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BOEREN BIEDEN HET HOOFD AAN DROOGTES 

DE INTEGRATIE VAN MENSELIJK ADAPTIEF 

GEDRAG IN DROOGTE RISICO ANALYSES 

 
Droogte is een hardnekkig en kostelijk gevaar dat gevolgen heeft voor mens en milieu. 

Naarmate de klimaatverandering en de sociaaleconomische ontwikkeling verder toenemen, wordt 

verwacht dat het droogterisico in veel delen van de wereld zal toenemen. De unieke kenmerken 

van droogteperiodes - namelijk hun langzame aanvang en grote omvang in ruimte en in tijd - 

maken het een uitdaging om het droogterisico nauwkeurig in te schatten. In dit proefschrift 

reflecteer ik op hoe bestaande studies het droogterisico hebben gemodelleerd en benadrukt de 

mogelijkheid om menselijk adaptief  gedrag (bereidheid en/of  mogelijkheden tot aanpassing van 

het gedrag) expliciet mee te nemen in droogterisicobeoordelingen. Een betrouwbare beoordeling 

van het huidige en toekomstige droogterisico is van cruciaal belang voor de ontwikkeling van 

duurzaam beheer van water- en landbouwhulpbronnen. Eerdere modellen zijn echter grotendeels 

gebaseerd op hydrologische modellen en missen de menselijke component. Een dergelijke focus 

op de natuurlijke processen van de watercyclus laat de tweerichtingsfeedback tussen het 

watersysteem en de dynamiek van menselijke activiteiten achterwege. Dit samenspel kan echter de 

evolutie van toekomstige droogterisico’s beïnvloeden: enerzijds hebben adaptatiebeslissingen (i.e. 

beslissingen over het nemen van adaptatiemaatregelen ter vermindering van het droogterisico) 

invloed op  het risico en anderzijds zal ook de manifestatie van het risico (het ervaren van droogte-

impact) de opkomende adaptatiebeslissingen beïnvloeden.  
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In dit proefschrift stel ik dat de toevoeging van dergelijk menselijk adaptief  gedrag, een 

noodzakelijke stap is om de evolutie van droogterisico goed te kunnen modelleren. Elke 

individuele keuze heeft het vermogen om de verspreiding, omvang en effecten van een droogte te 

beïnvloeden. Het begrijpen van hoe mensen adaptatiebeslissingen nemen en waarom die 

verschillen van persoon tot persoon, is cruciaal: Het kan helpen bij beleidsbeslissingen over het 

ondersteunen van individuele adaptatiebeslissingen, voor het anticiperen op hulpbehoeften tijdens 

droogterampen en voor het evalueren van strategieën voor het verminderen van risico's bij droogte. 

Ik heb aangetoond hoe de dynamiek van menselijk adaptief  gedrag kan worden geïntegreerd in 

risicobeoordelingen van droogte, om zo de dynamische aard van kwetsbaarheid voor droogte 

correcter weer te geven. Om een tastbaar, praktisch voorbeeld te geven, richt het hier 

gepresenteerde onderzoek zich op de implementatie van agrarische waterbeheermaatregelen van 

kleine boeren. 

 

Dit proefschrift focust op de situatie Kitui, Makueni and Machakos, drie semi-aride 

districten in Zuidoost-Kenia. Droogte is er de belangrijkste oorzaak is van voedsel- en inkomens-

tekorten. In dit landelijke gebied zijn de meeste huishoudens afhankelijk van zelfvoorzienende 

landbouw. Klimaatverandering heeft er de frequentie en intensiteit van periodes van droogte in de 

afgelopen twee decennia doen toenemen, waardoor de productiviteit van de landbouwsector sterk 

op de proef  wordt gesteld. De verhoogde variabiliteit in neerslag en temperatuur heeft er het 

huidige aanpassingsvermogen overschreden. Veel kleinschalige boeren zijn niet meer in staat om 

de gevolgen van de droogte op te vangen. Ze hebben nauwelijks de capaciteit om maatregelen te 

nemen om zich te beschermen tegen droogte. Dit verhoogt de voedselonzekerheid en het 

armoedecijfer, en resulteert in hoge financiële hulpnoden wanneer een droogteramp zich voordoet.  
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   Het gebruik van op-agent-gebaseerde modellen 

Lopend onderzoek om de sociaal-hydrologische feedback tussen menselijke 

adaptatiebeslissingen  en het risico op droogte in de landbouw vast te leggen, heeft “op-agent-

gebaseerde modellen” (ABM) op de voorgrond gebracht. Dit proefschrift biedt een gekoppeld 

modelleringsraamwerk om de wisselwerking tussen menselijke adaptatiebeslissingen  en de 

dynamieken van droogtegevaar, blootstelling en kwetsbaarheid beter weer te geven. Ik onderzocht 

hoe dergelijke ABM’s kunnen worden gebruikt om individueel adaptief  gedrag te integreren, enrkt 

hoe het samenbrengen van biofysische, landgebruiks- en sociaaleconomische modellen past 

binnen een op agenten-gebaseerde opzet. Het belang van het meenemen van de interacties tussen 

mensen en droogte, een zogeheten sociohydrologische opzet, werd in de verf  gezet. Dit zorgt 

ervoor dat de co-evolutie van menselijke adaptatiebeslissingen en droogterampen nauwkeuriger 

kan worden weergegeven. Verder werden ook theorieën over menselijk gedrag uitgelegd. Dit kan 

helpen om de keuze over factoren die invloed hebben op het menselijk beslissingsgedrag 

(bijvoorbeeld eerdere droogte-ervaringen, adaptaties-kosten, individuele risicoaversie en 

beschikbare financiële middelen) bij  de modelopzet te verantwoorden. 

      

   Empirische informatie over het beslissingsproces 

Zoals benadrukt in het modelleringsraamwerk, is gedetailleerde kennis nodig van wat 

mensen motiveert om adaptatiemaatregelen te installeren, wanneer men dergelijk adaptief  gedrag 

wil opnemen in droogtemodellen. Daarom heb ik meerdere gegevensverzamelingsactiviteiten 

uitgevoerd onder kleine agrariërs in Kitui en andere Kenyaanse en Oost-Afrikaanse 

belanghebbenden. Dit zorgde voor empirisch bewijs over het adaptieve gedrag van kleine agrariërs 

zowel onder vroegere omstandigheden als onder mogelijk toekomstig overheidsbeleid. Ik maakte 

gebruik van meerdere methoden en combineer participatieve, elementaire statistische en 

geavanceerde econometrische benaderingen om de drijfveren en belemmeringen die van invloed 

zijn op adaptatiebeslissingen te beschrijven. Ook werden de voorkeuren van mensen voor 

beleidsstrategieën voor het verminderen van droogterisico's getest. 
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Ik ontdekte dat wantrouwen in voorspellingen (-29%) en een sterk geloof  in God (58%) 

barrières voor adaptatie bleken te zijn. Daarnaast bleken lid zijn van een boerenassociatie (+38%) 

en het al uitgevoerd hebben van andere adaptatiemaatregelen (+44%) de intentie om nieuwe 

maatregelen te nemen, te stimuleren. Het belang van verschillende componenten van bestaande 

gedragstheorieën werd bevestigd: risicobeoordeling, sociale norm, zelfeffectiviteit, adaptatiekosten 

en de effectiviteit van de maatregelen beïnvloeden het adaptieve gedrag onder droogterisico 

aanzienlijk. Geen van de eerder beschreven gedragstheorieën kon het waargenomen gedrag echter 

volledig verklaren. Bovendien toonde ik door middel van een keuze-experiment aan dat 

beleidsacties een positieve invloed hebben op het adaptatiegedrag. Geldoverdrachten voor 

aanvang van de droogte, relevante training voor agrariërs, nauwkeurige vroegtijdige waarschuwing 

en toegang tot kredietmarkten zorgen ervoor dat boeren gemiddeld respectievelijk +11%, +51%, 

+54% en +7% vaker een maatregel gaan nemen. 

 

      

   Het ADOPT model 

Op basis van de bovenstaande informatie, heb ik een innovatief  droogterisicomodel, 

ADOPT, gecreëerd. ADOPT richt zich op adaptatiebeslissingen (irrigatie, landbeheer) door 

individuele agrariërs en hun interactie met droogtegevaar, blootstelling en kwetsbaarheid. ADOPT 

integreert een model voor de productie van water voor gewassen met een model over het maken 

van beslissingen over adaptatie-maatregelen. Ik berekende dat het maken van Fanya Juu-terrassen, 

het toedienen van mulch, het bouwen van ondiepe waterputten en gebruiken van drip irrigatie 

systemen het effect van droogte op landbouwproductie kan verminderen. 
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Daarnaast simuleert ADOPT het heterogene adaptief  gedrag van agrariërs in Kenia op een 

endogene manier. Hierbij wordt de wederzijdse interactie tussen enerzijds hun adaptatie-

beslissingen en anderzijds hun land en productie, die worden blootgesteld aan droogte, expliciet 

gemaakt. Een bestaande psychologische theorie (de Protection Motivation theory) wordt 

vergeleken met scenario's van economische rationaliteit en van geen adaptatiebeslissingen, om 

verschillende gedragsaannames te testen. Ik laat zien dat ADOPT, door ervan uit te gaan dat 

boeren begrensd rationeel adaptief  gedrag vertonen, in staat is om de evolutie van 

adaptatiebeslissingen en historische opbrengsten na te bootsen. ADOPT kan zo nauwkeurigere 

schattingen van de impact van droogte op toekomstige voedselzekerheid bereiken.  

 

   Toepassing van het ADOPT model 

Ten slotte heb ik ADOPT aangepast om te kunnen simuleren hoe kleine agrariërs in Kenia 

reageren op interventies van het droogtebeleid door de overheid en (toekomstige) mogelijke 

klimaatverandering. Hierbij werden de drijfveren en belemmeringen voor implementatie en de 

sociale interacties tussen agrariërs wederom expliciet meegenomen. Geldoverdrachten voor 

aanvang van de droogte, relevante training voor agrariërs, nauwkeurige vroegtijdige waarschuwing 

en toegang tot kredietmarkten kunnen kleine agrariërs helpen om zich voor te bereiden op 

naderende droogte en zo onnodige schade vermijden. Het model bevestigde dat elk van deze 

beleidsacties een positief  effect heeft op de adaptatiebeslissingen van kleine boeren.  



SAMENVATTING 

Ik ontdekte dat het combineren van alle vier de beleidsacties, en dus het aanpakken van 

meerdere belemmeringen voor aanpassing tegelijk, resulteert in niet-lineaire positieve effecten op 

de kwetsbaarheid van kleine boeren (tussen -5% en -70% huishoudens met voedseltekorten). Een 

dergelijke holistische, prospectieve kijk op het verminderen van droogterisico's bleek de enige te 

zijn die robuust was onder alle verschillende klimaatveranderingsscenario's. Het zorgt voor een 

vermindering van de hulpbehoeften van minstens -68%, zelfs in een heter en warmer toekomstig 

klimaat. Deze proof-of-concept-toepassing van ADOPT toont aan dat het effect van proactieve 

beleidsacties kan worden geëvalueerd aan de hand van een dynamisch droogterisicomodel. Ik 

verwees ook naar het vertraagde effect van beleid zichtbaar in de resultaten van ADOPT: 

beleidsmakers zouden nu actie moeten ondernemen om toekomstige effecten op de kwetsbaarheid 

van kleine boeren in een steeds meer droogtegevoelige wereld te maximaliseren.  

   Conclusie  

Het gepresenteerde raamwerk en model zijn zeker geen ultieme oplossing op zich. Het is 

voornamelijk bedoeld om aan te tonen hoe een interdisciplinaire onderzoek het droogterisico 

beter kan modelleren; en voor het initiëren van discussies over de gegevensvereisten en resterende 

onderzoeksvragen. Dit proefschrift geeft echter ook een praktisch voorbeeld van hoe we ons 

begrip van mogelijke evoluties van droogterisico onder klimaatverandering en 

risicoverminderings-strategieën kunnen verbeteren. Daarnaast demonstreert het gebruik van 

risicomodellen die adaptief  gedrag integreren als beslissingsondersteunend instrument om 

prioriteit te geven aan effectieve adaptatiestrategieën in een steeds meer droogtegevoelige wereld. 
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SUMMARY  
 

Drought disaster risk models have long neglected the potential of  people and communities to adapt to the 

serious hazard posed by droughts. Failing to account for the dynamic nature of  individual human adaptive behaviour 

leads to incomplete risk estimates. Therefore, this thesis explored how to integrate heterogeneous individual 

adaptive behaviour in drought disaster risk assessments. It acknowledges the unique characteristics of  

droughts and details how to deal with adaptation decisions and their interaction with drought 

disaster risk. This thesis proposes a conceptual framework to guide modellers to address the 

dynamic nature of  drought disaster risk in time and space. The framework suggests the use of  

agent-based modelling (ABM) approaches to capture the socio-hydrologic feedback between 

individual and collective human adaptation decisions and drought hazard, exposure, vulnerability, 

and impacts. The framework allows for assessing how the adaptive behaviour of  different 

stakeholders might influence drought disaster risk over time and space. This framework provides 

a test-bed for understanding and modelling drought disaster risk dynamics. 

Multiple data collection activities were conducted to disentangle the complexities of  drought 

adaptive behaviour. Considering the factors in prevailing behavioural theories (e.g., expected utility 

theory for rational decision making; protection motivation theory for bounded rational decision 

making), different drivers and barriers for the adoption of  adaptation measures among 

smallholder farmers in Kitui, Kenya were analysed using survey information. The results indicate 

that mistrust in forecasting (-29%) and a strong belief  in God (-58%) serve as barriers to 

adaptation, while participating in farm groups (+38%) and past adaptation decisions (+44%) 

stimulate the intention to adopt new drought adaptation measures. This research therefore 

confirms the importance of  several components of  existing bounded rational behavioural 

theories; however, none of  the evaluated behavioural theories alone could fully explain the 

observed behaviour. Moreover, the results indicate that new policy actions would support 

smallholder farmers to adopt drought adaptation measures. Potential policy actions include ex-ante 

cash transfers, timely extension services, tailored early-warning systems, and access to credit 

markets. These policies would increase the adaptation intention by +11%, +51%, +54%, and +7% 

(per percentage reduced interest rate), respectively.  

A novel drought disaster risk adaptation model, ADOPT, was developed based on this 

empirical information. ADOPT combines a crop-water model with an agent-based decision model 

and simulates small-scale agricultural adaptation decisions in response to drought disaster risk. The assumptions 

on adaptive behaviour were tested through the application of  various behavioural theories. The 

results demonstrate that, by accounting for bounded rational adaptation behaviour (following 

protection motivation theory), ADOPT is better able to reflect historic crop yield dynamics, food 

security, and poverty levels compared to simulations using rational decision making under expected 

utility theory. Moreover, including individual household characteristics leads to a better 

representation of  the processes leading to food-aid needs. Thus, estimations of  drought disaster 

risk can be improved using a socio-hydrologic, agent-based approach.  
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ADOPT was also used to simulate how smallholder farmers respond to pro- and reactive 

drought policy interventions and (future) drought events. The results confirm that education, 

financial aid, and awareness can reduce smallholder farmers’ vulnerability to drought under climate change. 

Combining ex-ante cash transfers (financing early action rather than recovery), tailored extension 

services (seasonal on-farm trainings), timely early-warning systems (local drought monitoring and 

prediction), and access to credit markets (affordable micro-finance options) results in non-linear 

positive effects on smallholder drought vulnerability (between -5% and -70% households in food 

shortage compared to the situation without implementation of  these policies). Adopting this 

holistic, prospective view on drought disaster risk reduction, and thus simultaneously targeting 

multiple barriers to adaptation, proved robust under all different climate change scenarios and 

reduced aid needs by -68% under a hotter and drier future climate. This proof-of-concept 

application of  ADOPT also demonstrates the delayed effect of  policies by one to two decades, 

urging policy makers to act now in order to maximise the future effects on drought vulnerability 

in an increasingly drought-prone world. 

This research contributes to drought disaster risk science through exploring the potential of  explicitly including the 
adaptation decisions of  smallholder farmers in agricultural drought disaster risk assessments. The presented 
conceptual framework and the ADOPT model are by no means an ultimate and exclusive solution 
but are mainly intended to demonstrate how drought disaster risk dynamics should be modelled 
with an interdisciplinary approach. This thesis demonstrates a practical example of  how to 
improve understanding of  possible evolutions of  drought disaster risk under climate change and 
risk reduction policies. In addition, it showcases ways to support the heterogeneous smallholder 
farmers in Kenya’s drylands to adopt effective adaptation measures in order to achieve the 
Sustainable Development Goals ‘no poverty’ and ‘zero hunger’. 
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CHAPTER 1: 
  

DROUGHT DISASTER RISK AND  

HUMAN ADAPTIVE BEHAVIOUR 

 

AN INTRODUCTION TO THIS THESIS 
 

  
 

“How can we support societies to adapt to changing conditions by 

considering the uncertainties and feedbacks between natural and 

human-induced hydrological changes?” 

