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I see nothing. 

We may sink and settle on the waves. The sea will drum in my ears. The white 
petals will be darkened with seawater. They will float for a moment and then 
sink. Rolling over the waves will shoulder me under. Everything falls in a 
tremendous shower,  

Dissolving me. 

     - Virginia Woolf  
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Coastal floods are one of the deadliest and costliest of natural hazards, triggering or 
contributing to economic disruption, displacement, (mental) health implications, 
environmental disasters, poverty traps, and geomorphic change. In the coming century, 
coastal communities are projected to face increases in coastal flood risk, even if the 
Paris Agreement’s aim of keeping global warming below a 2°C increase by the end of 
the 21st century will be met. Together, the increases in sea level and a possible change 
in storminess will lead to increased flood hazards, as well as threats to shorelines, 
wetlands, and coastal development. Moreover, flood hazard is expected to increase 
because of subsidence, for instance due to groundwater extraction in many deltas and 
estuaries. Such climate shocks may exacerbate current poverty levels and catalyse the 
formation of poverty traps in low- and middle-income countries. Global coastal flood 
risk is also expected to increase in the future because of increasing exposure, due to 
growth in population and wealth, and economic activities in flood-prone areas. 

To prevent this increase in coastal flood risk, or even reduce risk below today’s levels, 
adaptation strategies are necessary. Given the need for coastal adaptation to tackle the 
expected increase in coastal flood risk, it is critical to improve our understanding of 
global coastal flood risk and the effectiveness of adaptation strategies on flood risk 
benefits. Flood risk can be reduced in many ways, including structural measures, 
ecosystem-based adaptation, or a combination of these (so-called hybrid solutions). To 
make informed decisions on what measures to take, it is important to better understand 
the effectiveness of such coastal flood risk adaptation strategies, preferably beyond just 
monetary terms. Moreover, it is essential to improve understanding of coastal flood 
hazard prediction. Therefore, the overall aim of this thesis is to disentangle drivers of 
coastal flood risk and assess costs and benefits of adaptation strategies. By doing so, the 
thesis improves upon conventional flood risk assessments by taking steps into the 
direction of integrated and holistic assessments that include Nature-based Solutions and 
valuing of adaptation beyond monetary terms. 

A better understanding and prediction of the characteristics of sea levels can contribute 
to improving coastal adaptation and management. Therefore, in chapter 2, deep 
learning approaches are explored for predicting surge levels at the global scale. For 738 
tide stations, an ensemble approach was developed and applied to predict hourly surges 
using four different types of Neural Networks (NN), using various atmospheric variables 
as predictors. To evaluate the NN model performance at each station, the results were 
benchmarked against a simple probabilistic model based on climatology. To explore 
how increasing the NN design complexity affects model performance, hidden layers 
were added, and the spatial footprint used around each station to extract the predictor 
variables was enlarged. Our results show that the NN models are able to capture the 
temporal evolution of surges using a deep learning architecture of two hidden layers, a 
spatial footprint of 1.25 degrees centred on the station of interest with input variables of 
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mean sea level pressure, wind speed parameters, and their derivatives. We found that 
they outperform large-scale hydrodynamic models, and we observe similar 
performance patterns across all the NN ensemble models. 

Chapter 3 explores benefit-cost analysis for coastal flood protection and attributes this 
to different drivers of flood risk: sea-level rise, socio-economic change, subsidence, and 
optimizing to current conditions. A methodological framework has been created to 
assess the following steps: (1) flood risk estimation; (2) adaptation costs estimation; (3) 
benefit-cost analysis for four adaptation objectives; and (4) attribution of the total costs 
to the different drivers. The results of chapter 3 show that Expected Annual Damage 
(EAD) increases by a factor of 150 between 2010 and 2080, if no adaptation were to 
take place, and that 15 countries account for approximately 90% of this increase. All 
four adaptation objectives show potential to significantly reduce (future) coastal flood 
risk at the global scale in a cost-effective manner. 

To make an informed decision on adaptation measures, it is also important to 
understand how non-structural measures like Nature-based Solutions, can reduce that 
risk. This is addressed in chapters 4-6, which present novel methods of global scale 
assessments on reduction of future flood risk through Nature-based Solutions and 
hybrid strategies. These studies extend on the coastal flood risk assessment framework 
developed in chapter 3 by assessing the effects of both foreshore vegetation and 
structural measures on global flood risk reduction under socioeconomic and climate 
change. In chapter 4, we show that conserving foreshore vegetation is an effective 
measure and can result in considerable flood risk reduction under future projections of 
sea-level rise and socioeconomic change. Chapter 5 presents the first global-scale 
assessment of mangrove restoration and (future) potential flood risk reduction. We 
show that a large share of future flood risk of US$40-90 billion (~9% of total EAD for 
both scenarios assessed) may be reduced by implementing mangrove restoration and 
that restoring mangroves could place up to 820,000 people at a lower risk of coastal 
flooding. Chapter 6 combines previous chapters into an assessment of hybrid 
adaptation strategies at the global scale. Implementing Nature-based Solutions will 
increase the feasibility of adaptation strategies for two-thirds (68%) of the regions 
assessed. Globally, we estimate a total reduction in adaptation costs of 8% by 
implementing Nature-based Solutions, compared to using structural measures only. 

In chapter 5 and 6, this thesis shows the importance of using more indicators than 
economic ones alone, in order to assess the benefits of measures. Here, we use poverty 
indicators to understand the range of impacts of adaptation on different people. We 
show that the effects of Nature-based Solutions and flood hazards are unevenly 
distributed across the population in terms of poverty. Specifically, in many places the 
poorest people are relatively more exposed to flood hazards but can correspondingly 
benefit relatively much from Nature-based Solutions. As such, implementing adaptation 
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measures, such as mangrove restoration, in Low- and Middle-Income Countries 
(LMICs) can contribute to the resilience of people in poverty, poverty alleviation and 
help tackle poverty traps. 

The results of this thesis indicate that it is important to enrich traditional flood risk 
strategies with Nature-based Solutions and more holistic hybrid approaches. In order 
to further advance this direction in the future, several remaining scientific challenges 
include: (1) enhanced hazard prediction by improving flood inundation models, paving 
the way towards improved early warning systems; (2) refining flood risk assessment by 
using object-based assessments instead of aggregation methods for protection levels and 
exposure information; (3) improving the simulation of adaptation strategies by including 
a myriad of adaptation measures and expanding on this by using dynamic approaches; 
and (4) next to including poverty analysis, incorporate further co-benefits of adaptation 
measures into flood risk assessments, such as ecosystems services related to NBS. 
Overall, the results of this thesis contribute to international initiatives such as the Sendai 
Framework for Disaster Risk Reduction and can be used to inform policy makers and 
development agencies on risks from global to regional level. For example, the flood risk 
estimates, costs and benefits of dikes and levees of chapter 3 are used in the Aqueduct 
Floods web tool (www.wri.org/floods), which enables users to assess risk and adaptation 
options anywhere in the world.  

http://www.wri.org/floods
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Kustoverstromingen behoren tot de dodelijkste en duurste natuurrampen en 
veroorzaken of dragen bij tot economische ontwrichting, ontheemding, gevolgen voor 
de (geestelijke) gezondheid, milieurampen, armoedevallen en geomorfische 
veranderingen. In de komende eeuw zullen kustgemeenschappen naar verwachting te 
maken krijgen met een toename van het overstromingsrisico, zelfs als de doelstelling 
van de Overeenkomst van Parijs om de opwarming van de aarde tegen het einde van 
de 21e eeuw onder de 2°C te houden, wordt gehaald. De stijging van de zeespiegel en 
een mogelijke verandering van de stormintensiteit zullen samen leiden tot een verhoogd 
overstromingsgevaar, alsook tot bedreigingen voor kustlijnen, watergebieden en 
kustontwikkeling. Bovendien wordt verwacht dat het overstromingsgevaar zal toenemen 
door bodemdaling, bijvoorbeeld als gevolg van grondwateronttrekking in vele delta's en 
estuaria. Dergelijke klimaatschokken kunnen de huidige armoedeniveaus verergeren 
en de vorming van armoedevallen in lage- en midden-inkomenslanden katalyseren. 
Verwacht wordt dat het mondiale overstromingsrisico aan de kust in de toekomst ook 
zal toenemen door de toenemende blootstelling als gevolg van de bevolkings- en 
welvaartsgroei en de economische activiteiten in overstromingsgevoelige gebieden. 

Om deze toename van het overstromingsrisico in kustgebieden te voorkomen of zelfs 
het risico te verminderen tot onder het huidige niveau, zijn adaptatiestrategieën nodig. 
Gezien de noodzaak van adaptatie aan de kust om de verwachte toename van het 
overstromingsrisico aan te pakken, is het van cruciaal belang ons inzicht in het 
wereldwijde overstromingsrisico aan de kust en de doeltreffendheid van 
adaptatiestrategieën op het gebied van overstromingsrisico vermindering te verbeteren. 
Het overstromingsrisico kan op vele manieren worden verminderd, onder meer via 
structurele maatregelen, adaptatie op basis van ecosystemen, of een combinatie daarvan 
(de zogenaamde hybride oplossingen). Om met kennis van zaken te kunnen beslissen 
welke maatregelen moeten worden genomen, is het van belang een beter inzicht te 
krijgen in de doeltreffendheid van dergelijke strategieën voor adaptatie om het 
overstromingsrisico te verminderen aan de kust, bij voorkeur in meer dan alleen 
geldelijke termen. Bovendien is het van essentieel belang om meer inzicht te krijgen in 
de voorspelling van het overstromingsgevaar aan de kust. Daarom is het algemene doel 
van dit proefschrift om de drijvende krachten achter het overstromingsrisico van 
kustgebieden te ontwarren en de kosten en baten van adaptatiestrategieën te 
beoordelen. Op deze manier verbetert de dissertatie conventionele 
overstromingsrisicobeoordelingen door stappen te zetten in de richting van 
geïntegreerde en holistische beoordelingen die ook op de natuur gebaseerde 
oplossingen omvatten en adaptatie niet alleen in geldelijke termen waarderen. 

Een beter begrip en voorspelling van de karakteristieken van stormvloeden kan 
bijdragen aan het verbeteren van kustadaptatie en -beheer. Daarom worden in 
hoofdstuk 2 deep learning-benaderingen onderzocht voor het voorspellen van 
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stormvloeden op wereldschaal. Voor 738 getijdenstations is een ensemble-benadering 
ontwikkeld en toegepast voor het voorspellen van de temporele evolutie van 
stormvloeden per uur met behulp van vier verschillende typen Neurale Netwerken 
(NN), waarbij verschillende atmosferische variabelen als voorspellers zijn gebruikt. Om 
de prestaties van het NN-model op elk station te evalueren, werden de resultaten 
vergeleken met een eenvoudig probabilistisch model op basis van klimatologie. Om na 
te gaan hoe de complexiteit van het NN-ontwerp de prestaties van het model beïnvloedt, 
werden verborgen lagen toegevoegd in de NN en werd de ruimtelijke voetafdruk die 
rond elk station werd gebruikt om de voorspellende variabelen te extraheren, vergroot. 
Onze resultaten tonen aan dat de NN-modellen in staat zijn de temporele evolutie van 
vloedgolven te vatten met behulp van een deep learning architectuur van twee verborgen 
lagen, een ruimtelijke voetafdruk van 1,25 graden gecentreerd rond het betrokken 
station met inputvariabelen van gemiddelde zeespiegeldruk, windsnelheidsparameters 
en hun derivaten. We ontdekten dat ze soms beter presteren dan grootschalige 
hydrodynamische modellen, en we nemen vergelijkbare prestatiepatronen waar bij alle 
NN-ensemble-modellen. 

Hoofdstuk 3 verkent de baten-kosten analyse voor kustbescherming tegen 
overstromingen en schrijft dit toe aan verschillende drijvende krachten achter het 
overstromingsrisico: zeespiegelstijging, sociaal-economische veranderingen, 
bodemdaling, en optimalisatie naar de huidige omstandigheden. Er is een 
methodologisch kader gecreëerd om de volgende stappen te beoordelen: (1) schatting 
van het overstromingsrisico; (2) schatting van de adaptatiekosten; (3) baten-
kostenanalyse voor vier adaptatiedoelstellingen; en (4) toerekening van de totale kosten 
aan de verschillende drijvende krachten. Uit de resultaten van hoofdstuk 3 blijkt dat de 
verwachte jaarlijkse schade tussen 2010 en 2080 met een factor 150 toeneemt als er 
geen adaptatie plaatsvindt, en dat 15 landen gezamenlijk ongeveer 90% van deze 
toename zullen ervaren. Alle vier adaptatiedoelstellingen bieden de mogelijkheid om 
het (toekomstige) risico van kustoverstromingen op mondiale schaal op een 
kosteneffectieve manier aanzienlijk te verminderen. 

Om een weloverwogen beslissing over adaptatiemaatregelen te kunnen nemen, is het 
ook belangrijk te begrijpen hoe niet-structurele maatregelen, zoals op de natuur 
gebaseerde oplossingen, dat risico kunnen verminderen. Dit wordt behandeld in de 
hoofdstukken 4 t/m 6, waarin nieuwe methoden worden gepresenteerd voor 
beoordelingen op wereldschaal van de vermindering van het toekomstige 
overstromingsrisico door middel van op de natuur gebaseerde oplossingen en hybride 
strategieën. Deze studies breiden het in hoofdstuk 3 ontwikkelde raamwerk voor de 
beoordeling van overstromingsrisico's aan de kust uit door de effecten van zowel 
vooroevervegetatie als structurele maatregelen op de wereldwijde vermindering van het 
overstromingsrisico onder sociaaleconomische en klimaatveranderingen te beoordelen. 
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In hoofdstuk 4 tonen we aan dat de instandhouding van de vooroevervegetatie een 
effectieve maatregel is en kan resulteren in een aanzienlijke 
overstromingsrisicovermindering onder toekomstige projecties van zeespiegelstijging en 
sociaaleconomische veranderingen. Hoofdstuk 5 presenteert de eerste beoordeling op 
wereldschaal van mangroveherstel en de (toekomstige) potentiële 
overstromingsrisicovermindering. Hierin toon ik aan dat een groot deel van het 
toekomstige overstromingsrisico van 40-90 miljard US$ (~9% van de totale EAD voor 
beide beoordeelde scenario's) kan worden verminderd door de uitvoering van 
mangroveherstel en dat herstel van de mangroven tot 820.000 mensen een lager risico 
op overstromingen van de kust kan opleveren. Hoofdstuk 6 combineert de voorgaande 
hoofdstukken tot een beoordeling van hybride adaptatiestrategieën op wereldschaal. De 
implementatie van op de natuur gebaseerde oplossingen zal de haalbaarheid van 
adaptatiestrategieën voor tweederde (68%) van de beoordeelde regio's vergroten. 
Wereldwijd schatten we een totale reductie in adaptatiekosten van 8% door het 
implementeren van op de natuur gebaseerde oplossingen, vergeleken met het gebruik 
van alleen structurele maatregelen. 

In hoofdstuk 5 en 6 laat dit proefschrift zien dat het belangrijk is om meer indicatoren 
te gebruiken dan alleen economische, om de voordelen van maatregelen te beoordelen. 
Hier gebruiken we armoede-indicatoren om de verschillende effecten van adaptatie op 
verschillende mensen te begrijpen. We laten zien dat de effecten van adaptatie en 
overstromingsrisico's ongelijk verdeeld zijn over de bevolking in termen van armoede. 
Met name op veel plaatsen zijn de armste mensen relatief meer blootgesteld aan 
overstromingsgevaren, maar kunnen dienovereenkomstig relatief veel profiteren van op 
de natuur gebaseerde oplossingen. Als zodanig kan de uitvoering van 
adaptatiemaatregelen, zoals het herstel van mangroves, in lage- en 
middeninkomenslanden bijdragen aan de veerkracht van mensen die in armoede leven, 
aan armoedeverlichting en aan het aanpakken van armoedevallen. 

De resultaten van dit proefschrift geven aan dat het belangrijk is om traditionele 
overstromingsrisicostrategieën te verrijken met op de natuur gebaseerde oplossingen en 
meer holistische hybride benaderingen. Om deze richting in de toekomst verder uit te 
werken, zijn er nog verschillende wetenschappelijke uitdagingen, zoals (1) verbeterde 
voorspelling van overstromingen door verbetering van inundatiemodellen, waarmee de 
weg wordt vrijgemaakt voor verbeterde systemen voor vroegtijdige waarschuwing; (2) 
verfijning van de beoordeling van overstromingsrisico's door gebruik te maken van 
objectgebaseerde beoordelingen in plaats van aggregatiemethoden voor 
beschermingsniveaus en blootstellingsinformatie; (3) verbetering van de simulatie van 
adaptatiestrategieën door een groot aantal adaptatiemaatregelen op te nemen en dit uit 
te breiden door gebruik te maken van dynamische benaderingen; en (4) naast het 
opnemen van armoedeanalyse, het opnemen van verdere nevenvoordelen van 
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adaptatiemaatregelen in overstromingsrisicobeoordelingen, zoals ecosysteemdiensten 
gerelateerd aan natuur gebaseerde oplossingen. Over het geheel genomen dragen de 
resultaten van dit proefschrift bij aan internationale initiatieven zoals het Sendai 
Framework for Disaster Risk Reduction en kunnen ze worden gebruikt om 
beleidsmakers en ontwikkelingsorganisaties te informeren over risico's van mondiaal tot 
regionaal niveau. De schattingen van overstromingsrisico's, kosten en baten van 
structurele maatregelen, zoals dijken, van hoofdstuk 3 worden bijvoorbeeld gebruikt in 
de Aqueduct Floods webtool (www.wri.org/floods), waarmee gebruikers risico's en 
aanpassingsopties overal ter wereld kunnen beoordelen. 

http://www.wri.org/floods
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Key Concepts 
 

Glossary Definitions 

Adaptation Measures, strategies, and objectives. Disaster Risk 
Reduction (DRR) measures focusing on flood impact 
reduction through implementation of one or more 
Adaptation Measures (i.e., structural measures, mangrove 
restoration, and conserving foreshore vegetation). A 
measure could be implemented to reach certain 
Adaptation Objectives (i.e., keeping protection standards 
or EAD constant through time). Combination of measures 
to reach adaptation objectives are defines as Adaptation 
Strategies (such as Nature-based and Hybrid Solutions). 

Benefit-Cost Ratio 
(BCR) 

Economic indicator to evaluate efficiency of certain 
adaptation measures, objectives, or strategies in which the 
ratio between total discounted benefits and costs over a 
certain time horizon is calculated. 

Conservation of 
foreshore vegetation 

Adaptation measure that focusses on maintenance of 
existing foreshore vegetation. 

Continuous Ranked 
Probability Score 
(CRPS) 

The Continuous Ranked Probability Score (CRPS) is a 
widely used metric within hydrology and coastal science for 
probabilistic prediction. This CRPS is sensitive to the 
entire permissible range of the parameter of interest and 
has a clear interpretation as for deterministic prediction it 
boils down to the Mean Absolute Error (MAE), which is a 
common measure of errors by taking the mean of absolute 
deviations between paired observations. The CRPS can de 
decomposed into three components: 1) the Reliability 
(RELI) component indicates whether the distribution of 
the predicted values have similar statistical properties to the 
observed time series; 2) the Uncertainty component (U) 
represents the CRPS if only a reference (e.g., 
climatological) probabilistic prediction is available; and 3) 
Resolution (Resol) component evaluates the improvement 
of the neural network model ensemble predictions to the 
average ensemble spread and the observed outliers. To 
improve interpretation of the results we used the Scaled 



Key Concepts 
 

23 
 

CRPS (CRPSS) that shows the skill gain compared to that 
of the reference ensemble predictions from the 
probabilistic climatology distribution (based on Chapter 2 
and Hersbach, 2000). 

Expected Annual 
Affected Population 
(EAAP) / Expected 
Annual Population 
Exposed (EAPE) 

Expected Annual Affected Population (EAAP) or 
Expected Annual Population Exposed (EAPE) is the total 
estimated people exposed to flooding per year if all impacts 
of events would be spread out equally over time. 

Expected Annual 
Damages (EAD) 

Expected Annual Damages (EAD) are the estimated 
damages per year if all damages of flood events would be 
equally spread out over time. For example, a flood event 
that statistically occurs every 100 years would contribute to 
the estimation of EAD by dividing the damages of this 
event by 100 (because EAD is estimated as annual). 

Flood Risk The potential damages of a flooding events to assets which 
could occur to a system, society, or a community in a 
specific period of time, determined probabilistically as a 
function of flood hazard, exposure, and vulnerability 
(based on UNDRR, 2016). 

Foreshore vegetation Foreshore vegetation consists of the vegetation, such as 
mangroves and salt marshes, present in lagoons, estuaries, 
and deltas. It can provide flood protection benefits as it 
decreases wave runup due to frictional forces. 

Hybrid Solutions Adaptation strategy that combines structural measures with 
ecosystem-based approaches or Nature-based Solutions. 

Low- and Middle-
Income Countries 
(LMICs) 

Countries that have a gross national income lower than a 
certain threshold (as defined by the World Bank). 

Nature-based 
Solutions 

Nature-based Solutions are management actions where 
people make use of nature and ecosystems protect people 
and assets, and safeguard biodiversity. In this thesis Nature-
based Solutions consist of conserving foreshore vegetation 
(mangroves and salt marshes) and mangrove restoration. 

Nature Contribution 
to People (NCP) 

Nature Contributions to People (NCP) consists of positive 
and negative contributions to people’s quality of life 
through a cultural and socioeconomic context in space and 
time. Examples of positive contributions of NCP for 
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foreshore vegetation are carbon storage, enhancing 
fisheries, and flood protection (based on Díaz et al., 2018). 

Neural Network (NN) A Neural Network (NN) is a series of algorithms consisting 
of structured neurons that captures nonlinear processes by 
mimicking the way the human brain operates. The 
Artificial Neural Network (ANN), the most general form of 
NN, has been extensively applied in various fields of 
science to capture nonlinear underlying relationships. The 
Long Short-Term Memory (LSTM) is a derivation of the 
Recurrent Neural Network (RNN) in that it captures 
sequence-to-sequence patterns in their internal state as 
memory but has advantages over the conventional RNN as 
they can selectively store long term information. The 
Convolutional Neural Network (CNN) is a class of NN 
models that works well in capturing spatial features, shapes, 
and texture due to its shared weight architecture and is thus 
often applied for image recognition purposes. The 
Convolutional LSTM (ConvLSTM) combines sequence-
to-sequence learning with convolutional layers and emerges 
in current studies with promising applications in capturing 
spatiotemporal relationships (defined as such in chapter 2). 

Net Present Value 
(NPV) 

Economic indicator to evaluate efficiency of certain 
adaptation measures, objectives, or strategies in which the 
difference between total discounted benefits and costs over 
a certain time horizon is calculated. 

Protection standard Safety standards for flooding are expressed in protection 
standards, which denotes the exceedance probability of a 
flood occurring. For example, with a protection standard of 
100-years is meant that protection is designed to withstand 
a flooding that statistically occurs once every 100 years. 

Representative 
Concentration 
Pathway (RCP) 

Representative Concentration Pathways (RCP) were 
developed to explore the magnitude and extent of climate 
change under different levels of forcing that contains 
emissions and land-use trajectories (based on van Vuuren 
et al., 2014). 

Restoration of 
mangroves 

Adaptation measure that focusses on restoring former 
degraded mangroves in areas that show potential that 
restoration can take place based on key environmental 
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components that influence the ease of restoration (based 
on Worthington et al., 2018). 

Scenario Plausible future narratives or storylines describing the 
combination of changes in climate system (RCP) and 
socioeconomic aspect of society (SSP). For this thesis the 
combinations of RCP4.5/SSP2, narrative aligning with the 
Paris Agreement (Hope et al., 2017), and RCP8.5/SSP5, a 
fossil-fueled world (Kriegler et al., 2017), has been used 
often. 

Shared 
Socioeconomic 
Pathways (SSP) 

Shared Socioeconomic Pathways (SSP) describe plausible 
alternative changes in aspects of society such as 
demographic, economic, technological, social, governance 
and environmental factors, that include both qualitative 
descriptions of broad trends in development over large 
world regions (narratives) as well as quantification of key 
variables that can serve as inputs to land-use change models 
(based on O’Neill et al., 2017). 

Structural measures Engineering based measures such as dikes and levees. 

Sustainable 
Development Goals 
(SDG) 

The Sustainable Development Goals (SDGs), such as 
‘climate action’, ‘No poverty’, and ‘Sustainable Cities and 
Communities’, is an initiative by the United Nations that 
raises awareness to end poverty, protect the planet, and 
ensure that by 2030 all people enjoy peace and prosperity 
(based on https://www.undp.org/sustainable-development-
goals). 
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1.1 Coastal flood risk and adaptation 
Coastal floods are one of the deadliest (Callaghan et al., 2014; Creach et al., 2016; 
CRED, 2015) and costliest (Hinkel et al., 2014; Kron, 2012.; Wahl et al., 2017) of 
natural hazards, triggering or contributing to economic disruption (Koks et al., 2019; 
Mandel et al., 2021), displacement (Hauer et al., 2019; Robert McLeman, 2018), 
(mental) health implications (Olanrewaju et al., 2019; Tong, 2017), environmental 
disasters (Rakib et al., 2019), poverty traps (Hallegatte & Rozenberg, 2017; Winsemius 
et al., 2018), and geomorphic change (Phillips, 2018; Vousdoukas et al., 2020). Coastal 
zones are among the most highly developed areas in the world, containing a multitude 
of human settlements (Neumann et al., 2015), critical infrastructure (Koks et al., 2019) 
and ecosystem services (Erwin, 2009). Moreover, coastal zones are attractive areas for 
human settlement and almost two-thirds of urban settlements with population higher 
than 5 million are at least partly located in coastal zones (McGranahan et al., 2016). 
When extreme weather events cause storm surge events, these coastal zones can be 
threatened. Together, mean sea level variations, tides, waves and storm surges resulting 
from the passing of low pressure systems and strong winds (Idier et al., 2019; 
Woodworth et al., 2019) are putting developed areas at risk of flooding. 

The risk that human settlements can experience from coastal flooding can be defined 
as a function of hazard, exposure and vulnerability (Kron, 2005); where physical 
parameters such as coastal flood depth, duration and extent represent the hazard; 
exposure is defined as the situation of an element (e.g. people, infrastructure, housing, 
production capacities and other tangible human assets) subject to and at risk of coastal 
flooding; and vulnerability is the susceptibility of an individual, a community, assets or 
systems to the impacts of hazards determined by physical, social, economic and 
environmental factors (UNDRR, 2016). Together, disaster risk from coastal flooding 
can be defined as the potential loss of life, injury, or destroyed or damaged assets that 
could occur to a system, society or a community in a specific period of time (UNDRR, 
2016).  

In the coming century, coastal communities are projected to face increases in coastal 
flood risk (Brown et al., 2018; Hallegatte et al., 2013; Hinkel et al., 2014; Jongman et 
al., 2012; Merkens et al., 2018; Neumann et al., 2015). The Intergovernmental Panel 
on Climate Change (IPCC) states that it is likely that we will face a global mean sea-
level rise by the end of the 21st century in the range of approximately 0.43 – 0.84 meter 
compared to 1986-2005 and that impacts on society will be vast (Oppenheimer et al., 
2019). According to a recent study by Raftery et al. (2017), it is unlikely that the Paris 
Agreement’s aim of keeping global warming below a 2°C increase by the end of the 
21st century will be met. This may lead to changes in extreme sea levels (Vousdoukas 
et al., 2017) due to changes in storm surges (Tebaldi et al., 2012) and tides (Pickering 
et al., 2012). Together, these increases in sea level and a possible change in storminess 
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will lead to increased flood hazards, as well as threats to shorelines, wetlands, and 
coastal development (Ericson et al., 2006; Hinkel et al., 2013; Vousdoukas et al., 2020). 
Moreover, flood hazard is expected to increase because of subsidence. In many deltas 
and estuaries, groundwater extraction is a major factor contributing to this subsidence 
(Hallegatte et al., 2013). During the 20th century, the coasts of Tokyo, Shanghai and 
Bangkok subsided by several meters (Nicholls et al., 2008) and subsidence is expected 
to continue to affect coastal flood risk in the future (Dixon et al., 2006). Such climate 
shocks may exacerbate current poverty levels and catalyse the formation of poverty 
traps in Low- and Middle-Income Countries (LMICs) (Leichenko & Silva, 2014). 
Global coastal flood risk is also expected to increase in the future as a result of 
increasing exposure, due to growth in population and wealth, and economic activities 
in flood-prone areas (Güneralp et al., 2015; Jongman et al., 2012; Neumann et al., 
2015; Pycroft et al., 2016).  

To prevent this increase in coastal flood risk, or even reduce risk below today’s levels, 
adaptation strategies are necessary. Given the need for coastal adaptation to tackle the 
expected increase in coastal flood risk, it is critical to improve our understanding of 
global coastal flood risk and the effectiveness of adaptation strategies on flood risk 
benefits. Flood risk can be reduced by implementing adaptation measures, such as 
structural measures or ecosystem-based adaptation, to either reduce the hazard, 
exposure, vulnerability, or a combination of these (Schanze, 2006). To do so, it is 
important to disentangle the drivers of flood risk, the costs and benefits of adaptation 
strategies at the global scale and improve upon conventional flood risk assessments by 
including Nature-based Solutions and more holistic hybrid approaches. The 
importance of climate change adaptation and disaster risk reduction is recognized in 
several global agreements, such as the Paris Agreement (United Nations Framework 
Convention on Climate Change, 2015) and the Sendai Framework for Disaster Risk 
Reduction (United Nations Office for Disaster Risk Reduction, 2015).  

Building consensus on the need for change, and the best way to implement adaptation 
measures, is challenging. Therefore, decision-makers experience difficulties realizing 
goals aligned with global agreements (Barnett et al., 2014). Moreover, as the Paris 
Agreement requires the measurement of the progress made on adaptation goals, 
adaptation policies must include present and future risk drivers to achieve these goals 
in a sustainable matter (Olazabal et al., 2019). Instead of only focusing on one 
adaptation measure, policy needs to adopt holistic strategies or adaptation pathways to 
adapt to climate change, such as hybrid solutions (Barnett et al., 2014; Jongman, 2018). 
Hybrid solutions combine strategies, such as structural measures and nature-based 
adaptation, to adapt to climate change or reduce residual risk. Nature-based Solutions 
such as vegetation and ecological engineering are effective measures to reduce flood 
risk (Cheong et al., 2013; Du et al., 2020; Sutton-Grier et al., 2015; Wang et al., 2014). 
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Next to flood protection benefits, Nature-based Solutions provide co-benefits such as 
improved water quality and recreation opportunities (Barbier et al., 2011); supporting 
fisheries (Seddon et al., 2020); and enhanced carbon sequestration (Worthington et al., 
2018), and including these allows shifting from monetary direct impacts of adaptation 
measures to including community based adaptation strategies. Furthermore, including 
poverty in adaptation policies will extend the impact analysis beyond the valuation of 
reduction in flood risk in monetary terms (Hallegatte & Rozenberg, 2017; Winsemius 
et al., 2018), and will reveal how equity is integrated into adaptation (Araos et al., 2021). 

To implement and raise awareness of climate change adaptation and understand local 
and global disaster risk reduction strategies, it is important to better understand the 
effectiveness of coastal flood risk adaptation strategies, such as Nature-based Solutions 
and hybrid strategies. More specifically, it is essential to improve understanding of 
coastal flood hazard prediction, and adaptation strategies integrated in a holistic Nature-
based and hybrid approaches that include valuation beyond monetary terms. 
Therefore, the overall aim of this thesis is to disentangle coastal flood risk drivers, costs 
and benefits of adaptation strategies and making the shift from conventional flood risk 
assessments to integrated and holistic assessments. 

1.2 Research challenges  
Several scientific challenges continue to exist in assessing coastal flood risk adaptation 
strategies and disentangling the drivers, costs and benefits of these measures at the 
global scale. First, to improve coastal adaptation and management, it is critical to better 
understand and predict the characteristics of sea levels. Second, to improve global 
coastal flood risk assessment, the effects of climate change, subsidence, and/or 
socioeconomic change, need to be integrated to attribute these drivers to adaptation 
costs and in relation to global flood protection levels. Third, the benefits and costs of 
coastal flood risk reduction and adaptation strategies, such as grey infrastructure and 
Nature-based Solutions, need to be determined at a global scale to better understand 
the effectiveness and drives of such strategies on disaster risk reduction. Fourth, we 
need to integrate traditional assessment frameworks by looking beyond monetary 
indicators by including co-benefits of adaptation strategies and assessing the 
distributional impacts of measures in terms of poverty indicators and how equity is 
integrated into adaptation. 

 Improve understanding of coastal flood hazard and 

predictions 
In order to improve coastal adaptation, it is critical to better understand and predict the 
characteristics of sea levels, such as their temporal variation and magnitude over long 
time periods, typically multiple decades (Höffken et al., 2020; Katherine A. Serafin et 
al., 2017). Coastal sea level variability results from a combination of multiple processes, 
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including mean sea level variations, tides, waves and storm surges resulting from the 
passing of low pressure systems and strong winds (Idier et al., 2019; Woodworth et al., 
2019). At hourly time scales or shorter, temporal variation in surge residuals, i.e. the 
water level after removal of the tide and mean sea level, depends on the direction and 
variations in wind and pressure gradients, as well as local topographic characteristics 
such as the bathymetry and complexity of the coastline (Lewis et al., 2013; McInnes et 
al., 2016; Wu et al., 2017). Surge levels superimposed on high tides can exceed land 
thresholds, such as natural and human-made coastal profiles, and contribute to 
nuisance flooding or extreme impacts when caused by tropical or extratropical 
cyclones. At the global scale, studies have used hydrodynamic modelling (Muis et al., 
2020) or data-driven approaches to reconstruct surge time series (Bruneau et al., 2020; 
Cid et al., 2018; Tadesse et al., 2020; Tadesse & Wahl, 2021). The advantage of 
hydrodynamic models is that with adequate model resolution and meteorological 
forcing, they can resolve physical coastal processes and their interactions. They are also 
valuable for understanding epistemic uncertainties and the relative contributions of 
different oceanographic and coastal processes in total water levels. However, these 
models are computationally demanding and take a long time to set up (Christie et al., 
2018; Santiago-Collazo et al., 2019; Teng et al., 2017). This limits their ability to be 
used in the simulation of large ensembles of events (Colberg & McInnes, 2012; 
Nuswantoro et al., 2016).  

To circumvent these limitations, studies have applied data-driven models to predict 
surge at gauged locations, such as empirical relationships (van den Brink et al., 2004), 
unsupervised learning algorithms (Cid et al., 2017; Tadesse et al., 2020) or approaches 
using artificial intelligence like deep learning (Bruneau et al., 2020; Chen et al., 2020; 
de Oliviera et al., 2009; Lee, 2008), and found comparable or even better performance 
compared to hydrodynamic models. For example, Tadesse et al. (2020) found the daily 
maximum surge levels from their data-driven model to outperform the global 
hydrodynamic model from Muis et al., (2020). They applied random forests and linear 
regression, selecting as predictors a range of atmospheric (wind speed, mean sea level 
pressure, precipitation) and oceanographic (sea surface temperature) variables. These 
predictor variables were selected with various lag-times in a 10 x 10-degree box around 
the location of interest from remotely sensed satellite products and climate reanalysis 
datasets. Among deep learning approaches, Artificial Neural Networks (ANN) have 
been popular Neural Network (NN) models for operational surge level forecasting 
(Das et al., 2011; de Oliviera et al., 2009; Kim et al., 2016) or the modelling of 
stochastic storm surge events (Hashemi et al., 2016; Kim et al., 2015). Although 
limitations exist when applying NN models, such as capturing long-term processes and 
predicting surge levels at ungauged locations, applying such methods can lead to similar 
or better results than local hydrodynamic models. At the global scale, Bruneau et al. 
(2020) were, to my knowledge, the first to use ANN models to predict hourly non-tidal 
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residual levels at tide stations. They used as predictor variables wind, mean sea level 
pressure, accumulated precipitation, and wave height from the climate reanalysis 
dataset ERA5 (Hersbach et al., 2020). The spatial extent of the predictor variables 
around each location considered was four times smaller (i.e. 5 x 5 degree box) than 
used in Tadesse et al. (2020). Due to its refined horizontal resolution, this dataset can 
better resolve characteristics of climate extremes, such as tropical cyclones (track, 
intensity, maximum wind speeds) than its predecessor ERA-Interim reanalysis 
(Malakar et al., 2020) even though some improvements are still needed, for example 
to properly capture their outer size (Bian et al., 2021).  

