could be observed: 𝑌(𝑥) corresponding to exposure level 𝑥 and  

𝑌(𝑥∗) corresponding to exposure level 𝑥∗ (5, 6). Thus, 𝑌(𝑥) represents the potential 

outcome for BMI value 𝑥, whereas 𝑌(𝑥∗) represent the potential outcome for BMI value 

𝑥∗. Additionally, we could observe two potential mediator values under the exposure 

levels of interest: 𝑀(𝑥) under exposure level 𝑥 and 𝑀(𝑥∗) under exposure level 𝑥∗ (8). 

Thus, 𝑀(𝑥) represents the risk of hypercholesterolemia under BMI value 𝑥, whereas 

𝑀(𝑥∗) represents the risk of hypercholesterolemia under BMI value 𝑥∗. In a mediation 

model the potential outcome is a function of both the exposure and the mediator value. 

Based on the combination of exposure values 𝑥 and 𝑥∗ and potential mediator values 

𝑀(𝑥) and 𝑀(𝑥∗), four nested potential outcomes can be defined: 𝑌(𝑥, 𝑀(𝑥)), 𝑌(𝑥, 𝑀(𝑥∗)), 

𝑌(𝑥∗, 𝑀(𝑥)) and 𝑌(𝑥∗, 𝑀(𝑥∗)) (8, 19).  

 

Based on the four nested potential outcomes, the natural direct effect (NDE), natural 

indirect effect (NIE) and total effect (TE) can be defined (8, 20). For the NDE, the mediator 

value is held constant at 𝑀(𝑥) while the exposure levels are changed from 𝑥 to 𝑥∗, i.e., 

𝑌(𝑥, 𝑀(𝑥)) − 𝑌(𝑥∗, 𝑀(𝑥)). Thus, we change BMI from 𝑥 to 𝑥∗, while we hold every person’s 

risk of hypercholesterolemia constant at the value that would have been observed had 

they had BMI value 𝑥. For the NIE, the mediator value is changed from 𝑀(𝑥) to 𝑀(𝑥∗) 

while the exposure is held constant at level 𝑥∗, i.e.  𝑌(𝑥∗, 𝑀(𝑥)) − 𝑌(𝑥∗, 𝑀(𝑥∗)). Thus, we 

hold BMI constant at level 𝑥∗ while we change the person’s risk of hypercholesterolemia 

under BMI value 𝑥 to the person’s risk of hypercholesterolemia under BMI value 𝑥∗. The 

total effect (TE) is defined as the effect of changing the exposure level from 𝑥 to 𝑥∗ and 

the mediator value from 𝑀(𝑥) to 𝑀(𝑥∗), i.e., 𝑌(𝑥, 𝑀(𝑥)) − 𝑌(𝑥∗, 𝑀(𝑥∗)). Thus, we change 
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BMI from 𝑥 to 𝑥∗ and the person’s risk of hypercholesterolemia under BMI value 𝑥 to the 

person’s risk of hypercholesterolemia under BMI value 𝑥∗. 

 

As mentioned before, causal mediation effects are estimated on the population-average 

level. The notation of these population-average causal effects is slightly different. For 

example, the population-average NIE is defined as 𝐸[𝑌(𝑥∗, 𝑀(𝑥)) − 𝑌(𝑥∗, 𝑀(𝑥∗))] (8). 

 

For the NDE, NIE and TE to have a causal interpretation, it is necessary to control for any 

confounding variables. There are four no confounding assumptions that must be met 

(21): 

1. No unmeasured confounding of the exposure-outcome relation. 

2. No unmeasured confounding of the mediator-outcome relation. 

3. No unmeasured confounding of the exposure-mediator relation. 

4. No mediator-outcome confounders that are affected by the exposure. 

 

Failing to adjust for confounding variables might result in bias, which means that the 

effects will not have a causal interpretation (21). Because these assumptions cannot be 

tested statistically, directed acyclic graphs (DAGs) may be used to determine the set of 

confounders that needs to be adjusted for (19). 

 

Regression 

The regression-based approach relies on two regression equations: a logistic regression 

model that relates the exposure to the mediator (equation 1), and a linear regression 

model that relates the exposure and the mediator to the outcome (equation 2): 

 

 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑀 = 1|𝑋)) =  𝑖1 + 𝑎𝑋 (1) 

 

𝐸[𝑌|𝑋, 𝑀] =  𝑖2 + 𝑐′𝑋 + 𝑏𝑀 (2) 

 

where 𝑖1 and 𝑖2 represent the intercepts. The 𝑎 coefficient in equation 1 represents the 

exposure-mediator effect, whereas the 𝑏 coefficient in equation 2 represents the 

mediator-outcome effect adjusted for the exposure. The 𝑐′ coefficient in equation 2 

represents the exposure-outcome effect adjusted for the mediator.  

 

For the regression-based approach, the regression coefficients from equation 1 and 2 

are used to estimate the NDE, NIE and TE. The NDE, NIE and TE can be calculated using 

the equations below (21, 22):  
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𝑁𝐷𝐸 = 𝑐′ ∗ (𝑥 − 𝑥∗) (3) 

 

𝑁𝐼𝐸 = 𝑏 ∗ {
exp(𝑖1 + 𝑎 ∗ 𝑥)

1 + exp(𝑖1 + 𝑎 ∗ 𝑥)
−

exp(𝑖1 + 𝑎 ∗ 𝑥∗)

1 + exp(𝑖1 + 𝑎 ∗ 𝑥∗)
} (4) 

 

𝑇𝐸 =  𝑏 ∗ {
exp(𝑖1 + 𝑎 ∗ 𝑥)

1 + exp(𝑖1 + 𝑎 ∗ 𝑥)
−

exp(𝑖1 + 𝑎 ∗ 𝑥∗)

1 + exp(𝑖1 + 𝑎 ∗ 𝑥∗)
} + 𝑐′ (5) 

 

For the NDE,  the exposure-outcome effect adjusted for the mediator (𝑐′) is multiplied by 

the causal contrast. This means that if the difference between 𝑥 and 𝑥∗ equals 1, then the 

NDE simplifies to 𝑐′  (22). For the NIE, the term in between the accolades represents the 

difference in the risk of obtaining the mediator when changing from exposure level 𝑥 to 

𝑥∗ (22). Thus, the risk difference depends on the exposure values chosen for 𝑥 and 𝑥∗, 

i.e., on the selected causal contrast. Figure 1, based on the empirical data example, 

illustrates how the risk of hypercholesterolemia may depend on BMI values, and thus 

how the risk difference will depend on the chosen causal contrast. For example, the risk 

difference is 0.0348 for BMI values of 20 and 21, and 0.0484 for BMI values of 25 and 26. 

Since the NIE is estimated as the product of the risk difference based on the causal 

contrast for BMI and the 𝑏 coefficient, the NIE will differ in magnitude across the chosen 

BMI values too. As can be seen from equation 3, the NDE is not dependent on 𝑥 and 𝑥∗ 

and therefore has the same magnitude across different causal contrasts. Since the TE is 

the sum of the NIE and the NDE, the TE also differs in magnitude across causal contrasts. 

 

Simulation 

The simulation-based approach consists of three steps. First, a large number of bootstrap 

samples are created. Next, for each bootstrap sample, the following steps are repeated:  

 

 

 
Figure 1 Risk of hypercholesterolemia for different BMI values 
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equations 1 and 2 are estimated, predicted values are calculated for 𝑀(𝑥) and 𝑀(𝑥∗) and 

each of the four potential outcomes for each observation, and subsequently the causal 

mediation effects (i.e., the NDE, NIE and TE) are calculated for each observation. Third, 

the average NDE, NIE and TE are estimated (9). Because the predicted values for the 

mediator depend on the values chosen for 𝑥 and 𝑥∗, the NIE and TE depend on the 

selected causal contrast. In this respect, the regression- and simulation-based 

approaches correspond to each other.  

 

In our running example, the risk of hypercholesterolemia for each individual is predicted 

twice: once based on BMI value 𝑥 and once based on BMI value 𝑥∗. As shown in Figure 1, 

the magnitude of these risks depends on the values chosen for 𝑥 and 𝑥∗. Next, the nested 

potential outcomes are simulated based on BMI values 𝑥 and 𝑥∗ and the potential 

mediator values. This way, the chosen causal contrast affects the size of the potential 

outcomes and thus the size of the NIE and TE estimates. As a result, the effects only apply 

to the two values selected for the causal contrast. The NDE is estimated as the difference 

between 𝑌(𝑥, 𝑀(𝑥)) and 𝑌(𝑥∗, 𝑀(𝑥)), for which the mediator is held constant at the value 

𝑀(𝑥) in the potential outcomes. Therefore, the causal contrast does not affect the 

magnitude of the NDE.  

 

Imputation 

The imputation-based approach uses a natural effect model to estimate the direct and 

indirect effects. Natural effect models were proposed by Lange et al. (23) and 

Vansteelandt et al. (24), and allow for the natural direct and indirect effect to be modelled 

simultaneously. A natural effect model has the form 

 

𝐸[𝑌(𝑥, 𝑀(𝑥∗))] = 𝑖3 + 𝛽1𝑥 + 𝛽2𝑥∗ (6) 

 

where 𝛽1 represents the natural direct effect and 𝛽2 represents the natural indirect effect, 

both corresponding to a one-unit increase in the exposure.  

 

Because for each individual only one exposure value is observed (we denote this value 

as 𝑥∗), the data has to be expanded to include the unobserved exposure value (we denote 

this value as 𝑥). In our data example, if we treat BMI as a binary variable, this is easy: for 

overweight individuals 𝑥∗ equals 1 (overweight) whereas 𝑥 equals 0 (healthy weight). For 

individuals with a healthy weight, 𝑥∗ equals 0 and 𝑥 equals 1. However, if we treat weight 

as a continuous variable, 𝑥∗ represents the observed BMI value but there is no clear value 
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for 𝑥. The value for 𝑥 is then determined based on a set of random draws from the 

distribution of BMI values for each individuals (23, 25). In the imputation-based approach, 

the unobserved potential outcomes are treated as missing values, i.e., after the data is 

expanded the unobserved potential outcomes are imputed using the outcome model 

(equation 2) (25).  

 

Finally, estimates of the natural direct and indirect effect can be obtained upon fitting a 

natural effect model (equation 6) to the imputed dataset. Because the potential 

outcomes are imputed directly based on equation 2, the potential outcomes are not 

dependent on the risk of the mediator under specific exposure values. Therefore, the 

indirect and total effect estimates based on the imputation-based approach are not 

dependent on the chosen causal contrast. That is, the size of the indirect and total effect 

estimates are the same for each one unit increase in the exposure. Thus, the imputation-

based approach provides one overall indirect effect estimate and one overall total effect 

estimate that applies to every one unit increase in the exposure. 

 

Weighting 

The weighting-based approach generally follows the same steps as the imputation-based 

approach. However, instead of imputing the unobserved potential outcome values, the 

weighting-based approach weighs the observations in the expanded dataset. The weight 

is calculated as the probability to observe that particular value of the mediator for 

unobserved exposure value 𝑥 divided by the probability to observe that particular value 

of the mediator for the observed exposure value 𝑥∗ (equation 7) (3). The probabilities are 

predicted based on equation 1 (23). 

 

For an overweight individual that suffers from hypercholesterolemia, weight 𝑤 would be 

calculated as the probability of hypercholesterolemia if that individual had had a healthy 

weight divided by the probability of hypercholesterolemia for the actual weight status of 

that individual. This way, individuals whose observed mediator value is more typical for 

the unobserved exposure value 𝑥 are up-weighted, whereas individuals whose observed 

mediator value is less typical for the unobserved exposure value 𝑥 are down-weighted 

(25). 

 

𝑤 =  
Pr(𝑀 = 1|𝑋 = 𝑥)

Pr(𝑀 = 1|𝑋 = 𝑥∗)
 (7) 
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Finally, the natural effects model is estimated by regressing the outcome on the exposure 

values 𝑥 and 𝑥∗, weighting each observation based on the created weights. 

 

Although the weighting-based approach does estimate the mediation model, in contrast 

to the regression- and simulation-based approaches it is not used to estimate mediator 

values. Instead, it is used to construct the weights that indicate the probability that the 

observed mediator value is observed under the unobserved and observed exposure 

levels. Therefore, the potential outcomes are not dependent on the risk of the mediator 

under specific exposure values. This means that the causal contrast does not influence 

the magnitude of the effect estimates in the weighting-based approach, and the effect 

estimates represent overall effects.  

 

Simulation study 

Although in theory the regression- and simulation-based approaches aim to estimate the 

same indirect and total effect estimates, in practice researchers may observe differences 

in the effect estimates from these two methods. The same holds for the imputation- and 

weighting-based approaches. A Monte Carlo simulation study was designed to investigate 

the performance of the regression-, simulation-, imputation- and weighting-based 

approaches. 

 

Simulation methods 

The R programming language version 4.1.0 (26) was used to generate and analyze the 

data. To estimate the mediation effects, R packages regmedint, mediation and medflex 

were used (25, 27, 28). The continuous exposure and binary mediator were generated 

from a standard normal distribution and a binomial distribution conditional on the 

exposure, respectively. The continuous outcome was a function of the exposure and the 

mediator. Sample sizes were 200, 500, 1000 and 1500. Medium effect sizes were 

generated for all pathways in the mediation model: the exposure-mediator effect was set 

to 0.92, and the mediator-outcome effect and the exposure-outcome effect were set to 

0.39 (29). Subsequently, we estimated the indirect, direct and total effect based on the 

simulated data using the regression-, simulation-, imputation- and weighting-based 

approaches. For the regression- and simulation-based approaches, the effects were 

estimated using three causal contrasts: 𝑥∗ = 0 & 𝑥 = 1, 𝑥∗ = 1 & 𝑥 = 2 and 

𝑥∗ = 2 & 𝑥 = 3. 
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The performance of each approach was compared based on the relative bias (RB) and 

mean squared error (MSE). RB was calculated by subtracting the true value from the 

estimated indirect, direct and total effect estimates, and then dividing this by the 

respective true value (30, 31). A value of less than 0.1 across replications is generally 

considered acceptable (32). MSE was calculated as the average squared difference 

between the effect estimates and the true values (30, 31). We treated the empirical true 

values based on a sample size of 500,000 as the true values. For all performance 

measures, a lower score corresponds to a better performance. The simulation code and 

the empirical true values are available in Appendix A and Appendix B, respectively. 

 

Simulation results 

Figure 2 shows the relative bias (panel A) and mean squared error (panel B) of the indirect 

effect estimated with the regression- and simulation-based approaches for the causal 

contrast 𝑥∗ = 0 & 𝑥 = 1. Both in terms of RB and MSE, the regression-based approach 

performed slightly better than the simulation-based approach. Furthermore, as sample 

size increased, the RB approached 0.1, indicating an acceptable level of RB for both 

approaches. These patterns were also observed for the other causal contrasts and for 

the total effect estimates. The estimates of the direct effect were the same for the 

regression- and simulation-based approaches across all sample sizes, resulting in 

identical RB and MSE for these two approaches. As with the indirect effect, bias of the 

direct effect decreased as sample size increased. Figures of RB and MSE of the indirect, 

direct and total effects for all causal contrasts are available in Appendix C. 

 

The mean estimated indirect, direct and total effects from the regression- and simulation-

based approaches based on a sample size of 1,000 are available in Appendix D. For both  

 

 

Figure 2 Relative bias (panel A) and mean squared error (panel B) of the indirect effect estimated with the 

regression- and simulation-based approaches for the causal contrast 𝑥∗ = 0 & 𝑥 = 1 
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approaches, the indirect effect and total effect estimates depended on the chosen causal 

contrast, and the estimates only apply to the difference between the two exposure values 

selected for the causal contrast. For the regression-based approach, the indirect effect 

estimate for a causal contrast of 𝑥∗ = 0 & 𝑥 = 1 was 0.08377, whereas the indirect effect 

estimate for a causal contrast of 𝑥∗ = 2 & 𝑥 = 3 was 0.03014. For the simulation-based 

approach, the indirect effect estimate for a causal contrast of of 𝑥∗ = 0 & 𝑥 = 1 was 

0.08355, whereas the indirect effect estimate for a causal contrast of 𝑥∗ = 2 & 𝑥 = 3 was 

0.03033. The direct effects were the same across the chosen causal contrasts. Similar 

patterns were observed for sample sizes 200, 500 and 1500. This shows the impact of 

the chosen causal contrast on the effect estimates in causal mediation analysis with a 

binary mediator for the regression- and simulation-based approaches. 