 - Panta Rhei science question 6 (Montanari et al. 2013) 
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1. Solving the ‘water question’:  

The current status of  drought disaster risk research 

1.1. Drought disaster risk in context 

‘Drought is on the verge of  becoming the next pandemic and there is no vaccine to cure it,’ 

declared Mrs. Mami Mizutori, the UN Secretary-General’s Special Representative on Disaster Risk 

Reduction, at the launch of  the Special Report on Drought 2021 (UNDRR news, 2021). Droughts 

often cause economic decline in the affected region, perpetuating existing under-development and 

increasing social inequalities (Cammalleri et al., 2021; Herrero et al., 2010). Concerns about the 

influence of  climate change on droughts and the rising number of  drought disasters (CRED, 2017, 

2019) have made droughts a timely topic of  interest. This rising interest has prompted broad calls 

for action to governments and institutions, such as the UNCCD Global Drought Initiative and 

the 2018-2028 UN action decade on water, and requests to the scientific community for innovative 

advice on how to deal with drought disaster risk (Nature editorial, 2019, 2021).  

Droughts, defined as prolonged periods of  exceptional lack of  water compared to normal 

conditions, are recurring features of  the climate and should not be confused with the interrelated 

phenomena of  aridity and water scarcity (Van Loon, Gleeson, et al., 2016). They are disruptive 

hazards that affect large areas and a disproportionate number of  people (Carrão et al., 2017). 

Droughts can trigger direct and indirect and short- and long-term harmful effects on society and 

the environment, and drought impacts can cascade through the socio-economic system. For 

example, water deficits caused by drought events can lead to reduced food production. This effect, 

in turn, can lead to loss of  livelihoods, resulting in increased poverty levels, as well as food 

availability issues and thereby increased food prices (CRED & UNDRR, 2020).  

In semi-arid, agriculture-dependent regions, droughts often lead to malnutrition, famine, and 

the need for food aid, with the most vulnerable hit the hardest (d'Alessandro et al., 2015; Below 

et al., 2007). The increasing frequency and severity of  droughts, combined with a context of  

chronic vulnerability and inequality, is placing growing pressure on the livelihoods of  many 

smallholder farmers in these regions (Government of  Kenya, 2018; Kuhn et al., 2016; Republic 

of  Kenya, 2015). As global food production relies heavily on smallholder rain-fed agriculture 

(<3ha), reducing the climate vulnerability of  smallholder farmers is critical to achieving the SDGs 

(FAO, IFAD, UN Decade of  Family Farming 2019-2028; Marenya & Barrett, 2007; Mutuku et al., 

2016). However, despite the disproportionate adverse effects of  droughts on smallholder farmers, 

the majority of  the research on the impact of  climate change on agriculture has been conducted 

in industrialised countries (Claessens et al., 2012; van Valkengoed & Steg, 2019). As a result, there 

is a knowledge gap regarding the vulnerability of  small-scale farmers to drought, particularly with 

regard to effective adaptation strategies that can reduce vulnerability and improve resilience 

(Lottering et al., 2020).  
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1.2. Drought disaster risk reduction 

‘Curing’ droughts (i.e., preventing meteorological droughts from occurring) might be nearly 

impossible, but drought disaster risk can be mitigated or prepared for in order to reduce droughts’ 

harmful consequences. Adaptation measures can prevent meteorological droughts from 

propagating through the hydrological cycle and thus from causing disruptions to agriculture and 

society (Sivakumar et al., 2014; Solh & Van Ginkel, 2014). For example, buffering water in the 

landscape by retaining rainwater (e.g., rooftop water harvesting, farm ponds), recharging 

groundwater (e.g., earth trenches, terraces), and reusing water (e.g., drip irrigation; mulching) and 

other water-efficient climate-smart agricultural practices can play a particularly important role in 

reducing drought disaster risk in the rural areas of  the world (Acacia water, 2020; Acacia Water et 

al., 2018; Metameta & Kenya Wash Alliance, 2012). Over time, smallholder farmers have adopted 

field-scale adaptation measures to enhance sustainable agricultural production and decrease 

agricultural water deficiencies, and more measures to reduce the impacts of  future droughts are 

expected to be implemented (Rockström et al., 2002; Rockström et al., 2003). However, in many 

places, smallholder farmers face financial, knowledge, market, social, or other barriers to the 

widespread adoption of  drought adaptation measures (Mutoko, 2014). 

Drought disaster risk reduction policies by governments or related actions by NGOs can 

help smallholder farmers to overcome these barriers and enable them to plan for the necessary 

adaptation measures, thus minimising drought impacts in advance (Tsegai et al., 2018). However, 

this effort requires a shift from the current reactive management approaches to proactive policies 

and actions (Cabot Venton, 2018; FAO, 2019; Wieriks & Vlaanderen, 2015). For example, timely 

finance prior to a disaster, in conjunction with optimised early warning services (Opiyo et al., 2015), 

can reduce vulnerability and be more cost-efficient than post-disaster compensation (Guimarães 

Nobre et al., 2019). Such ex-ante cash transfers can prevent households from becoming 

malnourished and diminish food price volatility (Hill & Porter, 2016). Furthermore, farmer field 

schools or agricultural extension services (tailored farm trainings provided by government or 

NGO’s) can support farmers in monitoring drought disaster risks (Omollo et al., 2018) and, in 

conjunction with access to a functional (credit) market (Opiyo et al., 2015), can allow them to trial 

adaptation options (Aryal et al., 2021; Mfitumukiza et al., 2017; Mundy & Jager, 2006). However, 

there is a need for enhanced knowledge on the viability and sustainability of  specific proactive 

policies and actions aiming to support the adoption of  drought adaptation measures among 

smallholder farmers (Nature News, Padma, 2019).   
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1.3. Drought disaster risk assessment 

Developing sustainable, efficient drought disaster risk reduction strategies requires an 

understanding of  the temporal changes of  impacts, their respective causes, and human-water 

interactions (Di Baldassarre et al., 2019; Vanelli & Kobiyama, 2021; Kreibich et al., 2019). Hence, 

such strategies, policies, and actions should be based on proper drought disaster risk analysis 

(Enenkel et al., 2020; Kondrup et al., 2020; UNCCD et al., 2013). However, the complex nature 

of  droughts (their relative-to-normal characterisation, slow onset, and delayed impacts) makes it 

difficult to analyse drought impacts, and current risk assessments exhibit significant shortcomings 

(Blauhut, 2020; Eriyagama et al., 2009). Analysing the impacts of  drought and drought disaster 

risk requires studying how societies respond to the (changes in) physical processes causing drought, 

but an open question remains: ‘How do hydrological systems interact with, and feedback to, natural 

and social systems?’ (Lloyd-Hughes, 2014; Mishra & Singh, 2011a; Wilhite et al., 1985; Montanari, 

2015). The challenges in demarcating a drought event, combined with the challenge of  quantifying 

drought vulnerability and human feedback (Bachmair et al., 2015, 2017; González Tánago et al., 

2016), currently limit proper analysis of  (the interactions between) drought disaster risk and 

drought disaster risk mitigation (Van Loon et al., 2016).  

Static view on drought disaster risk  

Drought disaster risk results from the complex interaction of  drought hazard, exposure, 

and vulnerability (Vogt & Barbosa, 2018). Drought disaster risk assessments primarily consider 

historical hazard, exposure, and vulnerability (Carrao et al., 2016; Meza et al., 2020); dynamic future 

hazards under static exposure and/or vulnerability (Lange et al., 2020; Pokhrel et al., 2021); or 

dynamic hazards with dynamic exposure (Gu et al., 2019; Smirnov et al., 2016; Kondrup et al., 

2020; Mishra & Singh, 2011b; Tabari et al., 2021). Vulnerability has received the least attention in 

drought disaster risk assessments to date, as it cannot always be described by quantitative indicators 

(Gopalakrishnan, 2013; Ward et al., 2020). In today's Anthropocene world, the water cycle is 

constantly altered by human influence and vulnerability is a dynamic process. In addition to climate 

change, human reactions and interventions to droughts may help some communities, but may also 

influence the severity and propagation of  droughts elsewhere (Holman et al., 2018). However, 

these dynamic feedback processes—and the resulting spatial and temporal patterns of  hazard, 

vulnerability, and exposure—are not addressed in current drought disaster risk assessment 

approaches. In particular, vulnerability estimates are usually static, when a dynamic approach 

including the changing (lack of) adaptive behaviour of  people and communities over time would 

better describe the complexity of  drought vulnerability (Hagenlocher et al., 2019). Drought 

disaster risk models often overlook the emergence of  drought adaptation measures. There is thus 

a need for improved risk assessment approaches that include and combine such adaptation 

dynamics with other trends, such as climate change, population growth, and socioeconomic 

development (Ahmadalipour et al., 2019; Tabari et al., 2021).  
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Socio-hydrologic view on drought disaster risk  

The aforementioned dynamics among different drought drivers, impacts, and responses are 

complex and include interactions at multiple spatiotemporal scales (UNDRR, 2021). 

Understanding interactions such as the so-called 'adaptation effect' and ‘levee effect’ — referring 

to the observation that more frequent disasters are often associated with decreasing societal 

vulnerability, and the observation that risk prevention measures can actually lead to increased 

vulnerability — can be critical in estimating future disaster risk (Di Baldassarre et al., 2015, 2017, 

2018; Gonzales & Ajami, 2017; Kuil et al., 2016). Clearly, there are important feedback between 

the physical and social processes associated with drought disaster risk, and risk models must be 

able to capture them (Bierkens et al., 2015).  

The field of  water resources systems analysis has developed concepts and tools to study the 

opportunities and effects of  water abstraction (Brown et al., 2015; Kasprzyk et al., 2018), and the 

discipline of  socio-hydrology has provided frameworks and models to analyse people and societal 

processes as integral to the human-water system. Socio-hydrological scenario-based, system 

dynamics, pattern-oriented, heuristic, or agent-based modelling approaches can be used to 

explicitly address the coupled water-society system by capturing the long-term dynamics produced 

by the interactions of  physical, social, and technical processes (Srinivasan et al., 2016; Sivapalan et 

al., 2012; Sivapalan & Bloschl, 2015; Troy et al., 2015). These so-called ‘socio-hydrological models’ 

are particularly relevant for understanding the risk of  climate extremes such as droughts (Blair & 

Buytaert, 2015a, 2016b). However, existing socio-hydrological models often represent human 

behaviour as the rational choices of  a homogeneous group (Ertsen et al., 2014; Pande & Ertsen, 

2014). Such top-down approaches to modelling the human-water system may overlook 

fundamental processes and miss the heterogeneous adaptive behaviour of  individuals using water 

(Kelly et al., 2013; Mostert, 2017).  

Bottom-up view on drought disaster risk  

The importance of  incorporating individual human adaptive behaviour is increasingly 

recognised. However, the inclusion of  human adaptation decisions and their interaction with the 

natural water system in drought disaster risk models remains a major challenge (Filatova et al., 

2013; Schlüter et al., 2017). Although individual adaptation influences drought vulnerability and 

exposure, few drought disaster risk models consider this dynamic interaction from a bottom-up, 

individual adaptation perspective. Bottom-up modelling techniques, which require representation 

of  the processes that drive system behaviour, can help to understand the complex heterogeneous 

and individual human decision-making processes regarding drought adaptation measures and how 

they affect and are affected by hazard, exposure, and vulnerability (Blöschl & Sivapalan, 2016). 

Indeed, to fully integrate human processes, a framework that includes human drivers, impacts, 

feedback, and the changing hydro-meteorological conditions causing drought in the Anthropocene 

is needed (McMillan et al., 2016). 
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Aerts et al. (2018) advocated for agent-based models (ABM) to describe the interaction of  

hydrological and human-adaptive processes. These models represent a bottom-up approach to 

system modelling, simulating the adaptive actions of  individual agents, particularly their way of  

(re)acting with other agents and the environment (Blair & Buytaert, 2015a). The focus of  ABMs 

is on the behaviour and decision making of  individual agents within a system. System dynamics 

can then be evaluated through assessing the collective effect of  individual decisions (Bouziotas & 

Ertsen, 2017): agents can learn from other agents and/or extreme events, and they are influenced 

by and can adapt to external drivers such as climate change or top-down interventions. For 

example, the government may set water price taxes, which influence irrigation decisions by farmers 

and thereby affect the water resources system. In ABMs, the actions and decision processes of  all 

agents are described by behavioural decision rules. Creating these rules in itself  is quite complex 

(Schlüter, Baeza, Dressler, Frank, Groeneveld, Jager, Janssen, Mcallister, et al., 2017), but even 

simple rules can generate complex (emergent) behaviour (Walker et al., 2015).  

Agent-based models are increasingly used in human behaviour modelling and disaster risk 

assessment, such as for flooding (Haer et al., 2016; de Ruig 2021). However, in drought disaster 

risk assessment, the application of  ABMs remains limited (Akhbari & Grigg, 2013; Berger et al., 

2007; Troy et al., 2015). Kromker et al. (2008) used ABMs to detect communities vulnerable to 

drought and identify relevant factors for increasing resilience. They found that the main challenge 

is sufficient data for a representative model. Other studies have focussed on the feedback between 

farmers' agricultural activities and available water resources using ABMs (e.g., Ghoreishi et al., 

2021; Molajou & Afshar, 2021; Pouladi et al., 2020). More research in this direction is required in 

order to create full-fledged agent-based drought disaster risk models that can support the design 

and evaluation of  proactive drought disaster risk reduction strategies (Kreibich et al., 2020; 

Schrieks et al., 2021; Ward et al., 2020).    
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2. The need to improve drought disaster risk models by including vulnerability 

dynamics 

Dynamic drought disaster risk models must take into account the effects of  adaptive or non-

adaptive human behaviour on drought disaster hazard, exposure, and vulnerability (Montanari et 

al., 2013). To understand such adaptation dynamics, one needs to understand the sensitivities to 

drought and adaptive capacities of  those making decisions on adaptation measures (UNISDR, 

2007). Furthermore, a realistic representation of  human adaptive behaviour should be included. 

Human decision rules in existing drought disaster risk models are often presented as the rational 

behaviour of  a homogeneous group. However, in reality, individual adaptation decisions are largely 

heterogeneous in space and time and bounded in rationality: decisions are heavily influenced by 

individual perceptions and attitudes, leading to different adaptation patterns (Gebrehiwot & van 

der Veen, 2015b; Huber et al., 2018; Keshavarz & Karami, 2016; Malawska & Topping, 2016; van 

Duinen et al., 2015b, 2016a, 2016b). Therefore, drought disaster risk models should focus on the 

spatial and temporal agency level of  individuals (Ertsen et al., 2014). This focus can be achieved 

by taking humans as the starting point for assessment and concentrating on the local physical and 

social processes that determine drought disaster risk (Conway et al., 2019a).  

Incorporating human adaptive behaviour and the resulting heterogeneous adaptation 

decisions is challenging (Loucks, 2015; Tesfatsion et al., 2017) and often done based on ad hoc 

assumptions without a solid theoretical and empirical basis (Groeneveld et al., 2017b; Müller et al., 

2013; Schulze et al., 2017a; Schwarz et al., 2020). Calibrating behavioural, economic, and 

psychological theories with empirical data can improve the model rules describing complex 

decision-making (An & López-Carr, 2012; Filatova et al., 2013a; Muelder & Filatova, 2018; 

O’Sullivan et al., 2016). Schrieks et al. (2021) highlighted several challenges for the future of  

agricultural drought disaster risk models and argued that in addition to anchoring modelled 

adaptive behaviour in established behavioural theories, such theories should be selected at an early 

stage to ensure the full modelling application of  the chosen theory. They further emphasised the 

importance of  using quantitative and qualitative empirical methods (such as field experiments and 

individual household surveys) to provide micro-level data for model parameterisation and 

behavioural calibration (McMillan et al 2016; Xu et al., 2018). A more theoretical and empirical 

foundation of  agent-based drought disaster risk models is clearly needed.  
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Goal and research questions 

To address the challenges described above, this thesis develops a drought disaster risk 

model able to account for the dynamics in drought vulnerability through explicitly 

incorporating the two-way feedback between individual adaptation decisions and the 

agro-hydrological system.  

 

In order to achieve this goal, this thesis examines the following research questions: 

 

A. What modelling approaches are suitable for simulating individual adaptive behaviour in drought disaster 

risk management?  

B. Which socio-economic, cognitive, and policy factors influence the decision making of  smallholder farmers 

facing droughts? 

C. How do different assumptions about the adaptive behaviour of  smallholder farmers influence agricultural 

drought disaster risk estimations?  

D. Which external policy actions targeting smallholder farmers effectively reduce agricultural drought disaster 

risk under climate change?  

