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5.1 Background

The importance of mapping and forecasting land use and land cover
change (LULCC) 1s well established in literature and within the chapters
of this book. At local scales LULCC can affect natural (e.g. runoft and
erosion, Dunn et al., 1993; temperature, Betts et al., 1996; and albedo,
Pielke et al., 2002) and human (e.g. aesthetic quality, Parsons & Daniel,
2002; and congestion) systems, which have cumulative impacts at regional
and global scales (e.g. climate, Kalnay & Cai, 2003; Stohlgren et al.,
1998). Acknowledging, representing and modelling the integration of
these systems and their feedbacks are essential to understanding how
mapped patterns are formed and the plausible pathways to alternative
tutures.

Due in part to the complexity associated with land use as a coupled
natural-human land system, it has also been characterised as a socio-
ecological system, emphasising that the Earth’s surface is shaped by the
ongoing interaction between humans and their biophysical environment
(Dawson et al.,, 2010). As a consequence, a major challenge in modelling

Mapping and Forecasting Land Use © 2022 Elsevier Inc.
DOIT: https://doi.org/10.1016/B978-0-323-90947-1.00013-2 All rights reserved. 115



116 Mapping and Forecasting Land Use

land-use change involves the accurate representation of both the social
and the biophysical factors that influence land-use change processes. This
challenge is both a design choice, that is what are the sufficient conditions
for a useful model, and a measurement issue, that is how much confidence
do we have in the absolute values of our quantitative outputs.

While there are contemporary eftorts to calibrate and validate natural
system models at the scale of human decision-making to justify their use
in socio-ecological systems modelling (e.g. Meinen & Robinson, 2021),
we focus here on human decision-making in land-use models as the
representations best suited to, and most in need of, calibration using
empirical data. Despite the human-centric nature of land use (i.e. how
humans use the land) and its change over time, the majority of land-use
models represent human decision-making implicitly. The implicit repre-
sentation comes in the form of independent variables (e.g. spatial depen-
dencies or time lags in land-use change) that have their correlation to land
use quantified through various statistical approaches (e.g. Sun &
Robinson, 2018). Complementing these approaches, agent-based land-use
models (ABLUM) are increasingly being used to explicitly represent
human actors and heterogeneity in their characteristics and decision-
making methods (An et al., 2021).

In an agent-based model (ABM), real-world actors are represented as
virtual agents (An, 2012) that make decisions based on their attributes and
their interaction with other agents as well as their environment. In
ABLUM agents typically represent land managers, such as farmers or for-
esters, but they are also used to represent residential households, businesses
and 1institutions (Brown et al., 2017). By capturing the processes and deci-
sions associated with land-use change, ABLUMs facilitate a stronger
mechanistic understanding of land-use change, particularly the role of
human decision-making in these processes (Meyfroidt, 2013). As process-
based models, ABLUMSs can respond to a much wider range of land-use
change perturbations and scenarios than statistical models, which subse-
quently provides a broader range and richer understanding of plausible
land-use futures. The heterogeneity in agents is important because varia-
tion in agent attributes and subsequent decisions can yield different out-
comes than when a model represents an average actor or population of
actors (Kirman, 1992). Furthermore, the interactions between actors and
their environment enable the generation of system-level outcomes that
are not analytically tractable and are particularly important to simulating
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spatial processes, such as innovation diffusion (Higerstrand, 1967) and
neighbourhood eftects (Krebs et al.; 2013).

Despite the benefits associated with ABLUMs, their site-specific appli-
cation can be data intensive and challenging given the need for beha-
vioural data. The challenge becomes even greater as researchers seek to
apply ABLUMs across large spatial extents (e.g. regional, national or
global). These types of applications require data about the relevant actors,
in addition to the spatial data that is used as input in other types of land-
use models. The availability of spatial data, such as land cover data, digital
elevation models, transportation networks and climate data, has increased
considerably over the past decades. Numerous satellites and satellite pro-
grams provide data at different spatial and spectral resolutions (e.g. SPOT,
Sentinel, Landsat, MODIS) and an increasing number of derivative data-
sets (e.g. Fick & Hijmans, 2017; Kummu et al., 2018; Siebert et al.,
2015). However, the large resources spent on the production of spatial
data, for example by public bodies such as the National Aeronautics and
Space Administration and the European Space Agency, dwarf efforts to
systematically collect data about the relevant actors, their characteristics
and their decisions, especially across large geographic extents. The limited
availability of data about land-use actors renders land-use change model-
ling underutilised, and restricts its potential for scenario studies and assess-
ment of land-related policies. Here, we argue that to advance the
mapping and forecasting of LULCC across large spatial extents with land-
use models, more effort is needed to collect data about relevant actors,
their characteristics and their decision-making.

In the next section we explore the challenge of parameterising
ABLUMs in more detail. Section 5.3 identifies a number of data acquisi-
tion approaches that can help overcome these challenges. We conclude
by summarising the current state of ABLUMs and note the need for coor-
dinate data collection if large-scale behavioural models are to be able to
represent human behaviour across large spatial extents.