 

Figure 3 shows the relative bias (panel A) and mean squared error (panel B) of the indirect 

effect estimated with the imputation- and weighting-based approaches. Here too, RB and 

MSE followed identical patterns: for both approaches, RB and MSE decreased as sample 

size increased, and RB approaches 0.1. For each sample size, the estimate of the direct 

effect estimated with the imputation-based approach was identical to that of the 

regression- and simulation-based approaches. The RB and MSE of the direct effect 

estimated with the weighting-based approach were greater than those estimated with 

the other approaches. As sample size increased, bias in the direct effect estimates 

decreased. Figures of RB and MSE of the direct and total effect are available in Appendix 

E. 

 

Thus, the effect estimates based on all estimation approaches were affected by finite 

sample bias: if sample size increased, bias decreased. In addition, the differences  

 

 

 

 

Figure 3 Relative bias (panel A) and mean squared error (panel B) of the indirect effect estimated with the 

imputation- and weighting-based approaches  
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between the regression- and simulation-based approach, and between the imputation- 

and weighting-based approach in terms of RB and MSE decreased when sample size 

increased. 

 

Empirical data example 

We use two empirical data examples from the Amsterdam Growth and Health 

Longitudinal Study (AGHLS) to illustrate the impact of the different estimation 

approaches and the causal contrast on the interpretation of the effect estimates for 

models with a binary mediator. The AGHLS is an ongoing cohort study that assesses the 

relations between the development of anthropometry, lifestyle and health from 

adolescence into adulthood (33). We used data collected in 2000, when the participants 

were in their late 30s. Only subjects with complete data on all variables in the mediation 

model were considered in the analysis (n = 378). 

 

In both examples, we looked at BMI as the exposure, diastolic blood pressure as the 

continuous outcome and hypercholesterolemia as the binary mediator. The cut-off for 

hypercholesterolemia was based on guidelines from the U.S. National Institutes of Health 

(34). In example 1, we treated BMI as a binary variable, with a BMI ≥ 25 indicating 

overweight. In example 2, we treated BMI as a continuous exposure. In both examples, 

we estimated the indirect, direct and total effects using the regression-, simulation-, 

imputation- and weighting-based approaches. 

 

In example 1, there are only two exposure values of substantive interest: 0, which denotes 

the subjects with healthy weight, and 1, which denotes the subjects with overweight. 

Therefore, the only causal contrast that we used for the estimation of the causal 

mediation effects using the regression-based and simulation-based approaches was 𝑥∗ =

0 and 𝑥 = 1. Table 1 shows the effect estimates with corresponding 95% percentile 

bootstrap confidence intervals for both examples. For example 1, the effect estimates 

from the regression- and imputation-based approaches were the same, and can be 

interpreted as: people who are overweight on average have a 0.926 mmHg higher 

diastolic blood pressure than people who are not overweight through an increase in the 

risk of hypercholesterolemia. The indirect effect estimates from the simulation- and 

weighting-based approaches were slightly larger and smaller, respectively, but have the 

same general interpretation as the indirect effect estimates based on the regression- and 

imputation-based approaches. 
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Table 1 Causal effect estimates for the association between BMI and diastolic blood pressure, mediated by 

hypercholesterolemia 

 Indirect effect (95% CI) Direct effect (95% CI) Total effect (95% CI) 

Binary exposure    

Regression 0.926 (0.311; 1.727) 4.114 (1.889; 6.201) 5.040 (2.855; 7.152) 

Simulation 0.995 (0.273; 1.770) 4.114 (1.928; 6.190) 5.109 (2.889; 7.130) 

Imputation 0.926 (0.273; 1.617) 4.114 (2.061; 6.251) 5.040 (3.010; 7.192) 

Weighting 0.893 (0.278; 1.549) 4.239 (2.245; 6.312) 5.132 (3.143; 7.241) 

    

Continuous exposure    

Regression    

          𝑥∗ = 0 & 𝑥 = 1 0.003 (0.000; 0.013) 1.152 (0.811; 1.456) 1.155 (0.816; 1.458) 

           𝑥∗ = 20 & 𝑥 = 21 0.092 (0.017; 0.173) 1.152 (0.811; 1.456) 1.244 (0.913; 1.548) 

           𝑥∗ = 25 & 𝑥 = 26 0.128 (0.024; 0.259) 1.152 (0.811; 1.456) 1.280 (0.942; 1.607) 

Simulation    

           𝑥∗ = 0 & 𝑥 = 1 0.014 (-0.032; 0.050) 1.152 (0.815; 1.450) 1.166 (0.821; 1.470) 

           𝑥∗ = 20 & 𝑥 = 21 0.077 (-0.069; 0.320) 1.152 (0.815; 1.450) 1.229 (0.895; 1.590) 

           𝑥∗ = 25 & 𝑥 = 26 0.112 (-0.063; 0.420) 1.152 (0.815; 1.450) 1.264 (0.911; 1.680) 

Imputation 0.115 (0.015; 0.219) 1.152 (0.844; 1.474) 1.267 (0.962; 1.591) 

Weighting 0.119 (0.018; 0.223) 1.092 (0.788; 1.394) 1.210 (0.907; 1.516) 

Abbreviations: CI: confidence interval 

 

 

In example 2, we treated BMI as a continuous variable. Since the continuous BMI variable 

can take on various values, multiple causal contrasts can be defined for the regression- 

and simulation-based approaches. In our example, we estimated the causal mediation 

effects based on three different causal contrasts. First, we estimated the effects based 

on 𝑥∗ = 0 and 𝑥 = 1, corresponding to BMI values of 0 and 1, respectively. However, note 

that BMI values of 0 and 1 are clinically impossible. We included this contrast to 

demonstrate what might happen when researchers fail to specify a meaningful causal 

contrast in available causal mediation software programs, as 0 and 1 are default values 

in most programs (22, 28, 35). In addition, we estimated the effects based on two clinically 

relevant causal contrasts: 𝑥∗ = 20 and 𝑥 = 21, and 𝑥∗ = 25 and 𝑥 = 26. The effect 

estimates are estimated under both causal contrasts to demonstrate that the magnitude 

of the effect estimates differs across the chosen causal contrast. 

 

In example 2, the indirect and total effects estimated with the regression- and simulation-

based approaches were dependent on the chosen causal contrast. For example, the 

indirect effect estimated by the regression-based approach for the causal contrast of 
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𝑥∗ = 20 and 𝑥 = 21 was 0.092, indicating that people with a BMI of 21 on average have a 

0.092 mmHg higher diastolic blood pressure compared to people with a BMI of 20 

through an increase in the risk of hypercholesterolemia. In comparison, the indirect effect 

estimated for the causal contrast of 𝑥∗ = 25 and 𝑥 = 26 was 0.128, indicating that people 

with a BMI of 26 on average have a 0.128 mmHg higher diastolic blood pressure 

compared to people with a BMI of 25 through an increased risk of hypercholesterolemia. 

Because the total effect is equal to the sum of the indirect and direct effect, the total 

effect estimates from the regression- and simulation-based approaches also differed in 

magnitude across the different causal contrasts. The indirect effect estimates based on 

the clinically implausible causal contrast of 𝑥∗ = 0 and 𝑥 = 1 was 0.003. In contrast with 

the indirect effect based on the clinically meaningful causal contrasts, this indirect effect 

estimate indicates that hypercholesterolemia is not a mediator of the relation between 

overweight and diastolic blood pressure. The indirect and total effect estimates based on 

the imputation- and weighting-based approaches did not depend on a specific causal 

contrast. Therefore these indirect effect estimates can be interpreted as the overall 

difference in diastolic blood pressure in mmHg for every one unit increase in BMI through 

an increased risk of hypercholesterolemia. 

 

Discussion 

This paper demonstrated that four commonly-used causal estimation approaches 

provide different effect estimates with different interpretations for mediation models 

with binary mediators. We focused on four approaches: regression, simulation, 

imputation and weighting. The regression- and simulation-based approaches require the 

selection of a causal contrast, whereas this is not required for the imputation- and 

weighting-based approaches. In our empirical data example we used two scenarios: a 

scenario in which the exposure and the mediator were both binary (example 1), and a 

scenario in which the exposure was continuous and the mediator was binary (example 

2).  

 

If the exposure is binary, then only two exposure values are of interest (i.e., 0 and 1). As 

a result, the regression- and simulation-based approaches provide the same effect 

estimates as the imputation- and weighting-based approaches. The indirect effect 

estimates across the four approaches can all be interpreted the same way, namely as the 

average difference in the outcome between the exposed and the unexposed individuals 

through an increase or decrease in the risk of the mediator. Thus, if both the exposure 

and mediator are binary, then researchers can choose between all four approaches. 
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If the exposure is continuous, then the magnitude of the effect estimates from the 

regression- and simulation-based approaches depend on the chosen causal contrast. 

For the imputation- and weighting-based approaches, no causal contrast has to be 

selected (25). These differences are also reflected in the interpretation of the results: the 

indirect effects from the regression- and simulation-based approaches only apply to the 

two values selected for the causal contrast, whereas the imputation- and weighting-

based approaches return overall differences in the outcome for every one unit difference 

in the exposure through the mediator. Our empirical data example showed that the 

indirect effects estimated by the regression- and simulation-based approaches increased 

as the values selected for the causal contrast increased, and thus that the causal contrast 

should be based on substantive knowledge. Throughout this paper, we focused on a 

causal contrast that equals one, i.e., a one-unit difference between 𝑥 and 𝑥∗. However, in 

practice, sometimes a larger causal contrast may be more interesting to investigate. In all 

approaches, 𝑥 and 𝑥∗ can be set to specific exposure values so that the causal contrast 

is larger than one. The difference in the interpretation of the indirect and total effect 

estimates between the regression- and simulation-based approaches and the 

imputation- and weighting-based approaches remains in this situation. Moreover, the 

models considered in this paper are relatively simple, i.e., they do not contain exposure-

mediator interactions. However, these can be added easily in most software programs 

commonly used by epidemiologists and do not change findings. To our knowledge, this 

is the first study that studied patterns of finite sample bias for four commonly used 

estimation approaches for mediation models with a binary mediator and a continuous 

outcome. A previous simulation study reported that the imputation-based approach 

generally provides more precise estimates than the weighting-based approach (24). This 

is in line with the general finding that weighting-based methods, such as inverse 

probability weighting, are affected by finite sample bias, as the performance of these 

methods can be affected by extreme weights (36, 37). Our simulation study showed that 

all approaches were affected by finite sample bias to some extent, meaning that bias 

decreases if sample size increases. We also showed that the differences between the 

regression- and simulation-based approach, and between the imputation- and weighting-

based approach decrease when sample size increases. 

 

Traditional mediation analysis 

Although causal mediation analysis clarifies causal effect estimation for mediation 

models, traditional mediation analysis is still most often used (11, 12). In traditional 

mediation analysis, the mediation effects are defined and estimated based on the effects 
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from three equations: the 𝑎 coefficient from equation 1, the 𝑏 and 𝑐′ coefficients from 

equation 2, and the total exposure-outcome effect estimated based on a model that 

relates the exposure to the outcome (typically referred to as the 𝑐 coefficient) (2). The 

direct effect is defined and estimated as the 𝑐′ coefficient from equation 2. The indirect 

effect is defined and estimated using the product-of-coefficients method (i.e., 𝑎 ∗ 𝑏) or 

the difference-in-coefficients method (i.e., 𝑐 − 𝑐′). 

 

If the outcome and mediator are continuous, then the product-of-coefficients and 

difference-in-coefficients methods provide the same indirect effect estimates and equal 

the natural indirect effect (15, 16). However, this is not necessarily the case if the mediator 

is a binary variable. If the mediator is binary and equation 2 is estimated based on logistic 

regression, then the exposure-mediator effect is estimated on the log-odds scale and 

ranges from negative infinity to positive infinity. For the mediator-outcome effect, the 

mediator is dichotomous and ranges from 0 to 1. Multiplying these effects results in a 

mismatch of the scale on which the indirect effect is estimated (18, 38). Therefore, if the 

mediator is a binary variable and equation 2 is estimated with logistic regression, then 

the product-of-coefficients method should not be used to estimate the indirect effect. 

This mismatch in scales does not occur with the difference-in-coefficients method, as 

both the 𝑐 and 𝑐′ coefficients are estimated using a linear regression model. Therefore, 

the traditional difference-in-coefficients method provides indirect effect estimates similar 

to the imputation- and weighting-based approaches for mediation model with a binary 

mediator and a continuous outcome. Thus, for these models, the causal imputation- and 

weighting-based approaches as well as the traditional difference-in-coefficients method 

can be used to estimate the indirect effect. 

 

If both the mediator and the outcome are binary, neither the product-of-coefficients 

method nor the difference-in-coefficients method provide estimates of the causal 

indirect effect (39). The indirect effect estimates based on the difference-in-coefficients 

method will be biased by noncollapsibility when the outcome is binary (40). This 

noncollapsibility effect stems from a change in scales that occurs in logistic regression 

when variables are added to the model (41). As a result, the difference between a 

univariable- (the 𝑐 coefficient) and multivariable (the 𝑐′ coefficient) exposure effect 

estimate not only represent the difference in coefficients but also a noncollapsibility 

effect. Therefore, for models with a binary mediator and a binary outcome, the causal 

estimation methods are preferred over traditional mediation analysis. 
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Recommendations for practice 

Because the different causal estimation approaches return causal effect estimates with 

different interpretations if the exposure is continuous and the mediator is binary, 

researchers should inform their choice for an estimation approach based on whether 

they are interested in overall effects or in effects that correspond to specific causal 

contrasts. The imputation- and weighting-based approaches can be used to estimate 

overall causal mediation effects (25). In our running example, these approaches can be 

used to answer the question ‘how does lowering the BMI of all individuals in a population 

by one point affect blood pressure overall?’. The regression- and simulation-based 

approaches can be used to estimate causal mediation effects that correspond to a 

specific causal contrast (28). In our running example, these approaches can be used to 

answer the question ‘how does lowering the BMI of all individuals with a certain BMI, e.g., 

25, by one point affect blood pressure on average?’. In practice, there are not many 

situations in which researchers are interested in a specific causal contrast, so often 

researchers will be forced to make arbitrary decisions on the causal contrast (25, 42). In 

most situations, the imputation- and weighting-based approaches will be more suited, as 

these provide mediation effect estimates with interpretations that align with the effects 

of interest in most studies. Furthermore, since the traditional difference-in-coefficients 

method provides the same indirect effect estimates as the imputation- and weighting-

based approaches for mediation models with a binary mediator and a continuous 

outcome, it is also possible to estimate the average indirect effect using the traditional 

difference-in-coefficients method. Nevertheless, if one is interested in estimating effects 

that correspond to a specific causal contrast, then it is important to be aware that the 

default causal contrast in most software programs is 𝑥∗ = 0 and 𝑥 = 1. Failing to select 

the right causal contrast may lead to wrong conclusions regarding the presence of a 

mediated effect. If the exposure is binary, then the effect estimates from all approaches 

can be interpreted as the average difference in the outcome between the two compared 

groups. 