To find answers to these questions and aiming to improve the understanding of  current 

and future agricultural drought disaster risk under socio-economic, policy, and climate 

trends, I developed an agent-based dynamic drought disaster risk model for a case study in 

Kenya. This model, ADOPT, is able to simulate the effect of  policies on smallholder farmers’ 

drought adaptation decisions and resulting drought disaster risk and can evaluate the robustness 

of  these policies under climate change.  
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3. The case of  smallholder farmers’ drought disaster risk in semi-arid Kenya 

Arid or semi-arid regions, where water demand often exceeds the perpetually low water 

availability, experience the most severe impacts of  droughts (Van Loon, 2013). Moreover, the 

consequences of  droughts are most acute in the Global South, where exposure and vulnerability 

to drought are high (AghaKouchak et al., 2021). Droughts affect African semi-arid regions more 

than any other continent, with nearly 150 recorded events in the last 20 years (EM-DAT). The 

rural areas of  Africa, inhabited by pastoralists and smallholder farmers, are the most exposed to 

drought disaster risk (Winsemius et al., 2018). Climate change has already significantly reduced soil 

moisture and increased surface air temperature on the continent (Sheffield & Wood, 2008), and it 

is estimated that drought disaster risk will continue to increase (Ahmadalipour et al., 2019; Global 

Water Partnership Eastern Africa, 2015; WMO, 2019). Children born in in Sub-Saharan Africa in 

2021 will experience 6.3 times more droughts under 1.5 °C global warming than without climate 

change (Thiery et al., 2021). While droughts might be reasonably predictable, slow preparedness 

and low adaptive capacity still place communities in emergency situations (Funk & Shukla, 2020). 

This thesis focusses on the semi-arid areas in Kenya in specific because drought has been 

the most catastrophic threat in Kenya for decades (Republic of  Kenya, 2014), with a total of  57 

million people affected since 1970 (EM-DAT, 2021). Droughts account for 15% of  recorded 

disasters in Kenya, but 82% of  people affected by disasters in the past two decades (Gebrechorkos 

et al., 2019). Consecutive years of  drought (e.g., 2012-2016) or extreme drought events (e.g., 2019) 

lead to an increased risk of  famine (Government of  Kenya, 2011). Since 2014, Kenya has been 

almost constantly affected by drought emergencies (Reliefweb, 2021), with the government of  

Kenya declaring a national drought emergency as recently as September 2021 (Kenya Food 

Security Steering Group, 2019; FEWSNET, 2018; OCHA, 2017; OXFAM, 2017; The Guardian, 

2021; UNICEF, 2019). The effects of  climate change are already being experienced by 

communities living in Kenya’s drylands, and water scarcity poses the main constraint to sustainable 

socio-economic development (Mwangombe et al., 2011). 

As agriculture is vital to Kenya's economic growth, this thesis zooms in on three rural 

districts in the southeast of  Kenya’s mixed marginal agriculture zone. In Kitui, Machakos, and 

Makueni, smallholder farming is practised by 91% of  the population (FEWSNET 2010). Together 

with the West Lake region, this is the largest rainfed growing area for maize, the staple crop in 

Kenya. However, it is also one of  the five geographical clusters in Kenya's arid-semi-arid lands 

that are particularly drought prone (Republic of  Kenya, 2013) and it is expected to see an increased 

drought hazard under climate change (Figure 1.1 and 1.2). Droughts, in addition to the high 

sensitivity of  maize to moisture stress (D’alessandro et al., 2015; Mbogo et al. 2013) and the low 

level of  adopted drought adaptation measures (Lasage & Verburg, 2015), result in a very high 

variability in yields in these districts (Oluoko-Odingo, 2011; Omoyo et al., 2015; Rao et al., 2011). 

Failed harvests quickly lead to food insecurity (Johnson & Wambile, 2011; Njoka et al. 2016); 

therefore, increasing the crop productivity and climate resilience of  smallholder farming systems 

is critical to achieving the development agenda of  Kenya Vision 2030 (Government of  Kenya, 

2012; Hill et al., 2014) and the Sendai Framework's goal of  reducing disaster risk (Aitsi-Selmi et 

al., 2015; Nobre, 2018) (CIAT & World Bank, 2015).   
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Figure 1.1: Average annual chance of a meteorological drought occurring (%) under current (1980-2016; left map) and future 
(2050-2100 under RCP 8.5; right map) climate conditions (Rudari et al. 2019). Study area demarcated in black.  

          
Figure 1.2: Direct agricultural loss in Kenya (left: risk under present climate; right: risk under projected climate using 
RCP8.5), in average annual million dollars (Rudari et al. 2019) . Study area demarcated in black.  
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4. Reading guide 

In the following Chapters of  this thesis, I detail the framework, design, development, and 

application of  a drought disaster risk model (Figure 1.3). 

 
Figure 1.3: Overview of PhD thesis 

In Chapter 2, I describe the conceptual modelling framework. This modelling framework 

demonstrates how to build dynamic drought disaster risk models that include human adaptive 

behaviour. I elaborate the pertinent feedback loops between people and their natural and social 

environment and discuss relevant theories related to individual adaptive behaviour under risk.  

In Chapter 3, I identify and quantify the factors that influence the adaptive behaviour of  

smallholder farmers facing drought disaster risk through analysing interviews with key informants 

and the results of  a semi-structured household questionnaire. I explain how the resulting 

information can be used to tailor the decision rules in an ABM.  

In Chapter 4, I develop the dynamic drought disaster risk model using the concepts from 

Chapter 2 and the survey results from Chapter 3. The resulting model, ADOPT, simulates the 

two-way feedback between adaptive water management by smallholder farmers and changing 

hydrological conditions by combining behavioural theories with the crop-water model 

AquacropOS. 

In Chapter 5, I present an application of  the dynamic drought disaster risk model ADOPT. 

I demonstrate how the model can be used to estimate the changes in drought disaster risk under 

six climate change scenarios and four disaster risk reduction policies. I evaluate the effectiveness 

and robustness of  such top-down actions on the reduction of  food insecurity, poverty, and 

emergency aid need. 

Chapter 6 contains the synthesis of  this thesis. In this final Chapter, I answer the research 

questions posed in this thesis. I highlight the innovations of  the ADOPT model and discuss some 

limitations to the current model design. I conclude with an overview of  the implications of  this 

research for science and society. 
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GLOSSARY 

Glossary based on terminologies used by the United Nations Office for Disaster Risk 

Reduction, United Nations Convention to Combat Desertification, or the Integrated Drought 

Management Programme. 

 

Adaptation The adjustment in natural or human systems in response to actual or 
expected climatic stimuli or their effects, which moderates harm or exploits 
beneficial opportunities. In human systems, adaptation seeks to moderate or 
avoid harm or exploit beneficial opportunities. In some natural systems, 
human intervention may facilitate adjustment to expected climate and its 
effects. 

Adaptive 
capacity 

The ability of systems, institutions, humans and other organisms to adjust to 
potential damage, to take advantage of opportunities, or to respond to 
consequences. 

Adaptation 
credit market 

Agricultural micro-credit market with low-interest rates for micro-finance 
regarding climate adaptation measures 

Aridity Characteristic of a climate relating to insufficiency or inadequacy of 
precipitation to maintain vegetation. Aridity is measured by comparing long-
term average water supply (precipitation) to long-term average water demand 
(evaporation). If demand is greater than supply, on average, then the climate 
is arid. 

Disaster risk 
reduction 

Disaster risk reduction is aimed at preventing new and reducing existing 
disaster risk and managing residual risk, all of which contribute to 
strengthening resilience and therefore to the achievement of sustainable 
development.  

Drip irrigation Drip irrigation is an irrigation method designed for minimum use of water 
and labour for the optimum irrigation of plants in arid and semi-arid regions. 
It allows the slow and precise delivery of water to crops. (WOCAT SLM 
Database) 

Drought 
(event) 

Prolonged period of abnormally dry weather sufficiently caused by the lack 
of precipitation or elevated temperature, causing a serious hydrological 
imbalance. The manifestation of a drought hazard at a particular place during 
a particular period. 

Drought 
impact 

A specific - positive or negative, primary or secondary - effect of drought on 
the economy, society, and/or environment, which is a manifestation of risk. 

Drought 
disaster 

A serious disruption of the functioning of a community or a society at any 
scale due to drought events interacting with conditions of exposure, 
vulnerability and capacity, leading to one or more of the following: human, 
material, economic and environmental losses and impacts. The effect may 
test or exceed the capacity of a community or society to cope using its own 
resources. 

Drought 
disaster risk 

The potential loss of life, injury, or destroyed or damaged assets which could 
occur to a system, society or a community in a specific period, determined 
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probabilistically as a function of drought hazard, exposure, vulnerability and 
coping capacity.  

Drought 
hazard 

The collective of prolonged deficiencies in hydro-meteorological variables 
that may cause loss of life, injury or other health impacts, property damage, 
social and economic disruption or environmental degradation.  

Drought 
exposure 

The people, infrastructure, housing, production capacities and other tangible 
human assets located in drought-prone areas.  

Drought 
vulnerability  

The conditions determined by physical, social, economic and environmental 
factors or processes which increase the sensitivity of an individual, a 
community, assets or systems to drought hazard. The degree to which a 
system is susceptible to, or unable to cope with, adverse effects of droughts.  

Early warning 
system 

The set of capacities needed to generate and disseminate timely and 
meaningful warning information to enable individuals, communities, and 
organizations threatened by a hazard to prepare to act promptly and 
appropriately to reduce the possibility of harm or loss. 

Ex-ante cash 
transfer 

Anticipatory cash transfers based on the national early warning system. Cash 
assistance paid out before the disaster manifests, based on impact predictions 
of said disaster event (WFP) 

Extension 
services 

An agricultural extension service offers technical advice on agriculture to 
farmers and supplies them with the necessary inputs and services to support 
their agricultural production. It provides information to farmers and passes 
to the farmers new ideas developed by agricultural research stations. (FAO) 

Fanya Juu 
terrace 

Terrace bund in association with a ditch, along the contour or on a gentle 
lateral gradient. Soil is thrown on the upper side of the ditch to form the 
bund, which is often stabilized by planting a fodder grass. (WOCAT SLM 
Database) 

Mulching Covering the soil with mulch protects it against wind and water erosion and 
provides nutrients, which has a positive effect on yields and food security. 
(WOCAT SLM Database) 

Shallow well Groundwater well of limited depth and size, often build by individual 
farmers. It is used to pump groundwater to provide water for irrigation while 
controlling the groundwater table in recharge areas. (WOCAT SLM 
Database) 

Water scarcity An imbalance between supply and demand of freshwater in a specified 
domain (country, region, catchment, river basin, etc.) as a result of a high rate 
of demand compared with available supply, under prevailing institutional 
arrangements (including price) and infrastructural conditions. 
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Samenvatting 

Droogte vertegenwoordigd een hardnekkig en kostelijk gevaar dat gevolgen heeft voor mens 

en milieu. Naarmate de klimaatvariabiliteit blijft toenemen en verdere sociaaleconomische 

ontwikkeling de verdeling van rijkdom en mensen beïnvloedt, zal het droogterisico in vele delen 

van de wereld toenemen. De unieke kenmerken van droogte - namelijk haar trage begin, haar grote 

ruimtelijke en temporele omvang, haar door-de-mens-beïnvloede verspreiding, en haar gevolgen 

die slechts vertraagd en ook op verschillende plaatsen waargenomen worden - maken het moeilijk 

om de impact ervan correct in te schatten. Een verdere complicatie bij deze berekening is het 

vermogen van de mens om vóór, tijdens en na een droogtegebeurtenis maatregelen te nemen, wat 

op zijn beurt de verwachte impact wijzigt. In die zin is droogte zowel een sociale als een hydro-

klimatologische kwestie. Risicoperceptie is een van de belangrijkste factoren bij het nemen van 

aanpassingsbeslissingen, maar de meeste modellen houden geen rekening met de wijze waarop 

mensen risico's zien en erop reageren, en met name met de wijze waarop ervaringen door de tijd 

heen van invloed zijn op beslissingen.  

In dit hoofdstuk beschrijven we een raamwerk dat de traditionele benadering van 

risicomodellering uitbreidt en vervolledigd met de feedback tussen de beslissingen over 

droogtemaatregelen en blootstelling aan droogte, kwetsbaarheid en gevaar. We bespreken hoe een 

sociohydrologische, agent-gebaseerde modelopzet het menselijke aanpassingsgedrag met 

betrekking tot droogtemaatregelen kan simuleren, en hoe dit kan helpen om te onderzoeken hoe 

het nemen van droogtemaatregelen het voorspelde droogterisico kunnen beïnvloeden. We 

suggereren dat een dergelijke aanpak vooruitgang kan brengen in begrijpen van adaptief  gedrag 

in een wereld die in toenemende mate droogtegevoelig wordt. De voorgestelde aanpak kan leiden 

tot een betere prioritering van strategieën voor aanpassing aan droogte; en tot een verfijnde 

voorspelling van toekomstige scenario's.   
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Summary 

Droughts are a persistent and costly hazard impacting human and environmental systems. 

As climate variability continues to increase and socio-economic development influences the 

distribution of  wealth and people, drought disaster risk is expected to increase in many parts of  

the world. The unique characteristics of  droughts - namely their slow onset, large spatiotemporal 

extent, human-influenced propagation, delayed impacts and teleconnection potential – make it 

difficult to correctly assess drought impact and calculate risk. Further complicating this calculation 

is the capacity for humans to make adaptive decisions before, during, and after a drought event, 

which in turn alters expected impacts. In this sense, droughts are equally a social and hydro-climatic 

issue. Risk perception is one of  the main factors driving adaptation decisions, yet most models 

neglect how humans respond to risk, and in particular how experiences influence decisions 

through time.  

In this Chapter, we describe a framework that extends the traditional risk modelling 

approach to include the two-way feedback between the transient adaptation decisions and drought 

exposure, vulnerability and hazard. We discuss how a socio-hydrologic, agent-based modelling 

setup, focused on individual and collective actions, can simulate the adaptive behaviours of  

different stakeholders to examine how emergent actions might influence projected drought 

disaster risk. We suggest such an approach can provide a testbed for understanding adaptive 

behaviours in an increasingly drought-prone world and could allow for better prioritization of  

drought adaptation strategies; refined understanding of  future scenarios; and a vehicle to drive 

planning and resilience building 

..
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1. Introduction 

Droughts are defined as unusual and temporary deficits in water supply and can result in 

wide-ranging economic, social and environmental impacts  (IPCC, 2007; Wilhite, 2000). At a global 

scale, droughts affect nearly 75 million people annually (CRED & UNISDR, 2018) and increasing 

climate variability, population growth, and economic development have contributed to increasing 

global drought impacts (Alcamo, Flörke, & Märker, 2007). These trends can be expected to 

continue, further intensifying drought disaster risk conditions (IPCC, 2012; Kummu et al., 2016; 

Taylor et al., 2010; Vörösmarty et al., 2010; Hyndman, 2014). Besides, since droughts provoke 

competition over water resources, building resilience is inherently a multi-criteria problem (Kanta 

& Berglund, 2015). Droughts pose a particular threat to regional and global food security where 

losses have the potential to ignite – or contribute to -- political instability, trade issues, mass 

migration and conflict (Dermody et al., 2017; Kelley et al., 2015; Rüttinger et al., 2005). In a more 

connected and less certain world, identifying strategies for minimizing drought disaster risk poses 

one of  the greatest challenges of  the 21st century (Gain, Giupponi, & Wada, 2016; Sadoff  et al., 

2015).  

Multiple hydrological models have been developed to address uncertainties in water 

availability. Many stem from the global water crises of  the late 1980s and focus on integrating 

simulations of  supply and demand at regional scales (Bierkens et al., 2015). While many studies 

have identified methods for defining, predicting, and modelling physical drought occurrence, their 

treatment of  human interactions have either been non-existent, or overlaid on a static snapshot 

of  historic norms (Mishra & Singh, 2010, 2011; Van Loon et al., 2015, 2016; Wada et al., 2017). 

Accurately estimating and communicating future drought disaster risk requires an understanding 

of  the internal and external changes to the hydrologic system (Elshafei et al., 2014, 2016). These 

changes are not only climate driven but manifest in changes in human influence on the 

hydrological cycle and changes to human exposure and vulnerability driven by socio-economic, 

demographic, policy and water use choices (Folke et al., 2002; Pokhrel et al., 2016; Wanders & 

Wada, 2015).  

Despite considerable advances in understanding how stakeholders innovate and adapt, 

incorporating these decision-processes within hydrological models has remained a challenge 

(Groeneveld et al., 2017; Schlüter et al., 2017; Schwarz & Ernst, 2009). Limited studies have 

worked to include the uncertainty in human behaviour and policies and even fewer have explored 

how transient adaptation strategies might alter water availability scenarios (e.g., Barthel et al., 2008; 

Bouziotas & Ertsen, 2017; van Duinen, Filatova, & van der Veen, 2012). This suggests there is a 

major gap in the way we forecast, plan for, and model drought disaster risk (Blair & Buytaert, 

2016). 

In this light, this Chapter aims to: (1) discuss why traditional disaster risk models are 

inadequate for addressing the dynamic nature of  drought disaster risk, (2) highlight how socio-

hydrologic and agent-based modelling approaches can offer improvements and (3) provide a 

framework that integrates adaptive behaviour and the traditional disaster risk equation.  
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BOX 1 drought disaster management: water flows as one dictates 

The need for disaster response (e.g., relief  aid, or temporary migration) and recovery (e.g., 

re-building infrastructure and installing new capacity) occurs both during and after an event. 

