
VU Research Portal

Characterizations of solutions for cooperative games with transferable utility

Li, Wenzhong

2022

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Li, W. (2022). Characterizations of solutions for cooperative games with transferable utility.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Nov. 2022

https://research.vu.nl/en/publications/5d775c8a-c9f7-4d03-8bfe-8f6c28204888


CHARACTERIZATIONS OF SOLUTIONS

FOR COOPERATIVE GAMES WITH

TRANSFERABLE UTILITY

WENZHONG LI



c©W. Li, 2022

ISBN 978-90-832136-2-0



VRIJE UNIVERSITEIT

Characterizations of Solutions for Cooperative
Games with Transferable Utility

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor of Philosophy
aan de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. J.J.G. Geurts,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de School of Business and Economics
op woensdag 5 oktober 2022 om 9.45 uur

in een bijeenkomst van de universiteit,
De Boelelaan 1105

door

Wenzhong Li

geboren te Henan, China



promotoren: prof.dr. J.R. van den Brink
prof.dr. G. Xu

promotiecommissie: prof.dr. A. Casajus
prof.dr. Z. Cao
prof.dr. M.J. Uetz
dr. M.A. Estevez Fernandez
prof.dr. B.F. Heidergott



Northwestern Polytechnical University

(Academic Thesis)

Characterizations of Solutions for Cooperative
Games with Transferable Utility

By

Wenzhong Li

In partial fulfillment of the requirement

for the degree of

Doctor of Applied Mathematics

2022

Xi’an China



promotoren: prof.dr. J.R. van den Brink
prof.dr. G. Xu



Contents

Introduction 1

Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Preliminaries 9

1.1 Cooperative games with transferable utility . . . . . . . . . 10

1.2 Solutions for TU-games . . . . . . . . . . . . . . . . . . . . 12

1.3 Axioms of solutions . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Basic axioms . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Axioms related to null, dummy, nullifying, A-null and
non-negative players . . . . . . . . . . . . . . . . . . 20

1.3.3 Axioms related to contributions . . . . . . . . . . . . 22

1.3.4 Axioms related to associated consistency . . . . . . . 24

2 Characterizations of the average-surplus value 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Procedural schemes of the Shapley value and the solidarity
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The average-surplus value . . . . . . . . . . . . . . . . . . . 31

2.4 Axiomatizations of the average-surplus value . . . . . . . . 34

2.4.1 A-null surplus player property . . . . . . . . . . . . . 34

2.4.2 Revised balanced contributions . . . . . . . . . . . . 37

2.5 A potential approach to the average-surplus value . . . . . . 38

2.6 Punishment-compensation bidding mechanism . . . . . . . 41

2.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



viii Contents

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Characterizations of the EANSC value and CIS value 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Union based associated games . . . . . . . . . . . . . . . . . 64

3.3 Matrix approach and associated games . . . . . . . . . . . . 66

3.4 Axiomatizations of the EANSC value and the CIS value . . . 71

3.5 Dynamic transfer schemes derived from associated games . 73

3.5.1 Process based on the individual associated game . . 74

3.5.2 Process based on the union associated game . . . . . 78

3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Characterizations of the PD value and the PANSC value 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Satisfaction and the PD and PANSC values . . . . . . . . . . 94

4.2.1 Optimistic satisfaction and the PD value . . . . . . . 96

4.2.2 Pessimistic satisfaction and the PANSC value . . . . . 97

4.3 Axiomatizations of the PD value and the PANSC value . . . 99

4.3.1 Equal minimal satisfaction axioms . . . . . . . . . . 99

4.3.2 Associated consistency . . . . . . . . . . . . . . . . . 100

4.3.3 Dual axioms of associated consistency . . . . . . . . 103

4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Characterizations of the weighted division values 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Relaxations of symmetry and the weighted division values . 120

5.3 Axiomatizations using null player related axioms . . . . . . 123

5.3.1 Sign null player in a productive environment property 123

5.3.2 Sign non-negative player property . . . . . . . . . . 125

5.3.3 Sign nullified solidarity . . . . . . . . . . . . . . . . 126

5.4 Discussion between linearity and additivity . . . . . . . . . 127



Contents ix

5.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Sharing the cost of cleaning up a polluted river 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Pollution cost-sharing problems . . . . . . . . . . . . . . . . 141

6.3 Sign independence of upstream costs for the UES method . 143

6.4 Generalizations of the LRS method and the UES method . . 145

6.4.1 Equal upstream responsibility methods . . . . . . . . 145

6.4.2 Weighted upstream sharing methods . . . . . . . . . 147

6.5 Pollution cost-sharing games . . . . . . . . . . . . . . . . . . 149

6.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Summary 163

Bibliography 165

Acknowledgements 177

About the Author 179





Introduction

Game theory studies mathematical models of conflict and cooperation
among rational decision-makers. Game theory provides general mathe-
matical methods for analyzing situations in which two or more rational
decision-makers make decisions that will influence one another’s benefit.
One of the milestones of the study of game theory is the publication of
the fundamental book Theory of Games and Economic Behavior by von Neu-
mann and Morgenstern (1944, [113]). At present, game theory has been
widely applied in biology, economics, computer science, political science,
and many other disciplines.

Generally speaking, game theory is classified into two branches: co-
operative game theory and non-cooperative game theory. The classifica-
tion of these two branches depends on whether players are able to make a
binding commitment. In cooperative game theory, players usually make
a binding commitment and form a coalition. Cooperative game theory
deals with how the benefits of cooperation are shared among all play-
ers. In non-cooperative game theory, players cannot make binding com-
mitments and they make their independent decisions (strategies) in order
to obtaining the best possible outcomes for themselves. Taking account of
each other’s strategies, non-cooperative game theory emphasizes how ev-
ery player maximizes one’s own payoff without considering the payoffs of
other players. A more workable distinction between cooperative and non-
cooperative games can be based on ‘the modelling technique’, that is, in
a non-cooperative game players have explicit strategies and payoff func-
tions, whereas a cooperative game is described by a characteristic function
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2 Introduction

that assigns to each coalition the worth that they can reach by cooperat-
ing. The Nash program is an important research agenda initiated in Nash
(1953, [83]) in order to bridge the gap between these two game theoretic
branches. This thesis will be devoted to a study of cooperative game theory.

The implicit assumption in cooperative games is that players can coop-
erate to form coalitions and make binding agreements on how to distribute
the benefits of these coalitions over the players. A cooperative game is more
abstract than a non-cooperative game in the sense that strategies are not
explicitly modelled. Cooperative games with transferable utility (for short,
TU-games) are a special type of cooperative games in which it is assumed
that the earnings of a coalition can be expressed by a single number. These
numbers can be considered as a joint utility for the players in the coali-
tions. One may think of this number as an amount of money, which can
be distributed among the players in any conceivable way if the coalition is
formed. In TU-games, an important issue is to build a universal solution
that describes the distribution of the benefits of cooperation among the
players in a reasonable way for every TU-game. This thesis is devoted to
the study to judge the fairness and reasonableness of such solutions.

Axiomatization is a vital approach to show the fairness and reason-
ableness of solutions. Axiomatizations of solutions for TU-games usually
consist of two steps: Firstly, formulate desirable axioms of solutions, as
properties; secondly, identify the solutions satisfying the axioms in various
combinations. The plausibility of solutions is judged by investigating a set
of axioms the solutions satisfy. This normative method for TU-games has
been pioneered by Shapley (1953, [94]), who introduced and character-
ized the well-known Shapley value by efficiency, additivity, symmetry, and
the null player property. Since then, various solutions have been axiomat-
ically introduced and studied in the literature, such as the equal division
value (van den Brink 2007, [104]), the solidarity value (Nowak and Radzik
1994, [85]), the proportional division value (for short, PD value) (Banker
1981, [5]), the proportional Shapley value (Béal et al. 2018, [9]), the
equal allocation of non-separable contributions value (for short, EANSC
value) (Moulin 1985, [79]), and the center-of-gravity of the imputation
set value (for short, CIS value) (Driessen and Funaki 1991, [36]). This
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thesis mainly studies axiomatizations of such solutions for TU-games. An
overview of each chapter of the thesis is given in the next section.

Overview of the thesis

This thesis focuses on the area of solutions for TU-games. The thesis con-
sists of six chapters. Chapter 1 introduces fundamental terminologies and
notations about TU-games that will be used in the subsequent chapters.
Chapters 2-5 provide axiomatizations of a new solution and several classi-
cal solutions for TU-games. Chapter 6 turns to an application of TU-games,
specifically pollution cost-sharing problems, and provides axiomatizations
of two methods (that assign allocations to share the cost of cleaning up any
polluted river).

In Chapter 2, we define and characterize a new solution for TU-games,
namely the average-surplus value. Firstly, we introduce a new concept called
marginal surplus to describe the contribution level of every player. Inspired
by known procedures of the Shapley value and the solidarity value, the
average-surplus value is determined by an underlying procedure of sharing
this marginal surplus. Then, we characterize the average-surplus value by
introducing the A-null surplus player property and the revised balanced con-
tributions property. These axiomatizations follow the spirit of the known
null player property (Shapley 1953, [94]), respectively the balanced con-
tributions property (Myerson 1980, [82]), used to characterize the Shapley
value. Next, inspired by the work of Hart and Mas-Colell (1989, [46]), we
define a variation of the potential function, called the AS-potential func-
tion, and show that the adjusted marginal contributions vector of the AS-
potential function coincides with the average-surplus value. Finally, we
provide a non-cooperative game, namely the punishment-compensation bid-
ding mechanism, and show that the outcome in every subgame perfect
equilibrium of this mechanism coincides with the payoff assigned by the
average-surplus value.

In the axiomatic approach to solutions for TU-games, consistency is a
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crucial characteristic of viable and stable solutions. A solution is consis-
tent if it allocates the same payoff to players in the original game as in a
modified game. A well-known kind of modified games are the associated
games. In associated games, each coalition revalues its worth by claim-
ing part of the surplus in the game that is left after this coalition and the
players outside the coalition get some initial share in the total worth. Dif-
ferent associated consistency axioms are defined in terms of different as-
sociated games. In Chapter 3, we provide new axiomatic characterizations
of the EANSC value and the CIS value by using new associated consis-
tency axioms. To define an associated game, Xu et al. (2009, [117] and
2013, [119]) assumed that any coalition is formed by its members joining
one by one and each coalition considers players in the coalition as isolated
elements. That is, they adopted “individual self-evaluation" to reevaluate
the worths of coalitions to define the Sh-individual associated game and
the C-individual associated game. In Chapter 3, inspired by the work of
Xu et al. (2009, [117] and 2013, [119]), we first introduce an alterna-
tive way to reevaluate the worth by considering players in the coalition as
a whole. That is, we adopt the idea of “union self-evaluation" instead of
“individual self-evaluation", to define the E-union associated game and the
C-union associated game. Then, adopting E-union associated consistency
and C-union associated consistency, we provide new axiomatizations of the
EANSC value and the CIS value. Moreover, inspired by the works of Hwang
et al. (2005, [53]) and Hwang (2015, [51]), we also propose two dynamic
processes on the basis of the Sh/C-individual associated game and the E/C-
union associated game respectively that lead to the CIS value and EANSC
value, starting from an arbitrary efficient payoff vector. This follows from a
more general result showing that these dynamic processes can lead to any
solution satisfying the inessential game property and continuity.

In TU-games, the excess is a well-known concept that describes the dis-
satisfaction of coalitions with respect to a payoff vector. A well-known so-
lution for TU-games that is based on excess is the nucleolus, introduced by
Schmeidler (1969, [92]), which is obtained by lexicographically minimiz-
ing the maximal excess (dissatisfaction) of coalitions over the non-empty
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imputation set. Besides the excess criterion, Hou et al. (2018, [49]) pro-
posed two other criteria to measure the dissatisfaction of coalitions with
respect to a payoff vector. In Chapter 4, we will discuss new criteria from
the perspective of satisfaction. We present axiomatic characterizations of
the proportional division value (for short, PD value) and the proportional
allocation of non-separable contribution value (for short, PANSC value) for
TU-games. The PD value allocates the worth of the grand coalition (that is
the set of all players in a TU-game) in proportion to the individual worths
of players, and the PANSC value allocates the worth of the grand coali-
tion in proportion to the separable contributions of players. Firstly, inspired
by the work of Schmeidler (1969, [92]) for the nucleolus, we define two
new criteria from the perspective of satisfaction: the optimistic satisfaction
and pessimistic satisfaction. We show that the PD value and the PANSC
value can be obtained by maximizing the minimal optimistic satisfaction
and pessimistic satisfaction, respectively, in the lexicographic order over
the non-empty pre-imputation set. Secondly, we introduce two new ax-
ioms: equal minimal optimistic satisfaction and equal minimal pessimistic
satisfaction, inspired by the kernel concept (Maschler et al. 1971, [76]).
We show that the PD (respectively PANSC) value is the only solution sat-
isfying equal minimal optimistic (respectively pessimistic) satisfaction and
efficiency. Thirdly, we also characterize the PD value and the PANSC value
by introducing optimistic associated consistency and pessimistic associated
consistency. Finally, we define the dual axioms of the optimistic associated
consistency and pessimistic associated consistency axioms, and character-
ize these two proportional values on the basis of these dual axioms.

In Chapter 5, we study axiomatic foundations of the class of weighted
division values. A weighted division value allocates the worth of the grand
coalition in proportion to a weight vector of players in a TU-game. The
best-known egalitarian solution in the class of weighted division values is
the equal division value which allocates the worth of the grand coalition
equally over all players. In van den Brink (2007, [104]), the equal division
value is characterized by efficiency, additivity, the nullifying player prop-
erty, and symmetry. Firstly, while keeping efficiency, additivity and the nul-
lifying player property from this axiomatization of the equal division value,
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we consider relaxations of symmetry in line with Casajus (2019, [20]),
specifically sign symmetry and weak sign symmetry, to characterize the class
of (positively) weighted division values. Secondly, Béal et al. (2016, [8])
introduced three different axiomatizations of the class of weighted divi-
sion values. The first axiomatization involves efficiency, linearity, the nul-
lifying player property and the null player in a productive environment
property. The second axiomatization involves efficiency, linearity and the
non-negative player property. The third axiomatization involves efficiency,
linearity and nullified solidarity. We show that the class of weighted di-
vision values can also be characterized by replacing linearity in the three
axiomatizations of Béal et al. (2016, [8]) with additivity. Finally, we show
how strengthening an axiom regarding null, non-negative, respectively nul-
lified players in these three axiomatizations, provides three axiomatizations
of the positively weighted division values.

In Chapter 6, we turn to an application, specifically pollution cost-
sharing problems, and explore how to share the cost of cleaning up a pol-
luted river using cooperative game theory. We study axiomatic foundations
of two classes of cost-sharing methods for pollution cost-sharing problems.
A pollution cost-sharing problem describes a situation where a group of
agents are located along a polluted river and every agent must pay a cer-
tain cost for cleaning up the polluted river. Ni and Wang (2007, [84])
developed a model for the pollution cost-sharing problems and discussed
the question of how to split the cost of cleaning up a river among agents sit-
uated along the river. They proposed two cost-sharing methods: the local
responsibility sharing method (for short, LRS method) and the upstream
equal sharing method (for short, UES method), and characterized these
two methods by introducing efficiency, additivity, no blind cost, indepen-
dence of upstream costs, and upstream symmetry. Following the model of
Ni and Wang (2007, [84]), we define and characterize two new classes of
cost sharing methods by introducing weaker versions of some of their ax-
ioms. Firstly, we propose a relaxation of independence of upstream costs,
called sign independence of upstream costs, and show that the UES method is
characterized by replacing independence of upstream costs appearing in Ni
and Wang (2007, [84]) with this weaker sign independence of upstream
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costs. Secondly, we propose the classes of equal upstream responsibility
methods (for short, EUR methods) and weighted upstream sharing methods
(for short, WUS methods), which generalize the LRS method and the UES
method. We provide two axiomatizations of the class of EUR methods, one
using this weak independence axiom (sign independence of upstream costs)
and one using a weak version of the no blind cost axiom (weak no blind
cost). Meanwhile, we also provide two axiomatizations of the class of WUS
methods by introducing two weak versions of upstream symmetry: sign
upstream symmetry and proportionality. Finally, we define a pollution cost-
sharing game, and show that the compromise method, which is the average
of the LRS method and UES method, coincides with applying the Shapley
value to this game. Moreover, we also show that the compromise method
coincides with the Shapley value, nucleolus and τ -value of the dual of this
game.





Chapter 1

Preliminaries

Game theory is a formal, mathematical discipline which studies situations
of competition and cooperation among rational players. Based on whether
the players are able to make a binding commitment, game theory is clas-
sified into two branches: non-cooperative game theory and cooperative
game theory. Non-cooperative game theory concentrates on situations of
conflict whereas cooperative game theory deals with situations in which
players cooperate. In this thesis, we will focus on cooperative game the-
ory. As is well known, cooperative game theory describes situations where
players make a binding commitment and form a coalition with the aim of
obtaining more benefits. When it is assumed that all players cooperate
and achieve a specified amount of revenue, this triggers the question how
the total revenue should be allocated over the players. The objective of
cooperative game theory is to answer this question.

In this chapter, we introduce some relevant terminology that will be
used throughout the thesis. In Section 1.1, we formally introduce cooper-
ative games with transferable utility. In Section 1.2, we introduce several
solutions of cooperative games with transferable utility. In Section 1.3, we
review some axioms and axiomatizations of solutions.

9



10 Chapter 1. Preliminaries

1.1 Cooperative games with transferable utility

A situation in which a finite set of players can achieve a specified amount of
worths by cooperating can be described as a cooperative game with trans-
ferable utility, or simply a TU-game. For example, cooperatives or platforms
usually reach a cooperative agreement and form a coalition with the aim
of obtaining more benefits. The objective of cooperative game theory is to
deal with how the benefits of cooperation are shared among all players.
Next, we formally introduce TU-games.

We first review some notations. Let N be the set of natural numbers.
The notation T ⊆ S means that T is a subset of S, and the notation T ( S

means that T is a proper subset of S. Let U ⊆ N be a universe of potential
players, and let N ⊆ U be a finite set of n players. The power set of N
is denoted by 2N . The cardinality of a finite set S is denoted by |S| or, if
there is no ambiguity, appropriate small letter s. Let R be the set of all
real numbers. Let R+ and R++ denote the sets of all non-negative real
numbers and strictly positive real numbers, respectively. A permutation of
N is a bijection π : N → {1, 2, ..., n} where π(i) = k means that player i
has the kth position. The set of all permutations of N is denoted by ΠN .
For each π ∈ ΠN and i ∈ N , let Pπ,i = {j ∈ N |π(j) ≤ π(i)} denote the set
of all predecessors of i (including player i) under the permutation π, and
Sπ,i = {j ∈ N |π(j) ≥ π(i)} denote the set of all successors of i (including
player i) under the permutation π.

A cooperative game with transferable utility, or simply a TU-game, is a
pair 〈N, v〉, where N is a finite set of n players and v : 2N → R is a
characteristic function assigning to each coalition S ∈ 2N , the worth v(S)

with v(∅) = 0. The set N is usually called the grand coalition, and a subset
S ⊆ N is called a coalition. The worth v(S) is the reward that players in
coalition S can obtain by cooperating. Denote the set of all TU-games on
player set N by GN , and denote the set of all TU-games with a finite player
set in U by G.

Various subclasses of TU-games have been considered in the literature.
Some definitions of specific types of TU-games that will be used in later
chapters are as follows.
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A TU-game 〈N, v〉 ∈ GN is

• inessential or additive, if v(S) =
∑

i∈S v({i}) for all S ⊆ N .

• almost inessential, if v(S) =
∑

i∈S v({i}) for all S ( N .

• zero-monotonic, if v(S) ≥ v(T ) +
∑

i∈S\T v({i}) for all T ⊆ S ⊆ N .

• zero-normalized, if v({i}) = 0 for all i ∈ N .

• individually positive, if v({i}) > 0 for all i ∈ N .

• individually negative, if v({i}) < 0 for all i ∈ N .

• marginally positive, if v(N)− v(N\{i}) > 0 for all i ∈ N .

• marginally negative, if v(N)− v(N\{i}) < 0 for all i ∈ N .

• a null game, if v(S) = 0 for all S ⊆ N .

• a constant game, if v(S) = c for all S ⊆ N and some c ∈ R.

Denote the set of all individually positive (respectively negative) TU-
games on player set N by GN+ (respectively GN− ). Denote the set of all
marginally positive (respectively negative) TU-games on player set N by
GN⊕ (respectively GN	 ).

For every TU-game 〈N, v〉 ∈ GN , its dual game 〈N, vd〉 is given as fol-
lows. For all S ⊆ N ,

vd(S) = v(N)− v(N\S), (1.1)

where vd(S) is the marginal worth of coalition S with respect to N . Gener-
ally, the duality operator is not closed on subclasses of TU-games. For ex-
ample, the dual of an individually positive (respectively negative) TU-game
is a marginally positive (respectively negative) TU-game. Given A ⊆ G, let
Ad be the set of duals of TU-games in A. Duality can also be applied
to solutions and axioms (see, Charnes et al. 1978, [26] and Oishi et al.
2016, [87]), which will be introduced later.
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For all T ⊆ N and T 6= ∅, the standard game associated to T , 〈N, eT 〉 ∈
GN , is defined by

eT (S) =

{
1, if S = T ;
0, otherwise.

It is well known that the family of standard games {〈N, eT 〉|T ⊆ N,T 6= ∅}
forms a basis for GN , i.e., every TU-game 〈N, v〉 ∈ GN can be expressed by
v =

∑
T⊆N,T 6=∅ v(T )eT .

For all T ⊆ N and T 6= ∅, the unanimity game associated to T , 〈N, uT 〉,
is defined by

uT (S) =

{
1, if S ⊇ T ;
0, otherwise.

The family of unanimity games {〈N, uT 〉|T ⊆ N,T 6= ∅} also forms a ba-
sis for GN , i.e., every TU-game 〈N, v〉 ∈ GN can be expressed by v =∑

T⊆N,T 6=∅∆v(T )uT , where ∆v(T ) =
∑

S⊆T (−1)t−sv(S) is the Harsanyi
dividend (Harsanyi 1959, [45]) of coalition T in TU-game 〈N, v〉.

Nowak and Radzik (1994, [85]) also suggested a basis for GN , denoted
by {〈N, bT 〉|T ⊆ N,T 6= ∅}. For all T ⊆ N and T 6= ∅, 〈N, bT 〉 is defined by

bT (S) =

{
(s−t)!t!
s! , if S ⊇ T ;

0, otherwise.

Every TU-game 〈N, v〉 ∈ GN can be expressed by v =
∑

T⊆N,T 6=∅A
v(T )bT ,

where Av(T ) = 1
t

∑
j∈T [v(T )− v(T\{j})] is the average marginal contribu-

tion of coalition T in TU-game 〈N, v〉.

1.2 Solutions for TU-games

As mentioned in the previous section, a TU-game describes a situation
where players can achieve a specified amount of benefits by cooperating.
A central issue is how to find a method to distribute the benefits of coop-
eration among these players. The solution part of cooperative game theory
deals with how the benefits of cooperation are shared among all players. A
solution for TU-games is a function that assigns to every TU-game a vector
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with the same dimension as the size of the player set, where each com-
ponent of the vector represents the payoff assigned to the corresponding
player. Various solutions for TU-games have been considered in the litera-
ture. In this section, we recall several solutions for TU-games that will be
discussed in the following chapters.

A payoff vector for TU-game 〈N, v〉 ∈ GN is an |N |-dimensional vector
x ∈ RN assigning a payoff xi ∈ R to each player i ∈ N . For notational
convenience, denote

∑
i∈S xi by x(S), S ⊆ N . The pre-imputation set con-

sists of all payoff vectors such that the worth of the grand coalition is fully
shared among all players.

Definition 1.1. For all 〈N, v〉 ∈ GN , the pre-imputation set of 〈N, v〉 is
defined by

I∗(N, v) = {x ∈ RN |x(N) = v(N)}.

The imputation set consists of all payoff vectors in the pre-imputation
set such that no player obtains less than his individual worth.

Definition 1.2. For all 〈N, v〉 ∈ GN , the imputation set of 〈N, v〉 is defined
by

I(N, v) = {x ∈ I∗(N, v)|xi ≥ v({i}) for all i ∈ N}.

The core, introduced by Gillies (1953, [37]), is one of the most well-
known set solutions in TU-games.

Definition 1.3. For all 〈N, v〉 ∈ GN , the core of 〈N, v〉 is defined by

C(N, v) = {x ∈ RN |x(N) = v(N) and x(S) ≥ v(S) for all S ⊆ N}.

Obviously, C(N, v) ⊆ I(N, v) ⊆ I∗(N, v).

The nucleolus, introduced by Schmeidler (1969, [92]), is obtained by
minimizing the excesses of coalitions in the lexicographic order over the
non-empty imputation set if this is non-empty. The excess of coalition S ⊆
N with respect to the payoff vector x of the TU-game 〈N, v〉 is given by
e(S, x, v) = v(S)−x(S). This can be seen as a measure of dissatisfaction of
the coalition since a positive (respectively negative) excess means that the
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coalition obtains less (respectively more) than its own worth. Let θv(x) =

(θvl (x))l∈{1,2,··· ,2n−1} be the (2n−1)-tuple vector whose components are the
excesses of all non-empty coalitions S ⊆ N with respect to x ∈ RN in
non-increasing order, that is, θvl (x) ≥ θvl+1(x) for all l ∈ {1, 2, ..., 2n − 2}.
For all 〈N, v〉 ∈ GN and x, y ∈ RN , we call θv(x) ≤L θv(y) if and only if
θv(x) = θv(y) or there exists t ∈ {1, 2, ..., 2n − 2} such that θvk(x) = θvk(y)

for all k ∈ {1, 2, ..., t} and θvt+1(x) < θvt+1(y).

Definition 1.4. For all 〈N, v〉 ∈ GN , the nucleolus of 〈N, v〉 is defined by

η(N, v) = {x ∈ I(N, v)|θv(x) ≤L θv(y), for all y ∈ I(N, v)}.

Since it is known that η(N, v) is a singleton, we identify the nucleolus
by its unique element. That is, the nucleolus is the unique payoff vector in
the imputation set that lexicographically minimizes the excesses.

A solution on a class of TU-games A ⊆ G is a function ϕ that assigns a
payoff vector ϕ(N, v) ∈ RN to every TU-game 〈N, v〉 ∈ A. Given A ⊆ G
and a solution ϕ on A, its dual solution ϕd on Ad is defined as, for all
〈N, v〉 ∈ Ad, ϕd(N, v) = ϕ(N, vd), where the dual game 〈N, vd〉 is defined
by Eq.(1.1).

One of the most important solutions for TU-games is the Shapley value
introduced by Shapley (1953, [94]). For all S ⊆ N and i ∈ S, letMCvi (S) =

v(S) − v(S\{i}) be the marginal contribution of player i to coalition S in
TU-game 〈N, v〉 ∈ GN . The Shapley value assigns to every player the ex-
pectation of all his marginal contributions to all coalitions entering before
him, assuming that all permutations in which the grand coalition can be
formed occur with equal probability.

Definition 1.5. The Shapley value on GN is defined by

Shi(N, v) =
∑

S⊆N,S3i

(n− s)!(s− 1)!

n!
MCvi (S),

for all 〈N, v〉 ∈ GN and i ∈ N .

The Shapley value is based on the individual marginal contributions of
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a player to all coalitions including him. Nowak and Radzik (1994, [85]) de-
fined the solidarity value by replacing the individual marginal contribution
with the average of the marginal contributions of all players in the coali-
tion. For all S ⊆ N , let Av(S) = 1

s

∑
j∈S [v(S) − v(S\{j})] be the average

marginal contribution of coalition S in TU-game 〈N, v〉. The solidarity value
assigns to every player the expectation of the average marginal contribu-
tions to all coalitions entering before him, assuming that all permutations
in which the grand coalition can be formed occur with equal probability.

Definition 1.6. The solidarity value on GN is defined by

Soli(N, v) =
∑

S⊆N,S3i

(n− s)!(s− 1)!

n!
Av(S),

for all 〈N, v〉 ∈ GN and i ∈ N.

Instead of taking into account all coalitions, as the Shapley value and
the solidarity value do, there also exist several solutions that only concern
some particular class of coalitions. Various examples of such solutions are
the equal division value (van den Brink 2007, [104]), the center-of-gravity
of the imputation set value (Driessen and Funaki 1991, [36]), and the
equal allocation of non-separable contribution value (Moulin 1985, [79]).
Formally, the definition of these solutions are as follows.

The equal division value distributes the worth of the grand coalition
equally among all players.

Definition 1.7. The equal division value on GN is defined by

EDi(N, v) =
v(N)

n
,

for all 〈N, v〉 ∈ GN and i ∈ N.

Let ∆n
+ = {ω ∈ Rn|

∑
i∈N ωi = 1 and ωi ≥ 0 for all i ∈ N} and ∆n

++ =

∆n
+ ∩ R++. For ω ∈ ∆n

+, the ω-weighted division value, studied by Béal et
al. (2016, [8]), distributes the worth of the grand coalition in proportion
to the weight coefficient ω.
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Definition 1.8. Let ω ∈ ∆n
+. The ω-weighted division value on GN is defined

by
WDω

i (N, v) = ωiv(N),

for all 〈N, v〉 ∈ GN and i ∈ N .

An ω-weighted division value WDω with ω ∈ ∆n
++ is also called a posi-

tively weighted division value.

The center-of-gravity of the imputation set value (for short, CIS value),
introduced by Driessen and Funaki (1991, [36]), also called the equal sur-
plus division value, first assigns to every player his individual worth, and
then distributes the remaining worth equally among all players.

Definition 1.9. The CIS value on GN is defined by

CISi(N, v) = v({i}) +
1

n
[v(N)−

∑
j∈N

v({j})],

for all 〈N, v〉 ∈ GN and i ∈ N .

The equal allocation of non-separable contribution value (for short, EANSC
value), introduced by Moulin (1985, [79]), assigns to every player his sep-
arable cost, and then distributes the remainder, called non-separable contri-
bution, equally among all players. The separable contribution (also called
separable cost sometimes) is the marginal contribution of a player to the
grand coalition. Formally, for all 〈N, v〉 ∈ GN and i ∈ N , the separable
contribution is given by SCi(N, v) = v(N)− v(N\{i}).

Definition 1.10. The EANSC value on GN is defined by

EANSCi(N, v) = SCi(N, v) +
1

n
[v(N)−

∑
j∈N

SCj(N, v)],

for all 〈N, v〉 ∈ GN and i ∈ N .

Notice that the CIS value and the EANSC value are dual to each other.

The τ -value, introduced by Tijs (1981, [101]), is essentially a compro-
mise value between an upper bound payoff vector and a lower bound pay-
off vector. For all 〈N, v〉 ∈ GN , let SC(N, v) = (SCi(N, v))i∈N ∈ RN
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be the vector whose coordinates are the marginal contribution of each
player to the grand coalition, i.e., the separable contribution. When
we consider this as a vector of upper bound payoffs, then the vector
m(N, v) = (mi(N, v))i∈N ∈ RN whose coordinates are given by mi(N, v) =

maxS⊆N,S3i{v(S) −
∑

j∈S\{i} SCj(N, v)} for all i ∈ N , can be seen as a
lower bound payoff vector. These vectors can indeed be interpreted as
upper and lower bound payoff vectors, if the TU-game 〈N, v〉 is quasi-
balanced, meaning that (i) mi(N, v) ≤ SCi(N, v) for all i ∈ N , and (ii)∑

i∈N mi(N, v) ≤ v(N) ≤
∑

i∈N SCi(N, v). Denote the set of all quasi-
balanced TU-games on player set N by QBN .

Definition 1.11. The τ -value on QBN is defined by

τ(N, v) = a ·m(N, v) + (1− a) · SC(N, v),

for all 〈N, v〉 ∈ QBN , where a ∈ [0, 1] is such that
∑

i∈N τi(N, v) = v(N).

The proportional division value (for short, PD value), introduced by
Banker (1981, [5]), allocates the worth of the grand coalition in proportion
to the individual worths among all players.

Definition 1.12. The PD value on GN+ (or GN− ) is defined by

PDi(N, v) =
v({i})∑
j∈N v({j})

v(N),

for all 〈N, v〉 ∈ GN+ (or GN− ) and i ∈ N .

Notice that the PD value is considered on the subclass of TU-games
GN+ ⊆ GN (or GN− ⊆ GN).

The proportional allocation of non-separable contribution value (for short,
PANSC value) allocates the worth of the grand coalition in proportion to the
marginal contributions to the grand coalition among all players.

Definition 1.13. The PANSC value on GN⊕ (or GN	 ) is defined by

PANSCi(N, v) =
SCi(N, v)∑
j∈N SCj(N, v)

v(N),
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for all 〈N, v〉 ∈ GN⊕ (or GN	 ) and i ∈ N .

Notice that the PANSC value is considered on the subclass of TU-games
GN⊕ ⊆ GN (or GN	 ⊆ GN). The PD value and the PANSC value are dual to
each other.1

1.3 Axioms of solutions

There is no consensus on which is the best solution for TU-games. The
plausibility of solutions is often judged by investigating a set of axioms the
solutions satisfy. In axiomatizations of solutions for TU-games, we associate
a solution with a set of axioms. Hence, we can interpret a solution through
the interpretation of axioms that characterize it. Next, we review some
classical axioms and axiomatizations of solutions from the literature.

1.3.1 Basic axioms

For all 〈N, v〉, 〈N,w〉 ∈ GN and a, b ∈ R, the TU-game 〈N, av+ bw〉 is given
by (av + bw)(S) = av(S) + bw(S) for all S ⊆ N . Players i, j ∈ N , i 6= j,
are symmetric in 〈N, v〉 if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}.
For all 〈N, v〉 ∈ GN and α ∈ RN , the TU-game 〈N, v + α〉 is given by
(v + α)(S) = v(S) +

∑
j∈S αj for all S ⊆ N .

Let ϕ be a solution on GN . 2

• Efficiency. For all 〈N, v〉 ∈ GN , it holds that
∑

i∈N ϕi(N, v) = v(N).

• Symmetry. For all 〈N, v〉 ∈ GN whenever i, j ∈ N , i 6= j, are sym-
metric players in 〈N, v〉, it holds that ϕi(N, v) = ϕj(N, v).

• Linearity. For all 〈N, v〉, 〈N,w〉 ∈ GN and a, b ∈ R, it holds that
ϕ(N, av + bw) = aϕ(N, v) + bϕ(N,w).

1In Chapter 4, we study the PD value and the PANSC value on the family of all individ-
ually positive TU-games and the family of all marginally positive TU-games respectively.

2The axioms in this thesis are also defined on subclasses A ⊆ G, depending on the spec-
ifications of the TU-games at work. Notice that for axioms that involve transformations of a
TU-game (such as linearity, additivity, translation covariance and continuity), the statement
in the axiom is required only if the transformed game also belongs to the class.
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• Additivity. For all 〈N, v〉, 〈N,w〉 ∈ GN , it holds that ϕ(N, v + w) =

ϕ(N, v) + ϕ(N,w).

• Translation covariance. For all 〈N, v〉 ∈ GN and α ∈ RN , it holds
that ϕ(N, v + α) = ϕ(N, v) + α.

• Inessential game property. For all inessential games 〈N, v〉 ∈ GN , it
holds that ϕi(N, v) = v({i}) for all i ∈ N .

• Almost inessential game property. For all almost inessential games
〈N, v〉 ∈ GN , it holds that ϕi(N, v) = v({i}) + a[v(N)−

∑
j∈N v({j})]

for all i ∈ N and some a ∈ [0, 1].

• Continuity. For every sequence of TU-games {〈N, vk〉}∞k=1 and its
limit TU-game 〈N, ṽ〉 in GN (i.e., limk→∞ v

k(S) = ṽ(S) for all S ⊆
N), it holds that the sequence of the solution outcomes {ϕ(N, vk)}∞k=1

converges to the payoff vector ϕ(N, ṽ) (i.e. limk→∞ ϕ(N, vk) = ϕ(N, ṽ)).

Efficiency requires that the worth of the grand coalition should be fully
shared among all players.

Symmetry requires that, if two players contribute equally to all coali-
tions that do not include them, their payoff should be equal.

Linearity requires that, taking a linear combination of two TU-games,
the solution assigns the payoff vector that is equal to the corresponding
linear combination assigned by the solution to the two separate TU-games.
In case of a = b = 1, linearity reduces to additivity.

Translation covariance requires that, taking an affine transformation
of a TU-game, the solution assigns the payoff vector that is equal to the
corresponding affine transformation assigned by the solution to the TU-
game.

The inessential game property requires that, if forming any coalition
can produce no additional benefit, all players only get their individual
worths.

The almost inessential game property requires that, if forming any coali-
tion, except for the grand coalition, can produce no additional benefit, all
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players get the sum of their individual worths and an equal part of the sur-
plus from the formation of the grand coalition. It is trivial that the almost
inessential game property implies the inessential game property.

Continuity requires that, if two TU-games are almost the same, then the
payoff assigned to the two TU-games are almost the same.

Given any pair of axioms of TU-games, if whenever a solution satisfies
one of these axioms, the dual of the solution satisfies the other, then these
two axioms are dual to each other. An axiom is called self-dual if the dual
of the axiom is itself. Obviously, efficiency, symmetry, linearity, translation
covariance, the inessential game property, and continuity are self-dual ax-
ioms.

1.3.2 Axioms related to null, dummy, nullifying, A-null and
non-negative players

Now we review several axioms stating how much should be assigned to a
specific type of player.

Player i ∈ N is a null player in 〈N, v〉 if v(S ∪ {i}) = v(S) for all S ⊆
N\{i}. Player i ∈ N is a dummy player in 〈N, v〉 if v(S∪{i}) = v(S)+v({i})
for all S ⊆ N\{i}.

• Null player property. For all 〈N, v〉 ∈ GN whenever i ∈ N is a null
player in 〈N, v〉, it holds that ϕi(N, v) = 0.

• Dummy player property. For all 〈N, v〉 ∈ GN whenever i ∈ N is a
dummy player in 〈N, v〉, it holds that ϕi(N, v) = v({i}).

The null player property requires that, if a player has no contribution to
any coalition, then he should get zero. The dummy player property requires
that, if a player’s contribution to each coalition is equal to his individual
worth, then he should get his individual worth. Shapley (1953, [94]) used
efficiency, additivity, symmetry and the null player property (or the dummy
player property) to characterize the Shapley value.
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Theorem 1.14 (Shapley 1953, [94]). A solution ϕ on GN satisfies efficiency,
additivity, symmetry and the null player property (or the dummy player prop-
erty) if and only if ϕ is the Shapley value.

Player i ∈ N is a nullifying player in 〈N, v〉 if v(S) = 0 for all S ⊆ N

and S 3 i.