5.2 Agent types as a way to apply agent-based models to
large geographic extents

Before discussing the challenge of parameterisation of ABLUMs, it is
important to acknowledge that some of the most impactful ABMs are
void of data and offer a proof of existence that certain types of agents and
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their interactions can give rise to system-level properties of interest.
Therefore we find a number of ABLUMs that use synthetic data to initi-
ate their agent populations (e.g. Brown et al., 2014; Filatova et al.; 2011)
in a stylised world. The benefit of this approach is that the entire system
and all data are known and therefore the model can be treated as a con-
trolled experimental laboratory to investigate the impacts of system prop-
erties and processes on outcomes. An early and well-documented
example of a spatially explicit ABM based on synthetic data is Sugarscape
(Epstein & Axtell, 1996). Agents in this model reside in a gridded and
torus landscape, and agents and their characteristics do not necessarily
resemble a particular area or people. While these synthetic applications
have proven very useful to study specific social and socio-ecological sys-
tems, they do not typically represent specifics about real-world land-use
dynamics (Ameth et al., 2014; Rounsevell et al., 2014).

Existing real-world applications of ABLUMs mostly use case studies to
gather data to initiate and parameterise agents, for example using partici-
patory observation, surveys, interviews and role-playing games (Robinson
et al., 2007; Smajgl et al., 2011; Zagaria et al., 2021). These methods can
be utilised to establish the characteristics of the relevant actors, such as
their age, financial status, land they own, social network and, crucially,
their motivations and preferences. However, such case studies are
resource-intensive, and the required resources relate closely to the number
of actors that are being assessed this way. Therefore real-world applica-
tions of ABLUMs often target small study areas that allow for a case study
approach (e.g. Bakker et al., 2014; Kiruki et al., 2019).

Applying ABLUMs to real-world cases with large geographical extents
thus poses some challenges. First, as explained above, case study
approaches are resource-intensive and localised, which makes it difficult to
scale them up. Second, although many data are available for large areas,
these data are typically reduced to averages over administrative units, such
as counties, provinces or countries (e.g. census data). However, represent-
ing the heterogeneity within a population is a particular strength for
agent-based modelling and results have shown that variation leads to sig-
nificantly different results than averages or categorisation (Brown &
Robinson, 2006). Case studies that have original social survey data do not
face this problem.

In response to these challenges, several models (e.g. SOME, DEED,
Brown et al., 2008; CRAFTY, Murray-Rust et al., 2014) have relied on
the use of agent typologies, which render decision-making processes
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tractable, as well as computationally feasible (e.g. Arneth et al., 2014;
Murray-Rust et al., 2014). Key commonalities between behavioural theo-
ries (Ajzen, 1991; Grothmann & Patt, 2005; Meyfroidt, 2013) provide
directions for the design of agent types. These include the social contexts
within which agents make decisions, personal values and preferences,
access to resources and peer-relations. A model based on agent types does
not require data on individual actors, but instead uses information about
the class of actors represented as an agent type. For example, with the
numbers of difterent types of agents, measures of central tendency and
spread of different attributes, distributions of agent types and their propor-
tion of the population can be acquired and used. Consequently, while
case study approaches might not be practically applicable to parameterise
large-scale ABLUMs, agent types can be defined and characterised using
alternative data collection methods, which have greater potential for
upscaling. Indeed, a great deal of existing data could be better utilised,
and complemented by new approaches to data gathering and sharing.

5.3 Data acquisition for models based on agent types

While the extension of case study data to other regions has limitations, a
large number of case studies can be analysed to identify generalities among
them. Several metastudies have synthesised collective knowledge across
case studies to advance our understanding about land-use change processes
(van Vliet, Magliocca, et al., 2015). Although few existing metastudies
have explicitly investigated the role of actors in land-use change processes,
this approach could yield valuable information for the design of agent
types and the identification of agent attributes that should be represented
(Magliocca et al., 2015). An example of such a metastudy is provided by
van Vliet, de Groot, et al. (2015) who analysed case studies of agricultural
land-use change in Europe to elucidate the role of farmers as moderators
between underlying drivers and observed agricultural land-use changes.
Results revealed the importance of the presence of a successor, farmers’
attitudes towards environmental values as well as their view on the role of
farming as important factors in their decision-making. In another study
Malek et al. (2019) reviewed studies of land-use decision-making, glob-
ally, to identify difterent types of land managers. These results reveal the
clearly difterent motivations underlying these types of decision-making,
ranging from subsistence to environmental attitudes. Like many scaling
approaches seeking to represent behaviour in models covering large spatial
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extents, the challenge is that even with metastudies, there is a lack of
detail and depth to parameterise behaviour in ABLUMs. Therefore the
potential contribution of metastudies for ABLUM applications is in the
design of agent types and they require fusion with other data sources to
empirically inform behaviour parameters.