Notwithstanding the differences between the models applied in Tadesse et al. (2020) 
and Bruneau et al. (2020), the role of the number of predictor variables considered 
and the spatial extent around each location in the model’s performance and ability to 
learn remains unclear. Next to ANNs, other NN types could be useful for global scale 
surge level prediction (Reichstein et al., 2019; Shen, 2018). For example, Convolutional 
Neural Networks (CNN) can process patterns in spatio-temporal climate data and 
identify weather features to be used for forecasts (Chattopadhyay et al., 2020; Ham et 
al., 2019). Recurrent neural networks using Long Short-Term Memory (LSTM) layers 
have been used in hydrology to capture long-term temporal dependencies, necessary 
to capture the state of a river basin (Fang et al., 2017; Kratzert et al., 2018). A fully 
global exploration of the capabilities of deep learning approaches to predict surge levels 
and thus improving coastal hazard predictions has not been developed yet. 

 Improving global coastal (future) flood risk assessment 
To better understand the expected increase in coastal flood risk it is vital to take into 
account multiple drivers of change, such as climate change, subsidence and socio-
economic change, and attribute the potential future change in risk to these drivers. To 
do this, the modelling of coastal flood risk requires simulations and projections of 
hazard, exposure, and vulnerability. Global coastal flood models address the hazard 
events by simulating physical parameters such as inundation extent and depth. Sea level 
projections and subsidence rates are used as input to force simulations of future coastal 
flood hazards. Projections of population and GDP are used as input for global 
exposure models to address socio-economic development. Next to changes in extreme 
sea levels, human activities in delta areas at the local or regional scale can perturb the 
coastal system by extracting gas, oil and groundwater and making deltas more 
vulnerable (Ericson et al., 2006; Syvitski et al., 2009). This extraction results in 
sediment compaction and subsidence, and subsequently, deltas are subsiding, which 
can increase the flood hazard. On top of this, socio-economic development is expected 
to increase flood risk in the near future (Hallegatte et al., 2013) by increasing the 
exposure of major coastal cities to flood risk (De Sherbinin et al., 2007; Hanson et al., 
2011). Global scale models that project future population and GDP data, such as 2UP 
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(Van Huijstee et al., 2018) and GISMO/IMAGE (Bouwman et al., 2006), make use of 
Shared Socio-economic Pathways from the IIASA database, which contain projections 
of future population and GDP at country level. 

To date, a limited number of studies have assessed coastal flood risk at the global scale. 
These studies can roughly be divided into two groups, namely studies involving the 
Dynamic Interactive Vulnerability Assessment (DIVA) model and the Joint Research 
Centre of the European Commission (JRC) studies. The DIVA model is a global 
database of coastal systems that assesses coastal vulnerability and socio-economic 
impacts due to sea level rise and socio-economic development (Hinkel & Klein, 2009). 
The DIVA-based studies use the DIVA model and apply extreme sea levels to estimate 
global scale coastal flood risk (Brown et al., 2016; Hinkel et al., 2014; Hinkel et al., 
2010; Hinkel, et al., 2013a; Hinkel et al., 2013b; Nicholls et al., 2010), together with 
other impact models (Hallegatte et al., 2013; Muis et al., 2015; Ward et al., 2011). 
These studies provide important insight in the long term changes in coastal flood risk 
due to socio-economic development and sea level rise (Hinkel et al., 2014). The JRC 
studies have mainly focused on the European continent and global scale. They use the 
large-scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) to assess 
large-scale coastal flood impacts (Vousdoukas et al., 2017). They provide extreme sea 
level (Vousdoukas et al., 2017; 2016b) and its impact on coastal flood hazard 
(Vousdoukas et al., 2018a), and large scale flood hazard (Vousdoukas et al., 2016a) 
and risk assessment (Vousdoukas et al., 2018b; Vousdoukas et al., 2018c) in their tool. 

Using the DIVA model, Hallegatte et al. (2013) estimated current flood risk in major 
coastal cities at US$6 billion per year, with a projected increase in EAD by US$46 
Billion by 2050 solely taking socioeconomic change into account. With climate change 
and subsidence taken into account, they projected an increase in flood risk to US$1 
trillion per year if no action is undertaken. Using regional sea level rise projections and 
socio-economic development, Hinkel et al. (2014) estimated with the DIVA model 
that without adaptation EAD could increase to 0.3-9.3% of global gross domestic 
product. Vousdoukas et al. (2018a) estimated with LISCoAsT that coastal flood risk in 
Europe may increase from US$ 1.25 billion to US$ 93-961 billion by the end of the 
century, depending on the projection used of socio-economic development and climate 
change. While these studies assess flood risk at the global scale, they do not account 
for different adaptation objectives, attributing drivers to adaptation costs, and integrate 
the analysis with a global modelled database on coastal flood protection levels.  

 Global coastal flood adaptation strategies and Nature-

based Solutions 
To prevent or reduce increase in flood risk, adaptation measures are required. One 
option is to develop methods to reduce the probability or magnitude of the hazard, the 
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so-called ‘protect’ approach. This can be achieved through the implementation of grey 
infrastructure, Nature-based Solutions or hybrid adaptation measures (Cheong et al., 
2013; Hinkel et al., 2014; Jongman, 2018). Grey infrastructure, such as dikes and 
levees, can protect the hinterland from flooding events up to a certain exceedance 
probability. Nature-based Solutions, such as maintaining or restoring vegetation on the 
foreshore, breaks waves and therefore decreases the run-up of the surge event (Barbier 
et al., 2008; Shepard et al., 2011). Exposure can be reduced by relocating people or 
assets from the most hazard-prone regions, or avoiding new development in flood-
prone areas (Cummings et al., 2012). Lastly, vulnerability can be reduced by the 
implementation of measures such as flood proofing of buildings (Aerts et al., 2014), or 
early warning and evacuation systems (Pappenberger et al., 2015). To date, only a 
limited number of studies have addressed the benefits and costs of adaptation measures 
at the global scale. Lincke & Hinkel (2018) show that adaptation through structural 
adaptation measures is economically feasible for 13% of the global coastline, which 
accounts for 90% of the global population living in regions prone to coastal hazard. 
Hinkel et al. (2014) used the DIVA approach to calculate the benefits and costs of 
adaptation by raising dikes and found that the total costs of investment and 
maintenance could reach in the range of 12-71 US$ billion by 2100. However, this is 
much smaller than the avoided direct damages at the global scale.  

Recent studies have shown that adaptation measures hold a large potential for 
significantly reducing this future flood risk (Diaz, 2016; Hinkel et al., 2014; Lincke & 
Hinkel, 2018). However, the number of global scale studies in which the benefits and 
costs of disaster risk reduction and adaptation are explicitly and spatially accounted for 
remains limited. Existing studies have assessed the effect of climate change, subsidence 
and/or socioeconomic change (Hallegatte et al., 2013; Hinkel et al., 2014; Vafeidis et 
al., 2019; Vousdoukas et al., 2016b), but have not included different adaptation 
objectives taking into account multiple flood risk drives or attributed these drivers to 
adaptation costs. Moreover, most modelling studies of global scale adaptation to coastal 
flood risk have focused on static adaptation objectives, i.e., protection against the 1 in 
100 years flood. However, a framework based on different adaptation objectives, such 
as keeping future protection levels fixed or optimising protection levels, has not been 
developed yet. 

Instead of only focusing on structural adaptation measures or Nature-based Solutions, 
Jongman (2018) argues that flood risk management needs to adopt holistic strategies to 
adapt to climate change, such as early warning systems, risk perception, or hybrid 
solutions. Hybrid solutions can combine structural measures with Nature-based 
Solutions, such as maintaining or restoring foreshore vegetation and foreshore 
geomorphology on the foreshore. Duarte et al. (2013) show that Nature-based 
Solutions in coastal areas have the potential to reduce the impacts of climate change. 
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Moreover, recent studies argue that Nature-based Solutions can provide a more 
sustainable, cost-effective and ecologically sound alternative to structural measures, 
such as dikes, sea walls and embankments (Narayan et al., 2016; Temmerman et al., 
2013; van Wesenbeeck et al., 2017).  

While Nature-based Solutions show potential for broad implementation to reduce 
coastal flood risk  (Duarte et al., 2013; Temmerman et al., 2013; van Zelst et al., 2021; 
Vuik et al., 2016), an assessment of the effectiveness of conserving foreshore vegetation 
or mangrove restoration on reducing current and future coastal flood risk at the global 
scale has yet to be carried out. Furthermore, it is important to shift from conventional 
adaptation strategies towards Nature-based Solutions and more holistic hybrid 
approaches. Therefore, it is important to assess and quantify the potential effectiveness 
of Nature-based Solutions and hybrid measures on the global-scale. Although 
quantifying nature-based or hybrid adaptation can be challenging, it is critical to 
document such efforts to better understand their effectiveness. 

 Flood risk adaptation beyond monetary values 
Mangroves and other Nature-based Solutions have been demonstrated to protect 
against current flood risk and provide other benefits such as improved water quality 
and recreation opportunities (Barbier et al., 2011), supporting fisheries, and enhanced 
carbon sequestration. They can also provide a more sustainable, cost-effective and 
ecologically sound alternative to structural measures in combating future flood risk 
(Narayan et al., 2016; Temmerman et al., 2013; van Wesenbeeck et al., 2017). For 
example, mangroves and other foreshore vegetation can keep up with sea level rise by 
natural accretion of mineral and biogenic sediments (Fagherazzi et al., 2012; Kirwan et 
al., 2010; Mckee et al., 2007). In other words, Nature-based Solutions in coastal areas 
can potentially reduce the impacts of climate change (Duarte et al., 2013) if they are 
protected, restored and maintained properly. 

Unfortunately, mangrove forests and other foreshore vegetation have been degraded 
due to climate change and human development (Ward et al., 2017). Already it is 
estimated that a total of 6% of mangrove forests have been lost in the last fifty years, 
with land conversion to agriculture or transport infrastructure being the biggest 
contributions to these losses (Worthington & Spalding, 2018). Due to future climate 
change and socioeconomic development, foreshore vegetation is under threat of 
further degradation (Erwin, 2009). This includes increased threats to shorelines, 
wetlands, mangrove forests, salt marshes, and coastal development as flood risk 
increases (Jennerjahn et al., 2017; Mitsch & Hernandez, 2013; Vousdoukas et al., 2020; 
Ward et al., 2017). It is therefore important to portray the urgency of mangrove 
restoration at the global scale and discuss the feasibility thereof.  
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Furthermore, people in poverty are particularly vulnerable to shocks such as coastal 
flooding. Increases in coastal flood risk due to threats on the foreshore can lead to 
poverty traps as people in poverty are disproportionally exposed to such shocks 
(Hallegatte, 2016; Hallegatte & Rozenberg, 2017; Winsemius et al., 2018). As these 
people in poverty are more vulnerable to natural hazards, such as coastal flood risk, it 
is important to understand and assess the distributional impacts of flood risk adaptation 
and mangrove restoration in terms of poverty indicators (Villarreal-Rosas et al., 2021) 
and how equity is integrated into adaptation (Araos et al., 2021). However, the field still 
lacks a global-scale study addressing how poverty is linked to adaptation measures. 

1.3 Main goal and research questions 
To improve global coastal (future) flood risk assessment and understanding of how 
society can adapt in an integrated manner, the previous section highlighted four 
important research challenges. First, there is a need to improve coastal flood hazard 
prediction and rapidly predict surge levels for the development of early warning 
predictions and increasing resolution of predictions. This can be achieved, for instance, 
by exploring the full capabilities of deep learning approaches to predict surge levels and 
thus improving coastal hazard predictions. Second, global coastal flood risk 
assessments need to be further developed by accounting for current protection levels 
and multiple drivers, such as climate change, socioeconomic change, and subsidence, 
into their framework and attributing the costs of coastal flood adaptation to these 
drivers of change. Third, it is important to assess the feasibility of different adaptation 
objectives and strategies and improve upon conventional adaptation strategies towards 
Nature-based Solutions and more holistic hybrid approaches. Fourth, we need to 
improve flood risk assessments by looking beyond monetary indicators. To implement 
and raise awareness of climate change adaptation and improve understanding of local 
and global disaster risk reduction strategies, it is important to advance assessments on 
the effectiveness of coastal flood risk adaptation strategies, such as Nature-based 
Solutions and hybrid strategies in monetary terms and indicators beyond valuation in 
terms of money. Following these scientific challenges, the main research objective of 
this thesis is set: 

Disentangling drivers of coastal flood risk and assess costs and benefits of adaptation 
measures at the global-scale with a focus on nature-based solutions. 

 To achieve this goal, the following research questions are addressed: 

1. Can we improve surge level predictions by harnessing the capabilities of deep 
learning approaches at the global scale? 

2. What is the attribution of adaptation costs to drivers of coastal flood risk? 
3. What are the (future) flood risk benefits of structural measures, Nature-based 

Solutions, and a combination thereof? 
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4. How can we include adaptation benefits beyond monetary terms in large scale 
flood risk assessments? 

Table 1.1: Overview of chapters and subjects. 

 Coastal 
flood 
hazard 
prediction 

(Future) 
Flood risk 
assessment 

Adaptation 
strategies 

Flood risk 
beyond 
monetary 
values 

Chapter 2: Surge level 
estimations x    
Chapter 3: 
Framework on coastal 
flood risk and 
adaptation 

 x x  

Chapter 4: Flood risk 
benefits of conserving 
foreshore vegetation 

 x x  
Chapter 5: Mangrove 
restoration and flood 
risk reduction 

  x x 
Chapter 6: Hybrid 
adaptation strategies   x x 

In the following chapters, these research questions are addressed and are categorized 
by subjects on hazard prediction, (future) flood risk assessment, adaptation strategies, 
and flood risk beyond monetary value. 

- Chapter 2 addresses the need to develop rapid surge level predictions and 
explores the capabilities of deep learning approaches to improve our 
understanding of coastal flood hazard prediction. 

- Chapter 3 assesses (future) coastal flood risk, provides an overview of different 
adaptation objectives through structural measures, and communicates the 
results in the form of an online tool the Aqueduct Global Flood Analyzer 
webtool (www.wri.org/floods). 

- Chapter 4 assesses the (future) flood risk benefits of conserving foreshore 
vegetation as adaptation strategy. 

- Chapter 5 improves our understanding of mangrove restoration and global-
scale flood risk reduction in terms of monetary values and poverty indicators. 

http://www.wri.org/floods
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- Chapter 6 improves our understanding of hybrid adaptation strategies at the 
global scale and how these adaptation strategies can contribute to poverty 
alleviation. 
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Abstract 
To improve coastal adaptation and management, it is critical to better understand and 
predict the characteristics of sea levels. Here, we explore the capabilities of artificial 
intelligence, from four deep learning methods to predict the surge component of sea-
level variability based on local atmospheric conditions. We use an Artificial Neural 
Networks (ANN), Convolutional Neural Network (CNN), Long Short-Term Memory 
layer (LSTM) and a combination of the latter two (ConvLSTM), to construct ensembles 
of Neural Network (NN) models at 736 tide stations globally. The NN models show 
similar patterns of performance, with much higher skill in the mid-latitudes. Using our 
global model settings, the LSTM generally outperforms the other NN models. 
Furthermore, for 15 stations we assess the influence of adding complexity more 
predictor variables. This generally improves model performance but leads to substantial 
increases in computation time. The improvement in performance remains insufficient 
to fully capture observed dynamics in some regions. For example, in the tropics only 
modelling surges is insufficient to capture intra-annual sea level variability. While we 
focus on minimising mean absolute error for the full time series including minima, the 
NN models presented here could be adapted for use in forecasting extreme sea levels 
or emergency response.  

2.1 Introduction 
In order to improve coastal adaptation, it is critical to better understand and predict the 
characteristics of sea levels, such as their temporal variation and magnitude over long 
time periods, typically multiple decades (Höffken et al., 2020; Katherine A. Serafin et 
al., 2017). Coastal sea level variability results from a combination of multiple processes, 
including mean sea level variations, tides, waves and storm surges resulting from the 
passing of low pressure systems and strong winds (Idier et al., 2019; Woodworth et al., 
2019). We focus here on the non-tidal residual, also referred to as surge or surge 
residual, i.e., the water level after removal of the tide and mean sea level. At hourly time 
scales or shorter, temporal variation in surge residuals depends on the direction and 
variations in wind and pressure gradients, as well as local topographic characteristics 
such as the bathymetry and complexity of the coastline (Lewis et al., 2013; McInnes et 
al., 2016; Wu et al., 2017). Surge levels superimposed on high tides can exceed land 
thresholds and contribute to nuisance flooding or extreme impacts when caused by 
tropical or extratropical cyclones. At the global scale, studies have used hydrodynamic 
modelling (Muis et al., 2020) or data-driven approaches to reconstruct surge time series 
(Bruneau et al., 2020; Cid et al., 2018; Tadesse et al., 2020; Tadesse & Wahl, 2021). 
The advantage of hydrodynamic models is that with adequate model resolution and 
meteorological forcing, they can resolve physical coastal processes and their 
interactions. They are also valuable for understanding epistemic uncertainties and the 
relative contributions of different oceanographic and coastal processes in total water 
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levels. However, these models are computationally demanding and take a long time to 
set up (Christie et al., 2018; Santiago-Collazo et al., 2019; Teng et al., 2017). This limits 
their ability to be used in the simulation of large ensembles of events (Colberg & 
McInnes, 2012; Nuswantoro et al., 2016).  

To circumvent these limitations, studies have applied data-driven models to predict 
surge at gauged locations, such as empirical relationships (van den Brink et al., 2004), 
unsupervised learning algorithms (Cid et al., 2017; Tadesse et al., 2020) or approaches 
using artificial intelligence like deep learning (Bruneau et al., 2020; Chen et al., 2020; 
de Oliviera et al., 2009; Lee, 2008), and found comparable or even better performance 
compared to hydrodynamic models. For example, Tadesse et al.(2020) found the daily 
maximum surge levels from their data-driven model to outperform the global 
hydrodynamic model from Muis et al.(2016). They applied random forests and linear 
regression, selecting as predictors a range of atmospheric (wind speed, mean sea level 
pressure, precipitation) and oceanographic (sea surface temperature) variables. These 
predictor variables were selected with various lag-times in a 10 x 10 degree box around 
the location of interest from remotely sensed satellite products and climate reanalysis 
datasets. Among deep learning approaches, Artificial Neural Networks (ANN) have 
been popular Neural Network (NN) models for operational surge level forecasting (Das 
et al., 2011; de Oliviera et al., 2009; Kim et al., 2016) or the modelling of stochastic 
storm surge events (Hashemi et al., 2016; Kim et al., 2015). Although limitations exist 
when applying NN models, such as capturing long term processes and predicting at 
ungauged locations, applying such methods can lead to similar or better results than 
local hydrodynamic models. At the global scale, Bruneau et al. (2020) were, to our 
knowledge, the first to use ANN models to predict hourly non-tidal residual levels at 
tide stations. They used as predictor variables wind, mean sea level pressure, 
accumulated precipitation, and wave height from the climate reanalysis dataset ERA5 
(Hersbach et al., 2020). The spatial extent of the predictor variables around each 
location considered was four times smaller (i.e. 5 x 5 degree box) than used in Tadesse 
et al (2020). Due to its refined horizontal resolution, this dataset can better resolve 
characteristics of climate extremes, such as tropical cyclones (track, intensity, maximum 
wind speeds) than its predecessor ERA-Interim reanalysis (Malakar et al., 2020) even 
though some improvements are still needed, for example to properly capture their outer 
size (Bian et al., 2021).  

Notwithstanding the differences between the models applied in Tadesse et al.(2020) 
and Bruneau et al.(2020), the role of the number of predictor variables considered and 
the spatial extent around each location in the model’s performance and ability to learn 
remains unclear. Next to ANNs, other NN types could be useful for global scale surge 
level prediction (Reichstein et al., 2019; Shen, 2018). For example, Convolutional 
Neural Networks (CNN) can process patterns in spatio-temporal climate data and 
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identify weather features to be used for forecasts (Chattopadhyay et al., 2020; Ham et 
al., 2019). Recurrent neural networks using Long Short-Term Memory (LSTM) layers 
have been used in hydrology to capture long-term temporal dependencies, necessary to 
capture the state of a river basin (Fang et al., 2017; Kratzert et al., 2018).  

In this paper, we explore the capability of different deep learning approaches to predict 
surge levels at the global scale. To do so, we predict hourly surge using four types of 
NN and evaluate their predictive skill. We train, validate, and test a CNN, LSTM, and 
combined CNN-LSTM (ConvLSTM) model to capture spatial, temporal, and spatio-
temporal dependencies for surge level observations from 736 tide stations. We 
benchmark our NN models with a simple probabilistic reference model based on 
climatology. Next, for 15 selected locations with diverse surge characteristics, we 
examine the NN skill gained from increasing the spatial extent considered around each 
location and the number of different variables used as predictors. Additionally, we show 
the capability of the four NN types to gain skill when adding complexity to their 
respective network architecture.  

2.2 Methods 
We predict hourly surge at tide stations from the Global Extreme Sea-Level Analysis 
Version 2 database (GESLA-2) (Woodworth et al., 2017) using four different deep 
learning models following the main steps described in this section. In brief, we extract 
the predictand from the GESLA tide stations and predictor variables from the 
atmospheric reanalysis ERA5 from ECMWF (Hersbach et al., 2020). For each station, 
we construct and run four NN model types and compare their performance with 
observed surge levels and with a simple probabilistic model as benchmark. Finally, for 
fifteen stations, we analyse the influence of the number of predictor variables, the spatial 
extent considered around each location (from hereon called spatial footprint), and the 
architecture of the NN on its performance. 

 Data preparation 
Predictand variable: surge time series. 
We use total water levels from the GESLA-2 dataset, a quasi-global dataset of sea levels 
at a high temporal frequency (15 minutes or one hour) for 1276 stations. Each time 
series is resampled to an hourly frequency for consistency. The dataset has already been 
thoroughly controlled to flag any potential erroneous signal, for example for tsunamis 
and was thus not further inspected (Woodworth et al., 2017). We do not interpolate 
between periods with no data. The following steps are applied to extract the surge time 
series and are illustrated in Figure A-1. Since this study focuses on surge prediction, we 
remove inter-annual mean sea-level variability by subtracting the annual moving average 
(365 days) (Fig. A-1a). We decompose the de-trended sea-level time series into the tide 
and non-tidal residual by applying a harmonic analysis using the UTide (Unified Tidal 
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Analysis and Prediction Functions) Matlab package (Bevacqua et al., 2019; Codiga, 
2011; Hoitink & Jay, 2016; Marcos et al., 2015) (Fig. A-1b). UTide uses an automated 
decision tree to select the most important constituents from 146 tidal constituents and 
performs a nodal correction for time series longer than 2 years. A comparison with tidal 
predictions from NOAA at three stations with contrasting tidal environments indicates 
differences are mainly within +/- 5 cm (Figure A-2). This is in line with the errors 
typically found from extracting the tide from observed water level series (Hibbert et al., 
2015; Williams et al., 2018). A drawback of a harmonic analysis is that the residual time 
series often contain a remaining tidal signals due to small phase shifts in the predicted 
tide (Brown et al., 2012; Horsburgh & Wilson, 2007; Marcos et al., 2015). At a daily 
time scale, using the skew surge overcomes this problem (Haigh et al., 2016) and at an 
hourly time scale, low-pass filtering methods, such as the recursive Chebyshev Type II 
filter, have been recommended to fully remove this component (Brown et al., 2014; 
Lyddon et al., 2018).  Here, we select a simple filter and apply a 12-hour moving average 
to limit the influence of spurious peaks in the predicted tide (Fig. A-1c). This final time 
series is considered as the predictand variable, i.e., the surge. We investigate to which 
extent this filter could impact sea-level extremes at three stations, see Figure A-3. The 
amount of under of overestimation is highly dependent on the relative contribution of 
the tides and surge in sea-level extremes. A clear advantage however from using this 
filtering approach is that extreme value analysis becomes more robust to errors in 
timing.  

To train, validate and test the NN models, we select all stations that have at least seven 
years of data between 1979 until 2019. Bruneau et al.(2020) found that a minimum of 
six years of training data is needed to obtain stable NN skill. We select an additional 
year of data that is neither used in the training nor the validation, to test model 
performance. Therefore, the seven years of data should at least consist of one 
consecutive year without gaps for testing, and at least 6 years of consecutive sequences 
(10 days) without missing data (more details in section 2.2.2) for training and validation. 
This leads to a set of 736 stations (Figure 2-1). To get more insight into regional 
performance we have more specifically focused our analysis on 15 stations. This subset 
is chosen to cover different coastal environments(Rueda et al., 2017) and therefore 
surge characteristics (as further shown in Figure 2-5).      
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Figure 2-1: Tide stations considered in this study. Inset figure presents the histogram of the length of the data 
records with the median value shown by a dashed line. The set of 15 stations selected for further analysis is 
circled in red: 1- Puerto Armuelles (Panama), 2- Honolulu (Hawaii), 3- San Francisco (USA), 4- Dunkerque 
(France), 5- Cuxhaven (Germany), 6- Anchorage (USA), 7- Lord Howe (Australia), 8- Darwin (Australia) , 9-
Callao (Peru), 10-Zanzibar (Tanzania), 11- Ko Taphao (Thailand), 12- Dakar (Senegal), 13- Humboldt Bay 
(USA), 14- Boston (USA), 15- Wakkanai (Japan). Results for the boxed numbers (1-6) are shown in the main 
study and the rest (7-15) in Appendix A. 

Predictor variables from high resolution climate reanalysis data. 
The ERA5 dataset of ECMWF provides a global atmospheric reanalysis with a spatial 
resolution of 0.25° and an hourly temporal resolution. To predict surges, we extract 
atmospheric variables at a centred box of 1.25° around the station (i.e., 5 x 5 cells). In 
total, five variables are used as predictors: the mean sea level pressure (MSLP), the 
hourly gradient of the MSLP (Δ MSLP) the meridional and zonal wind 10-meter wind 
components (U and V), and the wind speed magnitude. As with the surge data, the 
ERA5 data have been detrended by removing the inter-annual mean variability. 

 Neural network models and skill metrics 
Four different types of NN models are set up and trained to predict surges: an Artificial 
Neural Network (ANN), a Long-Term Short-Term Neural Network (LSTM), a 
Convolutional Neural Network (CNN), and a Convolutional LSTM (ConvLSTM), 
which is a combination of the latter two. In this section, we provide an overview of their 
specific features and selected architecture. For more detailed information, the reader is 
referred to the accompanying references shown in the following section. 

The ANN, the most general form of NN, has been extensively applied in various fields 
of science to capture nonlinear processes (Shen, 2018). The LSTM is a derivation of 
the Recurrent Neural Network (RNN) in that it captures sequence-to-sequence patterns 
in their internal state as memory, but has advantages over the conventional RNN as they 
can selectively store long term information (Hewamalage et al., 2021; Hochreiter & 
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Schmidhuber, 1997; Kratzert et al., 2018; Shen, 2018). The CNN is a class of NN 
models that works well in capturing spatial features, shapes and texture due to its shared 
weight architecture and is thus often applied for image recognition purposes 
(Chattopadhyay et al., 2020; Matsugu et al., 2003; Shen, 2018; Sun & Su, 2017). We 
also apply a ConvLSTM to capture spatiotemporal information. The ConvLSTM 
combines sequence-to-sequence learning with convolutional layers and emerges in 
current studies with promising applications in predicting spatiotemporal information 
(Xingjian et al., 2015). 

All the NN model types use the same input data, i.e., the predictor variables, albeit in 
different formats and their architecture is shown in Figure A-4. They have a similar 
overall architecture, constructed from a series of layers made of neurons connected to 
each other. The first layer (called the input layer) contains the input data, i.e., the 
predictor variables. This input layer is connected to one or multiple hidden layers and 
finally connected to an output layer, which provides the surge predictions. Information 
between neurons in consecutive hidden layers is transferred through weighted 
connections, summed with a bias and scaled using a so-called activation function before 
being transferred to the neurons of the next layer. All parameters defining the model 
architecture (e.g. number of neurons, number of hidden layers) and learning process 
(e.g. choice activation function, subset size of training data (batch size)) are referred to 
as hyperparameters (Hewamalage et al., 2021). Other important hyperparameters often 
applied to prevent overfitting are the dropout percentage of the neurons in the last layer 
(dropout) and layer weights regularizer functions (kernel regularizer) (Cortes et al., 
2012). 

We use the Python hyperparameter optimization package SHERPA (Hertel et al., 
2020) to find the number of neurons, the dropout rate, the regularizer factor l2 in the 
kernel regularizer function, the number of filters for the CNN/ConvLSTM, and the 
batch size leading to the lowest mean absolute error (MAE) between predicted and 
observed surge levels. To do so, we apply a random search optimization with a 
maximum of 100 trials for each NN at the 15 stations selected (see Figure 2-1). The 
settings leading to the lowest loss across all 15 stations have been used as default settings 
for the NN models for all stations. This resulted in the following hyperparameters: 24 
filters (for the CNN and ConvLSTM), 48 neurons (for the CNN and ConvLSTM, this 
applies for the last fully connected layer), a dropout value of 0.1, l2 weight regularizer 
factor of 0.001 and a batch size of 10 days (240 hourly timesteps). 

Depending on the NN model type, the input layer is connected to the following hidden 
layer: 

• ANN: A fully connected layer with an l2 kernel regularizer. 
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• LSTM: a stateless LSTM layer with a hard sigmoid recurrent activation 
function. 

• CNN: a 2D convolution layer. Each filter has a kernel size of 3 x 3 with same 
padding and the convolution step is followed by a max-pooling layer with a 
kernel size of 2 x 2. 

• ConvLSTM: a 2D convolution layer following a stateless LSTM layer with a 
hard sigmoid recurrent activation function. Each filter has a kernel size of 3 x 
3 with same padding and the convolution step is followed by a max-pooling 
layer with a kernel size of 2 x 2. 

All of the NN models are activated using the ReLu activation function (Wani et al., 
2020). In the cases of the LSTM and ConvLSTM, a hard sigmoid function is used for 
the recurrent activation (Farzad et al., 2019). The last hidden layer is a fully connected 
layer with an l2 weight regularizer and a dropout is added. We select the Adam 
optimizer algorithm (learning rate of 0.001) for the learning rate optimization algorithm 
and train the NN model to minimise the MAE, the selected loss function, between 
observed and predicted surge. The output layer, with one node only, represents the 
predicted surge levels. Because the four NN have different specifications, flattened 
input data without spatial relationships are fed to the ANN and LSTM. For the CNN 
and ConvLSTM input dimensions with spatial relationships between grid cells are fed 
into the NN. Note that for the NN with convolutional layers (CNN and ConvLSTM) 
the spatial input dimensions are relatively small in relation to the kernel size due to the 
spatial resolution of the ERA5 data and computational constraints as hourly data is used 
as temporal resolution in this study. Figure A-4 shows the architecture and input 
dimensions of the different NN model types used in this study. Additionally, we provide 
the NN models in the Supplementary Data, whose architecture and hyperparameters 
can be viewed using a NN visualizer app, such as netron.app. 

Figure 2-2 shows an overview of our model chain and ensemble prediction 
methodology. We partition the predictor and predictand datasets to make the 
distinction between three phases: training, validation, and testing. Training and 
validation phases are repeated iteratively to update and tune the model parameters 
between each iteration, i.e., the so-called epoch. We set the maximum number of 
epochs to 150 but stop the training phase if no improvement in the loss is detected from 
the three previous epochs. The testing phase, using data excluded from the training and 
validation dataset, provides an unbiased evaluation of the model performance for the 
model parameters selected. We use the most recent year without gaps (365 consecutive 
days). The rest of the data are allocated into subsets of training data and validation data 
without gaps. In order to provide probabilistic predictions of surge levels, we use 
random subsets from this data to fit a model and repeat this operation 20 times to 
construct an ensemble of 20 models for each NN type similar to Barbarossa et al.(2018) 



Surge predictions in coastal areas 
 

47 
 

and Bruneau et al.(2020) as follows. Between the models we use different subsets of the 
training data while keeping the same model configuration. For each individual model 
of the ensemble, we randomly sample 50% of the rest of the data and train the model 
by using 70% of the selected data as training and 30% to validate the model, both 
randomly selected. For the LSTM and ConvLSTM, the random sampling is performed 
on batch-sized consecutive sequences without gaps from the time series. Between the 
epochs, we shuffle the training data (for LSTM and ConvLSTM we shuffle the batch-
sized sequences). This ensemble prediction methodology has been set up as a nowcast 
structure, in which the models are trained on historical data, but can be applied on new 
data from the same datasets. 

 

Figure 2-2: Overview of NN model ensemble and selection of data. 

The implementation of the NN model types is done with the Python package Keras 
(Chollet, 2016), which uses Python package Tensorflow as a backend (Abadi et al., 
2016). Predictors and predictand data are transformed by subtracting the mean and 
dividing by the standard deviation based on the training data only and these 
normalization parameters are stored. The predicted surge levels from the NN models 
are backtransformed using these parameters. We also tested other transformations for 
three stations (such as the scaling of each variable based on local maximum and 
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minimum between 0 and 1 and the Yeo-Johnson transformation), but this did not lead 
to significant improvements in performance. Data transformation is carried out using 
the Python package scikit-learn (Pedregosa et al., 2011). 

Probabilistic performance and skill metric. 
Since the NN models provide an ensemble of surge predictions, we select the 
Continuous Ranked Probability Score (CRPS) for the NN performance metric, a metric 
that can account for probabilistic predictions (Hersbach, 2000). Due to the absence of 
explicit observational uncertainty, the CRPS is more suitable than other metrics such as 
relative entropy (KL divergence), and is a widely used metric within hydrology and 
coastal science for probabilistic prediction (Bruneau et al., 2020; Pappenberger et al., 
2015; Trinh et al., 2013). The CRPS averages the difference between the observed and 
predicted cumulative distribution of the surge across all time steps and for deterministic 
forecasting it reduces to the MAE: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  =
1
𝑁𝑁

� � [𝐶𝐶𝑡𝑡(𝑥𝑥) − 𝐶𝐶𝑜𝑜
𝑡𝑡(𝑥𝑥)]2 𝑑𝑑𝑥𝑥

∞

−∞

𝑁𝑁

𝑡𝑡=1

 (2-1) 

where N is the number of time steps in the testing year (365 x 24 hours), 𝐶𝐶𝑡𝑡(𝑥𝑥)is the 
predicted stepwise cumulative distribution function (CDF) at time t=i and 𝐶𝐶𝑜𝑜

𝑡𝑡(𝑥𝑥)is the 
observed CDF at time i of the surge 𝑥𝑥. Because the observed time series is deterministic, 
𝐶𝐶𝑜𝑜

𝑡𝑡(𝑥𝑥) reduces to the Heaviside function such that 𝐶𝐶𝑜𝑜
𝑡𝑡(𝑥𝑥) = 0 below the observed 

value and 𝐶𝐶𝑜𝑜
𝑡𝑡(𝑥𝑥) = 1 at the observed surge value and above at time 𝑡𝑡. 

The CRPS is a negatively oriented score and can vary from 0 to ∞, with a value of 0 
indicating a perfect deterministic prediction. We report the CRPS in all figures in 
centimetres. High CRPS scores reflect that the surge distribution is not properly 
predicted: a wide ensemble spread of predicted surge will capture the observed surge 
but does not reflect any model skill. On the other hand, a low spread in the model 
predictions and a model bias will also result in a high CRPS score, as the ensemble will 
fail to capture the observed surge. In order to better understand the behaviour of the 
ensemble prediction, the CRPS can be decomposed (Hersbach, 2000) as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑜𝑜𝑡𝑡 (2-2) 

where 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 is the reliability component, which indicates whether the distribution of the 
predicted surge has similar statistical properties to the observed time series, and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑜𝑜𝑡𝑡, the potential CRPS, denotes the CRPS when the ensemble forecasts are 

perfectly reliable (𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 = 0, also a negatively oriented metric). In order to decompose 
the CRPS into the reliability and potential component, we use the crpsDecomposition 
function from the R package verification (Gilleland, 2015). The potential CRPS is 
further decomposed into: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑜𝑜𝑡𝑡 = 𝑈𝑈 − 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (2-3) 

where the uncertainty component, 𝑈𝑈, represents the CRPS if only a climatological 
probabilistic prediction is available, and the resolution component, 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, evaluates the 
improvement of the NN model ensemble predictions to the average ensemble spread 
and the observed outliers. A resolution value higher than zero indicates that the model 
ensemble adds some value compared to the probabilistic climatology distribution. The 
climatological probabilistic prediction has no model skill and a perfect reliability. We 
derive the climatological probabilistic prediction using a stratified sampling approach of 
the observed surge (Hu et al., 2016). We remove noise and spurious effects by 
calculating a centered moving average with a Gaussian filter and a window size of 30 
days (Janoušek, 2011) of the surge used in the training dataset and weighted with the 
following equation: 

𝑤𝑤 =
1

2𝛱𝛱𝛱𝛱
 (2-4) 

where 𝛱𝛱 is the standard deviation expressed in time steps and set to 72 hours. Next, we 
rank the hourly surge levels for each month of the year and draw 20 equidistant samples 
to construct the cumulative distribution function of the climatology. These 20 samples 
represent the predicted ensemble from the probabilistic climatology predictions and 
are used to calculate the uncertainty component for the CRPS value of the testing year.  