• Nullifying player property. For all 〈N, v〉 ∈ GN whenever i ∈ N is a
nullifying player in 〈N, v〉, it holds that ϕi(N, v) = 0.

The nullifying player property, introduced by Deegan and Packel (1978,
[30])3, requires that a nullifying player should receive a zero payoff. In
van den Brink (2007, [104]) the equal division value is characterized by
efficiency, symmetry, additivity and the nullifying player property.

Theorem 1.15 (van den Brink 2007, [104]). A solution ϕ on GN satisfies
efficiency, additivity, symmetry and the nullifying player property if and only
if ϕ is the equal division value.

Player i ∈ N is an A-null player in 〈N, v〉 if Av(S) = 0 for all S ⊆ N and
S 3 i.

• A-null player property. For all 〈N, v〉 ∈ GN whenever i ∈ N is an
A-null player in 〈N, v〉, it holds that ϕi(N, v) = 0.

The A-null player property requires that, if a player is such that the
average marginal contributions to all coalitions including him are equal to
zero, then he should get zero. Using the A-null player property instead of
the null player property, Nowak and Radzik (1994, [85]) characterized the
solidarity value.

Theorem 1.16 (Nowak and Radzik 1994, [85]). A solution ϕ on GN satisfies
efficiency, additivity, symmetry and the A-null player property if and only if ϕ
is the solidarity value.

Player i ∈ N is a non-negative player in 〈N, v〉 if v(S) ≥ 0 for all S ⊆ N
and S 3 i.

3Deegan and Packel (1978, [30]) refer to nullifying players as zero players and use this
property to characterize their (non-efficient) Deegan-Packel value.
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• Non-negative player property. For all 〈N, v〉 ∈ GN whenever i ∈ N
is a non-negative player in 〈N, v〉, it holds that ϕi(N, v) ≥ 0.

• Null player in a productive environment property. For all 〈N, v〉 ∈
GN with v(N) ≥ 0 whenever i ∈ N is a null player in 〈N, v〉, it holds
that ϕi(N, v) ≥ 0.

The non-negative player property is introduced and used by Béal et al.
(2016, [8]) to characterize the weighted division values, and it requires
that for a given player, if the worths of all coalitions including him are
non-negative, then he gets at least a zero payoff.

The null player in a productive environment property, introduced by
Casajus and Huettner (2013, [22]), requires that if the grand coalition
generates a non-negative worth, then a null player should not receive a
negative payoff. Béal et al. (2016, [8]) used efficiency, linearity, the nul-
lifying player property and the null player in a productive environment
property to characterize the weighted division values.

Theorem 1.17 (Béal et al. 2016, [8]). A solution ϕ on GN satisfies efficiency,
linearity and the non-negative player property if and only if there exists a
weight vector ω ∈ ∆n

+ such that ϕ = WDω.

Theorem 1.18 (Béal et al. 2016, [8]). A solution ϕ on GN satisfies efficiency,
linearity, the nullifying player property and the null player in a productive
environment property if and only if there exists a weight vector ω ∈ ∆n

+ such
that ϕ = WDω.

1.3.3 Axioms related to contributions

Axioms related to contributions refer to some specific changes on the pay-
offs for a pair of players related to particular modifications of a TU-game.

For all 〈N, v〉 ∈ GN and S ⊆ N , let 〈S, v|S〉 denote the TU-game in
which the domain of v is restricted from 2N to 2S , i.e. v|S(T ) = v(T ) for
all T ⊆ S. For simplicity, 〈S, v|S〉 is simply denoted by 〈S, v〉.

• Balanced contributions. For all 〈N, v〉 ∈ G and i, j ∈ N , it holds that
ϕi(N, v)− ϕi(N\{j}, v) = ϕj(N, v)− ϕj(N\{i}, v).



1.3. Axioms of solutions 23

Balanced contributions, introduced by Myerson (1980, [82]), requires
that, for each pair of players, the influence of a player who leaves the
grand coalition on the payoff of the other player is the same as the impact
of the other player’s departure on his payoff. Myerson [82] used balanced
contributions and efficiency to characterize the Shapley value.

Theorem 1.19 (Myerson 1980, [82]). A solution ϕ on G satisfies efficiency
and balanced contributions if and only if ϕ is the Shapley value.

Considering a different mutual effect for a pair of players, Xu et al.
(2016, [115]) suggested a modification of balanced contributions, called
quasi-balanced contributions.

• Quasi-balanced contributions. For all 〈N, v〉 ∈ G and i, j ∈ N , it
holds that ϕi(N, v)−ϕi(N\{j}, v)− 1

n [v(N)−v(N\{j})] = ϕj(N, v)−
ϕj(N\{i}, v)− 1

n [v(N)− v(N\{i})].

Given a pair of players {i, j}, the amount 1
n [v(N) − v(N\{j})] is re-

garded as player i’s loss because of player j’s departure from the grand
coalition, and correspondingly, the amount 1

n [v(N)−v(N\{i})] is regarded
as player j’s loss because of player i’s departure from the grand coali-
tion. Quasi-balanced contributions reveals the degree of mutual effect for
a pair of players when they leave the grand coalition separately. Xu et
al. (2016, [115]) characterized the solidarity value by using efficiency and
quasi-balanced contributions.

Theorem 1.20 (Xu et al. 2016, [115]). A solution ϕ on G satisfies efficiency
and quasi-balanced contributions if and only if ϕ is the solidarity value.

For all 〈N, v〉 ∈ GN and i ∈ N , the TU-game 〈N, vNi〉 in which i is
nullified, is defined by

vNi(S) = v(S\{i}), for all S ⊆ N. (1.2)

Obviously, player i is a null player in 〈N, vNi〉.

• Nullified solidarity. For all 〈N, v〉 ∈ GN and i, j ∈ N , it holds that
ϕi(N, v) ≥ ϕi(N, vNi) implies ϕj(N, v) ≥ ϕj(N, vNi).
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Nullified solidarity, proposed by Béal et al. (2014, [7]), compares a TU-
game before and after a specified player becomes a null player. Nullified
solidarity requires uniformity in the direction of the payoff variation for all
players in situations where the considered player is nullified.

Theorem 1.21 (Béal et al. 2016, [8]). A solution ϕ on GN satisfies efficiency,
linearity and nullified solidarity if and only if there exists a weight vector
ω ∈ ∆n

+ such that ϕ = WDω.

1.3.4 Axioms related to associated consistency

In the axiomatic approach to solutions for TU-games, consistency is a cru-
cial characteristic of viable and stable solutions. A solution is consistent if
it allocates the same payoff to players in the original game as in a modified
game. There are two kinds of modified games in the existing literature,
the reduced game and the associated game. Reduced game consistency and
associated consistency are defined in terms of the reduced game and the as-
sociated game, respectively. Both types of consistency axioms require the
payoffs of players to be invariant for certain changes in the game.

In this thesis, we focus on associated consistency. In associated games,
the player set does not change, but coalitions revalue their worth by claim-
ing part of the surplus in the game that is left after this coalition and the
players outside the coalition are assigned some initial share in the total
worth. In the following, we review several associated consistency axioms.

The concept of associated consistency was firstly introduced by Hami-
ache (2001, [42]) to characterize the Shapley value. Hamiache (2001,
[42]) defined its associated games (called Hamiache’s associated game in
this thesis) as follows.

Definition 1.22 (Hamiache 2001, [42]). Given 〈N, v〉 ∈ GN and a real
number λ, 0 ≤ λ ≤ 1, Hamiache’s associated game 〈N, v∗λ,H〉 is defined by
v∗λ,H(∅) = 0 and for all S ⊆ N,S 6= ∅,

v∗λ,H(S) = v(S) + λ
∑

j∈N\S

[v(S ∪ {j})− v(S)− v({j})].
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Hamiache’s associated game reflects an optimistic self-evaluation of
worths of coalitions, where each coalition believes that it can obtain the
appropriation of at least a part of the surplus [v(S ∪ {j})− v(S)− v({j})],
j ∈ N\S. Thus, coalition S reevaluates its worth, v∗λ,H(S), as the sum of
its worth in the original game, v(S), and a given percentage λ of all the
possible surpluses,

∑
j∈N\S [v(S ∪ {j})− v(S)− v({j})]. Let λ ∈ [0, 1].

• Hamiache’s associated consistency for λ. For all 〈N, v〉 ∈ GN , it
holds that ϕ(N, v) = ϕ(N, v∗λ,H).

Theorem 1.23 (Hamiache 2001, [42]). Let 0 < λ < 2
n . A solution ϕ on GN

satisfies Hamiache’s associated consistency for λ, continuity and the inessen-
tial game property if and only if ϕ is the Shapley value.

Xu et al. (2009, [117]) modified the definition of Hamiache’s associated
game from a pessimistic point of view. The new associated game is called
the Sh-individual associated game in this thesis as follows.

Definition 1.24 (Xu et al. 2009, [117]). Given 〈N, v〉 ∈ GN and a real
number λ, 0 ≤ λ ≤ 1, the Sh-individual associated game 〈N, v∗λ,Sh,I〉 is
defined by, for all S ⊆ N ,

v∗λ,Sh,I(S) = v(S)− λ
∑
j∈S

[v(S)− v(S\{j})− SCj(N, v)].

The Sh-individual associated game reflects a pessimistic self-evaluation
of worths of coalitions, and coalitions may be willing to allow the computa-
tion of their payments to be based on these pessimistic expectations. In the
process of reevaluating worth, Xu et al. (2009, [117]) assumed that any
coalition is formed by its members joining one by one. It will cause a loss of
benefits v(S)−v(S\{i})−SCi(N, v) if player i leaves coalition S and takes
away his separable contribution SCi(N, v) from the worth of coalition S.
The worth of coalition S in the Sh-individual associated game differs from
the initial worth, by taking into account the possible loss of benefits due
to the departure of players in coalition S. In the Sh-individual associated
game, each coalition S considers players in S as isolated elements. That is,
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Xu et al. (2009, [117]) adopt “individual self-evaluation" to reevaluate the
worths of coalitions. Let λ ∈ [0, 1].

• Sh-individual associated consistency for λ. For all 〈N, v〉 ∈ GN , it
holds that ϕ(N, v) = ϕ(N, v∗λ,Sh,I).

Theorem 1.25 (Xu et al. 2009, [117]). Let 0 < λ < 2
n . A solution ϕ

on GN satisfies Sh-individual associated consistency for λ, continuity and the
inessential game property if and only if ϕ is the Shapley value.

Instead of the separable contribution in the Sh-individual associated
game, Xu et al. (2013, [119]) also defined a new associated game (called
the C-individual associated game in this thesis) by using the individual worth.
The C-individual associated game is given as follows.

Definition 1.26 (Xu et al. 2013, [119]). Given 〈N, v〉 ∈ GN and a real
number λ, 0 ≤ λ ≤ 1, the C-individual associated game 〈N, v∗λ,C,I〉 is defined
by

v∗λ,C,I(S) =

{
v(S)− λ

∑
j∈S [v(S)− v(S\{j})− v({j})], if S ( N ;

v(N), if S = N .

As mentioned, the worth of coalition S in the associated games differs
from the initial worth, by taking into account the possible loss of benefits
due to the departure of players in coalition S. Xu et al. (2013, [119]) also
considered players in every coalition S as isolated elements, and adopt
“individual self-evaluation" to reevaluate the worths of coalitions. Let λ ∈
[0, 1].

• C-individual associated consistency for λ. For all 〈N, v〉 ∈ GN , it
holds that ϕ(N, v) = ϕ(N, v∗λ,C,I).

Xu et al. (2013, [119]) characterized the CIS value by using C-individual
associated consistency.

Theorem 1.27 (Xu et al. 2013, [119]). Let 0 < λ < 2
n . A solution ϕ on

GN satisfies C-individual associated consistency for λ, continuity, the almost
inessential game property and efficiency if and only if ϕ is the CIS value.



Chapter 2

Characterizations of the
average-surplus value

2.1 Introduction

As mentioned in Chapter 1, the Shapley value and the solidarity value are
two of the most popular solutions for TU-games. The Shapley value as-
signs to every player the expectation of all his marginal contributions to
all coalitions entering before him, assuming that all permutations in which
the grand coalition can be formed occur with equal probability. The soli-
darity value assigns to every player the expectation of the average marginal
contributions to all coalitions entering before him, assuming that all per-
mutations in which the grand coalition can be formed occur with equal
probability. Both the Shapley value and the solidarity value are defined in
terms of marginal contribution that is a significant index to measure every
player’s contribution to cooperation.

In this chapter, which is based on Li et al. (2021, [73]), we intro-
duce a new concept, called marginal surplus, to describe the contribution
level of every player. Marginal surplus is defined by the difference between
marginal contribution and individual worth, and it can be regarded as the

27
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net earning of the player joining a coalition. Compared with marginal con-
tribution, marginal surplus puts more emphasis on the individual worth,
but similarly, it is also an alternative index to measure every player’s con-
tribution to cooperation. Based on marginal surplus, we define a new so-
lution for TU-games, called the average-surplus value. Inspired by the pro-
cedures of the Shapley value and the solidarity value, the average-surplus
value is determined by an underlying procedure of sharing marginal sur-
plus. Meanwhile, we also characterize the average-surplus value by three
classical methods in cooperative game theory: axiomatization, the poten-
tial approach and mechanism design.

Our axiomatizations follow the spirit of the axioms used to characterize
the Shapley value and the solidarity value mentioned in Chapter 1. There
are various characterizations of the Shapley value and the solidarity value
in the literature, e.g. see Casajus and Huettner (2014, [23, 24]), Chun
(1991, [27]), Hamiache (2001, [42]), Kamijoab (2012, [60]), van den
Brink (2002, [103]), Xu et al. (2008, [116]) and Young (1985, [121]). We
focus on two representative characterizations of the Shapley value and the
solidarity value, respectively. One is based on axioms related to null, re-
spectively A-null players. Shapley (1953, [94]) characterized the Shapley
value by using efficiency, additivity, symmetry and the null player property,
while Nowak and Radzik (1994, [85]) replaced the null player property
with the A-null player property to characterize the solidarity value. Another
characterization of the average-surplus value is based on axioms related to
contributions. Myerson (1980, [82]) proposed balanced contributions to
characterize the Shapley value, while Xu et al. (2016, [115]) used a vari-
ation of this balanced contributions to characterize the solidarity value. In
this chapter, we define two new axioms, the A-null surplus player property
and revised balanced contributions. The A-null surplus player property re-
quires that a player should obtain his individual worth if his average net
earning to each coalition is equal to zero. Revised balanced contributions
reveals a relation of the mutual effect for every pair of players on each
other’s payoff. We characterize the average-surplus value by these two ax-
ioms and several standard axioms.

The concept of potential function is firstly applied to TU-games by Hart
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and Mas-Colell (1989, [46]). Every TU-game is mapped into a real number
by the potential function. Hart and Mas-Colell showed that the marginal
contributions vector of a potential function coincides with the Shapley
value. Subsequently, the potential approach is also used to implement var-
ious other solutions for TU-games, such as the semivalues (Carreras and
Giménez 2011, [16]), the Banzhaf value (Dragan 1996, [33]), and the
solidarity value (Xu et al. 2016, [115]). Monderer and Shapley (1996,
[78]) also applied the potential approach to non-cooperative games. Non-
cooperative potential functions have also been used to analyze solutions for
TU-games in Monderer and Shapley (1996, [78]) and Qin (1996, [90]). In
this chapter, inspired by the work of Hart and Mas-Colell (1989, [46]), we
define a variation of the potential function, called the AS-potential func-
tion, and show that the adjusted marginal contributions vector of the AS-
potential function coincides with the average-surplus value.

Finally, mechanism design can be seen as a part of the Nash program to
bridge the gap between cooperative and non-cooperative game theory. It is
a significant approach to characterize solutions for TU-games, and has been
widely studied in the field of cooperative games. Various implementations
of the Shapley value can be found in Gul (1989, [41]), Hart and Mas-Colell
(1996, [47]) and Pérez-Castrillo and Wettstein (2001, [89]) and so on.
Specifically, Pérez-Castrillo and Wettstein (2001, [89]) proposed a bidding
mechanism that gives rise to the Shapley value as the result of equilibrium
behavior. Inspired by the work of Pérez-Castrillo and Wettstein, several
classical solutions for TU-games, including the discounted Shapley values
(van den Brink and Funaki 2015, [107]), the egalitarian Shapley values
(van den Brink et al. 2013, [108]) and the consensus values (Ju et al.
2007, [56], and Ju and Wettstein 2009, [58]), are also implemented as
the payoff distribution in every subgame perfect equilibrium of a bidding
mechanism. Moreover, Albizuri et al. (2015, [1]) and Ju et al. (2014, [57])
applied the approach to airport problems and queueing problems, respec-
tively. A natural question concerning the average-surplus value is whether
players can reach it through non-cooperative behavior. In this chapter, we
provide a non-cooperative game, namely the punishment-compensation bid-
ding mechanism. This mechanism will exert a punishment on a proposer
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whose offer is rejected, and every player except the proposer will receive a
compensation for losses caused by the proposer’s departure from the grand
coalition. We show that the equilibrium outcome of this mechanism coin-
cides with the payoff assigned by the average-surplus value.

The rest of this chapter is organized as follows. In Section 2.2, we
recall procedural schemes of the Shapley value and the solidarity value.
In Section 2.3, the average-surplus value is determined by an underlying
procedure of sharing marginal surplus. In Section 2.4, we characterize the
average-surplus value by introducing the A-null surplus player property
and revised balanced contributions. In Section 2.5, we define a variation of
the potential function, the AS-potential function, that is used to implement
the average-surplus value. In Section 2.6, we provide a non-cooperative
game, which outcome in every subgame perfect equilibrium coincides with
the payoff assigned by the average-surplus value. Section 2.7 provides all
proofs of this chapter. Section 2.8 concludes with a brief comparison.

2.2 Procedural schemes of the Shapley value and
the solidarity value

In this section, we recall procedural schemes of the Shapley value and the
solidarity value, by considering the assumption that the grand coalition N
is gradually formed as players enter the game one by one.

Consider that players join the grand coalition N in a random order
(permutation) π ∈ ΠN and all orders are equally probable. Every joining
player, i ∈ N , brings his marginal contribution, v(Pπ,i)−v(Pπ,i\{i}), to the
coalition of his predecessors, and then this marginal contribution is divided
among all players in Pπ,i according to some fixed procedural scheme. In the
procedural scheme of the Shapley value, every joining player obtains all of
his marginal contribution and shares nothing with his predecessors, while
in the procedural scheme of the solidarity value, his marginal contribution
is equally shared among himself and all his predecessors. In this way, for
every permutation π ∈ ΠN , the worth v(N) of the grand coalition is dis-
tributed among all players. The expected payoff over all permutations is
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the Shapley value (the solidarity value, respectively) according to the pro-
cedural scheme of the Shapley value (the solidarity value, respectively).

Formally, for all 〈N, v〉 ∈ GN and π ∈ ΠN , according to the procedural
scheme of the Shapley value, the payoff of each player, i ∈ N , under π is
given by

xπi (N, v) = v(Pπ,i)− v(Pπ,i\{i}).

Then, the expected payoff over all permutations of each player, i ∈ N , can
be expressed as

Shi(N, v) =
1

n!

∑
π∈ΠN

xπi (N, v).

Similarly, for all 〈N, v〉 ∈ GN and π ∈ ΠN , according to the procedural
scheme of the solidarity value, the payoff of each player, i ∈ N , under π is
given by

yπi (N, v) =
∑
j∈Sπ,i

1

|Pπ,j |
(v(Pπ,j)− v(Pπ,j\{j})).

Then, the solidarity value of a player is the expected payoff over all permu-
tations, that is, for all i ∈ N ,

Soli(N, v) =
1

n!

∑
π∈ΠN

yπi (N, v).

2.3 The average-surplus value

In this section, we define a new solution for TU-games in terms of marginal
surplus, called the average-surplus value. Based on the procedures for the
Shapley value and the solidarity value, the average-surplus value is deter-
mined by an underlying procedure of sharing marginal surplus.

For all 〈N, v〉 ∈ GN , S ⊆ N and i ∈ S, player i’s marginal surplus to S,
denoted by MSvi (S), is defined by

MSvi (S) = v(S)− v(S\{i})− v({i}).

MSvi (S) can be interpreted as the net earning that player i brings when
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player i joins in coalition S. Obviously, marginal surplus is the difference
between marginal contribution and individual worth. It is also an alterna-
tive index to measure the contribution level of each player. For all zero-
monotonic TU-games, each player has a non-negative marginal surplus to
every coalition containing himself.

Next, we introduce a procedural scheme of sharing marginal surplus.
The procedural scheme consists of the following steps.

Step 1 Players join the grand coalition N in a random order (permutation)
π ∈ ΠN .

Step 2 Every joining player, i ∈ N , obtains his individual worth v({i}).

Step 3 The marginal surplus, v(Pπ,i)−v(Pπ,i\{i})−v({i}), is equally shared
among the players in Pπ,i.

Step 4 A payoff vector ASπ ∈ RN is obtained by Step 1 to Step 3.1 Con-
sidering all orders with equal probability, the average-surplus value
AS is the expected payoff vector over all orders.

We illustrate this procedural scheme with an example with three play-
ers. Consider a 3-person game 〈N, v〉 where N = {1, 2, 3}. Let π0 ∈ ΠN

with π0(1) = 2, π0(2) = 1, π0(3) = 3, that is, player 2 enters the game
firstly, then player 1, who is followed by player 3. Every player’s payoff
under π0 is shown in Table 2.1.2

TABLE 2.1 Player’s payoff under π0

Permutation Player 1’s payoff Player 2’s payoff Player 3’s payoff
Player 2 0 v(2) 0
Player 1 v(1) + v(12)−v(2)−v(1)

2
v(12)−v(2)−v(1)

2
0

Player 3 v(123)−v(12)−v(3)
3

v(123)−v(12)−v(3)
3

v(3) + v(123)−v(12)−v(3)
3

Thus, the player’s payoff under π0 is given by

ASπ0
1 (N, v) = v(1) +

v(12)− v(2)− v(1)

2
+
v(123)− v(12)− v(3)

3
;

1In this way, for every order π ∈ ΠN the worth v(N) is distributed among all players.
2For simplicity, v({1, 2, 3}) is simply rewritten as v(123), v({1, 2}) is simply rewritten as

v(12), etc.
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ASπ0
2 (N, v) = v(2) +

v(12)− v(2)− v(1)

2
+
v(123)− v(12)− v(3)

3
;

ASπ0
3 (N, v) = v(3) +

v(123)− v(12)− v(3)

3
.

According to Step 1 to Step 3, for all 〈N, v〉 ∈ GN and π ∈ ΠN , the
payoff of a player, i ∈ N , under π can be expressed as

ASπi (N, v) = v({i}) +
∑
j∈Sπ,i

1

|Pπ,j |
(v(Pπ,j)− v(Pπ,j\{j})− v({j})).

Considering all orders with equal probability, the average-surplus value AS
is defined as the expected payoff vector of ASπ over all permutations as
follows.

Definition 2.1. The average-surplus value on GN is defined by

ASi(N, v) =
1

n!

∑
π∈Π(N)

ASπi (N, v). (2.1)

for all 〈N, v〉 ∈ GN and i ∈ N .

Alternatively, we give an equivalent definition of the average-surplus
value. Let Ãv(S) = 1

s

∑
j∈S [v(S) − v(S\{j}) − v({j})] be the average

marginal surplus of coalition S in TU-game 〈N, v〉. The average-surplus
value is given by

ASi(N, v) = v({i}) +
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

Ãv(S), (2.2)

for all 〈N, v〉 ∈ GN and i ∈ N .

The equivalence of Eq.(2.1) and Eq.(2.2) is easily verified, and we omit
it.

For all 〈N, v〉 ∈ GN and i ∈ N , by Eq.(2.2), we have

ASi(N, v)
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=
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

1

s

∑
j∈S

(v(S)− v(S\{j}) + v({i})− v({j}))

=Soli(N, v) +
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

1

s

∑
j∈S

(v({i})− v({j}))

=Soli(N, v) + v({i})− Soli(N, v0), (2.3)

where 〈N, v0〉 is the additive game generated by the individual worths in
〈N, v〉, that is, v0(S) =

∑
i∈S v({i}) for all S ⊆ N . Thus, the average-

surplus value AS(N, v) is the sum of the solidarity value Sol(N, v) and the
individual worth vector (v({k}))k∈N minus the solidarity value Sol(N, v0)

of the additive game 〈N, v0〉.

Proposition 2.2. For all 〈N, v〉 ∈ GN and i ∈ N , it holds that ASi(N, v) ≥
Soli(N, v) if and only if v({i}) ≥ 1

n

∑
k∈N v({k}).

The proof of Proposition 2.2 and of all other results in this chapter can
be found in Section 2.7.

By Proposition 2.2, it holds that ASi(N, v) = Soli(N, v) if and only if
v({i}) = 1

n

∑
k∈N v({k}) for all i ∈ N . This implies the following corollary.

Corollary 2.3. For each zero-normalized game 〈N, v〉 ∈ GN , the average-
surplus value coincides with the solidarity value, that is,AS(N, v) = Sol(N, v).

2.4 Axiomatizations of the average-surplus value

A major purpose of axiomatizing solutions in TU-games is to show the rea-
sonability of solutions. In this section, we propose two new axioms, the
A-null surplus player property and revised balanced contributions, to charac-
terize the average-surplus value.

2.4.1 A-null surplus player property

As mentioned in Chapter 1, the null player property and the A-null player
property are two classical axiom in TU-games. The null player property
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requires that a null player gets a zero payoff while the A-null player prop-
erty requires that an A-null player gets a zero payoff. In this subsection, we
define a new type of players, the A-null surplus player.

Definition 2.4. Player i ∈ N is an A-null surplus player in 〈N, v〉 if Ãv(S) =

0 for all S ⊆ N and S 3 i.

• A-null surplus player property. For all 〈N, v〉 ∈ GN whenever i ∈ N
is an A-null surplus player in 〈N, v〉, it holds that ϕi(N, v) = v({i}).

The A-null surplus player property requires that, if a player is such that
the average marginal surplus to all coalitions including him are equal to
zero, then he only obtains his individual worth. It is straightforward to ver-
ify that the average-surplus value satisfies the A-null surplus player prop-
erty.

To characterize the average-surplus value, we firstly define a new basis
of the linear space GN , denoted by {〈N,wT 〉|T ⊆ N,T 6= ∅}. Formally, for
all T ⊆ N with t = 1,

wT (S) =

{
1, if S ⊇ T ;

0, otherwise.
(2.4)

and for all T ⊆ N with t ≥ 2,

wT (S) =

{
(s−t)!t!
s! , if S ⊇ T ;

0, otherwise.
(2.5)

Lemma 2.5. The family {〈N,wT 〉|T ⊆ N,T 6= ∅} of TU-games forms a basis
of the linear space GN , that is, for each 〈N, v〉 ∈ GN , there exists a set of
real numbers {λT }T⊆N,T 6=∅ such that v =

∑
T⊆N,T 6=∅ λTwT . Moreover, the

coefficients {λT }T⊆N,T 6=∅ are given by

λT =

{
v(T ), if t = 1;
1
t

∑
j∈T [v(T )− v(T\{j})− v({j})], if t ≥ 2.

(2.6)

The following theorem gives a characterization of the average-surplus
value using the A-null surplus player property.
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Theorem 2.6. A solution ϕ on GN satisfies efficiency, symmetry, additivity
and the A-null surplus player property if and only if ϕ is the average-surplus
value.

Logical independence of the axioms used in Theorem 2.6 can be shown
by the following alternative solutions.

(i) The solution ϕ, defined by ϕi(N, v) = v({i}) for all 〈N, v〉 ∈ GN and
i ∈ N , satisfies all axioms of Theorem 2.6 except efficiency.

(ii) The solution ϕ, defined by

ϕi(N, v) = v({i}) +
∑

S⊆N,S3i

s!(n− s)!
n!

ωi∑
j∈S ωj

Ãv(S),

for all 〈N, v〉 ∈ GN , i ∈ N and ω ∈ RN++ such that ωk 6= ωl for all
k, l ∈ N , satisfies all axioms of Theorem 2.6 except symmetry.

(iii) The solution ϕ, defined by

ϕi(N, v) = v({i}) +
∑

S⊆N,S3i

s!(n− s)!
n!

v({i})2 + 1∑
j∈S v({j})2 + s

Ãv(S)

for all 〈N, v〉 ∈ GN and i ∈ N , satisfies all axioms of Theorem 2.6
except additivity.

(iv) The Shapley value satisfies all axioms of Theorem 2.6 except the A-
null surplus player property.

The axiomatization of the average-surplus value in Theorem 2.6 is in-
spired by that of the Shapley value (Shapley 1953, [94]) and the solidarity
value (Nowak and Radzik 1994, [85]). The commonness in the axiomati-
zations of the three solutions is that all three use efficiency, symmetry and
additivity. The only difference is to determine which type of player gets
zero or the individual worth. The average-surplus value adopts the A-null
surplus player property, while the Shapley value and the solidarity value
adopt the null player property and the A-null player property, respectively.
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Besides these mentioned above, axioms based on special types of play-
ers are used frequently to characterize other solutions for TU-games (e.g.
see, van den Brink 2007, [104], van den Brink et al. 2017, [106] and Wang
et al. 2017, [114]).

2.4.2 Revised balanced contributions

Balanced contributions, introduced by Myerson (1980, [82]), requires that,
for each pair of players, the influence of a player who leaves the grand
coalition on the other player is the same as the impact of the other player’s
departure on him. Myerson (1980, [82]) used balanced contributions and
efficiency to characterize the Shapley value. In this subsection, we propose
a variation of balanced contributions, called revised balanced contributions,
to characterize the average-surplus value.

Revised balanced contributions reveals a new relation of the mutual
effect for each pair of players. For each pair of players {i, j}, it will lead
to the loss of the marginal surplus v(N) − v(N\{i}) − v({i}) in the wake
of the departure of player i from the grand coalition. This loss should be
equally undertaken by all players in the grand coalition N . Thus, a loss
1
n(v(N)− v(N\{i})− v({i})) for player j is caused by player i’s departure,
and a corresponding loss 1

n(v(N)−v(N\{j})−v({j})) for player i is caused
by player j’s departure. Formally, revised balanced contributions is defined
as follows.

• Revised balanced contributions. For all 〈N, v〉 ∈ GN and i, j ∈
N, i 6= j, it holds that

ϕi(N, v)− ϕi(N\{j}, v)− 1

n
(v(N)− v(N\{j})− v({j}))

=ϕj(N, v)− ϕj(N\{i}, v)− 1

n
(v(N)− v(N\{i})− v({i})).

Next, we use revised balanced contributions and efficiency to charac-
terize the average-surplus value.

Theorem 2.7. A solution ϕ on G satisfies revised balanced contributions and
efficiency if and only if ϕ is the average-surplus value.
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Logical independence of the axioms used in Theorem 2.7 can be shown
by the following alternative solutions.

(i) The solution ϕ, defined by ϕi(N, v) = 0 for all 〈N, v〉 ∈ GN and i ∈ N ,
satisfies revised balanced contributions but not efficiency.

(ii) The Shapley value satisfies efficiency but not revised balanced contri-
butions.

2.5 A potential approach to the average-surplus value

The potential approach is firstly introduced for TU-games by Hart and Mas-
Colell (1989, [46]) to characterize the Shapley value. Every TU-game is
mapped into a real number by the potential function. The potential ap-
proach is also applied in non-cooperative games by Monderer and Shapley
(1996, [78]) to analyze strategic form games.

In TU-games, a function P : G → R with P (∅, v) = 0 is called a potential
function if it satisfies, for all 〈N, v〉 ∈ G,∑

i∈N
DiP (N, v) = v(N),

where DiP (N, v) = P (N, v) − P (N\{i}, v) represents the marginal con-
tribution of player i ∈ N to the potential function. Hart and Mas-Colell
(1989, [46]) showed that the potential function is unique and the Shap-
ley value coincides with the marginal contributions vector of the potential
function.

Later, Xu et al. (2016, [115]) proposed an adjusted potential function
to characterize the solidarity value, namely A-potential function. A function
P ∗ : G → R with P ∗(∅, v) = 0 is called an A-potential function if it satisfies,
for all 〈N, v〉 ∈ G,

∑
i∈N

DiP
∗(N, v) = v(N)− 1

n

∑
i∈N

v(N\{i}),
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where DiP
∗(N, v) = P ∗(N, v)−P ∗(N\{i}, v) represents the marginal con-

tribution of player i ∈ N to the A-potential function.

Compared with the solidarity value, the average-surplus value lays em-
phasis on taking the influence of the individual worth into account. Cor-
respondingly, we modify the A-potential function by adding the individual
worth in order to characterize the average-surplus value. Formally, the re-
vised potential function is defined as follows.

Definition 2.8. A function P̃ : G → R with P̃ (∅, v) = 0 is called an AS-
potential function if it satisfies, for all 〈N, v〉 ∈ G,

∑
i∈N

DiP̃ (N, v) = v(N)− 1

n

∑
i∈N

(v(N\{i}) + v({i})), (2.7)

where DiP̃ (N, v) = P̃ (N, v)− P̃ (N\{i}, v) represents the marginal contri-
bution of player i ∈ N to the AS-potential function.

Obviously, the only difference between the A-potential function and the
AS-potential function is the individual worth, which is also the distinction
between the solidarity value and the average-surplus value. Moreover, con-
dition (2.7) can be represented as∑
i∈N

[
DiP̃ (N, v) + v({i}) +

1

n
(v(N\{i})−

∑
j∈N\{i}

v({j}))
]

= v(N). (2.8)

Compared with the potential function P by Hart and Mas-Colell (1989,
[46]), in Eq.(2.8), an adjustment item v({i})+ 1

n(v(N\{i})−
∑

j∈N\{i} v({j}))
is added to the marginal contribution DiP̃ (N, v) for every player i ∈ N , in
order to obtain the efficiency normalization condition.

According to the definition of the AS-potential function, for each sub-
game 〈S, v〉, we have

∑
i∈S

DiP̃ (S, v) = v(S)− 1

s

∑
i∈S

(v(S\{i}) + v({i})).
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Then, we have∑
i∈S

[P̃ (S, v)− P̃ (S\{i}, v)] =
1

s

∑
i∈S

(v(S)− v(S\{i})− v({i})).

Thus, it holds that

sP̃ (S, v)−
∑
i∈S

P̃ (S\{i}, v) =
1

s

∑
i∈S

(v(S)− v(S\{i})− v({i})).

Therefore, an equivalent recursive definition of the AS-potential function
can be given as follows,

P̃ (S, v) =
1

s

[∑
i∈S

P̃ (S\{i}, v) +
1

s

∑
i∈S

(v(S)− v(S\{i})− v({i}))

]
, (2.9)

for all S ⊆ N with P̃ (∅, v) = 0. Furthermore, we obtain the following
proposition.

Proposition 2.9. For all 〈N, v〉 ∈ GN , it holds that

P̃ (N, v) =
1

n
v(N) +

∑
S(N

(s− 1)!(n− s− 1)!

n!(s+ 1)
v(S)− 1

n

(
n∑
k=1

1

k

)∑
i∈N

v({i}).

(2.10)

The adjusted marginal contributions vector AP̃ is given as follows. For
all 〈N, v〉 ∈ GN and i ∈ N ,

AiP̃ (N, v) = DiP̃ (N, v) + v({i}) +
1

n
(v(N\{i})−

∑
j∈N\{i}

v({j})). (2.11)

The marginal contributions vector DiP̃ (N, v) is modified to the adjusted
marginal contributions vectorAiP̃ (N, v) by two terms. The first term v({i})
reflects that every player first gets his individual worth. The second term
1
n(v(N\{i})−

∑
j∈N\{i} v({j})) reflects the feature of the average distribu-

tion of coalitional surplus. It turns out that the adjusted marginal contribu-
tions vector of the AS-potential function coincides with the average-surplus
value.
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Theorem 2.10. There is a unique AS-potential function P̃ on G. Moreover,
the adjusted marginal contributions vector of the AS-potential function coin-
cides with the average-surplus value, that is, AP̃ (N, v) = AS(N, v).

According to Theorem 2.10, a recursive formula of the average-surplus
value is obtained as follows.

Proposition 2.11. For all 〈N, v〉 ∈ GN and i ∈ N , it holds that

ASi(N, v) =
1

n

v(N)− 1

n

∑
j∈N

(v(N\{j}) + v({j})− v({i}))


+

1

n

∑
j∈N\{i}

ASi(N\{j}, v). (2.12)

The recursive formulae of the Shapley value (Hart and Mas-Collel 1989,
[46]) and the solidarity value (Xu et al. 2016, [115]) can be derived anal-
ogously, by replacing 1

n

∑
j∈N (v(N\{j}) + v({j}) − v({i})) in Proposition

2.11 with v(N\{i}) and 1
n

∑
j∈N v(N\{j}), respectively.

2.6 Punishment-compensation bidding mechanism

In this section, we embed a punishment-compensation principle into the
bidding mechanism which is introduced by Pérez-Castrillo and Wettstein
(2001, [89]). This punishment-compensation bidding mechanism is pro-
posed to implement the average-surplus value, that is, the subgame perfect
equilibrium (SPE) outcome of this mechanism coincides with the payoff
assigned by the average-surplus value. Formally, the mechanism is defined
recursively as follows.

Punishment-compensation bidding mechanism: Each player, i ∈ N ,
receives his individual worth v({i}) when the player set contains only him-
self. When there is more than one player, the mechanism is defined recur-
sively as follows. Suppose that the rules of the bidding mechanism have
been known when there are at most n−1 players. Then, the bidding mech-
anism for a set of players N = {1, 2, ..., n} proceeds as follows.
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• Stage 1: Each player, i ∈ N , makes bids, bij ∈ R, for every player
j ∈ N\{i}. Let Bi =

∑
j∈N\{i}(b

i
j − b

j
i ) be the net bid of player i.

Choose a player α = arg maxi∈N{Bi} who has the maximal net bid
to be the proposer. If there is more than one player with the maximal
net bid, the proposer α is equally chosen among them. Once chosen,
the proposer α must pay his bids, bαj , to every player j ∈ N\{α}.

• Stage 2: The proposer α makes offers, xαj ∈ R, to every player j ∈
N\{α}.

• Stage 3: Each player other than α sequentially decides whether or
not to accept the offer. If all players accept the offer, then the offer is
accepted, otherwise the offer is rejected.

• If the offer is accepted, the game is over. Each player, j ∈ N\{α}
obtains payoff bαj +xαj , and the proposer α obtains payoff v(N)−∑

j∈N\{α}(b
α
j + xαj ).