Reactive actions are often costly and can exceed economic capacity (Logar & van den Bergh, 2013; 

González et al., 2016; Ifejika, 2010). A generally less costly option is proactive adaptation action, 

i.e., adjustment in the natural or anthropogenic systems in response to expected climatic stimuli 

or their effects. Such measures aim to prevent new risk (e.g., through sustainable water 

management), mitigate existing risk (e.g., through rainwater retention), or prepare communities to 

live with residual risk (e.g., through water-efficient economic activities). Adaptation measures can 

be initiated in a top-down or bottom-up way and can be implemented at a range of  scales 

(UNISDR, 2009b, 2009a, 2012).  

A common way to categorize adaptation measures is differentiating between structural and 

non-structural measures (UNISDR, 2015a). In the case of  drought, structural adaptation 

measures, such as the construction of  reservoirs, can reduce disaster risk by targeting the hazard 

and its propagation through space and time (Wagener et al., 2010; Jenkins, 2011). Such measures 

can create trade-offs that minimize short-term or local impacts at the expense of  long-term or 

downstream water supply. Further, they are generally less able to flexibly accommodate changes 

in supply and demand. In contrast, non-structural measures reduce drought impact through 

policies, public awareness, training and education (Elagib, Musa, & Sulieman, 2017; Fuchs et al., 

2017; Wutich et al., 2014). These adaptation measures, (e.g., market, regulatory or nature-based 

solutions) aim to influence drought disaster risk by changing the exposure and vulnerability of  

local communities and assets (Khatri-Chhetri et al., 2017; Sadoff  et al., 2015). The collection of  

structural and non-structural adaptation measures describes a community’s capacity to cope with 

droughts. By preventing the hazard, mitigating its impact and preparing to live with the residual 

harmful consequences, humans can alter the drought disaster risk in multiple ways.  
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2. Components of  a traditional drought disaster risk model 

Drought disaster risk reflects the interaction between hydro-climatic systems, and the 

vulnerability of  exposed people, economies and ecosystems (Beckage et al., 2018; Sayers et al., 

2015). It is a measure of  the potential impact resulting from the magnitude of  a drought and is 

calculated as the conditional expectancy of  experiencing harmful consequences over a certain time 

period (UNISDR, 2015b): Risk = Hazard x Exposure x Vulnerability. Adaptation measures (box 

1) are often included in risk estimations and serve to decrease vulnerability (Lasage et al., 2014, 

2015). That said, such measures can also alter exposure and hazard (Lavell et al., 2012). In the 

following sections, these three risk determinants are discussed with attention to the unique 

characteristics of  droughts and drought adaptation. 

2.1. Drought hazard 

The term natural hazard refers to any “process, phenomenon or human activity that may 

cause loss of  life, injury or other health impacts, property damage, social and economic disruption 

or environmental degradation” (UNISDR, 2016). Droughts are hazards stemming from deficits 

in water supply compared to the long-term mean for a prolonged period (Dracup, Lee, & Paulson, 

1980; Van Loon, 2015). Such deficits can be precipitation driven (atmosphere), stream flow driven 

(surface), soil moisture or groundwater driven (subsurface) deficiencies. While they usually start as 

precipitation shortfalls, they may or may not, propagate into streamflow, soil moisture, or 

groundwater droughts through time (Van Loon et al., 2016).  

Hazards become disasters when they cause a serious disruption of  a society, leading to 

significant human, material, economic and environmental losses (UNISDR, 2016). While events 

such as floods and earthquakes make it easy to determine the transition from hazard to disaster, 

the slow onset, large spatiotemporal extent, human-influenced propagation, delayed impacts and 

teleconnection of  drought events make determining this transition much more challenging. While 

climate has a large influence on the frequency and intensity of  a hazard, human actions (e.g., 

rainwater harvesting or withdrawals from external sources) can significantly alter the severity of  

in situ and ex situ water deficiencies and drought propagation through space and time (box 1) 

(Huang et al., 2017; Van Loon et al., 2012; Vogel et al., 2015; Wang et al., 2016; Weiskel et al., 

2007). This phenomenon has been described as human-induced or anthropogenic drought 

(Alcamo et al., 2007; AghaKouchak et al., 2015; Van Loon et al., 2015; Mehran et al., 2017).  

The relationship between the human and physical phenomenon cut across scales, systems 

and geographies (Polhill, Filatova, Schlüter, & Voinov, 2016), making drought hazard a dynamic, 

time-dependent outcome of  coupled human-water systems (Arneth et al., 2014; Van Loon et al., 

2016; Weiskel et al., 2007). As such, a traditional risk approach cannot capture the quintessential 

drivers of  drought hazard. With this recognition, the inclusion of  such drivers has been advocated 

for in the field of  water resources system analysis (Brown et al., 2015) and more recently socio-

hydrology (Sivapalan, Savenije, & Blöschl, 2012; Troy, Konar, Srinivasan, & Thompson, 2015) but 

in most cases human actions are represented as collective behaviours predicated on either historic 

records or stationary projections. 
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2.2. Drought Exposure 

Exposure describes the assets and activities located in hazard-prone areas (Birkmann et al., 

2013; UNISDR, 2009) and can be expressed as the number of  people potentially impacted by 

water shortages (human exposure) (Kummu et al., 2016); the productive area prone to crop stress 

(agricultural exposure) (Murthy, Laxman, Sai, & Diwakar, 2014); or the ecosystems that could be 

harmed (environmental exposure) (Jalava et al., 2014). Due to droughts’ large spatial extent, the 

exposure for a single event can be quite broad and time varying (CRED & UNISDR, 2018). This 

fact exponentiates when considering droughts can expose assets outside of  a hazard’s explicit 

boundary to water deficiencies and economic strains. This teleconnection effect can be illustrated 

by an example of  a meteorological drought in Colorado resulting in downstream surface water 

deficiencies in California, Arizona, and Mexico or when upstream human decisions significantly 

alter downstream water availability inducing a non-hydro-climatic drought event (Veldkamp et al., 

2017; Ashraf  et al., 2017; Odongo et al., 2014; Van Oel, Krol, & Hoekstra, 2012).  

In the case of  drought, land use is a primary driver of  drought exposure and offers a proxy 

for modelling time-varying exposure. Land use can vary in time and is not disconnected to the 

occurrence of  droughts (e.g., through crop choices or rural-urban migration) (Lobell & Field, 

2007). When modelling risk, one cannot ignore how land use changes through the course of  a 

drought event. The effect of  drought adaptation measures on land use are only partially included 

in traditional risk calculations that rely on historic or static land use maps and therefore miss the 

impacts that individual and community choices have on asset exposure. As such, in addition to 

representing hazard as a time-varying element of  risk, exposure too should be considered as a 

dynamic driver in risk estimation. 

2.3. Drought vulnerability 

Drought vulnerability formalizes the relationship between drought hazard and its impact on 

the exposed assets (Blauhut, Stahl, & Kohn, 2015; Urquijo et al., 2014). Vulnerability can be 

thought of  as the combination of  a system’s sensitivity to risk, and its capacity to cope with the 

resulting harmful conditions (UNISDR, 2009, Birkmann et al., 2013; Fernandez, Bucaram, & 

Renteria, 2015). For example, California’s semi-arid climate makes the region sensitive to droughts 

events, increasing its vulnerability. However, the state’s infrastructural capacity enables California 

to cope with water shortage, ultimately decreasing its vulnerability. 

Both sensitivity and capacity are subject to human decisions, as they are driven by 

investments, population growth, adaptation efforts, and historical drought events (Blauhut & Stahl, 

2015, 2015b; Carrão et al., 2016). As drought impacts are often delayed, and result from a 

combination of  many dynamic factors, quantifying drought vulnerability is challenging (Eriyagama 

et al., 2009). Following the trend of  hazard and exposure, accessing vulnerability as a static, or 

even stationary, factor, ignores how its dynamics evolve over time.  
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BOX 2 socio-hydrology and drought disaster risk: the reservoir effect 

Socio-hydrology seeks to understand the feedback mechanisms that can emerge from non-

linear interactions between different spatiotemporal scales (Blair & Buytaert, 2015). The feedbacks 

between water supply, demand and drought disaster risk can often result in indirect interactions 

and counterintuitive dynamics; leading to ‘adaptations that can backfire’ (Gohari et al., 2013; Kuil 

et al., 2016). For example, the installation of  water harvesting infrastructure has been observed to 

induce an increase in water use or reduction in water use efficiency. This was witnessed in the 

Murrumbidgee Basin in Australia, where the construction of  dams increased the expansion of  

irrigation, resulting in abstraction of  almost 100% of  the natural flows during low-flow periods 

(Sivapalan et al., 2014) and in the Zayandeh-Rud river basin in Iran, where inter-basin water 

transfers increased agricultural water demand, triggering severe ecosystem degradation in the 

donor basin (Ohab-Yazdi & Ahmadi, 2018). Another example was observed in Greece, where 

population growth and water resource developments were observed to evolve hand in hand: as 

new water infrastructures favoured network expansions and lower water prices, urban settlements 

and water-intensive economies expanded (Kallis, 2010). As such, human actions aimed at reducing 

drought hazard increased exposure and vulnerability due to an over-reliance on the additional 

water, offsetting the initial benefits of  the adaptation measure. This vicious cycle is called the 

“Peak Water Paradox” (Sivapalan et al 2014) or “Reservoir Effect” (Di Baldassarre et al., 2018). 

By accounting for the co-evolution of  water supply-and-water demand, simulating the feedbacks 

between adaptation to manage hydrological variability and its effect on risk, socio-hydrologic 

models may be able to capture counter-intuitive feedback mechanisms that non-interdisciplinary 

models cannot (Di Baldassarre et al., 2015; Kallis, 2010).   



CHAPTER 2 

Table 2.1: Different feedbacks triggered by adaptation choices aimed at reducing drought disaster risk 

 Baseline influence Feedback type 1 Feedback type 2 Feedback type 3 

Definition of 
feedback type 

Influence of 
adaptation on risk 
(e.g., Sadoff, et al., 
2014) 

Bi-directional influence 
between adaptation and 
risk (e.g., Elshafei, 2016) 

Influence of adaptation on 
risk across spatiotemporal 
scales (teleconnections) (e.g., 
Wang et al., 2016) 

Influence of risk on 
individual decision-
making behaviour (e.g., 
Gebrehiwot & van der 
Veen, 2015) 

Influence on risk 
(hazard, 
vulnerability, 
exposure) 

Adaptation results 
in a change in one 
or more of the 
components of 
risk, (reducing if 
effective or 
increasing if 
maladaptive)  

Adaptation reduces (if 
effective) or increases 
risk (if maladaptive). 
This feedback represents 
the short-term 
adjustments in adaptive 
action due to changing 
risk 

a) Adaptation alters long-
term supply of local 
resources, resulting in future 
increased or decreased 
drought disaster risk 
b) Local implementation 
may present spill over 
effects increasing or 
decreasing drought disaster 
risk in remote areas 

Adaptation may alter 
decision-making 
behaviour of individuals 
(e.g., risk perceptions), 
resulting in changes in 
likelihood of undertaking 
future adaptive action 

Potential for 
inclusion in 
traditional risk 
equation models 

Yes No No No 

Potential for 
inclusion in 
socio-hydrologic 
models  

Yes Yes Yes  No 

Potential for 
inclusion in 
socio-hydrologic 
agent-based 
models 

Yes Yes Yes Yes 
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3. Including adaptation dynamics in drought disaster risk assessments 

So far, we have discussed why static risk calculations cannot accurately depict risk. 

Acknowledging the two-way interaction between adaptation efforts and drought impact forces us 

to move away from approaching risk assessment through prescribed, stationary scenarios 

(Ahmadalipour, 2017; Vogel et al., 2015; Weiskel et al., 2007). In what follows, we highlight some 

of  the human-risk interactions that, we argue, have been under-researched but are critical if  one 

wants to more accurately assess future drought disaster risk. Table 2.1 summarizes examples of  

different feedbacks triggered by adaptation choices aimed at reducing drought disaster risk and 

illustrates their potential for inclusion in different modelling approaches. Certainly, other 

feedbacks can influence risk, such as large-scale weather patterns, but they are beyond human 

adaptation, hence not the focus here. To include the multi-scalar and temporal feedbacks between 

the human and physical subsystems, environmental models can be coupled with transient human 

adaptation models to simulate changes in exposure, vulnerability and drought hazard (Farjad et al., 

2017). For example, spatially explicit land use models can replace static land use layers and water 

resources system models can be used to simulate regional water supply-and-demand dynamics 

(Weiskel et al., 2007). Socio-hydrologic, agent-based modelling approaches can contribute to the 

implementation of  such multi-models and provide a general framework for conceptualization. As 

such they are the focus in the remainder of  this Chapter. 

3.1. A socio-hydrologic approach 

The relationship between humans and hydrological risk is by no means a simple one (Blair 

& Buytaert, 2015). Since the 1990s, the fields of  hydro sociology (Falkenmark, 1998), water 

resource system analysis (Zahraie, 2003), the hydro-social cycle (Swyngedouw, 2009), 

ecohydrosolidarity (Malin Falkenmark, 2009) and socio-hydrology (Sivapalan et al., 2012) have 

aimed to study people and water through a “system of  mutual interaction” (Vogel et al., 2015). 

Socio-hydrology attempts to address the bi-directional interactions and feedbacks between the 

human and water systems by treating humans, their activities, and policy decisions as endogenous 

components of  the water system (Sivapalan et al., 2012; Pande & Ertsen, 2014).  

Both hydrological and human processes act at different spatial and temporal scales (Blair & 

Buytaert, 2016). Cross-scale interactions and feedbacks therefore characterize the human-water 

relationship (Liu, Tian, Hu, & Sivapalan, 2014), and are critical when dealing with the fuzzy borders 

and slow-onset of  drought hazards. By simulating the dynamics and co-evolution of  the coupled 

human-water system, socio-hydrologic models aim to estimate water risk in a more holistic manner 

(Blair & Buytaert, 2016; Srinivasan, Konar, & Sivapalan, 2017). As such, one can study the evolving 

use and demand for water in normal, dry and adapted conditions. Examples of  these studies are 

increasingly addressing the inclusion of  multiple-users (Noël & Cai, 2017), upstream-downstream 

and temporal trade-offs (Becu et al., 2003; Van Oel, Krol, & Hoekstra, 2012b), dynamics of  

conflict / migration (Akhbari & Grigg, 2013), transboundary water management (Khan, Yang, 

Xie, & Ringler, 2017), virtual water trade (Hoekstra and Hung 2002) and counter-intuitive long-

term maladaptive actions, e.g. the reservoir effect (box 2) (Di Baldassarre et al., 2018, 2017; Van 
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Oel, 2018) within their analyses. These offer a promising baseline for improving risk estimates yet 

have largely focused on feedbacks 1 and 2 while largely excluding feedback 3 (table 1) (Blair & 

Buytaert, 2016; Garcia, Portney, & Islam, 2016; Gober et al., 2017; Troy, Pavao-Zuckerman, & 

Evans, 2015). 

While a socio-hydrologic approach has been applied in risk science (Di Baldassarre et al., 

2013; 2013b; 2015; Patricia Gober & Wheater, 2015; Khan et al., 2017; Kuil et al., 2016; Van 

Emmerik et al., 2014), most attempts have focused on the actions of  a rational, single-actor group 

at the expense of  interaction between, and bounded-rational behaviour of, individuals, collective 

water users, and institutions (Bouziotas & Ertsen, 2017; Mostert, 2017; Noël & Cai, 2017). This 

limitation highlights an opportunity to better study and understand how the emergence of  

heterogeneous adaptation across space and time can influence risk (Holman et al., 2018). This is 

particularly relevant for simulating counter-intuitive feedbacks to water consumption influenced 

by changing risk perceptions (Box 2). An individual actor approach has recently been advocated 

for in quantifying flood disaster risk (Ciullo et al., 2017; Di Baldassarre et al., 2017; Aerts et al., 

2018), however, the unique and different properties of  drought make the direct application of  the 

flood methodologies unsuitable and deserving of  further discussion.  

3.2. Accounting for individual bounded-rational behaviour 

To include adaptive behaviour in risk assessments, an understanding of  how individuals 

make adaptation decisions in the face of  uncertainty is needed (Keshavarz & Karami, 2014). In 

several socio-hydrologic studies, adaptive behaviour is assumed as proactive, economically rational, 

objective and effective while assuming perfect risk awareness, adequate early warning systems, and 

typically excluding socio-economic limitations (other than cost) (Holman et al., 2018; Schlüter et 

al., 2017).  