Comparing CRPS values between stations can be difficult to interpret because similar 
CRPS values does not necessarily indicate a similar model skill. In stations with a larger 
variability, the uncertainty component is larger and the CRPS becomes larger in value 
and therefore seemingly worse. To correct for this effect, we scale the CRPS value with 
the uncertainty component (see Eq. 2-3). We select the best NN model type as the one 
with the lowest CRPS value, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 , and calculate the skill gain of each NN model 
type by normalizing the CRPS value with the CRPS value of the climatological 
distribution with the following equation: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑈𝑈 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡

𝑈𝑈
 ×  100 (2-5) 

where CRPSS is now a dimensionless and positively oriented indicator of the skill gain 
compared to that of the reference ensemble predictions from the probabilistic 
climatology distribution (Bradley & Schwartz, 2011). The ratio is multiplied by 100 to 
represent the CRPSS values as a percentage. The CRPSS can vary from -∞ to 100%, 
with 100% representing a perfect prediction and values higher than 0 indicating a better 
performance than the probabilistic climatology forecast.  
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 Assessing the influence of NN architecture and predictor 

variables  
The selection of the hyperparameters, predictor variables, and spatial footprint 
considered around each station have been tuned following an optimization with a simple 
design rationale for 15 stations, as explained previously. The best settings across the 
different NN types have been used as default settings for the NN models for all stations. 
Here, we explore the effect on model performance for the 15 selected stations in 
response to increasing the spatial footprint of input data, number of predictor variables, 
and NN design architecture for the four NN types. We use the default settings and 
perform a sensitivity analysis for each of them. First, we test the influence of the size of 
the spatial footprint on the performance of the NN models and gradually increase the 
gridded box centred around the station by 0.5°-degree resolution (0.25°, 0.75°, 1.25°, 
etc.). Second, we gradually increase the number of predictor variables in the following 
order: MSLP, wind speed magnitude, U and V, gradient of MSLP, and finally the 
quadratics of U and V. By doing so, we show the sensitivity of adding more atmospheric 
predictor variables on model performance. Last, we perform a hyperparameter 
optimization but focussing on the architecture of the NN model (hidden layers, 
neurons, and filters). For this optimization we opt for using an optimization algorithm 
instead of a one-by-one sensitivity analysis, because of the large number of combinations 
and showing the effects of optimizing on one model for an ensemble. The random 
search algorithm with a maximum of 100 trials optimizes the number of hidden layers 
(1, 2, 3, 4, 5), Neurons (24, 48, 96, 192), and filters (8, 16, 24). 

2.3 Results  

 Global performance and skill of the NN models 
The CRPSS for each station for the best NN model (i.e., the one with the lowest CRPS) 
is shown in Figure 2-3. A positive (negative) CRPSS indicates that the NN model has 
better (worse) predictive skill compared to our reference model, i.e., the probabilistic 
climatology ensemble. We observe clear spatial patterns in high and low model skill. 
Stations along the coast of West Europe, eastern Asia, New Zealand, southern 
Australia, southern Africa, and parts of North and South America generally perform 
well, with a CRPSS generally higher than 40%. However, stations close to the equator 
perform poorly, with negative CRPSS scores. These spatial patterns of model skill 
performance are observed for all NN model types (Figure A-5) and also found in large 
scale hydrodynamic models (Muis et al., 2020). This indicates that these differences do 
not necessarily stem from the model type applied but rather point towards more general 
challenges in capturing surge variability in the tropics. 
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Figure 2-3: Highest CRPSS percentage obtained of all NN models per tide station. Meridional and zonal 
plots present the CRPSS values with a centred moving average of 10 stations. 

We investigate the CRPS decomposition to better understand the NN model 
performance. Similar spatial patterns are observed for the uncertainty and the 
resolution component (Figure A-6b and A-6d, respectively), with lowest resolution 
scores and lowest uncertainty scores at stations near the equator and higher values in 
mid- to high latitudes. The resolution component of the CRPS, Figure A-6d, is positive 
for all stations except two locations located southeast of the Newfoundland Island, 
Canada. The positive resolution values indicate that NN models improve the surge 
ensemble predictions from our agnostic climatological probabilistic prediction. This 
does not however guarantee a better model skill. Negative values of the CRPSS can be 
interpreted as that the overall distribution of observed values is better captured by the 
distribution of the climatological mean than the NN model predictions. Nonetheless, 
this shows that there is value, albeit limited, in using a NN and indicates an improvement 
gained by the NN to better capture the average ensemble spread and behaviour of 
observed outliers. 

The best performing NN model type per station is shown in Figure 2-4. Although the 
differences between NN model types are marginal (Figure A-5), the LSTM results in 
the best performance for the majority of the stations (92%). Regions in Europe, Africa, 
Australia, the Pacific, and the U.S. almost all show the highest CRPSS values for LSTM. 
The only region that shows a clustering of best performance for the CNN is the 
southeast of Japan. Convolutional LSTMs show the best performance for a few 
locations along the east coast of South America and for five islands in the Pacific Ocean. 
The ANN performs best for only two locations (Atlantic city, USA; and Kuantan, 
Malaysia). Comparing the CRPS decomposition between the NN model types shows 
that for almost all stations the reliability score is the lowest for the LSTM. This indicates 
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that the probabilistic forecast from the LSTM has the closest agreement to the 
distribution of the observed values (Figure A-7). Similarly, since the uncertainty 
component of the CRPS is the same for all NN models (by definition), this implies that 
the resolution is highest for the LSTM at most stations. The LSTM is best in 
distinguishing types of events and their different distributions of expected surge. In 
terms of computational time, the LSTM is almost as fast as the ANN, about 1 minute 
per model on a Bullx system supercomputer, while the CNN and ConvLSTM take on 
average three and 18 times longer than the ANN, respectively.  

 

Figure 2-4: NN model type from the highest CRPSS value shown in Figure 2-3. For readability, we display 
the models in the following order LSTM→CNN→ConvLSTM→ANN. 

Local performance at selected tide stations. Figure 2-5 shows the ensemble surge time 
series predicted from the best NN model type at six of the fifteen selected locations with 
the observed time series for the testing year. The rest of the stations are shown in Figure 
A-8 and A-9. For all 15 stations, the LSTM is the best-performing NN model except at 
Callao, where the CNN model shows the best skill (CRPSS from LSTM: -13.41%; 
CRPSS from CNN: -13.10%). We note that an inter-station comparison based on the 
CRPS metric alone would have been misleading and incorrect. As shown in Figure 2-5, 
stations with the best (highest) CRPSS score do not necessarily have the best (lowest) 
CRPS score. This is because the uncertainty component of the CRPS, representing a 
climatological probabilistic prediction, greatly differs per location (as indicated by the 
difference in the range in scale of the y-axis). Instead, using the CRPSS as our 
comparison metric normalizes for these differences in climatology.  

In Figure 2-5, a positive CRPSS is obtained at four stations, with the highest value of 
55% for the Cuxhaven station. At these stations, the general temporal evolution of the 
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surge is well captured and there is close agreement between observed and predicted 
time series although extremes are often underestimated. We extract the median from 
the probabilistic predictions to calculate the coefficient of determination, R², with the 
observed surge levels. R² range between 0.57 at Dunkerque up to 0.86 at Cuxhaven. At 
stations with a negative CRPSS (Honolulu: -40.49%; Puerto Armuelles: -14.44%), we 
observe that the NN cannot capture low frequency variations of the observed time series 
that dominate the overall variability. As a result, the lower model skill is lower than 
ensemble predictions based on the climatology distribution.  These low frequencies 
probably driven by mean sea level variations, independent of atmospheric conditions, 
and therefore acts here as noise. This effect is also visible for other stations shown in A-
8 and A-9 such as Zanzibar (CRPSS: -22.46%), Lord Howe (CRPSS: -14.15%) or Callao 
(CRPSS: -13.10%).   

We compare these predictions with the surge time series obtained from the Global 
Tide and Surge Model (GTSM), a global hydrodynamic model simulating tides and 
surge forced with ERA5 (Muis et al., 2020). There is a close agreement between the 
NN skill, and the results obtained with GTSM. Comparable R² values to the NN are 
found at the stations with a positive CRPSS score and lower R² values for negative 
CRPSS, see Figure 2-5m-r, A-8 and A-9. At the stations of Cuxhaven and Dunkerque, 
GTSM provides very high agreement with observations, with R² of 0.87 and 0.92 
respectively compared with 0.86 and 0.57 for the LSTM. Averaged across all the 15 
stations, we find an average R² value for the LSTM (GTSM) of 0.69 (0.67) for stations 
with a positive CRPSS stations and 0.08 (-0.16) for negative CRPSS. More generally, 
the close performance between GTSM and LSTM tends to confirm that poor model 
skill observed is the result of a lower frequency signal present in the observed time series 
but not driven by meteorologically driven processes since it is also absent from the 
GTSM surge time series. 
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Figure 2-5: a-f) Hourly surge predictions for the testing year from the LSTM model, observed and surge from 
the Global Tide and Surge Model forced with ERA5 and g-l) scatter plot of the median from the predicted 
ensemble with the observed surge and m-r) with the GTSM surge. 

 Assessing the influence of NN architecture and predictor 

variables 
To explore ways to further improve the performance of the ensemble models, we 
evaluate the skill of the NN model and the complexity of the model input by increasing 
the number of predictors together with increasing the size of the spatial footprint by 0.5 
degree at a time. The spatial footprint is increased from 0.25 degrees (1x1 cells where 
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the tide station is located) up to 6.25 degrees (13x13 cells) centred box around the 
station. Furthermore, we perform a hyperparameter optimization allowing more hidden 
layers (up to 6) in our model architecture together with an optimization of the number 
of neurons (24, 48, 96, 192) and filters (8, 16, 24). 

Influence of predictor variables. Figure 2-6 shows the CRPSS value obtained when 
increasing the number of predictor variables (y-axis) and the spatial footprint size (x-
axis) for the NN for the six locations used throughout this study. Additionally, the same 
plots for the nine other locations are shown in Figure A-10. The CRPSS improves when 
enlarging the spatial footprint size for almost all stations and NN types. Moreover, 
stations that show an increase in CRPSS from a negative to a positive score (from dark 
red to green) when increasing the number of predictor variables or spatial footprint 
show the ability to learn of the NN at that location. Increasing the spatial footprint from 
0.25-degree resolution to 0.75 degree shows the largest increase in CRPSS value (9.5% 
on average for all 15 stations). After a spatial footprint of 2.75 degree, the CRPSS 
improves on average with 0.55% for each 0.25 degree increase of spatial footprint. 
Between the different NN types, we see that the performance of the CNN and ANN 
has the largest ability to learn when increasing the spatial footprint as the CRPSS of 
these NN types improves the most. Furthermore, we see that for stations that have a 
lower or negative CRPSS like Puerto Armuelles (also Ko Taphao, Lord Howe and 
Zanzibar in Figure A-8) the learning rate of LSTM increases/decreases sporadically 
when increasing the spatial footprint. Additionally, the average ensemble model spread 
increases and leads to a lower CRPSS value. The spread and uncertainty of the 
ensemble models for the LSTM and ConvLSTM increases when adding complexity to 
those stations. Due to this larger spread and uncertainty in the predictions, we argue 
that the LSTM and ConvLSTM do not benefit much from an increase in input or 
architecture complexity. Next to this, we find no clear difference in learning when 
increasing the spatial footprint when splitting the stations into stations that are prone to 
be hit by (extra) tropical cyclones and stations that are not (Figure A-11). 

When increasing the number of predictor variables, we see that the best performance 
is gained when using the 5 (MSLP, gradient of MSLP, U and V, and wind magnitude) 
or 7 (same as 5 but the quadratic U and V are added; hereafter referred to as U² and 
V²) predictor variables. Averaged over all 15 stations, we see that when including the 
wind magnitude predictor to the MSLP in the 2-predictor setup, CRPSS performance 
increases the most with an average of 5%. For the other predictors (U and V, gradient 
of MSLP, and U² and V²) performance increases on average of 4.2%, 2.3%, and 0.5% 
respectively. Highest performance is reached when including the gradient of the MSLP 
and U² and V² in the 5 and 7 predictor setups respectively.  
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Although the CRPSS shows an improvement in model performance for all 15 stations, 
the computation time increases a lot when enlarging the input dimensions (Figure A-9). 
Compared to the setup of the global runs and depending on the computation 
architecture, the computation time, in our case, increases up to 15 times: from 0.3 and 
4.8 minutes for the global settings runs to 3.1 and 65 minutes for the fastest and slowest 
NN which are LSTM and ConvLSTM respectively. Of course, this is just an indication 
as performance is dependent on layer configurations and hardware. In our case, details 
of the thin nodes we used can be found here 
(https://userinfo.surfsara.nl/systems/cartesius/description). 

Influence of NN architecture. Next to increasing the number of predictor variables or 
spatial footprint, we assess the influence of locally optimizing the number of hidden 
layers, neurons, and filters (for the CNN and ConvLSTM). For the global results, we 
used a fixed NN design with only one hidden layer of each type and hyperparameters 
of 48 neurons and 24 filters for the convolutional layers (for the CNN and ConvLSTM 
only). We compare the performance of the optimized NN models from a local 
hyperparameter optimization on the number of hidden layers, neurons, and filters with 
a random search algorithm with that of the models from section 2.3.1. At each of the 
15 tide stations, the optimization minimizes the MAE using the whole training dataset.  

Table 2-1 shows the results of this hyperparameter optimization for the 15 stations 
selected. Across all model types, we see that a local optimization leads to a different 
selection of hyperparameters between stations. In comparison to the CNN and 
ConvLSTM, we observe a larger spread in the number of optimal hidden layers for the 
ANN and LSTM ranging between 1 and 5 hidden layers. On average, the CNN requires 
3 or more hidden layers (median: 4) and the ConvLSTM centres around 2 or 3 hidden 
layers (median: 2). The number of filters is preferably 24 for CNN and ConvLSTM, 
while the latter also sometimes favours a lower number of filters. 

In Table 2-1, we also report the CRPSS obtained from the ensemble predictions using 
these optimized settings and the absolute change in CRPSS, i.e., the difference between 
the CRPSS obtained here and the CRPSS from the previous NN model applied in 
section 2.3.1. We see that the change in CRPSS is positive for all stations with the CNN 
and up to an increase of more than 20% for Dunkerque and Ko Taphao. However, this 
increase in CRPSS for Ko Taphao does not indicate a meaningful ensemble model 
improvement as the CRPSS is still negative. For instance, ensemble model predictions 
for Ko Taphao could become better at generating random predictions that together 
look like climatology. For these stations, we also see an increase in the hit rate defined 
as the percentage of hourly time steps the NN ensemble spread captured the observed 
surge value. This therefore suggests an increase in the ensemble spread that is capturing 
the signal. 

https://userinfo.surfsara.nl/systems/cartesius/description
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For the other NN types, the change in CRPSS is generally smaller, showing a marginal 
gain from applying more complex NN models. The local optimization even results in a 
decline in CRPSS value for some NN model types and stations, e.g., the LSTM and 
ConvLSTM for Puerto Armuelles. This decrease in performance from the local 
optimization denotes a mismatch between the hyperparameter optimization on the 
MAE on the whole training data and the performance obtained from ensemble 
predictions. This indicates that optimizing for a deterministic prediction does not 
necessarily lead to a better probabilistic prediction. The change in hit rate frequency 
indicated in Table 1 shows that NN models that do not improve in CRPSS can improve 
in hit rate frequency by increasing the spread between members. Each member, 
however, will be less representative of the others and of the surge progression in reality, 
leading to a lower CRPSS value than original.  

2.4 Discussion 
This study provides the first application of four NN model types for hourly surge 
predictions at the global scale and explores the capabilities of NN models. Unlike 
previous data-driven studies, we benchmark the performance of the NN models 
developed in this study against simple probabilistic predictions based on climatology to 
further understand spatial performance patterns. We also provide, for the first time, a 
quantitative assessment of the role of the network complexity, the number of predictor 
variables considered, and the spatial extent considered around each location with 
respect to the model performance.  

Overall, the results found in this study are in line with previous studies from Cid et 
al.(2017), Tadesse et al.(2020), and Bruneau et al.(2020), which are to our knowledge 
the only other studies that have looked at either daily or hourly surge predictions from 
data-driven models at the global scale. Focusing on 15 stations, we found very similar 
performance between the GTSM hydrodynamic model (Muis et al., 2016), and the 
LSTM. An important similarity across all these studies is that model skill increases from 
low to high latitude, where climatology shows that there is more variability in surge 
levels. This finding is consistent even though model setups and the selection of 
predictor variables differ across all these studies. This therefore seems to indicate more 
general challenges in surge predictions, which are summarized next. 

In order to predict surges, we selected the predictor variables from atmospheric 
variables that are known to be the main drivers of surge (Resio & Westerink, 2008; 
Tadesse et al., 2020). Our analysis of model skill however suggests that other sea level 
components are still present in the observed time series that cannot be captured by our 
predictor variables. This effect is particularly visible in the tropics where we find a 
consistently low model skill, similar to other studies (Cid et al., 2017; Tadesse et al., 
2020). Surge variations in tropical regions are often characterized by a small variance, 
in the order of a few centimetres. In this case, errors in the tidal decomposition can 
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introduce spurious noise of the same magnitude or more in the non-tidal residual time 
series that can have a relatively large influence on the time series and the CRPS. In 
tidally dominated coastal environments, applying a recursive Chebyshev Type II low-
pass filter instead of a moving average might better help remove remaining transitory 
signal in the non-tidal residuals  and isolate the high frequency signal in the observed 
time series (Brown et al., 2012; Lyddon et al., 2018). Moreover, other processes not 
linked with atmospheric variability can still be present in the observed time series. Steric 
components (driven by seasonal changes in salinity and thermal expansion), geostrophic 
currents (due to oceanographic pressure gradients), and river discharge levels in 
estuaries and deltas can have a similar or larger influence on non-tidal water level 
variability than surge levels (Cid et al., 2018; Eilander et al., 2020; Idier et al., 2019; 
Ikeuchi et al., 2017; Ishii & Kimoto, 2009; Miller & Douglas, 2004; Muis et al., 2018; 
Serafin et al., 2019; Woodworth et al., 2019). Therefore, one could instead add 
additional predictor variables to cover these different processes. Examples of additional 
predictor variables available at the global scale that have been applied in other data-
driven studies are sea surface temperature, accumulated precipitation, significant wave 
height, and peak periods (Bruneau et al., 2020; Cid et al., 2018; Tadesse et al., 2020).  

The largest anomalies in surge levels are often linked to the passage of low-pressure 
systems in the mid-latitudes and with tropical cyclones in the tropics. A proper 
characterization of the moving speed, track, central pressure drops, and size of these 
atmospheric phenomena is essential to link predicted tropical cyclones to observed 
surge extremes. Here, we selected the predictor variables from the most recent global 
reanalysis dataset to ensure a spatially and temporally consistent dataset. While ERA5 
can better represent the characteristics of tropical cyclones (position, wind intensity and 
size) compared to its predecessor product ERA-Interim (Dullaart et al., 2020; Hersbach 
et al., 2020; Malakar et al., 2020), some regions still exhibit large wind biases (Belmonte 
Rivas & Stoffelen, 2019; Bian et al., 2021). We expect that these biases do not affect the 
inter-model comparison because each NN model is independently fit. However, this 
could affect the spatial patterns of performance. An alternative to reduce this regional 
bias in future studies could be by including more accurate atmospheric products from 
local sources such as remote sensing products (Tadesse et al., 2020), even though spatial 
and temporal data coverage may be limited, or from global forecasting systems 
(Bloemendaal et al., 2018; Dullaart et al., 2020; Roberts et al., 2018). To improve the 
representation of tropical cyclones, higher resolution input data could be obtained, for 
example by applying observed best track data and fitting a parametric wind model (Lin 
& Chavas, 2012), as done for local(Das et al., 2011; Hashemi et al., 2016). and global 
studies (Bloemendaal, de Moel, et al., 2020; Marsooli et al., 2019; Muis et al., 2019). 
To fully harvest the impact of these additional efforts, this should be done in 
conjunction with a better sampling strategy during training to obtain a more balanced 
training set (Bruneau et al., 2020).  
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Our study highlights the complex interplay between hyperparameter optimization, 
architecture complexity, and the number of predictor variables in model performance. 
This interplay has not yet been studied in global surge studies using deep learning 
methods. We show that local model optimization based on deterministic prediction 
does not necessarily lead to better probabilistic predictions. This means that inter-
model comparisons should be carefully interpreted since optimization results can lead 
to a local optimum in model settings for a few stations rather than a global optimum in 
model settings for all stations. We found that fitting an ensemble of NN models for 
each station to provide probabilistic predictions is beneficial to overcome overfitting, 
unless the ensemble model spread is too large. Nevertheless, the models presented here 
do not represent a global optimum and further improvements could be made. Because 
we only carried out the optimization for fifteen stations, optimal settings for other 
stations or regions could differ from our analysis. Furthermore, using NN instead of 
hydrodynamic models may lead to several challenges as NN do not help us improve 
understanding the underlying physical processes of surges, and do not capture long term 
processes such as sea-level rise or climate variability (Reichstein et al., 2019). In order 
to face these challenges, future work can make use of physics-informed machine 
learning to improve the predictive ability and scientific consistency for generalizable NN 
models (Karpatne et al., 2017; Kashinath et al., 2021; Willard et al., 2020). 

Additional efforts should be closely linked to the intended use of the data to evaluate 
the best NN architecture, hyperparameters and further developments. For example, 
including longer term temporal dependence could be done by implementing a stateful 
LSTM instead of the stateless LSTM implemented in this study. Using our global 
model settings, the input dimensions in relation to the kernel size of the convolutional 
layers may be small to evaluate the true performance of these NN as edging effects can 
occur. Decreasing the edging effects while keeping the high temporal resolution can be 
a challenge for future research (Innamorati et al., 2019; Nasir & Sassani, 2021). 
Moreover, this study highlighted the potential of convolutional layers when fed with 
large enough input for surge predictions, an interesting avenue for further research. For 
applications in coastal flood risk and extreme sea level analysis, the design of the study 
should be altered to put an explicit emphasis on extremes and consider total water levels 
instead of focussing on the surge component only. Our analysis on the influence of the 
pre-processing steps on sea level return periods (Fig. A-3) indicates that errors in the 
timing of surge residuals can lead to an under or overestimation of extreme sea levels. 
If compounded with a biased underestimation of extreme surge magnitudes, as 
observed locally, this could strongly impact reconstructed sea level extremes. A more 
sophisticated loss function, combining the MAE with other metrics to evaluate 
extremes, could be implemented to update the layers’ weight and better capture 
extremes. Similarly, our experiment setup focused on predicting surges based on 
observed time series, and as such, this method cannot be directly applied for predicting 
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surges at ungauged locations because it requires training data that by definition do not 
exist. One could circumvent that by applying our approach to modelled data, such as 
the GTSR dataset (Muis et al., 2016).  

2.5 Conclusion and outlook 
In this study, we have explored deep learning capabilities to predict surges at the global 
scale. For 738 tide stations, we developed and applied an ensemble approach for four 
different types of NN to predict hourly surges. We used surge as the predictand variable 
extracted from observed sea levels of the GESLA-2 dataset and atmospheric variables 
as predictor variables from the ERA5 climate reanalysis dataset. To evaluate the NN 
model performance at each station, we used the CRPS value and benchmarked the 
results against a simple probabilistic model based on climatology, i.e., the CRPSS. Next, 
we explored how increasing the NN design complexity affects model performance by 
adding hidden layers and enlarging the spatial footprint around each station to extract 
the predictor variables. 

Using the same hyperparameter settings across all stations and a spatial footprint of 1.25 
degree to extract predictor variables, the LSTM generally outperforms the other NN 
types. This is because the probabilistic forecast from the LSTM is in closest agreement 
with the distribution of the observed values, resulting in the best reliability scores in the 
CRPS. While the LSTM generally performs best globally when considering a spatial 
footprint of 1.25 degree, we show that the CNN can improve the most when increasing 
the spatial footprint or number of hidden layers in the model architecture and 
outperforms the LSTM. This comes, however, at the expense of increasing 
computational time, up to more than 15 times longer to run. 

Our results show that the NN models can capture temporal evolution of surges and 
outperform large-scale hydrodynamic models. We observe similar performance 
patterns across all the NN ensemble models, with a performance increasing with latitude 
and generally high (CRPSS>40%) in mid-latitudes, which is in line with previous studies. 
Stations around the equator generally do not outperform the simple probabilistic model 
based on climatology. Additionally, we show that model performance generally 
improves with increasing the size of the spatial footprint for the selection of the predictor 
variables, but that increasing the number of hidden layers does not always lead to a 
better performance. 

Finally, we share the surge input and predicted data and the NN models to invite the 
coastal community to further build on these initial efforts. We foresee that the NN 
models developed here could be adapted and tailored for specific coastal applications, 
for example to provide rapid operational forecast of surge levels, for probabilistic coastal 
flood hazard assessments, or for future predictions of surges. 
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Data availability 

The initial and predicted surge time series at the tide stations analysed, and the NN 
models at each location in this study are openly available on Zenodo 
(https://doi.org/10.5281/zenodo.5216849). Easy visualisation of the models 
including the model hyperparameters and features can be accessed in for example with 
the netron.app website. 
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Abstract 
Coastal flood hazard and exposure are expected to increase over the course of the 21st 
century, leading to increased coastal flood risk. To limit the increase in future risk, or 
even reduce coastal flood risk, adaptation is necessary. Here, we present a framework 
to evaluate the future benefits and costs of structural protection measures at the global 
scale, which accounts for the influence of different flood risk drivers (namely: sea-level 
rise, subsidence, and socioeconomic change). Globally, we find that the estimated 
expected annual damage (EAD) increases by a factor of 150 between 2010 and 2080, if 
we assume that no adaptation takes place. We find that 15 countries account for 
approximately 90% of this increase. We then explore four different adaptation 
objectives and find that they all show high potential to cost-effectively reduce (future) 
coastal flood risk at the global scale. Attributing the total costs for optimal protection 
standards, we find that sea-level rise contributes the most to the total costs of adaptation. 
However, the other drivers also play an important role. The results of this study can be 
used to highlight potential savings through adaptation at the global scale. 

3.1 Introduction 
In recent years, the effects of climate change on coastal flood hazards and its impacts 
on society have been studied extensively. The Intergovernmental Panel on Climate 
Change (IPCC) reports that it is likely that we will face a global mean sea-level rise by 
the end of the 21st century in the range of approximately 0.43 – 0.84 meter compared 
to 1986-2005 and that impacts on society will be vast (Oppenheimer et al., 2019). 
According to a recent study by Raftery et al. (2017), it is unlikely that the Paris 
agreement’s aim of keeping global warming below a 2°C increase by the end of the 21st 
century will be met. This may lead to changes in storm surges (Tebaldi et al., 2012), 
extreme sea levels (Vousdoukas et al., 2017), and tides (Pickering et al., 2012). 
Together, these increases in sea-level and a possible change in storminess will lead to 
increased flood hazards, as well as threats to shorelines, wetlands, and coastal 
development (Ericson et al. 2006; Hinkel et al., 2013). Moreover, flood hazard is 
expected to increase as a result of subsidence. In many deltas and estuaries, 
groundwater extraction is a major factor contributing to this subsidence (Hallegatte et 
al., 2013). During the 20th century, the coasts of Tokyo, Shanghai and Bangkok subsided 
by several meters (Nicholls et al., 2008) and subsidence is expected to continue to affect 
coastal flood risk in the future (Dixon et al., 2006). Global coastal flood risk is also 
expected to increase in the future as a result of increasing exposure, due to growth in 
population and wealth, and economic activities in flood-prone areas (Güneralp et al., 
2015; Jongman et al., 2012; Neumann et al., 2015; Pycroft et al., 2016). 

Today, on average 10% of the world population and 13% of the total urban area in low 
elevation coastal zones is located less than 10 meters above sea level (McGranahan et 
al., 2007). In addition, 1.3% of global population is estimated to be exposed to a 1 in 
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100-year flood (Muis et al., 2016). In the coming century, these people and areas are 
projected to face increases in coastal flood risk (Brown et al., 2018; Hallegatte et al., 
2013; Hinkel et al., 2014; Jongman et al., 2012; Merkens et al., 2018; Neumann et al., 
2015). 

To prevent this increase in coastal flood risk, or even to reduce risk below today’s levels, 
adaptation measures are necessary. The importance of climate change adaptation and 
disaster risk reduction is recognized in several global agreements, such as the Paris 
Agreement (United Nations Framework Convention on Climate Change, 2015) and the 
Sendai Framework for Disaster Risk Reduction (United Nations Office for Disaster 
Risk Reduction, 2015). The Sendai Framework sets specific targets for reducing risk by 
2030, such as reducing the direct disaster economic loss in relation to GDP and 
substantially reducing the number of affected people globally. 

Recent studies have shown that adaptation measures hold a large potential for 
significantly reducing this future flood risk (Diaz, 2016; Hinkel et al., 2014; Lincke & 
Hinkel, 2018). However, the number of global scale studies in which the benefits and 
costs of disaster risk reduction and adaptation are explicitly and spatially accounted for 
remains limited. Existing studies have assessed the effect of climate change, subsidence 
and/or socioeconomic change (Hallegatte et al., 2013; Hinkel et al., 2014; Nicholls et 
al., 2008; Vousdoukas et al., 2018a), but have not included adaptation objectives or 
attributed flood risk drivers to adaptation costs. Lincke & Hinkel (2018) assessed the 
cost-effectiveness of structural protection measures against sea-level rise and population 
growth using the DIVA model. They found that structural adaptation measures are for 
13% of the global coastline feasible to invest in. However, they did not include 
subsidence and attribution of drivers in their modelling scheme. 

In this paper, we develop a model to evaluate the future benefits and costs of structural 
adaptation measures at the global scale. We use it to address the limitations of current 
studies addressed above, and thereby extend the current knowledge on the cost-
effectiveness of structural adaptation measures in several ways. Firstly, we include 
human induced subsidence due to groundwater extraction. Secondly, we assess the 
benefits and costs of several adaptation objectives. Thirdly, we attribute the costs of 
adaptation to different drivers (namely sea-level rise, subsidence and change in 
exposure). 

3.2 Methods 
The overall methodological framework is summarized in Figure 3-1 and consists of the 
following main steps: (1) flood risk estimation; (2) adaptation costs estimation; (3) 
benefit-cost analysis for four adaptation objectives; and (4) attribution of the total costs 
to the different drivers. Each of these steps is described in detail in the following 
subsections. In brief, flood risk is estimated as a function of hazard, exposure and 
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vulnerability (United Nations Office for Disaster Risk Reduction, 2016). In the risk 
model, Expected Annual Damage (EAD) is calculated for different scenarios with and 
without adaptation, with the difference between these two representing the benefits. The 
costs are calculated by estimating the dimensions of the required dikes (height and 
length) and multiplying these by their unit costs. Maintenance costs are also included in 
the cost model. A benefit-cost analysis is performed for four adaptation objectives, and 
finally the costs of adaptation are attributed to several risk drivers. The methodological 
steps takes are explained in detail in Ward et al. (2019), on which the following 
descriptions are based. 

 

Figure 3-1: Overview of models and data layers for assessing flood risk, costs of adaptation and attribution of 
different drivers.  

 Flood risk estimation 
We use hydrodynamic simulations of tide and surge, and scenarios of regional sea-level 
rise, as input to a coastal inundation model, to generate hazard maps for several return 
periods (2, 5, 10, 25, 50, 100, 250, 500 and 1000 years). These are combined with 
exposure maps and vulnerability curves (depth-damage functions) in the impact 
assessment model, using a setup similar to the GLOFRIS impacts module developed 
by Ward et al. (2013) and extended for future simulations by Winsemius et al. (2016). 

The global coastal flood impacts are assessed at a horizontal resolution of 30" × 30" and 
simulated for the different return periods. After calculating the impacts for the different 
return periods, EAD is calculated by taking the integral of the exceedance probability-
impact curve (Meyer et al., 2009). Figure 3-2 shows the different input layers for the 
flood risk assessment and benefit-cost analyses (note that different sea-level rise and 
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socioeconomic scenarios are used, and just one is shown in Figure 3-2 as example). The 
following section describes the flood risk simulations in detail. 

Flood hazard 
Current flood hazard. In order to simulate coastal inundation hazard, we use extreme 
sea levels from the Global Tide and Surge Reanalysis (GTSR) dataset by Muis et al. 
(2016) as input to an inundation model. GTSR has been shown to perform well (Muis 
et al., 2017) for extratropical regions and contains a database of extreme water levels for 
different return periods, based on the Global Tide and Surge Model (GTSM). Surge is 
simulated using wind and pressure fields from the ERA-Interim reanalysis (Dee et al., 
2011), and tide is simulated using the Finite Element Solution 2012 (FES2012) model 
(Carrère & Lyard, 2003). In this modelling scheme, wind (or surface) waves are not 
included. As tropical cyclones are poorly represented in the input climate dataset, we 
use a version of GTSR enriched using a historical storm track archive to represent 
tropical cyclones. These tropical cyclones were simulated using the IBTrACS 
(International Best Track Archive for Climate Stewardship) archive, which provides a 
dataset of historical best tracks. All tracks over the period 1979-2004 are used and 
converted into wind and pressure fields using the parametric Holland model (Delft3D-
WES, 2019) in order to simulate alternative water levels using GTSM. These water 
levels are combined with the time series of GTSR by using the highest water level at 
each GTSM cell for each time step. Extreme values are estimated using a Gumbel 
extreme value distribution fit on the annual extremes. 

To calculate overland inundation from near-shore tide and surge levels we used a GIS-
based inundation routine, similar to Vafeidis et al. (2019). Extreme sea levels from the 
nearest GTSR location are projected at the coastline. Then, inundation takes place in 
areas that are hydrologically connected to the sea for that extreme sea level. The model 
uses the Multi-Error-Removed Improved-Terrain (MERIT) DEM (Yamazaki et al., 
2017) at a 30” x 30” resolution as underlying topography. We accommodate three 
important factors in the inundation routine that are not regularly taken into account in 
global scale coastal inundation modelling:
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• We use a resistance factor to simulate the reduction of flooding land inwards 
as tides and storm surges have a limited time span. We apply this factor over 
a Euclidean distance from the nearest coastline point. The resistance factor 
was set to 0.5m/km. Haer et al. (2018) showed the maps to perform well 
against past flood events in their study in Mexico. Several other studies also 
use attenuation factors varying between 0.1 and 1.0 m/km (Vafeidis et al., 
2019). 

• We multiply the resistance factor by a weight, proportional to the amount of 
permanent water in each cell within the Euclidean pathway towards a land cell 
under consideration. In this way, grid cells that are marked as land within the 
terrain model, but in fact represent areas with large amounts of open water are 
correctly simulated as cells with low resistance. We estimate fractions of 
permanent water using a 30-year monthly surface water mask dataset at 30 
meter resolution, derived from LandSAT archive (Pekel et al., 2016). 

• We apply a spatially varying offset between Mean Sea Level according to the 
FES2012 model, and the datum used by the terrain model MERIT (EGM96) 
to ensure that the zero datum of our terrain and our extreme sea levels from 
GTSR are the same. 

 

Future flood hazard. For future hazard simulations we use sea level changes, to simulate 
future extreme sea levels, and subsidence estimates due to groundwater extraction to 
estimate how the terrain may change. Global mean sea-level rise projections for RCP4.5 
and RCP8.5 are obtained from the RISES-AM project (Jevrejeva et al., 2014). The sea-
level rise for this study is simulated as a range of probabilistic outcomes. For this study, 
we use the 50th percentile, and to assess the sensitivity of the results we also use the 5th 
and 95th percentiles as input for the inundation model. We use gridded datasets of 
regional sea-level rise estimates developed by Jackson and Jevrejeva (2016). These data 
were derived by combining spatial patterns of individual sea-level rise contributions in 
a probabilistic manner. We include sea-level rise in the inundation routine by adding 
this additional water level to the extreme sea level. Sea-level rise in 2080 for the RCP4.5 
scenario and 50th percentile is shown in Figure 3-2a. In this simulation, most of the 
regions will face a sea-level rise between the 0.3 and 0.5 meters. Close to the poles, sea 
level may decrease due to a decline in gravitational forces of the melting ice caps. 

Subsidence rates are taken from the SUB-CR model by Kooi et al. (2018), which 
models subsidence using three existing models, namely the hydrological model PCR-
GLOBWB integrated with the global MODFLOW groundwater model (de Graaf et 
al., 2017; Sutanudjaja et al., 2018), and a land subsidence model (Erkens & Sutanudjaja, 
2015), focussing on groundwater levels and resulting subsidence. In this approach, 
subsidence is modelled due to groundwater extraction, which is the dominant factor of 
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human-induced subsidence in many coastal areas (Erkens et al., 2015; Galloway et al., 
2016). The effects of subsidence, simulated at the resolution of 5’ x 5’ and spatially 
interpolated to 30” x 30” resolution, are included in the inundation model by adding 
the subsidence estimates to the MERIT terrain. Subsidence in 2080 is shown in Figure 
3-2b and reaches up to 5-7m in regions in China. Unlike sea level rise, subsidence does 
not take place along every coastline and is instead projected as a regional phenomenon. 