 

Causal mediation analysis is implemented in most software programs commonly used by 

epidemiologists (i.e., SPSS, R, Stata, Mplus and SAS). A detailed overview of the 

implementation of the different estimation methods in these software programs 

(including software code) is provided elsewhere (3). 
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Conclusion 

For mediation models with a binary mediator, causal estimation approaches provide 

different effect estimates with different interpretations. The regression- and simulation-

based approaches require the selection of a causal contrast and result in effects that 

correspond to those specific exposure values, whereas the imputation- and weighting-

based approaches result in overall causal mediation effects. For mediation models with 

a binary mediator and a continuous outcome, the traditional difference-in-coefficients 

method provides the same indirect effect estimate as the imputation- and weighting-

based approaches. It is recommended that researchers inform their choice for an 

estimation method based on the type of effect that they are interested in. 
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Appendix A  Simulation code 

 

Functions 

library(regmedint) 
library(mediation) 
library(medflex) 
 
generate_data <- function(reps, n, im, iy, xm, my, xy){ 
  ID <- seq(1:n) 
  obs <- n * reps 
  X <- rnorm(n = obs, mean = 0, sd = 1) 
  lpm <- im + xm * X 
  prm <- 1/(1 + exp(-lpm)) 
  M <- rbinom(n = obs, size = 1, prob = prm) 
  Y <- iy + xy * X + my * M + rnorm(n = obs) 
 
  return(list("ID" = rep(ID, reps), 
              "n" = rep(n, obs), 
              "repnr" = rep(seq(1:reps), each = n), 
              "im" = rep(im, obs), 
              "iy" = rep(iy, obs), 
              "xm" = rep(xm, obs), 
              "my" = rep(my, obs), 
              "xy" = rep(xy, obs), 
              "X" = X, 
              "M" = M, 
              "Y" = Y)) 
} 
 
store_effects <- function(rows){ 
  df <- as.data.frame(matrix(NA, nrow = rows, ncol = 11)) 
  colnames(df) <- c("n",  
                    "repnr", 
                    "xm", 
                    "my", 
                    "xy", 
                    "approach", 
                    "x0", 
                    "x1", 
                    "indirect", 
                    "direct", 
                    "total") 
   
  return(df) 
} 
 
regression_based <- function(df, x0, x1){ 
  effects <- regmedint(data = df, 
                       yvar = "Y", 
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                       avar = "X", 
                       mvar = "M", 
                       cvar = NULL, 
                       a0 = x0, 
                       a1 = x1, 
                       m_cde = 0, 
                       c_cond = NULL, 
                       mreg = "logistic", 
                       yreg = "linear", 
                       interaction = FALSE) 
   
  indirect <- coef(summary(effects))[3] 
  direct <- coef(summary(effects))[1] 
  total <- coef(summary(effects))[6] 
   
  return(list("n" = unique(df$n),  
              "repnr" = unique(df$repnr), 
              "xm" = unique(df$xm),  
              "my" = unique(df$my),  
              "xy" = unique(df$xy),  
              "approach" = "regression", 
              "x0" = x0,  
              "x1" = x1,  
              "indirect" = indirect,  
              "direct" = direct,  
              "total" = total)) 
} 
 
simulation_based <- function(df, x0, x1){ 
  mediator_model <- glm(M ~ X, family = binomial, data = df) 
  outcome_model <- glm(Y ~ X + M, data = df) 
  effects <- mediate(mediator_model, outcome_model, 
                     sims = 1000, 
                     boot = TRUE, 
                     treat = "X", 
                     mediator = "M", 
                     boot.ci.type = "perc", 
                     treat.value = x1, 
                     control.value = x0) 
  indirect <- summary(effects)$d.avg 
  direct <- summary(effects)$z.avg 
  total <- summary(effects)$tau.coef 
 
  return(list("n" = unique(df$n),  
              "repnr" = unique(df$repnr), 
              "xm" = unique(df$xm),  
              "my" = unique(df$my),  
              "xy" = unique(df$xy),  
              "approach" = "simulation", 
              "x0" = x0,  
              "x1" = x1,  
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              "indirect" = indirect,  
              "direct" = direct,  
              "total" = total)) 
} 
 
imputation_based <- function(df){ 
  outcome_model <- glm(Y ~ X + M, data = df) 
  expData <- neImpute(outcome_model) 
  model <- neModel(Y ~ X0 + X1, expData = expData) 
  effects <- neEffdecomp(model) 
  indirect <- coef(summary(effects))[2] 
  direct <- coef(summary(effects))[1] 
  total <- coef(summary(effects))[3] 
 
  return(list("n" = unique(df$n),  
              "repnr" = unique(df$repnr), 
              "xm" = unique(df$xm),  
              "my" = unique(df$my),  
              "xy" = unique(df$xy),  
              "approach" = "imputation", 
              "x0" = 0, # causal contrast is 0 and 1 by default 
              "x1" = 1,  
              "indirect" = indirect,  
              "direct" = direct,  
              "total" = total)) 
} 
 
weighting_based <- function(df){ 
  mediator_model <- glm(M ~ X, family = binomial, data = df) 
  expData <- neWeight(mediator_model) 
  model <- neModel(Y ~ X0 + X1, expData = expData) 
  effects <- neEffdecomp(model) 
  indirect <- coef(summary(effects))[2] 
  direct <- coef(summary(effects))[1] 
  total <- coef(summary(effects))[3] 
   
  return(list("n" = unique(df$n),  
              "repnr" = unique(df$repnr), 
              "xm" = unique(df$xm),  
              "my" = unique(df$my),  
              "xy" = unique(df$xy),  
              "approach" = "weighting", 
              "x0" = 0, # causal contrast is 0 and 1 by default 
              "x1" = 1,  
              "indirect" = indirect,  
              "direct" = direct,  
              "total" = total)) 
} 
 
store_performance <- function(rows){ 
  df <- as.data.frame(matrix(NA, nrow = rows, ncol = 16)) 
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  colnames(df) <- c("n", 
                    "xm", 
                    "my", 
                    "xy", 
                    "approach", 
                    "x0", 
                    "x1", 
                    "indirect_AB", 
                    "indirect_RB", 
                    "indirect_MSE", 
                    "direct_AB", 
                    "direct_RB", 
                    "direct_MSE", 
                    "total_AB", 
                    "total_RB", 
                    "total_MSE") 
   
  return(df) 
} 
 
performance_measures <- function(df){ 
  AB <- function(estimate, true){ 
    return(abs(estimate - true)) 
  } 
  RB <- function(estimate, true){ 
    return(abs(estimate - true)/true) 
  } 
  MSE <- function(estimate, true){ 
    return((estimate - true)^2) 
  } 
   
  return(list("n" = unique(df$n), 
              "xm" = unique(df$xm),  
              "my" = unique(df$my),  
              "xy" = unique(df$xy), 
              "approach" = unique(df$approach), 
              "x0" = unique(df$x0), 
              "x1" = unique(df$x1), 
              "indirect_AB" = mean(AB(df$indirect,           
               empirical_true$indirect)), 
              "indirect_RB" = mean(RB(df$indirect,  
               empirical_true$indirect)), 
              "indirect_MSE" = mean(MSE(df$indirect,  
               empirical_true$indirect)), 
              "direct_AB" = mean(AB(df$direct, empirical_true$direct)), 
              "direct_RB" = mean(RB(df$direct, empirical_true$direct)), 
              "direct_MSE" = mean(MSE(df$direct,  
               empirical_true$direct)), 
              "total_AB" = mean(AB(df$total, empirical_true$total)), 
              "total_RB" = mean(RB(df$total, empirical_true$total)), 
              "total_MSE" = mean(MSE(df$total, empirical_true$total)))) 
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} 

Step 1 – Generate data for empirical true values 

reps <- 1 
n <- 500000 
im <- 0 
iy <- 0 
xm <- 0.92 
my <- 0.39 
xy <- 0.39 
 
df <- as.data.frame(generate_data(reps = reps, 
                                  n = n, 
                                  im = im, 
                                  iy = iy, 
                                  xm = xm, 
                                  my = my, 
                                  xy = xy)) 
 
save(df, file = "Data for empirical true values.RData") 

     
Step 2 – Estimate empirical true values 

load("Data for empirical true values.RData") 
 
empirical_values <- store_effects(rows = 8) 
empirical_values[1, ] <- regression_based(df = df, x0 = 0, x1 = 1) 
empirical_values[2, ] <- regression_based(df = df, x0 = 1, x1 = 2) 
empirical_values[3, ] <- regression_based(df = df, x0 = 2, x1 = 3) 
empirical_values[4, ] <- simulation_based(df = df, x0 = 0, x1 = 1) 
empirical_values[5, ] <- simulation_based(df = df, x0 = 1, x1 = 2) 
empirical_values[6, ] <- simulation_based(df = df, x0 = 2, x1 = 3) 
empirical_values[7, ] <- imputation_based(df = df) 
empirical_values[8, ] <- weighting_based(df = df) 
 
save(empirical_values, file = "Empirical true values.RData") 
 

Step 3 – Generate actual data 

reps <- 1000 
n <- c(200, 500, 1000, 1500) 
im <- 0 
iy <- 0 
xm <- 0.92 
my <- 0.39 
xy <- 0.39 
 
for(i in n){ 
      df <- as.data.frame(generate_data(reps = reps, 
                                        n = i, 
                                        im = im, 
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                                        iy = iy, 
                                        xm = xm, 
                                        my = my, 
                                        xy = xy)) 
      save(df, file = paste0("n = ", i, ".RData")) 
} 
 

Step 4 – Estimate effects 

path <- “3. Actual data/" 
files <- list.files(path = path, 
                    pattern = "*.RData") 
reps <- 1000 
 
regression_effects <- store_effects(rows = 3 * reps) 
for(i in files){ 
  load(paste0(path, i)) 
  CC01 <- 1 
  CC12 <- 1001 
  CC23 <- 2001 
   
  for(j in unique(df$repnr)){ 
    regression_effects[CC01, ] <- regression_based(df = df[df$repnr ==  
    j, ], x0 = 0, x1 = 1) 
    regression_effects[CC12, ] <- regression_based(df = df[df$repnr ==  
    j, ], x0 = 1, x1 = 2) 
    regression_effects[CC23, ] <- regression_based(df = df[df$repnr ==  
    j, ], x0 = 2, x1 = 3) 
     
    CC01 <- CC01 + 1 
    CC12 <- CC12 + 1 
    CC23 <- CC23 + 1 
  } 
  save(regression_effects, file = paste0("regression, ", i, ".RData")) 
} 
 
rm(df, regression_effects, CC01, CC12, CC23, i, j) 
 
simulation_effects <- store_effects(rows = 3 * reps) 
for(i in files){ 
  load(paste0(path, i)) 
  CC01 <- 1 
  CC12 <- 1001 
  CC23 <- 2001 
   
  for(j in unique(df$repnr)){ 
    simulation_effects[CC01, ] <- simulation_based(df = df[df$repnr ==  
    j, ], x0 = 0, x1 = 1) 
    simulation_effects[CC12, ] <- simulation_based(df = df[df$repnr ==  
    j, ], x0 = 1, x1 = 2) 
    simulation_effects[CC23, ] <- simulation_based(df = df[df$repnr ==  
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    j, ], x0 = 2, x1 = 3) 
     
    CC01 <- CC01 + 1 
    CC12 <- CC12 + 1 
    CC23 <- CC23 + 1 
  } 
    save(simulation_effects, file = paste0("simulation, ", i,  
    ".RData")) 
} 
 
rm(df, simulation_effects, CC01, CC12, CC23, i, j) 
 
imputation_effects <- store_effects(rows = reps) 
for(i in files){ 
  load(paste0(path, i)) 
  count <- 1 
  for(j in unique(df$repnr)){ 
    imputation_effects[count, ] <- imputation_based(df = df[df$repnr ==  
    j, ]) 
    count <- count + 1 
  } 
  save(imputation_effects, file = paste0("imputation, ", i, ".RData")) 
} 
 
rm(df, imputation_effects, count, i, j) 
 
weighting_effects <- store_effects(rows = reps) 
for(i in files){ 
  load(paste0(path, i)) 
  count <- 1 
  for(j in unique(df$repnr)){ 
    weighting_effects[count, ] <- weighting_based(df = df[df$repnr ==  
    j, ]) 
    count <- count + 1 
  } 
  save(weighting_effects, file = paste0("weighting, ", i, ".RData"))              
} 
 
rm(df, weighting_effects, count, i, j) 
 

Step 5 – Calculate performance measures 

load("Empirical true values.RData") 
 
path <- "4. Effect estimates/" 
reg <- list.files(path = path, 
                  pattern = "regression") 
 
performance <- store_performance(rows = 12) 
count <- 0 
for(i in reg){ 
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  load(paste0(path, i)) 
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==    
  "regression" & empirical_values$x0 == 0, ] 
  performance[count, ] <- performance_measures(df =  
  regression_effects[regression_effects$x0 == 0, ]) 
   
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==    
  "regression" & empirical_values$x0 == 1, ] 
  performance[count, ] <- performance_measures(df =  
  regression_effects[regression_effects$x0 == 1, ]) 
   
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==  
  "regression" & empirical_values$x0 == 2, ] 
  performance[count, ] <- performance_measures(df =  
  regression_effects[regression_effects$x0 == 2, ]) 
} 
 
save(performance, file = "Regression.RData") 
rm(empirical_true, performance, regression_effects, count, reg, i) 
 
sim <- list.files(path = path, 
                  pattern = "simulation") 
performance <- store_performance(rows = 12) 
count <- 0 
for(i in sim){ 
  load(paste0(path, i)) 
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==  
  "simulation" & empirical_values$x0 == 0, ] 
  performance[count, ] <- performance_measures(df =  
  simulation_effects[simulation_effects$x0 == 0, ]) 
   
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==  
  "simulation" & empirical_values$x0 == 1, ] 
  performance[count, ] <- performance_measures(df =  
  simulation_effects[simulation_effects$x0 == 1, ]) 
   
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==  
  "simulation" & empirical_values$x0 == 2, ] 
  performance[count, ] <- performance_measures(df =  
  simulation_effects[simulation_effects$x0 == 2, ]) 
} 
 
save(performance, file = "Simulation.RData") 
rm(empirical_true, performance, simulation_effects, count, sim, i) 
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imp <- list.files(path = path, 
                  pattern = "imputation") 
performance <- store_performance(rows = 4) 
count <- 0 
for(i in imp){ 
  load(paste0(path, i)) 
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==  
  "imputation", ] 
  performance[count, ] <- performance_measures(df = imputation_effects) 
} 
 
save(performance, file = "Imputation.RData") 
rm(empirical_true, performance, imputation_effects, count, imp, i) 
 
weight <- list.files(path = path, 
                     pattern = "weighting") 
performance <- store_performance(rows = 4) 
count <- 0 
for(i in weight){ 
  load(paste0(path, i)) 
  count <- count + 1 
  empirical_true <- empirical_values[empirical_values$approach ==  
  "weighting", ] 
  performance[count, ] <- performance_measures(df = weighting_effects) 
} 
 
save(performance, file = "Weighting.RData") 
rm(empirical_true, performance, weighting_effects, count, weight, i)     
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Appendix B  Empirical true values 

 

Empirical true values of the indirect, direct and total effect estimated with the regression-, 

simulation-, imputation- and weighting-based approaches based on a sample size of 

500,000. All simulated effects mimicked medium effect sizes: 0.92 for the exposure-

mediator effect, and 0.39 for the mediator-outcome effect and the exposure-outcome 

effect. 

 

 

Table B1 Empirical true values estimated with different approaches based on a sample size of 500,000 

Approach Indirect effect Direct effect Total effect 

Regression    

 𝑥∗ = 0 & 𝑥 = 1 0.08286 0.39147 0.47433 

 𝑥∗ = 1 & 𝑥 = 2 0.05704 0.39147 0.44851 

 𝑥∗ = 2 & 𝑥 = 3 0.02990 0.39147 0.42137 

Simulation    

 𝑥∗ = 0 & 𝑥 = 1 0.08282 0.39147 0.47429 

 𝑥∗ = 1 & 𝑥 = 2 0.05726 0.39147 0.44873 

 𝑥∗ = 2 & 𝑥 = 3 0.02953 0.39147 0.42101 

Imputation 0.07496 0.39147 0.46643 

Weighting 0.07583 0.39351 0.46934 

 

  



Chapter 5 

152 

 

Appendix C Relative bias and mean squared error of the indirect, direct 

and total effect estimated with the regression- and simulation- 

based approaches 

 

 

Figure C1 Relative bias (panels A and C) and mean squared error (panels B and D) of the indirect effect estimated 

with the regression- and simulation-based approaches for the causal contrasts 𝑥∗ = 1 & 𝑥 = 2 (top row) and 𝑥∗ =

2 & 𝑥 = 3 (bottom row) 
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Figure C2 Relative bias (panels A, C and E) and mean squared error (panels B, D and F) of the direct effect 

estimated with the regression- and simulation-based approaches for the causal contrasts 𝑥∗ = 0 & 𝑥 = 1 (top row),  

𝑥∗ = 1 & 𝑥 = 2 (middle row) and 𝑥∗ = 2 & 𝑥 = 3 (bottom row) 
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Figure C3 Relative bias (panels A, C and E) and mean squared error (panels B, D and F) of the total effect estimated 

with the regression- and simulation-based approaches for the causal contrasts 𝑥∗ = 0 & 𝑥 = 1 (top row),  𝑥∗ =

1 & 𝑥 = 2 (middle row) and 𝑥∗ = 2 & 𝑥 = 3 (bottom row) 
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Appendix D  Mean estimated indirect, direct and total effects from the  

regression- and simulation-based approaches based on a  

sample size of 1,000 

 

 

Table D1 Mean indirect, direct and total effect estimates from the regression- and simulation-based approaches 

based on a sample size of 1,000, estimated for different causal contrasts 

Approach Causal contrast Indirect effect Direct effect Total effect 

Regression 𝑥∗ = 0 & 𝑥 = 1 0.08377 0.39024 0.47401 

 𝑥∗ = 1 & 𝑥 = 2 0.05742 0.39024 0.44767 

 𝑥∗ = 2 & 𝑥 = 3 0.03014 0.39024 0.42038 

Simulation 𝑥∗ = 0 & 𝑥 = 1 0.08355 0.39024 0.47379 

 𝑥∗ = 1 & 𝑥 = 2 0.05766 0.39024 0.44790 

 𝑥∗ = 2 & 𝑥 = 3 0.03033 0.39024 0.42058 
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Appendix E  Relative bias and mean squared error of the direct and total  

effect estimated with the imputation- and weighting-based  

approaches 

 

 

Figure E1 Relative bias (panel A) and mean squared error (panel B) of the direct effect estimated with the 

imputation- and weighting-based approaches 

 

 

 

 

Figure E2 Relative bias (panel A) and mean squared error (panel B) of the total effect estimated with the 

imputation- and weighting-based approaches 
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Abstract 

Objective 

Competing events are often ignored in epidemiological studies. Conventional methods 

for the analysis of survival data assume independent or noninformative censoring, which 

is violated when subjects that experience a competing event are censored. Because many 

survival studies do not apply competing risk analysis, we explain and illustrate in a 

nonmathematical way how to analyze and interpret survival data in the presence of 

competing events. 