Figure 2.1 illustrates a conceptual view of  dynamic drought disaster risk. In this illustration, 

drought events are represented by the grey bars. The trend-line labelled ‘No Drought Adaptation’ 

indicates an increasing level of  risk driven by climate and population drivers. The trend-line 

labelled ’Rational Adaptation’ illustrates the minimum risk level, assuming complete economic - 

rational adaptation behaviour. However, as most drought adaptation decisions are made reactively, 

such assumptions are unrealistic (Keshavarz & Karami, 2016; UNCCD, FAO, & WMO, 2013; 

Wilhite et al., 2014). Empirical studies have shown that observed adaptation decisions cannot 

always be explained by economic motivations alone but are influenced by personal, bounded 

rationality (Haer, Botzen, de Moel, et al., 2016; Malawska & Topping, 2016; Patt & Siebenhüner, 

2005; van Duinen, Filatova, Jager, & van der Veen, 2016). It is the perception which people have 

of  the hydrological system, rather than its’ actual state, which determines the way the system may 

be managed (Blair & Buytaert, 2016). 
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Figure 2.1: Changing levels of drought disaster risk due to no adaptation (top line), economically rational adaptation (bottom 
line) and bounded-rational adaptation (shaded area) all influenced by experienced drought events (vertical bars). 

Multiple factors complicate the prediction of  bounded - rational adaptive behaviour, such 

as the perceived adaptation efficiency, the costs of  undertaking an adaptive strategy, the (perceived) 

capacity to enact it (financial or knowledge constraints, technical skills), and risk perception 

(Bubeck, Botzen, & Aerts, 2012; Grothmann & Patt, 2005; Loucks, 2015). In the context of  

drought, risk perception relates to how people and institutions perceive both the severity and 

likelihood of  a drought event occurring (Asayehegnet al., 2017; Korte, 2017; Silvestri et al., 2012; 

Urquijo et al., 2017); it is this flawed perception of  reality that leads to the so-called reservoir-

effect (Di Baldassarre et al., 2018). Risk perception can be influenced by peoples’ memory of  past 

experiences, risk information transferred through social networks, media, or politics, as well as a 

person’s trust in existing forecasting and early warning systems and individual risk-adversity 

(Loucks, 2015). Thus, the occurrence of  drought events influences risk perception, an 

individuals‘ risk perception partially defines its adaptive behaviour and resulting adaptation 

decisions affect future drought disaster risk (Beckage et al., 2018). To illustrate this idea the line 

labelled ’Bounded Rational adaption’ represents the possible evolution of  risk driven by transient, 

bounded-rational adaptive behaviour.  

Decision making is both an individual and social process. People differ in the extent they 

are motivated to protect themselves against drought disaster risk, and have different capacities to 

do so (Larrick, 1993). Besides, imitation and social learning are subject to network externalities 

and influence people’s adaptation intention and choice of  specific measures (Barthel et al., 2008; 

Kiesling et al., 2013). Often, initial decisions, made by a few, can grow into large collective actions, 

either through government incentive or social networks (Ertsen et al., 2013; Holman et al., 2018). 

In this way, the capacity to act on information at the individual level is a significant predictor of  

adaptation intent (Grothmann & Patt, 2005; CRED & UNISDR, 2018; Haer, Botzen, & Aerts, 

2016).  
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It is crucial to understand the complex adaptive behaviour of  agents if  we are to include it 

in drought disaster risk models. This can be achieved by using existing behavioural economic and 

psychological theories that can be calibrated with empirical methods (An, 2012; Groeneveld et al., 

2017; Mueller & Filatova, 2018; O 'sullivan et al., 2016; Schulze et al., 2017). Several behavioural 

theories of  decision-making under risk have already been applied in previous existing coupled 

human-environment models (Filatova et al., 2013). For example, the Expected Utility Theory 

(Rabin, 2016; Tieskens et al., 2015) and the Prospect Theory (Kahneman & Tversky, 1979) are the 

two most prominent theories of  decision-making under risk in (behavioural) economics 

(Groeneveld et al., 2017; Schlüter et al., 2017). Also, the Protection Motivation Theory (Maddux 

& Rogers, 1983) and the Theory of  Planned Behaviour (Ajzen, 1991), two examples of  theories 

based on psychological sciences, are regularly used to model bounded rational adjustment 

decisions (e.g., Hailegiorgis et al., 2018; Pouladi et al., 2019). There are many other theories, but 

the above are most common and are explained in a little more detail in box 3a-d. In addition, there 

are frameworks such as the Consumat framework (Jager et al., 2000), which combine elements 

from different psychological and economic theories and has been used in several models (Acosta-

Michlik & Espaldon, 2008; van Duinen et al., 2016). 
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BOX 3a Expected Utility Theory (based on Schrieks, Botzen, Wens, Haer and Aerts, 2021) 

Expected Utility theory (EUT), developed by von Neumann and Morgenstern (1947), is 

based on the assumption that people are rational decision makers who will always choose the 

option that gives them the highest expected utility. The theory assumes people have perfect 

information about the available decision options, the probability of  different outcomes and the 

associated gains and losses (Sen, 2008). In the context of  adaptation to drought disaster risks, this 

would mean that agents have all the necessary information about the available adaptation options 

and consider the existence of  all possible different drought events with different degrees of  cost 

and probability (van Duinen et al., 2015). The use of  EUT in a drought disaster risk assessment 

model requires specifying one or more agent adaptation strategies, with associated costs and 

benefits under different drought impact scenarios. Agents choose the strategy with the highest 

(discounted-) expected utility, within their budget constraints. Expected utility is a function of  the 

welfare, costs and benefits of  the adaptation strategy. The assumption of  perfect information in 

the EUT implies that the drought disaster risk perception of  agents is identical to the actual 

drought disaster risk and thus can be fully predicted with objective drought disaster risk factors 

(van Duinen et al., 2015) 

 

 

 

 

BOX 3b Prospect Theory (based on Schrieks, Botzen, Wens, Haer and Aerts, 2021) 

Prospect theory (PT) was developed by Kahneman and Tversky (1979) as a critique of  EUT 

and then further developed by the same authors and renamed cumulative prospect theory (Tversky 

and Kahneman, 1992). EUT assumes that the utility of  gains and losses is based on absolute 

wealth and that individuals assign equal weights to gains and losses. PT, on the other hand, assumes 

that people assess the utility of  gains and losses as deviations from a reference point and that there 

are differences in preferences for gains and losses. Loss aversion in PT must be greater than 1, 

which means that losses have a bigger impact on the utility than equivalent gains. Moreover, PT 

takes into account non-linear, subjective probability weightings in risk decision making, which may 

differ across contexts and/or between individual agents (Barberis, 2013). Tversky and Kahneman 

(1992) find that people overweight low probabilities and underweight higher probabilities. As in 

the EUT, the adaptation measure is evaluated over the lifetime of  the adaptation measure, and 

future periods are discounted to account for time preferences. The agent chooses the adaptation 

option that provides the highest expected utility within its budget, with the same budget constraint 

as in EUT. 
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BOX 3c Theory of  Planned Behaviour (based on Schrieks, Botzen, Wens, Haer and Aerts, 2021) 

Theory of  planned behaviour (TPB), developed by Ajzen (1991), is a psychological theory 

according to which the decision-making process of  individuals and the intention to exhibit certain 

adaptive behaviour, is influenced by three factors (Ajzen , 1991 , 2002b). The first factor is attitude, 

which refers to the degree of  personal, positive or negative, evaluation of  behaviour. In the context 

of  drought adaptation, these are agents' personal views on the importance and usefulness of  an 

adaptation measure (Arunrat et al., 2016). The second factor is subjective norm, which refers to 

the perceived social pressure to carry out the behaviour, i.e., friends, neighbours, family or other 

people important to the agent expect them to invest in the adaptation measure (Yazdanpanah et 

al., 2014; Arunrat et al., 2016). The last factor is perceived behavioural control, which refers to an 

individual's belief  in its own ability to carry out the intended decision (Yazdanpanah et al., 

2014 ;Arunrat et al., 2016). The stronger the intention, the more likely the agent is to perform the 

adaptive behaviour. However, actual performance also depends on the availability of  the necessary 

resources and skills, which Ajzen (1991) calls actual behavioural control.  

 

 

 

 

BOX 3d Protection Motivation Theory (based on Schrieks, Botzen, Wens, Haer and Aerts, 2021) 

Protection Motivation Theory (PMT, Rogers, 1983) states that a person's intention to adapt 

depends on the threat (or risk) assessment and coping estimation (Maddux and Rogers, 1983; 

Rogers, 1983; Grothmann and Patt, 2005; Gebrehiwot and van der Veen , 2015). The risk 

assessment process consists of  two sub-elements: the perceived probability and the perceived 

severity of  the events being assessed. In the context of  drought, perceived probability refers to 

one's expectation of  the likelihood of  being exposed to drought and perceived severity refers to 

the expected magnitude of  the effects of  the drought if  the drought occurs (Keshavarz and 

Karami, 2016). The coping assessment depends on the belief  in one's own ability to carry out the 

adaptation measure (perceived self-efficacy), the belief  in the effectiveness of  the adaptation 

measure (perceived response efficiency) and the perceived cost of  the adaptation measure (Van 

Duinen et al., 2015a). A person's perception of  the factors in both threat and coping values is 

influenced by personal characteristics and experiences and influences from the social network 

(Rogers, 1983). Rogers (1983) presents protection motivation, or intention to adapt, as an additive 

function of  threat valuation and coping valuation, which can be translated into a linear function 

of  intention to adapt for adaptation measures. The weights of  the different variables depend on 

the context of  the adaptation decision and can be estimated with statistical analysis of  survey data.  
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3.3. An agent-based modelling setup 

The primary tool for modelling individual adaptation decisions and complex interactions 

are agent-based models (ABM) (An et al., 2014; Gunkela & Külls, 2011; Patt & Siebenhüner, 2005). 

ABMs have been called the ‘third way’ of  doing science, combining both an inductive and 

deductive approach (Matthews et al., 2007). Instead of  describing the system in terms of  variables, 

ABMs allow for the explicit simulation of  probabilistic human decision making that responds to 

environmental states and other agents and who have the capacity to learn and adapt in response 

to changes in other agents (i.e., social influence) and the environment (i.e., drought disaster risk) 

(Matthews et al., 2007; Railsback & Grimm, 2012). Probabilistic functions describe individual-level 

behavioural dynamics of  unique and autonomous agents, who give priority to their own objectives 

based on a set of  internal (non-linear) rules (e.g., based on rationality, heuristics or learning) (Van 

Oel & Van Der Veen, 2011). The combined dynamics of  these individual behaviours result in 

macro-scale consequences that drive changes to the system, hence allows us to predict the 

emergence of  drought adaptation action and investigate its consequences (Berger, 2001; Jager & 

Janssen, 2012; Janssen & Ostrom, 2006; Schlüter & Pahl-Wostl, 2007).  

ABMs may provide a greater insight into complex natural resource systems and their 

management, outperforming traditional approaches and thus can be helpful to address the 

complexities of  the human - human – droughts interactions as identified in the field of  socio-

hydrology (Matthews et al., 2007).This capacity makes them an ideal tool to study feedbacks 

between society and the environment, and the emergence of  drought prevention, mitigation or 

preparedness measures (Gunkela & Külls, 2011; Kelly et al., 2013; O’Connell, 2017; Schluter, 

Leslie and Levin, 2008; Walker et al., 2015 ). Where ABM approaches can also benefit the drought 

disaster risk community is in their ability to ingest results from economic (e.g., food market) and 

physical (e.g., hydrological or land use) models running on different time steps and scales, while 

producing results from socio-psychological behavioural models (Farjad et al., 2017; Kremmydas, 

Athanasiadis, & Rozakis, 2018). When coupled, these outputs can successively feed back into each 

other to generate spatially explicit, time-varying, human-influenced physical conditions (Bouziotas 

& Ertsen, 2017; Galán, López-Paredes, & Del Olmo, 2009; Mashhadi et al., 2017; Schreinemachers 

& Beressger, 2011). Given that ABMs can model heterogeneity in behavioural constraints, include 

social interactions, and transfer data between models (Berger & Troost, 2014), ABMs can be an 

effective tool to simulate the intertwined nature of  heterogeneous adaptation decisions on each 

of  the three risk determinants (Blöschl & Sivapalan, 2016; Khan et al., 2017; van Duinen et al., 

2012a) (Box 4). 
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BOX 4: ABMs and drought disaster risk: Water stakeholders’ behaviour 

ABMs can simulate the micro-level decisions of  agents (e.g., farmers, governments, urban 

water users, cooperatives, institutions) and the interactions between them and their settings (e.g., 

social network and bio-physical environment) which result in emerging macro-scale adaptation 

dynamics (Kelly et al., 2013; Smajgl & Barreteau, 2017; Smajgl, Brown, Valbuena, & Huigen, 2011). 

Stakeholders’ decisions are rarely completely rational or guaranteed to pursue the same objectives, 

making a centralized, top down, modelling approach unsuitable (Hyun, Yang, Tidwell, & 

Macknick, 2017). Modelling the water use of  urban households, rural farmers, and local 

governments in ABMs should therefore be done in a bottom-up manner, through the creation of  

multiple agent types that each try to reach their individual goals by weighing off  the utility of  

adaptation against the utility of  no adaptation. This utility is often guided by a perceived risk, 

which is influenced by the agents’ social environment, past experiences and risk memory (Di 

Baldassarre et al., 2017; Viglione et al., 2014).  

PerceivedRiskt  = w1 * PerceivedRiskt-1 + w2 * PastCropLosses + w3 * Isocialnetwork     

The utility functions of  different water stakeholders within a socio-hydrologic ABM can be 

adapted to include the influence of  perceived drought disaster risk. For example: 

Governments try to minimize societal losses caused by drought disasters by comparing the utility 

of  adaption – such as investing in the building of  a reservoir - with the utility of  no adaptation, 

assuming that they have to cover the losses due to drought disasters in the form of  emergency 

funds. 

Cost of Action       =  ∑ U (Wealth –  AdaptationCosts –  PerceivedResidualRisk) 

Cost of no Action =  ∑ U (Wealth – PerceivedRisk) 

Domestic water users try to minimize their water expenditures, which are dependent on their water 

use and the water price, the latter being influenced by drought disaster risk: 

Cost of Action =  ∑ U (Wealth − ReducedWaterUse ∗  f(PerceivedRisk, WaterCost)

− WaterEfficiencyInvestments)  

Cost of No Action =  ∑ U (Wealth –  WaterUse ∗  f(PerceivedDroughtRisk , WaterCost) 

Farmers try to maximize their income by weighing their risk appraisal (the perceived likelihood of  

experiencing crop losses), the expected adaptation efficacy and the cost of  the coping measures: 

Cost of Action     =  ∑ U (Wealth −  f(PerceivedRisk, Yieldloss)  +  AdaptationEfficacy

−  AdaptationCosts) 

Cost of No Action =  ∑ U (Wealth −  f(PerceivedRisk , Yieldloss)) 

The implementation of  adaptation measures by these actors will change actual and perceived risk 

in subsequent time-steps, therefore resulting in behavioural changes over time by simulating a 

learning process.   
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ABMs are not new to the domain of  disaster risk (e.g., Poledna, Miess, & Thurner, 2018) 

nor to the domain of  water resources research (e.g., Tesfatsion, Rehmann, Cardoso, Jie, & 

Gutowski, 2017). For example, Berger and Arnold presented the Mathematical Programming-

based Multi-Agent Systems (MP-MAS) model which has since then been used to simulate land 

use change in agriculture and forestry systems and has been coupled with a variety of  economic 

and environmental models to simulate crop yields, water supply, and individual decision-making 

(Berger & Arnold, 2006; Berger & Schreinemachers, 2009). In 2007, Schlüter & Pahl-Wostl 

demonstrated that ABMs are effective for exploring system characteristics and mechanisms of  

resilience in both decentralized and centralized water management systems. Schlüter et al. (2009), 

proposed an optimization ABM to study water allocation between multiple sectors in a semi-arid 

river delta. Variable water conditions were represented by average monthly flows perturbed by a 

random number. Gunkela & Külls (2011) investigated drought vulnerability and the decision-

making process of  the agents in a decentralised water supply system in Northeast of  Brazil, while 

Van Oel and Van der Veen (2011) created an ABM to represent these complex interdependencies 

between human land use decision making and water availability over the Naivasha basin, Kenya.  

Based on an empirical characterization of  farmer behaviours, Dobbie (2013) simulated 

household decision making in rural Malawi to estimate food adequacy based on different policy 

scenarios. Akhbari & Grigg (2013) proposed an ABM linked to a continuous watershed model, 

that includes state, individual, and environmental stakeholders who act based on perceptions about 

the system, the environment, and each other; with the aim to study cooperative techniques for 

water sharing. Similarly, Mashhadi et al. (2017) assessed urban water sustainability for a community 

of  households by coupling an ABM with hydrological models and climate change projections. 

Also, Koutiva and Makropoulos developed an urban water agent’s behaviour model, to simulate 

domestic water users’ behaviour in Athens, Greece (Koutiva & Makropoulos, 2016). Castilla-Rho 

et al. (2015) included multiple levels of  decision making within an ABM, simulating interactions 

and feedbacks between institutional agents, water user associations and individual farmers to study 

managed groundwater systems and also Yu (2016) and Farhadi et al. (2016) demonstrated the 

ability for behavioural models to improve impact projections within dynamic management options, 

showcased by, respectively, the DistyriLake model for Lake Como, Italy and the agent-based-Nash 

model for the Daryan Aquifer, Iran. In a closer step towards a comprehensive socio-hydrologic, 

heterogeneous risk model, Van Duinen et al. conducted an empirical analysis of  farmer drought 

adaptation, exploring the influence of  risk perception and the role of  social networks on 

agricultural technology adoption, including survey-based social network data within an ABM (van 

Duinen et al., 2012a, 2012b, 2015a, 2015b; 2016).  