• If the offer is rejected, the proposer α leaves from the grand
coalition N , which leads to a loss v(N) − v(N\{α}) − v({α})
since the proposer still has his own individual worth v({α}) after
he leaves from the grand coalition. Then, the proposer α is pun-
ished by paying the amount, 1

n(v(N) − v(N\{α}) − v({α})), to
every remaining player, j ∈ N\{α}. In other words, each player,
j ∈ N\{α}, will receive a compensation, 1

n(v(N)− v(N\{α})−
v({α})), for losses caused by the proposer’s departure from the
grand coalition. As a result, the proposer α takes the payoff
[v({α}) −

∑
j∈N\{α}

1
n(v(N) − v(N\{α}) − v({α}))]. Then, all

players other than α proceed to play the bidding mechanism
where the set of players is N\{α}.

It turns out that for all zero-monotonic TU-games 〈N, v〉 ∈ GN , the
outcome in every SPE of the punishment-compensation bidding mechanism
coincides with the payoff vector AS(N, v) as prescribed by the average-
surplus value.
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Theorem 2.12. For all zero-monotonic TU-games 〈N, v〉 ∈ GN , the outcome
in every SPE of the punishment-compensation bidding mechanism coincides
with the payoff AS(N, v) assigned by the average-surplus value.

Comparing our bidding mechanism with Pérez-Castrillo and Wettstein’s
for the Shapley value (Pérez-Castrillo and Wettstein 2001, [89]), we con-
clude that there is no difference between the two bidding mechanisms at
Stage 1 and Stage 2. The main difference is at Stage 3. When the proposer
α’s offer is rejected, each player j ∈ N\{α} will receive a compensation
1
n(v(N)− v(N\{α})− v({α})) to be paid by the proposer α in our bidding
mechanism, while there is no compensation for each player j ∈ N\{α} in
Pérez-Castrillo and Wettstein’s mechanism.

2.7 Proofs

Proof of Proposition 2.2. For all 〈N, v〉 ∈ GN and i ∈ N , we have

ASi(N, v)− Soli(N, v) = v({i})− Soli(N, v0)

=v({i})−

 n∑
s=1

1

ns
v({i}) +

(
1

n− 1
− 1

n(n− 1)

n∑
s=1

1

s

) ∑
k∈N\{i}

v({k})


=

(
n

n− 1
−

n∑
s=1

1

(n− 1)s

)[
v({i})− 1

n

∑
k∈N

v({k})

]
,

where 〈N, v0〉 is given by v0(S) =
∑

i∈S v({i}) for all S ⊆ N , and the first
equation holds by Eq(2.3). Since n

n−1 −
∑n

s=1
1

(n−1)s > 0 for all n ≥ 2, then
ASi(N, v) ≥ Soli(N, v) if and only if v({i}) ≥ 1

n

∑
k∈N v({k}).

Proof of Lemma 2.5. Firstly, we show that the family {〈N,wT 〉|T ⊆ N,T 6=
∅} of TU-games forms a basis of the linear space GN . Suppose that there
exists a set of real numbers {αT }T⊆N,T 6=∅, not all of which are zero, satis-
fying

∑
T⊆N,T 6=∅ αTwT = 0. Let T0 be a minimum-size coalition such that
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αT0 6= 0. Then, we have∑
T⊆N,T 6=∅

αTwT (T0) = αT0wT0(T0) = αT0 6= 0,

which is in contradiction with the hypothesis
∑

T⊆N,T 6=∅ αTwT = 0. Thus,
{〈N,wT 〉|T ⊆ N,T 6= ∅} is a basis of GN , that is, for each 〈N, v〉 ∈ GN ,
there exists a set of real numbers {λT }T⊆N,T 6=∅ such that v =

∑
T⊆N,T 6=∅ λTwT .

Next, we show that the coefficients {λT }T⊆N,T 6=∅ are given by Eq.(2.6).
For each 〈N, v〉 ∈ GN and S ⊆ N,S 6= ∅, we have

v(S) =
∑

T⊆N,T 6=∅

λTwT (S) =
∑

T⊆S,T 6=∅

λTwT (S)

=
∑

T⊆S,t=1

λT +
∑

T⊆S,t≥2

λT
(s− t)!t!

s!
.

Thus, a recursive formula of the coefficients is given by

λS = v(S)−
∑

T(S,t=1

λT −
∑

T(S,t≥2

λT
(s− t)!t!

s!
.

Obviously, for s = 1, λS = v(S) and Eq.(2.6) holds. Suppose that Eq.(2.6)
holds for all t ≤ s− 1 (s ≥ 2). Thus, we have

λS =v(S)−
∑

T(S,t=1

λT −
∑

T(S,t≥2

λT
(s− t)!t!

s!

=v(S)−
∑
j∈S

v({j})−
∑

T(S,t≥2

∑
j∈T

[v(T )− v(T\{j})− v({j})] (s− t)!(t− 1)!

s!

=v(S)−
∑

T(S,t≥2

∑
j∈T

[v(T )− v(T\{j})] (s− t)!(t− 1)!

s!
− 2

s

∑
j∈S

v({j})

=v(S)− 1

s
[
∑

T(S,t=s−1

v(T )−
∑

T(S,t=1

v(T )]− 2

s

∑
j∈S

v({j})

=
1

s

∑
j∈S

[v(S)− v(S\{j})− v({j})].
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Therefore, Eq.(2.6) holds for all T ⊆ N,T 6= ∅.

Proof of Theorem 2.6. It is straightforward to verify that the average-surplus
value satisfies efficiency, symmetry, additivity and the A-null surplus player
property. It is left to show the uniqueness. Suppose that ϕ is a solution on
GN satisfying the four mentioned axioms. For all T ⊆ N,T 6= ∅ and α ∈ R,
〈N,αwT 〉 is defined by Eq.(2.4) and Eq.(2.5). Let i ∈ N\T , S ⊆ N and
S 3 i. If t = 1, we have

ÃαwT (S) =
1

s

∑
j∈S

(αwT (S)− αwT (S\{j})− αwT ({j}))

=
1

s

∑
j∈S

(α− α− 0) = 0.

If t ≥ 2, we have

ÃαwT (S) =
1

s

∑
j∈S

(αwT (S)− αwT (S\{j})− αwT ({j}))

=αwT (S)− 1

s

∑
j∈S

αwT (S\{j}).

We distinguish the following two different cases,

• if S + T , ÃαwT (S) = 0− 0 = 0.

• if S ⊇ T , we have

ÃαwT (S) =αwT (S)− 1

s

∑
j∈S

αwT (S\{j})

=
α(s− t)!t!

s!
− α

s
(s− t)(s− 1− t)!t!

(s− 1)!

=0.

Thus, for all i ∈ N\T , i is an A-null surplus player in 〈N,αwT 〉. By the
A-null surplus player property, we have

ϕi(N,αwT ) = αwT ({i}) = 0.
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Moreover, for all j, k ∈ T , j and k are symmetric players in 〈N,αwT 〉. By
symmetry and efficiency, it holds that

ϕi(N,αwT ) =

{
α, if i ∈ T and t = 1;
α(n−t)!(t−1)!

n! , if i ∈ T and t ≥ 2.

By Lemma 2.5 and additivity, for all 〈N, v〉 ∈ GN and i ∈ N ,

ϕi(N, v) =ϕi(N,
∑

T⊆N,T 6=∅

λTwT ) =
∑

T⊆N,T 6=∅

ϕi(N,λTwT ),

which implies, with the expression of ϕi(N,αwT ) above, that ϕ is uniquely
determined. Since the average-surplus value satisfies these axioms, it is the
unique solution on GN satisfying efficiency, symmetry, additivity and the
A-null surplus player property.

Proof of Theorem 2.7. Firstly, we show the average-surplus value satisfies
revised balanced contributions. For all 〈N, v〉 ∈ GN and i, j ∈ N, i 6= j, by
Eq.(2.2), we have

ASi(N, v)−ASi(N\{j}, v)

=
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

Ãv(S)−
∑

S⊆N\{j},S3i

(s− 1)!(n− s− 1)!

(n− 1)!
Ãv(S)

=
∑

S⊆N,S3i,j

(s− 1)!(n− s)!
n!

Ãv(S)−
∑

S⊆N\{j},S3i

s!(n− s− 1)!

n!
Ãv(S)

=
∑

S⊆N,S3i,j

(s− 1)!(n− s)!
n!

(Ãv(S)− Ãv(S\{j})).

Correspondingly, it holds that

ASj(N, v)−ASj(N\{i}, v) =
∑

S⊆N,S3i,j

(s− 1)!(n− s)!
n!

(Ãv(S)−Ãv(S\{i})).

Thus, we have

ASi(N, v)−ASi(N\{j}, v)− (ASj(N, v)−ASj(N\{i}, v))
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=
∑

S⊆N,S3i,j

(s− 1)!(n− s)!
n!

(Ãv(S\{i})− Ãv(S\{j}))

=
∑

S⊆N,S3i,j

(s− 1)!(n− s)!
n!

[v(S\{i})− v(S\{j}) +
1

s− 1
(v({i})− v({j}))]

−
∑

S⊆N,S3i,j

(s− 2)!(n− s)!
n!

∑
k∈S\{i,j}

(v(S\{i, k})− v(S\{j, k}))

=
∑

S⊆N,S3i,j

(s− 1)!(n− s)!
n!

(v(S\{i})− v(S\{j}))

−
∑

S(N,S3i,j

(s− 1)!(n− s)!
n!

(v(S\{i})− v(S\{j}))

+
n− 2

n(n− 1)
(v({i})− v({j})) +

1

n(n− 1)
(v({i})− v({j}))

=
1

n
(v(N\{i})− v(N\{j})) +

1

n
(v({i})− v({j})).

Equivalently,

ASi(N, v)−ASi(N\{j}, v)− 1

n
(v(N)− v(N\{j})− v({j}))

=ASj(N, v)−ASj(N\{i}, v)− 1

n
(v(N)− v(N\{i})− v({i})).

Therefore, the average-surplus value satisfies revised balanced contribu-
tions.

Next, we show the uniqueness. Suppose that ϕ is a solution on G
satisfying revised balanced contributions and efficiency. We show that
ϕ(T, v) = AS(T, v) for all 〈T, v〉 ∈ GT by induction on player set T . For
all 〈T, v〉 ∈ GT with |T | = 1, efficiency implies ϕ(T, v) = v(T ) = AS(T, v).
Let 〈T, v〉 ∈ GT with |T | = 2. Without loss of generality, suppose T = {i, j}.
By revised balanced contributions, we have

ϕi(T, v)− ϕi({i}, v)− 1

2
(v(T )− v({i})− v({j}))

=ϕj(T, v)− ϕj({j}, v)− 1

2
(v(T )− v({i})− v({j})).
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By efficiency, it holds that ϕi({i}, v) = v({i}), ϕj({j}, v) = v({j}) and
ϕi(T, v) + ϕj(T, v) = v({i, j}). Thus,

ϕi(T, v) =
1

2
(v({i, j}) + v({i})− v({j})) = ASi(T, v);

ϕj(T, v) =
1

2
(v({i, j}) + v({j})− v({i})) = ASj(T, v).

Proceeding by induction, suppose that it holds that ϕ(T, v) = AS(T, v)

for all TU-games 〈T, v〉 with |T | < n. Thus, for all 〈N, v〉 ∈ GN and i, j ∈ N ,
we have

ϕi(N\{j}, v) = ASi(N\{j}, v), ϕj(N\{i}, v) = ASj(N\{i}, v).

By revised balanced contributions of ϕ and AS, we conclude that

ϕi(N, v)−ASi(N, v) = ϕj(N, v)−ASj(N, v)

Then, by fixing i and summing over j ∈ N , we have∑
j∈N

(ϕi(N, v)−ASi(N, v)) =
∑
j∈N

(ϕj(N, v)−ASj(N, v)).

Thus,

n(ϕi(N, v)−ASi(N, v)) =
∑
j∈N

ϕj(N, v)−
∑
j∈N

ASj(N, v)

= v(N)− v(N) = 0.

Therefore, ϕi(N, v) = ASi(N, v) holds for all i ∈ N .

Proof of Proposition 2.9. The result is proved by induction on the cardinal-
ity k of player set. For k = 1, it holds that P̃ ({i}, v) = 0 for all i ∈ N .
Proceeding by induction, suppose that Eq.(2.10) holds with k = n − 1.
Then, it implies that

P̃ (N\{i}, v|N\{i}) =
1

n− 1
v(N\{i}) +

∑
S(N\{i}

(s− 1)!(n− s− 1)!

(n− 1)!(s+ 1)
v(S)
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− 1

n− 1

(
n−1∑
k=1

1

k

) ∑
j∈N\{i}

v({j}).

For k = n, by Eq.(2.9), we have

P̃ (N, v) =
1

n

[∑
i∈N

P̃ (N\{i}, v) +
1

n

∑
i∈N

(v(N)− v(N\{i})− v({i}))

]

=
1

n

∑
i∈N

 1

n− 1
v(N\{i}) +

∑
S(N\{i}

(s− 1)!(n− s− 1)!

(n− 1)!(s+ 1)
v(S)

− 1

n− 1

(
n−1∑
k=1

1

k

) ∑
j∈N\{i}

v({j})

]
+

1

n
v(N)− 1

n2

∑
i∈N

(v(N\{i}) + v({i}))

=
1

n2(n− 1)

∑
i∈N

v(N\{i}) +
1

n

∑
i∈N

∑
S(N\{i}

(s− 1)!(n− s− 1)!

(n− 1)!(s+ 1)
v(S)

− 1

n(n− 1)

(
n−1∑
k=1

1

k

)∑
i∈N

∑
j∈N\{i}

v({j}) +
1

n
v(N)− 1

n2

∑
i∈N

v({i})

=
1

n
v(N) +

1

n2(n− 1)

∑
i∈N

v(N\{i}) +
1

n

∑
s≤n−2

(s− 1)!(n− s)!
(n− 1)!(s+ 1)

v(S)

− 1

n

(
n−1∑
k=1

1

k

)∑
i∈N

v({i})− 1

n2

∑
i∈N

v({i})

=
1

n
v(N) +

∑
S(N

(s− 1)!(n− s− 1)!

n!(s+ 1)
v(S)− 1

n

(
n∑
k=1

1

k

)∑
i∈N

v({i}).

Therefore, Eq.(2.10) holds for all 〈N, v〉 ∈ GN .

Proof of Theorem 2.10. It is straightforward to obtain existence and unique-
ness of the AS-potential function by Eq.(2.10). It is left to show that
AP̃ (N, v) = AS(N, v) for all 〈N, v〉 ∈ GN . Therefore, it is sufficient to
check that the axioms which uniquely determine the average-surplus value
are also satisfied by AP̃ .

Therefore, we prove that AP̃ satisfies efficiency, symmetry, additivity
and the A-null surplus player property.
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• Efficiency: By Eq.(2.7) and Eq.(2.11), we have∑
i∈N

AiP̃ (N, v) =
∑
i∈N

[DiP̃ (N, v) + v({i}) +
1

n
(v(N\{i})−

∑
j∈N\{i}

v({j}))]

=v(N)− 1

n

∑
i∈N

(v(N\{i}) + v({i})) +
∑
i∈N

v({i})

+
1

n

∑
i∈N

(v(N\{i})−
∑

j∈N\{i}

v({j}))

=v(N).

• Additivity: It is easy to check that the AS-potential function P̃ satis-
fies additivity by Eq.(2.10) , that is, P̃ (N, v+w) = P̃ (N, v)+ P̃ (N,w)

for all 〈N, v〉, 〈N,w〉 ∈ GN . Thus, DP̃ (N, v) and AP̃ (N, v) also satisfy
additivity by Definition 2.8 and Eq.(2.11).

• Symmetry: Let i and j be symmetric players. Firstly, we prove that
P̃ (S\{i}, v) = P̃ (S\{j}, v) for all S ⊆ N,S 3 i, j by induction. It is
obvious that P̃ ({i}, v) = 0 = P̃ ({j}, v) for S = {i, j}. Proceeding by
induction, suppose that the conclusion holds for 2 ≤ |S| < n. Then,
for |S| = n, we have

P̃ (N\{i}, v)− P̃ (N\{j}, v)

=
1

n− 1

 ∑
k∈N\{i}

P̃ (N\{i, k}, v) + v(N\{i})

− 1

n− 1

∑
k∈N\{i}

(v(N\{i, k}) + v({k}))


− 1

n− 1

 ∑
k∈N\{j}

P̃ (N\{j, k}, v) + v(N\{j})

− 1

n− 1

∑
k∈N\{j}

(v(N\{j, k}) + v({k}))


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=
1

n− 1

 ∑
k∈N\{i}

P̃ (N\{i, k}, v)−
∑

k∈N\{j}

P̃ (N\{j, k}, v)


=0.

Since v(N\{i}) = v(N\{j}) and v({i}) = v({j}),

AiP̃ (N, v)−AjP̃ (N, v)

=DiP̃ (N, v) + v({i}) +
1

n

v(N\{i})−
∑

k∈N\{i}

v({k})


−

DjP̃ (N, v) + v({j}) +
1

n
(v(N\{j})−

∑
k∈N\{j}

v({k}))


=P̃ (N\{i}, v)− P̃ (N\{j}, v)

=0,

showing that AP̃ satisfies symmetry.

• A-null surplus player property: Let i ∈ N be an A-null surplus
player in 〈N, v〉, then v(S) − 1

s

∑
j∈S(v(S\{j}) + v({j})) = 0 for all

S ⊆ N and S 3 i. Obviously, i is also an A-null surplus player in all
subgames 〈S, v〉. Next, we prove that AiP̃ (S, v) = v({i}) for all 〈S, v〉
by induction, in particular, AiP̃ (N, v) = v({i}).

It is trivial that AiP̃ ({i}, v) = v({i}) with S = {i}. Proceeding by
induction, suppose that AiP̃ (S, v) = v({i}) for all subgames with
|S| ≤ n− 1, that is, for all j ∈ N\{i},

DiP̃ (N\{j}, v)+v({i})+ 1

n− 1
(v(N\{i, j})−

∑
k∈N\{i,j}

v({k})) = v({i}).

Thus, by Eq.(2.9), we have

nAiP̃ (N, v)

=nP̃ (N, v)− nP̃ (N\{i}, v) + nv({i}) + v(N\{i})−
∑

j∈N\{i}

v({j})



52 Chapter 2. Characterizations of the average-surplus value

=
∑
j∈N

P̃ (N\{j}, v) + v(N)− 1

n

∑
j∈N

(v(N\{j}) + v({j}))

−
∑

j∈N\{i}

P̃ (N\{i, j}, v) +
1

n− 1

∑
j∈N\{i}

(v(N\{i, j}) + v({j}))

− v(N\{i})− P̃ (N\{i}, v) + nv({i}) + v(N\{i})−
∑

j∈N\{i}

v({j})

=
∑

j∈N\{i}

DiP̃ (N\{j}, v) +
1

n− 1

∑
j∈N\{i}

v(N\{i, j}) + nv({i})

− n− 2

n− 1

∑
j∈N\{i}

v({j})

=
∑

j∈N\{i}

[DiP̃ (N\{j}, v) + v({i}) +
1

n− 1
(v(N\{i, j})

−
∑

k∈N\{i,j}

v({k}))] + v({i})

=nv({i}).

The proof is completed.

Proof of Proposition 2.11. By Definition 2.8, Eq.(2.9) and Eq.(2.11), we have

AiP̃ (N, v) =P̃ (N, v)− P̃ (N\{i}, v) + v({i}) +
1

n
(v(N\{i})−

∑
j∈N\{i}

v({j}))

=
1

n

v(N)− 1

n

∑
j∈N

(v(N\{j}) + v({j})) + v(N\{i}) + nv({i})

−
∑

j∈N\{i}

v({j})

+
1

n

∑
j∈N\{i}

[
P̃ (N\{j}, v)− P̃ (N\{i}, v)

]

=
1

n

v(N)− 1

n

∑
j∈N

(v(N\{j}) + v({j})) + v(N\{i})

−
∑

j∈N\{i}

v({j}) + nv({i})

+
1

n

∑
j∈N\{i}

[
AiP̃ (N\{j}, v)
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−v({i})−AjP̃ (N\{i}, v) + v({j})
]

=
1

n

v(N)− 1

n

∑
j∈N

(v(N\{j}) + v({j})− v({i}))


+

1

n

∑
j∈N\{i}

AiP̃ (N\{j}, v).

Thus, Eq.(2.12) holds for all 〈N, v〉 ∈ GN by Theorem 2.10.

Proof of Theorem 2.12. This theorem is proved by induction on the cardi-
nality k of player set. Obviously, the result holds for k = 1, sinceASi({i}, v) =

v({i}) for every one-person TU-game 〈{i}, v〉. Proceeding by induction,
suppose that the result holds for all k < n. We show that it also holds for
k = n.

Let N = {1, 2, ..., n}. We now show that the average-surplus value is
indeed a SPE outcome by considering the following strategies.

• At stage 1, each player, i ∈ N , makes bids bij = ASj(N, v)−ASj(N\{i}, v)−
1
n [v(N)− v(N\{i})− v({i})] for every player j ∈ N\{i}.

• At stage 2, The proposer α makes offers xαj = ASj(N\{α}, v) +
1
n [v(N)− v(N\{α})− v({α})] to every player j ∈ N\{α}.

• At stage 3, each player j ∈ N\{α} will accept the offer if xαj ≥
ASj(N\{α}, v) + 1

n [v(N) − v(N\{α}) − v({α})], otherwise the offer
is rejected.

It is obvious that the outcome of this strategy profile is the average-surplus
value. We will verify that the strategies constitute a SPE. At stage 3, each
player j ∈ N\{α} obtains ASj(N\{α}, v) + 1

n [v(N)− v(N\{α})− v({α})]
by the induction hypothesis, and the proposer α just receives v({α}) −∑

j∈N\{α}
1
n [v(N) − v(N\{α}) − v({α})] in the case of rejection. Thus,

the strategies are best responses at stage 3 and stage 2 as long as v(N) −
v(N\{α}) ≥ v({α}), which is the case for all zero-monotonic TU-games,
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since

v(N)−
∑

j∈N\{α}

[
ASj(N\{α}, v) +

1

n
[v(N)− v(N\{α})− v({α})]

]
≥ v({α})−

∑
j∈N\{α}

1

n
[v(N)− v(N\{α})− v({α})]

⇔ v(N)− v(N\{α}) ≥ v({α}).

At stage 1, by revised balanced contributions, for all i ∈ N , we have

Bi =
∑

j∈N\{i}

(bij − b
j
i )

=
∑

j∈N\{i}

[
ASj(N, v)−ASj(N\{i}, v)− 1

n
[v(N)− v(N\{i})− v({i})]

−[ASi(N, v)−ASi(N\{j}, v)− 1

n
[v(N)− v(N\{j})− v({j})]]

]
=0.

Therefore, if a player, i ∈ N , increases his total bid
∑

j∈N\{i} b
i
j , he will

become the proposer, but his payoff will decrease. If a player, i ∈ N , de-
creases his total bid

∑
j∈N\{i} b

i
j , then his payoff is invariable since another

player will be chosen as the proposer. Thus, this action is a best response
at stage 1. Hence, the above strategy profile constitutes a SPE.

We now prove that any SPE yields the average-surplus value outcome
by a series of claims.

Claim(a). In any SPE, at stage 3, every player j ∈ N\{α} will accept the
offer if xαj > ASj(N\{α}, v) + 1

n [v(N) − v(N\{α}) − v({α})]. The
offer is rejected if there exists at least one player j ∈ N\{α} such
that xαj < ASj(N\{α}, v) + 1

n [v(N)− v(N\{α})− v({α})].

Note that in the case of rejection at stage 3, the payoff of each player,
j ∈ N\{α}, is ASj(N\{α}, v) + 1

n [v(N) − v(N\{α}) − v({α})] by the in-
duction hypothesis. Thus, a player, j ∈ N\{α}, will accept the offer if
xαj > ASj(N\{α}, v) + 1

n [v(N)− v(N\{α})− v({α})] since he can improve
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his payoff. He will reject the offer if xαj < ASj(N\{α}, v) + 1
n [v(N) −

v(N\{α}) − v({α})]. Claim (a) is proved by using the same argument for
all j ∈ N\{α}.

Claim(b). If v(N) > v(N\{α}) + v({α}), the SPE strategies starting from
stage 2 are as follows. At stage 2, the proposer α will offer xαj =

ASj(N\{α}, v) + 1
n [v(N) − v(N\{α}) − v({α})] to each player j ∈

N\{α}; at stage 3, each player, j ∈ N\{α}, rejects any offer xαj <

ASj(N\{α}, v) + 1
n [v(N)− v(N\{α})− v({α})] and accepts the offer

otherwise.

If v(N) = v(N\{α}) + v({α}), there exist SPE strategies besides the
previous SPE strategies. At stage 2, the proposer α offers xαj ≤
ASj(N\{α}, v) + 1

n [v(N) − v(N\{α}) − v({α})] to each player j ∈
N\{α}; at stage 3, each player, j ∈ N\{α}, rejects any offer xαj ≤
ASj(N\{α}, v) + 1

n [v(N)− v(N\{α})− v({α})] and accepts the offer
otherwise.

We verify that these strategies constitute a SPE. Suppose that v(N) >

v(N\{α}) + v({α}). In that case, the offer made by the proposer α is
rejected and then the proposer α obtains v({α}) −

∑
j∈N\{α}

1
n [v(N) −

v(N\{α}) − v({α})], which cannot be part of a SPE, since the proposer α
can improve his payoff by offering ASj(N\{α}, v) + 1

n [v(N)− v(N\{α})−
v({α})] + ε/(n − 1) to each player j ∈ N\{α} with 0 < ε < v(N) −
v(N\{α}) − v({α}) so that the offer is accepted by claim (a). Therefore,
xαj ≥ ASj(N\{α}, v) + 1

n [v(N) − v(N\{α}) − v({α})] for all j ∈ N\{α}
in any SPE. However, an offer with xαj > ASj(N\{α}, v) + 1

n [v(N) −
v(N\{α})− v({α})] for some j ∈ N\{α} cannot be part of a SPE. The rea-
son is that the proposer α can improve his payoff by offeringASj(N\{α}, v)+
1
n [v(N) − v(N\{α}) − v({α})] + ε/(n − 1) to each player j ∈ N\{α} with
ε < xαj −ASj(N\{α}, v)− 1

n [v(N)−v(N\{α})−v({α})] and ε > 0. Hence,
xαj = ASj(N\{α}, v) + 1

n [v(N) − v(N\{α}) − v({α})] for all j ∈ N\{α},
and acceptance of the offer implies that each player j ∈ N\{α} accepts any
offer xαj ≥ ASj(N\{α}, v) + 1

n [v(N)− v(N\{α})− v({α})].
If v(N) = v(N\{α})+v({α}), the proposer α offers at leastASj(N\{α}, v)+

1
n [v(N) − v(N\{α}) − v({α})] to each player j ∈ N\{α} so that the offer
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is accepted by the same argument in the previous case. The proposer gets
v({α}) −

∑
j∈N\{α}

1
n [v(N) − v(N\{α}) − v({α})] in the case of rejection,

which is identical to the payoff in the case of acceptance. Therefore, any
offer that leads to a rejection also is a SPE.

Claim(c). In any SPE, the net bid Bi = 0 for all i ∈ N .

Let Λ = {i ∈ N |Bi = maxj∈N B
j}. If Λ = N , the net bid Bi = 0

for all i ∈ N due to
∑

i∈N B
i = 0. Otherwise, any j ∈ Λ can improve his

expected payoff by slightly changing his bids without altering the set Λ. Let
j /∈ Λ and i ∈ Λ. Suppose that player i changes his strategy by making bids
b
′i
k = bik + δ for all k ∈ Λ\{i}, b′ij = bij − |Λ|δ, and b

′i
l = bil for all l /∈ Λ and

l 6= j. Then, the net bids are B
′k = Bk − δ for all k ∈ Λ; B

′j = Bj + |Λ|δ;
B
′l = Bl for all l /∈ Λ and l 6= j. Because Bl < Bi for all l /∈ Λ, there must

exist δ > 0 such that Bj + |Λ|δ < Bi − δ and B
′l < B

′i = B
′k for all k ∈ Λ.

Therefore, Λ remains unchanged, but player i’s expected payoff increases.

Claim(d). In any SPE, the payoff of every player is invariable whoever is
chosen as the proposer.

The net bids of all players are the same by claim (c). If a player would
strictly prefer to be the proposer, he has to enhance his bids, which will
result in a decrease of his payoff. If a player prefers that the proposer is one
of the other players for sure, he needs to decrease his bids, which makes
no difference to his payoff. Hence, every player is indifferent to whoever is
chosen as the proposer.

Claim(e). In any SPE, the final payoff of every player coincides with the
average-surplus value.

Firstly, if a player, i ∈ N , is the proposer, his final payoff is yii = v(N) −
v(N\{i})−

∑
j∈N\{i}[b

i
j + 1

n [v(N)− v(N\{i})− v({i})]]. Then, if a player,

j ∈ N\{i}, is the proposer, player i’s final payoff is yji = ASi(N\{j}, v) +
1
n [v(N) − v(N\{j}) − v({j})] + bji . Therefore, the sum of player i’s payoff
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over all possible choices is as follows,

∑
j∈N

yji =v(N)− v(N\{i})−
∑

j∈N\{i}

[
bij +

1

n
[v(N)− v(N\{i})− v({i})]

]

+
∑

j∈N\{i}

[
ASi(N\{j}, v) +

1

n
[v(N)− v(N\{j})− v({j})] + bji

]
=v(N)− 1

n

∑
j∈N

[v(N\{j}) + v({j})] + v({i}) +
∑

j∈N\{i}

ASi(N\{j}, v)

=nASi(N, v),

where the last equality holds by Proposition 2.11. By claim (d), we have
yji = yki for all j, k ∈ N , and then we conclude that yji = ASi(N, v) for all
j ∈ N . Hence, the final payoff of every player coincides with the average-
surplus value.

2.8 Conclusions

In this chapter, we introduce a concept called marginal surplus to measure
every player’s contribution to cooperation in TU-games. Based on marginal
surplus, we define a new solution for TU-games, the average-surplus value,
which offers every player a weighted average of the average marginal sur-
pluses to all coalitions including himself. We conclude the chapter by com-
paring the average-surplus value with some known solutions including the
procedural values (Malawski 2013, [74]), the consensus value (Ju et al.
2007, [56]), the Shapley value and the solidarity value.

The procedural values (Malawski 2013, [74]) are implemented by a
family of underlying procedures of sharing the marginal contributions to
coalitions formed by players joining in random order. Different sharing
rules lead to different values, including the Shapley value, the solidar-
ity value, the egalitarian Shapley values (Joosten 1996, [55]) and so on.
These procedures are based on marginal contribution, while in a similar
way the average-surplus value is defined from the perspective of marginal
surplus. In addition to the average-surplus value, the Shapley value and
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the consensus value are also determined by an underlying procedure of
sharing marginal surplus. In the procedure of the Shapley value, every
joining player receives his individual worth and all of his marginal surplus.
In the procedure of the consensus value, every joining player receives his
individual worth and half of his marginal surplus, and the remainder is
equally distributed among his predecessors. Compared with the procedure
in Section 2.3, the only difference is the proportion of sharing the marginal
surplus between the joining player and his predecessors. Similar to the
procedural values (Malawski 2013, [74]), we can also define a class of new
“procedural" values on the basis of marginal surplus, which are determined
by underlying procedures of sharing marginal surplus. Correspondingly,
the average-surplus value, the Shapley value and the consensus value are
three specific solutions of these “procedural" values.

Next, we make comparisons among these solutions from the point view
of axiomatization. The consensus value and all procedural values are ef-
ficient, symmetric and additive, which are also satisfied by the average-
surplus value. The consensus value is the unique solution satisfying the
above three properties and the neutral dummy property, while the average-
surplus value replaces the neutral dummy property (Ju et al. 2007, [56])
with the A-null surplus player property. Moreover, the bidding mechanisms
to implement the consensus value and the average-surplus value are iden-
tical at Stage 1 and Stage 2. The main difference is in the case of the offer
being rejected at Stage 3 (see, Ju et al. 2007, [56] for more details).

To conclude, we focus on analyzing how the Shapley value, the solidar-
ity value and the average-surplus value change along with the individual
worth. For all 〈N, v〉 ∈ GN , let ṽ({i}) = v({i}) + ∆ and ṽ(S) = v(S) for all
S ⊆ N and S 6= {i}, then we have

ASi(N, ṽ)−ASi(N, v) = ∆;

Shi(N, ṽ)− Shi(N, v) =
1

n
∆;

Soli(N, ṽ)− Soli(N, v) =
1

n
∆.
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Obviously, the average-surplus value assigns more to a player who has a
higher individual worth than the Shapley value and the solidarity value.





Chapter 3

Characterizations of the
EANSC value and CIS value

3.1 Introduction

Consistency is a crucial characteristic of viable and stable solutions in the
axiomatic approach to solutions for TU-games. A solution is consistent if it
allocates the same payoff to players in the original game as in a modified
game. There are two kinds of modified games in the existing literature, the
reduced game and the associated game. Reduced game consistency and
associated consistency are defined in terms of the reduced game and the
associated game, respectively.

Reduced games consider situations where one or more players leave the
game, and after an appropriate modification of the game, taking account
of the effect of the leaving players on the worths that can be obtained by
the remaining players, require the payoffs of the remaining players not to
change. The concept of reduced game consistency, firstly proposed by Davis
and Maschler (1965, [29]), has been used to characterize various solutions
for TU-games, such as the Shapley value (Hart and Mas-Collel 1989, [46]),
nucleolus (Snijders 1995, [95]), the efficient, symmetric and linear (ESL)
values (Radzik and Driessen 2016, [91], Su, Driessen and Xu 2019, [98])

61
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and so on. More results about reduced game consistency can be found in
the survey paper by Driessen (1991, [34]).

In this chapter, which is based on Li et al. (2021, [67, 70]), we fo-
cus on associated games. In associated games, the player set does not
change, but coalitions revalue their worths by claiming part of the sur-
plus in the game that is left after this coalition and the players outside the
coalition get some initial share in the total worth. An advantage of the
associated consistency axioms is that no players leave or enter the game,
and thus the player set does not change. Hamiache (2001, [42]) firstly in-
troduced the concept of associated consistency to characterize the Shapley
value. Subsequently, a matrix approach is applied to associated games to
characterize the Shapley value in Xu et al. (2008, [116]) and Hamiache
(2010, [43]). Driessen (2010, [35]) generalized Hamiache’s associated
game and characterized the class of the ESL values by a corresponding
associated consistency. Hwang et al. (2006, [50] and 2017, [52]) showed
that the EANSC value is the unique solution satisfying continuity, efficiency,
symmetry, translation covariance and associated consistency (with respect
to Hwang’s associated game). Xu et al. (2015, [118]) gave comparable
axiomatizations of the EANSC and the CIS values using associated consis-
tency. Xu et al. (2013, [119]) showed that the CIS value is the unique
solution satisfying continuity, efficiency, symmetry, translation covariance
and associated consistency (with respect to the so-called C-individual asso-
ciated game).

To define an associated game, Xu et al. (2009, [117] and 2013, [119])
assumed that any coalition is formed by its members joining one by one.
They adopt “individual self-evaluation" to reevaluate the worths of coali-
tions. The worth of a coalition in the associated games differs from the
initial worth, by taking into account the possible loss of benefits due to
the departure of players in the coalition. Here, we introduce an alterna-
tive way to reevaluate the worth. Instead of considering the players in the
coalition as isolated elements, we consider the players in the coalition as a
whole. That is, we adopt “union self-evaluation" to reevaluate the worths
of coalitions. In this chapter, under “union self-evaluation" instead of “indi-
vidual self-evaluation", two alternative definitions of the associated games
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are constructed, namely the E-union associated game and the C-union asso-
ciated game. We continue to develop the works of Xu et al. (2009, [117]
and 2013, [119]). Firstly, we introduce the sequences of the E-union as-
sociated games and the C-union associated games and explore the conver-
gence of the two sequences and their limit games by the matrix approach.
Then, we characterize the EANSC value and the CIS value by associated
consistency (with respect to the E-union associated game and the C-union
associated game, respectively). Specifically, we show that the EANSC value
is the unique solution satisfying E-union associated consistency, continu-
ity, efficiency, symmetry and translation covariance, while the CIS value is
the unique solution satisfying C-union associated consistency, continuity,
efficiency, symmetry and translation covariance.

Besides axiomatization, we also consider dynamic processes derived
from associated games in this chapter. Dynamic processes can be defined
that lead the players to a specific solution, starting from an arbitrary Pareto-
optimal payoff vector. Stearns (1968, [96]) firstly devised dynamic transfer
schemes to implement a payoff vector which always converges to elements
of bargaining sets, starting from an arbitrary Pareto-optimal payoff vec-
tor. Subsequently, Maschler and Owen (1989, [75]) applied the reduced
game introduced by Hart and Mas-Colell (1989, [46]) to a dynamic pro-
cess which leads to the Shapley value for hyperplane TU-games. Hwang et
al. (2005, [53]) adopted Hamiache’s associated game (2001, [42]) to pro-
vide a dynamic process leading to any solution satisfying both the inessen-
tial game property and continuity. Hwang (2015, [51]) also adopted the
complement-associated game (2017, [52]) to provide a dynamic transfer
scheme and proved the necessary convergence result. In this chapter, we
continue and develop the works of Hwang et al. (2005, [53]) and Hwang
(2015, [51]), and turn to different associated games, the individual as-
sociated game and the union associated game1. We propose two dynamic

1Both the Sh-individual associated game (mentioned in Chapter 1) and the C-individual
associated game are simply called the individual associated game, and both the E-union
associated game and the C-union associated game are simply called the union associated
game.
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processes on the basis of the individual associated game and the union as-
sociated game respectively that lead to the CIS value and EANSC value,
starting from an arbitrary efficient payoff vector. This follows from a more
general result showing that the dynamic processes can lead to any solu-
tion satisfying the inessential game property and continuity. Moreover, we
also provide a dynamic transfer scheme that leads to any solution satisfying
both the dummy player property and continuity.

The rest of this chapter is organized as follows. In Section 3.2, we
define two different versions of the union associated games based on the
idea of “union self-evaluation". In Section 3.3, we explore the convergence
of the sequences of the union associated games by the matrix approach.
In Section 3.4, we characterize the EANSC value and the CIS value by
the union associated consistency axioms. In Section 3.5, we propose two
dynamic processes on the basis of the individual associated game and the
union associated game respectively that lead to the CIS value and EANSC
value. Section 3.6 provides all proofs of this chapter. Section 3.7 concludes
with a brief summary.

3.2 Union based associated games

In the framework of solution theory for TU-games, associated consistency
is an important characteristic of viable and stable solutions. Associated
consistency requires that the solution is invariant under the adaptation of
the game into its associated game. As mentioned in Chapter 1, Xu et al.
(2009, [117] and 2013, [119]) introduced the notion of the “individual as-
sociated game" to characterize the Shapley value and the CIS value by using
two different associated consistency axioms. We review the two definitions
of associated games as follows.