Flood exposure 
In our modelling scheme, exposure is represented by maps of built-up area and 
estimates of maximum damage for three different land use classes in built-up areas. The 
GLOFRIS model uses current and future built-up area, current and future GDP, and 
maximum damages on the country level as input. The FLOPROS modelling approach 
(see section 2.1.5) has current data on built-up area, population, and GDP as input. In 
the following sections, we describe the exposure data for the current and future 
simulations. 

Current exposure. Current built-up area with a resolution of 5’ x 5’ are taken from the 
HYDE database (Klein Goldewijk et al., 2010) and later regridded to the 30” x 30” 
resolution. Built-up area refers to all kinds of built-up areas and artificial surfaces. 
Current maximum economic damages are estimated using the methodology of 
Huizinga et al. (2017). They used a root function to link GDP per capita to construction 
costs for each country. To convert construction costs to maximum damages, several 
adjustments are carried out using the suggested factors by Huizinga et al. (2017) for the 
different occupancy types. Such factors include depreciation and undamageable parts 
of buildings As a proxy for an approximation of percentage area per occupancy type, 
we set the urban grid cells of the layers from the HYDE database to 75% residential, 
15% commercial and 10% industrial, based on a study by (BPIE, 2011) and a 
comparison of European cities’ share of occupancy type of the CORINE Land Cover 
data (EEA, 2016). Following Huizinga et al. (2017), the density of buildings per 
occupancy types are set to 20% for residential and 30% for commercial/industrial. 

In order to normalize current risk we use GDP per capita taken from the Shared 
Socioeconomic Pathways (SSP) database of IIASA, distributed spatially according to 
the ORNL LandScan 2010 population count map (Bright et al., 2011). As the total 
population per country in this map is different to the 2010 population stated in the SSP 
database, we use a correction factor per country to adjust the population per cell.  

Future exposure. Future simulations of built-up area are taken from Winsemius et al. 
(2016) at a resolution of 30” x 30”. Using the method described by Jongman et al. 
(2012), these simulations were computed using changes in gridded population and 
urban population for different SSPs derived from the GISMO/IMAGE model 
(Bouwman et al., 2006). These simulations include five narrative descriptions of future 
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societal development associated with SSP1-5 (O’Neill et al., 2014). Such descriptions 
include sustainability associated with low challenges (SSP1), middle of the road 
associated with intermediate challenges (SSP2), regional rivalry associated with high 
challenges (SSP3), inequality associated with dominance of adaptation challenges 
(SSP4) and Fossil-fueled development where the mitigation challenges are dominating 
(SSP5) (O’Neill et al., 2017).  

To estimate future maximum damages, we scale the current values with the GDP per 
capita per country from the SSP database. Boundaries of countries are derived from 
the Global Administrative areas dataset (GADM, 2012). In order to calculate future risk 
relative to GDP, future gridded GDP values are taken from Van Huijstee et al. (2018), 
which uses the national GDP per capita from the SSP database as input. 

Flood vulnerability 
Vulnerability to flood depth of urban areas is estimated by using different global flood 
depth-damage functions for each occupancy type and are taken from Huizinga et al. 
(2017). The resulting damages are represented as percentage of the maximum damage, 
reaching maximum damages at a water level depth of 6 meters. 

Integration to EAD 
With the urban damages, calculated for the different return periods, risk is computed 
and expressed in terms of expected annual damages (EAD). We use a commonly used 
method in risk assessment to calculate EAD by taking the integral of the exceedance 
probability-impact (risk) curve (Meyer et al., 2009) and can be written as 

𝐷𝐷 = � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝
1

𝑝𝑝=0

 (3-1) 

where 𝑅𝑅𝐴𝐴𝐷𝐷 is ‘risk’ per year, 𝐷𝐷 is the urban damage (or impact), 𝜃𝜃 the vulnerability, 
and 𝑝𝑝 denotes the annual probability of non-exceedance (protection standard divided 
into 1). To fit a protection standard of a coastal region in the risk computation, the risk 
curve is truncated at the exceedance probability of the protection standard (expressed 
as a return period). To estimate the definite integral, we use the trapezoidal 
approximation. As data on protection standards of coastal regions are not available for 
many regions, we estimate current protection standards for coastal regions using the 
FLOPROS modelling approach (Scussolini et al., 2016), as is described in the next 
section. 

FLOPROS modelling approach 
To assess the benefits and costs of adaptation objectives, information on current 
protection standards is needed. We use the FLOPROS modelling approach (Scussolini 
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et al., 2016) to estimate these protection standards using current exposure data and 
EAD data from the GLOFRIS model as input. Figure 3-2d shows the estimated 
FLOPROS flood protection standards for each coastal sub-national unit. Further 
information about the FLOPOS estimates together with a validation of the results can 
be found in the Appendix B. 

Estimating the benefits of adaptation 
To calculate the benefits of adaptation, EAD is calculated for every year of the lifetime 
of the dike for a certain return period and subtracted from the EAD for every year 
without adaptation. The lifetime of the dike is set to expire in 2100 and the building 
period is set to 20 years. During this period EAD is assumed to increase linearly. The 
results are summed to get the total benefits of adaptation. 

 Cost estimation 
To estimate the costs associated with the different adaptation objectives, we use the 
same methodology as Ward et al. (2017), which calculates the costs of flood protection 
by summing the maintenance and investment costs over time for raising dikes to prevent 
flooding. The following section describes the calculation of costs of adaptation and the 
adaptation objectives in more detail. 

To calculate the costs of adaptation, first dike heights need to be calculated. The current 
dike height calculations are taken from a recent study by van Zelst et al. (2019). Their 
methodology is to first derive coastal segments and perpendicular coast-normal 
transects (766,034 transects in total). For each transect, bed levels are constructed and 
subsequently, hydrodynamic conditions and wave attenuation are derived. Lastly, the 
resulting sea water levels are translated into dike heights. The coastlines are derived 
from OpenStreetMap (OSM) and moved 100 m land inwards to smoothen the coast 
lines and to position the lines at a likely place to establish a dike system. Transects are 
derived perpendicular to the coastlines for each 1’ x 1’-cell that has a coastline segment. 
Each transect is described by its slope, ocean bathymetry, foreshore, elevation, and 
surge levels among other things. To capture most foreshores, the transects are stretched 
4 km land inward and seaward. The main source of bed level data is the Earth 
Observation (USGS Landsat and Copernicus Sentinel 2) based high resolution 
intertidal elevation map (20 m horizontal and 30-50 cm vertical accuracy) of Calero et 
al. (2017). As this dataset does not contain data for all bed levels along the transects, the 
gaps are filled by ocean bathymetry data from GEBCO (30’’, 10 m vertically) and 
topography data from MERIT (3’’, 2 m vertically). The water levels are derived from 
the GTSR dataset (Muis et al., 2016) and corresponding wave conditions at different 
return periods from the ERA-Interim reanalysis (Dee et al., 2011). With a lookup-table, 
consisting of numerical modelling results, the wave attenuation over the foreshore is 
determined. Due to the unknown direction, incoming waves are assumed to run 
perpendicular to the coast. Finally, current dike heights in respect to the surge level are 
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calculated with the empirical EuroTop formulations (Pullen et al., 2007) and are based 
on a standard 1:3 dike profile without berms and with a maximum allowed overtopping 
discharge of 1 L/m2/s. This is representative for a low-cost dike. We exclude coastlines 
where there is no built-up area, or no inundation is simulated. 

In order to calculate future dike heights, sea-level rise from the RISES-AM project 
(Jackson & Jevrejeva, 2016) is used in the calculation of the crest heights for different 
return periods. This is done by adding sea level rise directly to the crest height. Next to 
sea level rise, future dike heights are calculated with subsidence levels (see section 
3.2.1.). Subsidence is assumed to take place directly on the dike and therefore 
computed on the crest height, which is similar for sea level rise calculations. 

The costs of raising dikes are estimated by calculating the total length of dike 
heightening per grid cell and multiplying by a unit cost set to USD 7 million km∙m based 
on reported costs in New Orleans (Bos, 2008). This value of US$ 7 million km∙m is 
within a reasonable range when compared to various studies (JC Aerts et al., 2013; 
Jonkman et al., 2013; Stephan Lenk et al., 2017). This includes investment cost, 
groundwork-, construction- and engineering costs, property or land acquisition, 
environmental compensation, and project management. Subsequently, the costs are 
converted to US$2005 Power Purchasing Parity (PPP) using GDP deflators from the 
World Bank and average annual market exchange rates from the European Central 
Bank for each country. Construction index multipliers, based on civil engineering 
construction costs, adjust the construction costs to account for differences between 
countries (Ward et al., 2010). The lengths of the dikes are estimated using the 766,034 
coastline transects. Maintenance costs are represented as percentages of investment 
costs and are set to 1% per year. 

 Benefit-cost analysis 
Finally, a benefit-cost analysis is performed by calculating the benefits and costs for 
adaptation until 2100 for sub-national regions. These regions are defined as the next 
administrative unit below national scale in the Global Administrative Areas Database 
(GADM). The benefits and costs are discounted with a discount rate of 5% until 2100 
(lifespan of investment) and with Operation and Maintenance (O&M) costs of 1%. It is 
assumed that investments are made in 2020 and construction is finished in 2050. During 
this time period, benefits and costs for investment are assumed to increase linearly. We 
use Net Present Value (NPV) shown in Eq. (3-2) and Benefit-Cost Ratios (BCR) shown 
in Eq. (3-3) as indicators of economic efficiency. 

𝐶𝐶𝐶𝐶
𝐵𝐵 =

∑ 𝐵𝐵𝑡𝑡
(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛
𝑡𝑡=1

�∑ 𝐶𝐶𝑡𝑡
(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛
𝑡𝑡=1 �

�  (3-2) 
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𝑉𝑉 = �
𝐵𝐵𝑡𝑡 − 𝐶𝐶𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 (3-3) 

where 𝑡𝑡 denotes the time in years, 𝑛𝑛 the lifespan of the investment, 𝑟𝑟 the discount rate, 
𝐵𝐵𝑡𝑡 the benefits per year, 𝐶𝐶𝑡𝑡 costs per year expressed as maintenance costs, and 𝐶𝐶0 the 
initial investment costs. 

The Benefit-cost analysis is carried out for two different sea-level rise scenarios (RCPs) 
and five different socioeconomic scenarios (SSPs). All the results are shown for two 
scenario combinations (van Vuuren et al., 2014), namely RCP4.5/SSP2 and 
RCP8.5/SSP5. The former is used for a ‘middle of the road’ scenario with medium 
challenges for mitigation and adaptation (Riahi et al., 2017) that can broadly be aligned 
with the Paris agreement targets (Tribett et al., 2017), while the latter is used as a ‘fossil-
fuel development’ world (Kriegler et al., 2017).  

Adaptation objectives 
For the benefit-cost analysis, four future investment objectives are explored: (1) 
‘Protection constant’, which keeps protection levels in the future the same as current 
protection levels; (2) ‘Absolute risk constant’, which calculates future protection 
standards when the absolute value for EAD is kept the same as current;  (3) ‘Relative 
risk constant’, which calculates future protection standards when EAD as a percentage 
of GDP is kept the same as current; and (4) ‘Optimize’, which calculates future 
protection standards by maximizing NPV. The future protection standards for the four 
adaptation objectives are estimated at discrete intervals (2, 5, 10, 25, 50, 100, 250, 500 
and 1000 years). The future protection standards when no adaptation takes place are 
calculated by assuming that dikes are maintained at the current height, but with no 
additional heightening. In the ‘optimize’ adaptation objective, only regions with BCR 
greater than 1 are included; no adaptation takes place for regions with BCR less than 1. 

Attribution of costs 
To attribute costs to different drivers, the following method is used. For the ‘optimize’ 
adaptation objective, the costs are attributed to four terms: (1) optimization under 
current conditions (CUR); (2) socioeconomic change (SEC); (3) sea level rise driven by 
climate change (SLR); and (4) subsidence driven by groundwater depletion (SUB). The 
following conceptual equations illustrate the attribution methodology: 

𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴⁄  (3-4) 
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𝐴𝐴𝑆𝑆𝑆𝑆𝐶𝐶 = (𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑁𝑁𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶) 𝑁𝑁𝐶𝐶𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴⁄  (3-5) 

𝐴𝐴𝑆𝑆𝐴𝐴𝐶𝐶 = 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝐴𝐴𝐶𝐶 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 𝑝𝑝𝑝𝑝𝑜𝑜𝑡𝑡𝑏𝑏𝑝𝑝𝑡𝑡𝑏𝑏𝑜𝑜𝑛𝑛 𝑆𝑆𝑆𝑆𝐶𝐶) 𝑁𝑁𝐶𝐶𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴⁄  (3-6) 

𝐴𝐴𝑆𝑆𝐶𝐶𝐵𝐵 = 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝐶𝐶𝐵𝐵 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 𝑝𝑝𝑝𝑝𝑜𝑜𝑡𝑡𝑏𝑏𝑝𝑝𝑡𝑡𝑏𝑏𝑜𝑜𝑛𝑛 𝑆𝑆𝑆𝑆𝐶𝐶) 𝑁𝑁𝐶𝐶𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴⁄  (3-7) 

Equation (4-7) show the attribution calculation with 𝐴𝐴 the attribution and 𝑁𝑁𝐶𝐶𝑉𝑉 the net 
present value calculated with Eq. (3-4) The subscripts denote the attribution terms: 𝐶𝐶𝑈𝑈𝐶𝐶 
refers to optimizing in current conditions; 𝐶𝐶𝑅𝑅𝐶𝐶 refers to socioeconomic change; 𝐶𝐶𝑅𝑅𝐶𝐶 
refers to sea-level rise; and 𝐶𝐶𝑈𝑈𝐵𝐵 refers to subsidence. 𝐴𝐴𝑅𝑅𝑅𝑅 refers to when all risk drivers 
are taken into account. In the subscript between brackets, the baseline protection 
standard used during the calculation of NPV is indicated. Because the ‘optimize’ 
adaptation objective is an optimization and not all regions have optimized their 
protection standards for the current climate, this last term must be accounted for. The 
optimization term is the costs of maximizing NPV with current conditions (𝑁𝑁𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶). 
Subsequently, the costs for socioeconomic change are computed by taking the 
difference in costs between 𝑁𝑁𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 and maximizing NPV when only socioeconomic 
change is considered (𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝐶𝐶). To determine the attribution of costs for climate 
change, the baseline protection is set to the protection standards associated with the 
𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝐶𝐶 term. Subsequently, the costs are estimated by maximizing NPV when both 
sea-level rise and socioeconomic change are considered (𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝐴𝐴𝐶𝐶). The attribution of 
subsidence is the same procedure as with 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝐴𝐴𝐶𝐶, by swapping the sea-level rise driver 
with the subsidence driver (NPVSUB). All attributions of costs are expressed in 
percentages with reference to maximizing NPV for future conditions (𝑁𝑁𝐶𝐶𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴), which 
is the same as the ‘optimize’ adaptation objective. 

In some cases, the percentages of the different drivers do not add up to 100%. This is 
the case when absolute dike heights associated with 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝐶𝐶 are higher than 𝑁𝑁𝐶𝐶𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 (in 
other words: adding climate change and subsidence would result in lower optimal dike 
heights in the benefit-cost analysis). In these cases, we set attribution for 𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝑆𝑆𝐶𝐶 to 
100%, and 𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐶𝐶𝐵𝐵 to 0%. Another exception is when optimal protection 
standards for 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝐶𝐶 are higher than 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝐴𝐴𝐶𝐶 or 𝑁𝑁𝐶𝐶𝑉𝑉𝑆𝑆𝐶𝐶𝐵𝐵. This occurs when the 
increase in absolute dike height in the optimization is lower than the effect of sea-level 
rise or subsidence, and results in a lower protection standard. For all other cases, except 
the two mentioned above, the sum adds to 100%. 
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3.3 Results and Discussion 
In this section, we first present an assessment of current and future risk without 
adaptation. Next, we present global benefit-cost analyses for the different adaptation 
objectives. Then, we present the results of the benefit-cost analyses and the attribution 
of costs to different drivers at the regional scale. Finally, we assess the sensitivity of the 
results to changes in various parameters. 

 Overview of future flood risk assuming no adaptation. 
Globally, the estimated EAD increases by a factor of 150 between 2010 and 2080, if we 
assume that no adaptation takes place in the middle of the road scenario RCP4.5/SSP2. 
Figure 3-3 shows the top 15 countries that contribute to this coastal flood risk, in 2010 
(Figure 3-3a) and 2080 (Figure 3-3b) – note the different scales on the x-axis. China, 
Bangladesh, and India have the highest flood risk in absolute terms in 2010. In 2080, 
these three countries remain in the top four if no adaptation takes place and are joined 
by the Netherlands. The 15 countries shown account for 89% of coastal flood risk 
worldwide in 2010 (US$19.6 billion per year globally). Although the countries in the 
top 15 change between current and future assuming no adaptation, the total share of 
EAD residing in the top 15 countries remains approximately the same: 87% of global 
flood risk in 2080 if no adaptation takes place (US$3 trillion per year globally for 
RCP4.5/SSP2 and US$6.8 trillion for RCP8.5/SSP5). 

 

Figure 3-3: Top 15 countries with coastal flood risk in (a) current conditions; and (b) 2080 if no adaptation 
takes place for the scenario RCP4.5/SSP2. Note that the countries and value on the x-axis change for each 
graph. The countries are denoted by ISO 3166-1 alpha-3 codes. 

 Global scale assessment of flood risk under the different 

adaptation objectives. 
For all four adaptation objectives, a globally aggregated overview of the benefits, costs, 
BCR, and NPV is provided in Table 3.1. All objectives have a positive NPV and BCR 
higher than 1, indicating that globally the benefits in terms of reduced risk would exceed 
the investment and maintenance costs. Note that only regions with positive NPV are 
included for the ‘optimize’ adaptation objective. The ‘absolute risk constant’ adaptation 
objective has the lowest BCR, while the ‘optimize’ adaptation objective has, by 
definition, the highest BCR. Higher costs and benefits are found for the RCP8.5/SSP5 
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scenario compared to the RCP4.5/SSP2 scenario, as a result of the larger EAD (and 
therefore avoided EAD) under this scenario. On average, the costs are ca. 25% larger 
in the former, and the benefits roughly double.  

Table 3-1: Global overview of benefit-cost analysis for the different adaptation objectives (benefits, costs, and 
NPV are in billion US$2005). 

 

The top 15 countries that contribute the most to coastal flood risk for the four 
adaptation objectives for RCP4.5/SSP2 in 2080 are shows in Figure 3-4. The total share 
of EAD residing in the top 15 countries remains approximately the same: 94% of global 
flood risk in the ‘protection constant’ adaptation objective (US$ 767 billion per year 
globally); 93% in the ‘absolute risk constant’ adaptation objective (US$238 billion per 
year); 90% in the ‘relative risk constant’ adaptation objective (US$421 billion per year); 
and 91% in the ‘optimize’ adaptation objective (US$242 billion per year globally). Note 
that EAD can increase in the future for the ‘absolute risk constant’ adaptation objective 
in certain regions as we cap protection standards at 1000. The simulated optimal 
protection standards of the Netherlands are lower than in the ‘protection constant’ 
adaptation objective, resulting in a high future EAD of US$60.9 billion per year. This 
is because the simulated marginal costs of dike heightening up to a protection standard 
of 1000 years outweigh the marginal benefits. However, it should be noted that the 
benefits do exceed the costs up to a 1000-year protection standard, and that if this were 
implemented, the future EAD for the Netherlands in the ‘optimize’ adaptation objective 
would therefore be much lower than shown in Figure 3-4. Figure B-2 shows the top 15 
countries for RCP8.5/SSP5. 
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Figure 3-4: Top 15 countries with coastal flood risk in (a) 2080 if protection standards are kept constant; (b) 
2080 if absolute risk is kept constant; (c) 2080 if relative risk is kept constant; and (d) 2080 if protection 
standards are optimized for the scenario RCP4.5/SSP2. Note that the countries and value on the x-axis change 
for each graph. The countries are denoted by ISO 3166-1 alpha-3 codes. 

 Regional scale assessment of flood risk under the different 

adaptation objectives.  
To show spatial patterns of the four adaptation objectives, the following results are 
shown at the sub-national scale in Figures 5-8. Here, results are shown for RCP4.5/SSP2 
only. The same results for RCP8.5/SSP5 can be found in Figures B-2 - B-5, and the 
data for all scenario combinations can be found in Supplementary Data. Although there 
are some differences between the results for RCP4.5/SSP2 and RCP8.5/SSP5, the 
overall patterns are very similar. 

In the ‘protection constant’ adaptation objective, the benefits outweigh the costs for the 
majority of the regions (78%; 612 of the 784 sub-national regions assessed). 
Nevertheless, this would still lead to an increase in relative risk (i.e., EAD as a 
percentage of GDP) in the future for 82% (641) of the regions assessed. Therefore, only 
raising dikes to keep up with the current protection standard would lead to a substantial 
increase in future risk in the majority of the world’s regions for scenario RCP4.5/SSP2. 
Sub-national regions in southern Asia, southeastern Asia, eastern Australia, the east and 
west coast of North America, and parts of Europe have the highest BCR and NPV 
(Figure 3-5). Note that the protection standards (Figure 3-5a) are the same as the current 
protection standards (Figure 3-2d). 

In the ‘absolute risk constant’ adaptation objective (Figure 3-6), dikes would need to be 
upgraded to have high protection standards (usually between 100 and 1000 years) to 
keep risk constant at current levels. The costs to achieve this are high (globally, more 
than twice as high as under the ‘protection constant’ adaptation objective) and therefore 
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a lower number of sub-national regions (71%; 557) have a positive BCR, although this 
is still very high. In most sub-national regions, the risk relative to GDP decreases in the 
future if this adaptation objective is implemented, although 5% (38) of the sub-national 
regions show an increase in risk relative to GDP. 

In the ‘relative risk constant’ adaptation objective (Figure 3-7), the protection standards 
required are generally lower than in the ‘absolute risk constant’ adaptation objective. 
The highest protection standards required are found in eastern Asia and parts of North 
America. A similar number of sub-national regions have a BCR higher than 1 as is the 
case for ‘absolute risk constant’, namely 71% of the sub-national regions assessed. To 
keep relative risk constant or absolute risk constant some sub-national regions need to 
have a future protection standard that is higher than 1000-year (the highest return period 
assessed in this study). Because of this, the relative change in risk in the ‘Relative risk 
constant’ adaptation objective increases for 5% (36) of the regions assessed. 

In the ‘optimize’ adaptation objective (Figure 3-8), the highest optimal protection 
standards are generally found in eastern Asia, southeastern Asia, southern Asia, and the 
Gulf coast of the USA. High protection standards are also found in parts of Europe and 
other parts of the USA, parts of western and eastern Africa, some parts of South 
America, and southeastern Australia. The highest change in protection standards 
compared to current are found in southern Asia and southeastern Asia. In most sub-
national regions, the benefits exceed the costs when upgrading protection standards 
(78%). However, in some sub-national regions the BCR is less than 1 (indicated with 
hatched lines). The highest values of NPV (Figure 3-8c) are found in parts of southern 
and southeastern Asia, North America, and northwest Europe. While most sub-
national regions show a positive return on investment, there is still an increase in relative 
risk in 36% of the sub-national regions assessed, under the ‘optimize’ adaptation 
objective. In these cases, it is economically efficient to implement protection measures 
up to a certain level, yet the economic costs of keeping EAD as a percentage of GDP 
constant would exceed the avoided damages. Regions where this is especially the case 
include: Europe, North America, South America, Japan, and Australia, as shown in 
Figure 3-8d. 
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Many sub-national regions with decreases in relative risk can be found in southern Asia, 
southeastern Asia, parts of the Gulf coast of the USA, New South Wales in Australia, 
several sub-national regions in Africa, and some parts of South America, among others. 
In these regions, the increase in risk is generally very high, which means that the costs 
of investment in protection are lower than the avoided damages relative to GDP. 
Generally, in these regions, protection standards and/or absolute dike heights increase 
the most. 

In the middle of the road scenario of RCP4.5/SSP2, where the world will face 
intermediate adaptation and mitigation challenges, we see that most of the sub-national 
regions assessed would economically benefit from adaptation. We further see that the 
adaptation objectives differ in changes in relative risk and the level of adaptation that 
would take place. For instance, in the ‘protection constant’ adaptation objective we see 
that although the protection standards stay the same, the relative risk increases for most 
sub-national regions. This can be explained by the increase of the severity and frequency 
of the flood hazard due to sea-level rise and subsidence, and the increase of exposure 
of assets due to socioeconomic change. Compared to the ‘optimize’ adaptation 
objective, the ‘protection constant’ adaptation objective under-protects in most sub-
national regions. In the ‘absolute risk constant’ adaptation objective we see that relative 
risk decreases in most sub-national regions while protection standards increase greatly. 
Due to climate change, socioeconomic change, and subsidence, we see an increase in 
GDP exposed to flooding. Therefore, protection standards must increase vastly to meet 
the same level of absolute risk. In this adaptation objective, most sub-national regions 
are over-protected compared to the ‘optimize’ adaptation objective. In the ‘relative risk 
constant’ adaptation objective, we see that some sub-national regions are over-protected 
while other sub-national regions, for instance in southeastern Asia are under-protected. 
The ‘optimize’ adaptation objective shows the most economically feasible results in 
terms of maximizing NPV and has the highest BCR in most regions. In the ‘fossil-fuel 
development’ scenario of RCP8.5/SSP5, where mitigation will face high and adaptation 
low challenges (van Vuuren et al., 2014), we see that higher protection standards are 
required in order to keep risk constant and to maximize NPV (see Figures B-3 – B-6). 
The results of the adaptation objectives can be used as a first proxy to indicate in which 
sub-national regions adaptation through structural measures may be economically 
feasible. Moreover, the results indicate regions where adaptation is needed to maximize 
NPV and which objectives are under or over protecting sub-national regions compared 
to the ‘optimize’ adaptation objectives. Due to the scope of this study, local scale models 
and assessments should be used for the design and implementation of individual 
adaptation measures. 
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 Attribution of costs to different drivers of risk 
In Figure 3-9, we show the percentage of the total costs of the ‘optimize’ adaptation 
objective (Figure 3-9a) that can be attributed to each of the following risk drivers: climate 
change (in this case sea-level rise) (Figure 3-9b); optimizing current protection standards 
(Figure 3-9c); socioeconomic change (Figure 3-9d); and subsidence (Figure 3-9e). The 
results are shown for the RCP4.5/SSP2 scenario and only for sub-national regions that 
have a BCR higher than 1 in the ‘optimize’ adaptation objective. 

The total costs exceed US$1 billion for 10% of the sub-national regions assessed and 
exceed US$1 million for 63%. For most parts of the globe, climate change (in this case 
sea level rise) contributes the most to the costs of adaptation, exceeding 50% of the total 
costs in 98% of the sub-national regions (Figure 3-9a), and exceeding 90% of the total 
costs in 58% of the sub-national regions. However, the other drivers can also play an 
important role, but are dwarfed in absolute terms by the costs related to sea-level rise. 
For example, in southern Asia, southeastern Asia, and eastern Africa optimizing to 
current conditions and socioeconomic change are important drivers and, in some cases, 
the most important driver. There are some other regional exceptions where climate 
change is not the most dominant driver of adaptation costs. Moreover, locally land 
subsidence due to groundwater extraction can cause huge flood problems and bring 
large costs in some areas (Dixon et al., 2006; Yin et al., 2013), but are not seen when 
aggregated to the sub-national regions of this study. However, there are a few regions 
where subsidence is a more dominant driver (i.e., parts of India, China, Japan, and 
Taiwan). The results show that climate change is not the most dominant driver in 4 of 
the 5 countries that have the highest share of future EAD if no adaptation takes place 
(i.e., China, Bangladesh, India, and Indonesia). Generally, the same patterns are found 
in the attribution results for the RCP8.5/SSP5 scenario, which can be found in the 
Figure A-7. 

Figure 3-10 shows the attribution of the costs for the same scenario and adaptation 
objective, aggregated to the World Bank regions. In all the regions (except southern 
Asia), sea-level rise is the most dominant driver, accounting for between 26% (southern 
Asia) and 86% (Latin America and Caribbean) of the costs of adaptation. The costs of 
increasing dike height to achieve optimal protection under current conditions are 
highest in the Low- and Middle-Income Countries. This is especially the case for the 
Northern America and Pacific and Southern Asia regions, with values of 17% and 12% 
respectively. The relative contribution of socioeconomic change is largest in eastern 
Asia & Pacific, southern Asia, and Sub-Saharan Africa, with values of 34%, 49% and 
24% respectively. Of all drivers, subsidence is the least dominant with values up to 11% 
(eastern Asia & Pacific) and 14% (southern Asia). Figure A-8 shows the attribution 
aggregated to the World Bank regions for RCP8.5/SSP5.
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Figure 3-10: Attribution of costs of adaptation for World Bank regions under the ‘optimize’ adaptation 
objective and RCP4.5/SSP2 for optimizing to current conditions (CUR), socio-economic change (SEC) 
subsidence (SUB), and sea-level rise (SLR). 

 Sensitivity analysis 
In this section, we show the sensitivity of the results to the use of different: SSPs, sea-
level rise projections, discount rates, and operation and maintenance (O&M) costs. In 
Table 3-2, we show results (of BCR) standardized to a baseline scenario with the 
following assumptions: RCP4.5, SSP2 (middle of the road), discount rate of 5%, and 
O&M of 1%. We employed a one-at-a-time sensitivity analysis, so for each row in the 
table only one parameter has changed, and the values shown are standardized by 
calculating the relative change. All associated BCRs for the standardized values shown 
in Table 3-2 are still higher than 1. Globally, BCRs range between 6 and 116 for the 
different model runs (25 for the reference). At the global scale the BCRs are most 
sensitive to the use of the different SSPs and discount rates. They cause the largest 
changes in BCR, with standardized values of 0.45 and 2.13 found in southern Asia and 
Sub-Saharan Africa. Differences in SLR input affect the BCR by a factor of up to 0.35. 
Europe & Central Asia and North America are the least sensitive to the changes in input 
parameters. The O&M costs show BCRs that are more in line with the reference model 
run, higher or lower values up to 0.16.  
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Table 3-2: Sensitivity analysis of model runs with different input parameters. BCRs are standardized to the 
model run with RCP4.5/SSP2, discount rate of 5%, and O&M costs of 1%. SLR low refers to sea-level rise 
using the 5th percentile and SLR high to the 95th percentile. 

 

 Comparison to previous studies 
Hallegatte et al. (2013) performed a study on future flood risk for 136 major coastal 
cities. They estimated an EAD of US$6 billion for current conditions, while in our study 
we find an EAD of US$19.6 billion. Our estimates of EAD is higher, which is to be 
expected given the difference in extent of the studies where we estimate risk for all global 
coastlines as opposed to 136 major coastal cities in their study. Hallegatte et al. (2013) 
projected future risk increasing up to US$60-63 billion if protection standards are kept 
constant by 2050. In our study we find an EAD of US$84 billion by 2050 when keeping 
protection standards constant (RCP4.5/SSP2 scenario). If no adaptation is 
implemented in 2050, Hallegatte et al. (2013) estimate EAD over US$1 trillion, where 
we find US$1.1 trillion. 

Hinkel et al. (2010) attributed adaptation costs to sea-level rise using dikes for the 
European Union. They estimated this to be between US$2.6-3.5 billion. In our results 
we find values between US$10.1 billion and US$16.5 billion for the European Union 
for the scenarios RCP4.5 and RCP8.5 respectively. In a follow-up study, Hinkel et al. 
(2014) estimate global costs of protecting the coast with dikes. They estimate a range of 
US$12-71 billion, while our study estimates the global costs of adaptation for the 
‘optimize’ adaptation objective between US$459 billion and US$603 billion for the 
RCP4.5/SSP2 and RCP8.5/SSP5 respectively. It should be noted that Hinkel et al. 
(2010) and Hinkel et al. (2014) use a demand function for safety where dikes are raised 
following relative sea-level rise and socioeconomic development, while we don’t use that 
function and optimize protection standards by maximizing NPV. This adaptation 
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objective allows dynamic optimization per sub-national region and can result in higher 
adaptation costs if the net benefits increase. Additionally, we use different scenarios than 
those used in Hinkel et al. (2010) and Hinkel et al. (2014). 

Lastly, we compare our results of economic feasibility for sub-national regions and 
coastlines to the findings of Lincke & Hinkel (2018), in which they found that it is 
economically feasible to invest in protection for 13% of the coast globally. Using their 
method they found a lower share of protected coastline compared to previous studies 
(Nicholls et al., 2008; Tol, 2002). In our study, we found that for the ‘optimize’ 
adaptation objective that 78% of the sub-national regions have a BCR higher than 1, 
indicating that it is economically feasible to implement adaptation in many regions 
through raising dikes. In our study, the benefit-cost analysis is carried out at the sub-
national scale, whereby dikes are only raised on coastal reaches where our transects 
show there to be potential hazard (inundation) and urban exposure. If we calculate the 
percentage of the entire global coastline for which this leads to dike heightening in our 
model with a BCR higher than 1, it amounts to 3.3% of the global coastline. This is 
lower than the value in Lincke & Hinkel (2018), but we reason that this difference is a 
result of the difference in spatial aggregation, where the distance between our transects 
is 1 kilometre horizontal resolution at the equator, whilst Lincke & Hinkel (2018) raise 
dikes along the coast of entire coastal segments, which have lengths ranging from 0.009 
to 5213 kilometre, with a mean of 85 kilometre. This can explain why we have lower 
percentage of coast that is feasible to protect than Lincke & Hinkel (2018). 

 Limitations and future research 
While our model scheme does not include dynamic inundation modelling, it does 
include resistance factors similar to those used by Vafeidis et al. (2019), in order to 
account for water-level attenuation. It therefore represents an advance on previous 
studies that have used planar inundation modelling methods (i.e., bathtub models). An 
improvement could be made by using a dynamic inundation modelling scheme 
(Vousdoukas et al., 2016a), but at the cost of increased computing time. Another 
improvement can be made by including waves in our inundation modelling, which is 
found to be an important component in inundation modelling (Vousdoukas et al., 
2017). The inundation modelling scheme can be further improved by increasing the 
resolution from 30” to a higher resolution in order to better understand local scale 
signals and patterns, since the scale of assessment and resolution of input data has a 
significant implication on flood risk model results (Wolff et al., 2016). However, we 
stress that this study aims to understand global flood risk and general patterns on the 
sub-national scale, and this study can be used as a first proxy indicating feasibility of 
adaptation through structural measures, such as dikes. 

For this study, results are shown for the scenario RCP4.5/SSP2 and RCP8.5/SSP5 in 
Appendix B. The range of sea-level rise input values (between the 5th percentile of 
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RCP4.5 and the 95th percentile of RCP8.5) cover a wide range of sea-level rise 
uncertainty (approximately 0.3 – 0.7m at the equator in the Atlantic Ocean). While in 
reality the effects of climate change will continue to rise beyond 2100 even if Paris 
Agreement is met (Clark et al., 2016), our study examines adaptation objectives until 
2100. Results for all combinations of these two RCPs together with all five SSPs can be 
found in the supplementary data. 

Several uncertainties exist on the cost calculation side. The first is the monetary value 
we assumed for the costs of dike heightening. Although we account for differences in 
costs between countries by using different construction factors and market exchange 
rates, in reality the costs might differ between regions and may be higher due to local 
conditions (both physical and socioeconomic). We also use a linear cost function for 
dike heightening. Using this linear cost function for large scale studies has been found 
a reasonable assumption according to (Stephan Lenk et al., 2017). 

Another important uncertainty in this study is the current protection standards 
estimated with the FLOPROS modelling approach, as data on flood protection along 
the global coastlines are not available. These only provide a first order estimate of 
current protection standards per sub-national region. In the Figure B-1, a validation of 
the coastal protection standards estimated with the FLOPROS modelling approach is 
provided. Values are shown for several locations for which reliable reported estimates 
of protection standards are available. These reported values are either shown as a range 
(minimum and maximum reported values) or a single value. Overall, the model 
performs well. The only location for which the reported values provide a range, and the 
FLOPROS model lies outside this range, is Durban. However, note that reported 
values are for the city of Durban, whilst the FLOPROS model value is for the state in 
which it is located. An improvement to this study could be made by, for instance, 
mapping flood protections globally by using Earth Observation-based methods. 

In this study, several uncertainties exist with assumptions on expected damages per 
occupancy type. First, we assumed the percentage of occupancy type per grid cell to be 
the same for all locations, whilst it is spatially heterogeneous, and secondly, we assumed 
the building density per occupancy type. An improvement could be made by using 
Machine Learning to improve accuracy of urban land cover and building types (Hecht 
et al., 2015; Huang et al., 2018). We also used depth-damage curves per occupancy 
type, but these curves also differ between buildings in these occupancy types. To further 
improve the exposure data of our framework, the Global Human Settlement layer 
(Pesaresi et al., 2016) can be used for high-resolution population mapping. 