Most ABMs that explore drought or water scarcity do not explore risk dynamics and instead 

study how humans impact water resource systems. In many of  these studies, human agents are 

treated as collectives rather than autonomous agents, and their influences in the system are not 

bidirectional, or structured in a way that facilitates the study of  hazard, exposure and vulnerability 

(combined as risk). While an improvement over static conditions, such an approach is limited in 

its ability to study how climate dynamics and sustained drought conditions might alter adaptive 

behaviour and vice versa. Further, ABM literature reviews have shown that independent and ad-
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hoc assumptions continue to characterize decision processes within land-based human-

environment ABMs (Groeneveld et al., 2017) and only few studies have implemented more 

complex behavioural theories when dealing with uncertain water availability (Barthel et al., 2008; 

Bouziotas & Ertsen, 2017), and fewer still have focused on risk (Barreteau et al., 2004; Blair & 

Buytaert, 2015).   

The use of  existing behavioural economic and psychological theories - calibrated with 

empirical methods - can improve the representation of  heterogeneous, individual, bounded 

rational adaptive behaviour in agent-based models, but choosing which theory to apply to create 

the decision rules in the ABM is a challenge (Filatova et al., 2013; box 3a-d). The choice of  a 

theory affects not only which factors are included in the simulation of  the individual agent's 

decision-making process, but also how the interaction of  this agent with other relevant agents and 

its environment can be modelled. The choice of  theory should consider the purpose of  the model 

and the local context of  the modelled case (Schrieks et al.; box 5). 
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BOX 5: Comparing theories of  adaptive behaviour under drought disaster risk (based on Schrieks, Botzen, Wens, 

Haer and Aerts, 2021) 

There is no single theory that covers all relevant decision variables. Which theory is 

preferable depends on the local context and the purpose of  the model. In the context of  

adaptation to drought disaster risks, it is important to determine which types of  actors should 

be included and which behavioural factors determine the adaptive behaviour of  those actors. 

Table 2A compares four different theories, indicating the advantages and disadvantages of  each. 

In general, an advantage of  economic theories is that they can be better linked to the 

natural hazard and risk assessment model. However, research shows that factors such as 

experience of  previous droughts and individuals' sense of  control are also important 

determinants of  risk perception (van Duinen et al., 2015). The influence of  these subjective risk 

perception factors has not been considered in economic theories. An advantage of  

psychological theories is that they can capture more heterogeneity in bounded rational beliefs, 

norms and personal attitudes. However, a challenge in their implementation in ABMs is that the 

original theories do not offer a mathematical formalisation (Schlüter et al., 2017; Mueller and 

Filatova, 2018): adaptation intention can be modelled (a) with probabilities, for example: the 

higher the intention to adapt, the more likely it is that the agent will actually invest in the 

adaptation measure (e.g. Keshavarz and Karami, 2016), or (b) with thresholds: agents will only 

invest if  the intention to adapt is above a certain threshold (e.g. Hailegiorgis et al. al., 2018).  

Table 2A: Overview of theories 

Theory Advantages Disadvantages 

EUT Full distribution of risk thus easy to 

link to hazard assessments and 

disaster risk assessments based on 

costs and benefits 

Does not include psychological factors 

such as perceptions, attitudes and 

subjective norms; does not account for 

bounded rationality 

PT Full distribution of risk thus easy to 

link to hazard assessments; 

accounts for loss aversion and 

biased risk perception  

Does not include psychological factors 

such as perceptions, attitudes and 

subjective norms 

PMT Combines risk perceptions and 

perceived costs and benefits of 

economic theories with individual 

coping perceptions 

Does not include risk attitudes and time 

preferences; model includes subjective 

parameters that are hard to 

mathematically formalize. Proxy 

variables are needed to identify relative 

weights 

TPB Includes individual attitudes and 

subjective norms, thus includes 

influence of social network  

Does not include risk perceptions, 

attitudes or time preferences; model 

includes subjective parameters that are 

hard to mathematically formalize. Proxy 

variables are needed to identify relative 

weights 
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4. An agent-based socio-hydrologic framework for drought disaster risk assessments 

With the understanding that individual adaptation influences drought hazard, exposure, and 

vulnerability dynamics, any model that does not account for these feedbacks will be suboptimal in 

simulating evolving risk. Given the discussion above, we argue that socio-hydrologic approaches 

and agent-based tools are a good way to support the exploration of  drought adaptation pathways 

from alternative decision rules. In the remainder of  this Chapter, we introduce a framework (figure 

2.2) to integrate heterogeneous behaviour and physical models in a modelling space that is 

adaptable to different regions, data availability, and drought-based research questions.  

 

 
Figure 2.2: Tiered framework proposing an agent-based socio-hydrologic approach for drought disaster risk modelling. The 
possible impact (i.e., disaster risk) of a drought drives an agent-based decision model (tier 3), in which autonomous agents 
respond to the perceived risk, considering their adaptation abilities and social network. Such agents make individual decisions 
and determine the set of adaptation measures implemented in the current time step. The combined effect of these adaptation 
measures is used as input (tier 2) into a water resource, hydrological, economic and/or land use model. Such models use data 
on climate variability, economic and population changes, and external forcing to calculate the current drought hazard, exposure, 
vulnerability and the possible impact (materialization of risk) (tier 1). The resulting impact will affect each agent’s risk 
perception, serving as new input for the next time step. As such, impact calculation over time, i.e., risk assessment, is a dynamic 
process grounded in emergent adaptation decisions, a changing climate, and developing socio-economic conditions.  
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4.1. Introducing the framework 

The foundation of  our framework is the traditional, static risk equation (UNISDR, 2015b), 

as presented in tier 1 of  figure 2.2. In such an approach, anticipated impacts are a product of  

hazard, exposure and vulnerability, integrated over a specified time step. Depending on the 

research question, one or more suitable impact indicators and drought types can be selected. 

To provide estimates for drought hazard, exposure and vulnerability in each time step, 

existing hydrological, water resource, land use and/or economic models can be used to generate 

time and space dependent estimates for drought hazard (physical water availability), exposure (land 

use, populations, and assets) and vulnerability (investment decisions, adaptation capacity). While 

outside a drought disaster risk context, a coupled ABM-hydrological (MODFLOW) model 

implementation can be seen in (Jaxa-Rozen, et al. 2019). ODD+D in Supplementary information 

such as census (e.g., as utilized in Bakker, Alam, van Dijk, & Rounsevell, 2014), meteorological 

observations or socio-economic datasets, are needed as input for these sub-models (Figure 2.2: 

dashed lines, tier 2) however these examples are simply options and are neither inclusive nor 

exhaustive. Instead, sub-model inclusion should be tailored to the region of  interest and the 

phenomenon being studied. The impacts of  rational adaptation are also included in tier 2, as 

drought management measures can be used as input for the risk calculations (bold lines).  

Moreover, risk-model output can be used to drive changes in adaptation in a future time 

step (bold arrow), moving away from the prescribed, static realization of  ‘adaptation’. This 

feedback between water deficiencies and adaptation actions represents a socio-hydrologic 

approach (Sivapalan et al., 2012), where adaptation decisions depend on the past impacts 

experienced and influence the hazard, exposure and vulnerability in future time steps. These first 

two tiers and the bold arrow formulize the socio-hydrology approach with adaptation as a 

collective decision resulting from the human – drought disaster risk interaction (Elshafei, 2016).  

In this Overview, we add a third tier to the modelling framework, which accounts for the 

heterogeneous adaptive behaviours of  interacting, bounded-rational actors  through an ABM 

approach (Malawska & Topping, 2016; Schlüter et al., 2017). In this set up, actors can make 

probabilistic decisions over the period of  a time-step based on their adaptation ability, risk 

perception, and social network (Elagib et al., 2017; Farjad et al., 2017). The cumulative result of  

their adaptive behaviour can provide a more realistic, bottom-up realization of  ‘adaption’, which 

in turn is used to calculate the current risk determinants in a heterogeneous way (tier 1). The 

resulting risk will influence each actor’s individual risk perception, in the next time step (bold 

dashed line) (Di Baldassarre et al., 2017). This connection between actors, systems and risk makes 

the proposed approach a fully socio-hydrological, agent-based, model capable of  capturing risk 

dynamics. Such a model would be able to simulate the social and environmental effects of  bottom-

up individual drought adaptation decisions, and heterogeneous responses to top-down 

interventions, across different timeframes and scales (Berger et al., 2017). As such, risk calculation 

becomes a dynamic process, which - grounded in emergent bounded-rational adaptation decisions 

and given variable bio-physical, hydrological and socio-economic conditions - allows to explore 

interactions between top-down and bottom-up strategies; upstream and downstream decisions; 

and between short-term and long-term priorities (Aerts et al. 2018).  
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4.2. Implementing the framework 

To configure a model that utilizes this framework, research questions must be organized 

into domain, agent, and time spaces. The domain space would be represented by a gridded surface 

where each cell contains physical properties such as land cover, terrain, soil types, and river 

networks. In most ways this domain space (table 2.2) acts as a traditional environmental or 

hydrologic model which simulates the land-atmosphere interactions and surface/subsurface 

hydrology.  

The agent space would be initialized with a set of  (1) spatially explicit, (2) areal, and/or (3) 

external (non-spatial) agents. To describe an agent space, an example of  an urban-rural interface 

will be outlined. Spatially explicit agents can include individual stakeholders (e.g., farmers who 

own, manage, and produce a cell or set of  cells (see (Van Oel et al., 2019) for an example 

implementation using NetLogo software) (table 2). These agents are constrained by their physical 

domain (e.g., soil type, proximity to a river, etc.) but also influence the domain space through their 

management of  the land (e.g., fallowed field, alfalfa production, or grape production). Additionally, 

agents can have their own set of  attributes which can include things like financial savings, irrigation 

equipment, their social networks, and contractual agreements with government agencies. Most 

importantly, each agent is assigned a probabilistic set of  behaviour rules that govern the way they 

make decisions when certain conditions arise in the domain space or other agents’ behaviour.  

Areal agents include those which act as collectives. An example of  such an agent could be 

an urban population. This population would be defined by all urban cells in the domain space that 

use water as a collective. For example, the city could be assigned a density and a use rate that 

applies to each cell (e.g., a 10-cell urban extent with a density of  20 people per cell and a use rate 

of  50 gallons per person would equate to 10,000 gallons of  use). Changes in areal agents would 

then be scalar and could include things like water restrictions (20% mandated reduction), seasonal 

use patterns (higher use in the summer), or alternative sources (desalinization). It is worth noting 

that this is just an example and that the same urban population could be designed as household-

level, spatially explicit agents. Finally, external agents are those that do not reside in the domain 

space but introduce conditions, over which the spatially explicit and areal agents act on (top-down). 

Examples of  external agents could include government agencies, irrigation districts, or 

environmental agencies (see Castilla-Rho et al., 2015 for a relevant overview of  scales of  decision-

making and modes of  interaction among water-management agents in a modelling set-up). 

The final space in a coupled behaviour-physical model is the time space (table 2) as agents 

and the environment act on different time intervals. In our example, streamflow might be 

simulated daily, crop types might change annually, and urban extents might change biannually. 

Farmers make weekly irrigation, monthly harvesting, and annual investment decisions; irrigation 

districts make monthly allocations and yearly projections; and local governments make yearly 

decisions with respect to water pricing, environmental regulations, and well permitting. In the 

model space, all sub models must be resolved at a time step determined by the original sub-model 

codebase or by the author. The coupled model time steps must be configured in a way that 

information can be passed between models at the relevant time scale. Therefore, the primary cycles 

(e.g., daily, weekly, monthly, and yearly) must be identified, and within each, the appropriate agent 
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sets must execute assigned decision routines based on the most up to date data from the most 

relevant time-space. When conceptualizing the construction of  a model it is helpful to create a 

matrix of  the time and agent sets that will be used and within each cell describe the behaviours 

and processes that will be addressed. An example of  such a matrix for a model assessing drought 

disaster risk in the Central Valley of  California is outlined in table 2. 

 

Table 2.2: Different types of agents that can be included when designing a socio-hydrologic agent-based model, an example 
created for the drought disaster risk context of California. 

Agent Space 1 Daily 2 Weekly 3 Monthly 4 Yearly 

Environment Domain -Resolve energy 
and water 
balance 
-Produce 
streamflow 
Calculate soil 
states 

   

Farmer Spatially 
explicit 
agent 

-Operate Well -Make 
irrigation 
decisions  
-Work with 
other farmers 
-Contract 
with irrigation 
district 

-Make 
harvesting 
decisions 
-Sell crops 

-Make investment 
decisions 
-Plant new crop 
-Pay irrigation dues 
-Build Well 

Irrigation 
District 
managers  

External 
agent 

  
-Make water 
allocations 

-Forecast next year’s 
water contracts and 
pricing 

Urban 
population 

Areal agent 
 

-Use water on 
a seasonal 
basis 

 
-Change density 
-Expand/Contract  
-Change water sources 

Government External 
agent 

  
-Approve well 
permits 

-Assign water pricing 
for urban use 
-Assign environmental 
flow regulations 
-Impose any water limits 
-Forecast Future 
conditions 
(NOAA/USGS) 

4.3. Challenges going forward 

The proposed framework offers the opportunity to build on existing physical models and 

addresses many of  the common challenges involved with modelling drought disaster risk (Elshafei 

et al., 2014; Blair & Buytaert, 2015). A few of  these challenges, including droughts fuzzy edges 

and ambiguous starts, can be handled via spatially explicit agents and small time steps. Large 

spatiotemporal extents can be constrained by the modelling domain and human-influenced 

drought propagation can be handled through the modelling feedbacks from adaptation decisions 

and linked physical models. The drought teleconnection effect can be similarly included in the way 

a user defines feedbacks, parameterizes external agents, and carries impacts through the 

calculations. Most importantly, the framework is conceptualized to accommodate case studies and 
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research questions ranging in size from a watershed to regional scales, and on time steps ranging 

from daily to annual (Li, 2016). 

The primary challenges associated with the proposed framework stem from difficulties in 

data availability (Blair & Buytaert, 2015, 2016), model parameterization and validation (An, 2012; 

Grimm et al., 2006; Smajgl & Barreteau, 2017) and limited  sensitivity testing methods (ten Broeke, 

Van Voorn, & Ligtenbergb, 2016). In larger models, computational demand (Castilla-Rho, 

Mariethoz, Rojas, Andersen, & Kelly, 2015b; Filatova, Verburg, Parker, & Stannard, 2013; Holman 

et al., 2018), and the necessity of  implementing and managing a chain of  complex models pose 

challenges that relate to model specific knowledge and computer and data science best practices.  

With the understanding that all models are an abstraction of  reality, the choice of  where to 

spend development and computational efforts is important ( Troy et al., 2015). Depending on the 

research question, domain, and availability of  resources, researchers can prioritize which parts of  

the framework should be modelled in most detail, what agents should be included and what input 

data is necessary (Blair & Buytaert, 2016; Sun et al., 2016). For example, one could choose to focus 

on a specific sector, a unique set of  individual agents, social network representation, upstream vs. 

downstream effects, or economic trade issues. Another necessary choice requires balancing the 

trade-offs between spatial resolution and domain size. Linking ABMs with existing physical 

models can also require extensive data processing (pre and post) and/or binding various languages 

such as R, FORTRAN, NetLogo and MATLAB depending on the native formats and languages 

of  the models selected ( de Bakker, de Jong, Schmitz, & Karssenberg, 2017). Depending on the 

choice of  hydrological model and agent-based modelling language, two or more languages might 

need to be integrated, that cannot communicate with each other, hence shell scripts may be needed. 

The use of  super-computing environments can help overcome some of  these limitations but 

requires additional technical skill and knowledge such as parallelization, operating in a LINUX 

environment, and communicating large volumes of  output data ( Berger & Troost, 2014).  

Another challenge in adopting this framework is the selection of  model time steps to deal 

with the time scale interactions (Elshafei, 2016; Sivapalan et al., 2015). Most agents (individuals, 

governments, urban users, institutions) make decisions on varying timescales that do not 

necessarily align with the timescales of  physical processes (rainfall/runoff). Determining how to 

aggregate (or disaggregate) and/or harmonize varying timescales within a linear modelling 

framework is a necessary step in accurately integrating human and natural systems. Outside of  

purely technical limitations, researchers face a host of  challenges related to model calibration and 

validation (Feola, Lerner, Jain, Montefrio, & Nicholas, 2015; Palmer & Smith, 2014). Companion 

or participatory modelling studies have proven successful in capturing behavioural dynamics of  

different agents across multiple sectors and at large scales, while online platforms can make such 

data collection more approachable, less time-intensive and more adaptable to multiple and wider 

spatial scales (Sušnik et al., 2018).  