Definition 3.1 (Xu et al. 2009, [117]). Given 〈N, v〉 ∈ GN and a real
number λ, 0 ≤ λ ≤ 1, the Sh-individual associated game 〈N, v∗λ,Sh,I〉 is
defined by, for all S ⊆ N ,

v∗λ,Sh,I(S) = v(S)− λ
∑
j∈S

[v(S)− v(S\{j})− SCj(N, v)].
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Definition 3.2 (Xu et al. 2013, [119]). Given 〈N, v〉 ∈ GN and a real
number λ, 0 ≤ λ ≤ 1, the C-individual associated game 〈N, v∗λ,C,I〉 is defined
by

v∗λ,C,I(S) =

{
v(S)− λ

∑
j∈S [v(S)− v(S\{j})− v({j})], if S ( N ;

v(N), if S = N .

A common interpretation of the two associated games is as follows.
For a given TU-game, coalitions may reevaluate their worths by taking
into consideration the coalitions breaking down due to the departure of a
player. Both associated games reflect a pessimistic self-evaluation of worths
of coalitions. In the process of reevaluating worth, it is assumed that any
coalition is formed as its members joining one by one. Thus, it will cause a
loss of benefits v(S)−v(S\{i})−v({i}) according to the Sh-individual asso-
ciated game (or v(S)− v(S\{i})−SCi(N, v) according to the C-individual
associated game) derived from player i’s leaving coalition S. In these asso-
ciated games, the parameter λ is technical, and it can be interpreted as a
percentage of all the possible losses.2

As mentioned, the worth of coalition S in the associated games dif-
fers from the initial worth, by taking into account the possible loss of
benefits due to the departure of players in coalition S. In the associ-
ated games above, each coalition S considers players in S as isolated el-
ements. That is, they adopt “individual self-evaluation" to reevaluate the
worths of coalitions. The goal of this chapter is to see if we can get sim-
ilar results if, instead of an “individual self-evaluation” approach, we take
a “union self-evaluation” approach, where, instead of adding the individ-
ual effects of players in a coalition, we look at the impact when coalitions
revealuate their worth as a whole. Similar as in the two associated games
above, we reevaluate based on the separable contributions and individual
worths, respectively. But now each coalition S considers itself as a whole,
and it will suffer a loss of benefits v(S) −

∑
i∈S SCi(N, v) (respectively

v(S) −
∑

i∈S v({i})) due to the departure of players in coalition S. That

2In Hamiache’s associated game (Hamiache 2001, [42]), the parameter λ is interpreted
as a percentage of all the possible surpluses.
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is, we adopt “union self-evaluation" to reevaluate the worths of coalitions.
Similar as above, two different versions of such “union associated games”
can be defined as follows.

Definition 3.3. Given 〈N, v〉 ∈ GN and a real number λ, 0 ≤ λ ≤ 1, the
E-union associated game 〈N, v∗λ,E,U 〉 is defined by

v∗λ,E,U (S) =

{
v(S)− λ

[
v(S)−

∑
j∈S SCj(N, v)

]
, if S ( N ;

v(N), if S = N .

Definition 3.4. Given 〈N, v〉 ∈ GN and a real number λ, 0 ≤ λ ≤ 1, the
C-union associated game 〈N, v∗λ,C,U 〉 is defined by,

v∗λ,C,U (S) =

{
v(S)− λ

[
v(S)−

∑
j∈S v({j})

]
, if S ( N ;

v(N), if S = N .

Remark 3.1. For all 〈N, v〉 ∈ GN and its E-union associated game 〈N, v∗λ,E,U 〉,
it holds that v∗λ,E,U (N) = v(N), and for all i ∈ N ,

v∗λ,E,U (N\{i}) =v(N \ {i})− λ

v(N \ {i}) + SCi(N, v)−
∑
j∈N

SCj(N, v)


=v(N\{i})− λ

v(N)−
∑
j∈N

SCj(N, v)

 .
Thus, it is easy to obtain that EANSC(N, v∗λ,E,U ) = EANSC(N, v).

Remark 3.2. For all 〈N, v〉 ∈ GN and its C-union associated game 〈N, v∗λ,C,U 〉,
it holds that v∗λ,C,U (N) = v(N) and v∗λ,C,U ({i}) = v({i}) for all i ∈ N . Thus,
it is easy to see that CIS(N, v∗λ,C,U ) = CIS(N, v).

3.3 Matrix approach and associated games

In this section, we consider the sequences of the E-union associated games
and the C-union associated games respectively, where, starting with the
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original game, we take its associated game, the associated game of this as-
sociated game, etc. We show that these sequences converge to a special
type of games. For all 〈N, v〉 ∈ GN , the sequence of the E-union associ-
ated games, {〈N, vm∗λ,E,U 〉}∞m=0, is defined by v0∗

λ,E,U = v, and v
(m+1)∗
λ,E,U =

(vm∗λ,E,U )∗λ,E,U ,m = 0, 1, · · · . Similarly, the sequence of the C-union asso-

ciated games, {〈N, vm∗λ,C,U 〉}∞m=0, is defined by v0∗
λ,C,U = v, and v

(m+1)∗
λ,C,U =

(vm∗λ,C,U )∗λ,C,U ,m = 0, 1, · · · . Next, we will explore the convergence of the
two sequences and their limit games by the matrix approach.

The set GN of all n-person TU-games with player set N is identified
with the (2n − 1)-dimensional vector space R2n−1. The components of a
(2n−1)-dimensional vector represent the worths of the (2n−1) non-empty
coalitions in N . A linear solution for TU-games is a linear operator in the
TU-games space GN that can be represented as a matrix multiplication. Xu
et al. (2008, [116]) introduced some concepts of coalitional matrices to
analyze linear operators on GN that will be used below. A matrix M is row-
coalitional (column-coalitional) if the number of rows (columns) is 2n − 1

and each row (column) is indexed by a different non-empty coalition S ⊆
N . A (2n−1)-dimensional vector x is row-inessential if xS =

∑
i∈S xi for all

non-empty coalitions S ⊆ N , and is almost-inessential if xS =
∑

i∈S xi for
all S ( N , where each component xS of x is indexed by each non-empty
coalition S ⊆ N . A (2n−1)×m row-coalitional matrix M is row-inessential
if the row of M indexed by the non-empty coalition S ⊆ N is the sum of
all rows of M indexed by i ∈ S, that is, MS =

∑
i∈SMi for all non-empty

coalitions S ⊆ N .

Linear solutions can be written as the product of an n × (2n − 1)-
dimensional matrix M and the vector v representing the TU-game. Specifi-
cally, for all 〈N, v〉 ∈ GN , the EANSC value can be rewritten in matrix form
as

EANSC(N, v) = MEv,
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where ME = [ME
i,S ]i∈N,S⊆N,S 6=∅ is a n× (2n−1) column-coalitional matrix,

which component ME
i,S is given by

ME
i,S =


1
n , if S = N ;
−1 + 1

n , if S = N\{i};
1
n , if S = N\{j}, j ∈ N\{i};
0, otherwise.

Associated games can be expressed as a linear transformation of TU-
games, which is written by multiplication of a (2n−1)×(2n−1)-dimensional
matrix M with the TU-game vector v. Specifically, for all 〈N, v〉 ∈ GN , the
E-union associated game 〈N, v∗λ,E,U 〉 can be rewritten in matrix form as

v∗λ,E,U = ME,U · v,

where ME,U = [ME,U
S,T ]S,T⊆N,S,T 6=∅ is a (2n − 1) × (2n − 1) row-coalitional

matrix, which component ME,U
S,T is given by

ME,U
S,T =



1− λ, if T = S ( N ;
1, if T = S = N ;
−λ, if T = N\{k}, k ∈ S ( N ;
sλ, if T = N, S ( N ;
0, otherwise.

Lemma 3.5. For the row-coalitional matrix ME,U , the following three state-
ments hold.

(i) 1 is an eigenvalue ofME,U , the dimension of the corresponding eigenspace
is equal to n and the corresponding eigenvectors are row-inessential.

(ii) 1− λ is an eigenvalue of ME,U and the dimension of the corresponding
eigenspace is equal to 2n − n− 2.

(iii) 1−nλ is an eigenvalue of ME,U and the dimension of the corresponding
eigenspace is equal to 1.
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The proof of Lemma 3.5 and of all other results in this chapter can be
found in Section 3.6.

Lemma 3.6 (Xu et al. 2008, [116]). Let A be a matrix and M be a row-
coalitional matrix.

(i) If M is row-inessential, then the matrix MA is also row-inessential.

(ii) If A is an invertible matrix, then MA is row-inessential if and only if
M is row-inessential.

(iii) If M is a row-inessential matrix, then the TU-game 〈N,Mv〉 is inessen-
tial.

Now, we state our first main result on the convergence of the sequence
of E-union associated games.

Proposition 3.7. Let 0 < λ < 1
n . Then for all 〈N, v〉 ∈ GN , the sequence of

the E-union associated games {〈N, vm∗λ,E,U 〉}∞m=0 converges, and its limit game
〈N, v̂〉 is inessential.

Next, we consider the sequence of C-union associated games. For all
〈N, v〉 ∈ GN , the C-union associated game 〈N, v∗λ,C,U 〉 can be rewritten in
matrix form as

v∗λ,C,U = MC,U · v,

where MC,U = [MC,U
S,T ]S,T⊆N,S,T 6=∅ is a (2n − 1) × (2n − 1) row-coalitional

matrix, and its component MC,U
S,T is given by

MC,U
S,T =


1− λ, if T = S ( N ;
1, if T = S = N ;
λ, if T = {k}, k ∈ S ( N ;
0, otherwise.

Lemma 3.8. Eigenvalues of the row-coalitional matrixMC,U are equal to 1 or
1− λ. Moreover, the eigenspace corresponding to eigenvalue 1 has dimension
(n+ 1) (the only free variables are xN and xk, k ∈ N , and every eigenvector
is almost-inessential); also, the eigenspace corresponding to eigenvalue 1 − λ
has dimension (2n − n− 2) (the only free variables are xS , 2 ≤ s ≤ n− 1).
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Lemma 3.9 (Xu et al. 2013, [119]). Let A be a matrix and M be a row-
coalitional matrix.

(i) IfM is almost-inessential, then the matrixMA is also almost-inessential.

(ii) If A is an invertible matrix, then MA is almost-inessential if and only if
M is almost-inessential.

(iii) If M is an almost-inessential matrix, then the TU-game 〈N,Mv〉 is
almost-inessential.

Next, we state our result on the convergence of the sequence of C-union
associated games.

Proposition 3.10. Let 0 < λ < 1. Then for all 〈N, v〉 ∈ GN , the sequence of
the C-union associated games {〈N, vm∗λ,C,U 〉}∞m=0 converges, and its limit game
〈N, v̄〉 is almost-inessential.

Remark 3.3. As mentioned, the convergence of the sequences of the two
union associated games and the limit games is revealed by using the matrix
approach. An alternative approach to prove convergence of the sequences
is as follows. Let us take the sequence of the C-union associated games,
{〈N, vm∗λ,C,U 〉}∞m=0, as an example. Given 〈N, v〉 ∈ GN and S ( N , the term
vm∗λ,C,U (S) can be expressed as a linear combination of v(S) and v({i}) for
all i ∈ S, that is,

vm∗λ,C,U (S) = αmv(S) + βm
∑
j∈S

v({j}),

where αm ∈ R and βm ∈ R. We can prove that the coefficients αm and βm
satisfy the following recursive relationships and determine the coefficients
αm and βm. We can obtain the following three facts: (a) the coefficients αm
and βm satisfy the recursive relationships, αm+1 = (1 − λ)αm and βm+1 =

(1− λ)βm + λ; (b) the coefficients αm and βm are given by αm = (1− λ)m

and βm = 1 − (1 − λ)m for all m ≥ 1; (c) the sequence of the C-union
associated games, {〈N, vm∗λ,C,U 〉}∞m=0, converges and its limit game is almost-
inessential. These results are coincident with the conclusions in Proposition
3.10.
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3.4 Axiomatizations of the EANSC value and the CIS
value

Hwang et al. (2006, [50] and 2017, [52]) showed that the EANSC value is
the unique solution satisfying continuity, efficiency, symmetry, translation
covariance and associated consistency (with respect to Hwang’s associated
game). Xu et al. (2013, [119]) showed that the CIS value is the unique so-
lution satisfying continuity, efficiency, symmetry, translation covariance and
associated consistency (with respect to the C-individual associated game).
In Section 3.2, we introduced two new associated games, the E-union as-
sociated game and the C-union associated game, that are based on union
self-evaluation. In this section, we will characterize the EANSC value and
the CIS value by associated consistency with respect to the E-union associ-
ated game and the C-union associated game, respectively.

Formally, these two new associated consistency axioms are given as fol-
lows. Let λ ∈ [0, 1].

• E-union associated consistency for λ. For all 〈N, v〉 ∈ GN , it holds
that ϕ(N, v) = ϕ(N, v∗λ,E,I).

• C-union associated consistency for λ For all 〈N, v〉 ∈ GN , it holds
that ϕ(N, v) = ϕ(N, v∗λ,C,I).

Associated consistency shows stability with respect to a specific way
that coalitions reevaluate their worth when players in the coalition stop co-
operation. If a solution violates associated consistency, then players might
not respect the original compromise but revise the payoff distribution. E-
union associated consistency, respectively, C-union associated consistency
says that a solution gives the same payments to players in the original
game as it does to players of the E-union associated game, respectively, the
C-union associated game.

Next, we characterize the EANSC value and the CIS value by E-union
associated consistency and C-union associated consistency, respectively.
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Theorem 3.11. Let 0 < λ < 1
n . A solution ϕ on GN satisfies E-union asso-

ciated consistency for λ, continuity and the inessential game property if and
only if ϕ is the EANSC value.

An alternative axiomatization is provided by replacing the inessential
game property with efficiency, symmetry and translation covariance. It is
well-known that, if a solution satisfies efficiency, symmetry and translation
covariance, then it satisfies the inessential game property. Thus, we can
draw the following conclusion directly.

Corollary 3.12. Let 0 < λ < 1
n . A solution ϕ on GN satisfies E-union as-

sociated consistency for λ, continuity, efficiency, symmetry and translation
covariance if and only if ϕ is the EANSC value.

Next, we give an axiomatization of the CIS value using C-union associ-
ated consistency. As mentioned in Section 3.3, the sequence of the E-union
associated games converges to an inessential game, while the sequence
of the C-union associated games converges to an almost-inessential game.
Replacing in Theorem 3.11, E-union associated consistency with C-union
associated consistency, and replacing the inessential game property with
the almost inessential game property and efficiency, characterizes the CIS-
value.

Theorem 3.13. Let 0 < λ < 1. A solution ϕ on GN satisfies C-union asso-
ciated consistency for λ, continuity, the almost inessential game property and
efficiency if and only if ϕ is the CIS value.

Similar as Corollary 3.12 for the EANSC value, since efficiency, sym-
metry and translation covariance of a solution, implies that it satisfies the
almost inessential game property, another axiomatization of the CIS value
can be obtained by replacing the almost inessential game property with
efficiency, symmetry and translation covariance.

Corollary 3.14. Let 0 < λ < 1. A solution ϕ on GN satisfies C-union as-
sociated consistency for λ, continuity, efficiency, symmetry and translation
covariance if and only if ϕ is the CIS value.
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Remark 3.4. Associated consistency is a requirement of “stability" in the
sense that it expresses how payoffs of players are invariant if the worth
of coalitions are reevaluated because (the expectation that) some play-
ers might not cooperate. The EANSC value and the CIS value have been
characterized by different associated consistency properties before in, e.g.
Hwang et al. (2006, [50] and 2017, [52]) and Xu et al. (2013, [119]).
Different associated games take a different angle in ‘revaluating’ the worth
of coalitions. Some associated games in the literature (see, Hamiache
2001, [42] and Hwang et al. 2017, [54]) focus on reevaluating the worth
of a coalition by considering what the coalition expects from the surplus it
can obtain from cooperation with players outside the coalition. However,
in the E-union associated game and the C-union associated game consid-
ered in this chapter, the worths of coalitions are reevaluated in view of
expecting that some players inside the coalition might not fully contribute.
Besides the difference between focussing on gains or losses, the associated
games in this chapter take a union self-evaluation approach, while other
associated games consider individual self-evaluation (Xu et al. 2009, [117]
and Xu et al. 2009, [119]).

We also want to remark that the introduction of union-associated con-
sistency greatly simplifies the proof of the axiomatizations of the EANSC
value and CIS value, as can be seen in Section 3.6.

3.5 Dynamic transfer schemes derived from associ-
ated games

Hwang et al. (2005, [53]) adopted Hamiache’s associated game (Hami-
ache 2001, [42]) to provide a dynamic process leading to the Shapley
value. More precisely, they proved that this dynamic process converges to
any solution satisfying both the inessential game property and continuity,
depending on the definition of the sequence of games.

Definition 3.15 (Hwang et al. 2005, [53]). Given 〈N, v〉 ∈ GN , x ∈
RN and a real number λ, 0 ≤ λ ≤ 1, the x-Hamiache’s associated game
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〈N, v∗λ,x,H〉 is defined by

v∗λ,x,H(S) =

{
0, if S = ∅;
v(S) + λ

∑
j∈N\S [v(S ∪ {j})− v(S)− xj ], otherwise.

The x-Hamiache’s associated game is constructed by replacing the indi-
vidual worths vector “v({j})” in Hamiache’s associated game by the payoff
“xj”. The sequence of associated games, {〈N, vm∗λ,x,H〉}∞m=0, is inductively

defined by v0∗
λ,x,H = v and v(m+1)∗

λ,x,H = (vm∗λ,x,H)∗λ,x,H ,m = 0, 1, · · · . Based on
the x-Hamiache’s associated game, Hwang et al. (2005, [53]) introduced a
dynamic process that converges to any solution satisfying both the inessen-
tial game property and continuity. Given 〈N, v〉 ∈ GN , let the set of efficient
payoff vectors X(N, v) be given by X(N, v) = {x ∈ RN |

∑
k∈N xk = v(N)}.

Theorem 3.16 (Hwang et al. 2005, [53]). Let 0 < λ < 2
n . Given 〈N, v〉 ∈

GN and x ∈ X(N, v), the dynamic sequence {xm}∞m=0 with x0 = x and

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,H )− ϕ(N, vm∗λ,x,H)], m ≥ 1,

converges to ϕ(N, v) if the solution ϕ satisfies the inessential game property
and continuity.

3.5.1 Process based on the individual associated game

In this subsection, we continue and develop the work of Hwang et al.
(2005, [53]), and turn to the individual associated game. Specifically, we
propose a dynamic transfer scheme on the basis of the individual associated
game to lead to any solution satisfying both the inessential game property
and continuity.

Definition 3.17. Given 〈N, v〉 ∈ GN , x ∈ RN and a real number λ, 0 ≤ λ ≤
1, the x-individual associated game 〈N, v∗λ,x,I〉 is defined by

v∗λ,x,I(S) =

{
0, if S = ∅;
v(S)− λ

∑
j∈S [v(S)− v(S\{j})− xj ], otherwise.

(3.1)
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Note that the x-individual associated game is constructed by replac-
ing “SCj(N, v)” (or, v({j})) in the Sh-individual (or, C-individual) as-
sociated game by “xj”. Then, the sequence of the x-individual associ-
ated games, {〈N, vm∗λ,x,I〉}∞m=0, is inductively defined by v0∗

λ,x,I = v and

v
(m+1)∗
λ,x,I = (vm∗λ,x,I)

∗
λ,x,I ,m = 0, 1, · · · . According to Eq.(3.1), the general

representation of the m-fold x-individual associated game 〈N, vm∗λ,x,I〉 can
be written as

vm∗λ,x,I(S) =
∑
T⊆S

asm(t)v(T ) + bm
∑
j∈S

xj , (3.2)

for all S ⊆ N , where asm(t) and bm are certain coefficients with respect to
λ. It is straightforward to obtain that b0 = 0, as0(s) = 1 and as0(t) = 0 for
each 1 ≤ t < s.

We now try to identify these coefficients.

Lemma 3.18. The coefficients asm(t) and bm of the representation (3.2) satisfy
the following recursive formulas,

(i) bm+1 = (1− λ)bm + λ for each m ≥ 0.

(ii) asm+1(s) = (1− sλ)asm(s) for each s ≥ 1 and m ≥ 0.

(iii) asm+1(t) = (1 − sλ)asm(t) + (s − t)λas−1
m (t) for each s ≥ 1, 1 ≤ t < s

and m ≥ 0.

(iv) asm+1(t) = (1− tλ)asm(t) + (s− t)λasm(t+ 1) for each s ≥ 1, 1 ≤ t < s

and m ≥ 0.

(v) asm(s−k) =
∑k

d=0(−1)k−d

(
k

d

)
as−dm (s−d) for each s ≥ 1, 0 ≤ k < s

and m ≥ 0.

Lemma 3.19. The coefficients asm(t) and bm of the representation (3.2) satisfy
the following recursive formulas,

(i) bm = 1− (1− λ)m for each m ≥ 1.
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(ii) asm(s − k) =
∑k

d=0(−1)k−d

(
k

d

)
[1 − (s − d)λ]m for each s ≥ 1,

0 ≤ k < s and m ≥ 1.

Now, we show the convergence of the sequence of the x-individual as-
sociated games {〈N, vm∗λ,x,I〉}∞m=0.

Lemma 3.20. For each 0 < λ < 2
n , the sequence of the x-individual associated

games, {〈N, vm∗λ,x,I〉}∞m=0, converges to the limit game 〈N, v̄x〉 which is given
by v̄x(S) =

∑
j∈S xj for all S ⊆ N .

The sequence of the x-individual associated games, {〈N, vm∗λ,x,I〉}∞m=0,
denotes an iterative process of reevaluating worths of coalitions. Every
coalition S updates its worth by assigning to the coalition its own worth
minus a certain loss of benefit derived from the fact that any member j ∈ S
secedes from the coalition S. Lemma 3.20 shows that the sequence of
the x-individual associated games converges to an inessential game that is
described by the proposed payoff vector x. Next, we introduce a dynamic
process that leads to any solution satisfying the inessential game property
and continuity. Let ϕ be a solution satisfying both the inessential game
property and continuity. Given 〈N, v〉 ∈ GN , x ∈ X(N, v) and 0 < λ < 2

n ,
we define a dynamic sequence {xm}∞m=0 with x0 = x and

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,I )− ϕ(N, vm∗λ,x,I)], m ≥ 1. (3.3)

This is similar to a dynamic process introduced by Hwang et al. (2015,
[51] and 2005, [53]). They also proposed a dynamic sequence to any
solution satisfying both the inessential game property and continuity on
the basis of Hamiache’s associated game (Hamiache 2001, [42]) and the
complement-associated game of Hwang et al. (2017, [52]), respectively. In
this subsection, we use the individual associated game to define a dynamic
sequence. The dynamic sequence {xt}∞t=0 is like a reappraised process that
leads to any solution satisfying both the inessential game property and con-
tinuity, starting from an arbitrary payoff vector x ∈ X(N, v). Imagine a
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situation where there is an arbitrator and every player obeys the sugges-
tion of the arbitrator. The arbitrator will lead the players to a reasonable
allocation by using a fair rule.

Theorem 3.21. Let 0 < λ < 2
n . Given 〈N, v〉 ∈ GN and x ∈ X(N, v), the

dynamic sequence {xm}∞m=0 with x0 = x and

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,I )− ϕ(N, vm∗λ,x,I)], m ≥ 1,

converges to ϕ(N, v) if the solution ϕ satisfies the inessential game property
and continuity.

If a solution ϕ satisfies the dummy player property, then it satisfies the
inessential game property. Thus, we can obtain the following corollary by
Theorem 3.21.

Corollary 3.22. Let 0 < λ < 2
n . Given 〈N, v〉 ∈ GN and x ∈ X(N, v), the

dynamic sequence {xm}∞m=0 with x0 = x and

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,I )− ϕ(N, vm∗λ,x,I)], m ≥ 1,

converges to ϕ(N, v) if the solution ϕ satisfies the dummy player property and
continuity.

The following two corollaries follow from Theorem 3.21. They state
that the EANSC value and the CIS value can be implemented by a dynamic
process as above respectively, starting from an arbitrary efficient payoff
vector.

Corollary 3.23. Let 0 < λ < 2
n . Given 〈N, v〉 ∈ GN and x ∈ X(N, v), the

dynamic sequence {xm}∞t=m with x0 = x and

xm = xm−1 + [EANSC(N, v
(m−1)∗
λ,x,I )− EANSC(N, vm∗λ,x,I)], m ≥ 1,

converges to the EANSC value payoff vector EANSC(N, v).
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Corollary 3.24. Let 0 < λ < 2
n . Given 〈N, v〉 ∈ GN and x ∈ X(N, v), the

dynamic sequence {xm}∞t=m with x0 = x and

xm = xm−1 + [CIS(N, v
(m−1)∗
λ,x,I )− CIS(N, vm∗λ,x,I)], m ≥ 1,

converges to the CIS value payoff vector CIS(N, v).

3.5.2 Process based on the union associated game

In this subsection, we turn to the union associated game and propose a
dynamic process on the basis of the union associated game to lead to any
solution satisfying both the inessential game property and continuity.

Definition 3.25. Given 〈N, v〉 ∈ GN , x ∈ RN and a real number λ, 0 ≤ λ ≤
1, the x-union associated game 〈N, v∗λ,x,U 〉 is defined by

v∗λ,x,U (S) =

{
0, if S = ∅;
v(S)− λ[v(S)− x(S)], otherwise.

(3.4)

The x-union associated game is given by replacing “
∑

j∈S SCj(N, v)”

(or,
∑

j∈S v({j})) in the E-union (or, C-union) associated game by the pay-
off “x(S)”. The sequence of the x-union associated games, {〈N, vm∗λ,x,U 〉}∞m=0,

is inductively defined by v0∗
λ,x,U = v, and v

(m+1)∗
λ,x,U = (vm∗λ,x,U )∗λ,x,U ,m =

0, 1, · · · . In view of the representation (3.4) of the x-union associated
game, the general representation of the m-fold x-union associated game
〈N, vm∗λ,x,U 〉 can be written as

vm∗λ,x,U (S) = csmv(S) + dsmx(S) (3.5)

for all S ⊆ N , where csm and dsm are certain coefficients with respect to λ.

The next lemma identifies these coefficients.

Lemma 3.26. The coefficients csm and dsm in expression (3.5) of the m-fold
x-union associated game 〈N, vm∗λ,x,U 〉 satisfy the following recursive formulas:

csm = (1− λ)m and dsm = 1− (1− λ)m.
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The next lemma shows that, updating the worths of coalitions by assign-
ing to every coalition S its worth minus a fraction of its excess according
to the proposed payoff vector x, converges to an inessential game that is
described by the payoff vector x.

Lemma 3.27. For all 〈N, v〉 ∈ GN , x ∈ X(N, v) and 0 < λ < 1, the sequence
of the x-union associated games {〈N, vm∗λ,x,U 〉}∞m=0 converges to the limit game
〈N, v̂x〉 which is given by v̂x(S) = x(S) for all S ⊆ N .

Let ϕ be a solution satisfying both the inessential game property and
continuity. Given 〈N, v〉 ∈ GN and x ∈ X(N, v), we define a dynamic
sequence {xm}∞m=0 with x0 = x and

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,U )− ϕ(N, vm∗λ,x,U )], m ≥ 1. (3.6)

Similar as before, we show that the dynamic sequence described by
expression (3.6) converges to any solution satisfying both the inessential
game property and continuity.

Theorem 3.28. Let 0 < λ < 1. Given 〈N, v〉 ∈ GN and x ∈ X(N, v),
the dynamic sequence {xm}∞m=0 with x0 = x and xm described by expression
(3.6), converges to ϕ(N, v) if the solution ϕ satisfies the inessential game
property and continuity.

3.6 Proofs

Proof of Lemma 3.5. (i) Let I be the (2n − 1) × (2n − 1) identity matrix.
It is easy to verify that the last row of matrix (ME,U − I) is the zero
vector. Thus, 1 is an eigenvalue of ME,U . Let x be the corresponding
eigenvector of eigenvalue 1 indexed by non-empty coalition S ⊆ N .
Since (ME,U − I)x = 0 and 0 < λ < 1, it implies that

−xS −
∑
k∈S

xN\{k} + sxN = 0, (3.7)

for all S ( N . If s = 1, then we have xN = xk + xN\{k} for all
k ∈ N . Together with Eq.(3.7), we can obtain that xS =

∑
k∈S xk
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for all S ⊆ N , S 6= ∅. Therefore, any eigenvector x corresponding to
eigenvalue 1 is row-inessential and the dimension of the correspond-
ing eigenspace is equal to n.

(ii) Let A = ME,U − (1 − λ)I. Denote the columns of matrix A by AT ,
T ⊆ N and T 6= ∅. It is easy to verify that all columns AT with
1 ≤ t ≤ n− 2 are zero vectors. Thus, 1− λ is an eigenvalue of ME,U .
Let x be the corresponding eigenvector of eigenvalue 1 − λ indexed
by non-empty coalition S ⊆ N . Since Ax = 0 and 0 < λ < 1, we have

sxN −
∑
k∈S

xN\{k} = 0, (3.8)

for all S ( N . If S = N , we have xN = 0. Together with Eq.(3.8),
we can obtain that

∑
k∈S xN\{k} = 0 for all S ( N . Then, we have

xN = 0 and xN\{k} = 0 for all k ∈ N . Therefore, the variables
xS with 1 ≤ s ≤ n − 2 are free variables and the dimension of the
corresponding eigenspace is equal to 2n − n− 2.

(iii) Let x = [xS ]S⊆N,S 6=∅ be a (2n − 1)-dimensional vector with xN = 0

and xS = s for all S ( N . Denote the rows of matrix ME,U by ME,U
S ,

S ⊆ N,S 6= ∅. Then, we have ME,U
N x = 0, and for all S ( N ,

ME,U
S x = (1− λ)s− λ(n− 1)s = (1− nλ)s.

Thus, we have ME,Ux = (1 − nλ)x, and 1 − nλ is an eigenvalue of
ME,U . Suppose the multiplicities of the eigenvalue 1 − nλ equals to
m. Then, we have

1 ≤ m ≤ 2n − 1− n− (2n − n− 2) = 1,

which implies that m = 1. Therefore, 1, 1−λ, 1−nλ are all eigenval-
ues of ME,U since the sum of their dimensions of the corresponding
eigenspace equals to 2n − 1, and ME,U is diagonalizable.
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Proof of Proposition 3.7. By Lemma 3.5, the matrix ME,U is diagonalizable
and ME,U = PDλP

−1, where Dλ = diag(1, ..., 1, 1−λ, ..., 1−λ, 1−nλ) and
P consists of eigenvectors of ME,U corresponding to eigenvalues 1, 1 − λ
and 1− nλ. Since 0 < λ < 1

n , then we have

lim
k→∞

(ME,U )k = lim
k→∞

P (Dλ)kP−1 = PDP−1,

whereD = diag(1, ..., 1, 0, ..., 0). Then, we have PD = [x1, x2, ..., xn,0, ...,0],
where the column vectors xi, i = 1, ..., n, are the corresponding eigenvec-
tors of eigenvalue 1. Since xi, i = 1, ..., n, are row-inessential by Lemma
3.5, PD is also row-inessential. Thus, by Lemma 3.6, PDP−1 is also
row-inessential, and the TU-game 〈N,PDP−1v〉 is inessential. Since v̂ =

limk→∞(ME,U )k · v = PDP−1v, the limit game 〈N, v̂〉 is inessential.

Proof of Lemma 3.8. Let I be the (2n − 1) × (2n − 1) identity matrix. It
is easy to verify that the last row of matrix (MC,U − I) is the zero vector.
Thus, 1 is an eigenvalue ofMC,U . Let x be the eigenvector corresponding to
eigenvalue 1 indexed by non-empty coalition S ⊆ N . Since (MC,U − I)x =

0 and 0 < λ < 1, this implies that xS =
∑

k∈S xk for all S ( N . Thus,
the only free variables are xN and xk, k ∈ N . Therefore, any eigenvector
x corresponding to eigenvalue 1 is almost-inessential and the dimension of
the corresponding eigenspace is equal to n+ 1.

Let A = MC,U − (1− λ)I. Denote the columns of matrix A by AT , T ⊆
N,T 6= ∅. It is easy to verify that all columns AT with 2 ≤ t ≤ n−1 are zero
vectors. Thus, 1− λ is an eigenvalue of MC,U . Let x be the corresponding
eigenvector of eigenvalue 1 − λ indexed by non-empty coalition S ⊆ N .
Since Ax = 0 and 0 < λ < 1, we have xN = 0 and xk = 0 for all k ∈ N .
Therefore, the variables xS with 2 ≤ s ≤ n − 1 are free variables and the
dimension of the corresponding eigenspace is equal to 2n − n− 2.

Proof of Proposition 3.10. By Lemma 3.8, the matrix MC,U is diagonaliz-
able and MC,U = PDλP

−1, where Dλ = diag(1, ..., 1, 1 − λ, ..., 1 − λ) and
P consists of eigenvectors of MC,U corresponding to eigenvalues 1 and
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1− λ. Since 0 < λ < 1, then we have

lim
k→∞

(MC,U )k = lim
k→∞

P (Dλ)kP−1 = PDP−1,

whereD = diag(1, ..., 1, 0, ..., 0). Then, we have PD = [x1, ..., xn+1,0, ...,0],
where the column vectors xi, i = 1, ..., n, n+ 1, are the eigenvectors corre-
sponding to eigenvalue 1. Since xi, i = 1, ..., n, n+1, are almost-inessential
by Lemma 3.8, then PD is also almost-inessential. Thus, by Lemma 3.9,
PDP−1 is also almost-inessential, and the TU-game 〈N,PDP−1v〉 is almost-
inessential. Since v̄ = limk→∞(MC,U )k ·v = PDP−1v, the limit game 〈N, v̄〉
is almost-inessential.

Proof of Theorem 3.11. It is straightforward to verify that the EANSC value
satisfies continuity and the inessential game property. E-union associated
consistency follows from Remark 3.1. It is left to show the uniqueness.

Suppose that a solution ϕ on GN satisfies E-union associated consis-
tency, continuity and the inessential game property. For all 〈N, v〉 ∈ GN ,
by Proposition 3.7, the sequence of repeated E-union associated games
{〈N, vm∗λ,E,U 〉}∞m=0 converges to an inessential game 〈N, v̂〉. By E-union as-
sociated consistency and continuity, we have

ϕ(N, v) = ϕ(N, v1∗
λ,E,U ) = ϕ(N, v2∗

λ,E,U ) = · · · = ϕ(N, v̂).

By the inessential game property, it holds that ϕi(N, v̂) = v̂({i}) for all i ∈
N . From this, ϕ is uniquely determined by these three axioms. Therefore,
ϕ(N, v) = EANSC(N, v).

Proof of Theorem 3.13. It is straightforward to verify that the CIS value sat-
isfies continuity, the almost inessential game property and efficiency. C-
union associated consistency follows from Remark 3.2. It is left to show
the uniqueness.

Suppose that a solution ϕ on GN satisfies C-union associated consis-
tency, continuity, the almost inessential game property and efficiency. For
all 〈N, v〉 ∈ GN , by Proposition 3.10, the sequence of repeated C-union as-
sociated games {〈N, vm∗λ,C,U 〉}∞m=0 converges to an almost inessential game
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〈N, v̄〉. By C-union associated consistency and continuity, we have

ϕ(N, v) = ϕ(N, v1∗
λ,C,U ) = ϕ(N, v2∗

λ,C,U ) = · · · = ϕ(N, v̄).

By the almost inessential game property and efficiency, it holds that ϕi(N, v̄) =

v̄({i}) + 1
n [v̄(N)−

∑
j∈N v̄({j})] for all i ∈ N . From this, ϕ is uniquely de-

termined by these four axioms. Therefore, ϕ(N, v) = CIS(N, v).

Proof of Lemma 3.18. For all 〈N, v〉 ∈ GN and x ∈ RN , by Eq.(3.2), the
(m+ 1)-fold x-individual associated game 〈N, v(m+1)∗

λ,x,I 〉 is given by

v
(m+1)∗
λ,x,I (S) =

∑
T⊆S

asm+1(t)v(T ) + bm+1

∑
j∈S

xj , (3.9)

for all S ⊆ N and m ≥ 0. On the one hand, combining Eq.(3.1) and
Eq.(3.2), we have

v
(m+1)∗
λ,x,I (S) = (vm∗λ,x,I)

∗
λ,x,I(S)

=(1− sλ)vm∗λ,x,I(S) + λ
∑
j∈S

vm∗λ,x,I(S\{j}) + λ
∑
j∈S

xj

=(1− sλ)

∑
T⊆S

asm(t)v(T ) + bm
∑
j∈S

xj


+ λ

∑
j∈S

 ∑
T⊆S\{j}

as−1
m (t)v(T ) + bm

∑
k∈S\{j}

xk

+ λ
∑
j∈S

xj

=(1− sλ)asm(s)v(S) + (1− sλ)
∑
T(S

asm(t)v(T ) + (1− sλ)bm
∑
j∈S

xj

+ λ
∑
j∈S

∑
T⊆S\{j}

as−1
m (t)v(T ) + λ

∑
j∈S

bm
∑

k∈S\{j}

xk + λ
∑
j∈S

xj

=(1− sλ)asm(s)v(S) +
∑
T(S

[
(1− sλ)asm(t) + (s− t)λas−1

m (t)
]
v(T )

+ [(1− λ)bm + λ]
∑
j∈S

xj , (3.10)
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for all S ⊆ N and m ≥ 0. On the other hand, combining Eq.(3.1) and
Eq.(3.2), we have

v
(m+1)∗
λ,x,I (S) = (v∗λ,x,I)

m∗
λ,x,I(S)

=
∑
T⊆S

asm(t)v∗λ,x,I(T ) + bm
∑
j∈S

xj

=
∑
T⊆S

asm(t)

(1− tλ)v(T ) + λ
∑
j∈T

v(T\{j}) + λ
∑
j∈T

xj

+ bm
∑
j∈S

xj

=
∑
T⊆S

(1− tλ)asm(t)v(T ) + λ
∑
T⊆S

asm(t)
∑
j∈T

v(T\{j})

+ λ
∑
T⊆S

asm(t)
∑
j∈T

xj + bm
∑
j∈S

xj

=(1− sλ)asm(s)v(S) +
∑
T(S

[(1− tλ)asm(t) + (s− t)λasm(t+ 1)] v(T )

+

[
bm + λ

s∑
t=1

(
s− 1

t− 1

)
asm(t)

]∑
j∈S

xj , (3.11)

for all S ⊆ N and m ≥ 0.

Comparing the coefficients obtained by Eq.(3.9)-Eq.(3.11), we have

bm+1 =(1− λ)bm + λ,

asm+1(s) =(1− sλ)asm(s),

asm+1(t) =(1− sλ)asm(t) + (s− t)λas−1
m (t),

asm+1(t) =(1− tλ)asm(t) + (s− t)λasm(t+ 1),

for each s ≥ 1, 1 ≤ t < s and m ≥ 0. Then, (i)-(iv) of this lemma hold.