The sub-national regions where no adaptation objective shows a positive BCR, should 
not be interpreted that no adaptation to coastal flood risk should take place. In fact, 
other adaptation measures (or a combination of multiple measures) besides raising 
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dikes might be more economically feasible in any regions studied, including those with 
BCRs higher than 1. In this study we only assumed grey infrastructure as adaptation 
measures, but there are also other measures to reduce flood risk. For instance, the 
vulnerability can be improved by wet or dry proofing buildings (J. C. J. H. Aerts et al., 
2014) or people and assets can be moved to less flood prone areas in order to reduce 
the exposure to floods (R. McLeman & Smit, 2006). Lastly, several local studies show 
the benefits of nature-based or hybrid adaptation measures (Cheong et al., 2013; 
Jongman, 2018; Temmerman et al., 2013). Vegetation on the foreshore has a significant 
role in the breaking of waves (Shepard et al., 2011) and attenuates storm water levels 
(Zhang et al., 2012). An improvement could be made by including other adaptation 
measures besides grey infrastructure as adaptation measures. 

3.4 Conclusion 
In this study, four adaptation objectives for reducing (future) coastal flood risk through 
structural measures have been explored and a benefit-cost analysis has been performed 
on the sub-national scale for the entire globe. Furthermore, the costs of adaptation have 
been attributed to different drivers of flood risk: sea-level rise, socio-economic change, 
subsidence, and optimizing to current conditions. Globally, we find that EAD increases 
by a factor of 150 between 2010 and 2080, if we assume that no adaptation takes place, 
and find that 15 countries account for approximately 90% of this increase. 

We find that all four adaptation objectives show high potential to reduce (future) coastal 
flood risk at the global scale in a cost-effective manner. The ‘optimize’ adaptation 
objective shows the highest NPV (more than US$11 trillion) with a BCR of 25, while 
the ‘protection constant’ adaptation objective shows the lowest NPV (US$9.3 trillion) 
with a BCR of 27 for the RCP4.5/SSP2 scenario.  

At the regional scale, we show that the adaptation objectives can be achieved with a BCR 
more than 1 for most of the sub-national regions. This ranges from 78% for the 
‘optimize’ adaptation objective to 71% for the ‘absolute risk constant’ adaptation 
objective. However, we also show that under the ‘optimize’ adaptation objective, relative 
risk would still increase compared to current values in 36% of the sub-national regions 
assessed. 

We assess the sensitivity of the results by performing a one-at-a-time sensitivity analysis 
to various assumptions and find that, given the uncertainties, implementing structural 
adaptation measures is a feasible solution to reduce (future) coastal flood risk. Although 
differences in BCR exist, we show that changes in parameters still result in positive 
BCRs (between 6 and 116 globally) for the ‘optimize’ adaptation objective. 

Attributing the total costs for the ‘optimize’ adaptation objective, we find that sea-level 
rise contributes the most and exceeds 50% of the total costs in 98% of the sub-national 
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regions assessed and exceeds 90% of the total costs in 63% of the sub-national regions. 
However, the other drivers also play an important role, but are dwarfed in absolute 
terms by the total costs related to the attribution.  

The results of this study can be used to highlight potential savings through adaptation at 
the sub-national scale. Clearly, local scale models and assessments should be used for 
the design and implementation of individual adaptation measures, but our results can 
be used as a first proxy indicating regions where adaptation through structural measures 
may be economically feasible. To increase the accessibility of the results to the risk 
community, results of this study will be integrated into the Aqueduct Global Flood 
Analyzer webtool (www.wri.org/floods). 

Supplementary data availability.  

The results of this study for all RCP and SSP combinations for protection standards, 
change in risk relative to GDP, B:C ratio and NPV for all four adaptation objectives are 
available at: https://doi.org/10.5281/zenodo.3475120.  
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Abstract 
Due to rising sea levels and projected socio-economic change, global coastal flood risk 
is expected to increase in the future. To reduce this increase in risk, one option is to 
reduce the probability or magnitude of the hazard through the implementation of 
structural, Nature-based or hybrid adaptation measures. Nature-based Solutions in 
coastal areas has the potential to reduce impacts of climate change and can provide a 
more sustainable and cost-effective alternative to structural measures. In this paper, we 
present the first global scale assessment of the benefits of conserving foreshore 
vegetation as a means of adaptation to future projections of change in coastal flood risk. 
In doing so, we extend the current knowledge on the economic feasibility of 
implementing global scale Nature-based Solutions. We show that globally foreshore 
vegetation can contribute to a large decrease in both absolute and relative flood risk 
(13% of present-day, and 8.5% of future conditions in 2080 of global flood risk). 
Although this study gives a first proxy of the flood risk reduction benefits of conserving 
foreshore vegetation at the global scale, it shows promising results for including nature-
based and hybrid adaptation measures in coastal adaptation schemes. 

4.1 Introduction 
Coastal zones are attractive areas for human settlement and have three times higher 
population density than the global average (Small & Nicholls, 2003). Recent research 
shows that 1.3% of the global population lives in coastal zones that are exposed to a 1 
in 100-year flooding event (Muis et al., 2016) and future population in coastal zones is 
expected to grow, increasing the exposure to coastal flooding (Neumann et al., 2015). 
Next to this increase in exposure, coastal flood hazard will change through climate 
change and subsidence (Nicholls & Cazenave, 2010; Vousdoukas et al., 2018a). Due 
to rising global temperatures, sea-level rise is projected to accelerate during the 21st 
century (Oppenheimer et al., 2019), leading to an increase in coastal flood hazard 
(Vitousek et al., 2017). Next to sea-level rise, climate change is projected to lead to 
changes in flood hazard through changes in tides (Idier et al., 2017), surge levels (Little 
et al., 2015), extreme sea levels (Vousdoukas et al., 2017) and wind-wave climate 
(Hemer et al., 2013). These changes of flood hazard and exposure will lead to increases 
in global coastal flood risk (Hallegatte et al., 2013; Hinkel et al., 2014; Neumann et al., 
2015; Tiggeloven et al., 2020; Vousdoukas et al., 2018a). 

To prevent or reduce this increase in flood risk, adaptation measures are required. 
One option is to develop methods to reduce the probability or magnitude of the 
hazard, the so-called ‘protect’ approach. This can be achieved through the 
implementation of structural, Nature-based Solutions or hybrid adaptation measures. 
Lincke & Hinkel (2018) show that adaptation through structural adaptation measures 
is economically feasible for 13% of the global coastline, which accounts for 90% of the 
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global population living in regions prone to coastal hazard. In addition, Hinkel et al. 
(2014) show that the avoided damages of adaptation are much higher than the costs of 
adaptation and Tiggeloven et al. (2020) show that adaptation through structural 
measures shows high potential to reduce (future) coastal flood risk. Instead of only 
focusing on structural adaptation measures, Jongman (2018) argues that flood risk 
management needs to adopt holistic strategies to adapt to climate change, such as early 
warning systems, risk perception, Nature-based or hybrid solutions. Hybrid solutions 
combine structural measures with Nature-based Solutions, such as maintaining or 
restoring foreshore vegetation and foreshore geomorphology on the foreshore. Duarte 
et al. (2013) show that Nature-based Solutions in coastal areas has potential to reduce 
the impacts of climate change. Moreover, recent studies argue that Nature-based 
Solutions can provide a more sustainable, cost-effective and ecologically sound 
alternative to structural measures, such as dikes, sea walls and embankments (Siddharth 
Narayan et al., 2016; Temmerman et al., 2013; van Wesenbeeck et al., 2017).  

Foreshore vegetation plays a significant role in dissipating wave energy (Barbier et al., 
2008; Shepard et al., 2011), attenuating storm surges (Wamsley et al., 2010; Zhang et 
al., 2012), and providing economic benefits through coastal flood protection 
(Menéndez et al., 2020a). Structural measures alone can have negative effects as they 
have a costly maintenance, and need continual heightening and widening to keep up 
with sea-level rise (Temmerman et al., 2013). On the other hand, ecosystems can 
respond to sea level rise by natural accretion of mineral and biogenic sediments 
(Fagherazzi et al., 2012; Kirwan et al., 2010; Mckee et al., 2007). By providing 
additional benefits, such as improving water quality and recreation (Barbier et al., 
2011), ecosystems could be more cost-effective in the long term than structural 
measures under similar scenarios (Broekx et al., 2011; Turner et al., 2007). However, 
the reduction of flood risk through the presence of foreshore vegetation under future 
change, and the benefits of using foreshore vegetation as future adaptation measures, 
have not been assessed at the global scale. 

This paper aims to address this gap by providing a first proxy assessment on the benefits 
of conserving foreshore vegetation as a means of adaptation to future projections of 
change in coastal flood risk. We approach this aim in two ways. First, we show the 
reduction of coastal flood risk that could be attained by conserving foreshore vegetation 
under various combinations of future climate and socioeconomic scenarios. Here, we 
include foreshore dynamics (wave attenuation) through foreshore vegetation to assess 
flood risk reduction in terms of expected annual damage and expected annual 
population exposed. Secondly, we provide the first global scale study on the benefits of 
implementing adaptation measures using a combination of structural adaptation 
measures and conserving foreshore vegetation for future flood risk scenario 
projections.  



Chapter 4 
 

98 
 

4.2 Methods 
This study extends the coastal flood risk assessment framework developed by 
Tiggeloven et al. (2020) to also include the effects of foreshore vegetation on global 
flood risk reduction. The latter is achieved using the approach of van Zelst et al. (2021). 
The main steps of this study are: (1) flood risk estimation; (2) wave attenuation 
estimation; and (3) estimating the benefits of adaptation measures. In brief, flood risk 
is estimated as a function of hazard, exposure and vulnerability (United Nations Office 
for Disaster Risk Reduction, 2016). Flood risk, expressed in terms of both Expected 
Annual Damages (EAD) and Expected Annual Population Exposed (EAPE), is 
calculated over time for scenarios with and without adaptation measures. The benefits 
are calculated as the reduction in EAD with and without adaptation measures. These 
benefits for conserving foreshore vegetation are estimated in the adaptation objective 
‘Protection constant’, in which it is assumed that present-day protection standards are 
kept the same in the future as the current protection standards. This section contains a 
brief description of the methods involved with the setup of the modelling framework, 
and is based on detailed descriptions by Tiggeloven et al. (2020) and Ward et al. (2020) 
for the modelling framework, and van Zelst et al. (2021) for details on global wave 
attenuation by mangroves and salt marshes in coastal areas. 

 Flood risk estimation 
We estimated coastal flood impacts using the GLOFRIS risk assessment framework of 
Ward et al. (2013) to combine data on flood hazard (inundation maps), exposure 
(current and future built-up exposure maps with associated maximum damage values), 
and vulnerability (depth-damage curves). The flood impacts are assessed at a horizontal 
resolution of 30" x 30" and simulated for several return periods (2, 5, 10, 25, 50, 100, 
250, 500, 1000 years). This section contains an overview of the methods used to 
estimate flood hazard, exposure, vulnerability, and risk. 

Flood hazard is represented by maps of inundation depth for several return periods (2, 
5, 10, 25, 50, 100, 250, 500 and 1000 years). These are simulated using a 2D 
topographic inundation modelling routine that accounts for water level attenuation. As 
underlying topography, we use the Multi-Error-Removed Improved-Terrain (MERIT) 
DEM (Yamazaki et al., 2017) at a 30” x 30” resolution. In order to simulate the 
reduction of flooding land inwards due to the limited time span of tides and storm 
surges, we included a resistance factor in the inundation routine similar to Vafeidis et 
al. (2019). As input for the inundation model, we use extreme sea level values from the 
Global Tide and Surge Reanalysis (GTSR) dataset by Muis et al. (2016) enriched with 
simulated tropical cyclones using the IBTrACS (International Best Track Archive for 
Climate Stewardship) archive, as described by Tiggeloven et al. (2020). Future 
inundation is simulated using sea-level rise to simulate future extreme sea levels and 
subsidence rates through groundwater extraction to estimate how the terrain may 



Benefits of conserving foreshore vegetation 
 

99 
 

change. We use gridded projections of sea-level rise from the RISES-AM project, in 
which sea-level rise rates are regionalized using spatial variability associated with 
gravitational-rotational fingerprints (Jackson & Jevrejeva, 2016). For this study we use a 
range of probabilistic outcomes (5th, 50th and 95th percentiles) for two Representative 
Concentration Pathways (RCP), i.e. RCP4.5 and RCP8.5. Subsidence is modelled 
through groundwater extraction and rates are taken from the SUB-CR model (Kooi et 
al., 2018).The flood hazard maps are available through Ward et al. (2020). 

Exposure data used in this study consists of current gridded built-up area taken from 
the HYDE database (Klein Goldewijk et al., 2011) and future built-up area from 
Winsemius et al. (2016) both at a resolution of 30” x 30”. Current maximum economic 
damages are estimated using the methodology of Huizinga et al. (2017) and future 
estimates are scaled with the GDP per capita per country from the Shared 
Socioeconomic Pathway (SSP) database. Based on a study by BPIE (2011) and EEA 
(2016), we set the area of occupancy type per grid cell to 75% residential, 15% 
commercial, and 10% industrial. Following Huizinga et al. (2017), the density of 
buildings per occupancy types are set to 20% for residential and 30% for 
commercial/industrial. In order to calculate future risk relative to GDP per region, 
future gridded GDP values are taken from Van Huijstee et al. (2018), which uses the 
national GDP per capita from the SSP database as input. 

Vulnerability to flooding is estimated by using different global flood depth-damage 
functions for each occupancy type and are taken from Huizinga et al. (2017). The 
resulting damages are represented as a percentage of the maximum damage. 
Subsequently, flood impacts per cell are calculated by estimating the percentage of 
maximum damage per occupancy type at the inundation depth in each cell, and are 
expressed in the following equation: 

𝑅𝑅𝜃𝜃(𝑝𝑝) = 𝜃𝜃𝑝𝑝(𝑝𝑝)𝑀𝑀𝑝𝑝 + 𝜃𝜃𝑝𝑝(𝑝𝑝)𝑀𝑀𝑝𝑝 + 𝜃𝜃𝑏𝑏(𝑝𝑝)𝑀𝑀𝑏𝑏 (4-1) 

where 𝑅𝑅𝜃𝜃 is the flood impact at the inundation depth associated with the annual 
probability of non-exceedance 𝑝𝑝 (1 divided by the return period), 𝜃𝜃 is the vulnerability, 
and 𝑀𝑀 is the maximum damage assigned for residential (𝑟𝑟), commercial (𝑐𝑐) and 
industrial (𝑖𝑖) occupancy types. To estimate flood risk in terms of EAD, we first estimate 
these flood impacts per return period at the resolution of 30” x 30”. Subsequently, 
EAD can be estimated by taking the integral of the exceedance probability-impact (risk) 
curve (Meyer et al., 2009) and is shown in the following equation: 
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𝐷𝐷 = � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝
1

𝑝𝑝=0

 (4-2) 

where D is EAD. To fit a protection standard of a coastal region in the risk 
computation, the risk curve is truncated at the exceedance probability of the protection 
standard (expressed as a return period). To estimate the area under the curve, we use 
the trapezoidal approximation. Under the same conditions, higher protection 
standards indicate that EAD would decrease as the hinterland is protected for storms 
up to the corresponding protection standard. Similar to the EAD estimation, EAPE is 
estimated by taking the integral of exposed population associated with the recurrence 
intervals assessed. As data on protection standards of coastal regions are not available 
for many regions, we estimate current protection standards for coastal regions using the 
FLOPROS modelling approach (Scussolini et al., 2016). The resulting coastal 
protection standards are described and validated in Tiggeloven et al. (2020). 

 Wave attenuation and crest height estimation 
This study estimates the effects of wave attenuation through foreshore vegetation 
globally. In order to estimate these effects of foreshore vegetation on wave attenuation 
and required crest height estimation, we use the following procedure of van Zelst et al. 
(2021): (1) derive coastal segments and corresponding coast-normal transects; (2) 
construct bed-level profiles and vegetation cover; (3) derive representative 
hydrodynamic conditions and wave attenuation under these conditions; and (4) 
estimate required crest heights under current and future conditions. We use 
OpenStreetMap (OSM, 2015) to derive the coastlines and move them 100 m land 
inwards in order to find a likely position to establish a dike system. Detection of already 
established dike systems is not explicitly taking into account here. However, large 
geomorphological features as present in MERIT DEM are included and we use a 
baseline protection standard for each region using the FLOPROS database. For every 
cell containing a coastline segment at 1’ x 1’ resolution, its coastline length and a transect 
perpendicular to the coast are derived at the centre of the segment resulting in 495,361 
transects that are on average 1.1 km apart. For each transect, the foreshore width and 
slope and the vegetation width and type within the foreshore are derived along the same 
coast-normal transect. The following sections contain an overview of the methods 
involved for estimating the required crest heights; for details we refer to van Zelst et al. 
(2021). 

The bed-level data consists of three datasets where the main source is derived from the 
FAST inter-tidal elevation product at 20 m horizontal resolution and 30-50 m vertical 
resolution (Calero et al., 2017). Bathymetry data are derived from GEBCO at 30” x 
30” horizontal resolution and tens of meters vertically, and topography data are derived 
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from the MERIT DEM at 3” x 3” horizontal resolution and 2 m vertically. Vegetation 
presence at 10 m resolution is derived from the FAST coastal vegetation map, which 
is based on Landsat-8 and Sentinel-2 satellite images. To determine the type of 
vegetation we use global salt marsh (Mcowen et al., 2017) and mangrove (Giri et al., 
2011) maps, complemented with Corine Land Cover (CLC, Europe only) and 
GlobCover v2.2 maps where the former lack coverage. The properties of the vegetation 
relevant for wave attenuation (spatial density, height, diameter and drag coefficient) 
have been determined in the FAST project based on field measurements and literature. 
In this study, salt marshes in the temperate zone are represented by a parameterization 
that is typical for North Western Europe winter state salt marshes. Mangroves are 
represented as (young) pioneering mangroves. Details on the representation of 
vegetation in the numerical modelling activities can be found in van Zelst et al. (2021).  
Figure 4-1 displays an overview of the present-day foreshore vegetation (salt marshes 
and mangroves) used in this methodology. Countries that have the largest areal extent 
(km2) of vegetation are Australia, Indonesia, United States and Brazil. Figure 4-1 shows 
that mangroves are most dominant between the 30°N and 30°S latitude, and salt 
marshes are largely present in the northern hemisphere above the 30°N latitude. Note 
that data on foreshore vegetation are lacking in a lot of regions in the Mediterranean 
Sea, which indicates that results in those regions should be interpreted with caution. 

 

Figure 4-11: Total area of foreshore vegetation displayed for the most dominant type of the sub-national 
region (salt marshes and mangroves) assessed in wave attenuation calculations. The auxiliary lines of 30°N 
and 30°S latitude is added to show loosely the boundary of dominant foreshore vegetation type. Sub-national 
regions with no data are indicated with grey colour.  

Wave conditions have been derived from the ERA-Interim (Dee et al., 2011) reanalysis 
using a peak-over-threshold approach. Offshore significant wave heights for the same 
range of return periods are transformed to a nearshore wave height that is limited by 
depth-induced breaking. To determine the wave attenuation over a foreshore and the 
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resulting significant wave height relevant for the flood defence on a transect, we use a 
lookup-table by combing 668,304 XBeach (van Rooijen et al., 2016) hydrodynamic 
numerical modelling results for combinations of foreshore slopes, vegetation covers, 
and hydrodynamic conditions (van Zelst et al., 2021). The values for these input 
conditions are based on the expected range of conditions, i.e., the distribution functions 
of these parameters globally. This table contains wave heights modelled by XBeach 
(van Rooijen et al., 2016) at regular intervals along a steady slope, both with and without 
salt marsh or mangrove vegetation. Wave angle of incidence is assumed coast normal 
to represent a worst-case scenario. Wave attenuation along the vegetated coastlines is 
determined based on the closest match between the derived transects characteristics 
and look-up table results. 

Subsequently, required crest heights are estimated with the empirical EuroTop 
formulations (Pullen et al., 2007) with respect to the surge level for a standard 1:3 dike 
profile without berms and an allowed overtopping discharge of 1 l/s/m. The reduction 
in required crest height is calculated by subtracting dike crest height for the scenarios 
with foreshore vegetation and all foreshore vegetation removed. We assume the same 
coastal profile with and without coastal vegetation, which is a conservative approach. 
We hereby cancel out the effect of the coastal profile and solely focus on the 
contribution of foreshore vegetation. Future crest heights are estimated using regional 
sea-level rise from Jackson and Jevrejeva (2016) and subsidence rates from Kooi et al. 
(2018). This is carried out by adding subsidence and sea-level rise rates directly on the 
crest heights. Thus, natural accretion on vegetated foreshores and changing foreshore 
hydrodynamics due to relative sea-level rise is not included in this study. 

 Benefits of conserving foreshore vegetation and 

adaptation costs 
We perform an analysis on the benefits of conserving foreshore vegetation to simulate 
the effects of foreshore vegetation on coastal flood protection. We first estimate the 
costs of structural adaptation measures and the benefits of foreshore vegetation in the 
adaptation objective ‘Protection constant’, where the present-day protection standards 
are kept the same in the future through structural adaptation measures. Then, to 
estimate the contribution of conserving foreshore geomorphology and vegetation as an 
adaptation measure (hereafter referred to as ‘Conserving foreshore vegetation’), we 
estimate the benefits of conserving foreshore vegetation relative to the total benefits of 
the adaptation objective ‘Protection constant’. 

To calculate the investment costs associated with the dike dimensions we use the 
estimated required dike heights and the dike lengths from the coastlines from the 
OpenStreetMap. We then estimate the investment costs of structural measures by 
multiplying by a unit cost set to USD 7 million km dike length∙m dike heightening 
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based on reported costs in New Orleans (Bos, 2008). This value of US$ 7 million 
km∙m is within a reasonable range when compared to various studies (Aerts et al., 2013; 
Jonkman et al., 2013; Lenk et al., 2017), and is used in this study for both building a 
new dike system and heightening an already existing one. This includes investment 
costs, groundwork-, construction- and engineering costs, property or land acquisition, 
environmental compensation, and project management. Subsequently, the costs are 
converted to US$2005 Power Purchasing Parity (PPP) by first adjusting to US$2005 
values using GDP deflators from the World Bank Open Data website 
(https://data.worldbank.org/) and then using PPP to market exchange rates from 
OECD, taken from the IIASA SSP database (Riahi et al., 2017). Construction index 
multipliers, based on civil engineering construction costs, adjust the implementation 
costs of structural measures to account for differences between countries (Ward et al., 
2010).  

The benefits of the adaptation measures are expressed as flood risk reduction and 
estimated by computing the difference in EAD without the adaptation measure or 
foreshore vegetation and EAD with the adaptation measure, see Eq. 4-3. 

𝐵𝐵𝑡𝑡 = � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑝𝑝=𝑝𝑝𝑛𝑛

𝑝𝑝=0

− � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑝𝑝=𝑝𝑝𝑎𝑎

𝑝𝑝=0

 (4-3) 

, where 𝐵𝐵𝑡𝑡 is the benefit of adaptation at time step 𝑡𝑡, 𝑝𝑝𝑛𝑛 is the non-exceedance 
probability with no adaptation and 𝑝𝑝𝑏𝑏 the non-exceedance probability with adaptation. 
We estimate flood risk reduction by taking the difference between flood risk estimated 
with the scenario where foreshore vegetation is present and the scenario where 
foreshore vegetation is completely removed. We do this under present-day conditions 
and future conditions. To do so, we calculate the crest heights of all populated 
coastlines prone to flooding associated with FLOPROS protection standards with 
vegetation and project these crest heights on protection standards when no foreshore 
vegetation is assumed, in order to estimate the difference in protection standards. 
Subsequently, we use Eq. 3 to estimate the present-day and future flood risk reduction 
through foreshore vegetation by filling in the different protection standards with and 
without foreshore vegetation. We estimate flood risk reduction relative to the flood risk 
in the scenario without foreshore vegetation presence. In these estimations we take into 
account the current protection standards estimated with the FLOPROS modelling 
approach described earlier. Furthermore, we estimate the total benefits by summing 
the reduction in EAD up to 2100.  

In this study, we use two scenario combinations in order to address future projections 
(van Vuuren et al., 2014), namely RCP4.5-SSP2 and RCP8.5-SSP5. The RCP4.5-SSP2 
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scenario combination can be linked to a ‘middle of the road scenario’ with medium 
challenges and adaptation (Riahi et al., 2017), which can be broadly aligned with the 
Paris agreement targets (Hope et al., 2017). The RCP8.5-SSP5 scenario combination 
addresses a ‘fossil-fuel development’ world (Kriegler et al., 2017), in which the world 
faces high mitigation and low adaptation challenges. For uncertainty analysis within 
these scenario combinations, we use a probability range of sea-level rise. 

4.3 Results 
In this section, we present the results of the current risk reduction performance of the 
foreshore vegetation present, as well as the benefits of conserving foreshore vegetation 
in the future under the ‘Protection constant’ adaptation objective. Firstly, we show the 
present-day reduction in flood risk, expressed in both EAD and EAPE. Additionally, 
we show the increase in protection standards that can be attributed to the foreshore 
vegetation that is currently present, indicating their current value in terms of flood 
protection. Then, we show the future reduction in flood risk and EAPE for different 
scenario combinations. Lastly, we show the benefits of conserving foreshore vegetation 
and the contribution to the total benefits of adaptation with uncertainty for sea-level rise 
projections. Table 4-1 provides a global overview of the results discussed for the 
reduction in EAD and EAPE under current conditions and for future scenarios in 
2080. Next to this, the table shows the total benefits of conserving foreshore vegetation 
for the scenarios of RCP4.5/SSP2 and RCP8.5/SSP5. 

Table 4-3: Global overview of the results discussed in this study for both absolute and relative reduction in 
EAD, reduction in EAPE, and total benefits. EAD and EAPE values for both scenarios are estimated for 
the year 2080. Note that no value is given for total benefits under current conditions as this value is only 
calculated for RCP/SSP scenarios. 

Scenario Reduction in EAD 
(US$ B) 

Reduction in EAAP  
(# people K) 

Total benefits 
(US$ B) 

Present-day 2.5 (12.4%) 342 (5.9%) - 
RCP4.5/SSP2 71 (8.5%) 995 (5.7%) 280 (3.0%) 
RCP8.5/SSP5 164 (8.0%) 902 (6.0%) 532 (2.9%) 

 

 Present-day and future risk reduction through foreshore 

vegetation 
Present-day coastal flood protection standards are affected by the effects of wave 
attenuation through foreshore vegetation. Globally, the total reduction in EAD 
provided by present-day foreshore vegetation is estimated at US$2.5 billion, which 
amounts to 13% of global EAD and 0.4% of total GDP exposed. Figure 4-2 shows the 
present-day relative reduction in EAD and EAPE, increase in protection standards, 
and absolute reduction in EAD in the horizontal bar plot through foreshore vegetation 
for continental regions. The absolute reduction in EAD provided by present-day 
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foreshore vegetation is especially strong in the continental regions of southeastern Asia, 
eastern Asia, southern Asia, and northern America. We also find that, globally, EAPE 
is reduced by 6% through wave attenuation by foreshore vegetation. Relative reduction 
through foreshore vegetation is found to be highest in the Caribbean, Western Asia, 
and Australia and New Zealand. Additionally, we find that the absolute reduction in 
EAD provided by present-day foreshore vegetation for sub-national regions with high 
density of salt marshes in the United States and parts of Europe also contributes to a 
large share of present-day risk reduction (see Figure C-1 and Figure C-2). We see that 
the relative increase in protection standards provided by foreshore vegetation is up to 
25% in continental regions of Caribbean, Central America, and Australia. The 
estimated relative increase of protection standards for sub-national regions are shown 
in Figure C-3, which shows that the increase in protection standards provided by 
present-day foreshore vegetation is especially strong in regions in Northern America, 
Australia, South-eastern Asia, and South America. 

 

Figure 4-2: Present-day relative reduction to risk without foreshore vegetation of EAD and EAPE, and 
increase in protection standards through foreshore vegetation. ANZ, Australia and New Zealand; CAR, 
Caribbean; CAM, Central America; EAF, Eastern Africa; EAS, Eastern Asia; MAF, Middle Africa; NAF, 
Northern Africa; NEU, Northern Europe; PAC, Pacific regions that include Melanesia, Polynesia, and 
Micronesia; SAM, South America; SEA, South-eastern Asia; SAS, Southern Asia; WAF, Western Africa; 
WAS, Western Asia; WEU, Western Europe. 

With sea-level rise, subsidence and socio-economic change, future flood risk increases. 
We find that by conserving present-day foreshore vegetation, EAD in 2080 could be 
reduced by 71 US$ billion, which amounts to 8.5% of total EAD globally under the 
scenario combination RCP4.5-SSP2. For the scenario combination RCP8.5-SSP5, we 
find values of 168US$ billion and 8% of global EAD. We further estimate that the risk 
reduction relative to total exposed GDP is doubled to 0.8% for both scenario 
combinations compared to present-day estimates. The results of estimated future 
reduction in EAD and EAPE through foreshore vegetation for sub-national regions for 
the scenario combinations RCP4.5-SSP2 and RCP8.5-SSP4 is shown in Figure 4-3. 
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The largest future flood risk reduction is found in sub-national regions of West Bengal 
(India; from current to US$243 million to future US$24.9 billion) which is located in 
the Sundarbans, Maharashtra (India; from current US$158 million to future US$4.7 
billion) which is one of the sub-national regions in India with the largest share of 
mangroves; Guangdong (China; from current US$266 million to future US$4.2 billion) 
which has one of the largest shares of mangroves in all of China (B. Chen et al., 2017); 
Louisiana (USA; from current US$216 million to future US$1.2 billion) which contains 
a large share of wetlands of the United States; and Sarawak (Malaysia; from current 
US$105 million to future US$969 million) for the scenario combination RCP4.5-SSP2 
(see Figure C-1 for results on present-day flood risk reduction provided by foreshore 
vegetation for sub-national regions).
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Globally, we see a reduction in EAPE of 6%, with the largest share in the sub-national 
regions of West Bengal (India; from current 98 thousand to future 310 thousand 
population exposed), Khulna (Bangladesh; from current 21 thousand to future 58 
thousand population), and Camarines Sur (Philippines; from current 13 thousand to 
future 46 thousand population exposed) for the scenario combination RCP4.5-SSP2. 
We see that compared to present-day relative risk reduction, future relative risk 
reduction will for most sub-national regions be in the same order of magnitude for most 
sub-national regions, with some sub-national regions having a lower relative reduction. 

We find that although relative risk reduction does not change much, absolute risk 
reduction through foreshore vegetation increases for most sub-national regions due to 
an increase in future flood hazard and exposure. We show that flood risk reduction is 
highest for sub-national regions in Northern America, Brazil, Western Europe, 
Southern Asia, China, Southeastern Asia and Australia due to high exposure to flood 
risk and/or large areas of foreshore vegetation. We see that sub-national regions with a 
lower share in risk reduction have high absolute values for flood risk reduction due to 
a high value of exposed assets in deltas (e.g., sub-national regions in China, Southern 
Asia, and Louisiana).  

 Benefits and reduction in adaptation costs of conserving 

foreshore vegetation 
In this section, the results are shown for the total discounted benefits of conserving 
foreshore vegetation with the adaptation objective ’Protection constant’. The total 
global discounted benefits of conserving foreshore vegetation up to 2100 are estimated 
at US$274 billion for the scenario combination RCP4.5-SSP2, which amounts to 2.9% 
of the total benefits for keeping protection standards the same. The highest values of 
foreshore vegetation benefits relative to total benefits are found in sub-national regions 
in Southern Asia, South-eastern Asia, Eastern Asia, South America, and Australia (see 
Figure 4-4). The error bars show the sensitivity of the results to the different sea-level 
rise probabilistic projections within the RCP scenario while using the same coastal 
profile, which is found to be within a couple of percentage points. For the scenario 
combination RCP8.5-SSP5, we find that the global total discounted benefits are twice 
the amount of the value for RCP4.5-SSP2 and estimated at US$533 billion, which also 
amounts to approximately 2.9% of total benefits of adaptation (see Figure C-5). We 
find that, due to a higher rate of sea-level rise, the total benefits will increase for most 
sub-national regions and that the sensitivity of the results to the different sea-level rise 
probabilistic projections within the RCP scenario are smaller. 
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Figure 4-4: Total discounted benefits of conserving foreshore vegetation in the adaptation objective 
'Protection constant' for the scenario combination RCP4.5/SSP2. Sub-national regions with no data are 
indicated with grey colour. The error bars in the horizontal bar plot indicate the uncertainty range for the 
probabilistic sea-level rise projections of the 5th and 95th percentile. ANZ, Australia and New Zealand; CAR, 
Caribbean; CAM, Central America; EAF, Eastern Africa; EAS, Eastern Asia; MAF, Middle Africa; NAF, 
Northern Africa; NEU, Northern Europe; PAC, Pacific regions that include Melanesia, Polynesia, and 
Micronesia; SAM, South America; SEA, South-eastern Asia; SAS, Southern Asia; WAF, Western Africa; 
WAS, Western Asia; WEU, Western Europe. 

To keep current protection standards constant with rising sea-level, adaptation is 
necessary. We show that through conserving foreshore vegetation, a reduction in 
required dike heights can be achieved. In Figure 4-5, we show the reduction of 
adaptation costs of structural adaptation measures through conserving foreshore 
vegetation, as well as the remaining costs required for structural adaptation measures 
(leftover structural adaptation costs). We find that globally the total adaptation costs of 
structural measures are reduced by US$34 billion if foreshore vegetation is conserved. 
The highest reductions of adaptation costs through conserving foreshore vegetation, 
both in absolute and relative terms, are found in Australia. We further estimate savings 
in adaptation costs through conserving foreshore vegetation of higher than US$4 billion 
in Northern America, South-eastern Asia, Southern America, and Eastern Asia. 
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Figure 4-5: Reduction in adaptation costs of conserving foreshore vegetation and leftover structural 
adaptation costs in the adaptation objective 'Protection constant' for the scenario combination RCP4.5/SSP2. 
ANZ, Australia and New Zealand; CAR, Caribbean; CAM, Central America; EAF, Eastern Africa; EAS, 
Eastern Asia; MAF, Middle Africa; NAF, Northern Africa; NEU, Northern Europe; PAC, Pacific regions 
that include Melanesia, Polynesia, and Micronesia; SAM, South America; SEA, South-eastern Asia; SAS, 
Southern Asia; WAF, Western Africa; WAS, Western Asia; WEU, Western Europe. 

4.4 Discussion 
We present the first global scale assessment of future flood risk reduction through 
conserving foreshore vegetation and the benefits of conserving foreshore vegetation 
under future scenarios and adaptation objective ‘Protection constant’. We show that 
foreshore vegetation contributes a large share of flood risk reduction and that absolute 
EAD reduction is estimated to increase if foreshore vegetation is conserved under 
future projections of sea-level rise and socioeconomic change. Our estimates point out 
that conserving foreshore vegetation is an effective measure to reduce future flood risk. 
We further show that the benefits of conserving foreshore vegetation for flood risk 
reduction are estimated at approximately US$274 billion, which can account for up to 
20% of the total benefits in the protection constant adaptation objective for some sub-
national regions. This indicates that ecosystem-based flood protection and Nature-
based Solutions constitute promising alternatives or complementary measures to other 
adaptation measures (e.g. structural measures), which is in line with recent studies on 
Nature-based Solutions (Borsje et al., 2011; Duarte et al., 2013; Shepard et al., 2011; 
Spalding et al., 2014; Temmerman et al., 2013; van Zelst et al., 2021; Vuik et al., 2016). 

Assessing the present-day global coastal flood protection of foreshore vegetation in 
economic terms, we estimated avoided damages of US$2.5 Billion per year, which 
amounts to 13% of global coastal flood risk in terms of EAD. Menéndez et al. (2020) 
assessed the benefits of present-day global coastal flood protection of mangroves and 
found that mangroves provide flood protection benefits exceeding US$65 Billion per 
year, which is 9% of their estimated global EAD. We see that their estimated global 
EAD is more than 40 times higher than our estimate, and also higher than values 
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reported in other studies (Stephane Hallegatte et al., 2013; Hinkel et al., 2014; 
Tiggeloven et al., 2020). Moreover, it is more than twice as high as reported values for 
all natural catastrophes in the Munich Reinsurance for the period 1980-2017 (Löw, 
2018). This can be accounted for as they do not use present-day protection standards 
in their analysis. In relative terms of flood risk reduction relative to GDP, we find that 
mangroves reduce 9.8% of global EAD, which is in the same magnitude as estimates 
found by Menéndez et al. (2020). In a study reporting the value of coastal wetlands on 
flood risk reduction, Narayan et al. (2017) estimated flood risk reduction through salt 
marshes on average to be 18% and up to 70% in some regions within the Ocean County 
in the US, while we show for the whole state of New Jersey that flood losses could be 
reduced by 35.6%. While local scale studies show potential benefits of foreshore 
vegetation on wave load reduction (Horstman et al., 2014; Vuik et al., 2016), it is 
difficult to compare their results to our study on extreme events as those measurements 
are often done under daily conditions. 