 

Study design and setting 

Using data from the Longitudinal Aging Study Amsterdam, both marginal analyses 

(Kaplan–Meier method and Cox proportional-hazards regression) and competing risk 

analyses (cumulative incidence function [CIF], cause-specific and subdistribution hazard 

regression) were performed. We analyzed the association between sex and depressive 

symptoms, in which death before the onset of depression was a competing event. 

 

Results 

The Kaplan–Meier method overestimated the cumulative incidence of depressive 

symptoms. Instead, the CIF should be used. As the subdistribution hazard model has a 

one-to-one relation with the CIF, it is recommended for prediction research, whereas the 

cause-specific hazard model is recommended for etiologic research. 

 

Conclusion 

When competing risks are present, the type of research question guides the choice of 

the analytical model to be used. In any case, results should be presented for all event 

types. 
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Introduction 

Survival data are often encountered in epidemiologic studies. In this kind of data, the 

outcome of interest is time to the occurrence of a certain event. An important feature of 

survival data is censoring, which occurs when the exact survival time is unknown. This is 

the case, for example, when a subject is lost to follow-up, withdraws from the study, or 

does not experience the event of interest before the end of the study. Conventional 

methods used in the analysis of survival data like the Kaplan–Meier method and Cox 

proportional-hazards regression make the assumption of independent or non-

informative censoring. This means that individuals who are censored have the same 

future risk of the event of interest as subjects under observation (1, 2). In other words, 

this kind of censoring does not change study outcome on disease prognosis or risk factor 

detection. 

 

Another important but less well-known feature of survival data are competing risks. A 

competing risk is an event that prevents the event of interest from happening (3). 

Suppose we are interested in the onset of depression, then death before the onset of 

depression is a competing event. Censoring these subjects is problematic in two ways. 

First, the assumption of independence or noninformative censoring is violated, as a 

subject that experiences a competing event (death) is censored in an informative manner 

(4, 5). Second, the probability of experiencing the event of interest is estimated in a 

hypothetical setting in which the competing event cannot occur, which has very little 

clinical relevance (1, 2). 

 

In epidemiological and medical research, competing risks are often ignored in the 

analysis of survival data. However, failing to account for competing risks generally leads 

to an overestimation of the cumulative incidence of the event of interest (1, 4, 6-8). In 

2012, Koller et al. critically appraised 50 recently published articles in which competing 

risks were present from different biostatistical, clinical, and high-impact medical journals 

(9). In 70% of the included articles, they observed at least one competing risks issue. 

However, in only 20% of the studies, specific competing risks methodology was applied. 

 

Although there is extensive literature on competing risks (1, 3, 7, 10, 11), articles that 

explain how to analyze survival data in the presence of competing risks in a 

nonmathematical way are scarce (5). In addition, there is a lack of articles that focus on 

the application of different methods in real-life data and subsequently on the 

interpretation of the results. Therefore, the aim of this study was to explain and illustrate 
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how to analyze and interpret survival data in the presence of a competing event. We will 

compare conventional methods of survival analysis with competing risk methods in the 

analysis of real-life data from an observational cohort study. 

 

Description of the data 

The application of methods is illustrated using data from the Longitudinal Aging Study 

Amsterdam (LASA), a prospective cohort study among older adults in the Netherlands 

(12, 13). In the present study, we included respondents that participated in the second 

measurement wave of LASA (1995–1996). Data on various domains of function were 

collected approximately every 3 years. More information on LASA and the measurements 

included in this study can be found elsewhere (12, 13). 

 

The outcome of interest was incident depression, approximated by a score of ≥16 on the 

Center for Epidemiologic Studies Depression (CES-D) scale (14). Individuals who already 

suffered from depression at the start of the study were excluded, leaving a sample of 

1,187 subjects. 

 

Subjects that were not contacted for a new round of interviews, that were ineligible, or 

that refused were censored on the date of their last completed interview. Subjects that 

were still event free at the end of the study (01-07-2015) were also censored. 

 

Statistical analyses 

We analyzed the association between sex and the onset of depression. Because a 

comprehensive assessment of predictors of depression incidence was beyond the aim 

of this study, we limited our model to the inclusion of sex, baseline age, number of chronic 

diseases, and smoking. We performed both crude and adjusted analyses. Age was 

categorized into quartiles due to nonlinearity. 

 
Marginal analyses 

In a classic survival setting, the survivor function is estimated using the Kaplan–Meier (KM) 

method (15). The complement of the Kaplan–Meier estimate denotes the probability of 

experiencing the event of interest before a specified time. As this method can only handle 

one outcome and thus assumes independent or noninformative censoring, the 

cumulative incidence derived from this method is interpreted as the probability of 

depression in a world in which subjects cannot die before developing depressive 

symptoms (16, 17). Using the Kaplan–Meier method, censoring subjects at the time they 
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experience a competing event has no influence on the cumulative survival probability 

(18), which generally leads to an overestimation of the cumulative incidence (2, 4, 7). 

 

Marginal multivariable survival analysis is performed using Cox PH regression. The 

marginal hazard derived from a Cox model denotes the instantaneous rate of occurrence 

of the event of interest in a setting in which subjects cannot experience the competing 

event. Just like the Kaplan–Meier method, Cox PH regression assumes independent or 

noninformative censoring. In the absence of competing risks, the hazard and cumulative 

incidence are directly related in such a way that an increased hazard has a one-to-one 

association with a shorter survival time (2, 3, 9, 19, 20). Then, by fitting a Cox PH regression 

model in our example dataset, inference can be made about the effect sex has on both 

the hazard function and on the prognosis or survival. 

 

Competing risk analyses 

The competing risk equivalent of the Kaplan–Meier method is the cumulative incidence 

function (CIF). The CIF denotes the probability of experiencing the event of interest before 

a specific time and before the occurrence of any other type of event (2), meaning that 

subjects experiencing the competing event are considered no longer to be at risk of 

developing the event of interest (16-18). As a result of this, the cumulative survival 

probability is lowered by the occurrence of a competing event because the number of 

persons at risk decreases more quickly over time (18). Thus, the CIF estimates the 

probability of depression in a clinically relevant setting in which subjects may also die (2, 

21). In a scenario in which there are no competing events, the CIF yields the same 

cumulative incidence as the KM method. 

 

The one-to-one relation between the hazard and cumulative incidence that is present in 

the multivariable marginal analysis does not automatically translate to a competing risk 

framework (22). Therefore, in the presence of competing risks, the hazard and cumulative 

incidence cannot be estimated from one single model and different models need to be 

applied to answer etiologic and prognostic epidemiologic research questions: the cause-

specific hazard model (etiologic) or the subdistribution hazard model (prognostic) (3, 7, 

9, 10, 23).  

 

Cause-specific hazard regression 

The cause-specific hazard denotes the instantaneous rate of occurrence of the event of 

interest in a setting in which subjects can also experience the competing event (1, 3). This 
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hazard is estimated by removing individuals from the risk set the moment they 

experience the competing event, meaning that competing events are treated as 

censored observations (3, 21). Thus, the estimation procedure is the same as the 

procedure for marginal survival analysis and the cause-specific hazard can be estimated 

by fitting a standard Cox PH model in which all events other than the event of interest 

are treated as censoring. Consequently, when censoring is noninformative, we quantify 

the effects on the marginal hazard, whereas in the case of informative censoring, we 

quantify the effects on the cause-specific hazard (1, 3, 23). Thus, hazard ratios derived 

from a cause-specific hazard model should be interpreted among subjects who did not 

(yet) experience the event of interest or a competing event (16). As the cause-specific 

hazard is directly quantified among subjects that are actually at risk of developing the 

event of interest, the cause-specific hazard model is considered more appropriate for 

etiologic research (16). 

 

Whereas in the marginal analysis a model is fitted for the event of interest only, for the 

cause-specific hazard model, separate models are fitted for each type of event in which 

individuals that experience the competing event are censored (1, 3). Thus, in our study, 

we will fit two models: one for depression in which subjects that die are censored and 

one for death in which subjects that are diagnosed with depression are censored, and 

we interpret both hazard ratios at the same time. 

 

Subdistribution hazard regression 

The subdistribution hazard denotes the instantaneous risk of the event of interest in 

subjects that have not (yet) experienced the event of interest. This means that subjects 

who experience the competing event remain in the risk set (3, 10, 20). Thus, the risk set 

for the subdistribution hazard model contains not only subjects that are currently free of 

the event of interest but also subjects that have previously experienced the competing 

event. In our example, this means that the risk set consists of both individuals that have 

not (yet) developed depressive symptoms and individuals that died before the onset of 

depression. Although this feels unnatural—as subjects who have died are naturally no 

longer at risk of developing depressive symptoms—this is necessary to establish the one-

to-one relation with the CIF. Because of the direct relation between the covariates and 

the CIF, the subdistribution hazard model is considered the right model for prediction 

research. 
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Because in the subdistribution hazard model individuals that experienced the competing 

event remain in the risk set, the hazard ratios derived from a subdistribution hazard 

model are not straightforward to interpret (7, 23). As a result of this, the subdistribution 

hazard model is not considered appropriate for etiologic research. However, in prediction 

research, the hazard ratios are used to calculate individual risks. Thus, the regression 

coefficients derived from the subdistribution hazard model can be used to compute the 

cumulative incidence of depression, taking competing risks into account (8, 20).  

 

Like for the Cox model, both the cause-specific hazards and the subdistribution hazards 

are assumed to be proportional over time. This can be checked using Schoenfeld 

residuals (24). 

 

Notation and reporting 

In a classic survival setting, researchers often simply address the risk of an event without 

specifying whether risk denotes the hazard or the cumulative incidence of the event (2). 

In a competing risk framework, the use of clear terminology is required to avoid the 

misconception that the cause-specific and subdistribution hazard are essentially the 

same. Therefore, the cause-specific hazard and subdistribution hazard ratios will be 

reported as HRcs and HRsd, respectively. In addition, Latouche et al. have suggested to 

use both models and present the results for all causes for complete understanding (5, 

21). Therefore, in competing risk analysis, in the example, both the hazard for depression 

and the hazard for death will be reported. 

 

Software 

All analyses were conducted using the R (version 3.5.3) statistical programming language 

(25) and the “cmprsk” package (version 2.2-7) for the competing risk analyses (26). 

Detailed information on how to perform competing risk analyses in R using the “cmprsk” 

package can be found elsewhere (2, 3, 27, 28).  

 

Results 

Descriptive statistical analyses 

The population consisted of 625 males and 562 females (Table 1). Of all males, 16% 

developed clinically relevant depressive symptoms, whereas for women, this was 27%. 

Just over half of all women died without having had clinically relevant depressive 

symptoms during the study (50.36%), whereas for males, this percentage was much  
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Table 1 Characteristics of study population 

 Males 

n = 625 

Females 

n = 562 

Status, n (%) 

   Censored 

   Developed clinically relevant depressive symptoms 

   Deceased 

 

109 (17.44) 

103 (16.48) 

413 (66.08) 

 

125 (22.24) 

154 (27.40) 

283 (50.36) 

Follow-up in days, median (IQR) 2441 (3621) 3220 (4159.25) 

Abbreviations: n = number; IQR = inter quartile range 

 

 

higher (66.08%). Median follow-up was longer for females (3,320 days) than for males 

(2,241 days). 

 

Cumulative incidence 

Figure 1 shows the cumulative incidence of depression (panel A) and both depression 

and death (panel B) for both males and females derived from the Kaplan–Meier method 

and the CIF, respectively. As anticipated, the Kaplan–Meier estimate of the incidence of 

clinically relevant depressive symptoms is larger than the corresponding estimate derived 

from the CIF. For instance, at 4,000 days, the cumulative incidence of clinically relevant 

depressive symptoms derived from the Kaplan–Meier method is 20.61% for males and 

28.96% for females, whereas the cumulative incidence of depressive symptoms derived 

from the CIF is 14.55% for males and 24.21% for females. At 6,000 days, the difference in 

probabilities is even larger. 

 

Modeling covariate effects 

Table 2 shows the cause-specific and subdistribution hazard ratios for depression and 

death. The hazard ratio for depression derived from the Cox PH model is not included 

in Table 2 as this is equal to the cause-specific hazard ratio for depression. 

 

Cause-specific hazard model 

Female sex is associated with an increase in the rate of the development of clinically 

relevant depressive symptoms among those who are still alive and do not yet suffer from 

depressive symptoms (adjusted HRcs 1.537, 95% CI 1.193–1.982), whereas it significantly 

decreases the rate of death before the onset of depression in the same group (adjusted 

HRcs 0.684, 95% CI 0.586–0.797). 

 

 



A nonmathematical illustration of competing risk analysis 

167 

 

A  B  

 

 

 

 
Figure 1 Cumulative incidence of depression derived from the Kaplan-Meier method (panel A) and the 

cumulative incidence function (panel B) 

 

 

Subdistribution hazard model 

As expected with a higher rate of depression for females associated with a reduced rate 

of death, we observe more females than males diagnosed with depression at any point 

during the study. Being female increases the probability of depression, resulting in an 

84% higher relative incidence of clinically relevant depressive symptoms for females than 

for males (adjusted HRsd 1.842, 95% CI 1.430–2.370), whereas it decreases the probability 

of dying before the onset of depression. The relative incidence of death was more than 

35% lower for females than for males (adjusted HRsd 0.639, 95% CI 0.547–0.746). Survival 

probabilities can be calculated for each individual by combining the subdistribution 

hazard ratios with their baseline hazard, just like one would do with the hazard ratios 

derived from a Cox model in a situation in which no competing risks are present. 

 

In conclusion, sex has a more pronounced effect on the incidence of depression than on 

the cause-specific hazard of depression, as evidenced by the finding that the HRsd (1.842) 

was larger than the HRcs (1.537). The apparent increase in the absolute risk of depression 

for females might be explained via the effect sex has on death before the onset of 

depression. 

 

Discussion 

In epidemiologic research, competing risks are generally not considered in the analysis 

of survival data. In the presence of competing risks, cumulative incidence should be 

estimated using the cumulative incidence function instead of the Kaplan-Meier method. 
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Table 2 Cause-specific and subdistribution hazards for depression and death 

 Cause-specific hazard models  Subdistribution hazard models 

 Depression Death  Depression Death 

Crude      

Sex – female 1.453 

(1.132 – 1.865) 

0.664 

(0.571 – 0.722) 
 

1.780 

(1.390 – 2.290) 

0.618 

(0.534 – 0.718) 

      

Adjusted      

Sex - female 1.537 

(1.193 – 1.982) 

0.684 

(0.586 – 0.797) 
 

1.842 

(1.430 – 2.370) 

0.639 

(0.547 – 0.746) 

Death represents ‘death prior to the onset of depression’. The cause-specific and subdistribution hazard model 

return the cause-specific (HRcs) and subdistribution hazard (HRsd) and their corresponding 95% confidence 

intervals, respectively. In the adjusted analyses we correct for age, number of chronic diseases and smoking. 