The inclusion of  stakeholder groups at multiple stages in the model-building phase may be 

additionally useful in providing (expert) validation (Brown et al, 2016). One example of  this is the 

work by Gober and the National Science Foundation's Decision Center for a Desert City, working 

with water resource managers, modellers, and government agents over the course of  a decade to 
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determine the factors and tools needed to build resilience in a desert city (Gober & Wheater, 2014). 

The use of  social media data or other volunteered geographic information (Goodchild & Glennon, 

2010) or mobile and other ICT data (Bell et al., 2018; 2016) can further provide insight towards 

behavioural patterns and preferences. While an interdisciplinary approach, inherent to socio-

hydrological modelling, is often seen as a challenge because of  conceptual, philosophical, or 

perceptual barriers, it also represents an increasingly recognized and urgent step towards the 

analysis of  human-environment interactions (Kline et al., 2017). 

5. Conclusion 

This Overview highlights the need for including adaptation dynamics and their two-way 

feedback with drought hazard, exposure and vulnerability in drought disaster risk estimation. We 

hope this work contributes to the scarce literature regarding socio-hydrology and heterogeneous 

adaptive behaviour in drought disaster risk and that the proposed agent-based framework offers 

an outline towards dealing with the dynamic nature of  human decisions and drought disaster risk. 

Further, we hope the proposed framework paints a clear picture for those looking to develop an 

ABM drought disaster risk model while also pointing out some of  the hurdles one might 

encounter along the way. We emphasize this framework is not a solution in-and-of  itself  but rather 

a means to guide how an interdisciplinary research community might better model drought disaster 

risk and prioritize research moving forward. Including human behaviour in the calculation of  

drought disaster risk is certainly not an easy task. However, we hope to have convinced readers 

that the inclusion of  emergent, adaptive behaviour is a necessary step towards better 

understanding human-risk interactions and evaluating drought disaster risk. 
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Samenvatting 

Kleine agrariërs in semi-aride gebieden worden voortdurend geconfronteerd met droogte 

episodes die leiden tot terugkerende gewasschade, inkomensverlies en voedselonzekerheid. Deze 

agrariërs nemen adaptieve maatregelen om met dit risico om te gaan. Door empirische gegevens 

en bestaande gedragstheorieën te vergelijken en te combineren, bestudeerden we de complexiteit 

van het aanpassingsgedrag van kleine agrariërs in Kitui, Kenia. We hielden interviews met 

sleutelinformanten, een enquête onder rampenmanagers en een uitgebreide vragenlijst- en keuze-

experiment onder lokale kleine agrariërs, en ontdekten dat wantrouwen in voorspellingen en een 

sterk geloof  in God barrières voor aanpassing bleken te zijn, terwijl lid zijn van een landbouw 

coöperatie en het al genomen hebben van eerdere aanpassingsbeslissingen, de intentie om nieuwe 

maatregelen te nemen leken te stimuleren.  

Onze resultaten bevestigen het belang van verschillende componenten van bestaande 

gelimiteerd rationele theorieën, in die zin dat risico-inschatting, sociale norm, zelfeffectiviteit en 

responskosten en -effectiviteit een significante invloed hebben op het de beslissingen over 

droogtemaatregelen. Geen van de geëvalueerde theorieën kon echter het waargenomen gedrag 

volledig verklaren. Voorts tonen wij aan dat aangepaste trainingen, verbeterde systemen voor 

vroegtijdige waarschuwing, financiële steun vóór een droogte en kredietregelingen met lage rente, 

de intentie om zich aan te passen aan het droogterisico, vergroten. Hoewel een algemene afkeer 

van de huidige beleidssituatie duidelijk is, is er grote heterogeniteit in de voorkeuren voor 

bovenstaande beleidsmaatregelen. De resultaten van deze uitgebreide gegevensverzameling en -

analyse kunnen worden gebruikt om de meest kwetsbare groepen te identificeren en een 

doelgericht aanpassingsbeleid te ontwikkelen, en voor het ontwerpen, kalibreren en valideren van 

mathematische functies om heterogene aanpassingsbeslissingen in dynamische 

droogterisicomodellen te modelleren. 
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Summary 

Smallholder farmers in semi-arid regions continuously face drought disaster risk, leading to 

recurring crop damage, income loss and food insecurity, and they are taking adaptive measures to 

cope with this risk. By comparing and combining empirical data and existing behavioural theories, 

we studied the complexity of  smallholder farmers' adaptive behaviour in Kitui, Kenya. We 

conducted interviews with key informants, a survey of  disaster managers and an extensive 

questionnaire and choice experiment among local smallholders and found that mistrust in 

forecasting and a strong belief  in God appeared to be barriers to adaptation, while farm groups 

and past adaptation decisions seemed to stimulate the intention to adopt new measures.  

Our results confirm the importance of  several components of  existing bounded rational 

theories in that risk appraisal, social norm, self-efficacy and response cost and efficacy significantly 

influence adaptive behaviour under drought disaster risk. However, none of  the evaluated theories 

could fully explain the observed behaviour. We further demonstrate that tailored extension 

services, improved early warning systems, ex-ante cash aid and low interest credit schemes increase 

the intention to adapt. While a general aversion to the current situation is evident, there is great 

heterogeneity in the preferences for these policies.  

Findings of  this the extensive data collection and analysis can be used to identify the most 

vulnerable groups and develop well-targeted adaptation policies, and for designing, calibrating and 

validating of  utility functions to model heterogeneous adjustment decisions in dynamic drought 

disaster risk models.
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1. Introduction 

Increasing climate variability and changing socioeconomic conditions exacerbate the 

frequency and intensity of  drought disasters, aggravating local food insecurity and dependency on 

external food aid in agriculture-dependent regions (Kenya, 2013; Khisa, 2017; Khisa & Oteng, S., 

2014; Ochieng et al., 2016). Given these challenges, the adoption of  drought adaptation measures 

is critical to reduce existing and future drought disaster risk, particularly for smallholder farmers 

in low- and middle-income countries (UNDP et al., 2009). From a socio-hydrological perspective, 

unravelling the adaptive behaviour of  people responding to changing environmental and social 

conditions is a way to improve the assessment of  current and future drought disaster risk (Blair & 

Buytaert, 2016; Di Baldassarre et al., 2019; Montanari, 2015; Sivapalan et al., 2016). Insight into 

this co-evolution of  human adaptation and drought disaster risk is vital to the evaluation of  future 

drought impacts and the development of  any disaster risk reduction strategy (Barthel et al., 2008; 

Eiser et al., 2012), (Blauhut et al., 2015). There are different models which can be applied to capture 

socio-hydrological feedbacks, such as agent-based models or system dynamics models, that allow 

to model drought disaster risk in a dynamic way (Chapter 2). However, such models need an 

elaborated description and quantitative information on the drivers and barriers of  the adaptation 

decision process.  

While ample of  empirical studies try to uncover the relation between socio-economic, 

political and environmental variables and (past) adaptation, there is little scientific agreement on 

which factors influence decisions on water harvesting measures and other climate-smart 

agricultural practices (Bhavnani et al., 2008; Mwaluma & Mwangi, 2008; UNISDR et al., 

2009)(UNISDR et al., 2009). One can observe that risk reducing measures are often taken after 

disasters occur, and since adaptation can alter the likelihood of  future impacts, this can in turn 

affect forthcoming human decisions (Baldassarre et al., 2015). However, there are barely any 

longitudinal surveys to evidence the cause-effect relationships, to really understand the underlying 

processes behind the relations between such variables (Waldman et al., 2020) . Moreover, the 

choice of  investigated factors often seems rather eclectic—it remains unclear whether all relevant 

cognitive-behavioural processes were included in many of  these studies (van Duinen et al., 2015b). 

Both reverse causality and omission can result in a biased estimation of  the effects and lead to 

inaccurate interpretation (Troy et al., 2015). The use of  a psychological or economic theory in the 

data collection process can create a solid base to discuss behavioural factors, and it also supports 

asking the right questions (Waldman et al., 2020). Linking theory with observations allows for a 

better generalisation of  the quantified link between drivers/barriers and the adaptation response, 

which is necessary when one’s aim is to draw conclusions on future behaviours and challenge the 

wide applicability of  these results in different case studies (Schlüter et al., 2017). Only then can 

this information be used to describe the decision rules and structure of  dynamic drought disaster 

risk models that are able to capture the intertwined nature of  drought impacts and adaptation.   

In this manuscript, we evaluate different types of  survey data about the drivers and barriers 

of  adaptation, in the light of  existing behavioural theories. Zooming in on the case of  smallholder 

farmers in Kitui, Kenya, we analyse the heterogeneity of  individual adaptive behaviours under 
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drought disaster risk. The data was collected using commonly employed, complementary 

techniques: interviews, fuzzy cognitive mapping, semi-structured questionnaires, and discrete 

choice experiments. These methods were designed to evaluate the applicability of  existing 

behavioural theories to the case of  Kitui, a semi-arid agro-pastoral area in Kenya. Therefore, the 

research presented in this Chapter adds to the available empirical data describing factors that 

motivate smallholder farmers to (not) implement drought adaptation measures but is novel as it 

combines multiple empirical methods while also being grounded in renowned economic and 

psychological theories. Our aim is to support a better understanding of  processes that shape 

farmers’ adaptation to drought disaster risk, and to creating a knowledge base that can be used to 

calibrate and validate dynamic drought disaster risk models.  

The remainder of  this Chapter is organized as follows: Section 2 introduces the case study 

area in Kenya. Section 3 provides an overview of  potential drivers for adaptation decisions by 

smallholder farmers and related behavioural theories. Section 4 outlines the methods used to 

collect empirical data on adaptive behaviour while section 5 contains the results of  these different 

data collection methods. Section 6 presents an overview of  the empirically and theory-supported 

drivers for drought adaptation among smallholders, linking empirical observations with existing 

behavioural theory, and Section 7 concludes.  

2. The Kitui study area in semi-arid Kenya 

Food production in Kenya heavily depends on smallholder rain-fed agriculture; however, 

farmers are challenged to match the erratic rainfall with crop water requirements (Government of  

Republic of  Kenya, 2014; Omoyo et al., 2015). Droughts are the most frequently occurring natural 

hazard in Kenya, causing devastating and pervasive socioeconomic impacts every 4 to 5 years 

(Alessandro et al., 2015; KEFRI et al., 2014; Kioko, 2013). In Kitui County, in the southeast of  

Kenya, water availability is the preeminent factor for socioeconomic development. Water resources 

in this semi-arid county are scarce, unevenly distributed, and often unpredictable. The county 

receives approximately 1000 mm of  rainfall per year, of  which almost all falls erratically during 

two rainy seasons: March–May, and October–December (K. P. C. C. Rao et al., 2011). Kitui is seen 

as highly vulnerable to drought disasters (UNDP, 2007, 2012) as most of  the water that can be 

used for domestic or irrigation use comes from ephemeral rivers which largely fall dry during the 

dry season. With less than 20% of  the population having access to piped water – mainly 

households living in the towns-, woman and children of  rural farmers travel approximately 8 km 

in regular years to fetch water or up to 15 km on foot during prolonged droughts (County 

Government of  Kitui & Kitui County, 2013). 

Kitui county is labelled as a marginal farming zone; most rural people are subsistence crop 

and livestock farmers (Khisa, 2018). The main source of  income is rain-fed agricultural production, 

and irrigation is only possible close to rivers or with expensive groundwater wells (Lasage et al., 

2008). Maize, the main staple crop of  the region, is grown by most farmers but is quite vulnerable 

to water shortages. A changing climate has already led to more frequent and longer droughts, 

which is also perceived as a worsening situation by Kitui smallholder farmers (Khisa, 2017, 2018; 

Mutunga et al., 2017). Having frequently experienced climate-related crop failures, the farmers in 
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the area have a long history of  adapting to drought disasters (for examples of  measures, see table 

3.1).  

While water harvesting systems and climate smart agricultural practices can reduce a 

household’s vulnerability to drought by 40% (Schoderer & Lasage, 2017), the adoption of  these 

proactive drought disaster risk reduction strategies has remained surprisingly low (Below, Artner, 

Siebert, et al., 2010; Bryan et al., 2013a; Epule et al., 2017; Erenstein et al., 2011; Kimani et al., 

2015; Oremo, 2013; Recha et al., 2012; Venzi, Mulwa, 2015). Okumu et al. demonstrated that, 

while droughts were acknowledged to be the main cause of  food insecurity (96% of  respondents) 

and seem to have prolonged over time (55% of  respondents), only 15% of  respondents in Kitui 

had adopted water harvesting measures (Oremo, 2013). This was confirmed by Khisa et al., who 

reported that 74% of  respondents did not employ any strategy to prepare for the effects of  climate 

change (Khisa & Oteng, 2014). The high level of  poverty in Kitui, estimated at 47.5% compared 

with the national average of  36.1%, is both a cause and consequence of  this limited adaptation to 

climate change and extreme events (Kitui County, 2018).  

 

Table 3.1: Drought adaptation measures against drought impact taken by farmers in Kitui County, Kenya (based on 
household survey data 2000, 2004. 2007, 2010 by the Tegemeo Institute, 2004, 2007, 2010)) 

Measures  Description 

Fanya-Juu Terraces formed for easier cultivation and prevention of soil erosion.  
Zai-pit Dug pits in the soil during the preseason to catch water and to concentrate 

compost.  
Cistern / tank A waterproof receptacle for holding liquids, in this case, water.  
Shallow well A well is a hole that has been dug, bored, driven or drilled into the ground for the 

purpose of extracting water. A shallow well is approximately 7-15 meters deep. 
Mulch Mulch is a layer of material applied to the surface of soil to conserve soil moisture, 

and to improve the fertility and health of the soil. 
Irrigation  Irrigation infrastructures are technologies that assist in the spreading of water onto 

crops.  
Conservation agriculture Conservation agriculture is a farming system used for minimum soil disturbance, 

maintenance of a permanent soil cover, and diversification of plant species. 
Stone terraces Traditional simple cultivation technology used in dry areas and/or sloping land.  
Farm pond A water harvesting structure that can also be used for fishing 
Roadside harvesting  A water harvesting structure. To collect runoff from the roads 
Hybrid crop varieties / 
diversification 

Drought tolerant or short cycle varieties of the main staple crops (maize, beans) or 
varying the amount of crop types per year 

Adding manure Soil fertility influences the water holding capacity of the farmland, diversification 
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3. Identifying factors influencing drought adaptation decisions of  smallholder farmers 

3.1. Empirical drivers of  and barriers to adaptive behaviour 

With perfect awareness of  future drought disaster risk, flawless early warning systems, and 

without socioeconomic limitations, people would be able to make proactive, rational decisions and 

achieve optimal economic drought disaster risk management (Waldman et al., 2020). However, 

assumptions about perfect information and sufficient investment capacity do not hold when 

examining real-world empirical adaptation responses (Gigerenzer & Goldstein, 1996; Kremmydas 

et al., 2018; Malawska & Topping, 2016; Schlüter et al., 2017). Adaptation decisions are often 

steered by stakeholders’ risk perception, experiential factors, feelings of  dread or worry, perceived 

self-efficacy, and perceived behavioural control, which all introduce a bias to rational economic 

decision making (Asayehegn et al., 2017; Bouziotas & Ertsen, 2017; Kahneman & Tversky, 1979; 

Kasperson et al., 1988; Maddux & Rogers, 1983; Slovic, 1987; Sutton, 2001; van Duinen et al., 

2016). A growing body of  research aims to understand the factors influencing the choice to adopt 

adaptation measures (Deressa et al., 2009). Here, we present relevant review studies on the drivers 

of  drought adaptation by farmers in Africa, and some specific studies relevant for Kenya and its 

Kitui region, summarized in Table 3.2.  

Research on climate change adaptation practices in Africa shows that the characteristics of  

the proposed technology (e.g. gain, costs, maintenance, distance to markets), farmers attitude 

towards risk and climate change perceptions, knowledge (e.g. through social networks, farmer 

groups or extension services), institutional support, and the financial (e.g. distance to markets, 

access to credit markets) and policy (e.g. security of  land holdings) environment are important 

drivers of  adoption of  adaptation measures (Below, Artner, Sieber, et al., 2010; Below et al., 2012; 

Gbegbelegbe et al., 2018b; Shikuku et al., 2017). Also socio-demographic characteristics such as 

household size, sex and age of  the household head appear significant (Shikuku et al., 2017). 

Scientists focussing on Kenyan farmers specifically found similar drivers and barriers to adaptation, 

adding socio-economic factors such as poverty, off-farm income, farm expenditure, food 

expenditure and human capital to the list (Bryan et al., 2013c; Ifejika Speranza et al., 2008; 

Muhammad et al., 2010b; Murgor et al., 2013; Tongruksawattana, 2014). Research from Kitui 

confirmed these factors, but also mention distance to water sources, farming experience, access to 

forecasts, and influence of  social network as important for the decision whether or not to adapt 

to drought disaster risk and climate change (Eriksen & Lind, 2009; Evelyn & Charles, 2018; Khisa 

& Oteng, 2014; Omoyo et al., 2015; Owuor et al., 2005). 