This study only shows the benefits of conserving foreshore vegetation in terms of flood 
risk reduction, while in reality foreshore vegetation also provides other ecosystem 
services as co-benefits such as fishery, recreation  (Barbier et al., 2011; Cheong et al., 
2013), carbon storage (Mitsch et al., 2015) and climate change mitigation (Duarte et al., 
2013), e.g. by accumulation of sediments (Kirwan et al., 2010). Next to this, adaptation 
using a range of different measures might be more feasible in the long run (Jongman, 
2018; Sutton-Grier et al., 2015). In this study, we only assume conserving present-day 
vegetation and structural measures as adaptation measures to reduce flood risk while 
there are also other adaptation measures. For instance, such adaptation measures 
include dry and wet proofing (Aerts et al., 2014), migration to less flood prone areas 
(R. McLeman & Smit, 2006), or a combination of adaptation through pathways (de 
Ruig et al., 2019).  

The values found in this study for the effects of conserving foreshore vegetation under 
future change are estimated by assuming that all foreshore vegetation is conserved 
compared to when all foreshore vegetation is lost due to sea-level rise. In reality, 
foreshore vegetation will not be lost completely when no human maintenance is carried 
out, but only a part of the vegetation may disappear due to sea-level rise, erosion and 
conversion to urban or agricultural land-use (Blankespoor et al., 2014; Schuerch et al., 
2018; Vousdoukas et al., 2020). Therefore, the values found in this study need to be 
interpreted as the maximum added value of foreshore vegetation for flood risk 
reduction and adaptation costs reduction. For instance, if all foreshore vegetation is lost 
then flood risk would be estimated to increase with the values found in this study. 
Furthermore, we assume the same coastal profile for all scenarios in this study so the 
results solely focus on the effects of foreshore vegetation, while in reality the coastal 
profile is governed by hydrodynamics (e.g. wave heights and currents) and 
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geomorphology (e.g. sediment availability) (Winterwerp et al., 2013). Next to this, this 
study does not take into account the costs of conserving foreshore vegetation and future 
work could include an assessment of feasibility of conservation costs under climate 
change. 

Several more limitations and uncertainties exist in this study and are discussed in more 
detail in Tiggeloven et al. (2020) and van Zelst et al. (2021) such as wave dampening 
effects and required crest heights estimation methodology. Firstly, several uncertainties 
exist on the cost calculation and the flood risk calculation. In this study, we use linear 
costs for structural measures, since according to Lenk et al. (2017), using a linear cost 
function for large scale assessments is a reasonable assumption. Although we include 
construction costs and market exchange rates, locally the costs might differ due to both 
physical and socioeconomic local conditions. Secondly, we estimate flood hazard 
(inundation) using a GIS-based approach rather than a fully dynamic inundation model 
(Vousdoukas et al., 2018a), but we do account for water-level attenuation similar to 
Vafeidis et al. (2019). Moreover, we estimate flood risk using a number of assumptions 
on the share of building occupancy and present-day protection standards using the 
FLOPROS modelling approach (Scussolini et al., 2016). Next to this, because this 
study uses extreme storm surges, the effects of wave load reduction for extreme events 
are uncertain and less known as most case studies focus on daily conditions (Horstman 
et al., 2014; Vuik et al., 2016; Vuik et al., 2018). 

The results of this study can be used to highlight flood risk reduction through foreshore 
vegetation at the sub-national scale and the importance of conserving foreshore 
vegetation under future change. However, we stress that this study aims to give a first 
proxy on the benefits of conserving foreshore vegetation through flood risk reduction. 
Local assessments should be used for the design and implementation of individual 
adaptation measures. At the sub-national and global scale, this study provides insights 
in Nature-based Solutions by showing the potential of flood risk reduction through 
foreshore vegetation. Even though the results can only be seen as indicative, we believe 
that it is valuable to gain insight into the effects of conserving foreshore vegetation on 
the global scale and support the need to include this more in both global assessments 
and detailed assessments at the regional scale. Going further, this study can be 
improved by including other Nature-based Solutions strategies, such as restoring 
wetlands or mangroves, and including an uncertainty analysis of future responses of 
global coastal wetlands to sea-level rise. Furthermore, an improvement can be made by 
including a global scale study on the benefits and costs of nature-based, hybrid and 
structural adaptation measures. 
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4.5 Conclusion 
We present the first global scale assessment of reducing future flood risk through 
conserving foreshore vegetation. We find that globally the reduction in flood risk 
through conserving foreshore vegetation is estimated to increase in the range of 28 up 
to 67-fold compared to present-day conditions, which amounts to US$71 billion for 
RCP4.5-SSP2 and US$168 billion for RCP8.5-SSP5 in terms of EAD in 2080. We 
further find that the relative reduction in flood risk through foreshore vegetation is 
estimated at 8.5% globally, compared to 13% under current conditions. For individual 
sub-national regions risk reduction can reach up to 50% of the total estimated future 
flood risk. Assessing the benefits of hybrid adaptation measures in the adaptation 
objective to keep protection standards constant with hybrid adaptation measures, we 
find that the benefits of conserving foreshore vegetation can reach up to US$1 billion 
for sub-national regions in South-eastern Asia, Southern Asia, China, Australia, and 
Brazil. Globally, the total benefits of conserving vegetation in the adaptation objective 
are estimated at US$274 billion. We further show that the relative benefits of 
conserving foreshore vegetation are estimated at 2.9% of the total benefits of flood 
protection for keeping protection standard constant under the RCP4.5/SSP2 scenario 
combination and reach more than 20% for some sub-national regions. Therefore, the 
results of this study show that Nature-based Solutions can be effective adaptation 
measures. Although this study only provides a first proxy of the flood risk reduction 
benefits of conserving foreshore vegetation at the global scale, it shows promising results 
for including nature-based and hybrid adaptation measures in coastal adaptation 
schemes. 

Acknowledgements 
The research leading to these results received funding from the Dutch Research 
Council (NWO) in the form of a VIDI grant (grant no. 016.161.324) and the Future 
Water Challenges 2 project, funded by the Netherlands Ministry of Infrastructure and 
Water Management. We acknowledge funding from the SCOR Corporate Foundation 
for Science under the project COASTRISK. 

Data availability 
The results of this study for all RCP and SSP combinations are available at Zenodo 
DOI: 10.5281/zenodo.5878864. Figures of the results of RCP8.5–SSP5 combination 
are show in Appendix C.  

  



 

 
 



 

 
 

 

 

 

 

 

 

 

5 Benefits of Mangrove  

Restoration 
 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on 

Tiggeloven, T., Mortensen, E.S., de Moel, H., van Zelst, V. T., van Wesenbeeck, B. 
K., Worthington, T., Spalding, M. & Ward, P. J. (2022). T Mangrove restoration and 

coastal flood adaptation: a global perspective. In review



Chapter 5 
 

116 
 

Abstract 
To reduce current and future coastal flood risk, it is critical to better understand how 
adaptation measures, including Nature-based Solutions, can reduce that risk. Here, we 
present the first global-scale assessment of the potential risk reduction that could be 
achieved by mangrove restoration under scenarios of climate and socioeconomic 
change. Unlike previous studies of Nature-based Solutions, we provide a quantitative 
assessment of the benefits of mangrove restoration in terms of reduced economic 
damage, exposed population, and poverty. We find that mangrove restoration could 
reduce a large share of future flood risk, namely a US$40-90 billion reduction (or ~11% 
of the total) of expected annual damage, and a 740,000-820,000 reduction (or ~10% of 
the total) of expected annual affected population. By carrying out a Benefit Cost 
Analysis we find that mangrove restoration is economically viable for the majority of the 
sub-national regions assessed (i.e., 173 out of 250 regions). At the global scale, the 
Benefit-Cost Ratio for mangrove restoration under future conditions ranges between 33 
and 70, with a Net Present Value between US$135 billion and US$294 billion. Because 
absolute risk values and/or Benefit Cost Analysis do not differentiate between the 
relative wealth impacts on people, we also estimated the impact of mangrove restoration 
on poverty. We show that restoring mangroves benefits people living in poverty more 
than other people, because the former group are often more prone to coastal flooding. 
As such, mangrove restoration in Low- and Middle-Income Countries (LMICs) could 
contribute to the resilience of people in poverty. 

5.1 Introduction 
In the coming century, coastal areas and their populations are projected to face 
increases in coastal flood risk driven by socioeconomic and climate change (Hallegatte 
et al., 2013; Hinkel et al., 2014; Nicholls & Cazenave, 2010; Tiggeloven et al., 2020; 
Vousdoukas et al., 2018a). Such climate shocks may exacerbate current poverty levels 
and catalyse the formation of poverty traps in LMICs (Hallegatte, 2016; Leichenko & 
Silva, 2014), with global flood risk at the forefront of the potential impacts. To mitigate 
the expected increase in coastal flood risk it is critical to better understand both risks 
and the effects of different adaptation measures. Foreshore vegetation plays a significant 
role in protecting coastal areas from current flood risk because it dissipates wave energy 
(Phan et al., 2019)   and storm surge attenuation (Vuik et al., 2016). For instance, during 
Hurricane Irma, mangroves are estimated to have averted US$1.5 billion in flood surge-
related property damages. Annually, mangroves are estimated to reduce flood damages 
by up to 25% in Florida, USA (Narayan et al., 2019). Menéndez et al. (2020) estimate 
the global flood protection benefits of mangrove forest to exceed US$65 billion per 
year, while research shows that local scale management of mangroves can be used as 
climate adaptation and provide livelihood for local communities (del Valle et al., 2020; 
Schmitt et al., 2013). Moreover, in a study on foreshore vegetation and adaptation, van 
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Zelst et al. (2021) show that incorporating foreshore vegetation in flood protection 
results in a more sustainable and financially attractive adaptation strategy compared to 
grey infrastructure only. 

In the last decades, large areas of mangrove forests and other foreshore vegetation 
degraded rapidly due to climate change and human development (Alongi, 2008; Gedan 
et al., 2010; Goldberg et al., 2020; Ward et al., 2017). Over 4.3% of mangrove forests 
were lost in the 20 years to 2016 (Spalding & Leal, 2021) with considerably higher losses 
prior to that (e.g. FAO, 2007), with conversion to agriculture or aquaculture as the main 
drivers of direct human loss (Goldberg et al., 2020). Due to future climate change and 
socioeconomic development, foreshore vegetation is under threat of further 
degradation (Friess et al., 2019; Jennerjahn et al., 2017; Mitsch & Hernandez, 2013; 
Saintilan et al., 2019). The loss of these ecosystems disproportionally affects vulnerable 
groups and communities that live close to the coast, especially local fishermen, and 
often heavily depend on natural resources (Barbier, 2015; Daw et al., 2011). Especially, 
local fishermen, who often belong to the poorest groups in development countries, 
depend on coastal resources and access to the sea (Lawson et al., 2012; Solaymani & 
Kari, 2014). Hard infrastructure often disconnects these groups from their main source 
of income and makes it difficult for them to keep a close watch on their boats, which 
often is their most valuable asset. Increases in coastal flood risk due to sea level rise, 
increased storminess and removal of coastal ecosystems can lead to poverty traps as 
people in poverty are disproportionally impacted (Hallegatte, 2016; Hallegatte & 
Rozenberg, 2017; Winsemius et al., 2018). As we expect that people in poverty are 
more vulnerable to ecosystem loss, the restoration may actually have added benefits in 
terms of poverty indicators (Villarreal-Rosas et al., 2021) and integrating this  into 
adaptation (Araos et al., 2021) can help in directing investments to areas which 
specifically benefit vulnerable groups.  

Besides reducing current flood risk, Nature-based Solutions such as mangroves have 
been estimated to be effective in combating future flood risk (Narayan et al., 2016; 
Temmerman et al., 2013; van Wesenbeeck et al., 2017). For example, when not 
constrained by development, mangroves and other foreshore vegetation have the 
potential to keep pace with sea level rise by natural accretion of mineral and biogenic 
sediments (Fagherazzi et al., 2012; Kirwan et al., 2010; Mckee et al., 2007). In other 
words, Nature-based Solutions in coastal areas can potentially reduce the impacts of 
climate change (Duarte et al., 2013) if they are restored, protected and managed 
properly. While Nature-based Solutions show potential for broad implementation to 
reduce coastal flood risk  (Duarte et al., 2013; Temmerman et al., 2013; van Zelst et al., 
2021; Vuik et al., 2016), no studies have been carried out to assess the effectiveness of 
mangrove restoration on reducing current and future coastal flood risk for the socially 
vulnerable at the global scale. This study aims to bridge this gap and provide a global-
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scale assessment of the potential benefits (in terms of flood risk reduction) and costs of 
mangrove restoration, including future conditions of climate and socioeconomic 
development. This effort highlights regions where mangrove restoration shows potential 
for success and where these adaptation measures might benefit from further targeted 
research. 

5.2 Global scale flood risk benefits of mangrove restoration 
We find that annual global flood risk under present-day conditions could potentially be 
reduced by US$1.5 billion per year, which is 11% of global Expected Annual Damages 
(EAD) if all restorable mangrove areas are restored (Table 1). Moreover, the Expected 
Annual Affected Population (EAAP) can be reduced by 300,000 people (~8%). Under 
future projections, potential risk reduction increases considerably in absolute terms for 
both EAD (~28-65 times) and EAAP (~2.6-~2.8 times). The potential reduction in 
relative terms in the future is 9-11% for EAD and 8-10 for EAAP for the scenario 
combinations of RCP4.5/SSP2 and RCP8.5/SSP5. Overall, mangrove restoration is 
estimated to be an economically feasible adaptation measure, as the BCR is far above 
one (33-70), resulting in NPV between US$135 billion and US$294 billion (Table 1) 
for the scenario combinations of RCP4.5/SSP2 and RCP8.5/SSP5. 

Table 5-1: Global-scale overview of the benefits of mangrove restoration in terms of potential flood risk 
reduction under present-day conditions and future scenarios. EAD and NPV values are displayed in US$ 
billion and EAAP in thousands. In brackets, we show the percentages of reduction in EAD/EAAP relative to 
the total values. Note that no value is given for total benefits under current conditions as this value is only 
calculated for the RCP/SSP scenarios. 

Scenario Reduction in 
EAD (US$ B) 

Reduction in EAAP 
(# people K) 

NPV 
(US$ B) 

Benefit-
Cost Ratio 

Present-day 1.5 (10.8%) 289 (7.9%) - - 
RCP4.5/SSP2 42 (8.9%) 823 (9.7%) 135 33 
RCP8.5/SSP5 98 (8.6%) 738 (10.3%) 294 70 

 

5.3 Regional scale flood risk benefits of mangrove 

restoration 
We show that South-eastern Asia (SEA) has the highest potential absolute risk 
reduction, with more than two-thirds of the global potential risk reduction in terms of 
both EAD (>US$1 billion) and EAAP (218 thousand) (Figure 5-1). Other regions that 
show high potential absolute risk reduction in EAD are Southern Asia (SAS; US$120 
million) and Eastern Asia (EAS; US$146 million). The highest potential relative risk 
reduction per sub-continental region is found in Western Africa (WAF) for both EAD 
(24%) and EAAP (28%), with the largest contribution from Nigeria. We find the highest 
increases in protection levels in South-eastern Asia (16%) and Australia & New Zealand 
(17%). A country scale ranking (top 15) and corresponding benefits of mangrove 
restoration can be found in Table D-1.  The countries with the highest potential absolute 
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risk reduction in terms of EAD are Vietnam, Philippines, Indonesia, and China 
(US$0.45, US$0.24, US$0.22, and US$0.15 billion respectively), and the countries with 
the highest potential absolute risk reduction in terms of EAAP are Vietnam, Indonesia, 
India, and Nigeria (171,000, 29,000, 26,000, and 23,000 respectively). At the sub-
national scale, the largest potential risk reduction in EAD is found in Thái Bình 
(Vietnam; US$355 million), Guangdong (China; US$127 million), and Cebu 
(Philippines; US$121 million) and the largest potential risk reduction in EAAP is found 
in Thái Bình (Vietnam; 135,000), West Bengal (India; 22,000), and Cà Mau (Vietnam; 
19,000). Although a substantial amount of flood risk can be reduced, the residual risk 
remains high (approximately 90%). 

 

Figure 5-1: Flood risk reduction benefits of mangrove restoration under present-day conditions in terms of 
potential risk reduction in EAD, potential risk reduction in EAAP, and increase in protection levels. Relative 
risk reduction values are displayed in the world plot and absolute reduction in EAD is shown in US$ Millions 
in the subplot. ANZ, Australia and New Zealand; CAR, Caribbean; CAM, Central America; EAF, Eastern 
Africa; EAS, Eastern Asia; MAF, Middle Africa; NAF, Northern Africa; NEU, Northern Europe; PAC, 
Pacific regions that include Melanesia, Polynesia, and Micronesia; SAM, South America; SEA, South-eastern 
Asia; SAS, Southern Asia; WAF, Western Africa; WAS, Western Asia; WEU, Western Europe. 

The highest potential reduction in future flood risk can be found in southeastern Asia, 
Southern Asia, and eastern Asia (Figure 5-2). Regionally, the largest share of potential 
risk reduction in EAD (Figure 5-2a-b)  is found in: Thái Bình (Vietnam; US$9 billion 
in RCP4.5/SSP2 and US$20 billion in RCP8.5/SSP5), which has seen numerous 
restoration projects in recent years; West Bengal (India; US$5 billion in RCP4.5/SSP2 
and US$13 billion in RCP8.5/SSP5), where mangrove areas are located in the 
Sundarbans; and Rivers State (Nigeria; US$4 billion in RCP4.5/SSP2 and US$11 billion 
in RCP8.5/SSP5), which has the largest mangrove forests of Africa. Sub-national regions 
with the highest potential risk reduction in EAAP are Rivers State (Nigeria, 267 
thousand), Thái Bình (Vietnam, 165 thousand), and West Bengal (India, 68 thousand). 
The countries with the highest future potential risk reduction in EAD are Vietnam 
(US$12 billion), Indonesia (US$8 billion), India (US$6 billion) and the Philippines 
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(US$5 billion), and those with the highest future potential risk reduction in EAAP are 
Nigeria (294 thousand), Vietnam (223 thousand), Indonesia (106 thousand) and the 
Philippines (70 thousand). This indicates that mangrove restoration potential is high in 
areas with high population growth, but potential flood damage rises even more in other 
areas.  

To show the regional effectiveness of mangrove restoration per areal extent, Figure D-
3 shows the reduction in EAD and EAAP per km2 of mangrove restoration extent in 
2080. Hotspots of EAD reduction relative to restorable mangrove extent are found in 
Southern Asia, Eastern Asia, and South-eastern Asia, with the highest values in three 
sub-national regions of Vietnam: Thái Bình, Ninh Bình, and Hai Phong City. While 
some sub-national regions do not show high effectiveness in terms of EAD relative to 
restorable extent, they do show higher effectiveness in terms of EAAP (for instance 
regions in the Americas). 

5.4 Benefit and cost analysis of mangrove restoration 
Globally, mangrove restoration shows a positive return on investment (i.e., BCR 
exceeds 1) in the majority of sub-national regions assessed (70%; 173 out of 250). We 
see the highest Benefit-Cost Ratios (BCRs) for regions in Western Africa, Southern 
Asia, South-eastern Asia, and Eastern Asia. For sub-national regions, the highest BCRs 
are found in Thái Bình (Vietnam), East Region (Singapore), Ninh Banh (Vietnam), and 
Tainan (Taiwan); the latter has a relatively small extent in mangrove forest (Figure 5-3). 
Total NPV is highest for the sub-national regions of Thái Bình (Vietnam; US$43 
billion), West Bengal (India; US$ 14 billion), and Rivers State (Nigeria; US$10 billion) 
(Table D-1). Most of the sub-national regions that show negative return on investments 
are in Central America and the Caribbean, where total NPV is negative. South-eastern 
Asia (US$90 billion), Southern Asia (US$21 billion), and Western Africa (US$13 
billion) are the sub-continental regions where highest total NPV are estimated. Although 
a large share of restorable mangrove is in Australia (more than 5% of global total), we 
see positive BCRs for east and southern states of Australia but a BCR around 1 for the 
other states. Countries with the highest BCRs are Taiwan, Singapore, and China (Table 
D-1). 
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Figure D-4 shows the total discounted benefits of mangrove restoration for sub-national 
regions for RCP4.5/SSP2. Most of the areas that show BCRs lower than or close to 1 
have relatively low total discounted benefits. Other sub-national regions with relatively 
high total discounted benefits (high percentage of assets), but low BCRs are mostly 
located in high-income countries such as Australia or the United States (Florida), as 
adaptation measures in these regions are more expensive due to higher prices for 
resources and labour. BCRs for the RCP8.5/SSP5 scenario show similar patterns, albeit 
with higher B:C ratios, and are found in Figure D-5. 

 

Figure 5-3: Benefit-Cost Ratios of mangrove restoration under the future scenario of RCP4.5/SSP2 shown for 
sub-national regions in the world plot and sub-continental regions in the subplot. Regions that show up in 
grey are indicated to have no intersection of mangrove restoration, coastal flooding and/or exposure. ANZ, 
Australia and New Zealand; CAR, Caribbean; CAM, Central America; EAF, Eastern Africa; EAS, Eastern 
Asia; MAF, Middle Africa; NAF, Northern Africa; NEU, Northern Europe; PAC, Pacific regions that include 
Melanesia, Polynesia, and Micronesia; SAM, South America; SEA, South-eastern Asia; SAS, Southern Asia; 
WAF, Western Africa; WAS, Western Asia; WEU, Western Europe. 

5.5 Poverty analysis of mangrove restoration 
We find that people living in poverty constitute a large proportion of the population 
living in flood prone areas: 75% (25 million people) in Bangladesh; 67% (300 thousand 
people) in Nigeria; and 87% (80 thousand people) in Pakistan. In Bangladesh this is a 
similar ratio as the whole of the country, but in Nigeria it is lower than in the whole of 
the country (67% vs 74%), whilst in Pakistan it is higher (87% vs 51%) as Nigeria has 
most of the assets located at the coast. People living in poverty is expected to increase 
by the year 2050, however the people living in flood prone areas relative to country 
totals stay approximately the same.  
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Table 5-2: Population living in poverty for country statistics, population living in flood prone areas and 
population living in areas where Nature-based Solutions (NbS) are possible. 

 

When looking at the wealth distribution of the population in areas of potential 
mangrove restoration and the population outside these areas, we find that wealth is 
unevenly distributed for several countries. Figure 5-4 shows this difference as shifts in 
distributional population curves between people living outside flood prone areas (red), 
people living inside flood prone areas (blue), and people living inside flood prone areas 
with mangrove restoration benefits (green). We find that the population distributions of 
regional wealth index for people living in flood prone areas with mangrove benefits are 
more likely to have a lower wealth index than the people outside flood prone areas. 
This is significantly different in Bangladesh, El Salvador, Mexico, Indonesia, and the 
Philippines. Looking at the distributional curves of for instance Bangladesh and 
Cameroon, we observe that people with higher wealth index (>0) are almost exclusively 
found in regions where no mangrove restoration is possible. Furthermore, we show that 
people with a higher wealth index (0 and higher), are more likely to be living outside 
flood prone areas as is clearly shown for example for Cameroon, Colombia, El 
Salvador, India, Mexico, Nigeria, and Vietnam. Mangrove restoration for El Salvador 
is estimated to be not feasible in economic terms, although when looking into equity 
aspects of adaptation strategies it is apparent that people with a lower wealth index in 
that country would benefit from mangrove restoration. Taken together, these findings 
show that, in some countries, mangrove restoration as an adaptation measure favours 
population with lower wealth levels, and as such could contribute to reducing inequality. 
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Figure 5-4: Normalized distribution of the wealth index for people living outside flood prone, inside flood 
prone and mangrove restoration areas. Note the order of lines is red  blue  green. 

5.6 Discussion 
We present the first global-scale assessment of mangrove restoration and its impact on 
current and future potential flood risk reduction and the benefits of mangrove 
restoration as adaptation measure under scenarios of socioeconomic and climate 
change. The results of the study show that mangrove restoration is an effective measure 
to contribute to future flood risk mitigation and indicates that future benefits of 
mangrove restoration can be assessed using existing flood risk assessment frameworks. 
Overall, this study indicates that mangroves can be efficient and cost-effective in 
reducing risk in many regions. These findings are in line with other studies on risk 
reduction by present ecosystems, such as Beck et al., 2018; Menéndez et al., 2020; 
Tiggeloven et al., 2021; and van Zelst et al., 2020. In a study on the global flood 
protection benefits of present-day mangroves, Menéndez et al. (2020) estimated a 
potetnial reduction in present-day EAD of 9% of the total. Tiggeloven et al. (2021) 
estimated the same reduction in EAD of US$2.5 billion, or 13% of global EAD. By 
implementing mangrove restoration, we estimate an additional US$1.5 billion, or 10% 
of global EAD, additional reduction in EAD. Previous research identified potential 
extent of mangroves to be restored (Worthington et al., 2018) and their potential storm-
protection benefits (Barbier, 2017). For example, a meta-analysis of potential benefits 
of mangrove restoration by Su et al. (2021) suggests that mangrove restoration is a cost-
effective measure that offers positive benefit-cost ratios between 6 and 10. In our 
assessment, we estimate benefit-cost ratios of mangrove restoration at the global scale is 
33-70 for RCP4.5/SSP2. However, most of the individual regions have benefit-cost 
ratios between 2 and 10, with a maximum reach of a benefit-cost ratio of 100.  

While most of the sub-national regions indicate positive return on investments, certain 
regions (for example, areas of the Caribbean and South America) have benefit-cost 
ratios below 1. However, mangrove restoration can still be valuable to communities on 
a smaller scale as potential flood risk reduction can still be realized. Such numbers are 
based on full mangrove restoration; however, they do not account for the many other 
benefits that are provided by mangroves, which will, in turn generate considerable 
additional value. We also show the importance of looking beyond absolute risk values 
in order to assess the benefits of measures. Here, we use poverty indicators to 
understand the range of impacts of adaptation on different people. We show that the 
effects of restoring mangroves are unevenly distributed across the population in terms 
of poverty, and that only looking into property damages and people exposed is not 
enough to understand the range of impacts of adaptation on people on the ground. 

While this study focusses solely on flood protection benefits of mangrove restoration, 
other co-benefits of Nature Contributions to People (NCP), such as fishery, carbon 
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storage and tourism (Spalding & Parrett, 2019; Zeng et al., 2021; zu Ermgassen et al., 
2020), are not included. These NCPs can consist of provisions (e.g., timber and 
charcoal), regulation (e.g., erosion control and saltwater intrusion), habitat (e.g., fishery 
and biodiversity), and cultural services (e.g., recreation) (Akber et al., 2018). Including 
the value of these and other NCPs could increase the economical feasibility of 
mangrove restoration (Dahdouh-Guebas & Cannicci, 2021). For Example, 
Worthington et al. (2018) show that the global restoration of mangroves could 
contribute to the sequestration of 69 million tons of carbon in above-ground biomass 
and 269 million tons of soil carbon. It could also provide habitat for trillions of finfish, 
crabs and shrimps, among other species. Also Education and training of practitioners 
and scientists in public and private sectors is vital to enhance understanding on the 
protection and management of (restored) mangroves (Erwin, 2009). Particularly as 
Rahman & Mahmud (2018) note that without strong will of these sectors and local 
people, restoration efforts are challenging and likely to fail.  

While we focus on the global scale, it is critical to reassess the findings of this study on 
the regional and local scale in order to correctly interpret the feasibility of mangrove 
restoration at smaller scales as uncertainties and biases exists in global flood risk models 
(Hinkel et al., 2021). Given this global scale, this study made several assumptions. 
Firstly, it is based on a simplified premise that all potential restoration areas are restored 
and so provides an upper limit on possible benefits as of several other drivers may 
reduce the efficacy of restoration, such as seedling failure, the planting of monospecific 
stands, and the poor choice of planting sites in tidal zones. In general, local site 
assessment and community knowledge are critical to successfully start and continue 
mangrove restoration projects (Frantzeskaki, 2019; Nguyen et al., 2016; Valenzuela et 
al., 2020). Moreover, the effects of spatial and temporal variations of the vegetated 
foreshore and stability of vegetation during extreme conditions is not included in this 
study, which can contribute to uncertainty in mangrove effectiveness to coastal 
protection (Vuik et al., 2018). In reality, restoration is restricted by social, cultural or 
economic barriers, as well as biophysical restrictions (Lovelock & Brown, 2019). Even 
considering that benefits may only be a proportion of those described here, it should 
also be noted that partial restoration may not yield directly proportional benefits. Also, 
our models assume a mature forest, where in reality it can take some years for a restored 
mangrove to deliver such benefits. Next to this, the potential role of mangroves to 
maintain surface elevation through vertical accreation with sea level rise is not taken into 
account here (Lovelock et al., 2015; Saintilan et al., 2020). Several other limitations exist 
and are discussed in Tiggeloven et al. (2020) for calculations on (future) flood risk and 
assessment on economic feasibility of adaptation, in van Zelst et al. (2021) for wave 
propagation and role of foreshore vegetation, and in Tiggeloven et al. (2021) for benefits 
of foreshore vegetation in terms of potential flood risk reduction. 
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Our analysis strengthens the body of evidence that mangrove restoration may be critical 
in climate adaptation. As a Nature-based Solution, mangrove restoration overcomes 
long-term forecast uncertainty without the risk of under or overprotecting (e.g. with 
dikes), and enables the continuation of natural coastal dynamics as they provide 
additional benefits. Risk reduction in coastal areas comes from a combination of factors, 
including engineering and societal change and adaptation. In future it might be possible 
to enhance work such as this, for example by incorporating hybrid adaptation strategies 
that use both grey and green infrastructure are showing potential to further optimise 
flood risk strategies (Du et al., 2020; van Zelst et al., 2021). While the economic 
estimates can be powerful means to influence policy they show some weighting towards 
wealthy nations with high GDP while EEAP statistics highlight the particular benefits 
that would accrue to LIMCs, notably in Asia and Africa. Implementation of Nature-
based Solutions can be used as integral component of design policies, strategies and 
action, and can be implemented in an integrated manner to tackle global societal 
challenges (Cohen-Shacham et al., 2016; Maes & Jacobs, 2017; Seddon et al., 2020).  

Although a proxy analysis, we believe that this study provides valuable insight into the 
feasibility of mangrove restoration at the global scale, and support the need for 
sustainable adaptation and large-scale implementation of Nature based Solutions. 
Furthermore, implementing adaptation measures, such as mangrove restoration, in 
LMICs can contribute to the resilience of people in poverty, driving poverty alleviation 
and helping to tackle poverty traps. 

5.7 Methods 
This study estimates global-scale (future) flood protection benefits of mangrove 
restoration under scenarios of socioeconomic and climate change. We extend on the 
methodology to assess reduction in coastal flood risk by implementing Nature-based 
Solutions described in Tiggeloven et al. (2022) by including areas of potential mangrove 
restoration in the modelling scheme. Generally, we take the following main steps: (1) 
Coastal foreshore setup and protection level estimation; (2) Flood risk modelling; (3) 
benefit-cost analysis for scenario combinations of RCP4.5/SSP2 and RCP8.5/SSP5; and 
(4) poverty analysis. In brief, we use the wave attenuation model of van Zelst et al. (2021) 
and mangrove restoration tool by Worthington & Spalding (2018) in order to estimate 
current and future protection levels (see Figure 5-5). Flood risk is estimated as a function 
of hazard, exposure and vulnerability (United Nations Office for Disaster Risk 
Reduction, 2016). Expected Annual Damages (EAD) are calculated over time for 
scenarios with and without mangrove restoration, where the difference between those 
two scenarios represents the benefits of restoration. A benefit-cost analysis is performed 
for mangrove restoration under climate change and socioeconomic change at the global 
scale, and finally a poverty analysis is assessed for three LMICs with mangrove 
restoration potential.  
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Figure 5-5: Flowchart of the methodology used in this study with an illustration of protection level estimation. 

 Coastal foreshore setup and protection level estimation 
The following section contains a short overview of the coastal properties and wave 
attenuation model  to account for the wave-vegetation interaction as implemented by 
van Zelst et al. (2021). In brief, cross-shore transects are derived with water level, 
elevation, wave data and vegetation. Wave attenuation is estimated with the following 
computational steps: offshore wave propagation, nearshore wave propagation, wave 
energy dissipation and levee overtopping estimates.  

Current dike heights required to prevent inland flooding per return period are 
estimated by assessing bed levels, hydrodynamic conditions, and wave attenuation for 
each derived coast-normal transect (495,361 transects in total). These transects are 
derived from OpenStreetMap and each transect is described by its coastal profile (e.g., 
slope, ocean bathymetry, foreshore, elevation, length, and surge levels among other 
things). Wave conditions per foreshore transect from the ERA-Interim dataset (Dee et 
al., 2011) are obtained by using a peak-over-threshold approach for multiple return 
periods. Offshore significant wave heights are transformed to a nearshore wave height 
limited by depth-induced breaking. Water levels are derived from the GTSR dataset 
(Muis et al., 2016) and corresponding wave conditions at different return periods from 
the ERA-Interim reanalysis (Dee et al., 2011).  A lookup-table is used to determine 
wave attenuation over a foreshore and the resulting significant wave height relevant for 
the flood defence. This has been done by combining 668,304 XBeach (van Rooijen et 
al., 2016) hydrodynamic numerical modelling results for combinations of foreshore 
slopes, vegetation covers, and hydrodynamic conditions (van Zelst et al., 2021). This 
table contains wave heights at regular intervals along a steady slope, both with and 
without mangrove vegetation as modelled by XBeach. To represent a worst-case 
scenario, wave angle of incidence is assumed to be coast normal. Coastlines where there 
is no urban area or where there is no simulated inundation are excluded. 
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Mangrove restoration is assessed under different scenarios of socioeconomic and 
climate change. In brief, we assess mangrove restoration using the mangrove restoration 
potential map derived from Worthington & Spalding (2018) and estimate the (future) 
benefits of this strategy. To assess the effectiveness of this adaptation measure, we 
perform a benefit-cost analysis and estimate flood protection benefits under climate 
change and socioeconomic change. The Mangrove Restoration Potential Map shows 
areas of recent (1996-2016) mangrove loss and identifies, within these locations, those 
areas where mangroves show potential to be restored. In total it identifies over 800,000 
ha of restorable mangrove areas, which amounts to nearly 6% of the total global extent 
of mangrove area. This map is spatially intersected with the transects use in the wave 
attenuation model. Potential effects of mangrove restoration on flood risk reduction are 
estimated through difference in protection levels of foreshores with and without 
mangrove restoration. Present-day coastal flood protection levels including current 
mangroves are taken from Tiggeloven et al. (2020). The wave attenuation effects of 
mangrove restoration are calculated using the same foreshore set-up, resulting in the 
increase in protection levels due to the increase in wave-vegetation interaction of the 
restored mangroves. Countries that show the highest percentage of mangrove loss are 
the USA, Mexico, and Vietnam. southeastern Asia has the largest extent of potentially 
restorable mangrove areas, with approximately 50% of the global restorable mangrove 
extent (Worthington & Spalding, 2018). To estimate mangrove restoration benefits for 
flood protection, we spatially analysed the area of mangroves to be restored per transect 
that is prone to flood risk. Figure 5-6 shows mangrove locations with restoration 
potential, aggregated to sub-national regions. Among these regions we see that sub-
national regions in Nigeria, Brazil, Bangladesh, and Indonesia have the highest 
restorable density of regions that are prone to flood risk. 

 

Figure 5.6: Total extent of mangrove forests in hectares potential to be restored, aggregated to the sub-national 
level. 
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 Flood risk estimation 
We combine coastal flood hazard layers with exposure data and vulnerability curves to 
estimate the flood impacts by using the GLOFRIS impacts module developed by Ward 
et al. (2013), extended for future simulations by Winsemius et al. (2016), and extended 
to coastal flood risk assessment by Tiggeloven et al. (2020). The flood impacts are 

assessed at a horizontal resolution of 30" × 30" and simulated for several return periods. 

Flood hazard: We simulate coastal water levels using hydrodynamic simulations of tide 
and surge, and scenarios of regional sea-level rise. We use these data to generate sea 
levels for nine different return periods (2, 5, 10, 25, 50, 100, 250, 500, and 1000 years), 
which are in turn used to force a planar inundation model that accounts for attenuation 
similar to Vafeidis et al. (2019), and is described in detail by Tiggeloven et al. (2020). 
Extreme sea level values from the Global Tide and Surge Reanalysis (GTSR) dataset 
by Muis et al. (2016) are taken to calculate inundation depths using the Multi-Error-
Removed Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017) at a 30” x 30” 
resolution as underlying topography. Because tropical cyclones are poorly represented 
in the climate input data of GTSR, we use an enriched version of GTSR that includes 
simulated tropical cyclones using the IBTrACS (International Best Track Archive for 
Climate Stewardship) archive, as described by Tiggeloven et al. (2020). We apply a 
resistance factor to simulate the reduction of flooding land inwards as tides and storm 
surges have a limited time span. 