 

 

Our illustration showed that failing to account for death before the onset of depression 

as a competing risk resulted in an overestimation of the cumulative incidence of clinically 

relevant depressive symptoms by 6.06 percentage point for males and 4.75 percentage 

point for females. For prediction research, the subdistribution hazard model should be 

used. In our illustration, the adjusted subdistribution hazard ratio for depression in 

females was greater than in the marginal analysis (HRsd 1.842 [1.430–2.370] vs. HR 1.537 

[1.193–1.982]), whereas the adjusted subdistribution hazard ratio for death in females 

was lesser (HRsd 0.639 [0.547–0.746] vs. HR 0.684 [0.586–0.797]). 

 

The extent to which the cumulative incidence is overestimated is related to the 

proportion of subjects experiencing the event of interest and the competing event. It is 

discussed in literature that specific competing risk analysis should be considered when 

the proportion of subjects that experience the competing event is equal to or greater 

than the proportion of subjects that experience the outcome of interest (6) or when the 

absolute percentage of competing events is greater than 10% (2). In our data example, 

the incidence of clinically relevant depressive symptoms is relatively low, whereas 

mortality is high. As a result, the cumulative incidence is greatly overestimated using 

marginal analysis methods, illustrating the importance of applying specific competing risk 

analysis (5). In a younger population in which the incidence of depression is higher (29, 

30) and mortality naturally is lower, the estimates derived from marginal analyses and 

competing risk analyses will not differ to the same extent as what we found in our older 

study population. 
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Overestimation of the cumulative incidence of the outcome of interest has both practical 

and public health implications. An example of these implications is that treatment 

decisions by clinicians are often guided by risk prediction models. Ignoring competing 

risks in the development of these models could, among other things, lead to possible 

overtreatment in future patients. 

 

Limitations 

A limitation of the real-life data example is that in LASA, as in many cohort studies, disease 

information is collected at discrete follow-up visits, whereas the exact date of death is 

retrieved from municipality registers. It is therefore possible that we have missed some 

cases of incident depression (31). In addition, we could not distinguish between first-

onset and recurrent depression. Because incidence of depression was based on a 

screening instrument (14), this does not necessarily indicate a clinical diagnosis, and 

there was no information on previous episodes. It is therefore possible that a part of the 

observed incidence of depression in our study represents recurrent episodes. Another 

limitation is that age was categorized into quartiles, which is associated with loss of 

information. Although there are better methods available to model nonlinear 

relationships (e.g., spline functions), in order not to divert attention from competing risk 

analysis we used categorization, which is still a widely used method in epidemiological 

research. 

 

Prediction model performance in the presence of competing risks 

The process of developing a prediction model in a competing risks framework is 

essentially the same as for other regression models, except that the subdistribution 

hazard model should be applied instead of regular Cox PH regression. The performance 

of a prediction model is usually assessed using the calibration and discrimination. A 

detailed proposal of how to assess calibration and discriminative capacity of a prediction 

model in a competing risks setting is described by Wolbers et al. (8). 

 

Competing risks in randomized controlled trials 

Whereas our paper focusses on competing risks in observational studies, competing risks 

also appear in the setting of randomized controlled trials (RCTs). A recent review of 

randomized controlled trials with survival outcomes that were published in four high-

impact general medical journals showed that most of the studies were potentially 

susceptible to competing risks, but that this was not accounted for in the statistical 

analyses (32). 
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In RCTs with time-to-event outcomes, often additional effect measures that are derived 

from the KM survival curves, like the number needed to treat (NNT), are reported. 

Because the KM method overestimates the cumulative incidence in the presence of 

competing risks, the estimated NNT may also be biased. Therefore, to correctly estimate 

the NNT in the presence of competing risks, it is recommended to use a method based 

on the CIF (33). For multivariable analysis, the same applies for RCTs as for observational 

studies: the cause-specific hazard model should be used when one is interested in the 

effect of the intervention on the instantaneous rate of occurrence of the event of interest 

in subjects that are currently event free, whereas the subdistribution hazard model 

should be used when one is interested in the relative effect of the intervention on the 

cumulative incidence function (32). 

 

Software 

The cause-specific hazard model can be fitted with any software that can perform a Cox 

PH model. However, this is not the case for the CIF and the subdistribution hazard model. 

How to estimate the CIF in SPSS with the use of a macro is described elsewhere (18). In 

STATA, the subdistribution hazard model can be fitted using the stcrreg package (10). For 

SAS, macros for both the estimation of the CIF and the subdistribution hazard model are 

available (34, 35). 

 

Conclusion 

In conclusion, competing risks form an important issue in the analysis of survival data. 

Researchers should be aware of the potential problems associated with censoring 

subjects when they experience a competing event. Dealing with competing risks requires 

careful formulation of the research question, selection of the appropriate method for 

data analysis, and interpretation of the results. 
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Background 

In epidemiological research, regression analysis is often used to examine the association 

between an exposure and an outcome, also called the exposure effect. There are many 

different types of regression techniques, and the distribution of the outcome determines 

which technique is most appropriate to estimate the exposure effect. Linear regression 

(for continuous outcomes), logistic regression (for binary outcomes) and Cox regression 

(for survival outcomes) are the most common techniques used in the field of 

epidemiology.  

 

The main goal of regression analysis is to estimate the most accurate effect obtainable 

from the data. However, often the association between an exposure and an outcome is 

not entirely attributable to the exposure, i.e., the effect is biased. Bias can occur in all 

stages of a study and results in an underestimation or overestimation of the true effect. 

In some situations, it can even reverse the apparent direction of the effect. Failing to 

consider potential sources of bias may result in incorrect inference about the association 

between the exposure and the outcome. At the policy level, biased studies could 

influence policy development and ultimately lead to the implementation of ineffective 

public health policy (1). This, in turn, could lead to wrong conclusions about the harmful 

or beneficial effect of a certain treatment and thus to the decision to continue or stop 

treatment at the individual level (2). 

 

In this thesis, I focused on the prevention of bias in the analysis stage of a study. The aim 

was to describe various situations in which bias can occur as a result of the incorrect 

application of linear-, logistic- and Cox regression models, and to propose solutions 

where possible. Four topics were covered: the estimation of non-linear effects, 

noncollapsibility, causal mediation analysis and competing risks. Although the 

mechanisms and methods described in this thesis are not new, existing literature 

contains a high level of technical and mathematical details, which may hamper the 

understanding and the application of correct methods. The chapters in this thesis were 

mainly written for applied researchers, meaning that the sources of bias and methods 

are described in a non-technical and non-mathematical way and that the emphasis is on 

the interpretation of the results. In addition, each chapter contains an empirical data 

example, and where possible we provide a detailed appendix including software code 

offering researchers all tools necessary to apply these methods to their own research. 

This chapter contains a discussion of the main findings of this thesis and provides 

recommendations for practice. 
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Non-linear effects 

A principal assumption of linear-, logistic- and Cox regression is that the exposure is 

linearly related to the outcome, i.e., that the exposure effect is the same for all one-unit 

differences in the exposure values. If this assumption is not met, then the effect estimate 

is not a good representation of the true underlying effect, and bias is introduced. It is 

common practice to assess the linearity assumption for the exposure-outcome effect. 

However, when adjusting for a confounder, the linearity assumption no longer only 

applies to the exposure-outcome effect, but also to the confounder-exposure or 

confounder-outcome associations, depending on the confounder-adjustment method 

used. If the functional form (i.e., the shape) of these associations is misspecified (i.e., 

linearity is wrongly assumed), then bias might be introduced in an attempt to remove 

bias.  

 

In chapter 2 of this thesis, we reviewed four confounder-adjustment methods: 

multivariable regression analysis, covariate adjustment using the propensity score (PS), 

inverse probability weighting (IPW) and double robust (DR) estimation. We used a Monte 

Carlo simulation study to assess and compare their performance when the functional 

form of the confounder-exposure and confounder-outcome associations were 

misspecified and correctly specified under multiple sample sizes. In order to estimate 

unbiased effects, for methods that use the propensity score (i.e., covariate adjustment 

using the PS and IPW) the confounder-exposure association needs to be correctly 

specified, whereas the confounder-outcome association or PS-outcome association 

needs to be correctly specified if the outcome is regressed on the confounder or the 

propensity score, respectively. For all methods, the amount of bias depends on the 

strength of the associations and the sample size. Our study showed that merely adjusting 

for confounding is not enough, but that correct specification of all effects in a model is 

crucial to obtain unbiased exposure effect estimates. 

 

In our study we adjusted for one confounder, whereas in reality there might be multiple. 

Naturally, multiple confounders increase the likelihood of non-linear confounder-

exposure or confounder-outcome associations. To obtain unbiased results, the 

functional form of the associations of each of the confounders needs to be assessed 

separately and non-linear associations need to be modelled if necessary. In addition, we 

assumed that associations were either correctly specified or misspecified, whereas in 

reality this might not be a clear dichotomy.  
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In a systematic review from 2013, 53 papers were identified in high-impact general 

medical journals that adjusted for the continuous confounder age (3). In 40 of those, age 

was included as a covariate in the regression model. Only 13 of those explicitly reported 

how age was included as the model (e.g., as a linear term, as a categorized variable or 

with the use of higher-order terms). For the other 27 studies it was unclear how the 

relation between age and the outcome was modelled. Like us, Groenwold et al. 

concluded that the impact of misspecification of the functional form depends on the 

strength of the association between the confounder and both the exposure and the 

outcome. In addition, they identified the distribution of the confounder, other 

confounders that are also adjusted for and the extent of departure from linearity as 

factors that influence the magnitude of bias. A cross-sectional survey from 2002 on the 

frequency and adequacy of adjustment for confounding found that 45% of the included 

papers did not explicitly report how multicategorical or continuous variables were 

adjusted for in the analysis (4). Failing to provide information on the assessment or 

modelling of continuous confounders complicates the assessment of the validity and the 

interpretation of the results. 

 

To increase transparency on the risk of additional bias, researchers should report how 

the functional form of the confounder-exposure and confounder-outcome associations 

was assessed and taken into account. In 2007, the STROBE (Strengthening the Reporting 

of Observational Studies in Epidemiology) initiative published a checklist, the aim of which 

was to improve the quality of reporting of observational studies (5, 6). The checklist 

contains 22 items, a number of which are about bias. Item number 9 emphasizes that 

researchers should asses the likelihood of relevant biases and should discuss, and if 

possible, estimate, the direction and magnitude of bias. Item numbers 12 and 16 address 

confounding: researchers should make clear which confounders were adjusted for and 

why they were included, and which statistical methods were used to control for 

confounding.  

 

A systematic review from 2008 on the reporting of confounding in observational studies 

on medical interventions found that the quality was very poor (7). For example, only 10% 

of the articles reported reasons for the selection of potential confounders. A more recent 

study from 2016 assessed whether the reporting of confounding improved after 

publication of the STROBE checklist (8). They found that although the quality improved in 

certain aspects, the overall quality remained substandard. Transparent reporting also 

includes reporting the methods used to select confounders to adjust for. A review from 
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2019 found that 37% of the articles selected did not provide sufficient details to assess 

how variables were selected (9). Transparency on measures taken to reduce bias not only 

encompasses the reporting of bias but also careful interpretation of the results. A review 

from 2018 assessed whether authors of observational studies consider confounding bias 

when interpreting their results (10). They found that many studies lack satisfactory 

discussion of confounding bias, and that when it is mentioned authors are often 

confident that it is irrelevant to their results. 

 

Other checklists such as AGReMA  (A Guideline for Reporting Mediation Analyses) also 

emphasize the transparent reporting of confounding (11). Items numbers 10 to 12, about 

the assumed causal model, causal assumptions and measurement of variables, 

encompasses possible confounders. Furthermore, item number 14 explicitly mentions 

that analytical strategies used to reduce confounding bias should be described.   

 

To estimate unbiased effects it is important to examine the functional form of the 

confounder-exposure or confounder-outcome association depending on the 

confounder-adjustment method used and to adjust the model accordingly. The easiest 

way to assess linearity of the effects is by visual inspection: a scatterplot provides an 

indication of the nature of the relationship between the two variables. Non-visual ways 

to assess linearity include adding a non-linear term to the model and categorization of 

the continuous independent variable (12, 13).  

 

If the linearity assumption does not hold, then the non-linear associations present in the 

data have to be modelled explicitly in order to obtain unbiased effects. There are different 

methods available to model non-linear associations, such as the use of higher-order 

terms, categorization of the exposure variable, linear spline regression and restricted 

cubic spline regression. In chapter 3 of this thesis we reviewed these methods and 

compared them in terms of their performance. We found that categorization of a 

continuous variable performed least well. Although this finding is not new and many 

argued against the categorization of continuous variables in the past (12, 14, 15), it 

remains a common technique in epidemiological research. Many non-linear associations 

can be modelled well using higher-order terms. However, this does not allow for 

straightforward interpretation of the effect estimates, which is problematic if the 

exposure-outcome effect is non-linear. This is not a hindrance when higher-order terms 

are used to model non-linear confounder-exposure and confounder-outcome 

associations, as the corresponding confounder-related coefficients are typically not 
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interpreted (3). Linear- and restricted cubic spline regression result in good 

approximations of the true effect. For restricted cubic spline regression, adding higher 

order terms further increases the flexibility of the model. However, again, this is at the 

expense of the interpretation of the coefficients.  

 

Although spline regression is easy to implement with most statistical software programs, 

most papers on spline functions present these as complex mathematical functions (16-

18). We presented spline functions in a step-by-step and non-mathematical way and 

focused on the application of the methods and on the interpretation of the results. In our 

study we illustrated the application of spline-models within a linear regression context. 

However, spline functions can be applied beyond standard linear regression models, for 

example in mediation models or in the analysis of longitudinal data.  

 

Noncollapsibility 

To determine which confounders to adjust for in the analysis, researchers often use the 

change-in-estimate criterion: they compare exposure effect estimates between a 

univariable- and a multivariable regression model and use an arbitrary cut-off value to 

determine the presence of relevant confounding (19-21). However, in logistic regression, 

the change-in-estimate might not only represent confounding bias but also a 

noncollapsibility effect. This noncollapsibility effect stems from a change in scales that 

occurs in logistic regression when variables are added to the model (20, 22, 23). As a 

result, negative effects become more negative, and positive effects become more 

positive. Thus, relying on the change-in-estimate might lead to wrong conclusions about 

the presence and magnitude of confounding bias (19).  

 

Using a Monte Carlo simulation study, in chapter 4 of this thesis we found that depending 

on the sign and magnitude of the confounding bias and the noncollapsibility effect, the 

change-in-estimate may under- or overestimate the magnitude of the confounding bias. 

Because of the noncollapsibility effect, multivariable regression analysis and IPW – two 

often used confounder-adjustment methods – return different but both valid estimates 

of the confounder-adjusted exposure effect. Multivariable regression analysis results in 

a conditional exposure effect estimate (24, 25), whereas IPW results in a population-

average exposure effect estimate (24-27). It is often suggested to report a population-

average effect if the target population is the entire study population, while a conditional 

exposure effect should be reported if the target population is a subset of the study 

population (20, 22, 24-26, 28, 29). Although the exact differences between the effect 
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estimates and their respective interpretations remain unclear, it is important to consider 

these differences in the interpretation of the results as the populations about which 

inferences are made differ from each other. If one is unaware of the fact that 

multivariable regression analysis and IPW result in different exposure effect estimates 

with their own conclusions, conditional effects may be interpreted as population-average 

effects, and vice versa. Therefore, researchers should inform their choice for a 

confounder-adjustment method based on whether they are interested in conditional or 

population-average effects. 

 

Noncollapsibility effects do not only occur in logistic regression: similar to the odds ratio, 

the hazard ratio also suffers from noncollapsibility. As a result, the change-in-estimate 

criterion should not be used to determine the presence of relevant confounding in Cox 

regression either, and the population-average hazard ratio differs from the conditional 

hazard ratio (30).  

 

To quantify confounding bias, one could look at the difference between the unadjusted 

and IPW confounder-adjusted exposure effect estimates (20, 31). If noncollapsibility is 

not taken into account, this could lead to wrong conclusions about the magnitude and 

direction of confounding bias. Then, researchers may unnecessarily adjust for certain 

variables in the analysis, or fail to adjust for variables that explain part of the exposure 

effect, eventually leading to wrong conclusions about the magnitude and direction of the 

exposure effect.  

 

To identify confounders it is generally recommended to determine the confounder set 

based on subject matter knowledge rather than on statistical methods. However, a recent 

review of studies in major epidemiological journals found that only 50% chose 

confounders based on prior knowledge, whereas 24% used data driven methods to 

select confounders (9). Thus, confounder selection based on the data is still common in 

epidemiological research. The same review found that the change-in-estimate criterion 

was the most popular data-driven method for confounder selection, which is attributed 

to the fact that the change-in-estimate criterion is recommended in many epidemiologic 

textbooks and articles (32).  