Next, we will show (v) of this lemma, that is, for each s ≥ 1, 0 ≤ k < s

and m ≥ 1,

asm(s− k) =

k∑
d=0

(−1)k−d

(
k

d

)
as−dm (s− d). (3.12)

The proof proceeds by induction on the number k = s−(s−k), where s ≥ 1
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and 0 ≤ k < s. For k = 0, it reduces to the trivial equality asm(s) = asm(s)

for all s ≥ 1. By (iii) and (iv) of this lemma, we have

(1− sλ)asm(t) + (s− t)λas−1
m (t) = (1− tλ)asm(t) + (s− t)λasm(t+ 1).

Then, it holds that asm(t) = as−1
m (t) − asm(t + 1), specifically asm(s − 1) =

as−1
m (s−1)−asm(s). Thus, Eq.(3.12) holds for k = 1 and all s > 1. Suppose

that Eq.(3.12) holds on k − 1 and all s > k − 1. Then, we have

asm(s− (k − 1)) =

k−1∑
d=0

(−1)k−d−1

(
k − 1

d

)
as−dm (s− d),

as−1
m (s− 1− (k − 1)) =

k−1∑
d=0

(−1)k−d−1

(
k − 1

d

)
as−d−1
m (s− d− 1).

Thus, for any k > 1, we have

asm(s− k) = as−1
m (s− 1− (k − 1))− asm(s− (k − 1))

=
k−1∑
d=0

(−1)k−d−1

(
k − 1

d

)
as−d−1
m (s− d− 1)

−
k−1∑
d=0

(−1)k−d−1

(
k − 1

d

)
as−dm (s− d)

=

k∑
d=1

(−1)k−d

(
k − 1

d− 1

)
as−dm (s− d) +

k−1∑
d=0

(−1)k−d

(
k − 1

d

)
as−dm (s− d)

=
k∑
d=0

(−1)k−d

(
k

d

)
as−dm (s− d),

where the last equality is due to the fact that

(
k − 1

d− 1

)
+

(
k − 1

d

)
=(

k

d

)
for each 1 ≤ d ≤ k − 1.

Proof of Lemma 3.19. (i) By (i) of Lemma 3.18, it holds that bm = (1 −
λ)bm−1 +λ. Then, we have bm− 1 = (1−λ)(bm−1− 1), and bm−1

bm−1−1 =
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1−λ. Obviously, the sequence {bm−1}∞m=0 is a geometric progression,
and the common ratio is 1− λ. Thus, we can obtain

bm = 1 + (1− λ)m(b0 − 1) = 1− (1− λ)m.

(ii) By (ii) of Lemma 3.18, we have asm+1(s) = (1 − sλ)asm(s) for m ≥ 1

and as0(s) = 1. Then, asm(s) = (1 − sλ)m for m ≥ 1. Thus, by (v) of
Lemma 3.18, we have

asm(s− k) =

k∑
d=0

(−1)k−d

(
k

d

)
as−dm (s− d)

=
k∑
d=0

(−1)k−d

(
k

d

)
[1− (s− d)λ]m,

for each s ≥ 1, 0 ≤ k < s and m ≥ 1.

Proof of Lemma 3.20. Firstly, the sequence {bm}∞m=0 converges to 1, pro-
vided 0 < λ < 1, since bm = 1− (1− λ)m for each m ≥ 1 by (i) of Lemma
3.19. Secondly, by (ii) of Lemma 3.19, it is straightforward to obtain that

asm(t) =

s−t∑
d=0

(−1)s−t−d

(
s− t
d

)
[1− (s− d)λ]m,

for each 1 ≤ t ≤ s and m ≥ 1. Then, the sequence {asm(t)}∞m=0 converges
to 0 if and only if −1 < 1 − (s − d)λ < 1 for all 1 ≤ s ≤ n and 0 ≤ d < s.
For each 0 < λ < 2

n , we have

−1 < 1− nλ ≤ 1− (s− d)λ < 1.

Thus, the sequence {asm(t)}∞m=0 converges to 0, provided 0 < λ < 2
n .

Therefore, for each 0 < λ < 2
n , the limit game 〈N, v̄x〉 of the sequence
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{〈N, vm∗λ,x,I〉}∞m=0 is given by

v̄x(S) = lim
m→∞

∑
T⊆S

asm(t)v(T ) + bm
∑
j∈S

xj


=
∑
T⊆S

lim
m→∞

asm(t)v(T ) + lim
m→∞

bm
∑
j∈S

xj

=
∑
j∈S

xj ,

for all S ⊆ N .

Proof of Theorem 3.21. Let ϕ be a solution satisfying both the inessential
game property and continuity. Then, for all 〈N, v〉 ∈ GN and x ∈ X(N, v),
consider the dynamic sequence

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,I )− ϕ(N, vm∗λ,x,I)].

By recursion, we have

xm =xm−1 + [ϕ(N, v
(m−1)∗
λ,x,I )− ϕ(N, vm∗λ,x,I)]

=xm−2 + [ϕ(N, v
(m−2)∗
λ,x,I )− ϕ(N, vm∗λ,x,I)]

= · · ·
=x0 + [ϕ(N, v0∗

λ,x,I)− ϕ(N, vm∗λ,x,I)]

=x+ [ϕ(N, v)− ϕ(N, vm∗λ,x,I)].

By Lemma 3.20, the inessential game property and continuity, we obtain
that limm→∞ ϕ(N, vm∗λ,x,I) = ϕ(N, v̄x) = x. Therefore,

lim
t→∞

xt = lim
t→∞
{x+ [ϕ(N, v)− ϕ(N, vm∗λ,x,I)]}

=x+ [ϕ(N, v)− x] = ϕ(N, v),

which completes the proof.
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Proof of Lemma 3.26. For all 〈N, v〉 ∈ GN and S ⊆ N , combining Eq.(3.4)
and Eq.(3.5), we have

v
(m+1)∗
λ,x,U (S) =(vm∗λ,x,U )∗λ,x,U (S)

=(1− λ)vm∗λ,x,U (S) + λx(S)

=(1− λ)[csmv(S) + dsmx(S)] + λx(S).

Since this must hold for every v(S), S ⊆ N , we have csm+1 = (1−λ)csm and
dsm+1 = (1 − λ)dsm + λ, where cs1 = 1 − λ and ds1 = λ. From this, we have
the following recursive formulas:

csm+1

csm
= 1− λ and

dsm+1 − 1

dsm − 1
= 1− λ.

Therefore, the coefficients csm and dsm of the m-fold x-union associated
game 〈N, vm∗λ,x,U 〉 satisfy csm = (1 − λ)m and dsm = 1 − (1 − λ)m, m =

1, 2, · · · .

Proof of Lemma 3.27. For all 〈N, v〉 ∈ GN , x ∈ X(N, v) and 0 < λ < 1, by
Lemma 3.26, we have

lim
m→∞

vm∗λ,x,U (S) = lim
m→∞

{(1− λ)mv(S) + [1− (1− λ)m]x(S)}

=x(S),

for all S ⊆ N .

Proof of Theorem 3.28. Let ϕ be a solution satisfying both the inessential
game property and continuity. Then, for all 〈N, v〉 ∈ GN and x ∈ X(N, v),
consider the dynamic sequence

xm = xm−1 + [ϕ(N, v
(m−1)∗
λ,x,U )− ϕ(N, vm∗λ,x,U )].

By recursion, we have

xm =xm−1 + [ϕ(N, v
(m−1)∗
λ,x,U )− ϕ(N, vm∗λ,x,U )]

=xm−2 + [ϕ(N, v
(m−2)∗
λ,x,U )− ϕ(N, vm∗λ,x,U )]
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= · · ·
=x0 + [ϕ(N, v0∗

λ,x,U )− ϕ(N, vm∗λ,x,U )]

=x+ [ϕ(N, v)− ϕ(N, vm∗λ,x,U )].

By Lemma 3.27, the inessential game property and continuity, we obtain
that limm→∞ ϕ(N, vm∗λ,x,U ) = ϕ(N, v̂x) = x. Therefore,

lim
m→∞

xm = lim
m→∞

{x+ [ϕ(N, v)− ϕ(N, vm∗λ,x,U )]}

=x+ [ϕ(N, v)− x] = ϕ(N, v),

which completes the proof.

3.7 Conclusions

The work in this chapter belongs to the growing literature on associated
consistency. Different associated games take a different angle in revaluat-
ing the worth of coalitions. Some associated games in the literature (Xu et
al. 2009, [117] and Xu et al. 2009, [119]) focus on reevaluating the worth
of a coalition by considering “individual self-evaluation". In this chapter,
we introduce an alternative way to reevaluate the worth. Instead of con-
sidering the players in the coalition as isolated elements, we consider the
players in the coalition as a whole. We define two different associated
games according to the idea of “union self-evaluation" instead of “individ-
ual self-evaluation", and provide new axiomatizations of the EANSC value
and the CIS value using associated consistency. Moreover, we also propose
dynamic processes on the basis of the “individual self-evaluation" associ-
ated games and the “union self-evaluation" associated games that lead to
any solution satisfying both the inessential game property and continuity,
starting from an arbitrary efficient payoff vector.

As introduced in Section 3.1, various associated consistency axioms are
used frequently to characterize different solutions for TU-games. Recently,
somewhat interesting, Hamiache and Navarro (2020, [44]) introduced an
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extension of Hamiache’s associated game (Hamiache 2001, [42]) to char-
acterize a solution for cooperative games with incomplete communication.
This triggers the question whether union associated games proposed in this
chapter or other associated games can be extended for characterizing so-
lutions for cooperative games with incomplete communication. For future
research, we intend to modify some existing associated games, such as
the union associated games and the individual associated games, and then
characterize solutions for cooperative games with incomplete communica-
tion by using the corresponding associated consistency axioms. Moreover,
we also intend to apply Hamiache and Navarro’s approach (2020, [44])
to cooperative games with coalition structure, and study axiomatizations
of solutions for cooperative games with coalition structure by using associ-
ated consistency.



Chapter 4

Characterizations of the PD
value and the PANSC value

4.1 Introduction

The proportionality principle is a relatively popular allocation criterion in
many economic situations. It is a norm of distributed justice rooted in law
and custom (Young 1994, [122]). Moulin’s survey (Moulin 2002, [81])
of cost and surplus sharing opens by emphasizing the importance of the
proportionality principle. As introduced in Chapter 1, the PD value and
the PANSC value are defined based on the idea of proportionality. The
PD value distributes the overall worth of the grand coalition in proportion
to player’s individual worth among all players. As the dual value of the
PD value, the PANSC value distributes the overall worth in proportion to
their marginal contributions with respect to the grand coalition. Moreover,
some other proportional values have been studied in the literature, such
as the proper Shapley value (van den Brink et al. 2015, [110] and 2020,
[111]), the proportional value (Kamijo and Kongo 2015, [61] and Ortmann
2000, [88]), and the proportional Shapley value (Béal et al. 2018, [9] and
Besner 2019, [13]). In this chapter, which is based on Li et al. (2020,
[68]), we mainly study the PD value and the PANSC value. We propose
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an optimization approach to the PD value and the PANSC value, and give
several new axiomatizations of these values.

As introduced in Chapter 1, the excess proposed by Schmeidler (1969,
[92]) is an important criterion to describe the dissatisfaction of coalitions
with respect to a payoff vector. A positive excess of a coalition with re-
spect to a payoff vector represents the loss that the coalition suffers from
the payoff vector compared to its worth. Several famous solutions for TU-
games, such as the nucleolus (Schmeidler 1969, [92]), the core and the
kernel (Davis and Maschler 1965, [29]), are defined on the basis of excess.
In particular, the nucleolus is obtained by lexicographically minimizing the
maximal excess of coalitions over the non-empty imputation set. Besides
the excess criterion, Hou et al. (2018, [49]) proposed two other criteria
to measure the dissatisfaction of coalitions with respect to a payoff vector.
Alternatively, this chapter defines two new criteria from the perspective of
satisfaction: the optimistic satisfaction and pessimistic satisfaction. The
PD value and the PANSC value are obtained by maximizing the minimal
optimistic satisfaction and the minimal pessimistic satisfaction in the lexi-
cographic order, respectively.

Satisfaction is a significant criterion to measure the preference degree
of coalitions for a payoff vector. Firstly, we define a family of optimal sat-
isfaction payoff vectors (for short, OS payoff vectors). In particular, two spe-
cific optimal satisfaction payoff vectors, the optimal optimistic satisfaction
payoff vector (for short, OOS payoff vector) and the optimal pessimistic sat-
isfaction payoff vector (for short, OPS payoff vector), are considered in this
chapter. The optimistic satisfaction and the pessimistic satisfaction are de-
fined by the individual worth vector and the separable contribution vector
from the viewpoints of optimism and pessimism respectively1. On the op-
timistic side, players always take the individual worth of themselves into

1There are two representative biases in social comparisons (Menon et al. 2009, [77]),
a comparative optimism bias (i.e., a tendency for people to evaluate themselves in a more
positive light) and a comparative pessimism bias (i.e., a tendency for people to evaluate
themselves in a more negative light). In balanced TU-games, the individual worth vector
is a lower bound of the core while the separable contribution vector is a upper bound of
the core. Thus, the individual worth vector and the separable contribution vector can be
viewed as the least potential payoff vector and the ideal payoff vector respectively.
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consideration and think of the ratio between the payoff and the individual
worth as a measure of satisfaction. The optimistic satisfaction of a coali-
tion is defined by the ratio between the payoff of the coalition and the sum
of the individual worths of the players in the coalition. Conversely, pes-
simists always take the ideal payoff of themselves into consideration. The
pessimistic satisfaction of a coalition is the ratio between the payoff of the
coalition and the sum of the separable contributions of the players in the
coalition. The OOS payoff vector and the OPS payoff vector are obtained by
maximizing the minimal optimistic satisfaction and the minimal pessimistic
satisfaction in the lexicographic order over the non-empty pre-imputation
set, respectively. Interestingly, the two payoff vectors are coincident with
the PD value and the PANSC value, respectively.

Axiomatization is one of the main ways to characterize the reasonabil-
ity of solutions in TU-games. Zou et al. (2021, [123]) proposed several
axiomatizations of the PD value on the basis of equal treatment of equals,
monotonicity and reduced game consistency. In this chapter, we character-
ize the PD value and the PANSC value by introducing the equal minimal
satisfaction axioms and the associated consistency axioms.

Firstly, we define equal minimal optimistic satisfaction and equal mini-
mal pessimistic satisfaction, inspired by the kernel concept (Maschler et al.
1971, [76]). Equal minimal optimistic satisfaction requires that, for a pair
of players {i, j} and a payoff vector x, the minimal optimistic satisfaction
of coalitions containing i and not j with respect to x should equal that of
coalitions containing j and not i under the optimistic satisfaction criterion,
while equal minimal pessimistic satisfaction describes this situation under
the pessimistic satisfaction criterion. Then, we show that the PD (respec-
tively PANSC) value is the only solution satisfying equal minimal optimistic
(respectively pessimistic) satisfaction and efficiency.

Associated consistency is quite popular in the literature on the axiom-
atization of solutions for TU-games, such as the Shapley value (Hamiache
2001, [42], Xu et al. 2008, [116]), the EANSC value and the CIS value (Xu
et al. 2015, [118]), linear, symmetric values (Kleinberg 2018 [64]) and the
core (Kong et al. [65]). A solution satisfies associated consistency with re-
spect to a certain associated game if it allocates the same payoff to players
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in the original game as in the associated game. In this chapter, we pro-
pose optimistic associated consistency and pessimistic associated consistency
to characterize the PD value and the PANSC value respectively. Moreover,
we also study the dual axioms of the two associated consistency axioms.

The rest of this chapter is organized as follows. In Section 4.2, we de-
termine the PD value and the PANSC value by maximizing the minimal
optimistic satisfaction and the minimal pessimistic satisfaction in the lexi-
cographic order respectively. In Section 4.3, we characterize the PD value
and the PANSC value by introducing the equal minimal satisfaction axioms
and the associated consistency axioms. Section 4.4 provides all proofs of
this chapter. Section 4.5 concludes with a brief summary.

4.2 Satisfaction and the PD and PANSC values

It is well known that the nucleolus is obtained by minimizing the excesses
of coalitions in the lexicographic order over the non-empty imputation set.
The excess of coalition S ⊆ N with respect to the payoff vector x of the
TU-game 〈N, v〉 is given by e(S, x, v) = v(S) − x(S). The excess e(S, x, v)

is usually used to measure the dissatisfaction degree of a coalition S with
respect to x. The larger the excess e(S, x, v) is, the more unsatisfied the
coalition S feels with respect to x. Conversely, the larger the minus excess
−e(S, x, v) is, the more satisfied the coalition S feels with respect to x. In a
sense, the minus excess is a measure of satisfaction, and −e(S, x, v) can be
seen as the satisfaction of the coalition S with respect to x. In this section,
we introduce the family of the OS payoff vectors for TU-games from the
perspective of satisfaction.

For all 〈N, v〉 ∈ GN and x ∈ RN , let ϑ(v, x) be the (2n − 1)-tuple vector
whose components are the satisfactions of all non-empty coalitions S ⊆ N

with respect to x in non-decreasing order, that is, ϑt(v, x) ≤ ϑt+1(v, x)

for all t ∈ {1, 2, · · · , 2n − 2}. For all 〈N, v〉 ∈ GN and x, y ∈ RN , we
denote ϑ(v, x) ≥L ϑ(v, y) if and only if ϑ(v, x) = ϑ(v, y), or there exists
t ∈ {1, 2, · · · , 2n−2} such that ϑl(v, x) = ϑl(v, y) for all l ∈ {1, 2, · · · , t−1}
and ϑt(v, x) > ϑt(v, y).
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Definition 4.1. For all 〈N, v〉 ∈ GN , the optimal satisfaction payoff vector
(for short, OS payoff vector) xos(N, v) is the unique payoff vector y in the
pre-imputation set satisfying ϑ(v, y) ≥L ϑ(v, x) for all x ∈ I∗(N, v).

The OS payoff vector can be viewed as an optimal solution for an op-
timization problem aiming to maximize the minimal satisfaction with re-
spect to the payoff vector over the pre-imputation set in the lexicographic
order. This optimization problem indeed has a unique solution (that is the
OS payoff vector) similar as the nucleolus (see, Definition 1.4 in Chapter
1) is a singleton. It is easy to verify that the OS payoff vector is the pre-
nucleolus of a TU-game 〈N, v〉 when the satisfaction criterion is the minus
excess −e(S, x, v).

Next, we define two special satisfaction criteria, called the optimistic
satisfaction and the pessimistic satisfaction2.

Definition 4.2. For all 〈N, v〉 ∈ GN+ and x ∈ RN , the optimistic satisfaction
of coalition S ⊆ N with respect to the payoff vector x of the TU-game
〈N, v〉 is defined by

eo(S, x, v) =
x(S)∑

k∈S v({k})
.

Definition 4.3. For all 〈N, v〉 ∈ GN⊕ and x ∈ RN , the pessimistic satisfaction
of coalition S ⊆ N with respect to the payoff vector x of the TU-game
〈N, v〉 is defined by

ep(S, x, v) =
x(S)∑

k∈S SCk(N, v)
.

These two special satisfaction criteria are defined from the viewpoint of
optimism and pessimism respectively. Given 〈N, v〉 ∈ GN and x ∈ C(N, v),
it holds that v({i}) ≤ xi ≤ SCi(N, v) for all i ∈ N . Thus, the vector
(v({k}))k∈N is a lower bound of the core while (SCk(N, v))k∈N is a up-
per bound of the core of a TU-game 〈N, v〉. Moreover, in the work of Hou

2In the definition of the optimistic (pessimistic) satisfaction, the TU-game has to be
restricted on the class of all individually positive (marginally positive) TU-games in order
for the denominator not to be zero. Notice that all the conclusions in this chapter also apply
to the family of all individually negative TU-games or the family of all marginally negative
TU-games.
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et al. (2018, [49]), the individual worth vector (v({k}))k∈N is viewed as
the least potential payoff vector while the separable contribution vector
(SCk(N, v))k∈N is viewed as the ideal payoff vector. Hence, on the opti-
mistic side, the players can take the least potential payoffs of themselves
into consideration and think of the ratio between the payoff of a coalition
and their least potential payoff as a measure of satisfaction of the coalition.
Conversely, pessimists can take the ideal payoff payoffs of themselves into
consideration.

In the following, we define the OOS payoff vector and the OPS payoff
vector in terms of the optimistic satisfaction and the pessimistic satisfac-
tion respectively, and show that the OOS payoff vector and the OPS payoff
vector coincide with the PD value and the PANSC value respectively.

4.2.1 Optimistic satisfaction and the PD value

For all 〈N, v〉 ∈ GN+ and x ∈ RN , let ϑo(v, x) be the (2n − 1)-tuple vector
whose components are the optimistic satisfactions of all non-empty coali-
tions S ⊆ N with respect to x in non-decreasing order. The OOS payoff
vector is defined as follows.

Definition 4.4. For all 〈N, v〉 ∈ GN+ , the optimal optimistic satisfaction pay-
off vector (for short, OOS payoff vector) xoos(N, v) is the unique payoff
vector y in the pre-imputation set satisfying ϑo(v, y) ≥L ϑo(v, x) for all
x ∈ I∗(N, v).

Next, we show that the PD value assigns to every individually positive
game the OOS payoff vector which is obtained by lexicographically maxi-
mizing the minimal optimistic satisfaction.

Lemma 4.5. For all 〈N, v〉 ∈ GN+ and x ∈ RN , let l = arg mink∈N{eo({k}, x, v)}.
Then, it holds that eo({l}, x, v) = minS⊆N,S 6=∅{eo(S, x, v)}.

The proof of Lemma 4.5 and of all other results in this chapter can be
found in Section 4.4.

Lemma 4.6. For all 〈N, v〉 ∈ GN+ and x ∈ RN , let l = arg mink∈N{eo({k}, x, v)}.
If there exists m ∈ N such that eo({m}, x, v) > eo({l}, x, v), define a new
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payoff vector x∗ given by

x∗k =


xk, for k ∈ N\{l,m};
xl +4, for k = l;
xm −4, for k = m,

where 4 = xm·v({l})−xl·v({m})
v({l})+v({m}) . Then the following five statements hold.

(i) eo(S, x∗, v) = eo(S, x, v) for all S ⊆ N and S 63 l,m.

(ii) eo(S, x∗, v) = eo(S, x, v) for all S ⊆ N and S 3 l,m.

(iii) eo(S, x∗, v) > eo(S, x, v) for all S ⊆ N , S 3 l and S 63 m.

(iv) eo(S, x∗, v) > eo({l}, x, v) for all S ⊆ N , S 63 l and S 3 m.

(v) ϑo(v, x∗) >L ϑ
o(v, x).

Theorem 4.7. For all 〈N, v〉 ∈ GN+ , the following two statements hold.

(i) xoosi (N,v)
v({i}) =

xoosj (N,v)

v({j}) for all i, j ∈ N .

(ii) xoosi (N, v) = PDi(N, v) for all i ∈ N .

Obviously, if
∑

k∈N v({k}) ≤ v(N), then the PD value satisfies indi-
vidual rationality, that is, PDk(N, v) ≥ v({k}) for all k ∈ N . The fol-
lowing corollary is immediate for the reason that C(N, v) 6= ∅ implies∑

k∈N v({k}) ≤ v(N).

Corollary 4.8. For all 〈N, v〉 ∈ GN+ with C(N, v) 6= ∅, the PD value outcome
satisfies individual rationality, that is, PDk(N, v) ≥ v({k}) for all k ∈ N .

4.2.2 Pessimistic satisfaction and the PANSC value

In this subsection, we define the OPS payoff vector by lexicographically
maximizing the minimal pessimistic satisfaction, and show that the PANSC
value assigns to every marginally positive game the OPS payoff vector.

For all 〈N, v〉 ∈ GN⊕ and x ∈ RN , let ϑp(v, x) be the (2n − 1)-tuple
vector whose components are the pessimistic satisfactions of all non-empty
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coalitions S ⊆ N with respect to x in non-decreasing order. The OPS payoff
vector is defined as follows.

Definition 4.9. For all 〈N, v〉 ∈ GN⊕ , the optimal pessimistic satisfaction
payoff vector (for short, OPS payoff vector) xops(N, v) is the unique pay-
off vector y in the pre-imputation set satisfying ϑp(v, y) ≥L ϑp(v, x) for all
x ∈ I∗(N, v).

Next, we will verify that the PANSC value assigns to every marginally
positive game the OPS payoff vector. The proofs of Lemma 4.10, Lemma
4.11 and Theorem 4.12 are similar to those of Lemma 4.5, Lemma 4.6 and
Theorem 4.7, and are omitted here.

Lemma 4.10. For all 〈N, v〉 ∈ GN⊕ and x ∈ RN , let l = arg mink∈N{ep({k}, x, v)}.
Then, it holds that ep({l}, x, v) = minS⊆N,S 6=∅{ep(S, x, v)}.

Lemma 4.11. For all 〈N, v〉 ∈ GN⊕ and x ∈ RN , let l = arg mink∈N{ep({k}, x, v)}.
If there exists m ∈ N such that ep({m}, x, v) > ep({l}, x, v), define a new
payoff vector x∗ given by

x∗k =


xk, for k ∈ N\{l,m};
xl +4, for k = l;
xm −4, for k = m,

where 4 = xm·SCl(N,v)−xl·SCm(N,v)
SCl(N,v)+SCm(N,v) . Then the following five statements hold.

(i) ep(S, x∗, v) = ep(S, x, v) for all S ⊆ N and S 63 l,m.

(ii) ep(S, x∗, v) = ep(S, x, v) for all S ⊆ N and S 3 l,m.

(iii) ep(S, x∗, v) > ep(S, x, v) for all S ⊆ N , S 3 l and S 63 m.

(iv) ep(S, x∗, v) > ep({l}, x, v) for all S ⊆ N , S 63 l and S 3 m.

(v) ϑp(v, x∗) >L ϑ
p(v, x).

Theorem 4.12. For all 〈N, v〉 ∈ GN⊕ , the following two statements hold.

(i) xopsi (N,v)
SCi(N,v) =

xopsj (N,v)

SCj(N,v) for all i, j ∈ N .
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(ii) xopsi (N, v) = PANSCi(N, v) for all i ∈ N .

By Theorem 4.12, it holds that PANSCk(N, v) ≤ SCk(N, v) for all k ∈
N if

∑
k∈N SCk(N, v) ≥ v(N). Then the following corollary is immediate

for the reason that C(N, v) 6= ∅ implies
∑

k∈N SCk(N, v) ≥ v(N).

Corollary 4.13. For all 〈N, v〉 ∈ GN⊕ with C(N, v) 6= ∅, the PANSC value out-
come is bounded by the payoff vector (SCk(N, v))k∈N , that is, PANSCk(N, v) ≤
SCk(N, v) for all k ∈ N .

4.3 Axiomatizations of the PD value and the PANSC
value

A major purpose of axiomatizing solutions in TU-games is to show the rea-
sonability of solutions. In this section, we characterize the PD value and the
PANSC value by introducing the equal minimal optimistic/pessimistic sat-
isfaction axioms, the optimistic/pessimistic associated consistency axioms
and their dual axioms.

4.3.1 Equal minimal satisfaction axioms

In this subsection, we propose two axioms, equal minimal optimistic sat-
isfaction and equal minimal pessimistic satisfaction, inspired by the kernel
concept (Maschler et al. 1971, [76]). The PD value and the PANSC value
are characterized by these two axioms with efficiency, respectively.

For all 〈N, v〉 ∈ GN+ and x ∈ RN , let mo
ij(v, x) = min{eo(S, x, v)|S ⊆

N, i ∈ S, j 6∈ S} be the minimal optimistic satisfaction of player i ∈ N

over player j ∈ N\{i} with respect to x. Similarly, for all 〈N, v〉 ∈ GN⊕
and x ∈ RN , let mp

ij(v, x) = min{ep(S, x, v)|S ⊆ N, i ∈ S, j 6∈ S} be the
minimal pessimistic satisfaction of player i ∈ N over player j ∈ N\{i} with
respect to x.

• Equal minimal optimistic satisfaction. For all 〈N, v〉 ∈ GN+ and
i, j ∈ N , it holds that mo

ij(v, ϕ(N, v)) = mo
ji(v, ϕ(N, v)).
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• Equal minimal pessimistic satisfaction. For all 〈N, v〉 ∈ GN⊕ and
i, j ∈ N , it holds that mp

ij(v, ϕ(N, v)) = mp
ji(v, ϕ(N, v)).

Equal minimal optimistic satisfaction requires that for all i, j ∈ N , the
minimal optimistic satisfaction over all coalitions containing i and not j
should equal that over all coalitions containing j and not i with respect
to the solution outcome under the optimistic satisfaction criterion. On the
contrary, equal minimal pessimistic satisfaction describes this situation un-
der the pessimistic satisfaction criterion.

Proposition 4.14. Equal minimal optimistic satisfaction and equal minimal
pessimistic satisfaction are dual to each other.

Next, we characterize the PD value and the PANSC value by using equal
minimal optimistic satisfaction and equal minimal pessimistic satisfaction
respectively.

Theorem 4.15. A solution ϕ on GN+ satisfies efficiency and equal minimal
optimistic satisfaction if and only if ϕ is the PD value.

In TU-games, the duality operator is a very useful tool to derive new
axiomatizations of solutions. If there is an axiomatization of solution ϕ,
then we can get one axiomatization of its dual solution ϕd by determining
the dual axioms of the axioms which are included in the axiomatization
of ϕ. Oishi et al. (2016, [87]) derived new axiomatizations of several
classical solutions for TU-games by this duality theory. Since equal minimal
optimistic satisfaction and equal minimal pessimistic satisfaction are dual
to each other and efficiency is self-dual, we obtain the following theorem.

Theorem 4.16. A solution ϕ on GN⊕ satisfies efficiency and equal minimal
pessimistic satisfaction if and only if ϕ is the PANSC value.

4.3.2 Associated consistency

Associated consistency is a significant characteristic of feasible and stable
solutions. Associated consistency requires that the solution should be in-
variant when the TU-game changes into its associated game.
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Throughout this subsection we deal with two types of associated games,
the optimistic associated game and the pessimistic associated game. In
these two associated games, every coalition reevaluates its own worth. Ev-
ery coalition S just considers the players in N\S as individual elements.
On the optimistic side, every coalition S always thinks that players in N\S
should just receive their individual worth vector (v{k})k∈N\S . The amount
v(N) − v(S) −

∑
k∈N\S v({k}) can be regarded as the optimistic surplus

arising from mutual cooperation between S itself and all j ∈ N\S. On
the pessimistic side, every coalition S takes into consideration the sepa-
rable contribution vector and thinks that players in N\S can obtain their
the separable contribution (SCk(N, v))k∈N\S . The amount v(N) − v(S) −∑

k∈N\S SCk(N, v) is considered as the pessimistic surplus. Every coali-
tion S believes that the appropriation of at least a part of the surpluses is
within reach. Thus, every coalition S reevaluates its own worth vλ,O(S) in
the optimistic associated game as the sum of its initial worth v(S) and
a percentage λ ∈ (0, 1) of a part

∑
k∈S v({k})∑
k∈N v({k}) of the optimistic surplus

v(N) − v(S) −
∑

k∈N\S v({k}). Similarly, the pessimistic surplus is taken
into account in the pessimistic associated game.

Definition 4.17. Given 〈N, v〉 ∈ GN+ with v(N) > 0, and a real number λ,
0 ≤ λ ≤ 1, the optimistic associated game 〈N, vλ,O〉 is defined by

vλ,O(S) =

{
0, if S = ∅;
v(S) + λ

∑
k∈S v({k})∑
k∈N v({k}) [v(N)− v(S)−

∑
k∈N\S v({k})], otherwise.

It is easy to see that 〈N, vλ,O〉 ∈ GN+ may not be true if 〈N, v〉 ∈ GN+ . The
purpose of requiring v(N) > 0 is in order to ensure that 〈N, vλ,O〉 ∈ GN+ .
For convenience, let GN++ = {〈N, v〉 ∈ GN+ |v(N) > 0}. It is easy to obtain
that 〈N, vλ,O〉 ∈ GN++ if 〈N, v〉 ∈ GN++. Moveover, let GN⊕⊕ = {〈N, v〉 ∈
GN⊕ |v(N) > 0}. Obviously, GN++ and GN⊕⊕ are dual to each other.

Definition 4.18. Given 〈N, v〉 ∈ GN⊕ and a real number λ, 0 ≤ λ ≤ 1, the
pessimistic associated game 〈N, vλ,P 〉 is defined by

vλ,P (S) =

{
0, if S = ∅;
v(S) + λ

∑
k∈S SCk(N,v)∑
k∈N SCk(N,v)

[v(N)− v(S)−
∑
k∈N\S SCk(N, v)], otherwise.



102 Chapter 4. Characterizations of the PD value and the PANSC value

Obviously, 〈N, vλ,P 〉 ∈ GN⊕ if 〈N, v〉 ∈ GN⊕ . Let λ ∈ [0, 1].

• Optimistic associated consistency for λ. For all 〈N, v〉 ∈ GN++, it
holds that ϕ(N, v) = ϕ(N, vλ,O).

• Pessimistic associated consistency for λ. For all 〈N, v〉 ∈ GN⊕ , it
holds that ϕ(N, v) = ϕ(N, vλ,P ).

Let us consider the dual relation between these two associated consis-
tency axioms.

Remark 4.1. Optimistic associated consistency and pessimistic associated
consistency are not dual to each other.

Given 〈N, v〉 ∈ GN++ and its dual game 〈N, vd〉 ∈ GN⊕⊕, we only need to
verify whether 〈N, (vd)λ,O〉 is equal to 〈N, (vλ,P )d〉, to determine the dual
relation between optimistic associated consistency and pessimistic associ-
ated consistency.

In the following, we will characterize the PD value and the PANSC value
by using optimistic associated consistency and pessimistic associated con-
sistency, respectively.

For all 〈N, v〉 ∈ GN++, the sequence of optimistic associated games,
{〈N, vtλ,O〉}∞t=0, is defined by v0

λ,O = v, and vt+1
λ,O = (vtλ,O)λ,O. The follow-

ing lemma states the convergence of the sequence of optimistic associated
games.

Lemma 4.19. For all 〈N, v〉 ∈ GN++ and 0 < λ < 1, the sequence of opti-
mistic associated games {〈N, vtλ,O〉}∞t=0 converges, and its limit game 〈N, v̂〉 is
inessential.

Theorem 4.20. Let λ ∈ (0, 1). A solution ϕ on GN++ satisfies optimistic asso-
ciated consistency for λ, continuity and the inessential game property if and
only if ϕ is the PD value.

For all 〈N, v〉 ∈ GN⊕ , the sequence of pessimistic associated games,
{〈N, vtλ,P 〉}∞t=0, is defined by v0

λ,P = v, and vt+1
λ,P = (vtλ,P )λ,P . Next, we

prove the convergence of the sequence of pessimistic associated games.
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Lemma 4.21. For all 〈N, v〉 ∈ GN⊕ and 0 < λ < 1, the sequence of pessimistic
associated games {〈N, vtλ,P 〉}∞t=0 converges and its limit game 〈N, v̌〉 is the
sum of an inessential game 〈N, u〉 and a constant game 〈N,w〉.

Now, to characterize the PANSC value, we introduce a new axiom, the
constant inessential game property. A TU-game 〈N, v〉 ∈ GN is a constant
inessential game if there exists a constant c ∈ R such that v(S) − c =∑

i∈S(v({i}) − c) for all S ⊆ N . This implies that a constant inessential
game is the sum of an inessential game and a constant game. It is easy
to see that the dual of a constant inessential game is an almost inessential
game.

• Constant inessential game property. For all constant inessential
games 〈N, v〉 ∈ GN⊕ , it holds that ϕi(N, v) = SCi(N,v)∑

j∈N SCj(N,v)v(N).

Theorem 4.22. Let λ ∈ (0, 1). A solution ϕ on GN⊕ satisfies pessimistic associ-
ated consistency for λ, continuity and the constant inessential game property
if and only if ϕ is the PANSC value.

4.3.3 Dual axioms of associated consistency

In Remark 4.1, we mentioned that optimistic associated consistency and
pessimistic associated consistency are not dual to each other. Next, let
us consider the dual axioms of optimistic associated consistency and pes-
simistic associated consistency.

Definition 4.23. Given 〈N, v〉 ∈ GN⊕⊕, and a real number λ, 0 ≤ λ ≤ 1, the
dual optimistic associated game 〈N, v∗λ,O〉 is defined by3

v∗λ,O(S) =

{
v(S) + λ

∑
j∈N\S SCj(N,v)∑
j∈N SCj(N,v)

[
∑
j∈S SCj(N, v)− v(S)], if S ⊂ N ;

v(N), if S = N .

3Notice that the dual optimistic associated game is not the dual of the optimistic associ-
ated game, that is, 〈N, v∗λ,O〉 6= 〈N, (vλ,O)d〉.



104 Chapter 4. Characterizations of the PD value and the PANSC value

Definition 4.24. Given 〈N, v〉 ∈ GN+ , and a real number λ, 0 ≤ λ ≤ 1, the
dual pessimistic associated game 〈N, v∗λ,P 〉 is defined by4

v∗λ,P (S) =

{
v(S) + λ

∑
k∈N\S v({k})∑
k∈N v({k}) [

∑
k∈S v({k})− v(S)], if S ⊂ N ;

v(N), if S = N .

Obviously, 〈N, v∗λ,O〉 ∈ GN⊕⊕ if 〈N, v〉 ∈ GN⊕⊕, and 〈N, v∗λ,P 〉 ∈ GN+ if
〈N, v〉 ∈ GN+ . Let λ ∈ [0, 1].

• Dual optimistic associated consistency for λ. For all 〈N, v〉 ∈ GN⊕⊕,
it holds that ϕ(N, v) = ϕ(N, v∗λ,O).

• Dual pessimistic associated consistency for λ. For all 〈N, v〉 ∈ GN+ ,
it holds that ϕ(N, v) = ϕ(N, v∗λ,P ).

In the following, we will prove that optimistic (pessimistic) associated
consistency and dual optimistic (pessimistic) associated consistency are
dual to each other.

Lemma 4.25. For all 〈N, v〉 ∈ GN++ and 〈N,w〉 ∈ GN⊕ , it holds that (vλ,O)d =

(vd)∗λ,O and (wλ,P )d = (wd)∗λ,P .

Proposition 4.26. Optimistic associated consistency and dual optimistic as-
sociated consistency are dual to each other.

The proof of Proposition 4.26 is in Section 4.4, and the proof of Propo-
sition 4.27 is similar to that of Proposition 4.26 and is left to readers.