In our flood hazard simulations, we use projected sea-level rise to simulate future 
extreme sea levels and land subsidence rates to estimate how the terrain may change. 
Global mean sea-level rise projections are obtained from the RISES-AM project 
(Jevrejeva et al., 2014) and regionalized using spatial variability associated with 
gravitational-rotational fingerprints (Jackson & Jevrejeva, 2016). We use sea-level rise 
for two Representative Concentration Pathways (RCPs), namely RCP4.5 and RCP8.5, 
and include a range of probabilistic outcomes (5th, 50th and 95th percentiles). Subsidence 
rates are more regionally distributed, at some regions higher than sea-level rise rates, 
and are taken from the SUB-CR model by Kooi et al. (2018). In this approach, 
subsidence is modelled due to groundwater extraction, which is the dominant factor of 
human-induced subsidence in many coastal areas (Erkens et al., 2015; Galloway et al., 
2016). 

Flood exposure: The methodology to derive flood exposure in terms of built-up area, 
population and GDP are described in Tiggeloven et al. (2020). Built-up area refers to 
all urban areas and artificial surfaces. Current maximum economic damages are 
estimated using the methodology of Huizinga et al. (2017). As an approximation of 
percentage area per occupancy type, we set the urban grid cells to 75% residential, 15% 
commercial and 10% industrial, based on a study by the Buildings Performance 
Institute Europe (BPIE, 2011) and a comparison of European cities’ share of occupancy 
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type of the CORINE Land Cover data (EEA, 2016). Following Huizinga et al. (2017), 
the density of buildings per occupancy type are set to 20% for residential and 30% for 
commercial/industrial. Future simulations of built-up area are taken from Winsemius 
et al. (2016) at a resolution of 30” x 30”. To estimate future maximum damages, we 
scale the current values with growth in GDP per capita per country from the SSP 
database. Boundaries of countries are derived from the Global Administrative areas 
dataset (GADM, 2012). To calculate future risk relative to GDP and population 
exposed, future gridded population and GDP values are taken from Van Huijstee et al. 
(2018), which uses the national GDP per capita from the SSP database as input. 

Flood vulnerability: By using different global flood depth-damage functions 
vulnerability to flood water of urban areas is estimated for each occupancy type and are 
taken from Huizinga et al. (2017). The resulting damages are represented as a 
percentage of the maximum damage, reaching maximum damages at an inundation 
depth of 6 meters. Subsequently, flood impacts are calculated by estimating the 
percentage of maximum damage per occupancy type at the required inundation depth 
and is expressed in the following equation: 

𝑅𝑅𝜃𝜃(𝑤𝑤) = 𝜃𝜃𝑝𝑝(𝑤𝑤)𝑀𝑀𝑝𝑝 + 𝜃𝜃𝑝𝑝(𝑤𝑤)𝑀𝑀𝑝𝑝 + 𝜃𝜃𝑏𝑏(𝑤𝑤)𝑀𝑀𝑏𝑏 (5-1) 
 
where 𝑅𝑅𝜃𝜃 is the flood impact at inundation depth of 𝑤𝑤, 𝜃𝜃 is the vulnerability at a certain 
inundation depth, and 𝑀𝑀 is the maximum damage assigned for residential (𝑟𝑟), 
commercial (𝑐𝑐) and industrial (𝑖𝑖) occupancy types. 

 

Flood risk: Through assessing flood impacts per return period flood risk in terms of 
EAD is estimated at the resolution of 30” x 30”. EAD can be estimated by taking the 
integral of the exceedance probability-impact (risk) curve (Meyer et al., 2009) and is 
shown in the following equation: 

𝐷𝐷 = � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝
1

𝑝𝑝=0

 (5-2) 

 

where 𝐷𝐷 is EAD, 𝑅𝑅 is the urban damage (or impact) with 𝜃𝜃 representing the vulnerability, 
and 𝑝𝑝 denotes the annual probability of non-exceedance. To fit a protection level of a 
coastal region in the risk computation, the risk curve is truncated at the exceedance 
probability of the protection level (expressed as a return period). To estimate the 
definite integral, we use the trapezoidal approximation. As data on protection levels of 
coastal regions are not available for many regions, we estimate current protection levels 
for coastal regions using the FLOPROS modelling approach (Scussolini et al., 2016), 
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which is described and validated for the coastal flood protection by Tiggeloven et al. 
(2020). Using the same approach, Expected Annual Affected Population (EAAP) is 
estimated by replacing the damage with population exposed to a flood hazard. EAD 
and EAAP are estimated with and without mangrove restoration. 

 Benefit-cost analysis 
We perform a benefit-cost analysis and estimate the feasibility of an investment with 
two indicators, namely Net Present Value (NPV), which is the net return on investment 
discounted to present value, and the Benefit-Cost Ratio (BCR), which is the ratio 
between discounted benefits and discounted costs. The benefit of the investment in 
adaptation is the avoided damages expressed as the difference between EAD with and 
EAD without mangrove restoration (equation 3). 

𝐵𝐵 = � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑝𝑝=𝑝𝑝𝑛𝑛

𝑝𝑝=0

− � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑝𝑝=𝑝𝑝𝑎𝑎

𝑝𝑝=0

 (5-3) 

 

where 𝐵𝐵 is the benefit of investment, 𝑝𝑝𝑛𝑛 is the annual probability of non-exceedance 
when no adaptation is implemented, and 𝑝𝑝𝑏𝑏 is the annual probability of non-exceedance 
when adaptation is implemented. The costs of mangrove restoration are set to US$2000 
per hectare of mangroves and maintenance costs are set to US$50 per hectare per year 
based on the following studies (J. C. J. H. Aerts, 2018; Bayraktarov et al., 2016; 
Marchand, 2008; Siddharth Narayan et al., 2016). Subsequently, the costs are converted 
to US$2005 Power Purchasing Parity (PPP) by first adjusting to US$2005 values using 
GDP deflators from the World Bank Open Data website (https://data.worldbank.org/) 
and then using PPP to market exchange rates from OECD, taken from the IIASA SSP 
database (Riahi et al., 2017). 

To calculate the total benefits and costs of mangrove restoration at present value, they 
are calculated for each time step set to years (until 2100), summed, and discounted over 
time. BCR are estimated by dividing the total discounted benefits by the total discounted 
costs, following equation 4 and NPV following equation 5. 

𝐶𝐶𝐶𝐶
𝐵𝐵 =

∑ 𝐵𝐵𝑡𝑡
(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛
𝑡𝑡=1

�∑ 𝐶𝐶𝑡𝑡
(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛
𝑡𝑡=1 �

�  (5-4) 

  

𝑉𝑉 = �
𝐵𝐵𝑡𝑡 − 𝐶𝐶𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 (5-5) 
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Where 𝐶𝐶𝐶𝐶
𝐵𝐵 is the benefit-cost ratio, 𝐶𝐶𝑡𝑡 the costs at time 𝑡𝑡, 𝑉𝑉 the net present value, and  

𝑟𝑟 is the discount rate. The benefit-cost analysis is performed by calculating the benefits 
and costs for adaptation for sub-national regions. These regions are defined as the next 
administrative unit below national scale in the Global Administrative Areas Database 
(GADM). The benefits and costs are discounted with a discount rate of 5%. 

The analysis is carried out for two different sea-level rise scenarios (using RCPs) and 
five different socioeconomic scenarios (using SSPs). All the results are shown for two 
scenario combinations (van Vuuren et al., 2014), namely RCP4.5/SSP2 and 
RCP8.5/SSP5. The former is used for a ‘middle of the road’ scenario with medium 
challenges and adaptation (Riahi et al., 2017) that can broadly be aligned with the Paris 
agreement targets (Tribett et al., 2017), while the latter is used as a ‘fossil-fuel 
development’ world (Kriegler et al., 2017). Results of the other combinations can be 
found in the supplementary data. 

 Poverty analysis 
In this study we provide an assessment of the distributional impacts of mangrove 
restoration for two poverty indicators: people living below a poverty line (Tatem et al., 
2013) and regional wealth index (Chi et al., 2021). We estimate these effects on poverty 
indicators for three population groups, namely: (1) population living outside flood 
prone areas; (2) population living in flood prone areas; and (3) population living in flood 
prone areas who may benefit from mangrove restoration. For the first indicator, people 
living under a poverty line, three countries were selected where mangrove restoration is 
possible and gridded data of people living under a poverty line are available, namely 
Bangladesh, Nigeria, and Pakistan. For Bangladesh we use the Bayesian-based 
geostatistics map from Steele et al. (2017), using US$2.5 per day as poverty line. For 
Nigeria and Pakistan, the mean likelihood of people living in poverty from Tatem et al. 
(2013) is used. Furthermore, the distributional impacts of mangrove restoration on 
population dynamics are assessed with the regional wealth index to estimate differences 
in population distributions per population group. Distributional curves of population 
frequency and wealth index for the three population groups are assessed with the dataset 
of micro estimates of population regional wealth index by Chi et al. (2022) for 2018 at 
the resolution of 2.4km. For the Kuhlna region in Bangladesh, we use the regional 
wealth index estimates from Steele et al. (2017) because of better coverage. We assess 
the effects on both indicators by using an overlay of the population living in the three 
areas with the likelihood of people living in poverty and the wealth index for each of 
the three countries. To test for differences between populations in the different areas, 
the Mann-Whitney U test is selected, as distributions were not found to be Gaussian. 
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Abstract 
To implement and raise awareness of coastal climate change adaptation, it is important 
to better understand the effectiveness of coastal flood risk adaptation strategies, such as 
Nature-based Solutions and hybrid strategies. In this study, we use a modelling 
approach to assess costs and benefits of such adaptation strategies. Additionally, we 
explore the impact of adopting Nature-based Solutions in coastal areas in relation to 
the alleviation of poverty conditions. Our analysis shows that Nature-based Solutions 
increase the cost-effectiveness of adaptation strategies for two-thirds (68%) of the 
regions assessed. Globally, we estimate a total reduction in the cost of structural 
adaptation measures of 8% by implementing two types of Nature-based Solutions 
(restoration 2% and conservation 6%), and that regionally the highest Net Present Value 
can reach almost US$1 trillion for sub-national units. Furthermore, we find that 
populations living in flood-prone areas where nature-based solutions are possible have 
a relatively low wealth index. Implementing such adaptation measures, such as 
mangrove restoration and conserving foreshore vegetation, in Low- and Middle-
Income Countries (LMICs) can contribute to the resilience of people living in poverty, 
driving poverty alleviation, and helping to tackle poverty traps. 

6.1 Introduction 
Coastal floods are one of the deadliest (Callaghan et al., 2014; Creach et al., 2016; 
CRED, 2015) and costliest (Hinkel et al., 2014; Kron, 2012.; Wahl et al., 2017) natural 
hazards, triggering or contributing to economic disruption (Koks et al., 2019; Mandel 
et al., 2021), displacement (Hauer et al., 2019; Robert McLeman, 2018), and poverty 
traps (Hallegatte & Rozenberg, 2017; Winsemius et al., 2018). In the coming century, 
coastal communities are projected to face increases in coastal flood risk (Brown et al., 
2018; Hallegatte et al., 2013; Hinkel et al., 2014; Jongman et al., 2012; Merkens et al., 
2018; Neumann et al., 2015) as coastal areas are experiencing increases in urban 
development, sea-level rise, and degradation of foreshore vegetation (Brown et al., 
2018; Deb & Ferreira, 2017; Neumann et al., 2015). Next to sea-level rise, climate 
change may lead to increase in extreme sea levels (Vousdoukas et al., 2017) due to 
increases in storm surges (Tebaldi et al., 2012) and tides (Pickering et al., 2012). Coastal 
zones are among the most highly developed areas in the world, containing a multitude 
of human settlements (Neumann et al., 2015), critical infrastructure (Koks et al., 2019) 
and ecosystem services (Erwin, 2009). Moreover, coastal zones are attractive locations 
for human settlement: between 1990 and 2000 almost two-thirds of urban settlements 
with population higher than 5 million were at least partly located in coastal zones 
(McGranahan et al., 2007). Furthermore, people living in poverty are particularly 
vulnerable to shocks such as coastal flooding. Increases in coastal flood risk due to sea 
level rise, increased storminess and removal of coastal ecosystems can lead to self-
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reinforcing mechanisms that ‘’trap’’ people in poverty (i.e., poverty traps; Dasgupta, 
2007; Hallegatte, 2016; Hallegatte & Rozenberg, 2017; Winsemius et al., 2018). 

Generally, flood risk can be reduced by implementing adaptation measures such as 
structural measures (e.g., dikes and levees) and Nature-based solutions (Cheong et al., 
2013; Hinkel et al., 2014; Jongman, 2018). Nature-based Solutions for coastal 
protection consists of maintaining or restoring vegetation on the foreshore, reducing 
wave intensity and therefore decreasing the run-up of surge events (Barbier et al., 2008; 
Shepard et al., 2011). Nature-based Solutions not only protect against coastal flood 
risks, but also provide other benefits, such as improved water quality, recreational 
opportunities, fisheries support and enhanced carbon sequestration (Barbier et al., 
2011). 

Instead of solely focusing on either structural measures or Nature-based Solutions, 
Jongman (2018) argues that flood risk management needs to adopt holistic strategies to 
adapt to climate change, such as hybrid strategies. Hybrid strategies can combine 
structural measures with Nature-based Solutions, such as dikes and levees in 
combination with maintaining or restoring foreshore vegetation. For example, Du et al. 
(2020) show for a case study in Shanghai that hybrid strategies that include both 
structural measures and Nature-based Solutions will reduce future flood risk more than 
structural measures only, while having higher return on investments.  

Given the expected increase in coastal flood risk, it is critical to improve our 
understanding of global coastal flood risk and the effectiveness of adaptation strategies 
to reduce those risk. The importance of climate change adaptation and disaster risk 
reduction is recognized in several global agreements, such as the Paris Agreement 
(United Nations Framework Convention on Climate Change, 2015) and the Sendai 
Framework for Disaster Risk Reduction (United Nations Office for Disaster Risk 
Reduction, 2015). However, decision makers face difficulties in aligning with these 
global agreements, partly due to a poor understanding of the effectiveness of potential 
adaptation measures. Cost-benefit analyses can provide insights on the efficacy of 
certain adaptation measures on reducing coastal flood risk. Further, the impact of 
coastal flood adaptation measures needs to be evaluated also beyond monetary terms. 
Including poverty in adaptation policies will extend the impact analysis beyond the 
valuation of reduction in flood risk in monetary terms (Hallegatte & Rozenberg, 2017; 
Winsemius et al., 2018), and will reveal how poverty is integrated into adaptation 
(Araos et al., 2021). 

So far, no studies have provided a global scale analysis on the feasibility of 
implementing hybrid strategies to reduce the expected increase in future coastal flood 
risk. To better understand the impacts of hybrid strategies on coastal flood risk 
reduction, we assess the effects and feasibility of structural measures and Nature-based 
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Solutions in the form of conserving foreshore vegetation, mangrove restoration, and a 
combination of those. Further, we assess the spatial pattern of vulnerability indicators 
(poverty and regional wealth index) to assess where the benefits of Nature-based 
Solutions could potentially amplify when looking into non-monetary indicators. 

6.2 Methods 
Without adaptation, future protection levels will likely decline due to sea-level rise and 
subsidence. This can be compensated by adding new measures or increasing the 
standard of existing measures (structural Nature-based Solutions, or a combination 
thereof). In this study, we assess the effectiveness of these different coastal flood 
adaptation strategies at the global scale under scenarios of socioeconomic and climate 
change. We extend on the methodology described in Tiggeloven et al. (2022), which 
describes a method to assess the flood risk benefits of Nature-based Solutions, by 
including hybrid strategies in the modelling scheme. In summary, we take the following 
main steps: (1) Selection of adaptation measures and protection level estimation using 
the wave attenuation model by van Zelst et al. (2021), coastal FLOPROS protection 
estimates by Tiggeloven et al. (2020) and mangrove restoration tool by Worthington & 
Spalding (2018); (2) Flood risk estimation by combining data of hazard, exposure, 
vulnerability and protection levels; (3) benefit-cost analysis using the future scenarios of 
RCP4.5/SSP2 and RCP8.5/SSP5; and (4) vulnerability indicator analysis using the 
regional wealth index by Chi et al. (2021). A detailed description of the methods used 
for estimating the protection levels and for the cost-benefit analysis can be found in 
Tiggeloven et al. (2022). A detailed description on the coastal flood risk model used in 
this study can be found in Tiggeloven et al. (2020). 

 

Figure 6-1: Flowchart of the methodology used in this study with illustrations of protection level estimation 
for the four different adaptation strategy scenarios. 
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 Adaptation measures under scenarios of change 
The following adaptation measures are assessed for scenarios of socioeconomic and 
climate change: no adaptation, structural measures (dikes/levees), and two hybrid 
strategies with a combination with dikes and Nature-based Solutions. The first of these 
hybrid strategies is a combination between dikes and conservation of foreshore 
vegetation, and the latter extends on this this by also including mangrove restoration. 
For each of these adaptation measures, the objective is set to keep current protection 
levels constant in the future. We also simulate a baseline scenario in which no 
adaptation is implemented, meaning that current protection is maintained at its current 
height. For a detailed description on global coastal adaptation strategies, we refer the 
reader to Tiggeloven et al. (2020) for structural measures and Tiggeloven et al. (2021) 
for future benefits of conserving foreshore vegetation.  

No adaptation (baseline) 
The no adaptation strategy serves as the baseline strategy throughout this paper. Here, 
dike heights are maintained and kept at their present-day heights. Without adaptation 
measures, the future protection levels will decline due to sea-level rise and degradation 
of foreshore vegetation, and risk will increase because of this and socio-economic 
change. The benefits of adaptation measures will be estimated by the reduction in risk 
compared to this baseline strategy. 

Structural measures 
The height of dikes required to keep current protection levels constant are estimated 
with the wave attenuation model by van Zelst et al. (2021), which uses empirical 
EuroTop formulations (Pullen et al., 2007) and are based on a standard 1:3 dike profile 
without berms and with a maximum allowed overtopping discharge of 1 L/m2/s given 
foreshore condition and extreme sea levels. Water levels are derived from the GTSR 
dataset (Muis et al., 2016) and corresponding wave conditions at different return 
periods from the ERA-Interim reanalysis (Dee et al., 2011). We exclude coastlines 
where there is no built-up area, or no inundation is simulated. To estimate future dike 
heights, we also use regional sea-level rise from Jackson and Jevrejeva (2016) for the 
RCP4.5 and RCP8.5 scenarios. 

Conservation of foreshore vegetation (hybrid) 
The conservation approach includes keeping foreshore vegetation extent and 
dimensions for the future the same as they are now. This approach will focus on the 
flood protection benefits where foreshore vegetation is conserved and safeguarded so 
that no more areas will be degraded. The wave attenuation model for present-day 
foreshore conditions is complemented with areas where foreshore vegetation, such as 
salt marshes and mangroves, are present. This allows us to account for the wave-
vegetation interaction and to estimate the effects of foreshore vegetation on wave 
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damping. Maps of salt marshes are derived from Mcowen et al. (2017) and mangroves 
from Giri et al. (2011), complemented with Corine Land Cover (CLC, Europe only) 
and GlobCover v2.2 maps where the former lack coverage. 

Mangrove restoration (hybrid) 
The second Nature-based Solution is mangrove restoration, which will focus on 
restoring mangrove forests globally in areas that show potential for mangrove forests to 
be restored. To identify these areas, we use the Mangrove Restoration Potential Map 
of Worthington & Spalding (2018), which maps areas where mangroves show potential 
to be restored (estimated a total of 800,000 ha). As with the current foreshore 
vegetation, the mangrove restoration is added to the wave attenuation model to estimate 
the effects of wave dampening. 

 Flood risk model 
Flood risk is estimated as a function of hazard, exposure and vulnerability (UNDRR, 
2016). To estimate the flood hazard, we use the approach described in Tiggeloven et 
al. (2020). Here we summarise the main points and refer the reader to the paper for 
further details. 

Hazard: We use coastal water levels using hydrodynamic simulations of tide and surge 
of the GTSR model (Muis et al., 2016c), and scenarios of regional sea-level rise for the 
RCP4.5 and RCP8.5 scenarios. Flood hazard is represented by maps of inundation 
depth for several return periods of sea levels taken from GTSR (2, 5, 10, 25, 50, 100, 
250, 500 and 1000 years) and are used to force a planar inundation model that accounts 
for attenuation, similar to Vafeidis et al. (2019). As underlying topography, we use the 
Multi-Error-Removed Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017) at a 
30” x 30” resolution. 

Exposure: We represent exposure using maps of urban density, population, and GDP 
at a resolution of 30” x 30”. The maps for the current situations are taken from Van 
Huijstee et al. (2018). For the future, we use maps from the 2UP model (Van Huijstee 
et al., 2018), using SSP1-5, for time-periods 2010-2080. Future simulations of built-up 
area are taken from Winsemius et al. (2016) at a resolution of 30” x 30”. To estimate 
future maximum damages, we scale the current values with growth in GDP per capita 
per country from the SSP database. We set the area of occupancy type per grid cell to 
75% residential, 15% commercial, and 10% industrial, similar to Tiggeloven et al. 
(2020). 

Vulnerability: we estimate vulnerability to flooding using different global flood depth-
damage functions for each occupancy type, taken from Huizinga et al. (2017). The 
resulting damages are represented as a percentage of the maximum damage, reaching 
maximum damages at an inundation depth of 6 meters. Subsequently, flood impacts 
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are calculated by estimating the percentage of maximum damage per occupancy type 
at the required inundation depth and is expressed in the following equation: 

𝑅𝑅𝜃𝜃(𝑤𝑤) = 𝜃𝜃𝑝𝑝(𝑤𝑤)𝑀𝑀𝑝𝑝 + 𝜃𝜃𝑝𝑝(𝑤𝑤)𝑀𝑀𝑝𝑝 + 𝜃𝜃𝑏𝑏(𝑤𝑤)𝑀𝑀𝑏𝑏 (6-1) 
 
where 𝑅𝑅𝜃𝜃 is the flood impact at inundation depth of 𝑤𝑤, 𝜃𝜃 is the vulnerability at a certain 
inundation depth, and 𝑀𝑀 is the maximum damage assigned for residential (𝑟𝑟), 
commercial (𝑐𝑐) and industrial (𝑖𝑖) occupancy types.  

Risk: Flood risk in terms of Expected Annual Damages (EAD) is estimated through 
assessing flood impacts per return period at the resolution of 30” x 30”. EAD can be 
estimated by taking the integral of the exceedance probability-impact (risk) curve 
(Meyer et al., 2009) and is shown in the following equation: 

𝐷𝐷 = � 𝑅𝑅𝜃𝜃(𝑝𝑝)𝑑𝑑𝑝𝑝
1

𝑝𝑝=0

 
(6-2) 

where 𝐷𝐷 is EAD, 𝑅𝑅 is the urban damage (or impact) with 𝜃𝜃 representing the 
vulnerability, and 𝑝𝑝 denotes the annual probability of non-exceedance. To fit a 
protection standard of a coastal region in the risk computation, the risk curve is 
truncated at the exceedance probability of the protection standard (expressed as a 
return period). To estimate the definite integral, we use the trapezoidal approximation. 
As data on protection standards of coastal regions are not available for many regions, 
we estimate current protection standards for coastal regions using the FLOPROS 
modelling approach (Scussolini et al., 2016), which is described and validated for 
coastal flood protection by Tiggeloven et al. (2020). Using the same approach, 
Expected Annual Affected Population (EAAP) is estimated by replacing the impacts 
with population exposed to a flood hazard. 

The analysis is carried out for two different sea-level rise scenarios (using RCPs) and 
five different socioeconomic scenarios (using SSPs). All the results are shown for two 
scenario combinations (van Vuuren et al., 2014), namely RCP4.5/SSP2 and 
RCP8.5/SSP5. The former is used for a ‘middle of the road’ scenario with medium 
challenges and adaptation (Riahi et al., 2017) that can broadly be aligned with the Paris 
agreement targets (Tribett et al., 2017), while the latter is used as a ‘fossil-fuel 
development’ world (Kriegler et al., 2017). 

Benefit-Cost Analysis 
EAD is estimated over time for scenarios with and without adaptation, where the 
difference between those two scenarios represents the benefits of adaptation. A benefit-
cost analysis is performed for the different adaptation strategies under climate change 
and socioeconomic change at the global scale. The benefits and costs are assessed using 
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a discount rate of 5% until the lifespan of the structural measures investment and with 
Operation and Maintenance (O&M) costs of 1%. It is assumed that investments begin 
in 𝑡𝑡 = 0 years and construction is finished in 𝑡𝑡 = 30 years, and increasing linearly 
between, following Equation 6-3. 

𝐶𝐶𝑡𝑡 = {𝑅𝑅(𝑢𝑢, 𝑊𝑊)/𝑐𝑐, 𝑅𝑅(𝑢𝑢, 𝑊𝑊) ∗ 𝑚𝑚,      
𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑐𝑐
𝑖𝑖𝑖𝑖 𝑡𝑡 ≥ 𝑐𝑐

 (6-3) 

 

, where 𝐶𝐶𝑡𝑡 are the costs at time 𝑡𝑡 in years, 𝑚𝑚 the maintenance costs in percentages, and 
𝑐𝑐 is the duration of the construction in years. During this period the benefits will linearly 
increase. 

To assess benefit-cost analyses of adaptation, we use the adaptation objective of keeping 
future protection levels constant. We estimate the costs of flood protection by summing 
the maintenance and investment costs over time for raising dikes to prevent flooding, 
following the methodology described by Ward et al. (2017). To estimate the costs 
associated with the different adaptation objectives, we estimate the dike dimensions 
using the same approach described by Tiggeloven et al. (2020). The benefits and costs 
of adaptation at present value, are calculated for each time step (set to years) until 
2100, discounted over time, and summed. Benefit-Cost Ratios (BCR) are estimated 
by dividing the total discounted benefits by the total discounted costs, following 
Equation 6-4 and NPV following Equation 6-5. 

𝐶𝐶𝐶𝐶
𝐵𝐵 =

∑ 𝐵𝐵𝑡𝑡
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𝐵𝐵𝑡𝑡 − 𝐶𝐶𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 (6-5) 

 
Where 𝐶𝐶𝐶𝐶

𝐵𝐵 is the benefit-cost ratio, 𝐶𝐶𝑡𝑡 the costs at time 𝑡𝑡, 𝑉𝑉 the net present value, and  
𝑟𝑟 is the discount rate. The benefit-cost analysis is performed by calculating the benefits 
and costs for adaptation for sub-national regions. These regions are defined as the next 
administrative unit below national scale in the Global Administrative Areas Database 
(GADM). 

Social vulnerability indicator: wealth index 
In this study we provide an initial assessment of the distributional impacts of the 
modelled hybrid strategies for the social vulnerability indicator of regional wealth index. 
We estimate the coastal flood adaptation effects on these indicators for three 
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population groups, namely: (1) population living outside flood prone areas; (2) 
population living in flood prone areas; and (3) population living in flood prone areas 
that may benefit from Nature-based Solutions, and thus where hybrid strategies are 
possible. Distributional curves of population frequency and wealth index for the three 
population groups are assessed with the dataset of micro estimates of population 
regional wealth index of Chi et al. (2022). We assess the effects on the social 
vulnerability indicator by using an overlay of the different population groups with 
population dynamics and regional wealth indices, displacement, and age structures. To 
test if the population distribution of regional wealth index for people outside flood 
prone areas and people affected by mangrove restoration are significantly different, the 
Mann-Whitney U test is selected, as distributions were not found to be Gaussian. 

6.3 Results 

 Hybrid strategies for global coastal flood risk assessment 
Our findings show that hybrid strategies often outweigh structural measures in terms of 
cost-effectiveness when looking at direct flood risk benefits of adaptation measures at 
the global scale. Our analysis shows that there is value gained in using hybrid strategies 
compared to structural measures only for two-thirds (68%) of the regions assessed for 
the scenario RCP4.5/SSP2 as is shown in the left panel of Figure 6-2. Our results (inset 
bar chart Figure 6-2) show that hybrid strategies have larger BCR than structural 
measures in 100% of the sub-national unites in Northern America, 82% in Western 
Europe, and 75% Australia and New Zealand. 85% of the sub-national unit assessed in 
Western Africa, 85% in Eastern Africa, and 70% in Central America show a favour for 
using structural measures only.  

To show the effectiveness of combining measures, we estimate the increase or decrease 
in cost-effectiveness in terms of change in BCR between structural measures only and 
hybrid strategies (Fig 6-2, main map). For some regions in which the BCR of a hybrid 
strategy exceeds that of the structural measures strategy, the difference in BCR between 
the two exceeds 50%, such as in Quebec (Canada), Picardie (France), Thái Bình 
(Vietnam), East (Singapore), Yuen Long (Hong Kong), Aysén (Chili), and Northern 
Territory (Australia). On the other hand, there is only one sub-national region where 
the structural measures strategy is showing an increase higher than 25% and that is 
Nayarit (37%, Mexico). In other words, although some regions have a higher BCR for 
structural measures in some regions, the difference is generally less pronounced. 
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Figure 6-2: Percentage increase in BCR for implementing structural measures versus hybrid strategies. 
Percentage sub-national regions favouring structural/hybrid strategies per sub-continental regions are shown 
in the inserted panel on the left side. 

Looking into the regional differences in BCR between structural measurs and hybrid 
strategies for the scenario of RCP4.5/SSP2 (Fig. 6-3), we observe that both Nature-
based Solutions oftentimes are in the same range of ratios as each other, except for 
East (Signapore) and Thái Bình (Vietnam). Moreover, we find that usually both Nature-
based Solutions are more cost-effective than structural measures or both are less cost-
effective in most of the sub-national units assessed. Next to this, we find that structural 
measures are more feasible in regions where a lot of coastal wetlands and foreshore 
vegetation are situated and relatively few people are exposed to coastal flooding as the 
costs of conserving large areas of foreshore vegetation outpace the benefits (e.g., 
Sundarbans in India/Bangladesh, New South Wales in Australia, and Guerrero in 
Mexico). This is because, in these regions it is not or slightly feasible to implement 
adaptation and as we set structural measures dynamically, these regions favour a slight 
increase in dike height. Furthermore, hotspots of sub-national regions show favouring 
both hybrid strategies (e.g., northern America, eastern Asia, and western Europe) or 
structural measures (e.g., Central America and Africa) Breaking down the BCR further 
into best strategies per region, we show that conservation of foreshore vegetation is an 
important hybrid strategies and oftentimes most beneficial strategy. 
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Figure 6-3: Benefit-Cost Analysis of different adaptation strategies for selected sub-national regions with the 
possibility on Nature-based Solutions.  

The effects of hybrid strategies on the reduction of adaptation costs in the future are 
shown in Figure 4 for RCP4.5/SSP2 at the sub-continental scale (Fig. 6-4). Globally, we 
estimate a total reduction in adaptation costs compared to structural measures of 8% 
by implementing two types of Nature-based Solutions (restoration 2% and conservation 
6%). The highest reduction is found in the sub-continental regions of Southeastern Asia 
(US$10 billion), Australia and New Zealand (US$8.6 billion), Northern America 
(US$5.4 billion), and Eastern Asia (US$5.3 billion). This shows that while a large 
reduction can be achieved by implementing Nature-based Solutions, still a lot of 
adaptation costs remain. Furthermore, we show the effectiveness of adaptation 
measures by estimating the NPV of the adaptation strategies with the highest NPV 
adaptation strategies in Fig. E-1, showing that highest NPV values are estimated for the 
sub-continental regions of Eastern Asia (US$2.4 trillion), Southeastern Asia (US$ 1.9 
trillion), Southern Asia (US$1.6 trillion), and Western Europe (US$41.5 trillion). 
Highest NPV for individual sub-national regions are found in West Bengal (US$950 
billion, India), Zheijang (US$849 billion, China), and Zuid-Holland (US$556 billion, 
the Netherlands). 
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Figure 6-4: The adaptation strategies with the highest NPV per sub-continental region for structural measures 
(S), structural measures and conservation of foreshore vegetation (SC) and SC together with mangrove 
restoration (SCR). 

 Nature-based Solutions through a poverty perspective 
For several countries we find that the wealth index is unevenly distributed between 
people living outside coastal flood hazard areas and people living within them. The 
population distribution curves in Figure 6-5 show these differences in the wealth index 
between people living outside flood prone areas (red), people living inside flood prone 
areas (blue), and people living inside flood prone areas where Nature-based Solutions 
could be implemented (green). The results show that in many places people living in 
flood prone areas are more likely to have a lower wealth index than people living 
outside flood prone areas. Countries where the distributions are significantly different 
(p-value < 0.05) are Guyana, Liberia, Kenya, Vietnam, Philippines, Timor-Leste, Sri-
Lanka, and Bangladesh. Additionally, the wealth index distribution curves of people 
living in flood prone areas where Nature-based Solutions can be implemented are the 
same as those of people living in flood prone areas generally (e.g., Vietnam, Thailand, 
Kenya, Suriname, and Liberia). This is not the case for Guyana, Peru, Sri Lanka, and 
Bangladesh, where the wealth index is even lower for people living inside flood prone 
areas who experience benefits from Nature-based Solutions areas. Altogether, we find 
that in most countries people living in flood prone areas where Nature-based Solutions 
can be implemented tend to have low values of the wealth index, indicating that if these 
measures would be implemented, they could contribute to the reduction of climate 
shocks to people with low wealth index.  
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Figure 6-5: Population distributions of regional wealth index for people living outside flood prone areas (red), 
inside flood prone areas (blue) and areas where hybrid strategies are implemented in the study (green). Note 
the order of curves is red  blue  green, and that for all cases where the blue curve is not visible, it is 
overlapping with the green curve. 

6.4 Outlook 
We present a global-scale assessment of hybrid solutions and (future) potential flood 
risk reduction and the benefits of a combination of adaptation measures under 
scenarios of socioeconomic and climate change. Unlike previous studies on Nature-
based and hybrid solutions, we provide a quantitative assessment on the benefits in 
terms of monetary flood risk reduction on a global scale, including a benefit-cost 
analysis, and provide social vulnerability analysis in the form of population distributions 
using wealth indexes. Our analysis shows that there is value gained in adding Nature-
based Solutions to the portfolio of adaptation strategies, and that doing so could 
increase the cost-effectiveness of adaptation strategies for two-thirds (68%) of the 
regions assessed. Globally, we estimate a total reduction in adaptation costs compared 
to structural measures of 8% by implementing two types of Nature-based Solutions 
(restoration 2% and conservation 6%). Regionally the highest Net Present Value can 
reach almost US$1 trillion for sub-national units. The results of the study show that 
Nature-based Solutions are an effective measure in combination with structural 
measures to contribute to future flood risk mitigation. a Further, future benefits from 
implementing Nature-based Solutions will amplify when looking into non-monetary 
indicators.  
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As people in poverty are more vulnerable to climatic shocks and stresses (Hallegatte, 
2016), it is important to understand the impact of mangrove restoration on the 
proportion of the population living in poverty. Unlike previous Nature-based Solutions 
studies, we provide a quantitative assessment of the benefits of Nature-based Solutions 
in terms of reduced economic damage. While this study focusses solely on flood 
protection benefits of mangrove restoration, there are other Nature Contributions to 
People (NCP), such as fishery, carbon storage and tourism (Spalding & Parrett, 2019; 
Zeng et al., 2021; zu Ermgassen et al., 2020). These NCPs provide provisions (e.g., 
timber and charcoal), regulation (e.g., erosion control and saltwater intrusion), habitat 
(e.g., fishery and biodiversity), and cultural services (e.g., recreation) (Akber et al., 
2018). Including the value of these and other NCPs could increase the economical 
feasibility of mangrove restoration (Dahdouh-Guebas & Cannicci, 2021). 

Although this study is a proxy analysis, we believe that it is valuable to gain more insight 
into the feasibility of mangrove restoration at the global scale. The implementation of 
Nature-based Solutions can be used as an integral component of policies, strategies and 
actions to risk reduction. Nature-based Solutions can be implemented in an integrated 
manner to tackle global societal challenges (Cohen-Shacham et al., 2016; Maes & 
Jacobs, 2017; Seddon et al., 2020). Furthermore, implementing adaptation measures, 
such as mangrove restoration and conserving foreshore vegetation, in LMICs can 
contribute to the resilience of people in poverty, driving poverty alleviation and helping 
to tackle poverty traps. 
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In the 21st century, coastal areas and their populations are projected to face increases 
in coastal flood risk due to socioeconomic and climate change. Climate shocks may 
exacerbate current poverty levels and catalyse the formation of poverty traps in Low- 
and Middle-Income Countries (LMICs), with global flood risk at the forefront of the 
potential impacts. To mitigate or prevent the expected increase in coastal flood risk it 
is critical to improve our understanding of global coastal flood risk and the effectiveness 
of adaptation strategies on flood risk benefits. Following this need, this thesis aims to 
disentangle drivers of coastal flood risk and assess costs and benefits of adaptation 
measures at the global scale with a focus on Nature-based Solutions. These issues were 
addressed in chapters 2 to 6 by assessing the following research questions: 

• Can we improve surge level predictions by harnessing the capabilities of deep 
learning approaches at the global scale? 