 

Causal mediation analysis 

Whereas a confounder does not lie in the causal pathway of the exposure on the 

outcome, a mediator does. With mediation analysis, the total effect of the exposure on 
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the outcome can be decomposed into an indirect effect through the mediator and a 

direct effect after removing the influence of the mediator. While traditional mediation 

analysis defines and estimates the mediation effects in terms of regression coefficients, 

causal mediation analysis separates the causal effect definitions from the effect 

estimation (33, 34). In our study, we reviewed the regression-, simulation-, imputation- 

and weighting-based approaches to perform causal mediation analysis. If the mediator 

and outcome are both continuous, then all estimation approaches provide the same 

causal effect estimates (35). This is not necessarily the case if the exposure is continuous 

and the mediator is binary. In this situation, the estimates from the regression- and 

simulation-based approaches depend on the chosen causal contrast (i.e., the two 

compared values for the exposure) (33, 36, 37). The imputation- and weighting-based 

approaches, on the other hand, still provide mediation effect estimates that are the same 

for every one unit difference in the continuous exposure variable (38). This is also 

reflected in the interpretation of the results: the indirect effects from the regression- and 

simulation-based approaches only apply to the two values selected for the causal 

contrast, whereas the imputation- and weighting-based approaches return average 

differences in the outcome for every one unit difference in the exposure through the 

mediator.  

 

In chapter 5 of this thesis, we demonstrated that the differences between 1) the 

regression- and simulation-based approaches and 2) the imputation- and weighting-

based approaches are explained by finite sample bias, meaning that bias decreases as 

sample size increases. The differences between the effect estimates obtained by the 

regression- and simulation-based approaches, and by the imputation- and weighting-

based approaches in our empirical data example were thus explained by finite sample 

bias. The empirical data example also illustrated  the importance of selecting the causal 

contrast based on substantive knowledge. 

 

If researchers are unaware of the difference between the estimation approaches and the 

role of the causal contrast in the regression- and simulation-based approaches, then the 

mediation effect estimates may be interpreted incorrectly. It is therefore recommended 

that researchers inform their choice for an estimation method based on whether they 

are interested in average effects or in effects that correspond to specific exposure values. 

For the regression- and simulation-based approaches, failing to consider the correct 

causal contrast may lead to an over- or underestimation of the true indirect effect for an 

individual with certain exposure values.  
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Although in the past decade causal mediation analysis gained in popularity, a recent 

scoping review found that most studies (70.7%) still apply traditional mediation analysis 

(39-41). In traditional mediation analysis, the indirect effect is defined and estimated 

using the product-of-coefficients method or the difference-in-coefficients method (42). 

With the product-of-coefficients method, the indirect effect is calculated as the product 

of the exposure-mediator and mediator-outcome effect, while with the difference-in-

coefficients method the indirect effect is calculated as the difference between the total 

exposure-outcome effect and the direct exposure-outcome effect adjusted for the 

mediator. These methods provide the same indirect effect estimates if the outcome and 

the mediator are both continuous (43, 44). However, if the mediator is a binary variable 

and the exposure-mediator effect is estimated using logistic regression, then this is no 

longer the case. In this situation, the product-of-coefficients method should not be used 

to estimate the indirect effect. This is due to a mismatch in the scales on which the effects 

are estimated (i.e., the exposure-mediator effect is estimated on the log-odds scale, 

whereas the mediator-outcome effect is estimated using a linear model) (45, 46). Because 

this mismatch in scales does not occur with the difference-in-coefficients method (i.e., 

the total exposure-outcome effect and the direct exposure-outcome effect adjusted for 

the mediator are estimated on the same scale), this method provides indirect effect 

estimates similar to the imputation- and weighting-based approaches. However, for 

models with a binary or time-to-event outcome that are analyzed using logistic- or Cox 

regression, the difference in coefficients may not only reflect the indirect effect but also 

a noncollapsibility effect (22, 47, 48). Like the change-in-estimate, the difference-in-

coefficients is computed as the difference between nested regression models. Failing to 

take a possible noncollapsibility effect into account may result in biased conclusions 

about the magnitude of the indirect effect. Rijnhart et al. advised to use the potential 

outcomes framework or the product-of-coefficients method to estimate the indirect 

effect when mediation analysis is based on logistic regression analysis (49). 

 

Of the studies included in the review, only 13.2% used causal mediation analysis, and of 

those studies most (more than 70%) used the regression- and simulation-based 

approach (39). It has been recommended that, to ensure a causal interpretation of the 

mediation effects, researchers apply causal mediation analysis. In addition, the uptake of 

causal mediation analysis could be enhanced through tutorial papers (39, 50). With our 

study on the influence of the estimation approaches and the chosen causal contrast on 

the mediation effect estimates and their interpretations we hope to have provided 



General discussion 

185 

 

researchers with such a tutorial. Valente et al. provide software code of causal mediation 

analysis in software programs commonly used by epidemiologists (35). 

 

Competing risk analysis 

Survival data is often encountered in epidemiologic studies. With survival data, the time 

till the occurrence of the event of interest is taken into account. Competing events (i.e., 

events that prevent the event of interest from happening) are an important feature of 

survival data (51), but are often ignored and individuals that experience a competing 

event get censored. Conventional methods used in the analysis of survival data such as 

Cox regression make the assumption of independent or noninformative censoring, 

meaning that individuals who are censored have the same future risk of the event of 

interest as the individuals that remain under observation (52, 53). Naturally, censoring 

individuals that experience a competing event violates this assumption, and failing to 

account for competing risks generally results in an overestimation of the true effect of 

the exposure on the outcome (52, 54-58). In chapter 6 of this thesis, we illustrated that, 

in the presence of competing risks, the cumulative incidence should be estimated using 

the cumulative incidence function (CIF) instead of the Kaplan-Meier method. To answer 

etiologic research questions, cause-specific hazard regression could be used, whereas 

subdistribution hazard regression could be used to answer prognostic research 

questions (51, 56, 58-60). 

 

The extent to which the cumulative incidence is overestimated if competing risks are 

ignored is related to the proportion of individuals experiencing the event of interest and 

the competing event. In our study we illustrated the methods using a geriatric population, 

in which the proportion of individuals experiencing the competing event (i.e., death 

before the onset of depression) was high compared to the proportion of individuals 

experiencing the event of interest (i.e., incident depression). As a result, the cumulative 

incidence was greatly overestimated using marginal analysis methods. Because of the 

older age and comorbidities, the competing risk of death is especially high in geriatric 

study populations (55, 58). When mortality is high, such as in geriatric populations, the 

overestimation of the cumulative incidence of the event of interest may be substantial. 

As successful improvements in health care for older adults partly relies on accurate 

reporting of the incidence and predictors of disease (55), it is important that the 

competing risk of death is accounted for by applying specific competing risk analysis. 

Ignoring competing events could, for example, lead to overtreatment in future patients 

(58, 61). In 2012, Koller et al. examined how competing risk issues were treated in high-
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impact medical journals (58). They selected 50 articles in which competing risks were 

present. In only 20% of the studies specific competing risk methodology was applied. This 

shows that a better recognition and understanding of competing events and the 

importance of applying competing risk analysis is needed. 

 

Although there is a clear distinction between cause-specific hazard regression and 

subdistribution hazard regression, it is recommended to fit models for both the event of 

interest and the competing event, and to apply both regression techniques for complete 

understanding. In addition, it is advised to use clear terminology to avoid confusion about 

the hazard (cause-specific versus subdistribution) presented (62, 63).  

 

Simulation studies 

In chapters 2, 4 and 5 of this thesis, Monte Carlo simulation studies were used. Simulation 

studies allow for the assessment of the performance of a method in relation to the ‘true’ 

effect. This way, bias can be quantified and expressed, among other things, in terms of 

absolute and relative bias (64, 65). Other performance measures that are often used are 

accuracy and coverage. Collins et al. emphasized the importance of examining multiple 

performance measures, as results may vary across measures (66). Accuracy is often 

expressed in terms of the mean squared error, which incorporates both bias and 

variability. Coverage is the proportion of times the confidence interval contains the ‘true’ 

effect. For 95% confidence intervals, the simulated confidence intervals should contain 

the ’true’ effect in approximately 95% of the samples. Over-coverage suggests that the 

results are conservative, whereas under-coverage leads to incorrect significant results 

(66). Because in simulation studies the ‘true’ effect is known, statistical methods can be 

compared to each other under different scenarios. Subsequently, statements can be 

made about which method is best to use under which circumstances.   

 

In 2006, Burton et al. conducted a small review of articles that contained simulation 

studies (64). They concluded that the majority of the articles did not provide sufficient 

details to allow for exact replication of the simulation study. To enable the results to be 

reproduced, studies should include details of all simulation steps and procedures, 

including justification for the choices made. Most epidemiological journals actively 

encourage authors to make software code for the simulation study available and require 

the inclusion of a data availability statement in articles. The code for the simulation 

studies in this thesis are included in the appendices, which allows for the replication of 
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our studies. Detailed tutorials on the design, analysis, reporting and presentation of 

simulation studies can be found elsewhere (64, 65). 

 

Directed Acyclic Graphs 

In some chapters of this thesis, directed acyclic graphs (DAGs) are used to illustrate the 

assumed relations among variables. DAGs are causal diagrams: an arrow connecting two 

variables indicates that there is a causal relation. Using DAGs, researchers can determine 

how an exposure-outcome effect may change when adjusting for different covariates, 

and thus which variables to adjust for (67, 68). In addition, DAGs can be used to 

distinguish between a confounder, a mediator and a collider (69). Whereas confounding 

requires the application of confounder-adjustment methods to obtain unbiased results, 

adjusting for colliders introduces bias (69, 70) and adjusting for mediators results in direct 

exposure-outcome effect estimates (71). Moreover, DAGs are not bound by the data 

available, i.e., DAGs can also contain unmeasured variables. They therefore also provide 

insight into any residual confounding by confounders that are not included in the 

statistical model. 

 

DAGs have been increasingly popular in health research but reporting is often 

inconsistent. Tennant et al. provide several recommendations to improve the 

transparency and utility of DAGs in future research (72).  

 

Because the DAGs in this thesis only contain the variables that were included in the 

empirical data examples, they are simplified representations of the relations between the 

variables. In reality, the relations will be more complex, and the actual DAGs will contain 

more confounders, mediators or colliders. 

 

Concluding remarks 

Although regression models are commonly used in epidemiological research to estimate 

exposure effects, researchers often do not consider the many different ways in which 

bias can occur. In this thesis, we reviewed four different potential sources of bias in 

regression analysis, and we proposed solutions where possible. For each topic, the 

theory was illustrated using an empirical data example and, if applicable, simulation code 

was provided to reinforce understanding. To avoid bias, it is recommended that 

researchers consider the potential sources in the pre-analysis phase. This includes, for 

example, the type of effect they are interested in, the functional form of associations and 

the presence of competing risks in survival data. If necessary, researchers should adapt 
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their analysis, for example by explicitly modelling non-linear associations or by applying 

specific competing risk analysis. In addition, it is recommended to transparently report 

the measures taken to reduce bias and to carefully interpret the results, taking any 

remaining bias into consideration. Transparent reporting includes facilitating 

reproducibility by making software code available to readers and fellow researchers. 

Finally, I believe that the field of epidemiology would benefit from more non-technical and 

non-mathematical papers on advanced topics, as I aimed to contribute to with this thesis.  
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Background 

Epidemiologists are generally interested in the effect of an exposure on an outcome. This 

so-called exposure effect is often estimated using regression analysis, in which the 

outcome is regressed on the exposure. The distribution of the outcome determines 

which regression technique is most appropriate to estimate the exposure effect. In 

epidemiological research, linear- (for continuous outcomes), logistic- (for binary 

outcomes) and Cox regression (for survival outcomes) are most commonly applied. 

 

In general, the aim is to isolate the true effect of the exposure on the outcome. However, 

often the association between an exposure and an outcome is not entirely attributable 

to the exposure, i.e., the effect is biased. If this bias is not accounted for, then the 

estimated effect is not a good representation of the true underlying effect. This could, for 

instance, result in under- or overtreatment in patients and influence clinical decision 

making. 

 

Aim 

In this thesis, I provide non-technical and non-mathematical descriptions of various 

situations in which bias can occur in regression analysis and propose solutions where 

possible. I focus on four potential sources of bias: the estimation of non-linear effects, 

noncollapsibility, causal mediation analysis and competing risks. In each chapter the 

theory is illustrated using an empirical data example from the Longitudinal Aging Study 

Amsterdam or the Amsterdam Growth and Health Longitudinal Study. Some chapters 

additionally contain a simulation study to evaluate model performance and compare 

methods. 

 

Non-linear effects 

A principal assumption of linear-, logistic- and Cox regression is that the exposure is 

linearly related to the outcome. If this assumption is violated, then the effect estimate is 

not a good representation of the true underlying effect and bias is introduced. Many 

researchers are unaware that, when adjusting for confounding, this linearity assumption 

no longer only applies to the exposure-outcome effect, but also to the confounder-

exposure or confounder-outcome associations, depending on the confounder-

adjustment method used. Chapter 2 shows that if the functional form (i.e., the shape) of 

these associations is misspecified, bias might be introduced in an attempt to remove bias. 

Four commonly used confounder-adjustment methods were reviewed: multivariable 
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regression analysis, covariate adjustment using the propensity score (PS), inverse 

probability weighting and double robust estimation.  

 

Multivariable regression analysis requires correct specification of the confounder-

outcome association, whereas inverse probability weighting requires correct 

specification of the confounder-exposure association. Covariate adjustment using the PS 

requires correct specification of both the confounder-exposure and PS-outcome 

association, while double robust estimation requires correct specification of only one of 

these associations. The amount of bias introduced if the functional form is not correctly 

specified depends on the method used, the strength of the confounder-exposure and 

confounder-outcome associations, and the sample size. 

 

If the linearity assumption does not hold, then the non-linear associations present in the 

data have to be modelled explicitly in order to obtain unbiased effects. Chapter 3 

compares general methods to deal with non-linearity such as the use of higher order 

terms and categorization of the exposure variable to spline-based methods such as linear 

spline (LSP) and restricted cubic spline (RCS) regression. Spline functions are 

transformations of the continuous independent variable: the variable is divided in 

multiple intervals, and for each interval the association between that variable and the 

outcome is estimated separately. With LSP, a linear relationship is modelled for each 

interval, whereas with RCS a third degree relationship is modelled. Compared with 

general methods, spline models are flexible and result mostly in greater explained 

variance. If one is interested in reporting the association between the exposure and the 

outcome, then LSP models provide easier interpretations than RCS models. If one is 

interested in predicting the outcome based on specific values of the exposure, then RCS 

models may be preferred. Spline functions can be applied in all kinds of regression 

models and are implemented in most software packages commonly used by 

epidemiologists.  

 

Noncollapsibility 

To identify confounders, researchers often compare exposure effect estimates between 

univariable- and multivariable regression models, using an arbitrary threshold to indicate 

whether a variable is a confounder. Chapter 4 shows that when applied to logistic 

regression coefficients, this change-in-estimate criterion may lead to wrong conclusions 

due to a statistical phenomenon called noncollapsibility. This noncollapsibility effect 

stems from a change in scales that occurs when variables are added to the model. As a 
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result, the difference between univariable- and multivariable exposure effect estimates 

may not only represent confounding bias but also a noncollapsibility effect. Depending 

on the sign and magnitude of the confounding bias and the noncollapsibility effect, the 

change-in-estimate may under- or overestimate the magnitude of confounding bias. 

Because of the noncollapsibility effect, multivariable regression analysis and inverse 

probability weighting return different but valid estimates of the confounder-adjusted 

exposure effect, with their own respective interpretations. Ideally the set of confounders 

is determined in the study design phase and based on subject-matter knowledge. To 

quantify confounding bias, one could compare the unadjusted exposure effect estimate 

and the estimate from an inverse probability weighted model.  

 

Causal mediation analysis 

A mediator explains the effect of the exposure on the outcome, as the exposure causes 

the mediator, and the mediator in turn causes the outcome. Instead of adjusting for a 

mediator, mediation analysis can be used to decompose the total effect of the exposure 

on the outcome into an indirect effect through the mediator and a direct effect after 

removing the influence of the mediator.  