Proposition 4.27. Pessimistic associated consistency and dual pessimistic as-
sociated consistency are dual to each other.

Next, let us identify the dual axioms of other axioms which are included
in the axiomatizations of the PD value and the PANSC value appearing
in Theorems 4.20 and 4.22. It is easy to verify that continuity and the
inessential game property are self-dual. In the following, we define the
dual axiom of constant inessential game property.

4Notice that the dual pessimistic associated game is not the dual of the pessimistic asso-
ciated game, that is, 〈N, v∗λ,P 〉 6= 〈N, (vλ,P )d〉.
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• Dual constant inessential game property. For all almost inessential
games 〈N, v〉 ∈ GN+ and i ∈ N , it holds that ϕi(N, v) = v({i})∑

k∈N v({k})v(N).

Obviously, the constant inessential game property and the dual constant
inessential game property are dual to each other. Thus, it is straightforward
to obtain the following two theorems by the duality theory (Oishi et al.
2016, [87]).

Theorem 4.28. Let λ ∈ (0, 1). A solution ϕ on GN⊕⊕ satisfies dual optimistic
associated consistency for λ, continuity and the inessential game property if
and only if ϕ is the PANSC value.

Theorem 4.29. Let λ ∈ (0, 1). A solution ϕ on GN+ satisfies dual pessimistic
associated consistency for λ, continuity and the dual constant inessential game
property if and only if ϕ is the PD value.

4.4 Proofs

Proof of Lemma 4.5. For all 〈N, v〉 ∈ GN+ and x ∈ RN , let p = eo({l}, x, v).
Then, it holds that xk ≥ p · v({k}) for all k ∈ N . Thus, we have

eo({l}, x, v) ≥ min
S⊆N,S 6=∅

{eo(S, x, v)} = min
S⊆N,S 6=∅

{ x(S)∑
k∈S v({k})

}

≥ min
S⊆N,S 6=∅

{
p ·
∑

k∈S v({k})∑
k∈S v({k})

} = p = eo({l}, x, v).

Therefore, all inequalities are equalities, showing that

eo({l}, x, v) = min
S⊆N,S 6=∅

{eo(S, x, v)},

which completes the proof.

Proof of Lemma 4.6. (i) It is obvious that eo(S, x∗, v) = eo(S, x, v) for all
S ⊆ N and S 63 l,m because x∗(S) = x(S) for all S ⊆ N and S 63 l,m.

(ii) It is trivial that eo(S, x∗, v) = eo(S, x, v) for all S ⊆ N and S 3 l,m.
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(iii) It is easy to obtain that4 > 0 since eo({m}, x, v) > eo({l}, x, v). Then
for all S ⊆ N , S 3 l and S 63 m, we have

eo(S, x∗, v) =
x∗(S)∑
k∈S v({k})

=
x(S) +4∑
k∈S v({k})

>
x(S)∑

k∈S v({k})
= eo(S, x, v).

(iv) Since eo({m}, x, v) > eo({l}, x, v), we have

eo({m}, x∗, v) =
x∗m

v({m})
=
xm −4
v({m})

=
xm + xl

v({m}) + v({l})

>

xl
v({l})v({m}) + xl

v({m}) + v({l})
=

xl
v({l}))

= eo({l}, x, v).

For all S ⊆ N , S 63 l and S 3 m, we have

eo(S, x∗, v) =
x(S\{m}) + x∗m∑

k∈S\{m} v({k}) + v({m})

>

xl
v({l})

∑
k∈S\{m} v({k}) + xl

v({l})v({m})∑
k∈S\{m} v({k}) + v({m})

=
xl

v({l}))
= eo({l}, x, v),

where the second inequality holds due to the fact that eo({m}, x∗, v) >

eo({l}, x, v) and eo(S\{m}, x, v) ≥ eo({l}, x, v) by Lemma 4.5.

(v) It holds that ϑ(v, x∗) >L ϑ(v, x) by Statement (i)–(iv).

Proof of Theorem 4.7. (i) For all 〈N, v〉 ∈ GN+ , we prove that xoosi (N,v)
v({i}) =

xoosj (N,v)

v({j}) for all i, j ∈ N by reductio. Suppose there exist m, j ∈ N

such that x
oos
m (N,v)
v({m}) 6=

xoosj (N,v)

v({j}) . Without loss of generality, suppose that
xoosm (N,v)
v({m}) >

xoosj (N,v)

v({j}) . Let y = xoos(N, v) and l = arg mink∈N{eo({k}, y, v)},
then we have eo({m}, y, v) > eo({l}, y, v). By Lemma 4.6, there ex-
ists x ∈ I∗(N, v) such that ϑo(v, x) >L ϑo(v, y), which contradicts
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with ϑo(v, y) ≥L ϑo(v, x) for all x ∈ I∗(N, v). Therefore, xoosi (N,v)
v({i}) =

xoosj (N,v)

v({j}) for all i, j ∈ N .

(ii) It is immediate to deduce that

xoosi (N, v) = PDi(N, v) =
v({i})∑
k∈N v({k})

v(N),

by the statement (i) and efficiency.

Proof of Proposition 4.14. Given a solution ϕ on GN+ , let ϕd be the dual of ϕ.
It is sufficient to prove that ϕ satisfies equal minimal optimistic satisfaction
if and only if ϕd satisfies equal minimal pessimistic satisfaction.

Suppose that ϕ satisfies equal minimal optimistic satisfaction. For all
〈N, v〉 ∈ GN⊕ and its dual game 〈N, vd〉 ∈ GN+ , by equal minimal optimistic
satisfaction, we have mo

ij(v
d, ϕ(N, vd)) = mo

ji(v
d, ϕ(N, vd)) for all i, j ∈ N ,

and then it holds that

min{
∑

k∈S ϕk(N, v
d)∑

k∈S v
d({k})

|S ⊆ N, i ∈ S, j 6∈ S}

= min{
∑

k∈S ϕk(N, v
d)∑

k∈S v
d({k})

|S ⊆ N, j ∈ S, i 6∈ S}.

Then, it holds that

min{
∑

k∈S ϕ
d
k(N, v)∑

k∈S SCk(N, v)
|S ⊆ N, i ∈ S, j 6∈ S}

= min{
∑

k∈S ϕ
d
k(N, v)∑

k∈S SCk(N, v)
|S ⊆ N, j ∈ S, i 6∈ S}.

Then, we have mp
ij(v, ϕ

d(N, v)) = mp
ji(v, ϕ

d(N, v)) for all i, j ∈ N . There-
fore, ϕd satisfies equal minimal pessimistic satisfaction.

Similarly, we can prove that ϕ satisfies equal minimal optimistic satis-
faction if ϕd satisfies equal minimal pessimistic satisfaction, which is similar
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to the above proof. Therefore, we can conclude that equal minimal opti-
mistic satisfaction and equal minimal pessimistic satisfaction are dual to
each other.

Proof of Theorem 4.15. Firstly, it is easy to show that the PD value satisfies
efficiency. Then, for all 〈N, v〉 ∈ GN+ , let x = PD(N, v). For all S ⊆ N ,
S 6= ∅, we have eo(S, x, v) = v(N)∑

k∈N v({k}) . Therefore, for all i, j ∈ N , we
have

mo
ij(v, x) =

v(N)∑
k∈N v({k})

= mo
ji(v, x),

showing that the PD value satisfies equal minimal optimistic satisfaction. It
is left to show the uniqueness.

Suppose that ϕ is a solution on GN+ satisfying efficiency and equal min-
imal optimistic satisfaction. Now suppose that ϕ(N, v) 6= PD(N, v). Then
there must exist i, j ∈ N such that ϕi(N, v) > PDi(N, v) and ϕj(N, v) <

PDj(N, v) by efficiency. Let l = arg mink∈N{eo({k}, ϕ(N, v), v)}. It holds
that eo({l}, ϕ(N, v), v) = minS⊆N,S 6=∅{eo(S, ϕ(N, v), v)} by Lemma 4.5. Then,
we have

eo({l}, ϕ(N, v), v) ≤ eo({j}, ϕ(N, v), v) <
v(N)∑

k∈N v({k})
< eo({i}, ϕ(N, v), v).

Without loss of generality, let S0 ⊆ N\{l} be a coalition containing i

such that mo
il(v, ϕ(N, v)) = eo(S0, ϕ(N, v), v). Thus, we have

mo
il(v, ϕ(N, v)) =

∑
k∈S0\{i} ϕk(N, v) + ϕi(N, v)∑
k∈S0\{i} v({k}) + v({i})

>eo({l}, ϕ(N, v), v) = mo
li(v, ϕ(N, v)),

where the inequality holds from the facts that eo(S0\{i}, ϕ(N, v), v) ≥
eo({l}, ϕ(N, v), v) and eo({i}, ϕ(N, v), v) > eo({l}, ϕ(N, v), v), and the last
equality holds because eo({l}, ϕ(N, v), v) = minS⊆N,S 6=∅{eo(S, ϕ(N, v), v)}.
But mo

il(v, ϕ(N, v)) > mo
li(v, ϕ(N, v)) contradicts with equal minimal opti-

mistic satisfaction. Therefore, the PD value is the unique solution on GN+
that satisfies efficiency and equal minimal optimistic satisfaction.
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Proof of Lemma 4.19. Firstly, for all 〈N, v〉 ∈ GN++ and t ∈ N, we have
vtλ,O(N) = v(N). Next, we show the convergence of the sequence of re-
peated optimistic associated games in two cases.

Case 1: S ⊆ N and |S| = 1. We first show that

vtλ,O({i}) = (1− λ)tv({i}) + [1− (1− λ)t]
v({i})∑
k∈N v({k})

v(N),

for all i ∈ N and t ∈ N by induction on t. When t = 1, by Definition 4.17,
we have

v1
λ,O({i}) = (1− λ)v({i}) +

λv({i})∑
k∈N v({k})

v(N),

for all i ∈ N. Suppose that vt−1
λ,O({i}) = (1 − λ)t−1v({i}) + [1 − (1 −

λ)t−1] v({i})∑
k∈N v({k})v(N). Then, we have

vtλ,O({i}) = (1− λ)vt−1
λ,O({i}) +

λvt−1
λ,O({i})∑

k∈N v
t−1
λ,O({k})

v(N)

=(1− λ)

(
(1− λ)t−1v({i}) + [1− (1− λ)t−1]

v({i})∑
k∈N v({k})

v(N)

)

+
λ
(

(1− λ)t−1v({i}) + [1− (1− λ)t−1] v({i})∑
k∈N v({k})v(N)

)
∑

j∈N

(
(1− λ)t−1v({j}) + [1− (1− λ)t−1] v({j})∑

k∈N v({k})v(N)
)v(N)

=(1− λ)tv({i}) + (1− λ)[1− (1− λ)t−1]
v({i})∑
k∈N v({k})

v(N)

+
λv({i})∑
k∈N v({k})

v(N)

=(1− λ)tv({i}) + [1− (1− λ)t]
v({i})∑
k∈N v({k})

v(N).

Thus, it holds that, for all t ∈ N,

vtλ,O({i}) = (1− λ)tv({i}) + [1− (1− λ)t]
v({i})∑
k∈N v({k})

v(N). (4.1)
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Therefore, for all 0 < λ < 1, we have

v̂({i}) = lim
t→∞

vtλ,O({i}) =
v({i})∑
k∈N v({k})

v(N).

Case 2: S ⊆ N and |S| ≥ 2. For convenience, let ρS =
∑
k∈S v({k})∑
k∈N v({k}) and

σ = v(N)−
∑

k∈N v({k}). Next, we will show that

vtλ,O(S) =(1− λρS)tv(S) + [1− (1− λρS)t]ρSv(N)

+ λρSσ(1− ρS)[
t∑

m=1

(1− λ)m−1(1− λρS)t−m], (4.2)

for all S ⊆ N, |S| ≥ 2 and t ∈ N by induction on t. When t = 1, by Defini-
tion 4.17, it holds that v1

λ,O(S) = (1−λρS)v(S)+λρSρSv(N)+λρSσ(1−ρS),
and Equation (4.2) holds. Without loss of generality, suppose that Equa-
tion (4.2) holds at t − 1. Then, by Definition 4.17 and Equation (4.1), we
have

vtλ,O(S) =vt−1
λ,O(S) + λ

∑
k∈S v

t−1
λ,O({k})∑

k∈N v
t−1
λ,O({k})

[v(N)− vt−1
λ,O(S)−

∑
k∈N\S

vt−1
λ,O({k})]

=(1− λρS)vt−1
λ,O(S) + λρS [v(N)− (1− ρS)

∑
k∈N

vt−1
λ,O({k})]

=(1− λρS)vt−1
λ,O(S) + λρSρSv(N) + λρSσ(1− ρS)(1− λ)t−1

=(1− λρS)tv(S) + (1− λρS)[1− (1− λρS)t−1]ρSv(N)

+ λρSσ(1− ρS)(1− λρS)[

t−1∑
m=1

(1− λ)m−1(1− λρS)t−1−m]

+ λρSρSv(N) + λρSσ(1− ρS)(1− λ)t−1

=(1− λρS)tv(S) + [1− (1− λρS)t]ρSv(N)

+ λρSσ(1− ρS)[

t∑
m=1

(1− λ)m−1(1− λρS)t−m].

Thus, Equation (4.2) holds for all S ⊆ N, |S| ≥ 2 and t ∈ N.

Let at =
∑t

m=1(1−λ)m−1(1−λρS)t−m. Since 0 < λ < 1 and 0 < ρS < 1,
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we have t(1 − λ)t−1 ≤ at ≤ t(1 − λρS)t−1. Since limt→∞ t(1 − λ)t−1 = 0

and limt→∞ t(1− λρS)t−1 = 0, then limt→∞ at = 0. Thus, we have

v̂(S) = lim
t→∞

vtλ,O(S) = ρSv(N) =

∑
k∈S v({k})∑
k∈N v({k})

v(N).

Therefore, the sequence of optimistic associated games {〈N, vtλ,O〉}∞t=1

converges and its limit game 〈N, v̂〉 is given by v̂(S) =
∑
k∈S v({k})∑
k∈N v({k})v(N) for

all S ⊆ N .

Proof of Theorem 4.20. It is easy to verify that the PD value satisfies con-
tinuity and the inessential game property. By Definition 4.17, we have
vλ,O(N) = v(N) and for all i ∈ N ,

vλ,O({i}) =v({i}) +
λv({i})∑
k∈N v({k})

[v(N)−
∑
k∈N

v({k})]

=(1− λ)v({i}) +
λv({i})∑
k∈N v({k})

v(N) > 0.

Then we have, for all i ∈ N

PDi(N, vλ,O) =
vλ,O({i})∑
k∈N vλ,O({k})

vλ,O(N) =
v({i})∑
k∈N v({k})

v(N) = PDi(N, v).

Therefore, the PD value satisfies optimistic associated consistency. It is left
to show the uniqueness.

Now suppose that a solution ϕ on GN++ satisfies these three axioms. For
all 〈N, v〉 ∈ GN++, by Lemma 4.19, the sequence of optimistic associated
games {〈N, vtλ,O〉}∞t=1 converges to an inessential game 〈N, v̂〉. Then, by
optimistic associated consistency and continuity, it holds that

ϕ(N, v) = ϕ(N, v1
λ,O) = ϕ(N, v2

λ,O) = · · · = ϕ(N, v̂).

By the inessential game property, we have

ϕi(N, v̂) = v({i}) =
v({i})∑
k∈N v({k})

v(N),
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for all i ∈ N . Thus, ϕ(N, v) = PD(N, v).

Proof of Lemma 4.21. For all 〈N, v〉 ∈ GN⊕ , it holds that vtλ,P (N) = v(N)

and vtλ,P (N\{i}) = v(N\{i}) for all i ∈ N and t ∈ N. Then, we can obtain
that SCi(N, vtλ,P ) = SCi(N, v) for all i ∈ N and t ∈ N. For convenience,

let τS =
∑
j∈S SCj(N,v)∑
j∈N SCj(N,v) . Next, we will prove that

vtλ,P (S) = (1−λτS)tv(S) + [1− (1−λτS)t][v(N)−
∑

j∈N\S

SCj(N, v)] (4.3)

for all S ⊆ N,S 6= ∅ and t ∈ N, by induction on t. When t = 1, by Definition
4.18, we have v1

λ,P (S) = (1 − λτS)v(S) + λτS [v(N) −
∑

j∈N\S SCj(N, v)],
and Equation (4.3) holds. Suppose that Equation (4.3) holds at t−1. Then,
by Definition 4.18, we have

vtλ,P (S) = vt−1λ,P (S) + λ

∑
j∈S SCj(N, v

t−1
λ,P )∑

j∈N SCj(N, v
t−1
λ,P )

[v(N)− vt−1λ,P (S)−
∑

j∈N\S

SCj(N, v
t−1
λ,P )]

=(1− λτS)vt−1λ,P (S) + λτS [v(N)−
∑

j∈N\S

SCj(N, v)]

=(1− λτS){(1− λτS)t−1v(S) + [1− (1− λτS)t−1][v(N)−
∑

j∈N\S

SCj(N, v)]}

+ λτS [v(N)−
∑

j∈N\S

SCj(N, v)]

=(1− λτS)tv(S) + [1− (1− λτS)t][v(N)−
∑

j∈N\S

SCj(N, v)]

Thus, Equation (4.3) holds for all S ⊆ N,S 6= ∅ and t ∈ N.

Due to 0 < λ < 1 and 0 < τS < 1, for all S ⊆ N,S 6= ∅, we have

v̌(S) = lim
t→∞

vtλ,P (S) = v(N)−
∑

j∈N\S

SCj(N, v).

Let u(S) =
∑
j∈S SCj(N, v) and w(S) = v(N) −

∑
j∈N SCj(N, v) for all S ⊆

N,S 6= ∅. Obviously, 〈N, u〉 is an inessential game and 〈N,w〉 is a constant game.
The limit game 〈N, v̌〉 is given by v̌(S) = u(S) + w(S).

Proof of Theorem 4.22. It is easy to verify that the PANSC value satisfies
continuity and the constant inessential game property. By Definition 4.18,
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we have vλ,P (N) = v(N) and vλ,P (N\{i}) = v(N\{i}) for all i ∈ N . Then,
for all i ∈ N , we have

PANSCi(N, vλ,P ) =
SCi(N, vλ,P )∑
j∈N SCj(N, vλ,P )

vλ,P (N)

=
SCi(N, v)∑
j∈N SCj(N, v)

v(N) = PANSCi(N, v)

Therefore, the PANSC value satisfies pessimistic associated consistency. It
is left to show the uniqueness.

Suppose that a solution ϕ on GN⊕ satisfies pessimistic associated consis-
tency, continuity, the inessential game property and proportional constant
additivity. For all 〈N, v〉 ∈ GN⊕ , by Lemma 4.21, the sequence of pessimistic
associated games {〈N, vtλ,P 〉}∞t=0 converges to a game 〈N, v̌〉 which is ex-
pressed as the sum of a constant game 〈N,w〉 and an inessential game
〈N, u〉, where w(S) = v(N)−

∑
j∈N SCj(N, v) and u(S) =

∑
j∈S SCj(N, v)

for all S ⊆ N,S 6= ∅. Obviously, 〈N, v̌〉 is a constant inessential game. By
continuity and pessimistic associated consistency, we have

ϕ(N, v) = ϕ(N, v1
λ,P ) = ϕ(N, v2

λ,P ) = · · · = ϕ(N, v̌).

By the constant inessential game property, for all i ∈ N

ϕi(N, v̌) =
SCi(N, v)∑
j∈N SCj(N, v)

v(N).

Therefore, ϕ(N, v) = SCi(N,v)∑
j∈N SCj(N,v)v(N) = PANSC(N, v).

Proof of Lemma 4.25. Firstly, by Definition 4.17 and Definition 4.23, for all
〈N, v〉 ∈ GN++ and S ⊂ N , we have

(vλ,O)d(S) = vλ,O(N)− vλ,O(N\S)

=v(N)− v(N\S)− λ
∑

k∈N\S v({k})∑
k∈N v({k})

[v(N)− v(N\S)−
∑
k∈S

v({k})]
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=vd(S) + λ

∑
k∈N\S SCk(N, v

d)∑
k∈N SCk(N, v

d)
[
∑
k∈S

SCk(N, v
d)− vd(S)]

=(vd)∗λ,O(S).

For S = N , we have (vλ,O)d(N) = v(N) = (vd)∗λ,O(N). Thus, it holds that
(vλ,O)d = (vd)∗λ,O.

Secondly, by Definition 4.18 and Definition 4.24, for all 〈N,w〉 ∈ GN⊕ ,
we have

(wλ,P )d(S) = wλ,P (N)− wλ,P (N\S)

=w(N)− w(N\S)− λ
∑

k∈N\S SCk(N,w)∑
k∈N SCk(N,w)

[w(N)− w(N\S)−
∑
k∈S

SCk(N,w)]

=wd(S) + λ

∑
k∈N\S w

d({k})∑
k∈N w

d({k})
[
∑
k∈S

wd({k})− wd(S)]

=(wd)∗λ,P (S).

For S = N , we have (wλ,P )d(N) = w(N) = (wd)∗λ,P (N). Thus, it holds that
(wλ,P )d = (wd)∗λ,P .

Proof of Proposition 4.26. Given a solution ϕ on GN++, let ϕd be the dual of
ϕ. We just prove that ϕ satisfies optimistic associated consistency if and
only if ϕd satisfies dual optimistic associated consistency.

If ϕ satisfies optimistic associated consistency, for all 〈N, v〉 ∈ GN⊕⊕ and
its dual game 〈N, vd〉 ∈ GN++, we have

ϕd(N, v) = ϕ(N, vd) = ϕ(N, (vd)λ,O) = ϕ(N, (v∗λ,O)d) = ϕd(N, v∗λ,O),

where the third equation holds by Lemma 4.25. Thus, ϕd satisfies dual
optimistic associated consistency.

If ϕd satisfies dual optimistic associated consistency, for all 〈N, v〉 ∈ GN++

and its dual game 〈N, vd〉 ∈ GN⊕⊕, we have

ϕ(N, v) = ϕd(N, vd) = ϕd(N, (vd)∗λ,O) = ϕd(N, (vλ,O)d) = ϕ(N, vλ,O).
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Then, ϕ satisfies optimistic associated consistency.

4.5 Conclusions

In this chapter, we introduce the family of the OS payoff vectors from the
perspective of satisfaction criteria. According to the optimistic satisfaction
criterion and the pessimistic satisfaction criterion, the PD value and the
PANSC value are determined by lexicographically maximizing the corre-
sponding minimal satisfaction. Then, we characterize these two propor-
tional values by introducing the equal minimal optimistic/pessimistic sat-
isfaction axioms, the optimistic/pessimistic associated consistency axioms
and their dual axioms. As two representative values of the proportion-
ality principle, the PD value and the PANSC value are relatively fair and
reasonable allocations applied in many economic situations. For instance,
in China’s bankruptcy law, the bankruptcy assets shall be distributed on a
proportionality principle when it is insufficient to pay off all debts. The
proportionality principle is deeply rooted in law and custom as a norm of
distributive justice.

In the future, we will study other characterizations of the PD value
and the PANSC value relying on some existing characterizations of classical
solutions for TU-games. Coordinating the optimistic satisfaction and the
pessimistic satisfaction, we may elicit combinations of the PD value and
the PANSC value by an underlying neutral satisfaction criterion, and apply
them to some real situations.





Chapter 5

Characterizations of the
weighted division values

5.1 Introduction

As introduced in Chapter 1, the Shapley value (Shapley 1953, [94]) and
the equal division value are basic solutions for TU-games. In order to
interpret asymmetries among players beyond the game, Shapley (1953,
[93]) proposed a weighted version of the Shapley value, namely the posi-
tively weighted Shapley values, where these asymmetries are modelled by
strictly positive weights for the players. Subsequently, Kalai and Samet
(1987, [59]) extended the positively weighted Shapley values by taking
into account a weight system that allows for zero weights of the players.
There exists a number of axiomatic foundations for the class of weighted
Shapley values in the literature (see, e.g., Besner 2020, [14]; Calvo and
Santos 2000, [15]; Casajus 2018, [18]; Casajus 2019, [20]; Casajus 2021,
[21]; Chun 1991, [27]; Hart and Mas-Colell 1989, [46]; Kalai and Samet
1987, [59]; Nowak and Radzik 1995, [86]; Yokote 2015, [120]). Similar
to the Shapley value, the equal division value is also generalized by consid-
ering asymmetries between players. Given non-negative exogenous player
weights, the corresponding weighted division value allocates the worth of

117
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the grand coalition (consisting of all players) proportional to these weights.
If all weights are positive, we call it a positively weighted division value. In
a sense, the weighted division values generalize the equal division value as
the weighted Shapley values generalize the Shapley value. In this chapter,
which is based on Li et al. (2021, [72]), we refer to the weighted division
values when the weight vector has non-negative coordinates, and to the
positively weighted division values for the subclass of weighted division
values with only strictly positive weights.

A major purpose of axiomatizing solutions in TU-games is to show the
reasonability of solutions by using some desirable axioms. A well-known
axiomatization of the Shapley value involves efficiency, additivity, the null
player property and symmetry. Symmetry requires that equally produc-
tive players should get the same payoff. Casajus (2019, [20]) suggested a
relaxation of symmetry, called sign symmetry. Sign symmetry is a consid-
erable weakening of symmetry since, instead of requiring equal payoffs for
equally productive players, it only requires the payoffs to have the same
sign. Notice that, in case there are differences between players that are not
modelled in the game, requiring equal payoffs (symmetry) might be too
strong.1 Sign symmetry allows players that are equally productive in the
game model to get a different share in the worth to be allocated, but still
requires that equally productive players either all get a positive, or all get
a negative or all get a zero share in that worth. Though sign symmetry is
a considerable weakening of symmetry, Casajus (2019, [20]) showed that
replacing symmetry by sign symmetry in the original axiomatization of the
Shapley value still characterizes this value.2 In van den Brink (2007, [104])
an axiomatization of the equal division value by using efficiency, additiv-
ity, the nullifying player property and symmetry is proposed. This triggers

1For example, in river games (see Ambec and Sprumont (2002, [4])) it can be that two
players are equally productive in the game, but have a different role in the sense that the
upstream player has access to the water that flows on its territory, while the downstream
player derives utility from it. Although both players are needed to generate worth, they
clearly have a different role that is no longer visible in the game.

2Casajus and Yokote (2017, [25]) showed that the fairness, or differential marginality,
axiom in the axiomatization of the Shapley value given by van den Brink (2002, [103]),
respectively Casajus (2011, [17]), can be replaced by a weaker sign version to characterize
the Shapley value.
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the question whether sign symmetry can serve as a substitute for symme-
try in this axiomatization of the equal division value. Though this is not
possible in the sense that it does not characterize the equal division value,
interestingly, we can characterize the class of positively weighted division
values by replacing symmetry in van den Brink’s axiomatization with sign
symmetry. Furthermore, we also suggest a weak version of sign symmetry,
called weak sign symmetry, that requires equally productive players’ pay-
offs to not have opposite signs. We show that weak sign symmetry together
with efficiency, additivity and the nullifying player property characterizes
the class of weighted division values.

There exist several axiomatic characterizations for the class of weighted
division values in the literature (see, e.g., Béal et al. 2016, [8]; Béal et
al. 2015, [11]; Kongo 2019, [66] and van den Brink 2009, [105]). Béal
et al. (2016, [8]) introduced three different axiomatizations of the class
of weighted division values. The first axiomatization involves efficiency,
linearity, the nullifying player property and the null player in a produc-
tive environment property. The second axiomatization involves efficiency,
linearity and the non-negative player property. The third axiomatization
involves efficiency, linearity and nullified solidarity. Two common axioms
used in these axiomatizations are efficiency and linearity. In their conclud-
ing remarks, Béal et al. (2016, [8]) state the claim that linearity can not
be weakened to additivity in these axiomatizations. In this chapter, we
show that the class of weighted division values can also be characterized
by replacing linearity in the axiomatizations of Béal et al. (2016, [8]) with
additivity. Moreover, we provide a condition that allows us to use additivity
instead of linearity. This condition, called standard positivity, says that all
players earn a non-negative payoff in a non-negative scaled standard game.

Inspired by the work of Béal et al. (2016, [8]), we suggest stronger
versions of the null player in a productive environment property, the non-
negative player property and nullified solidarity, called the sign null player
in a productive environment property, the sign non-negative player prop-
erty and sign nullified solidarity, respectively. The sign null player in a
productive environment property requires that a null player is rewarded
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(by a positive payoff) or punished (by a negative payoff) or gets zero de-
pending on whether the worth of the grand coalition is positive or negative
or zero. The sign non-negative player property requires that a non-negative
player will get a positive payoff if the worth of the grand coalition is posi-
tive, and will get nothing otherwise. Sign nullified solidarity requires that
the payoffs for all players change in the same direction in case a specified
player becomes a null player. We show that the positively weighted division
values can be characterized by using these stronger axioms instead of the
corresponding axioms in the axiomatizations of Béal et al. (2016, [8]).

The rest of this chapter is organized as follows. In Section 5.2, we char-
acterize the classes of weighted division values and positively weighted
division values by using relaxations of symmetry. In Section 5.3, we re-
place linearity in the axiomatizations of Béal et al. (2016, [8]) with ad-
ditivity to characterize the class of weighted division values, and provide
three axiomatizations of the class of positively weighted division values by
strengthening one of the axioms in each of these axiomatizations. In Sec-
tion 5.4, we provide a discussion between linearity and additivity. Section
5.5 provides all proofs of this chapter. Section 5.6 concludes with a brief
summary.

5.2 Relaxations of symmetry and the weighted divi-
sion values

In van den Brink (2007, [104]), the equal division value is characterized
by efficiency, symmetry, additivity and the nullifying player property. It is
clear that the weighted division values, except the equal division value,
fail symmetry. Casajus (2018, [19]) introduced a relaxation of symmetry
called sign symmetry, and showed that replacing symmetry by sign symme-
try in the original axiomatization of the Shapley value still characterizes the
Shapley value. Sign symmetry is a qualitative version of symmetry that is
weaker than symmetry. Instead of equating payoffs for symmetric players,
it just fixes a common reference point, the zero utility, and requires that
symmetric players are either rewarded simultaneously (positive payoff) or
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punished simultaneously (negative payoff) or all get a zero payoff. Recall
the sign function, sign: R → {−1, 0, 1} given by sign(t) = 1 for t > 0,
sign(0) = 0, and sign(t) = −1 for t < 0.

• Sign symmetry. For all 〈N, v〉 ∈ GN , whenever i, j ∈ N are symmet-
ric players in 〈N, v〉, it holds that sign(ϕi(N, v)) = sign(ϕj(N, v)).

Sign symmetry is a considerable weakening of symmetry. One easily checks
that the positively weighted division values satisfy sign symmetry. Next, we
provide a characterization of the class of positively weighted division values
by using sign symmetry instead of symmetry appearing in van den Brink’s
characterization (van den Brink 2007, [104]) for the equal division value.

Theorem 5.1. A solution ϕ on GN satisfies efficiency, additivity, the nullifying
player property and sign symmetry if and only if there exists a weight vector
ω ∈ ∆N

++ such that ϕ = WDω.

The proof of Theorem 5.1 and of all other results in this chapter can be
found in Section 5.5.

Logical independence of the axioms used in Theorem 5.1 can be shown
by the following alternative solutions on GN .

(i) The solution ϕ, defined by ϕi(N, v) = 0 for all 〈N, v〉 ∈ GN and i ∈ N ,
satisfies all axioms except efficiency.

(ii) The solution ϕ, defined by

ϕi(N, v) =

{
v({i})2∑
j∈N v({j})2 v(N), if

∑
j∈N v({j})2 6= 0;

1
nv(N), if

∑
j∈N v({j})2 = 0,

(5.1)

for all 〈N, v〉 ∈ GN , satisfies all axioms except additivity.

(iii) The Shapley value Sh (Shapley 1953, [94], see Chapter 1) satisfies
all axioms except the nullifying player property.

(iv) The weighted division values that are not positively weighted division
values satisfy all axioms except sign symmetry.
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The fourth example shows that, although the positively weighted division
values satisfy sign symmetry, the other weighted division values fail sign
symmetry. Next, we introduce a further relaxation of (sign) symmetry,
called weak sign symmetry, that is satisfied by all weighted division val-
ues.3

• Weak sign symmetry. For all 〈N, v〉 ∈ GN , whenever i, j ∈ N

are symmetric players in 〈N, v〉, it holds that ϕi(N, v) > 0 implies
ϕj(N, v) ≥ 0.

Since players i and j are interchangeable, the contraposition of the implica-
tion in weak sign symmetry entails that ϕi(N, v) < 0 implies ϕj(N, v) ≤ 0.
Weak sign symmetry relaxes sign symmetry: instead of requiring equal
signs, it only rules out opposite signs. Weakening sign symmetry in this way
in Theorem 5.1, we obtain a characterization of the class of all weighted
division values.

Theorem 5.2. A solution ϕ on GN satisfies efficiency, additivity, the nullifying
player property and weak sign symmetry if and only if there exists a weight
vector ω ∈ ∆N

+ such that ϕ = WDω.

It can be seen in Section 5.5 that the proof of Theorem 5.2 is almost
the same as that of Theorem 5.1, where weak sign symmetry implies the
same conclusions as sign symmetry, except that weak sign symmetry does
not imply the weights (i.e. payoffs in 〈N, eN 〉) to be strictly positive.

Logical independence of the axioms in Theorem 5.2 can be shown by
the same alternative solutions (i), (ii) and (iii) as those used to show log-
ical independence of the axioms in Theorem 5.1, and replacing alterna-
tive solution (iv) by WDω with ω ∈ {ω ∈ RN |

∑
i∈N ωi = 1 and ωi <

0 for at least one i ∈ N}.
3This is different than weak sign symmetry as defined in Casajus (2019, [20]) to char-

acterize the class of weighted Shapley values (Shapley 1953, [93]), which requires that the
payoffs of mutually dependent players have the same sign.
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5.3 Axiomatizations using null player related axioms

In Chapter 1, we revisited three axiomatizations of the class of weighted
division values (see Theorem 1.17, 1.18, 1.21) proposed by Béal et al.
(2016, [8]). In this section, we show that the class of weighted division
values can also be characterized by replacing linearity in the axiomatiza-
tions of Béal et al. (2016, [8]) with the weaker additivity. Moreover, we
also characterize the class of positively weighted division values by intro-
ducing stronger versions of the null player in a productive environment
property, the non-negative player property and nullified solidarity.

5.3.1 Sign null player in a productive environment property

Firstly, we give an alternative axiomatization of the class of weighted divi-
sion values by replacing linearity with additivity in Theorem 1.18.

Theorem 5.3. A solution ϕ on GN satisfies efficiency, additivity, the nullifying
player property and the null player in a productive environment property if
and only if there exists a weight vector ω ∈ ∆N

+ such that ϕ = WDω.

Logical independence of the axioms used in Theorem 5.3 can be shown
by the alternative solutions mentioned in Béal et al. (2016, [8]) to show
logical independence of the axioms in Theorem 1.18, since their example
that is used to show that linearity is independent of the other axioms also
does not satisfy additivity.

In Theorem 5.3, the null player in a productive environment property
is used to characterize the class of weighted division values. In a sense, the
null player in a productive environment property is not strong enough to
generate only positively weighted division values. Next, we strengthen the
null player in a productive environment property to characterize the class
of positively weighted division values.4

4Notice that the ‘sign’ axioms in this section strengthen known null player related ax-
ioms, while sign symmetry weakened symmetry.
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• Sign null player in a productive environment property. For all
〈N, v〉 ∈ GN , whenever i ∈ N is a null player in 〈N, v〉, it holds that
sign(ϕi(N, v)) = sign(v(N)).

It is clear that the sign null player in a productive environment property is
stronger than the null player in a productive environment property. Instead
of only the non-negativity restrictions, the sign null player in a produc-
tive environment property requires that a null player is rewarded (positive
payoff) or punished (negative payoff) or gets zero depending on whether
the worth of the grand coalition is positive or negative or zero. One eas-
ily checks that the positively weighted division values satisfy the sign null
player in a productive environment property, but the other weighted di-
vision values do not. Next, we provide a characterization of the class of
positively weighted division values by replacing the null player in a pro-
ductive environment property in Theorem 5.3 with the sign null player in
a productive environment property.

Theorem 5.4. A solution ϕ on GN satisfies efficiency, additivity, the nullifying
player property and the sign null player in a productive environment property
if and only if there exists a weight vector ω ∈ ∆N

++ such that ϕ = WDω.

Logical independence of the axioms used in Theorem 5.4 can be shown
by the following alternative solutions on GN .

(i) The solution ϕ, defined by ϕi(N, v) = v(N) for all 〈N, v〉 ∈ GN and
i ∈ N , satisfies all axioms except efficiency.

(ii) The solution ϕ, defined by Eq.(5.1), satisfies all axioms except addi-
tivity.

(iii) For α ∈ [0, 1], the corresponding α-egalitarian Shapley value Shα,
introduced by Joosten (1996, [55]), is defined by

Shαi (N, v) = αShi(N, v) + (1− α)
v(N)

n
, (5.2)

for all 〈N, v〉 ∈ GN and i ∈ N . The α-egalitarian Shapley values with
0 < α < 1 satisfy all axioms except the nullifying player property.
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(iv) The weighted division values that are not positively weighted division
values satisfy all axioms except the sign null player in a productive
environment property.

5.3.2 Sign non-negative player property

Similar as in the previous subsection, we first give an alternative axiom-
atization of the class of weighted division values by replacing linearity in
Theorem 1.17 with additivity, and after that strengthen one of the axioms
(related to null players) to obtain the positively weighted division values.

Theorem 5.5. A solution ϕ on GN satisfies efficiency, additivity and the non-
negative player property if and only if there exists a weight vector ω ∈ ∆N

+

such that ϕ = WDω.

Logical independence of the axioms can be shown using the same alter-
native solutions used to show logical independence of the axioms in Theo-
rem 4 (that is Theorem 1.17 in Chapter 1) in Béal et al. (2016, [8]), since
their example that does not satisfy linearity, also does not satisfy additivity.

The non-negative player property is not strong enough to generate only
positively weighted division values. To characterize the class of positively
weighted division values, we strengthen the non-negative player property
requiring the payoff of a player to be positive (respectively zero) if the
worth of the grand coalition is positive (respectively zero).

• Sign non-negative player property. For all 〈N, v〉 ∈ GN , whenever
i ∈ N is a non-negative player in 〈N, v〉, it holds that sign(ϕi(N, v)) =

sign(v(N)).

One easily checks that the positively weighted division values satisfy the
sign non-negative player property. Next, we provide a characterization
of the class of positively weighted division values by using the sign non-
negative player property.