• What is the attribution of adaptation costs to drivers of coastal flood risk? 

• What are the (future) flood risk benefits of structural measures, Nature-based 
Solutions, and a combination thereof? 

• How can we include adaptation benefits beyond monetary terms in large scale 
flood risk assessments? 

This chapter summarises the main findings regarding each research question. 
Furthermore, the remaining scientific challenges and the way forward are discussed. 
Finally, this chapter concludes with a discussion of the societal context and policy 
implications of this thesis. 

7.1 Key research questions 
Question 1 | Can we improve surge level predictions by harnessing the 
capabilities of deep learning approaches at the global scale? 

In chapter 2 (Tiggeloven et al., 2021), deep learning approaches are explored for 
predicting surge levels at the global scale. For 738 tide stations, we developed and 
applied an approach to predict hourly surges using four different types of Neural 
Networks (NN). For this, surge levels are extracted using observed sea levels from the 
GESLA-2 dataset, which serve as the predictand variable. Various atmospheric 
variables from the ERA5 climate reanalysis dataset serve as predictor variables. To 
evaluate the NN model performance at each station, the results are benchmarked 
against a simple probabilistic model based on climatology. To explore how increasing 
the NN design complexity affects model performance, hidden layers are added, and 
the spatial footprint used around each station to extract the predictor variables is 
enlarged. 

Using the same hyperparameter settings across all stations and a spatial footprint of 
1.25 degree to extract predictor variables, chapter 2 shows that the Long Short-Term 
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Memory (LSTM) generally outperforms the other NN types. This is because the 
probabilistic forecast from the LSTM is in closest agreement with the distribution of 
the observed values, resulting in the best reliability scores in the Continuous Ranked 
Probability Score (CRPS). However, we show that the Convolutional Neural Network 
(CNN) can improve on performance the most when increasing the spatial footprint or 
number of hidden layers in the model architecture and outperforms the LSTM. 
Increasing complexity comes, however, at the expense of increasing computational 
time, up to more than 15 times longer to run compared to simpler setup of the NN 
model. 

My results show that the NN models can capture temporal evolution of surges, and that 
they are sometimes capable of outperforming large-scale hydrodynamic models. I 
observe similar performance patterns across all the NN ensemble models. The 
performance generally increases with latitude and is generally high (CRPSS>40%) in 
mid-latitudes (30-60 degrees), which is in line with previous studies. Stations around 
the equator (0-30 degrees) generally do not outperform the simple probabilistic model 
based on climatology and show that other variables such as Sea Surface Temperature, 
steric components or geostrophic currents might also need to be explored to improve 
on performance. Additionally, I show that model performance generally improves with 
an increasing size of the spatial footprint used for the selection of the predictor 
variables, but that increasing the number of hidden layers does not always lead to a 
better performance. In order to allow the coastal modelling community to further build 
on these initial efforts, I have made all of the detrended and decomposed surge signal 
and predicted surge level data, as well as the NN models, openly available (Tiggeloven 
et al., 2021). Moreover, a better understanding and prediction of the characteristics of 
sea levels will contribute to improving coastal adaptation and management. 

Question 2 | What is the attribution of adaptation costs to drivers of coastal 
flood risk? 

Chapter 3 assesses different coastal flood adaptation objectives and corresponding risk 
levels at the global scale and performs a benefit-cost analysis of those objectives. 
Furthermore, the costs of adaptation have been attributed to different drivers of flood 
risk: sea-level rise, socio-economic change, subsidence, and optimizing to current 
conditions.  

A methodological framework is created to assess the following steps: (1) flood risk 
estimation; (2) adaptation costs estimation; (3) benefit-cost analysis for four adaptation 
objectives; and (4) attribution of the total costs to the different drivers. In the risk model, 
Expected Annual Damage (EAD) is calculated for different scenarios with and without 
adaptation. The costs are calculated by estimating the dimensions of the required dikes 
(height and length) and multiplying these by their unit costs. A benefit-cost analysis is 
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performed for four adaptation objectives, namely: (1) ‘Protection constant’; (2) 
‘Absolute risk constant’; (3) ‘Relative risk constant’; and (4) ‘Optimize’, which calculates 
future protection standards by maximizing Net Present Value (NPV). To better 
understand the drivers of flood risk change and adaptation costs, these costs of 
adaptation are attributed to several risk drivers, namely (1) optimization under current 
conditions (CUR); (2) socioeconomic change (SEC); (3) sea level rise driven by climate 
change (SLR); and (4) subsidence driven by groundwater depletion (SUB). Finally, 
present-day protection levels are needed to better estimate flood risk, and chapter 3 
produced the first global scale estimates of coastal flood protection levels. 

The results of chapter 3 show that EAD increases by a factor of 150 between 2010 and 
2080, if no adaptation were to take place, and that 15 countries account for 
approximately 90% of this increase. All four adaptation objectives show high potential 
to reduce (future) coastal flood risk at the global scale in a cost-effective manner. When 
future protection standards are optimized for highest NPV, we find a Benefit-Cost 
Ratio (BCR) of 76 with NPV of more than US$11 trillion, while the ‘protection 
constant’ adaptation objective showed the lowest NPV (US$9.5 trillion) with a BCR of 
67 for the RCP4.5/SSP2 scenario. At the regional scale, the results show that the 
adaptation objectives could be achieved with a BCR more than 1 for most of the sub-
national regions. This ranges from 89% for the ‘optimize’ adaptation objective to 79% 
for the ‘absolute risk constant’ adaptation objective. However, under the ‘optimize’ 
adaptation objective, relative risk is still projected to increase compared to current 
values in 32% of the sub-national regions assessed. Attributing the total costs for the 
‘optimize’ adaptation objective, sea-level rise contributes the most and exceeds 50% of 
the total costs in 98% of the sub-national regions assessed and exceeds 90% of the total 
costs in 58% of the sub-national regions. However, the other drivers also play an 
important role, but are dwarfed in absolute terms.  

Question 3 | What are the (future) flood risk benefits of structural measures, 
Nature-based Solutions, and a combination thereof? 

To reduce current and future coastal flood risk, it is critical to better understand how 
adaptation measures, including Nature-based Solutions, can reduce that risk. This is 
addressed in chapters 4-6, which present the first global scale assessment of reducing 
future flood risk through Nature-based Solutions and hybrid strategies. These studies 
extend on the coastal flood risk assessment framework developed in chapter 3 by 
assessing the effects of foreshore vegetation and structural measures on global flood 
risk reduction under socioeconomic and climate change. The main steps of our study 
are: (1) flood risk estimation; (2) wave attenuation estimation; and (3) estimating the 
benefits of adaptation measures. The wave attenuation model for present-day foreshore 
conditions is complemented with areas that show potential to restore mangroves as 
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identified by the mangrove restoration tool, to account for the wave-vegetation 
interaction and estimate the effects of mangrove restoration on wave damping. 

In chapter 4, we show that foreshore vegetation contributes a large share of flood risk 
reduction and that absolute EAD reduction is estimated to increase if foreshore 
vegetation is conserved under future projections of sea-level rise and socioeconomic 
change. Our results show that conserving foreshore vegetation is an effective measure 
to reduce future flood risk. We further show that the benefits of conserving foreshore 
vegetation for flood risk reduction are estimated at approximately US$274 billion, 
which can account for up to 20% of the total benefits in the protection constant 
adaptation objective for some sub-national regions. We found that globally the 
reduction in flood risk through conserving foreshore vegetation is estimated to increase 
in the range of 28 up to 67-fold compared to present-day conditions, which amounts 
to US$71 billion for RCP4.5-SSP2 and US$168 billion for RCP8.5-SSP5 in terms of 
EAD in 2080. We further found that the relative reduction in flood risk through 
foreshore vegetation is estimated at 8.5% globally, compared to 13% under current 
conditions.  

Chapter 5 presents the first global-scale assessment of mangrove restoration and 
(future) potential flood risk reduction and the benefits of mangrove restoration as 
adaptation measure under scenarios of socioeconomic and climate change. The results 
of the study show that mangrove restoration is an effective measure to contribute to 
future flood risk mitigation and indicates that future benefits of mangrove restoration 
can be assessed using existing flood risk assessment frameworks. We show that a large 
share of future flood risk of US$40-90 billion (~9% of total EAD for both scenarios 
assessed) may be reduced by implementing mangrove restoration. Next to reducing 
property damages, we show that restoring mangroves could place up to 820,000 people 
at a lower risk of coastal flooding under future conditions compared to not restoring 
mangroves.  

Chapter 6 combines previous chapters into an assessment of hybrid adaptation 
strategies at the global scale. Implementing Nature-based Solutions will increase the 
feasibility of adaptation strategies for two-thirds (68%) of the regions assessed. Globally, 
we estimate a total reduction in adaptation costs of 8% by implementing Nature-based 
Solutions, compared to using grey infrastructure only. 

Therefore, the results of these studies indicated that Nature-based Solutions constitute 
promising alternatives or complementary measures to other adaptation measures (e.g. 
structural measures). 
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Question 4 | How can we include adaptation benefits beyond monetary 
terms in large scale flood risk assessments? 

In chapter 5 and 6, we show the importance of using more indicators than economic 
ones alone, in order to assess the benefits of measures. Here, we use poverty indicators 
to better understand the distribution of adaptation benefits on the population affected. 
We show that the effects of Nature-based Solutions and flood hazards are unevenly 
distributed across the population in terms of poverty, and that people with a lower 
wealth index could benefit more from Nature-based Solutions. We argue that only 
looking into property damages and people exposed is not enough to understand the 
range of impacts of adaptation on population distributions. Furthermore, 
implementing adaptation measures, such as mangrove restoration, in LMICs can 
contribute to the resilience of people in poverty, poverty alleviation and help tackle 
poverty traps. 

We furthermore show that people living under the poverty line in Bangladesh are 
dispoportionally more affected by coastal flood risk and would thus particulary benefit 
from adaptation measures, such as mangrove restoration. Moreover, mangroves 
contribute to the safeguarding of communities by providing coastal flood protection 
benefits, as people in poverty are more vulnerable to such hazards (Adhikari et al., 
2010; Mirza, 2011; Salik et al., 2015). We also find that among those populations who 
will be exposed to coastal flooding in the near future, there is a disproportionate 
increase in people affected towards the poorer sections of society. Therefore, 
implementing adaptation in low-income countries could contribute to the resilience of 
people in poverty, poverty alleviation and help tackle poverty traps (Hallegatte, 2016; 
Leichenko & Silva, 2014; Winsemius et al., 2018). 

7.2 Remaining scientific challenges and the way forward 
In this thesis, the need for coastal adaptation to tackle the expected increase in coastal 
flood risk was assessed by disentangling drivers of coastal flood risk and assessing costs 
and benefits of adaptation measures at the global scale with a focus on Nature-based 
Solutions. In doing so, this thesis suggests that it is important improve on traditional 
large-scale flood risk assessments by including Nature-based Solutions and more 
holistic hybrid approaches. Although this thesis includes limited aspects of Nature-
based and hybrid solutions, and valuation of adaptation strategies beyond monetary 
terms, it is important for future research to continue developing towards more holistic 
hybrid approaches. Some of the remaining scientific challenges include: (1) enhanced 
hazard prediction by improving flood inundation models, paving the way towards 
improved early warning systems; (2) refining flood risk assessment by using object-
based assessments instead of aggregation methods for protection levels and exposure 
information; (3) improving the simulation of adaptation strategies by including a myriad 
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of adaptation measures and expanding on this by using dynamic approaches; and (4) 
next to including poverty analysis, incorporate further co-benefits of adaptation 
measures into flood risk assessments, such as ecosystems services related to Nature-
based Solutions. Possible ways to address these four challenges are discussed in the 
following paragraphs. 

Firstly, an improvement could be made in future research by improving on the flood 
inundation modelling scheme. This can be done by using a hydro-dynamic inundation 
modelling scheme (e.g. Vousdoukas et al., 2016a). While the research in this thesis 
does not include dynamic inundation modelling, it does include resistance factors 
similar to those used by Vafeidis et al. (2019), in order to account for water-level 
attenuation. It therefore represents an advance on previous studies that have used 
planar inundation modelling methods (i.e., bathtub models). However, this comes at 
the cost of increased computing time and studies on future climate change and 
inundation have yet to implement such hydro-dynamic modelling scheme at the global-
scale. A workaround would be to use so-called nested models that look into regions of 
interest but are globally applicable. Another improvement of using hydro-dynamic 
modelling schemes over traditional bathtub models, is that it includes a temporal 
component of coastal flooding. However, to implement this for current and future 
research, more research is needed on the evolution of surge levels, or so-called 
hydrographs. Another improvement can be made by including waves in inundation 
modelling, which is found to be an important component in inundation modelling 
(Vousdoukas et al., 2017). The inundation modelling scheme can be further improved 
by increasing the resolution from 30” to a higher resolution in order to better 
understand local scale signals and patterns, since the scale of assessment and resolution 
of input data has a significant implication on flood risk model results (Wolff et al., 
2016). Moreover, building on the NN models developed in chapter 2 that can rapidly 
predict the temporal evolution of surge levels, and feeding those results into hydro-
dynamic models, would pave the way for rapid inundation forecasts. This can be done 
by developing regional NN models in which each coastline is represented by a NN 
model as opposed to have a model for each gauge station. Moreover, developing 
regional models will allow to better assess temporal input for coastal inundation 
schemes and early warning systems. Furthermore, by including climate change 
projection on future surge level evolutions, we can improve our understanding of surge 
level prediction and the temporal evolution thereof. 

Secondly, an important improvement can be made by using object-based information 
instead of aggregated data for representing flood protection levels and exposure. An 
uncertainty in this thesis is the current flood protection level, which is estimated using 
the FLOPROS modelling approach, as high-resolution data on flood protection along 
the global coastlines are not available. An improvement could be made, for instance, 
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by mapping object-based flood protection globally by using Earth Observation-based 
methods (Wing et al., 2019), or using widespread surveys and local expertise to better 
understand current protection levels (Hallegatte et al., 2013). Furthermore, several 
uncertainties exist with assumptions on aggregation of exposure information. We 
assume the percentage of occupancy type per grid cell to be the same for all locations, 
whilst in reality it is spatially heterogeneous, and next to this, we assumed the building 
density per occupancy type. An improvement could be made by using Earth 
Observation-based methods to detect object-based elements, or Machine Learning to 
improve the accuracy of urban land cover and building types (Hecht et al., 2015; Huang 
et al., 2018). 

Thirdly, the results in this thesis can be enhanced by including and combining more 
adaptation measures in order to give a more comprehensive overview of potential flood 
risk reduction. For example, hybrid adaptation strategies that use grey and green 
infrastructure are showing potential to further optimise flood risk strategies (Du et al., 
2020; van Zelst et al., 2021), but can be even further expanded by inlcuding migration 
(Hauer et al., 2019; Lincke & Hinkel, 2021), flood proofing (de Ruig et al., 2019) or 
other Nature-based Solutions such as restoration of salt marshes or coral reefs (Beck 
et al., 2018). Furthermore, an improvement can be made by including dynamic 
adaptation pathways in the adaptation modelling scheme used in this thesis (Haasnoot 
et al., 2013). Next to this, adaptation using a range of different measures might be more 
feasible in the long run (Jongman, 2018; Sutton-Grier et al., 2015).  

Finally, while this thesis focusses on the flood protection benefits of mangrove 
restoration, other co-benefits of Nature Contributions to People (NCP), such as fishery 
and carbon storage, are not included. These NCPs can consist of provisions (e.g., 
timber and charcoal), regulation (e.g., erosion control and saltwater intrusion), habitat 
(e.g., fishery and biodiversity), and cultural services (e.g., recreation) (Akber et al., 
2018). Including the value of these and other NCPs could increase the economic 
feasibility of mangrove restoration (Dahdouh-Guebas & Cannicci, 2021). For example, 
Soanes et al. (2021) indicate the effectiveness of reducing flood exposure by mangrove 
restoration in the Caribbean, and Barros et al. (2021) argue that NbS requires local 
scale knowledge to benefit from social, environmental, and economic benefits 
simultaneously. Our model results suggest that mangrove restoration is not feasible for 
many regions in the Caribbean. However, by including NCPs or looking into the 
increase in resilience of coastal communities in the Caribbean a more comprehensive 
assessment of mangrove restoration feasability for this region can be made (Soanes et 
al., 2021; Su et al., 2021; Ward et al., 2017). For instance, Worthington et al. (2018) 
show that the global restoration of mangroves could contribute to the sequestration of 
69 million tons of carbon in above-ground biomass and 269 million tons of soil carbon. 
It could also provide habitat for trillions of finfish, crabs and shrimps, among other 
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species. These benefits will become more vital in the future due to climate change, 
when the role of wetlands becomes more important (Erwin, 2009; Jennerjahn et al., 
2017; IPCC, 2019; Powell et al., 2011). Furthermore, implementing adaptation 
measures, such as mangrove restoration, in LMICs will contribute to the resilience of 
people in poverty, help with poverty alleviation and tackle poverty traps. 

7.3 Societal context and policy implications 
The results presented in this thesis contribute to the ongoing efforts of academia, the 
risk management community, and policy makers to better understand coastal flood risk 
reduction and adaptation. In this section, we outline the importance of this thesis from 
a policy and decision making perspective to the ongoing efforts of international 
organisations to reduce disaster risk. Furthermore, we note the contribution of this 
thesis to: decision making in a societal context; human development efforts; and risk 
communication. 

In the last decade, one in five persons of the global population was affected by disasters 
and this is expected to increase in the future due to climate change and socioeconomic 
development (UNDRR, 2015). The increase in disaster risk and the need for action 
have been acknowledged by several international organisations within the effort of 
reducing disaster risk and loss of lives, livelihoods and health. During the third UN 
World conference on disaster risk reduction, the Sendai Framework for Disaster Risk 
Reduction was developed, and calls for improved risk assessments and achieving 
substantial reduction in diasaster risk between the period 2015-2030 (UNDRR, 2015). 
Another example is the Paris Agreement of the Conference of Parties (COP), which 
aims to take decisions and enhance collective efforts to limit average global temperature 
increase well below 2 degrees (UNFCCC, 2021). This thesis contributes to Priority for 
Action 1 for the Sendai Framework, i.e. understanding disaster risk, by providing global 
maps of hotspots of disaster risk under current and future conditions, and global maps 
indicating potential ways to reduce this risk. Moreover, linking the need to limit climate 
change impacts and the Sustainable Development Goals (SDG) 
(https://sdgs.un.org/goals), this thesis contributes to the SDG of climate action, and 
sustainable cities and communities.  By improving upon current understanding of 
(future) coastal flood risk, adaptation and Nature-based Solutions, and community 
resilience with a focus on poverty, we have increased the understanding of the impacts 
of adaptation measures beyond monetary terms.  

Schulte et al. (2021) argue that succesful adaptation measures should include a range 
of different strategies and local scale factors, as climate change is taking place in diverse 
social, economic, political, institutional, financial, technical, and biophysical contexts. 
While the scope of this thesis is aimed at the global scale, the results can be used to 
inform policy makers on the regional scale or city-level. In recent years, several global 

https://sdgs.un.org/goals
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flood risk models have been developed and are being in use by a wide range of users 
and practitioners with applications in disaster risk management activities, international 
development organizations, the reinsurance industry, and flood forecasting and early 
warning. For example, the results of chapter 2 can be further developed into forecasting 
models and can contribute to ongoing efforts of the risk community to better map surge 
level predictions during (extra) tropical storms, as the approach used allows for rapid 
forecasting and advances our collective efforts to better understand coastal flood risk 
and adaptation. Doing so, an early warning system can be developed and used to 
prevent or mitigate coastal flood risk at the regional scale or city-level. To take urgent 
action to confront the climate crisis, a global network of mayors initiated the C40 Cities 
organisation (c40.org). To inform a new project of the C40 network (Water Safe Cities), 
the results of chapter 3 of this thesis are being used with the aim to increase 
understanding of the impacts of floods and drought at the city level globally.  

In order to bridge the gap between academia and the risk management community, we 
integrated the data processed in chapter 3 into the Aqueduct Global Floods webtool 
(www.wri.org/floods). This webtool allows any user to examine current and future risk, 
as well as the benefits of strucutral flood protection at the sub-national scale. Clearly, 
local scale models and assessments should be used for the design and implementation 
of individual adaptation measures, but our results can be used as a first proxy for 
indicating regions where adaptation through structural measures may be economically 
feasible. Potential next steps could be to integrate Nature-based Solutions and hybrid 
adaptation strategies in the webtool, to better inform policy makers and provide results 
of chapter 4 to 6 in an accessible way.  

Engagement with local communities is an important driver for adaptation 
implementation of Nature-based Solutions (Schulte et al., 2021).  Additionally, 
focusing on a single function of mangrove restoration (in this case flood protection 
benefits) can result in unwarrented consequences for biodiversity (Seddon et al., 2020) 
and can make success more unpredictable (Powell et al., 2011). Therefore, a holistic 
and integrated  approach to mangrove restoration should be followed in practice, using 
avaialable ecological knowledge on good restoration practices (Lewis, 2005). Education 
and training of practitioners and scientists in public and private sectors are vital to 
enhance understanding on the protection and management of (restored) mangroves 
(Erwin, 2009). As NbS enables the so-called option value it overcomes long-term 
forecast uncertainty without the risk of under or overprotecting (e.g. with dikes). 
Implementation of Nature-based Solutions can be used as integral component of 
design policies, strategies and action, and can be implemented in an integrated manner 
to tackle global societal challenges (Cohen-Shacham et al., 2016; Maes & Jacobs, 2017; 
Seddon et al., 2020).  

http://www.wri.org/floods
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Implementing adaptation measures, such as mangrove restoration, in LMICs could 
contribute to the resilience of people in poverty, help with poverty alleviation, decrease 
the risk of displacement and migration, and tackle poverty traps. The loss of these 
ecosystems disproportionally affects vulnerable groups and communities that live close 
to the coast and often heavily depend on natural resources (Barbier, 2015; Daw et al., 
2011). Especially, local fishermen, who often belong to the poorest groups in 
development countries, depend on coastal resources and access to the sea. Hard 
infrastructure often disconnects these groups from their main source of income and 
makes it difficult for them to keep a close watch on their boats, which often is their 
most valuable asset. Increases in coastal flood risk due to sea level rise, increased 
storminess and removal of coastal ecosystems can lead to poverty traps as people in 
poverty are disproportionally exposed to such shocks (Hallegatte, 2016; Hallegatte & 
Rozenberg, 2017; Winsemius et al., 2018). As we expect that people in poverty are 
more vulnerable to ecosystem loss, which increases their exposure to natural hazards, 
understanding distributional impacts of mangrove restoration in terms of poverty 
indicators (Villarreal-Rosas et al., 2021) and how poverty is integrated into adaptation 
(Araos et al., 2021) can help in selection of investment hotspots that specifically benefit 
socially vulnerable groups. The results found in this thesis can help policymakers to 
assess the threat of coastal flooding and design sustainable adaptation measures taking 
into account poverty dynamics. 
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Appendix A  

Supplementary Figures A 

 

Figure A-1: Pre-processing steps applied to the time series of total water level to obtain the surge predictand 
variable used for this study. a) The annual mean sea level from the total water level from GESLA-2 is 
subtracted to remove annual mean sea-level variability. b) The detrended total water level is decomposed to 
obtain the tide and non-tidal residual. c) To limit the impact of harmonic prediction and timing errors, a 12-
hour moving average is applied to obtain the surge variable used in this study. The time series shown in from 
the tidal station Anchorage (location 6 in Figure 2-1).  
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Figure A-2: (a-c) Tidal predictions obtained from the UTide package (in black) and NOAA tidal predictions 
(in red) for a) Humboldt bay (mean tidal range (MTR): 1.49 m), b) Galveston Pier 21 (MTR: 0.31 m) and 
c) Boston (MTR: 2.89 m). The time span shows the highest differences obtained between both tidal 
predictions. (d-f) Absolute difference between the two timeseries. (g-i) Histograms from the absolute 
differences. NOAA tidal predictions were obtained from https://tidesandcurrents.noaa.gov/. 

https://tidesandcurrents.noaa.gov/
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Figure A-3: Exceedance frequency and extreme value distribution for the de-trended water level (original, in 
black), the sum of the tide and non-tidal residual with a lag of 1 hour (original - lag, in blue), the sum of the 
tide and surge residual derived in this paper (this paper, in red) and the sum of the tide and surge residual 
with a lag of 1 hour (this paper - lag) for a) Galveston Pier 21, b) Anchorage, c) Boston and d) Humboldt 
bay. 
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Figure A-4: NN architecture for ANN (a), LSTM (b), CNN (c), and ConvLSTM (d) with predictor variable 
MSLP, gradient of MSLP (Grad. MSLP), wind magnitude (ρ), and U and V. The regular densely connected 
layers are denoted in green, LSTM layer in blue, convolutional 2D layer for the CNN in red, and the 
convolutional LSTM 2D layer in orange for the ConvLSTM. For every NN layer the kernel dimensions are 
shown and for the LSTM and ConvLSTM also the recurrent kernel dimensions are displayed. After the 
convolutional layers there is a max pooling layer (2D for CNN; 3D for ConvLSTM) to downsample the 
input and after which input is flattened and concatenated before fed into the densely connected layer. Note 
that each NN type ends with the same sequence of densely connected layer → dropout → densely connected 
layer → prediction.
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Figure A-8: a-f) Hourly surge predictions for the testing year from the LSTM/CNN model, observed and 
surge from the Global Tide and Surge Model and g-l) scatter plot of the median from the predicted ensemble 
with the observed surge and m-r) with the GTSM surge. 
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Figure A-9: a-c) Hourly surge predictions for the testing year from the LSTM model, observed and surge 
from the Global Tide and Surge Model and d-f) scatter plot of the median from the predicted ensemble with 
the observed surge and g-i) with the GTSM surge
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Figure A-11: Normalized learning rate of increasing spatial footprint for the four different NN ensembles. 
The stations have been split into groups of prone to Tropical cyclones (TC) or ExtraTropical Cyclones 
(ETC) and not influenced by (E)TC based on the IBTrACS dataset, as done in (Bloemendaal, Haigh, et al., 
2020). Darwin is the only station which was classified as prone to TCs.  
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Appendix B  

Supplementary Notes B 
This section contains a brief description of the coastal protection standards estimated 

with the FLOPROS modelling approach. Higher protection standards can be found at 

regions with high economic activity and high asset exposure. Regions with low risk have 

lower estimated protection standards. Regions without modelled risk in the GLOFRIS 

model are excluded. This occurs in regions where we have no data on exposure or no 

coastal inundation is simulated. These protection standards are used in our paper as 

the current protection, on top of which the future costs of dike heightening are 

calculated. The protection standards for The Netherlands are manually set to 1000-

year return period. This is because, for whole of The Netherlands protection standards 

are known to be higher than 1000-year return period. 

Supplementary Figures B 

 

Figure B-1: Validation of the coastal protection standards estimated using the FLOPROS modelling 
approach against reported protection standards. 
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Figure B-2: Top 15 countries with coastal flood risk in (a) 2080 if protection standards are kept constant, (b) 
2080 if absolute risk is kept constant, (c) 2080 if relative risk is kept constant, and (d) 2080 if protection 
standards are optimized for the scenario RCP8.5–SSP5. Note that the countries and value on the x axis 
change for each graph. The countries are denoted by ISO 3166-1 alpha-3 codes
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Figure B-8: Attribution of costs of adaptation for World Bank regions under the optimize adaptation 
objective and RCP8.5–SSP5 for optimizing to current conditions (CUR), socioeconomic change (SEC), 
subsidence (SUB), and sea-level rise (SLR). 
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Appendix C  

Supplementary Figures C 

 

Figure C-12: Present-day absolute reduction of EAD though wave attenuation of foreshore vegetation. Sub-
national regions with no data are indicated with grey colour. 

 

Figure C-13: Present-day absolute reduction of EAPE though wave attenuation of foreshore vegetation. Sub-
national regions with no data are indicated with grey colour. 
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Figure C-14: Present-day increase in protection standards through the presence of foreshore vegetation. Sub-
national regions with no data are indicated with grey colour. 

 

Figure C-15: Future relative reduction of EAD though wave attenuation of foreshore vegetation in 2080 
under the RCP4.5/SSP2 scenario combination. Sub-national regions with no data are indicated with grey 
colour. 
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Figure C-16: Total discounted benefits of retaining vegetation in the adaptation objective 'keeping protection 
standards constant' for the scenario combination RCP8.5/SSP5. Sub-national regions with no data are 
indicated with grey colour. ANZ, Australia and New Zealand; CAR, Caribbean; CAM, Central America; 
EAF, Eastern Africa; EAS, Eastern Asia; MAF, Middle Africa; NAF, Northern Africa; NEU, Northern 
Europe; PAC, Pacific regions that include Melanesia, Polynesia, and Micronesia; SAM, South America; 
SEA, South-eastern Asia; SAS, Southern Asia; WAF, Western Africa; WAS, Western Asia; WEU, Western 
Europe. 
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Appendix D  

Supplementary Figures and Tables D 

 

Figure D-1: Mangrove extent per transect in hectares. 

 

 

Figure D-2: Distribution of restorable mangrove forest width per urban/rural transects. 
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Figure D-4: Total benefits of mangrove restoration for the scenario of RCP4.5/SSP2. 

 

Figure D-5: Benefit-Cost Ratios of mangrove restoration under the future scenario of RCP8.5/SSP5 shown 
for sub-national regions in the world plot and sub-continental regions in the subplot. ANZ, Australia and 
New Zealand; CAR, Caribbean; CAM, Central America; EAF, Eastern Africa; EAS, Eastern Asia; MAF, 
Middle Africa; NAF, Northern Africa; NEU, Northern Europe; PAC, Pacific regions that include Melanesia, 
Polynesia, and Micronesia; SAM, South America; SEA, South-eastern Asia; SAS, Southern Asia; WAF, 
Western Africa; WAS, Western Asia; WEU, Western Europe. 



A
pp

en
di

x  

18
5 

 

T
ab

le
 D

-1
: C

ou
nt

ry
 s

ca
le

 r
an

ki
ng

 o
f t

he
 (f

ut
ur

e)
 b

en
ef

its
 o

f m
an

gr
ov

e 
re

st
or

at
io

n 
in

 te
rm

s 
of

 fl
oo

d 
ri

sk
 r

ed
uc

tio
n 

un
de

r 
pr

es
en

t-d
ay

 c
on

di
tio

ns
 a

nd
 fu

tu
re

 s
ce

na
ri

os
. E

A
D

 
an

d 
N

P
V

 v
al

ue
s 

ar
e 

di
sp

la
ye

d 
in

 U
S$

 b
ill

io
n 

an
d 

E
A

P
E

 in
 th

ou
sa

nd
s . 

P
re

se
nt

-d
ay

 
R

C
P

4.
5/

SS
P

2 
R

C
P

8.
5/

SS
P

5 

E
A

D
 

E
A

P
E

 
E

A
D

 
E

A
P

E
 

N
P

V
 

B
C

R
 

E
A

D
 

E
A

P
E

 
N

P
V

 
B

C
R

 

IS
O

 
V

al
ue

 
IS

O
 

V
al

ue
 

IS
O

 
V

al
ue

 
IS

O
 

V
al

ue
 

IS
O

 
V

al
ue

 
IS

O
 

V
al

ue
 

IS
O

 
V

al
ue

 
IS

O
 

V
al

ue
 

IS
O

 
V

al
ue

 
IS

O
 

V
al

ue
 

V
N

M
 

0.
44

5 
V

N
M

 
17

1.
1 

V
N

M
 

12
.1

 
N

G
A

 
29

3.
6 

V
N

M
 

50
.9

 
T

W
N

 
11

24
6.

6 
V

N
M

 
26

.3
 

N
G

A
 

27
1.

8 
V

N
M

 
10

3.
9 

T
W

N
 

14
30

2.
4 

P
H

L
 

0.
24

3 
ID

N
 

29
.1

 
IN

D
 

7.
7 

V
N

M
 

22
3.

1 
IN

D
 

20
.1

 
SG

P
 

87
5.

9 
IN

D
 

18
.6

 
V

N
M

 
19

3.
0 

IN
D

 
47

.6
 

C
H

N
 

10
55

.2
 

ID
N

 
0.

21
7 

IN
D

 
25

.5
 

ID
N

 
5.

8 
IN

D
 

10
6.

3 
ID

N
 

15
.4

 
C

H
N

 
54

1.
3 

ID
N

 
15

.0
 

IN
D

 
94

.4
 

ID
N

 
38

.4
 

V
N

M
 

94
7.

2 

C
H

N
 

0.
14

6 
N

G
A

 
22

.7
 

P
H

L
 

5.
4 

P
H

L
 

69
.8

 
P

H
L

 
14

.5
 

V
N

M
 

46
4.

8 
P

H
L

 
12

.2
 

P
H

L
 

63
.1

 
P

H
L

 
30

.9
 

SG
P

 
83

2.
6 

IN
D

 
0.

11
3 

C
H

N
 

14
.3

 
N

G
A

 
4.

5 
ID

N
 

52
.7

 
N

G
A

 
10

.8
 

B
H

R
 

44
1.

0 
N

G
A

 
11

.4
 

ID
N

 
50

.5
 

N
G

A
 

26
.8

 
B

H
R

 
58

2.
0 

M
Y

S 
0.

08
9 

P
H

L
 

11
.6

 
C

H
N

 
2.

2 
C

H
N

 
15

.8
 

C
H

N
 

7.
0 

G
M

B
 

22
2.

0 
C

H
N

 
4.

4 
C

H
N

 
16

.9
 

C
H

N
 

13
.6

 
G

M
B

 
42

6.
6 

N
G

A
 

0.
06

2 
B

G
D

 
5.

7 
M

Y
S 

1.
0 

B
G

D
 

15
.2

 
T

H
A

 
3.

1 
A

R
E

 
19

6.
2 

T
H

A
 

1.
8 

B
G

D
 

11
.8

 
M

M
R

 
6.

7 
N

G
A

 
40

6.
5 

U
SA

 
0.

03
6 

M
M

R
 

2.
8 

T
H

A
 

0.
8 

M
Y

S 
10

.8
 

M
Y

S 
3.

0 
N

G
A

 
16

4.
8 

M
Y

S 
1.

7 
M

Y
S 

8.
2 

T
H

A
 

6.
3 

G
N

B
 

29
1.

9 

T
H

A
 

0.
03

2 
M

Y
S 

2.
6 

B
G

D
 

0.
5 

G
IN

 
10

.1
 

M
M

R
 

2.
3 

P
H

L
 

13
4.

0 
B

G
D

 
1.

3 
G

IN
 

4.
3 

M
Y

S 
4.

5 
P

H
L

 
28

4.
7 

A
R

E
 

0.
02

5 
T

H
A

 
0.

8 
G

IN
 

0.
4 

P
A

K
 

3.
3 

G
IN

 
1.

5 
M

T
Q

 
10

8.
9 

M
M

R
 

1.
2 

T
H

A
 

3.
2 

G
IN

 
3.

0 
IN

D
 

23
4.

6 

M
M

R
 

0.
02

1 
P

A
K

 
0.

7 
M

M
R

 
0.

4 
M

M
R

 
3.

3 
U

SA
 

1.
2 

IN
D

 
99

.8
 

G
IN

 
0.

8 
P

A
K

 
3.

1 
M

O
Z

 
1.

9 
A

R
E

 
23

4.
5 

A
U

S 
0.

01
2 

SE
N

 
0.

5 
U

SA
 

0.
2 

SE
N

 
3.

1 
A

R
E

 
1.

0 
G

N
B

 
92

.3
 

U
SA

 
0.

4 
M

M
R

 
2.

7 
U

SA
 

1.
7 

M
T

Q
 

22
4.

1 

E
C

U
 

0.
00

9 
B

R
A

 
0.

3 
A

R
E

 
0.

2 
C

M
R

 
3.

0 
M

O
Z

 
0.

6 
G

H
A

 
84

.6
 

G
H

A
 

0.
3 

C
M

R
 

2.
7 

P
A

K
 

1.
2 

G
H

A
 

19
9.

0 

B
R

A
 

0.
00

5 
U

SA
 

0.
3 

E
C

U
 

0.
1 

T
H

A
 

2.
5 

P
A

K
 

0.
6 

T
H

A
 

45
.3

 
A

R
E

 
0.

3 
U

SA
 

1.
6 

A
R

E
 

1.
2 

P
A

K
 

91
.5

 

M
E

X
 

0.
00

5 
C

M
R

 
0.

3 
G

H
A

 
0.

1 
G

H
A

 
1.

7 
G

M
B

 
0.

5 
P

A
K

 
42

.0
 

E
C

U
 

0.
3 

SE
N

 
1.

6 
G

M
B

 
0.

9 
T

H
A

 
86

.7
 



 
 

186 
 

Appendix E  

Supplementary Figure E 

 

Figure E-1: The NPV of the adaptation strategies with the highest cost-effectiveness for the scenario of 
RCP4.5/SSP2 
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