 

With causal mediation analysis, the causal mediation effects can be estimated using 

different approaches, including regression, simulation, imputation and weighting. 

Chapter 5 shows that, if the exposure is continuous and the mediator is binary, then the 

different estimation approaches do not provide the same effect estimates. For these 

models, the regression- and simulation-based approaches require the selection of a 

causal contrast, i.e., the values chosen for the exposure. As a result, the regression- and 

simulation-based approaches return effects that correspond to specific exposure values, 

whereas the imputation- and weighting-based approaches return overall effects. If 

researchers are unaware of the differences between the approaches and the role of the 

causal contrast in the regression- and simulation-based approaches, then the mediation 

effect estimates may be interpreted incorrectly.  

 

Competing risks 

Conventional methods for the analysis of survival data make the assumption of 

independent or noninformative censoring, meaning that individuals who are censored 

have the same future risk of the event of interest as individuals that remain under 

observation. This assumption is not met if individuals who experience a competing event, 

i.e., an event that prevents the event of interest from happening, are censored. Therefore, 
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competing risk analysis should be applied to analyse survival data in the presence of 

competing risks.   

 

Chapter 6 shows that, in the presence of competing risks, the cumulative incidence 

should be estimated using the cumulative incidence function (CIF). Using marginal 

methods such as the Kaplan-Meier method results in an overestimation of the cumulative 

incidence. The extent to which the cumulative incidence is overestimated is related to the 

proportion of individuals that experience the event of interest and the competing event. 

To answer etiologic and prognostic research questions, cause-specific hazard regression 

and subdistribution hazard regression can be used. In cause-specific hazard regression 

individuals that experience a competing event are removed from the risk set, whereas 

they remain in the risk set in subdistribution hazard regression. As a result, the cause-

specific hazard is quantified among individuals that are at risk of developing the event of 

interest, but the subdistribution hazard has no straightforward interpretation. Therefore, 

the subdistribution hazard should only be used to estimate the incidence of the event of 

interest taking the competing risks into account. Dealing with competing risks requires 

careful formulation of the research question (etiologic vs. prognostic), selection of the 

appropriate method for data analysis and interpretation of the results. In addition, it is 

suggested to use both regression models and present the results for all causes for 

complete understanding. 

 

Conclusion 

Although regression models are commonly used in epidemiological research to estimate 

exposure effects, researchers do often not consider the many different ways in which 

bias can occur. In this thesis, I reviewed four different potential sources of bias in 

regression analysis, and proposed solutions where possible. To avoid bias, it is 

recommended that researchers consider the potential sources in the pre-analysis phase 

and adapt their analysis if necessary. In addition, it is recommended to transparently 

report the measures taken to reduce bias and to carefully interpret the results, taking 

any remaining bias into consideration. Finally, I believe that the field of epidemiology 

would benefit from more non-technical and non-mathematical papers on advanced 

topics, as I aimed to contribute to with this thesis. 
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Achtergrond 

Epidemiologen zijn hoofdzakelijk geïnteresseerd in het effect van een determinant op 

een uitkomst. Dit zogenaamde determinant-uitkomst effect wordt vaak geschat met 

behulp van regressieanalyse, waarbij de determinant wordt gerelateerd aan de uitkomst. 

De verdeling van de uitkomst bepaalt welke regressietechniek het meest gepast is om 

het determinant-uitkomst effect zo nauwkeurig mogelijk te schatten. In epidemiologisch 

onderzoek worden lineaire (voor continue uitkomsten), logistische (voor dichotome 

uitkomsten) en Cox regressie (voor survival uitkomsten) het meest toegepast.  

 

Het doel van onderzoek is om het werkelijke effect van de determinant op de uitkomst 

te isoleren, maar vaak is het verband tussen een determinant en een uitkomst niet 

volledig toe te schrijven aan de determinant, oftewel, het effect is vertekend. Deze 

vertekening wordt ook wel bias genoemd. Wanneer bias niet volledig geëlimineerd wordt 

is het geschatte effect geen goede weergave van het werkelijke onderliggende effect. Dit 

kan bijvoorbeeld leiden tot beïnvloeding van de klinische besluitvorming en onder- of 

overbehandeling van patiënten. 

 

Doel 

In dit proefschrift beschrijf ik op niet-technische en niet-wiskundige wijze verschillende 

situaties waarin bias kan optreden in regressieanalyse, en draag ik waar mogelijk 

oplossingen aan om deze bias te voorkomen. De focus ligt op vier mogelijke bronnen van 

bias: de schatting van niet-lineaire effecten, noncollapsibility, causale mediatie-analyse en 

competing risks. In elk hoofdstuk wordt de theorie geïllustreerd aan de hand van data van 

de Longitudinal Aging Study Amsterdam of van het Amsterdamse Groei en Gezondheids 

Onderzoek. Sommige hoofdstukken bevatten tevens een simulatiestudie om de 

prestaties van modellen te evalueren en methoden onderling te vergelijken. 

 

Niet-lineaire effecten 

Een belangrijke aanname van lineaire, logistische en Cox regressie is dat de determinant 

lineair gerelateerd is aan de uitkomst. Wanneer deze aanname wordt geschonden is de 

effectschatting geen goede weergave van het werkelijke onderliggende effect en wordt 

er bias geïntroduceerd. Een confounder is een variabele die gerelateerd is aan zowel de 

determinant als de uitkomst en die niet ligt in het causale pad tussen beiden. Hierdoor 

vertekent een confounder het determinant-uitkomst effect. Veel onderzoekers zijn zich 

er bij het corrigeren voor confounding niet van bewust dat deze lineariteitsaanname niet 

alleen van toepassing is op het determinant-uitkomst effect, maar ook op de confounder-
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determinant en confounder-uitkomst associatie. Op welke van beide associaties de 

aanname van toepassing is, is afhankelijk van de methode die gebruikt wordt om te 

corrigeren voor confounding. Hoofdstuk 2 laat zien dat wanneer de functionele vorm van 

deze associaties verkeerd wordt gespecificeerd, bias geïntroduceerd kan worden in een 

poging om bias te verwijderen. Dit geldt voor vier veelgebruikte methoden om te 

corrigeren voor confounding: multivariabele regressieanalyse, covariate adjustment using 

the propensity score (PS), inverse probability weighting en double robust estimation. 

 

Multivariabele regressieanalyse vereist een correcte specificatie van de confounder-

uitkomst associatie, terwijl inverse probability weighting een correcte specificatie van de 

confounder-determinant associatie vereist. Covariate adjustment using the PS vereist 

een correcte specificatie van zowel de confounder-determinant als de PS-uitkomst 

associatie, terwijl double robust estimation de juiste specificatie van slechts één van 

beide associaties vereist. De hoeveelheid bias die wordt geïntroduceerd wanneer de 

functionele vorm niet correct is gespecificeerd hangt af van de gebruikte methode om te 

corrigeren voor confounding, de sterkte van de confounder-determinant en confounder-

uitkomst associaties en de grootte van de steekproef. 

 

Wanneer de aanname van een lineair verband niet opgaat dienen de niet-lineaire 

associaties expliciet gemodelleerd te worden om unbiased effecten te schatten. 

Hoofdstuk 3 vergelijkt conventionele methoden om met niet-lineariteit om te gaan, zoals 

het gebruik van kwadraattermen en het categoriseren van de determinant, met meer 

geavanceerde methoden zoals linear spline (LSP) en restricted cubic spline (RCS) regressie. 

Splinefuncties zijn transformaties van de continue onafhankelijke variabele: deze 

variabele wordt verdeeld in meerdere intervallen, en voor elk interval wordt de associatie 

tussen die variabele en de uitkomst afzonderlijk geschat. Bij LSP wordt voor elk interval 

een lineair verband gemodelleerd, terwijl bij RCS een derdegraads verband wordt 

gemodelleerd. In vergelijking met conventionele methoden zijn spline-modellen flexibel 

en resulteren ze doorgaans in een meer nauwkeurige schatting van de relatie tussen de 

determinant en de uitkomst. Als men geïnteresseerd is in het rapporteren van de 

associatie tussen de determinant en de uitkomst, dan bieden LSP modellen 

eenvoudigere interpretaties dan RCS modellen. Als men geïnteresseerd is in het 

voorspellen van de uitkomst op basis van specifieke waarden van de determinant, dan 

kunnen RCS modellen de voorkeur hebben. Splinefuncties kunnen worden toegepast in 

verschillende soorten regressiemodellen en zijn verwerkt in de meeste 

softwarepakketten die vaak door epidemiologen worden gebruikt. 
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Noncollapsibility 

Om confounders te identificeren vergelijken onderzoekers vaak schattingen van 

determinant-uitkomstseffecten tussen univariabele en multivariabele regressiemodellen, 

waarbij een willekeurige drempelwaarde (doorgaans 10%) wordt gebruikt om aan te 

geven of een variabele een relevante confounder is. Hoofdstuk 4 laat zien dat het gebruik 

van dit criterium, ook wel het verandering-in-coëfficiënten criterium genoemd, kan leiden 

tot verkeerde conclusies wanneer het wordt toegepast op logistische regressiemodellen. 

Dit komt door noncollapsbility, een statistisch fenomeen dat voortkomt uit een 

verandering in de schaal waarop coëfficiënten worden geschat wanneer variabelen aan 

een logistisch model worden toegevoegd. Als gevolg hiervan is het verschil tussen de 

univariabele- en multivariabele schattingen van het determinant-uitkomst effect niet 

alleen een weergave van bias, maar ook van het noncollapsibility effect. Afhankelijk van 

de richting (m.a.w. positief of negatief) en de omvang van de confounding bias en de 

grootte van het noncollapsibility effect kan de verandering-in-coëfficiënten de werkelijke 

hoeveelheid confounding bias onder- of overschatten. Vanwege het noncollapsibility 

effect leveren multivariabele regressieanalyse en inverse probability weighting 

verschillende schattingen op van het gecorrigeerde determinant-uitkomst effect. Beide 

schattingen zijn correct, maar ze verschillen in hun interpretatie. Idealiter wordt de set 

van confounders bepaald bij het ontwerpen van het onderzoek en wordt deze set 

gebaseerd op vakinhoudelijke kennis. Om de confounding bias te kwantificeren kan de 

ongecorrigeerde schatting van het determinant-uitkomst effect vergeleken worden met 

de schatting van een inverse probability weighted model.  

 

Causale mediatie-analyse 

Een mediator is een variabele die het determinant-uitkomst effect kan verklaren, 

aangezien de determinant van invloed is op de mediator en de mediator op zijn beurt 

van invloed is op de uitkomst. Mediatie-analyse kan gebruikt worden om het totale effect 

van de determinant op de uitkomst op te splitsen in een indirect effect via de mediator 

en een direct effect waarin de invloed van de mediator is weggenomen.  

 

Met causale mediatie-analyse kunnen de causale directe-, indirecte- en totale effecten 

worden geschat met behulp van verschillende methoden, waaronder regressie, simulatie, 

imputatie en weging. Hoofdstuk 5 laat zien dat, als de determinant continu is en de 

mediator dichotoom, deze verschillende methoden verschillende effectschattingen 

opleveren. Regressie en simulatie vereisen de selectie van een causaal contrast, d.w.z. 

specifieke determinantwaarden op basis waarvan de effecten geschat worden. Als gevolg 
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hiervan schatten regressie en simulatie effecten die horen bij deze determinantwaarden, 

terwijl imputatie en weging algemene effecten schatten. Als onderzoekers zich niet 

bewust zijn van de verschillen tussen deze methoden en van de rol van het causale 

contrast bij regressie en simulatie kunnen de mediatie-effecten onjuist worden 

geïnterpreteerd. 

 

Competing risks 

Conventionele methoden voor de analyse van survival data gaan uit van onafhankelijke 

of niet-informatieve censoring. Dit betekent dat personen die gecensored worden 

hetzelfde toekomstige risico op een bepaalde uitkomst hebben als personen die niet 

gecensored worden. Aan deze aanname wordt niet voldaan wanneer personen die een 

competing event meemaken, d.w.z. een event dat ervoor zorgt dat de uitkomst niet meer 

kan optreden, worden gecensored. Om bias te voorkomen kan survival data, in de 

aanwezigheid van competing risks, geanalyseerd worden met competing risk analyse.  

 

Hoofdstuk 6 laat zien dat, in het geval van competing risks, de cumulatieve incidentie 

geschat moet worden met behulp van de cumulatieve incidentiefunctie (CIF). Het gebruik 

van conventionele methoden zoals de Kaplan-Meier methode resulteert in een 

overschatting van de cumulatieve incidentie. De mate van deze overschatting hangt af 

van de verhouding tussen individuen die over de tijd de uitkomst ontwikkelen en 

individuen die een competing event meemaken.  

 

Om etiologische en prognostische onderzoeksvragen te beantwoorden, kunnen cause-

specific hazard regressie en subdistribution hazard regressie gebruikt worden. Bij cause-

specific hazard regressie worden de individuen die een competing event meemaken 

verwijderd uit de studie, terwijl deze bij subdistribution hazard regressie juist deel blijven 

uitmaken van de studie. Als gevolg hiervan berekent de cause-specific hazard het risico 

op de uitkomst voor individuen die hier nog gevaar voor lopen, maar heeft de 

subdistribution hazard geen eenduidige interpretatie. Daarom dient de subdistribution 

hazard enkel te worden gebruikt om, rekening houdend met de competing risks, de 

incidentie van de uitkomst te schatten. De aanwezigheid van competing risks in een 

studie vereist een zorgvuldige formulering van de onderzoeksvraag (etiologisch vs. 

prognostisch), selectie van de juiste methode om de data te analyseren en een juiste 

interpretatie van de resultaten. Bovendien wordt aanbevolen om beide 

regressiemodellen te gebruiken en voor de volledigheid de resultaten voor zowel de 

uitkomst als de competing events te presenteren. 
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Conclusie 

Hoewel regressiemodellen vaak gebruikt worden in epidemiologisch onderzoek om 

determinant-uitkomst effecten te schatten houden onderzoekers vaak geen rekening 

met de vele verschillende manieren waarop bias kan optreden. In dit proefschrift heb ik 

vier mogelijke bronnen van bias in regressieanalyse beschreven en waar mogelijk 

oplossingen aangedragen. Om bias te voorkomen wordt aanbevolen dat onderzoekers 

kritisch nadenken over mogelijke bronnen van bias voordat zij hun data analyseren en zo 

nodig hun analyse aanpassen. Daarnaast wordt aanbevolen om transparant te 

rapporteren over de maatregelen die zijn genomen om bias te verminderen en om de 

resultaten zorgvuldig te interpreteren, daarbij rekening houdend met eventuele 

resterende bias. Ter afsluiting ben ik er van overtuigd dat de epidemiologie baat zou 

hebben bij meer niet-technische en niet-wiskundige artikelen over complexe 

onderwerpen, waar ik met dit proefschrift gepoogd heb aan bij te dragen. 

 



 

 

 



 

 

 

 

 

 

 

 

PhD portfolio 

 



 

 

 

 



PhD portfolio 

213 

 

Courses Year ECTs 

Research Integrity, Amsterdam UMC Doctoral School 2021 2 

Medische Basiskennis, EpidM 2021 8 

Data Processing, University of Amsterdam 2020 6 

Scientific Programming 2, University of Amsterdam 2019 3 

Scientific Programming 1, University of Amsterdam 2019 3 

Regressietechnieken, EpidM 2018 5 

Longitudinale Data Analyse, EpidM 2018 3 

   

Conferences and scientific meetings   

WEON 2021, online 2021 1 

WEON 2019, Groningen 2019 1 

rstudio::conf, Austin 2019 1.14 

Intervision meetings, Amsterdam Public Health Research 

Institute 

2018 - 2021 0.5 

   

Supervision and teaching activities   

Supervision of Nine Droog, BSc Health and Life Sciences, “Has 

the publication of the GRoLTS-checklist improved the reporting 

of results of latent trajectory analyses?” 