Theorem 5.6. A solution ϕ on GN satisfies efficiency, additivity and the sign
non-negative player property if and only if there exists a weight vector ω ∈
∆N

++ such that ϕ = WDω.
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Logical independence of the axioms used in Theorem 5.6 can be shown
by the same alternative solutions (i), (ii) and (iii) (or (iv)) showing logical
independence of the axioms in Theorem 5.4, where the first two examples
also satisfy the stronger sign non-negative player property.

5.3.3 Sign nullified solidarity

Next, we replace linearity in Theorem 1.21 with additivity to give an alter-
native axiomatization of the class of weighted division values.

Theorem 5.7. A solution ϕ on GN satisfies efficiency, additivity and nullified
solidarity if and only if there exists a weight vector ω ∈ ∆N

+ such that ϕ =

WDω.

Logical independence of the axioms used in Theorem 5.7 can be shown
by the same alternative solutions as used to show logical independence of
the axioms in Theorem 1.21, in Béal et al. (2016, [8]).

Finally, we strengthen nullified solidarity to characterize the class of
positively weighted division values in a similar way as the sign non-negative
player property is stronger than the non-negative player property.

• Sign nullified solidarity. For all 〈N, v〉 ∈ GN and i, j ∈ N , it holds
that sign(ϕi(N, v)− ϕi(N, vNi)) = sign(ϕj(N, v)− ϕj(N, vNi)).

Next, we provide a characterization of the class of positively weighted
division values by using sign nullified solidarity.

Theorem 5.8. A solution ϕ on GN satisfies efficiency, additivity and sign
nullified solidarity if and only if there exists a weight vector ω ∈ ∆N

++ such
that ϕ = WDω.

Logical independence of the axioms used in Theorem 5.8 can be shown
by the following alternative solutions on GN .

(i) The solution ϕ, defined by ϕi(N, v) = v(N) for all 〈N, v〉 ∈ GN and
i ∈ N , satisfies all axioms except efficiency.
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(ii) The solution ϕ, defined by ϕi(N, v) = EDi(N, v) + ti for all 〈N, v〉 ∈
GN and i ∈ N , where t ∈ RN is such that

∑
i∈N ti = 0 and ti 6= 0 for

some i ∈ N , satisfies all axioms except additivity.

(iii) The α-egalitarian Shapley value Shα, defined by Eq.(5.2), satisfies all
axioms except sign nullified solidarity.

5.4 Discussion between linearity and additivity

In the previous axiomatizations of the class of weighted division values, we
use additivity instead of linearity. This triggers the question under what
conditions additivity can replace linearity. In this section, we define a new
axiom, called standard positivity, which provides a condition that allows us
to use additivity instead of linearity.

• Standard positivity. For all T ⊆ N , T 6= ∅ and c ∈ R+, it holds that
ϕi(N, ceT ) ≥ 0 for all i ∈ N .

Standard positivity is a weak version of the non-negative player property,
and requires that each player obtains a non-negative payoff in every non-
negative scalar multiplication a standard game.

Proposition 5.9. If solution ϕ on GN satisfies additivity and standard posi-
tivity, then ϕ satisfies linearity.

By the above proposition, linearity can be replaced by additivity in an
axiomatization that includes axioms that imply standard positivity. The fol-
lowing corollary, which is a straightforward conclusion from the proofs of
Theorem 5.1, 5.3, 5.5 and 5.7, states that the axioms in the axiomatiza-
tions of the class of weighted division values provided in this chapter imply
standard positivity.

Corollary 5.10. If solution ϕ on GN satisfies one of the following four condi-
tions:

(i) efficiency, the nullifying player property and sign symmetry;
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(ii) efficiency, additivity, the nullifying player property and the null player
in a productive environment property;

(iii) the non-negative player property;

(iv) efficiency, additivity and nullified solidarity;

then, ϕ satisfies standard positivity.

Remark 5.1. In this corollary, the axioms mentioned in (i) and (iii) appear
in Theorem 5.1 and 5.5 respectively. Notice that additivity does not appear
in (i) and (iii), but appears in Theorem 5.1 and 5.5. The axioms mentioned
in (ii) and (iv) are the same as those in Theorem 5.3 and 5.7 respectively.

5.5 Proofs

Proof of Theorem 5.1. It is straightforward to verify that the positively
weighted division values satisfy efficiency, sign symmetry, additivity and
the nullifying player property. It is left to show that the axioms determine
that ϕ is a positively weighted division value.

Let ϕ be a solution on GN satisfying the four mentioned axioms. We
will show that for some weight vector ω ∈ ∆N

++, ϕ = WDω. Let c ∈ R.
Firstly, for the null game 〈N,0〉 given by 0(S) = 0 for all S ⊆ N , efficiency
and sign symmetry imply that ϕi(N,0) = 0 for all i ∈ N .5

Secondly, we consider 〈N, ceT 〉 for ∅ 6= T ( N . By the nullifying player
property, we have ϕi(N, ceT ) = 0 for all i ∈ N\T . Then, by efficiency, we
have

∑
i∈T ϕi(N, ceT ) = 0. Since players i, j ∈ T are symmetric players in

〈N, ceT 〉, by sign symmetry, we have ϕi(N, ceT ) = 0 for all i ∈ T . Thus,
ϕi(N, ceT ) = 0 for all ∅ 6= T ( N and i ∈ N .

Thirdly, we consider 〈N, ceN 〉. Set ωi = ϕi(N, eN ) for all i ∈ N . By
efficiency and sign symmetry, we have

∑
i∈N ωi = 1 and ωi > 0 for all

i ∈ N , showing that ω ∈ ∆N
++. Now, we show that ϕ(N, ceN ) = cϕ(N, eN ).

Choose two sequences of rationals {rk}∞k=1 and {sk}∞k=1 which converge to

5Notice that this also follows from additivity since ϕi(N,0) + ϕi(N,0) = ϕi(N,0) im-
plies that ϕi(N,0) = 0 for all i ∈ N .
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c from above and below, respectively. We obtain that, for all i ∈ N and
k ∈ N,

ϕi(N, rkeN )− ϕi(N, ceN ) =ϕi(N, (rk − c)eN ) ≥ 0, and

ϕi(N, ceN )− ϕi(N, skeN ) =ϕi(N, (c− sk)eN ) ≥ 0,
(5.3)

where in both cases the equality follows from additivity and the inequality
follows from efficiency and sign symmetry. Notice that additivity6 also im-
plies that for all i ∈ N , ϕi(N, rkeN )− ϕi(N, skeN ) = ϕi(N, (rk − sk)eN ) =

(rk− sk)ϕi(N, eN )→ 0 as k →∞, since (rk− sk)→ 0 as k →∞. Then, we
have ϕi(N, rkeN )− ϕi(N, ceN ) + ϕi(N, ceN )− ϕi(N, skeN )→ 0 as k →∞.
Since, both ϕi(N, rkeN )−ϕi(N, ceN ) ≥ 0 and ϕi(N, ceN )−ϕi(N, skeN ) ≥ 0

by Eq.(5.3), this implies that ϕ(N, rkeN ) → ϕ(N, ceN ) as k → ∞. Since
ϕ(N, rkeN ) = rkϕ(N, eN ) → cϕ(N, eN ) (where the equality follows by ad-
ditivity, see Footnote 6) and ϕ(N, rkeN ) → ϕ(N, ceN ) as k → ∞, we have
that ϕ(N, ceN ) = cϕ(N, eN ) for any scalar c ∈ R.

Therefore, for all 〈N, v〉 ∈ GN and i ∈ N , with additivity it holds that

ϕi(N, v) =
∑
T⊆N

ϕi(N, v(T )eT ) = ϕi(N, v(N)eN )

=v(N)ϕi(N, eN ) = ωiv(N).

The proof is completed.

Proof of Theorem 5.2. It is clear that all the weighted division values satisfy
efficiency, weak sign symmetry, additivity and the nullifying player prop-
erty. To show that the axioms determine that the solution is a weighted
division value, let ϕ be a solution on GN satisfying the four mentioned
axioms. We will show that for some weight vector ω ∈ ∆N

+ , ϕ = WDω.
By the nullifying player property (or additivity, see Footnote 5), we have
ϕi(N,0) = 0 for all i ∈ N , where 〈N,0〉 is the null game given by 0(S) = 0

for all S ⊆ N . Let c ∈ R. Similar as in the proof of Theorem 5.1, for

6Given any rational rk, there must exist two integers a, b ∈ N, a 6= 0, such that rk = b
a

.
Then, by additivity, we have ϕ(N, rkeN ) = ϕ(N, b

a
eN ) = bϕ(N, 1

a
eN ) = b

a
· aϕ(N, 1

a
eN ) =

b
a
ϕ(N, a

a
eN ) = rkϕ(N, eN ).
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∅ 6= T ( N , (i) by the nullifying player property, ϕi(N, ceT ) = 0 for all
i ∈ N\T , and (ii) by efficiency and weak sign symmetry, ϕi(N, ceT ) = 0

for all i ∈ T . Set ωi = ϕi(N, eN ) for all i ∈ N . By efficiency and
weak sign symmetry, we have

∑
i∈N ωi = 1 and ωi ≥ 0 for all i ∈ N ,

showing that ω ∈ ∆N
+ . Again similar as in the proof of Theorem 5.1,

by efficiency, weak sign symmetry and additivity, we can also show that
ϕ(N, ceN ) = cϕ(N, eN ). Finally, by additivity, for all 〈N, v〉 ∈ GN and
i ∈ N , we have ϕi(N, v) =

∑
T⊆N ϕi(N, v(T )eT ) = ωiv(N).

Proof of Theorem 5.3. Since linearity implies additivity, by Theorem 1.18,
we only need to prove that the axioms determine that the solution is a
weighted division value. Therefore, let ϕ be a solution on GN satisfying
efficiency, additivity, the nullifying player property and the null player in
a productive environment property. Also, by Theorem 1.18, it suffices to
show that ϕ is homogeneous, that is, ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈
GN and scalar c ∈ R. By the nullifying player property this is obviously
satisfied for c = 0. Notice that

ϕ(N,−cv) = ϕ(N,0)− ϕ(N, cv) = −ϕ(N, cv),

where the first equality follows from additivity and the second equality
follows from the nullifying player property. Then it suffices to show that
ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN and positive scalar c ∈ R++.

Let c ∈ R++. Firstly, we consider 〈N, ceT 〉 for ∅ 6= T ( N . By the
nullifying player property, we have ϕi(N, ceT ) = 0 for all i ∈ N\T . Now
we show that ϕi(N, ceT ) = 0 for all i ∈ T . If T = {i}, then by the nul-
lifying player property we have ϕj(N, ce{i}) = 0 for all j ∈ N \ {i}, and
consequently by efficiency ϕi(N, ce{i}) = 0. Now, suppose that T ) {i}.
Set wiT = eT + eT\{i}.7 Since player i is a null player in 〈N, cwiT 〉 and
cwiT (N) = 0, we have

ϕi(N, ceT ) = ϕi(N, cw
i
T )− ϕi(N, ceT\{i}) ≥ −ϕi(N, ceT\{i}),

7These are the same games that are used by Béal et al. (2016, [8]).
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where the equality follows from additivity and the inequality from the null
player in a productive environment property. By the nullifying player prop-
erty, ϕi(N, ceT\{i}) = 0, and thus ϕi(N, ceT ) ≥ 0 for all i ∈ T . Since we
already showed that ϕi(N, ceT ) = 0 for all i ∈ N\T , and ceT (N) = 0 for
T ( N , efficiency implies that ϕi(N, ceT ) = 0 for all i ∈ T .

Secondly, we show that ϕ(N, ceN ) = cϕ(N, eN ) for any scalar c ∈ R++.
For all i ∈ N , we have

ϕi(N, ceN ) = ϕi(N, ceN ) + ϕi(N, ceN\{i}) = ϕi(N, ceN + ceN\{i}) ≥ 0,

(5.4)
where the first equality follows from the nullifying player property, the
second equality follows from additivity, and the inequality follows from the
null player in a productive environment property. Similar as in the proof
of Theorem 5.1, choose two sequences of rationals {rk}∞k=1 and {sk}∞k=1

which converge to c from above and below, respectively. By additivity,
efficiency and Eq.(5.4), we obtain the same inequalities (5.3) as in the
proof of Theorem 5.1, that is, for all i ∈ N and k ∈ N,

ϕi(N, rkeN )− ϕi(N, ceN ) =ϕi(N, (rk − c)eN ) ≥ 0, and

ϕi(N, ceN )− ϕi(N, skeN ) =ϕi(N, (c− sk)eN ) ≥ 0.

Similar as in the proof of Theorem 5.18, it follows that ϕ(N, cv) = cϕ(N, v)

for all 〈N, v〉 ∈ GN and scalar c ∈ R++, which concludes the proof.

Proof of Theorem 5.4. It is straightforward to verify that the positively
weighted division values satisfy the sign null player in a productive en-
vironment property.

8This is shown identical as in the proof of Theorem 5.1 as follows: For all i ∈ N ,
ϕi(N, rkeN ) − ϕi(N, skeN ) = ϕi(N, (rk − sk)eN ) = (rk − sk)ϕi(N, eN ) → 0 as k → ∞,
since (rk − sk) → 0 as k → ∞, and additivity. Then ϕi(N, rkeN ) − ϕi(N, ceN ) +
ϕi(N, ceN ) − ϕi(N, skeN ) → 0 as k → ∞. Since, both ϕi(N, rkeN ) − ϕi(N, ceN ) ≥ 0
and ϕi(N, ceN ) − ϕi(N, skeN ) ≥ 0, this implies that ϕ(N, rkeN ) → ϕ(N, ceN ) and
ϕ(N, rkeN ) = rkϕ(N, eN ) → cϕ(N, eN ) as k → ∞, which proves that ϕ(N, ceN ) =
cϕ(N, eN ) for any scalar c ∈ R++. Hence, by additivity, ϕ(N, cv) = cϕ(N, v) for all
〈N, v〉 ∈ GN and scalar c ∈ R++, which concludes the proof.
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To show that the axioms determine that the solution is a positively
weighted division value, let ϕ be a solution on GN satisfying the four men-
tioned axioms. Since the sign null player in a productive environment prop-
erty is stronger than the null player in a productive environment property,
by Theorem 5.3, ϕ is a weighted division value WDω for some ω ∈ ∆N

+ . We
are left to prove that ωi > 0 for all i ∈ N . For all i ∈ N , let ωi = ϕi(N, eN ).
Then, for all i ∈ N , we have

ωi = ϕi(N, eN ) = ϕi(N, eN ) + ϕi(N, eN\{i}) = ϕi(N, eN + eN\{i}) > 0,

where the second equality follows from the nullifying player property, the
third equality follows from additivity, and the inequality follows from the
sign null player in a productive environment property. Thus, ω ∈ ∆N

++.

Proof of Theorem 5.5. By Theorem 1.17, we only need to prove that the ax-
ioms determine that the solution is a weighted division value. Therefore, let
ϕ be a solution on GN satisfying efficiency, additivity and the non-negative
player property. Similar as before, by Theorem 1.17, it suffices to show
that ϕ is homogeneous, that is, ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN and
scalar c ∈ R.

Similar as in previous proofs, choose two sequences of rationals {rk}∞k=1

and {sk}∞k=1 which converge to c from above and below, respectively. By
additivity and the non-negative player property, we obtain that, for all S ⊆
N , i ∈ N and k ∈ N,

ϕi(N, rkeS)− ϕi(N, ceS) =ϕi(N, (rk − c)eS) ≥ 0, and

ϕi(N, ceS)− ϕi(N, skeS) =ϕi(N, (c− sk)eS) ≥ 0.

Now, we have ϕi(N, rkeS) − ϕi(N, skeS) = ϕi(N, (rk − sk)eS) = (rk −
sk)ϕi(N, eS)→ 0 as k →∞, since (rk − sk)→ 0 as k →∞, and additivity.
Then ϕi(N, rkeS) − ϕi(N, ceS) + ϕi(N, ceS) − ϕi(N, skeS) → 0 as k → ∞.
Since, both ϕi(N, rkeS)−ϕi(N, ceS) ≥ 0 and ϕi(N, ceS)−ϕi(N, skeS) ≥ 0,
this implies that ϕ(N, rkeS) → ϕ(N, ceS) and ϕ(N, rkeS) = rkϕ(N, eS) →
cϕ(N, eS) as k → ∞, which proves that ϕ(N, ceS) = cϕ(N, eS) for any
scalar c ∈ R. Hence, similar as in previous proofs by additivity, ϕ(N, cv) =
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cϕ(N, v) for all 〈N, v〉 ∈ GN and scalar c ∈ R, which concludes the proof.

Proof of Theorem 5.6. It is straightforward to verify that the positively
weighted division values satisfy the sign non-negative player property.

To show that the axioms determine that the solution is a positively
weighted division value, let ϕ be a solution on GN satisfying the three
mentioned axioms. Since the sign non-negative player property is stronger
than the non-negative player property, by Theorem 5.5, ϕ is a weighted
division value WDω for some ω ∈ ∆N

+ and, by its proof, ωi = ϕi(N, eN ).
We are left to prove that ωi > 0 for all i ∈ N . By the sign non-negative
player property, we have ωi = ϕi(N, eN ) > 0 for all i ∈ N , showing that
ω ∈ ∆N

++.

Proof of Theorem 5.7. By Theorem 1.21, we only need to prove that the ax-
ioms determine that the solution is a weighted division value. Therefore,
let ϕ be a solution on GN satisfying efficiency, additivity and nullified sol-
idarity. Similar as before, by Theorem 1.21, it suffices to show that ϕ is
homogeneous, that is, ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN and scalar
c ∈ R. By additivity, this is satisfied for c = 0, since ϕi(N,0) = 0 for all
i ∈ N (See Footnote 5). Also by additivity, we have

ϕ(N,−cv) = ϕ(N,0)− ϕ(N, cv) = −ϕ(N, cv). (5.5)

Then it suffices to show that ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN and
scalar c ∈ R++.

Let c ∈ R++. For all S ⊆ N and i ∈ S, (ceS)Ni = 0, where 〈N, (ceS)Ni〉
is the TU-game where player i is nullified as defined by Eq.(1.2). Then,
we have ϕj(N, (ceS)Ni) = ϕj(N,0) = 0 for all j ∈ N . Now we show that
ϕi(N, ceS) ≥ 0 for all S ⊆ N and i ∈ S. On the contrary, suppose that
there are S ⊆ N and i ∈ S such that ϕi(N, ceS) < 0. By Eq.(5.5), we
then have ϕi(N,−ceS) > 0, and thus by ϕi(N, (ceS)Ni) = ϕi(N,0) = 0,
we have ϕi(N,−ceS) > ϕi(N, (−ceS)Ni). Then, by nullified solidarity,
ϕj(N,−ceS) ≥ ϕj(N, (−ceS)Ni) = 0 for all j ∈ N . Thus, we obtain
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∑
j∈N ϕj(N,−ceS) > 0, which is in contradiction with the fact that ϕ sat-

isfies efficiency. So, we conclude that, ϕi(N, ceS) ≥ 0 for all S ⊆ N and
i ∈ S. Therefore, by nullified solidarity, ϕi(N, ceS) ≥ 0 = ϕi(N, (ceS)Ni)

implies that ϕj(N, ceS) ≥ ϕj(N, (ceS)Ni) = 0 for all S ⊆ N , i ∈ S and
j ∈ N . That is, ϕj(N, ceS) ≥ 0 for all j ∈ N . Similar as in the proof
of Theorem 5.5, choosing two sequences of rationals {rk}∞k=1 and {sk}∞k=1

which converge to c from above and below, respectively, we can prove that
ϕ(N, ceS) = cϕ(N, eS) for all S ⊆ N and scalar c ∈ R++. Hence, by addi-
tivity, ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN and scalar c ∈ R++, which
concludes the proof.

Proof of Theorem 5.8. It is straightforward to verify that the positively
weighted division values satisfy sign nullified solidarity.

To prove that the axioms determine that the solution is a positively
weighted division value, let ϕ be a solution on GN satisfying the three
mentioned axioms. Since sign nullified solidarity is stronger than nulli-
fied solidarity, by Theorem 1.21, ϕ is a weighted division value WDω for
some ω ∈ ∆N

+ . We are left to prove that ωi > 0 for all i ∈ N . Since
ϕi(N, (ceN )Ni) = ϕi(N,0) = 0 for all i ∈ N , by sign nullified solidarity, we
have sign(ϕi(N, eN )) = sign(ϕj(N, eN )) for all i, j ∈ N . Thus, by efficiency,
we have ωi = ϕi(N, eN ) > 0 for all i ∈ N , showing that ω ∈ ∆N

++.

Proof of Proposition 5.9. Since ϕ is assumed to be additive, we only prove
that ϕ is homogeneous, that is, ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN

and c ∈ R. Firstly, by additivity, it holds that ϕi(N,0) = 0 for all i ∈ N .
Then, we have ϕ(N,−cv) = ϕ(N,0) − ϕ(N, cv) = −ϕ(N, cv) by again
applying additivity. Thus, it suffices to show that ϕ(N, cv) = cϕ(N, v) for
all 〈N, v〉 ∈ GN and positive scalar c ∈ R++.

Let c ∈ R++ and ∅ 6= T ⊆ N . Choose two sequences of rationals
{rk}∞k=1 and {sk}∞k=1 which converge to c from above and below, respec-
tively. We obtain that, for all i ∈ N and k ∈ N,

ϕi(N, rkeT )− ϕi(N, ceT ) =ϕi(N, (rk − c)eT ) ≥ 0, and

ϕi(N, ceT )− ϕi(N, skeT ) =ϕi(N, (c− sk)eT ) ≥ 0,
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where in both cases the equality follows from additivity and the inequality
follows from standard positivity. Then, similar as in the proof of Theorem
5.1, we can prove that ϕ(N, ceT ) = cϕ(N, eT ) for all c ∈ R++. Hence, by
additivity, ϕ(N, cv) = cϕ(N, v) for all 〈N, v〉 ∈ GN and c ∈ R++.

5.6 Conclusions

In this chapter, we focus on studying axiomatic characterizations of the
classes of weighted division values and positively weighted division val-
ues. We show that relaxing symmetry in van den Brink’s characterization
(van den Brink 2007, [104]) for the equal division value, by replacing it
with sign symmetry of Casajus (2019, [20]), gives a characterization of the
class of positively weighted division values. Then, a weaker version of sign
symmetry allows to characterize the class of all weighted division values.
Moreover, we show that the class of weighted division values can also be
characterized by replacing linearity in three axiomatizations of Béal et al.
(2016) with additivity. Meanwhile, we show how strengthening an axiom
regarding null, non-negative, respectively nullified players in these three
axiomatizations, provides three axiomatizations of the class of positively
weighted division values.

The weighted division values constitute an interesting class of solutions
for at least two reasons. Firstly, the weighted division principle is often
considered intuitive in various applications of TU-games. It is desirable to
have the option of treating players differently to reflect exogenous charac-
teristics, such as technical skill, power, income or health status. This can be
achieved by incorporating exogenous weights into the construction of a so-
lution. Secondly, proportional (weighted) division methods are very often
employed in many applications, such as bankruptcy problems (Thomson
2003, [100]), cost allocation problems (Tijs and Driessen 1986, [102]),
surplus-sharing problems (Moulin 1991, [80]) and so on.

Somewhat surprising, whereas relaxing symmetry by sign symmetry
in the traditional axiomatization of the Shapley value still gives the same
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Shapley value in Casajus (2019, [20]), applying this relaxation in the ax-
iomatization of the equal division value results in a class of solutions,
specifically the weighted division values. Li et al. (2022, [69]) showed
that Casajus (2019, [20]) result can be generalized to a subfamily of effi-
cient, symmetric and linear values (for short, ESL values), in the sense that
relaxing symmetry into sign symmetry in a specific axiomatization of such
an ESL value still characterizes that ESL value.

Casajus (2018, [18]) replaces symmetry by sign symmetry in Young’s
axiomatization (Young 1985, [121]) of the Shapley value. In van den
Brink (2007, [104]) another characterization of the equal division value
is proposed by using efficiency, symmetry and coalitional monotonicity. In
view of the former results, the question naturally arises whether the class
of weighted division values can be characterized by efficiency, coalitional
monotonicity and sign symmetry or weak sign symmetry.



Chapter 6

Sharing the cost of cleaning
up a polluted river

6.1 Introduction

In the previous chapters we focused on characterizations of solutions for
TU-games. In this chapter, which is based on Li et al. (2021, [71]), we
turn to pollution cost-sharing problems, and explore how to share the cost
of cleaning up a polluted river using cooperative game theory.

River (water) allocation among agents has emerged as one of the areas
with exceptional interest for researchers due to its indispensable benefits to
inhabitants of coastal communities. About 200 rivers are flowing through
different countries in the world (see Ambec and Sprumont 2002, [4] and
Barrett 1994, [6]). On the one hand, these water resources cater to peo-
ple’s daily routines and industrial productions. On the other hand, waste
generated by domestic chores and production activities pollutes the sources
of water, and this is harmful to humans, plants, and animals. In recent
years, due to population growth and rapid industrialization, human’s de-
mand for (clean) water resources as well as the degree of water pollution
are constantly increasing. This makes many countries and regions face
water shortage. Considering this, reasonable allocation and utilization of

137
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water resources and efficient water pollution management would be effec-
tive measures to deal with this problem. Hence, the following questions
need to be tackled: (1) How do inhabitants of coastal communities allo-
cate the water resources? (2) How do inhabitants of coastal communities
share the cost of cleaning up a polluted river? Harnessing both the burden
of responsibility and the relieve that these water resources provide has be-
come an issue of great importance recently and has presented a vital aspect
that could make or mar societal development and peaceful coexistence in
the riverine communities.

On the beneficial side, Ambec and Sprumont (2002, [4]) were the first
to model a situation where a group of agents located along a river share its
resources from a cooperative game-theoretic viewpoint, and studied how
the water should be allocated among agents. They proposed the down-
stream incremental method in terms of the two main doctrines of Abso-
lute Territorial Sovereignty (Godana 1985, [38]) and Unlimited Territorial
Integrity (Kilgour and Dinar 1995, [63]) (for short, ATS and UTI, respec-
tively) in international disputes. Ambec and Ehlers (2008, [3]) extended
the model of sharing a river and considered the problem of efficiently shar-
ing water from a river among a group of satiable agents. Gudmundsson et
al. (2018, [40]) focused on implementing efficient outcomes of the river
sharing problem by non-cooperative bargaining. Just recently, Steinmann
and Winkler (2019, [97]) dug further in studying a river sharing model
with downstream externalities. More results about the river sharing prob-
lem can be found in several survey papers, see e.g. Béal et al. (2013, [10])
and Beard (2011, [12]).

On the responsibility side, Ni and Wang (2007, [84]) first developed a
model for the pollution cost-sharing problems and discussed the question
of how to split the cost of cleaning up a river among agents situated along
the river. They proposed two methods: the local responsibility sharing
method (for short, LRS method) and the upstream equal sharing method
(for short, UES method) by resorting to the two main doctrines of ATS
and UTI in international disputes. The LRS method charges an agent the
full cost of cleaning up the segment in which the agent is located, that is,
every agent should take full responsibility for cleaning up its own area. In
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contrast, the UES method forces an agent and all its upstream counterparts
to take the same responsibility for cleaning up its own area. To be precise,
the UES method allocates the cost of cleaning up a segment equally among
the agent in that segment and all its upstream counterparts.

The completeness of the above approach has been questioned by some
authors. Alcalde-Unzu et al. (2015, [2]) proposed an alternative method
which takes into account the transfer rate of waste from one segment to
another. Sun et al. (2019, [99]) extended the approach by introducing the
α-responsibility method which is the corresponding convex combination
of the LRS method and the UES method and implemented this allocation
method by a dynamic procedure. Gómez-Rúa (2013, [39]) proposed a
family of rules by taking into account the different factors that influence
the quality of the water. More recent research on the pollution cost-sharing
problem can be found in the literature, see e.g. Hou et al. (2019, [48])
and van den Brink et al. (2018, [109]).

Considering the LRS and UES methods of Ni and Wang (2007, [84]),
both the method where each agent takes full responsibility for cleaning up
its own area and the method where each agent shares the responsibility
equally with all its upstream counterparts, are debatable. The first method
does not take into consideration that the pollutants of a river flow from
upstream to downstream. The second method implicitly assumes that the
agent in a segment and all its upstream counterparts have the same degree
of responsibility for cleaning up the segment. In this chapter, we attempt
to tackle the second question posed above by focusing on the responsibility
of sharing the cost of cleaning up a polluted river. Inspired by the work
of Ni and Wang (2007, [84]), we investigate two new classes of methods:
the class of equal upstream responsibility methods (for short, EUR meth-
ods) and the class of weighted upstream sharing methods (for short, WUS
methods). The EUR methods first assign to each agent a fraction of the
cost of cleaning up the segment in which the agent is located, and then
the remaining cost is distributed equally among its upstream counterparts.
This fraction can be interpreted as an agent’s responsibility level in its own
pollution cost. The WUS methods require that each agent should pay for
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the amount of the cost of cleaning up its own segment and all its down-
stream segments in proportion to certain individual weights. These two
classes of methods can be regarded as generalizations of the LRS method
and the UES method.

Axiomatization is a common way to characterize the fairness and rea-
sonability of methods for cost sharing problems, specifically for pollution
cost sharing problems. Some standard properties have been applied to
characterize the LRS method and the UES method, such as efficiency, ad-
ditivity, independence of upstream costs, upstream symmetry and no blind
cost, which are found in the literature, see e.g. Dong et al. (2012 [32]), Ni
and Wang (2007, [84]), and Sun et al. (2019, [99]). In this chapter, we
first characterize the UES method by introducing a relaxation of indepen-
dence of upstream costs, called sign independence of upstream costs. Then,
we define weak upstream symmetry and weak no blind cost by weakening
these standard properties to give two axiomatizations of the class of EUR
methods. Furthermore, we also provide two axiomatizations of the class
of WUS methods by introducing two weak versions of upstream symme-
try: sign upstream symmetry and proportionality. Finally, we analyze the
problem from a cooperative game-theoretic viewpoint and define a (coop-
erative) pollution cost-sharing game. We define the compromise method
that is the average of the LRS method and UES method, and show that the
Shapley value of this pollution cost-sharing game is equal to the compro-
mise method. Meanwhile, we also show the compromise method coincides
with the Shapley value, nucleolus and τ -value of the dual of this pollution
cost-sharing game.

The rest of this chapter is organized as follows. In Section 6.2, we
introduce pollution cost-sharing problems. In Section 6.3, we characterize
the UES method by relaxing independence of upstream costs. In Section
6.4, we define the classes of EUR methods and WUS methods, and provide
several characterizations of these methods. In Section 6.5, we define the
pollution cost-sharing game and show that the Shapley value of this game
coincides with the compromise method. Section 6.6 provides all proofs of
this chapter. Section 6.7 concludes with a summary.
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6.2 Pollution cost-sharing problems

Consider a river which is divided into n segments from upstream to down-
stream. There are n agents (or countries) located along the river, and
each agent is located in one of these segments indexed by a given order
i = 1, 2, · · · , n from upstream to downstream. These agents generate a
certain amount of pollutants, destroying the ecosystem of the river and in-
fluencing the quality of the waterbody. In order to guarantee the water
quality, every agent has to clean up the polluted river at its segment to a
certain level. To this end, the environmental authority sets a standard of
the degree of pollution in every segment along the river, which requires
agents paying the cost ci to clean up the pollutants at segment i, so that
the water quality is up to the environmental standard. The central issue is
how to allocate the total costs,

∑
i∈N ci, among the n agents. Ni and Wang

(2007, [84]) firstly modeled this practical problem, called the pollution
cost-sharing problem.

Formally, a pollution cost-sharing problem is a pair (N, c), where N =

{1, · · · , n} is a finite set of agents and c = (c1, · · · , cn) ∈ RN+ is the pollu-
tion cost vector. The component ci represents the cost of cleaning up the
pollutants at segment i. For all i, j ∈ N , i < j means that i is upstream
from j. Denote the class of all pollution cost-sharing problems on agent set
N = {1, · · · , n} by PN . A cost share vector for pollution cost-sharing prob-
lem (N, c) ∈ PN is an n-dimensional vector x = (x1, · · · , xn) ∈ RN+ whose
component xi ≥ 0 represents the cost share allocated to agent i. A method
on PN is a map ψ : PN → RN+ that assigns a non-negative cost share vector
ψ(N, c) to every problem (N, c) ∈ PN .

Ni and Wang (2007, [84]) proposed two methods, the local responsibil-
ity sharing method (for short, LRS method) and the upstream equal sharing
method (for short, UES method).1 The LRS method on PN is defined by
LRSi(N, c) = ci for all (N, c) ∈ PN and i ∈ N . The LRS method assigns

1For the more general multiple spring rivers, Dong, Ni and Wang (2012, [32]) also
introduced the downstream equal sharing method (for short, DES method) that allocates the
cost of a segment equally among this segment and each of its downstream segments. The
DES method on PN is defined by DESi(N, c) =

∑i
k=1

1
n−k+1

ck for all (N, c) ∈ PN and
i ∈ N .
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to each agent the full cost of cleaning up the segment where the agent is
located. The UES method on PN is defined by UESi(N, c) =

∑n
k=i

1
kck for

all (N, c) ∈ PN and i ∈ N . The UES method distributes the cost of cleaning
up each segment equally among the agent in that segment and all agents
situated upstream from it.

Now we recall some standard axioms, proposed by Ni and Wang (2007,
[84]).

• Efficiency. For all (N, c) ∈ PN , it holds that
∑

i∈N ψi(N, c) =
∑

i∈N ci.

• Additivity. For all (N, c1), (N, c2) ∈ PN , it holds that ψ(N, c1 + c2) =

ψ(N, c1) + ψ(N, c2).

• No blind cost. For all (N, c) ∈ PN and i ∈ N such that ci = 0, it
holds that ψi(N, c) = 0.

• Independence of upstream costs. For all (N, c1), (N, c2) ∈ PN and
i ∈ N such that c1

j = c2
j for all j > i, it holds that ψj(N, c1) =

ψj(N, c
2) for all j > i.

• Upstream symmetry. For all (N, c) ∈ PN and i ∈ N such that cj = 0

for all j ∈ N\{i}, it holds that ψl(N, c) = ψk(N, c) for all l, k ≤ i.

Efficiency requires that all costs should be fully shared among all agents.
Consider a situation where every agent i ∈ N has two divisions of costs,
c1
i , c

2
i . Additivity says that, considering the sum of two polluted river prob-

lems where the cost for each segment equals the sum of the cost in the
two separate problems, the associated cost allocation is equal to the sum
of the cost allocation vectors assigned to the two separate problems. No
blind cost says that, if the segment where an agent is located incurs no pol-
lution cost, the agent should bear no cost. Independence of upstream costs
says that an agent’s cost share only depends on all costs of cleaning up its
segment and all its downstream segments, but not on cost of cleaning up
its upstream segments. Upstream symmetry requires that, given an agent
i ∈ N , it and all its upstream agents have equal responsibilities for cleaning
up its segment if other agents except agent i have no cleaning cost in their
local segments.
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Ni and Wang (2007, [84]) characterized the LRS method and the UES
method by these above axioms.

Theorem 6.1 (Ni and Wang 2007, [84]). (i) A method ψ on PN satisfies
efficiency, additivity and no blind cost if and only if ψ is the LRS method. (ii)
A method ψ on PN satisfies efficiency, additivity, independence of upstream
costs and upstream symmetry if and only if ψ is the UES method.

Ni and Wang (2007, [84]) defined two different TU-games with respect
to pollution cost-sharing problems. For convenience, the two TU-games
are called the LRS game and the UES game in this chapter. The LRS game
〈N, vL〉 is defined by vL(S) =

∑
i∈S ci for all S ⊆ N,S 6= ∅, with vL(∅) = 0.

The UES game 〈N, vU 〉 is defined by vU (S) =
∑n

i=minj∈S{j} ci for all S ⊆
N,S 6= ∅, with vU (∅) = 0. Ni and Wang (2007, [84]) showed that the
cost allocations according to the LRS method and the UES method coincide
with the Shapley value of the LRS game and the UES game, respectively.2

6.3 Sign independence of upstream costs for the UES
method

As mentioned in Section 6.2, Ni and Wang (2007, [84]) characterized the
UES method by efficiency, additivity, independence of upstream costs and
upstream symmetry. In this characterization, independence of upstream
costs reflects that an agent’s utility share only depends on all costs of clean-
ing up its segment and all its downstream segments. Yet, independence of
upstream costs involves the comparison of utilities, which is often criticized
from the viewpoint of utility theory (Kaneko and Wooders 2004, [62]). In
this section, we propose a relaxation of independence of upstream costs,
called sign independence of upstream costs, that avoids such comparisons.
Recall the sign function, sign: R→ {−1, 0, 1} given by sign(t) = 1 for t > 0,
sign(0) = 0, and sign(t) = −1 for t < 0.

2In van den Brink, He and Huang (2018, [109]) it is shown that the UES method coin-
cides with the permission value of a game with a permission structure where the game is
the LRS game 〈N, vL〉 and the linear order of the players is determined by the flow of the
river.
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• Sign independence of upstream costs. For all (N, c1), (N, c2) ∈ PN

and i ∈ N such that c1
j = c2

j for all j > i, it holds that sign(ψj(N, c
1)) =

sign(ψj(N, c
2)) for all j > i.

Sign independence of upstream costs is a qualitative version of inde-
pendence of upstream costs that relaxes independence of upstream costs.3

Instead of equating cost shares in general, it just fixes a common reference
point, the zero utility, and requires that, when all costs of agents down-
stream of i are the same in two cost vectors, then every agent downstream
of i contributes or does not contribute in both vectors. We remark that
sign independence of upstream costs is a considerable weakening of inde-
pendence of upstream costs. Whereas independence of upstream costs re-
quires complete independence of the contributions of an agent when costs
of upstream agents change, the weaker sign independence of upstream
costs allows that the contribution of an agent also changes when upstream
costs change, and it might even have a different effect for different (down-
stream) agents. Since the UES method satisfies independence of upstream
costs, it follows immediately that the UES method satisfies sign indepen-
dence of upstream costs. We can characterize the UES method by replacing
independence of upstream costs in Theorem 6.1 by the weaker sign inde-
pendence of upstream costs.

Theorem 6.2. A method ψ on PN satisfies efficiency, additivity, sign indepen-
dence of upstream costs and upstream symmetry if and only if ψ is the UES
method.

The proof of Theorem 6.2 and of all other results in this chapter can be
found in Section 6.6.

Remark 6.1. It can be seen from the proof of Theorem 6.2 that, a method
that satisfies efficiency, additivity and sign independence of upstream costs,
must satisfy independence of upstream costs. For this implication we do not
need upstream symmetry, but we need it to apply Theorem 6.1 to charac-
terize the UES method.