An obvious source of data for parameterisation of large-scale beha-
vioural models resides in the use of Census data. Censuses provide infor-
mation about the total population and age structure in a specific region
and are repeated in many areas on a regular or irregular basis (e.g.
Fontaine et al.,, 2014). Similarly, agricultural censuses collect data about
farm production as well as additional information on farm households
(Aalders & Aitkenhead, 2006). On a European scale, the Farm
Accounting Data Network systematically collects data on the structure
and income of a large sample of the agricultural holdings (Klein et al.,
2012). For privacy reasons and by the nature of their collection mecha-
nism, these data are only available as averages for larger areas. However,
given the representation of census data at multiple scales, they can be used
in combination with other data to derive finer resolution information and
distributions of census data. For example, census count data and land
cover data were resolved for census units in Koper, Slovenia to identify
the number of housing units associated with land-use pixels (Robinson
et al., 2012).

Besides government-led data collection activities, there are a large and
increasing number of other organisations that collect data about specific
groups of individuals. For example, many commercial organisations moni-
tor the behaviour and characteristics of their clients, to improve their ser-
vice (i.e. customer relationship management systems). While not all retail
information is directly relevant for modelling land-use changes, some
organisations are certainly relevant. Tourist organisations, for instance, col-
lect information about the amount and spatial distribution of farm-based
tourism, which affects land management decisions of the involved farmers
(Sharpley & Vass, 2006). Similarly, professional organisations, such as
farmers’ and foresters’ organisations, maintain extensive databases about
their members. Excerpts of such databases can provide information about
the distribution of land management practices, which is an important
aspect of land-use change but very hard to detect otherwise (Kuemmerle
et al., 2013). These data sources are not normally publicly accessible, but
by providing distributions of actor characteristics over larger geographic
areas, rather than data of individuals, these databases can provide valuable
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information for modelling while privacy as well as potential commercial
interests remain protected.

Technological applications, such as mobile phones, apps and social
media, allow the direct involvement of citizens in the collection of data
through crowdsourcing. While these data can incur a number of limita-
tions (e.g. a lack of standardisation, completeness, consistency and geo-
graphic accuracy; Senaratne et al., 2017), they can be used as a passive
data source, that is by analysing ‘big data’ that can be harvested online, or
actively, by asking citizens directly for the desired information. An exam-
ple of the former is presented in Garcia-Palomares et al. (2015), who ana-
lyse data from photo-sharing services in a spatially explicit way to find
hotspots for tourism. In fact social media data can further reveal relation-
ships between land use and ecosystem services (Lee et al., 2019;
Yoshimura & Hiura, 2017), with targeted reviews used to understand the
processes that affect supply and demand for these services (Diaz et al.,
2018; Feurer et al., 2019; Burton et al., 2018). Crowdsourcing can com-
plement these methods, as a tool for data analysis as well as gathering
(Fritz et al., 2017; Sturn et al., 2018).

A potential application would be to use such data to find the use of built-
up areas, which cannot be derived easily from land cover data due to tree
canopy overlap and other issues. However, tweets, pictures and movement
patterns at specific times provide ample information to distinguish between
residential areas, recreation areas and places where people work. An example
of the latter is the Geo-wiki project (Fritz et al., 2012, 2017), in which users
are asked to provide land cover information for the validation of remote sen-
sing—based land-cover products. This effort can relatively easily be extended
to derive the land use of specific locations, such as the usage of built-up land,
the preference for recreation sites, agricultural land management practices or
even field sizes (Sturn et al., 2018). However, while techniques to take
advantage of ‘the crowd’ have been available for some time, the challenge
remains to keep users sufficiently enthusiastic to provide the data that are
needed (Heipke, 2010). Furthermore, efforts are required to ensure the repre-
sentativeness of crowdsourced data, which 1s especially crucial when they are
about land mangers’ decision-making.

5.4 Conclusion

ABLUMs ofter great opportunities to better understand land-use change pro-
cesses as well as to generate plausible future land-use change trajectories.
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However, this potential is currently limited by the availability of data for the
design, initiation and parameterisation of agent behaviours. To advance land-
use modelling, there is a need for data that describes relevant actors, their
characteristics, their behaviour and their interaction with other actors and
their environment. We have highlighted a number of challenges and
approaches to assist with the design and parameterisation of large-scale
ABLUMs, including systematic reviews, censuses and large-scale surveys, col-
laboration with underutilised data collection efforts from commercial and
other parties and crowdsourcing. Existing modelling frameworks already
enable the simulation of land-use changes for a very large number of agents,
for example the number of farmers in the European Union (Brown et al.,
2014; Murray-Rust et al., 2014), and therefore allow leveraging these new
data. Ultimately, the added value of actor data for ABLUM has to be con-
firmed by the model application, and whether such an application is consid-
ered a success depends on the objective of the model. An application might
provide a better understanding of the relevant land-use change processes, yet
the accuracy could be insufficient for meaningful projections of future land-
use change. Individual research projects can apply the approaches identified
above. However, we also emphasise that there is a role for institutions and
funding bodies to encourage the collection and dissemination of these data,
for example through data repositories and coordinated actions across larger
geographical areas.
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