2021 1 

Supervision of Rob Rekveld, BSc Health and Life Sciences, “The 

quality of reporting in latent trajectory studies through the 

years: associations with author-, journal- and study 

characteristics” 

2021 1 

Supervision of Sema Atmaca, BSc Health Sciences, “Associatie 

tussen fluctuaties in fysieke activiteit en lichaamsvetverdeling 

onder Nederlandse volwassenen” 

2020 1 

Supervision of Ewa Sillem, BSc Health Sciences, “Daily 

fluctuations in physical activity duration and its relationship 

with the need for recovery from work due to work-related 

fatigue in 42-year old adults” 

2020 1 

Supervision of Carolien de Visser, BSc Health Sciences, 

“Associaties fysieke activiteit en fluctuaties fysieke activiteit op 

slaapkwaliteit onder Nederlandse volwassenen” 

2020 1 

   

   



PhD portfolio 

214 

 

Teaching activities for EpidM 2018 - 2022 2.2 

Teaching activities for the Department of Epidemiology and 

Data Science 

2018 - 2022 4 

   

Other activities   

Building Tidy Tools, rstudio::conf 2019  

Statistical consulting through E&B Xpert 2021 - 2022  

Reviewer for various international journals 2020 - 2022  

Member of the WEON 2021 organization committee 2019 - 2021  

Member of the APH Methodology Junior Board 2019  



 

 

 

 

 

 

 

 

List of publications



 

 

 

 



List of publications 

217 

 

Schuster, N.A., Rijnhart, J.J.M., Twisk, J.W.R. & Heymans, M.W. (2022). Modelling non-linear 

relationships in epidemiological data: the application and interpretation of spline models. 

Frontiers in Epidemiology, 2. 

 

Schuster, N.A., Twisk, J.W.R., Ter Riet, G., Heymans, M.W. & Rijnhart, J.J.M. (2021). 

Noncollapsibility and its role in quantifying confounding bias in logistic regression. BMC 

Medical Research Methodology, 21(1), 136. 

 

Schuster, N.A., De Breij, S., Schaap, L.A., Van Schoor, N.M., Peters, M.J.L. De Jongh, R.T., 

Huisman, M. & Hoogendijk, E.O. (2021). Older adults report cancellation or avoidance of 

medical care during the COVID-19 pandemic: results from the Longitudinal Aging Study 

Amsterdam. European Geriatric Medicine, 12(5), 1075-1083. 

 

De Breij, S., Van Hout, H.P.J., De Bruin, S.R., Schuster, N.A., Deeg, D.J.H., Huisman, M. & 

Hoogendijk, E.O. (2021). Predictors of frailty and vitality in older adults aged 75 years and 

over: results from the Longitudinal Aging Study Amsterdam. Gerontology, 67(1), 69-77. 

 

De Breij, S., Rijnhart, J.J.M., Schuster, N.A., Rietman, M.L., Peters, M.J.L. & Hoogendijk, E.O. 

(2021). Explaining the association between frailty and mortality in older adults: the 

mediating role of lifestyle, social, psychological, cognitive, and physical factors. Preventive 

Medicine Reports, 24, 101589. 

 

Twisk, J.W.R., Rijnhart, J.J.M., Hoekstra, T., Schuster, N.A., Ter Wee, M.M. & Heymans, M.W. 

(2020). Intention-to-treat analysis when only a baseline value is available. Contemporary 

Clinical Trials Communications, 20, 100684. 

 

Schuster, N.A., Hoogendijk, E.O., Kok, A.A.L., Twisk, J.W.R. & Heymans, M.W. (2020). 

Ignoring competing events in the analysis of survival data may lead to biased results: a 

nonmathematical illustration of competing risk analysis. Journal of Clinical Epidemiology, 

122, 42-48. 

 

Pajouheshnia, R., Schuster, N.A., Groenwold, R.H.H., Rutten, F.H., Moons, K.G.M. & Peelen 

L.M. (2020). Accounting for time-dependent treatment use when developing a prognostic 

model from observational data: a review of methods. Statistica Neerlandica, 74(1), 38-51. 

 



List of publications 

218 

 

Hoogendijk, E.O., Smit, A.P., Van Dam, C., Schuster, N.A., De Breij, S., Holwerda, T.J., 

Huisman, M., Dent, E. & Andrew, M.K. (2020). Frailty combined with loneliness or social 

isolation: an elevated risk for mortality in later life. Journal of the American Geriatrics 

Society, 68(11), 2587-2593. 

 

Accepted for publication 

Schuster, N.A., Twisk, J.W.R., Heymans, M.W. & Rijnhart, J.J.M. (2022). Causal mediation 

analysis with a binary mediator: the influence of the estimation approach and causal 

contrast. Structural Equation Modeling: A Multidisciplinary Journal. 

 

Submitted for publication 

Schuster, N.A., Rijnhart, J.J.M., Bosman, L.C., Twisk, J.W.R., Klausch, T. & Heymans, M.W. 

(2022). Misspecification of confounder-exposure and confounder-outcome associations 

leads to bias in effect estimates. 

 

Hoogendijk, E.O., Schuster, N.A., Van Tilburg, T.G., Schaap, L.A., Suanet, B., De Breij, S., Kok, 

A.A.L., Van Schoor, N.M., Timmermans, E.J., De Jongh, R.T., Visser, M. & Huisman, M. (2022). 

The Longitudinal Aging Study Amsterdam COVID-19 exposure index: a cross-sectional 

analysis of the impact of the pandemic on daily functioning of older adults. 

 



 

 

 

 

 

 

 

 

About the author



 

 

 



About the author 

221 

 

Noah Alexandra Schuster was born on May 5th, 1992 in Amsterdam. After attending the 

Vossius Gymnasium, she went on to study for her bachelor’s degree in Health Sciences 

at VU University in Amsterdam. She spent a semester abroad at Eötvös Loránd University 

in Budapest, Hungary, following courses from their master’s program Health Policy, 

Planning and Financing. She wrote her bachelor’s thesis on fluctuations in physical activity 

and physical fitness at the Department of Methodology and Applied Biostatistics under 

the supervision of dr. Trynke Hoekstra. During her studies, Noah rowed for A.A.S.R. Skøll, 

winning medals in different boat classes at both national and international regattas. 

 

In 2016, Noah went to study Epidemiology at Utrecht University. She graduated with a 

double specialization in Medical Statistics and Pharmacoepidemiology. During her 

master’s, she completed a 13-month research project under the supervision of dr. Linda 

Peelen and dr. Romin Pajouheshnia at the Department of Data Science and Biostatistics 

of the Julius Center for Health Sciences and Primary Care. This resulted in her thesis on 

approaches to account for time-varying treatment use in the development of prognostic 

models, which was published in Statistica Neerlandica. After this project, she completed 

another 5-month research project under the supervision of prof.dr. Michael Hauptmann 

at the Department of Psychosocial Research and Epidemiology of the Netherlands 

Cancer Institute. This resulted in a systematic review about diagnostic imaging among 

cancer patients. 

 

In August 2018, Noah started her PhD research on bias in regression analysis at the 

former Department of Epidemiology and Biostatistics at the VU University Medical Center, 

now the Department of Epidemiology and Data Science at the Amsterdam University 

Medical Center, under the supervision of prof.dr. Jos Twisk, dr. Martijn Heymans and dr. 

Judith Rijnhart. Alongside her PhD, she tutored multiple EpidM courses, served as a 

statistical consultant and was a member of the WEON 2021 organization committee. As 

of September 2022, Noah works as a Senior Associate Consultant at Bain & Company. 

 



 

 

 



 

 

 

 

 

 

 

 

Dankwoord 



 

 

 



Dankwoord 

225 

 

Zonder de onvoorwaardelijke en niet aflatende steun van vrienden, collega’s en familie 

was dit proefschrift niet tot stand gekomen. Zij hebben mij de afgelopen jaren 

aangemoedigd, afgeleid en (tevergeefs) geprobeerd te laten ontspannen (JE MOET 

ONTSPANNEN!) wanneer dat nodig was. Onderstaande personen wil ik graag in het 

bijzonder bedanken. 

 

Allereerst mijn promotor, Jos, en mijn copromotor, Martijn. Bedankt voor de vrijheid die 

jullie me hebben geboden om me te ontwikkelen als onderzoeker, en voor jullie 

enthousiasme: na overleg met jullie was ik er altijd van overtuigd dat het heus niet zo 

ingewikkeld was als ik het zelf had gemaakt. Soms weliswaar onterecht, maar voor de 

moraal deed het wonderen. Ook waren jullie overtuigd van een tijdige afronding van dit 

proefschrift voordat ik dat zelf was (“Je loopt goed op schema, en dit zeg ik niet om je 

gerust te stellen. Nee, dit zeg ik wél om je gerust te stellen, maar ik meen het ook echt”). 

 

Judith, ik kan niet in woorden uitdrukken hoe dankbaar ik je ben voor je tijd, inzet en 

betrokkenheid bij mijn proefschrift. Wat begon met een kop koffie in de bibliotheek in 

Zwolle heeft uiteindelijk geleid tot een heel fijne samenwerking en een aantal artikelen 

waar ik ontzettend trots op ben. Hoewel het soms even duurde voordat bij mij het kwartje 

viel (een change in scales?!) bleef jij altijd geduldig en vol vertrouwen. Ik had me de 

afgelopen vier jaar geen fijnere collega en vriendin, en uiteindelijk ook copromotor, 

kunnen wensen. Dankjewel! Matt, thank you for your help behind the scenes. 

 

De leden van de leescommissie, prof.dr. Geert van der Heijden, prof.dr. Martijn Huisman, 

prof.dr. Frank van Lenthe, dr. Michiel de Boer en dr. Trynke Hoekstra wil ik graag hartelijk 

bedanken voor de tijd die zij hebben genomen om mijn proefschrift te lezen. 

 

Sascha en Emiel, mijn lieve BBK’ers en Vrolikstraathuishouden in barre covid-tijden, 

zonder jullie hadden de afgelopen jaren er heel anders uitgezien. Sowieso een stuk 

nuchterder, maar daarmee ook een stuk minder plezierig. Sas, bedankt voor alle 

competing risk-overleggen, kaasplankjes, duinwandelingen en avonturen in Rome en 

Antwerpen (“ik heb uw nummer gerecupereerd”), maar vooral voor het feit dat je zo’n 

lieve en betrokken vriendin bent. Emiel O., dankzij jou zijn de afgelopen jaren tot in detail 

gedocumenteerd ([disclaimer]). Bedankt voor de bilateraaltjes en al je goede adviezen, 

zowel proefschriftinhoudelijk als op het gebied van olijfolie, stokbrood, pizza, aardbeien, 

gin, en natuurlijk Bella Blue (je bent zeer eclectisch!). Jij leerde me dat Goldstrike ook 

gewoon bij de lunch kan (met bijbehorend ademhalingsritueel) en introduceerde 
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#intervaldry. Ik ben ontzettend blij dat jullie mijn paranimfen zijn. Lisa, op donkere 

kelderdagen was jij altijd een lichtpuntje. Bedankt voor je eeuwige optimisme, je goede 

humeur, je openheid en alle gezelligheid op kantoor en daarbuiten. Silvia, Priyanta, Eva 

en de rest van de GT-groep, ik heb genoten van alle borrels. Ik ga het nog missen om ’s 

avonds met mijn fiets door het gebouw te lopen als ik weer eens vergeten was dat het 

hek al eerder sluit. Niels, helaas is het ondanks de algoritmes nooit van caffè gekomen… 

 

Ook de overige LASA collega’s wil ik graag bedanken voor hun betrokkenheid en de 

gezellige lunches en borrels. Marjolein en Yvonne, bedankt voor de fijne samenwerking 

voor alles rondom EpidM.  

 

Lisa, Emma and Zakile, whilst many people came and went in our Intervision group, you 

were always there to put my doubts into perspective. Thanks! 

 

Trynke, mijn epidemiologiecarrière begon in 2016 toen ik onder jouw begeleiding mijn 

bachelorscriptie schreef, en zes jaar later sluit ik ‘m af met jou in mijn oppositie. Bedankt 

voor de ontzettend fijne en leerzame samenwerking. Sema, Ewa, Carolien, Rob en Nine, 

ik hoop dat jullie net zo veel plezier hebben beleefd aan het schrijven van jullie scripties 

als ik destijds. Ik vond het bijzonder zo nauw betrokken te zijn en jullie met de week te 

zien groeien in het onderzoek. 

 

Romin and Linda, I could not have wishes for better and more caring supervisors during 

my 13-month internship at the Julius Center. I can only hope that I’ve been able to offer 

my students the same level of support as you offered me at the time. 

 

Mijn lieve oud-collega’s van Chiever, ondanks dat ik de afgelopen jaren niks hoefde op te 

zoeken in het BBIE-register heb ik veel van wat ik in de zeven jaar bij jullie heb geleerd 

kunnen toepassen tijdens mijn PhD. Manon, ik hoop dat we in de toekomst weer kunnen 

samenwerken en dat ik van je kan blijven leren. Joke, ik vond het een genot al die jaren 

naast je te mogen werken. 

 

Om in epidemiologie-termen te spreken: de relatie tussen mijn fysieke en mentale 

gezondheid is zeer significant (p < 0.005). Franc, bedankt voor alle (fysio-)therapiesessies 

en je (soms vergeefse) pogingen mij mijn aandacht te laten richten op de dingen die wél 

goed gaan. Marius & team, zonder jullie was ik gek geworden. Bedankt! 
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Lieve Viet, je bent natuurlijk maar een hobby-epidemioloog, maar zoals Whitney het zo 

mooi zegt: I learned from the best. Ik heb bij jou kunnen afkijken hoe het moet en had 

me de afgelopen jaren geen betere en lievere vriendin, huisgenoot (ondanks dat je vooral 

op vakantie was…), achtergrondzangeres en sous-chef kunnen wensen. Bedankt voor je 

eeuwige steun, zelfs vanaf de andere kant van de wereld. Ik ben blij dat ik je straks weer 

dichtbij me heb! Oscar, thank you for opening your home to me (and sharing Rio’s love 

with me). L’chaim! Jabu, I can’t wait to take you to Sin+Tax. Daphne, ondertussen heb ik je 

al een stuk langer wel in mijn leven dan niet, en daar ben ik ontzettend blij mee. We zijn 

weliswaar ouder geworden, maar wijs waren we altijd al. Ik prijs mezelf gelukkig dat ik 

altijd bij je terecht kan voor een luisterend oor, goede adviezen en classy boze brieven. 

Een eervolle vermelding voor Hans, die met zijn telefonische wiskundebijlessen onbewust 

de basis legde voor dit proefschrift. Je wordt gemist. Marjo, mijn lieve majoor. Door zon 

en regen, wind mee of tegen, je schreeuwt me al sinds 2010 naar de finish. Vroeger in de 

letterlijke zin van het woord, tegenwoordig (gelukkig) slechts nog figuurlijk. Van alle 

oudjaarsavonden in het buitenland tot ons favoriete plekje in de Marktkantine (rip), met 

jou is het altijd een feestje. Love you apie! Mariek, bedankt voor de fijne vakanties (met 

als absoluut hoogtepunt natuurlijk Plüderhausen), alle wijntjes en Aperol Spritz die ik voor 

je heb moeten opdrinken, alle voicememo’s en vlogjes, de wekelijkse kooksessies, de 

Medische Basiskennisbootcamp, DJ Partyflock en alle circuskunstjes in de sportschool. 

Door jou realiseer ik me af en toe weer wat voor prestatie zo’n proefschrift eigenlijk is. 

Tom, bedankt voor de cocktails, je zangkunsten en de 40 heerlijke uren in Londen. Je weet 

wat ze zeggen he, als het niet goed is…. Lau, mijn IDFA-vriendin, ik houd van onze 

boekentips, filmbezoekjes, etentjes en fijne gesprekken. Bij jou kan ik altijd terecht als ik 

het even niet meer weet. Wil, waar die paar maanden aftrainen in Utrecht wel niet goed 

voor waren. Ik ben blij dat we elkaar nog altijd zien. Bedankt voor al je telefoontjes en 

goede adviezen. Anne, bedankt voor alle gezelligheid. Ik ben nog nooit zo goed op de 

hoogte geweest van het wel en wee van BN’ers (en hun aanwezigheid op het 

Scheldeplein) als in het afgelopen jaar. 

 

John, tijgervader, ik weet dat je er trots op bent dat je niet langer de enige dr. Schuster 

bent. David, bedankt voor je inspirerend leiderschap (!) en goede adviezen. Van jou leer 

ik hoe je ondanks belachelijke successen tóch bescheiden kan blijven. Dear Paula, missy, 

thank you for all your support. Bel, bedankt dat ik altijd bij jou kon komen ontspannen in 

Rome en Lissabon, en voor alle ongevraagde knuffels. Mar, zoals je moeder altijd zei: je 

kan niet gek worden wanneer je wil. Ik heb het geprobeerd de afgelopen jaren. Bedankt 

voor je goede zorgen, niet alleen de afgelopen vier jaar maar ook alle jaren daarvoor. 