3As mentioned in Chapter 5, Casajus (2019, [20]) introduces a qualitative weaker ver-
sion of symmetry for TU-games, where payoffs of symmetric players are required to have
the same sign instead of the usual stronger requirement that these payoffs should be equal.
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6.4 Generalizations of the LRS method and the UES
method

In Ni and Wang (2007, [84]), the LRS method forces an agent to take full
responsibility for cleaning up its segment, while the UES method assumes
that the agent in a segment and all its upstream counterparts have the
same degree of responsibility for cleaning up the segment. However, it is
not obvious why an agent and all its upstream counterparts should be held
equally responsible for cleaning up its segment. In this section, we define
and characterize two different classes of methods that allow for different
responsibilities of an agent and its upstream counterparts in cleaning up
this agent’s territory: the class of equal upstream responsibility methods (for
short, EUR methods) and the class of weighted upstream sharing methods
(for short, WUS methods).

6.4.1 Equal upstream responsibility methods

Let α = (α1, α2, · · · , αn) ∈ RN+ with α1 = 1 and 0 ≤ αi ≤ 1 for all i ∈
N \ {1}, be the responsibility level vector, whose component αi means that
agent i should pay for an αi fraction of the cost of cleaning up its own
segment. In particular, agent 1 has to take full responsibility for cleaning
up its segment since agent 1 has no upstream agent, that is, α1 = 1. Let
AN = {α = (α1, α2, · · · , αn) ∈ RN+ | α1 = 1 and 0 ≤ αi ≤ 1 for all
i ∈ N \ {1}} be the set of all such responsibility vectors. According to the
responsibility level vector α, the α-equal upstream responsibility method
(for short, α-EUR method) is defined as follows.

Definition 6.3. Let α ∈ AN . The α-EUR method on PN is defined by4

EURαi (N, c) = αici +

n∑
k=i+1

1− αk
k − 1

ck,

for all (N, c) ∈ PN and i ∈ N .

4We take the sum
∑n
i=n+1 .... to be equal to 0.
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The methods EURα, α ∈ AN , are called EUR methods. The α-EUR
method requires that each agent i pays a fraction αi of the cost of cleaning
up its own segment, and the remaining cost is equally allocated among all
agents situated upstream from it.

Remark 6.2. In particular, in the case that αi = 1 for all i ∈ N , then the
α-EUR method coincides with the LRS method. In the case that αi = 1

i for
all i ∈ N , then the α-EUR method coincides with the UES method.

Remark 6.3. Generally, if we treat the α-EUR method as an allocation with
αi = (1 − 1

i )b + 1
i for all i ∈ N and some b ∈ R, then the α-EUR method

can be represented as a convex combination of the LRS method and the
UES method, which is proposed by Sun et al. (2019, [99]), that is, for all
(N, c) ∈ PN ,

EURα(N, c) = bLRS(N, c) + (1− b)UES(N, c).

It is clear that the EUR methods fail no blind cost and upstream symme-
try. To characterize the class of EUR methods, we introduce the following
relaxations of these two axioms.

• Weak no blind cost. For all (N, c) ∈ PN and i ∈ N such that cj = 0

for all j ≥ i, it holds that ψi(N, c) = 0.

• Weak upstream symmetry. For all (N, c) ∈ PN and i ∈ N such that
cj = 0 for all j ∈ N\{i}, it holds that ψl(N, c) = ψk(N, c) for all
l, k < i.

Weak no blind cost says that, if an agent and its downstream agents
have no cleaning cost in their local segments, then it does not have to con-
tribute anything. Weak upstream symmetry requires that, given an agent
i ∈ N , all its upstream counterparts share the same cost if other agents ex-
cept agent i have no cleaning cost in their local segments. One easily checks
that the EUR methods satisfy weak no blind cost and weak upstream sym-
metry. We remark that these are also considerable relaxations of the clas-
sical axioms. Weak no blind costs allows agents to share in costs of other
segments in case there is pollution to be cleaned downstream of this agent
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even if the cost of their own segments is zero. Although weak upstream
symmetry reflects equal responsibility of upstream agents in case there is
only one agent with positive pollution cost, it does not imply any sharing of
the responsibility between this positive cost agent and its upstream agents.

Next, we give characterizations of the class of EUR methods in terms of
weak no blind cost and weak upstream symmetry.

Theorem 6.4. (i) A method ψ on PN satisfies efficiency, additivity, sign
independence of upstream costs and weak upstream symmetry if and
only if there exists a responsibility level vector α ∈ AN such that ψ =

EURα.

(ii) A method ψ on PN satisfies efficiency, additivity, weak no blind cost and
weak upstream symmetry if and only if there exists a responsibility level
vector α ∈ AN such that ψ = EURα.

6.4.2 Weighted upstream sharing methods

Let ω ∈ RN++ be a weight vector, whose component ωi is the exogenous
weight of agent i. In pollution cost-sharing problems, this weight can be
determined in several ways, for example by the size of the populations
living in each segment, the number of the factories generating pollutants,
or other measurable pollution indicators. Given the weight vector ω, the ω-
weighted upstream sharing method (for short, ω-WUS method) is defined
as follows.

Definition 6.5. Let ω ∈ RN++. The ω-WUS method on PN is defined by

WUSωi (N, c) =

n∑
k=i

ωi∑k
j=1 ωj

ck,

for all (N, c) ∈ PN and i ∈ N .

The methods WUSω, ω ∈ RN++, are called WUS methods. The ω-WUS
method requires that each agent should pay for the amount of the cost of
cleaning up its own segment and all its downstream segments in proportion
to the weights given by ω.
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Remark 6.4. If all agents have the same weight coefficient (that is, ωi = t

for all i ∈ N and some t ∈ R++), then the ω-WUS method coincides with
the UES method. Besides the UES method, no other EUR method (see
Section 6.4.1) is a WUS method.

Remark 6.5. As mentioned in Section 6.2, Ni and Wang (2007, [84])
defined the UES game and showed that the UES method coincides with
the Shapley value of that game. We remark that the class of WUS meth-
ods coincides with the class of weighted Shapley values (Kalai and Samet
1987, [59]) of the dual of the UES game.

It is clear that the UES method is the only WUS method that satisfies up-
stream symmetry. To characterize the class of WUS methods, we introduce
the following two relaxations of upstream symmetry.

• Sign upstream symmetry. For all (N, c) ∈ PN and i ∈ N such that
cj = 0 for all j ∈ N\{i}, it holds that sign(ψl(N, c)) = sign(ψk(N, c))

for all l, k ≤ i.

• Proportionality. For all (N, c1), (N, c2) ∈ PN and i ∈ N\{n} such
that c1

k = 0 for all k ∈ N\{i} and c2
k = 0 for all k ∈ N\{i+1}, it holds

that ψl(N, c1)ψk(N, c
2) = ψk(N, c

1)ψl(N, c
2) for all l, k ≤ i.

Sign upstream symmetry is another qualitative version of upstream
symmetry that is weaker than upstream symmetry. We remark that sign
upstream symmetry relaxes upstream symmetry similar as sign symmetry
relaxes symmetry by Casajus (2019, [20]) (see, Chapter 5). Instead of
equating cost shares for a given agent i and all its upstream agents, when
other agents except agent i have no cleaning cost in their local segments,
sign upstream symmetry requires that i and all its upstream agents either
contribute simultaneously or do not contribute simultaneously. Notice that
there is no logical relation between sign upstream symmetry and weak up-
stream symmetry defined in the previous subsection.

Proportionality is also a weaker axiom than upstream symmetry. It re-
quires that, an agent i ∈ N and all its upstream agents contribute in the
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same proportion in two problems such that the unique agent with a posi-
tive cleaning cost in each of the two problems is an agent downstream of
i, respectively, the downstream neighbour of this agent. This can be in-
terpreted as a change where two downstream neighbours of i decide to
transfer the cleaning cost among each other, for example because one can
clean up the river cheaper than the other. We remark that sign upstream
symmetry and proportionality are two different considerable weakenings of
upstream symmetry. One easily checks that the WUS methods satisfy sign
upstream symmetry and proportionality. In the following, we will char-
acterize the class of WUS methods by using sign upstream symmetry and
proportionality.

Theorem 6.6. (i) A method ψ on PN satisfies efficiency, additivity, sign
independence of upstream costs, sign upstream symmetry and propor-
tionality if and only if there exists a weight vector ω ∈ RN++ such that
ψ = WUSω.

(ii) A method ψ on PN satisfies efficiency, additivity, weak no blind cost,
sign upstream symmetry and proportionality if and only if there exists a
weight vector ω ∈ RN++ such that ψ = WUSω.

6.5 Pollution cost-sharing games

As mentioned in Section 6.2, Ni and Wang (2007, [84]) proposed the LRS
game and the UES game which Shapley values coincide with the LRS, re-
spectively UES methods. In the LRS game, each coalition S is responsible
only for the pollutant-cleaning costs in its own segments, and the total
responsibility of the coalition S is simply the sum of its agents’ local re-
sponsibilities, that is, vL(S) =

∑
i∈S ci. In the UES game, each coalition

S takes the responsibility not only for the pollutant-cleaning costs in its
own segment but also for all the costs in its downstream segments, that is,
vU (S) =

∑n
i=minj∈S{j} ci. In this section, we define a new TU-game with

respect to the pollution cost-sharing problem which combines the charac-
teristics of the LRS game and the UES game.
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For all i ∈ N and S ⊆ N , let P̄i(S) = {j ∈ S|j ≤ i} be the set con-
sisting of agent i and all its upstream agents in coalition S. Denote the
cardinality of P̄i(S) by |P̄i(S)|. Obviously, |P̄i(N)| = i. We define the
following cost game where every coalition takes the responsibility for the
pollutant-cleaning costs of all segments in the coalition plus a certain part
of the pollutant-cleaning costs of other segments outside the coalition. The
part of the pollutant-cleaning costs of other segments outside the coalition
depends the location and responsibility of the coalition of agents.

Definition 6.7. For all (N, c) ∈ PN , the pollution cost-sharing game 〈N, vc〉
is given by

vc(S) =
∑
i∈S

ci +
∑
i∈N\S

|P̄i(S)|
|P̄i(N)|

ci, for all S ⊆ N,S 6= ∅,

and vc(∅) = 0.

For all S ⊆ N , the first part,
∑

i∈S ci, is the pollutant-cleaning costs

of all segments in the coalition S. For all S ⊆ N and i ∈ N\S, |P̄i(S)|
|P̄i(N)|

is the fraction of the number of agent i’s upstream agents in coalition S.
Then, |P̄i(S)|

|P̄i(N)|ci can be regarded as the proportional share of coalition S

in the cost of cleaning up i’s segment. Generally speaking, every coali-
tion is assigned an extra share in the cost of cleaning each segment down-
stream of the coalition which is proportional to the number of upstream
agents that belong to the coalition. Thus, the total responsibility of coali-
tion S is

∑
i∈S ci +

∑
i∈N\S

|P̄i(S)|
|P̄i(N)|ci. Notice that in this game multiple

agents/coalitions take responsibility for the cleaning cost in a segment.
This is because vc(S) is a pessimistic measure of coalition S’s responsi-
bility. It takes partly responsibility for its downstream agents, although the
downstream agents also take account of the possibility that they need to
take full responsibility for their own cost in their ‘worst case scenario’.

The pollution cost-sharing game can be regarded as a compromise be-
tween the LRS game and the UES game, taking into account the local re-
sponsibility principle (implied by ATS theory (Godana 1985, [38])) and
the upstream responsibility principle (implied by the UTI theory (Kilgour
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and Dinar 1995, [63])) in International Water Law. The ATS theory says
that a country has absolute sovereignty over the area of any river basin
on its territory, which can be interpreted as that the responsibility for the
costs of cleaning river pollutants in a segment should be assigned to the
agent located in that segment. The UTI theory says that upstream countries
should not change the natural flow of the water at the expense of its down-
stream countries, which can be interpreted as giving an agent the rights
to ask all its upstream agents to pay the pollutant-cleaning costs at its seg-
ment. Considering both principles, in the pollution cost-sharing game, an
upstream coalition bears not only its own pollutant-cleaning costs, but also
some responsibilities for all downstream pollutant-cleaning costs, which
here we assume to be proportional to the membership of the coalition. No-
tice that this is just one way to reflect the UTI principle, and thus how to
reflect the responsibilities of upstream countries to contribute to the clean-
ing cost at a segment. To make a comparison with the LRS and UES games,
notice that these can be written as vL(S) =

∑
i∈S ci +

∑
i∈N\S 0, respec-

tively vU (S) =
∑

i∈S ci +
∑

i∈N\S sign(|P i(S)|)ci for all S ⊆ N . Obviously,
vL(S) ≤ vc(S) ≤ vU (S) for all S ⊆ N .

Next, we show that applying the Shapley value to the pollution cost-
sharing game 〈N, vc〉 coincides with taking the average of the LRS method
and the UES method. We refer to this method as the compromise method
in this chapter.

Definition 6.8. The compromise method is defined by

ψco(N, c) =
1

2
LRS(N, c) +

1

2
UES(N, c),

for all (N, c) ∈ PN .

The compromise method reflects a compromise between the two polar
opinions of ATS (reflected by the LRS method) and UTI (reflected by the
UES method).

Theorem 6.9. The method that applies the Shapley value to the pollution
cost-sharing game 〈N, vc〉 is equal to the compromise method: Sh(N, vc) =

ψco(N, c) for all (N, c) ∈ PN .
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Next, we consider the dual game of the pollution cost-sharing game. In
TU-games, it will be useful to think of the dual game of a cost game as a
profit game and vice versa. By analyzing the dual game of the pollution
cost-sharing game, we provide interesting results on the calculation of the
nucleolus, Shapley value, and τ -value of the dual game. For every TU-
game 〈N, v〉 ∈ GN , its dual game 〈N, vd〉 is given as follows: for all S ⊆ N ,
vd(S) = v(N) − v(N\S). Given the pollution cost-sharing game 〈N, vc〉,
its dual game is called the dual pollution cost-sharing game 〈N, vcd〉, in the
following. By Definition 6.7, the dual pollution cost-sharing game 〈N, vcd〉
is given by vcd(∅) = 0 and, for all S ⊆ N , S 6= ∅,5

vcd(S) = vc(N)− vc(N\S) =
∑
i∈S

|P̄i(S)|
|P̄i(N)|

ci. (6.1)

The dual pollution cost-sharing game can be regarded as a profit game.
Since

∑
i∈S LRSi(N, c) =

∑
i∈S ci ≥ vcd(S) for all S ⊆ N , the dual pollu-

tion cost-sharing game 〈N, vcd〉 has a non-empty core. Then, the dual pollu-
tion cost-sharing game 〈N, vcd〉 is quasi-balanced and has a non-empty im-
putation set. The dual pollution cost-sharing game 〈N, vcd〉 can be rewrit-
ten as

vcd(S) = wc(S) + uc(S) (6.2)

for all S ⊆ N , where 〈N,wc〉 is given by

wc(S) =
∑
i∈S

|P̄i(S)| − 1

|P̄i(N)|
ci (6.3)

and 〈N, uc〉 is given by

uc(S) =
∑
i∈S

1

|P̄i(N)|
ci (6.4)

Now we recall two subclasses of TU-games. A TU-game 〈N, v〉 ∈ GN is an

5This follows since vcd(S) = vc(N) − vc(N\S) =
∑
i∈N ci −

∑
i∈N\S ci −∑

i∈S
|P̄i(N\S)|
|P̄i(N)| ci =

∑
i∈S ci −

∑
i∈S

|P̄i(N)|−|P̄i(S)|
|P̄i(N)| ci =

∑
i∈S(1 − |P̄i(N)|−|P̄i(S)|

|P̄i(N)| )ci =∑
i∈S

|P̄i(S)|
|P̄i(N)|ci.
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additive game if v(S) =
∑

i∈S v({i}) for all S ⊆ N . A TU-game 〈N, v〉 ∈ GN

is a 2-additive game if it satisfies that (i) for each i ∈ N , v({i}) = 0, and
(ii) for each S ⊆ N with s ≥ 2, v(S) =

∑
T⊆S,t=2 v(T ). Next, we show

that game 〈N,wc〉 defined by Eq.(6.3) is a 2-additive game, meaning that
the worth of every singleton coalition is zero, and the worth of a coalition
with two or more players equals the sum of the worths of its two-player
subcoalitions.

Lemma 6.10. For all (N, c) ∈ PN , the game 〈N,wc〉 defined by Eq.(6.3) is
a 2-additive game, that is, for all i ∈ N , wc({i}) = 0, and for all S ⊆ N with
s ≥ 2,

wc(S) =
∑

T⊆S,t=2

wc(T ).

Example 6.1. Consider a problem (N, c) where N = {1, 2, 3, 4} and c =

(c1, c2, c3, c4). Then, for the game 〈N,wc〉, the worth of the two player
coalitions are given as follows

wc({1, 2}) =
1

2
c2, wc({1, 3}) =

1

3
c3, w

c({1, 4}) =
1

4
c4,

wc({2, 3}) =
1

3
c3, w

c({2, 4}) =
1

4
c4, w

c({3, 4}) =
1

4
c4.

The worth of coalitions with more than two players can be expressed as
follows.

wc({1, 2, 3}) =
1

2
c2 +

2

3
c3 = wc({1, 2}) + wc({1, 3}) + wc({2, 3}),

wc({1, 2, 4}) =
1

2
c2 +

2

4
c4 = wc({1, 2}) + wc({1, 4}) + wc({2, 4}),

wc({1, 3, 4}) =
1

3
c3 +

2

4
c4 = wc({1, 3}) + wc({1, 4}) + wc({3, 4}),

wc({2, 3, 4}) =
1

3
c3 +

2

4
c4 = wc({2, 3}) + wc({2, 4}) + wc({3, 4}),

wc({1, 2, 3, 4}) =
1

2
c2 +

2

3
c3 +

3

4
c4 = wc({1, 2}) + wc({1, 3}) + wc({1, 4})

+ wc({2, 3}) + wc({2, 4}) + wc({3, 4}).

From van den Nouweland et al. (1996, [112]), Chun and Hokari (2007,
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[28]) and Deng and Papadimitriou (1994, [31]), it follows that the Shapley
value, the nucleolus and the τ -value coincide for 2-additive games, and
thus are equal for the game 〈N,wc〉. Moreover, from van den Nouweland
et al. (1996, [112]) it follows that these three solutions coincide for every
game that is the sum of an additive and a 2-additive game, and thus, since
〈N, uc〉 is an additive game, we have the following corollary.

Corollary 6.11. The Shapley value of the dual pollution cost-sharing game
〈N, vcd〉 defined by Eq.(6.1) coincides with the nucleolus and the τ -value of
this game.

By self-duality6 of the Shapley value and Theorem 6.9, we then obtain
that applying the Shapley value, the nucleolus and the τ -value to the dual
pollution cost-sharing game 〈N, vcd〉 coincides with taking the compromise
method.

Corollary 6.12. The method that applies the Shapley value, the nucleolus and
the τ -value to the dual pollution cost-sharing game 〈N, vcd〉 for all (N, c) ∈
PN , is equal to the compromise method.

6.6 Proofs

Proof of Theorem 6.2. Since sign independence of upstream costs is weaker
than independence of upstream costs, by Theorem 6.1.(ii) it suffices to
show that efficiency, additivity, sign independence of upstream costs and
upstream symmetry imply independence of upstream costs. Suppose that ψ
is a method satisfying efficiency, additivity, sign independence of upstream
costs and upstream symmetry. Let (N, c1), (N, c2) ∈ PN and i ∈ N be such
that c1

j = c2
j for all j > i. For all k ∈ N , let (N, ek) be defined by ekk = 1 and

ekl = 0 for all l ∈ N\{k}. Set (N, c0) ∈ PN with c0
k = 0 for all k ∈ N . It is

straightforward to obtain that ψk(N, c0) = 0 for all k ∈ N by efficiency and

6A solution ϕ satisfies self-duality, if for every 〈N, v〉 ∈ GN , it holds that ϕ(N, v) =
ϕ(N, vd) where 〈N, vd〉 is the dual game of 〈N, v〉.
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ψ(N, c0) ∈ RN+ . Then, for all j > i, we have

ψj(N, c
1) = ψj(N, c

1 −
∑
k>i

c1
ke
k) +

∑
k>i

ψj(N, c
1
ke
k) =

∑
k>i

ψj(N, c
1
ke
k),

where the first equation holds by additivity and the second equation holds
from the fact that sign(ψj(N, c

1−
∑

k>i c
1
ke
k)) = sign(ψj(N, c

0)) = 0 for all
j > i by sign independence of upstream costs. Similarly, for all j > i, it
holds that

ψj(N, c
2) = ψj(N, c

2 −
∑
k>i

c2
ke
k) +

∑
k>i

ψj(N, c
2
ke
k) =

∑
k>i

ψj(N, c
2
ke
k).

Thus, we obtain ψj(N, c
1) = ψj(N, c

2) for all j > i, which concludes the
proof.

Proof of Theorem 6.4. It is straightforward to verify that the EUR methods
satisfies efficiency, additivity, sign independence of upstream costs, weak
upstream symmetry and weak no blind cost. It is left to show that the
axioms are sufficient for uniqueness.

(i) Let ψ be a method on PN satisfying efficiency, additivity, sign in-
dependence of upstream costs and weak upstream symmetry. We
will show that for some responsibility level vector α, ψ = EURα.
Similar as before, for all k ∈ N , (N, ek) is given by ekk = 1 and
ekl = 0 for all l ∈ N\{k}. Set αk = ψk(N, e

k) for all k ∈ N . Let
(N, c0) ∈ PN with c0

k = 0 for all k ∈ N . It is straightforward to obtain
that ψk(N, c0) = 0 for all k ∈ N by efficiency and ψ(N, c0) ∈ RN+ .
Then, for all i > k, by sign independence of upstream costs, we have
sign(ψi(N, e

k)) = sign(ψi(N, c
0)) = 0. By efficiency and weak up-

stream symmetry, we obtain

ψi(N, e
k) =


0, if i > k;
αk, if i = k;
1−αk
k−1 , if i < k.

(6.5)
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Next, we show that ψ is homogeneous, that is, ψ(N, tc) = tψ(N, c)

for all (N, c) ∈ PN and scalar t ∈ R+. To show homogeneity for all
t ∈ R+, choose two sequences of non-negative rationals {rk}∞k=1 and
{sk}∞k=1 which converge to t from above and below, respectively. By
additivity, we obtain that, for all i ∈ N and for all k = 1, . . . ,∞,

ψi(N, rkc)− ψi(N, tc) = ψi(N, (rk − t)c) ≥ 0, and

ψi(N, tc)− ψi(N, skc) = ψi(N, (t− sk)c) ≥ 0.
(6.6)

Notice that, for all i ∈ N , ψi(N, rkc)−ψi(N, skc) = ψi(N, (rk−sk)c) =

(rk − sk)ψi(N, c) → 0 as k → ∞,7 since (rk − sk) → 0 as k → ∞.
Then ψi(N, rkc) − ψi(N, tc) + ψi(N, tc) − ψi(N, skc) → 0 as k → ∞.
Since, both ψi(N, rkc)− ψi(N, tc) ≥ 0 and ψi(N, tc)− ψi(N, skc) ≥ 0

by Eq.(6.6), this implies that ψ(N, rkc) → ψ(N, tc) and ψ(N, rkc) =

rkψ(N, c)→ tψ(N, c) as k →∞, which proves the homogeneity of ψ.
Thus, ψ is a linear map on PN . Therefore, for all (N, c) ∈ PN and
i ∈ N , it holds that

ψi(N, c) =ψi(N,
∑
k∈N

cke
k) =

∑
k∈N

ckψi(N, e
k)

=αici +

n∑
k=i+1

1− αk
k − 1

ck = EURαi (N, c), (6.7)

where the third equality follows from Eq.(6.5).

Notice that αk = ψk(N, e
k) for all k ∈ N , efficiency and ψ(N, ek) ∈

RN+ , implies that 0 ≤ αi ≤ 1 for all i ∈ N . Moreover, similar as
above, for all i > 1, by sign independence of upstream costs, we
have sign(ψi(N, e

1)) = sign(ψi(N, c
0)) = 0, and thus by efficiency,

α1 = ψ1(N, e1) = 1, showing that α ∈ AN .

(ii) Let ψ be a method on PN satisfying efficiency, additivity, weak no
blind cost and weak upstream symmetry. We can obtain that ψ is a

7Given any rational rk, there must exist two integers a, b ∈ N, a 6= 0, such that rk =
b
a

. Then by additivity, we have ψ(N, rkc) = ψ(N, b
a
c) = bψ(N, 1

a
c) = b

a
· aψ(N, 1

a
c) =

b
a
ψ(N, a

a
c) = rkψ(N, c).
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linear map on PN similar as in the proof of part (i). Similar as in
the proof of part (i), set αk = ψk(N, e

k) for all k ∈ N . Then, for all
i > k, by weak no blind cost, we have ψi(N, ek) = 0. Together with
efficiency and weak upstream symmetry, we again obtain Eq.(6.5)
and, since ψ is a linear map on PN , then for all (N, c) ∈ PN and
i ∈ N , we obtain Eq.(6.7) similar as in the proof of part (i). Similar
as in the proof of part (i), αk = ψk(N, e

k) for all k ∈ N , efficiency
and ψ(N, ek) ∈ RN+ , imply that 0 ≤ αi ≤ 1 for all i ∈ N . Now,
weak no blind cost implies that ψi(N, e1) = 0 for all i > 1. Thus by
efficiency, α1 = ψ1(N, e1) = 1, showing that α ∈ AN . This concludes
the proof.

Proof of Theorem 6.6. It is straightforward to verify that the WUS methods
satisfy efficiency, additivity, sign independence of upstream costs, sign up-
stream symmetry, proportionality and weak no blind cost. It is left to show
that the axioms are sufficient for uniqueness.

(i) Let ψ be a method on PN satisfying efficiency, additivity, sign inde-
pendence of upstream costs, sign upstream symmetry and proportion-
ality. We will show that for some weight vector ω ∈ RN++, ψ = WUSω.
For all k ∈ N , (N, ek) is again given by ekk = 1 and ekl = 0 for all
l ∈ N\{k}. Set ω = ψ(N, en). By efficiency and sign upstream sym-
metry, we have

∑
i∈N ωi = 1 and ωi > 0 for all i ∈ N , showing that

ω ∈ RN++.

Next, we show that ψi(N, tek) = 0 for all i > k and t ∈ R+. Let
(N, c0) ∈ PN with c0

k = 0 for all k ∈ N . By additivity,8 ψk(N, c0) = 0

for all k ∈ N . Then, for all i > k, by sign independence of upstream
costs, we have sign(ψi(N, te

k)) = sign(ψi(N, c
0)) = 0, showing that

ψi(N, te
k) = 0.

8This follows since, by additivity it holds that ψi(N, c0) + ψi(N, c
0) = ψi(N, c

0) for all
i ∈ N .
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Now we show that ψi(N, tek) = ωi∑k
j=1 ωj

t for all i ≤ k. By proportion-

ality, for all i, j ≤ k, we have

ψi(N, te
k)ψj(N, e

k+1) = ψi(N, e
k+1)ψj(N, te

k).

Then, by fixing i and summing over j ≤ k, we have

ψi(N, te
k)

k∑
j=1

ψj(N, e
k+1) = ψi(N, e

k+1)
k∑
j=1

ψj(N, te
k). (6.8)

If k = n− 1, by efficiency, for all i ≤ n− 1, we have

ψi(N, te
n−1) =

ψi(N, e
n)∑n−1

j=1 ψj(N, e
n)

n−1∑
j=1

ψj(N, te
n−1) =

ωi∑n−1
j=1 ωj

t.

Proceeding by induction, suppose that it holds that ψi(N, tek+1) =
ωi∑k+1
j=1 ωj

t for some k < n− 1. Then, by Eq.(6.8), for i ≤ k, we have

ψi(N, te
k) =

ψi(N, e
k+1)∑k

j=1 ψj(N, e
k+1)

k∑
j=1

ψj(N, te
k)

=

ωi∑k+1
j=1 ωj

t∑k
j=1

ωj∑k+1
h=1 ωh

t
t =

ωi∑k
j=1 ωj

t.

Thus, for all k ∈ N and i ≤ k, ψi(N, tek) = ωi∑k
j=1 ωj

t. Finally, by

additivity, for all (N, c) ∈ PN and i ∈ N , it holds that

ψi(N, c) =ψi(N,
∑
k∈N

cke
k) =

∑
k∈N

ψi(N, cke
k)

=
n∑
k=i

ωi∑k
j=1 ωj

ck = WUSωi (N, c). (6.9)

(ii) Let ψ be a method on PN satisfying efficiency, additivity, sign up-
stream symmetry, proportionality and weak no blind cost. Similar
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as in the proof of part (i), set ω = ψ(N, en). Then, for all i > k,
by weak no blind cost, we have ψi(N, tek) = 0. Together with effi-
ciency, sign upstream symmetry and proportionality, we obtain that
ψi(N, te

k) = ωi∑k
j=1 ωj

t for all i ≤ k, similar as in the proof of part (i).

Then, by additivity, for all (N, c) ∈ PN and i ∈ N , we obtain Eq.(6.9)
similar as in the proof of part (i).

Proof of Theorem 6.9. Since the Shapley value can be represented by al-
locating the Harsanyi dividends (Harsanyi 1959, [45]) equally over the
players in the corresponding unanimity coalition,9 we first calculate the
Harsanyi dividends of all coalitions in the pollution cost-sharing game 〈N, vc〉.

If S = {i}, then ∆vc({i}) = vc({i}) = ci +
∑

j>i
1
j cj .

If S = {i, j} with i < j, then

∆vc({i, j}) =vc({i, j})− vc({i})− vc({j})

=ci + cj +
∑

k>i,k<j

1

k
ck +

∑
k>j

2

k
ck − (ci +

∑
k>i

1

k
ck)− (cj +

∑
k>j

1

k
ck)

=
∑

k>i,k<j

1

k
ck +

∑
k>j

2

k
ck −

∑
k>i,k≤j

1

k
ck −

∑
k>j

2

k
ck

=− 1

j
cj .

Next, we show that ∆vc(S) = 0 for all S ⊆ N with s ≥ 3. For all S ⊆ N
with s ≥ 3, we have ∑

i∈S
∆vc({i}) +

∑
T⊆S,t=2

∆vc(T )

=
∑
i∈S

(ci +
∑
j>i

1

j
cj)−

∑
i∈S

∑
j∈S,j>i

1

j
cj

=
∑
i∈S

ci +
∑
i∈S

∑
j∈N\S,j>i

1

j
cj

9For all 〈N, v〉 ∈ GN and i ∈ N , the Shapley value is given by Shi(N, v) =∑
S⊆N,S3i

∆v(S)
s

, where ∆v(S) = v(S) −
∑
T(S,T 6=∅∆v(T ) is the Harsanyi dividend of

coalition S in 〈N, v〉.
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=
∑
i∈S

ci +
∑

j∈N\S

∑
i∈S,i<j

1

j
cj

=
∑
i∈S

ci +
∑

j∈N\S

|P̄j(S)|
|P̄j(N)|

cj = vc(S). (6.10)

Then for all S ⊆ N with s = 3, ∆vc(S) = vc(S)−
∑

T(S,T 6=∅∆vc(T ) = 0 by
Eq.(6.10). Proceeding by induction, suppose that ∆vc(S) = 0 for all S ⊆ N
with k ≥ s ≥ 3. Then, for all S ⊆ N with s = k + 1, we have

∆vc(S) =vc(S)−
∑

T(S,T 6=∅

∆vc(T ) = vc(S)−
∑

T(S,1≤t≤2

∆vc(T ) = 0,

showing that ∆vc(S) = 0 for all S ⊆ N with s ≥ 3.

Therefore, for all i ∈ N , we have

Shi(N, v
c) =

∑
S⊆N,S3i

∆vc(S)

s
= ∆vc({i}) +

∑
S⊆N,s=2

∆vc(S)

2

=ci +
∑
j>i

1

j
cj −

∑
j<i

1

2i
ci −

∑
j>i

1

2j
cj

=
1

2
ci +

∑
j≥i

1

2j
cj =

1

2
LRSi(N, c) +

1

2
UESi(N, c) = ψcoi (N, c),

which completes the proof.

Proof of Lemma 6.10. By Eq.(6.3), it is straightforward to obtain thatwc({i}) =

0 for all i ∈ N . Moreover, TU-game 〈N,wc〉 defined by Eq.(6.3) can be
rewritten, for all S ⊆ N with s ≥ 2, as

wc(S) =
∑
i∈S

∑
j∈S,j<i

1

i
ci

Since it is straightforward that wc({i, j}) = 1
i ci for all i, j ∈ N with j < i,

we have
wc(S) =

∑
i∈S

∑
j∈S,j<i

wc({i, j})
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Therefore, it holds that wc(S) =
∑

T⊆S,t=2w
c(T ) for all S ⊆ N with s ≥

2.

6.7 Conclusions

We introduce and study two classes of cost-sharing methods for cleaning
up a polluted river by considering every agent’s responsibility for its own
area. We propose the class of EUR methods and the class of WUS methods,
and give several axiomatizations for these methods. The axiomatizations
are based on weaker versions of independence of upstream costs, upstream
symmetry and no blind cost, that are used by Ni and Wang (2007, [84]) to
characterize the known UES and LRS methods. We also show that the UES
method can be characterized by replacing independence of upstream costs
by this weaker independence of upstream costs axiom, called sign indepen-
dence of upstream costs. We remark that sign independence of upstream
costs and sign upstream symmetry relax independence of upstream costs,
respectively upstream symmetry in this chapter, similar as sign symmetry
relaxes symmetry in Chapter 5. Except for these sign axioms, in Chapter 5,
we also introduce the sign null player in a productive environment prop-
erty, the sign non-negative player property and sign nullified solidarity by
strengthening the null player in a productive environment property, the
non-negative player property and nullified solidarity.

The axioms and the methods stated in this chapter are summarized in
Table 6.1. In this table, ’X’ has the meaning that the methods satisfy the
axioms. There are some logical relations between the axioms in this table.
Sign independence of upstream costs is a qualitative/weaker version of in-
dependence of upstream costs. Weak no blind cost is a weaker version of
no blind cost. Weak upstream symmetry, sign upstream symmetry and pro-
portionality are three different weaker versions of upstream symmetry, and
there is no logical relation among weak upstream symmetry, sign upstream
symmetry and proportionality.

Moreover, we define a corresponding pollution cost-sharing game, and
interestingly, the Shapley value of this game gives a compromise in the
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Axioms
Methods

LRS UES Compromise EUR WUS

Efficiency X X X X X
Additivity X X X X X

No blind cost X
Independence of upstream costs X X X X X

Sign independence of upstream costs X X X X X
Upstream symmetry X
Weak no blind cost X X X X X

Weak upstream symmetry X X X X
Sign upstream symmetry X X X

Proportionality X X

TABLE 6.1 Axioms of the methods for pollution cost-sharing
problems

sense that it boils down to taking the average of the LRS method and the
UES method. We refer to this method as the compromise method. We also
show that the dual game of the pollution cost-sharing game is the sum of
a 2-additive game and an additive game, implying that the compromise
method coincides also with the nucleolus and τ -value of the dual pollution
cost-sharing game.

In future research, we will apply these methods to the more general
polluted river network model introduced by Dong et al. (2012, [32]) and
generalize the classes of EUR methods and WUS methods for more general
models. These more general models can include general games with a
permission structure, or subclasses such as permission tree games or peer
group games. Since different methods boil down to applying the Shapley
value to different games, we also plan to characterize different pollution
cost allocation games. For example, in Section 6.5, we saw that the LRS,
UES and compromise methods all assign to a coalition the full costs of
the agents in the coalition, but different shares in the costs of the agents
downstream of the coalition.



Summary

This thesis consists of six chapters on cooperative game theory and its ap-
plication. Except Chapter 1, which is an introductory chapter, each of
the other five chapters contains original results. Our thesis can be di-
vided into two parts: theoretic issues on characterizations of solutions for
TU-games (Chapters 2-5) and an application on characterizations of cost-
sharing methods for pollution cost-sharing problems (Chapter 6).

Chapter 2 introduces and studies a new solution for TU-games, the
average-surplus value, which offers every player a weighted average of the
average marginal surpluses to all coalitions including himself. Firstly, in-
spired by the axiomatizations of the Shapley value (Shapley 1953, [94]
and Myerson 1980, [82]), we define two new axioms: the A-null sur-
plus player property and revised balanced contributions, to characterize the
average-surplus value. Secondly, inspired by the work of Hart and Mas-
Colell (1989, [46]), we define the AS-potential function, and show that the
adjusted marginal contributions vector of the AS-potential function coin-
cides with the average-surplus value. Finally, we provide a non-cooperative
game, namely the punishment-compensation bidding mechanism, to imple-
ment the average-surplus value.

Chapter 3 studies axiomatic characterizations of the equal allocation of
non-separable contributions (EANSC) value and the center-of-gravity of the
imputation set (CIS) value. Firstly, we construct two different associated
games: the E-union associated game and the C-union associated game, by
the idea of “union self-evaluation" that is an alternative way to reevaluate
the worth. Then, we characterize the EANSC value and the CIS value using

163
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new associated consistency axioms: E-union associated consistency and C-
union associated consistency. Finally, we propose two dynamic processes
on the basis of associated games that lead to any solution satisfying both
the inessential game property and continuity, starting from an arbitrary
efficient payoff vector.

Chapter 4 studies axiomatic characterizations of the proportional divi-
sion (PD) value and the proportional allocation of non-separable contribu-
tion (PANSC) value. Firstly, we introduce the concepts of optimistic satisfac-
tion and pessimistic satisfaction, and show that the PD value (respectively,
PANSC value) can be obtained by lexicographically maximizing the mini-
mal optimistic satisfaction (respectively, pessimistic satisfaction) over the
non-empty pre-imputation set. Then, we characterize the PD value and the
PANSC value by introducing the equal minimal optimistic/pessimistic satis-
faction axioms, the optimistic/pessimistic associated consistency axioms and
their dual axioms.

Chapter 5 studies axiomatic characterizations of the family of weighted
division values. Firstly, we characterize the family of (positively) weighted
division values by replacing symmetry in van den Brink’s axiomatization
(van den Brink 2007, [104]) with relaxations of symmetry. Then, we re-
place linearity in three axiomatizations of Béal et al. (2016, [8]) with
additivity to characterize the family of weighted division values. Finally,
we strengthen an axiom regarding null, non-negative, respectively nulli-
fied players in these three axiomatizations, to characterize the positively
weighted division values.

Chapter 6 introduces and studies two new classes of cost-sharing meth-
ods for pollution cost-sharing problems. Firstly, we provide a characteriza-
tion of the upstream equal sharing (UES) method by relaxing independence
of upstream costs appearing in Ni and Wang (2007, [84]). Then, we define
and characterize the classes of equal upstream responsibility (EUR) meth-
ods and weighted upstream sharing (WUS) methods by using some weak
versions of these axioms in Ni and Wang (2007, [84]). Finally, we define
the pollution cost-sharing game and show that the Shapley value of this
game coincides with the compromise method which is the average of the
LRS method and UES method.
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