In general, the adaptation response of  farmers to drought or climate change is found to be 

heterogenic in time and space (van Duinen et al., 2016). However, with regression analyses - 

commonly applied in the cited studies – the heterogeneity in behaviour and the cognitive processes 

behind the found relationships are not always explored, hindering the use of  the results when 

one’s aim is to draw conclusions on future behaviours or to model drought disaster risk in a 

dynamic way. Furthermore, while knowledge/skills, assets/market, and risk perception are cited 

as dominant factors, different drivers of  and barriers to adoption appear more or less significant 

in different case studies. The absence of  theories to frame such results challenges their use in other 
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case studies because generalizing them requires making multiple assumptions that are hard to 

substantiate.  

 

Table 3.2: Factors influencing adaptation decisions, investigated in literature about Eastern Africa, climate change and 
drought disaster risk adaptation.  

DRIVERS References (non-exhaustive list of Sub-Saharan reviews and Kenyan case 
studies) 

NATURAL CAPITAL 
Land ownership, 
tenure security 

Muhammad et al 2010 Speranza 2010 Owuor 2005 Bedeke 2019 Below 2012  
Gbegbelebge 2017 Di Falco 2014; de Jalon et al. 2018 Mtakwa 2015 

No access to water, 
long distance 

Okumu 2013 Nthenge 2016 Oromo 2015 Khisa 2014 

Larger field size, 
flatness of  soil 

Muhammad et al 2010 Nkatha 2017 Villaneuva 2016 Gbegbelebge 2017 Bryan et al. 
2013 Tongruksawattana 2019 Arslana 2014 

FINANCIAL CAPITAL 
No shortage of assets Muhammad Et Al 2010 Nkatha 2017; Speranza 2010 Nthenge 2016 Okumu 2013 

Oromo 2015 Khisha 2014 Owuor 2005 Villaneuva 2016 Gbegbelebge 2017 
Tongruksawattana 2019 Shikuku 2017 Bryan Et Al. 2013 Mtakwa 2015 

More external, off-
farm income 

Nkatha 2017 Bedeke 2019 Bryan et al. 2013 Bryan et al. 2013 Muhammad et al 2010 

Aid, remittances Nkatha 2017 
Access micro credit / 
loans 

Muhammad Et Al 2010 Nkatha 2017; Speranza 2010 Khisa 2014 Mutunga 2017 
Matere 2016 Bedeke 2019 Holden 2017 Below 2012 Gbegbelebge 2017 
Tongruksawattana 2019 Shikuku 2017 Bryan Et Al. 2013 

Larger Animal stock Speranza 2010 Owuor 2005 
Radio, bike, phone Muhammad et al 2010 Owuor 2005 Arslana 2014 
Having a stable food 
security  

Muhammad et al 2010 

HUMAN CAPITAL 
Having Labour power  Muhammad et al 2010 Nkatha 2017 Nthenge 2016 Senyolo 2018 villaneuva 2016 
Hiver Education, 
literacy 

Nkatha 2017 Okumu 2013 Mwangi et al 2015 Oromo 2015 Bedeke 2019 Below 2012 
Tongruksawattana; Bryan et al. 2013 de Jalon et al. 2018 Mtakwa 2015 

Access to extension 
training, farmer field 
school 

Muhammad et al 2010 Nkatha 2017 Nthenge 2016 Okumu 2013 Mwangi et al 2015 
Oromo 2015 Khisa 2014 Mutunga 2017 matere 2016 Bedeke 2019 Mfitumukiza1, 
Below 2012 Bryan et al. 2013 Tongruksawattana 2019 Arslana 2014 Shikuku 2017 Di 
Falco XXX;  

Agricultural support Nkatha 2017 
Farm experience Nkatha 2017 Mwangi et al 2015 Oromo 2015 Bedeke 2019 Bryan et al. 2013 Shikuku 

2017 
Health Okumu 2013 
Household size Bryan et al. 2013 Shikuku 2017  
Planning skills Gbegbelebge 2017 
Agricultural skills Speranza 2010 Mwangi et al 2015 Drechsel 2005 Bryan et al. 2013 Mtakwa 2015 

SOCIAL CAPITAL 
Membership 
association 

Muhammad et al 2010; Nkatha 2017 Bedeke 2019 Gbegbelebge 2017 
Tongruksawattana Shikuku 2017 

Gender (being male) Muhammad 2010; Nkatha 2017 Mwangi et al 2015 Bedeke 2019 Shikuku 2017  
Neighbours, social 
capital 

Khisa 2014 Bedeke 2019 Below 2012 Drechsel 2005; de Jalon et al. 2018; Wossen 
2013 

INFRASTRUCTURAL CAPITAL 
Institutional support Nthenge 2016; Gbegbelebge 2017 Drechsel 2005 Di Falco XXX 
Access to input 
markets  

Muhammad et al 2010 Nkatha 2017 Oromo 2015 Khisa 2014 Below 2012 Drechsel 
2005 Bryan et al. 2013 

Access to output 
markets  

Muhammad et al 2010; Speranza 2010 Oromo 2015 Bedeke 2019 Arslana 2014; 
Below 2012 
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Good Infrastructure  Owuor 2005 

PERCEIVED CLIMATE TRENDS 
Access to Climate info 
services 

Mutunga 2017 

Not believing in GOD 
as saviour 

Center for Science and technology innovation 2009 

Perceiving drought to 
be frequent and severe 

Muhammad et al 2010 Rao 2011 Holden 2017 Below 2012 Tongruksawattana 2019 
Arslana 2014 Shikuku 2017; Drechsel 2005  

Awareness of climate 
change 

Center for science and technology innovation 2009 Villaneuva 2016 Arslana 2014; 
Drechsel 2005 

Low risk averseness ; Nkatha 2017 Holden 2015 Holden 2017; Drechsel 2005 

MEASURE Characteristics 
Yield variability  Muhammad et al 2010 Shikuku 2017 
Awareness of benefits Villanueva 2016 Drechsel 2005 
Cost effectiveness of 
the measure 

Nkatha 2017 Mwangi et al 2015 Muhammad et al 2010; Drechsel 2005 

Positive perception of 
technology 

Nkatha 2017 

3.2. Existing theories on adaptive behaviour 

A commonly used economic model for decision making under uncertainty is the (subjective) 

Expected Utility Theory, which is based on the supposition that people can make rational choices 

(allowing for biased risk knowledge) and choose the option with the highest utility (Morgenstern 

& Neumann, 1953; Cerreia-Vioglio et al., 2013). Such utility maximizing theories, however, assume 

people have perfect knowledge on the probability of  shocks as well as the costs and benefits of  

actions, and ignore the complexity of  human adaptation decisions: emotional, psychological, and 

social factors – along with objective arguments – affect individuals’ evaluation of  drought, leading 

to imperfect judgement  (Findlater et al., 2019; Waldman et al., 2020). Observed adaptive 

behaviour in the face of  disaster risk is found to be bounded rational and heterogeneous in time 

and space; smallholder farmers tend to look for satisfaction rather than utility maximisation when 

making relevant decisions about their farm water management in the face of  droughts  (Ardalan 

et al., 2015; Gigerenzer & Goldstein, 1996; Simon, 1997). Table 3.3 describes the behavioural 

factors used in existing socio-cognitive theories that aim to describe the decision-making process 

of  humans based psychological and economical sciences. Other adaptive behaviour theories link 

economics to psychological and sociological sciences. Examples of  more complex theories about 

adaptive behaviour are the agricultural adaptation and perception model (Below et al., 2015), the 

trade-off  analysis model for multi-dimensional impact assessment (Claessens et al., 2012), the 

Consumat approach (Jager & Janssen, 2012), the technology acceptance model (Szajna, 1996), 

Rogers’ innovation diffusion model  (Rogers, 1962), the prospect theory  (Kahneman & Tversky, 

1979), the protection motivation theory (Maddux & Rogers, 1983), the socio-cognitive model of  

private proactive adaptation to climate change (Grothmann & Patt, 2005), the value-belief-norm 

theory of  environmentalism  (Stern et al., n.d.), and the theory of  planned behaviour (Madden et 

al., 1992; Sutton, 2001). 

Empirical evidence is required to validate these behavioural theories, translate them into 

measurable characteristics of  farm households, and formalise them in quantitative terms. Only 

few authors have empirically quantified the link between drivers and drought adaptation intentions 
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through the use of  a theoretical decision-making framework, thus overcoming the gap between 

case-specific empirics and generalisable theory—in most cases the Protection Motivation Theory, 

and sometimes the Theory of  Planned Behaviour (e.g., Dobbie, 2013; Gebrehiwot & van der Veen, 

2015; Keshavarz & Karami, 2014, 2015, 2016a; Stefanovic, 2015; Zeweld et al., 2017; Zheng & 

Dallimer, 2016). While multiple studies outside of  Kenya have successfully applied the Expected 

Utility Theory and PT (e.g., Asgary & Levy, 2009; Holden & Quiggin, 2017b), Bryan (2013) did 

not find strong evidence to support those theories for climate change adaptation behaviour of  

Kenyan farmers. Several studies on smallholder farmers have applied the Theory of  Planned 

Behaviour (e.g., Joao et al., 2015; Senger et al., 2017; Willy & Holm-Müller, 2013), but for example 

Niles et al. (2016) did not find empirical evidence to support the theory among farmers in drought-

prone New Zealand (Niles et al., 2016).  

 

Table 3.3: Schematic overview of behavioural factors used in existing socio-cognitive theories 

THEORY BEHAVIOURAL FACTORS INCLUDED IN THE THEORY 

Trade-Off Analysis 
Model  

feasibility of the measure costs of the measures 

Consumat Theory 
repetition, imitation,  
inquiring, optimising 

needs 
satisfaction 

experienced 
uncertainty 

behavioural control 

Agricultural Adaptation 
And Perception Model 

vulnerability 
livelihood 

trends 
climate 
impacts 

climate 
perception 

potentials and 
obstacles 

Technology Acceptance 
Model 

perceived usefulness  
(subjective norm, output quality, result 

demonstrability, …) 

perceived ease of use  
(experience, voluntariness) 

Rogers’ Innovation 
Diffusion Model 

relative advantage 
compat
ibility 

complexity trial ability observability 

Prospect Theory financial costs 
financial gains  
(avoided loss) 

risk averseness 

Protection Motivation 
Theory 

risk appraisal (perceived frequency, 
severity) 

coping appraisal (adaptation costs, 
efficacy, self-efficacy) 

Value-Belief-Norm 
Theory Of 
Environmentalism 

values (altruism, 
worldview, egoism) 

beliefs (consequences, 
perceived ability) 

personal norms (sense of 
obligation) 

Theory Of Planned 
Behaviour  

subjective norm attitude 
perceived behavioural 

control 

The Protection Motivation Theory yielded more successes in explaining empirically 

observed adaptation decisions; Dang et al. (2014) demonstrated its application for private adaptive 

measures to climate change among rice farmers in the Mekong Delta, Vietnam (Le Dang et al., 

2014, Van Duinen et al. 2012, 2012a) followed the theory investigating social networks and farmers’ 

adoption of  irrigation infrastructure in The Netherlands, and Keshavarz and Karami (Keshavarz 

& Karami, 2015, 2016b) illustrated that the theory, in combination with farmers’ social 

environment significantly influenced pro-environmental behaviour under drought in Iran. 

Zooming in on Africa and Kenya, both Regasa et al. (2019), Hailegiogris et al. (2018) and 

Gebrehiwot and Van der Veen (2015) successfully used the Protection Motivation Theory to 

describe the socio-cognitive behaviour of  rural households toward climate change and droughts 

in Ethiopia (Hailegiorgis et al., 2018; Regasa & Akirso, 2019a; Gebrehiwot & van der Veen, 2015). 

Moreover, Stefanovic (2015) found the Protection Motivation Theory provided a solid 
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background to explain the socio-cognitive-behavioural processes influencing climate change 

adaptation among smallholder farming systems in Kenya (Stefanovic, 2015). Therefore, in the 

presented research, the Protection Motivation Theory received special attention and was used to 

frame the data collection process. However, also additional factors regarding adaptive behaviour 

(from other theories or empirics) were investigated because they could approve or disprove the 

applicability of  these theories for the Kitui case study.  

 

 
Figure 3.1: Flow diagram showing literature overview (top row), data collection (left column) and data processing (diamond 
shapes) activities done to describe, qualitatively and quantitatively, the adaptive behaviour of smallholder farmers under drought 
disaster risk in Kitui (squares) done in this research with the eventual purpose to calibrate and validate adaptation dynamics 
in  dynamic drought disaster risk models.  
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4. Data collection and processing 

Information on drought adaptation, farm characteristics, potential policies, risk perceptions, 

and various other potential drivers and barriers to adaptation decisions (van Duinen et al., 2015d) 

was collected  in a participatory manner (Janssen & Ostrom, 2006; Smajgl & Barreteau, 2017). The 

survey methods and designs were supported by existing literature (Section 3) and follow the 

recommendations of  Hailegiorgis et al 2018, and Smajgl et al., 2011 regarding collecting data for 

quantifying behavioural rules. Four methods) were applied in the research for this Chapter: 

interviews with key informants, a structured questionnaire among disaster managers, a semi-

structured questionnaire among farm households, and a choice experiment among farm 

households. Figure 3.1 presents a flow diagram illustrating the four data collection and data 

processing methods that were applied to qualitatively and quantitatively describe the adaptive 

behaviour of  smallholder farmers under drought disaster risk in Kitui. They are elaborated in the 

following subsections.  

4.1. Key informant interview design 

Relevant key informants (see Appendix Table 3A) were consulted to provide their view on 

the most important drought disaster risk measures, drivers for adaptive behaviour, and issues that 

limit the adoption of  said measures. All key informants were dealing directly or indirectly with the 

agricultural impacts of  droughts and were experienced in the field of  water management in Kitui 

or Kenya. First, five ‘example farmers’ were interviewed about their experience of  searching for 

knowledge and money to invest in certain drought adaptation measures as well as their experience 

of  showcasing their climate-smart farm practices to other farmers. The opening question for these 

interviews was as follows: “If  we wanted to predict which farmers are going to adopt new 

adaptation measures in the next season and which are not, which information about these farmers 

do we need and what do you think are the most important drivers and barriers for them?” 

Additionally, local and national stakeholders were asked to participate in a fuzzy cognitive mapping 

exercise centred around this question. Fuzzy cognitive mapping, a combination of  fuzzy logic and 

cognitive mapping, is a participatory technique to find cause-effect relations between 

environmental and social variables in data-scarce conditions (Giordano & Vurro, 2010; Singh & 

Chudasama, 2017b).  

Aiming to sketch the drought disaster risk system and the perceptions of  the participants 

thereof, participants were individually asked to cite and draw lines between the detected root 

causes, existing dynamic pressures, and observed vulnerabilities to the adoption of  drought 

adaptation and drought disaster risk. We started from white sheets to prevent participants being 

influenced by existing theories or drivers/barriers mentioned by previous participants 

(Murungweni et al., 2011), and collected all concepts mentioned by the participants (called nodes) 

and all causal relations (called connections) in one overview schedule. By combining the 

information from all interviews and grouping them according to factors from the existing theories, 

the main links and interactions between drivers and barriers that affect the risk and adaptation 

were visualised in a schematic overview (Appendix figure 3A). Marking concepts in bold if  they 
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were seen as key concepts by multiple stakeholders, the overview provides a macro—level, 

qualitative view of  the drought disaster risk system in Kitui (similar to (Bunclark et al., 2018; 

Giordano et al., 2005; Mehryar et al., 2019a, 2019b)).This bottom-up, participatory approach 

provided a first insight of  which causes and effects matter most in the Kitui context, and to refine 

or refute initial assumptions related to the adaptive behaviour of  farmers; information which was 

used  to shape the questions for the consecutive disaster management survey (4.2) and the 

household survey (4.3). 

4.2. Disaster management survey design 

A short, eight-question survey among African disaster management officers was executed 

to obtain input from policymakers and disaster risk reduction experts. The survey reached 54 Sub-

Saharan African disaster managers from 9 different countries, of  whom 8 were from Kenya. 28 

worked on national planning and policy, 4 on local planning and policy, 10 on local civil protection 

and disaster response, and 12 on local education and raising awareness. They were contacted over 

email through an existing network of  disaster risk management (over 150 recipients), but 

participation was anonymous. The top-down view of  these disaster managers – Kenyan or other 

- on the limitations for the adoption of  drought adaptation is insightful as their policies are based 

in such information – and teaches us something about the potential generalizability of  the adaptive 

behaviour of  smallholder farmers, beyond the case study.  

Given the promising results in studies on the Protection Motivation Theory, and the 

Protection Motivation Theory factors’ appearance in the key informant interviews (4.1), factors 

of  this sociocognitive model of  proactive private adaptation were explicitly included in the 

questions. Moreover, questions related to “subjective norm”  that is, normative beliefs or perceived 

social pressure by the farmer network, -a factor of  the Theory of  Planned Behaviour (Section 3) 

- , were included. This allowed for the investigation of  whether, according to disaster managers, 

risk appraisal processes (such as those studied in (Rao et al., 2011)) and coping appraisal processes 

(such as those studied in (Dang et al., 2014a)) indeed play a role in determining smallholder farmers’ 

intention to adapt to droughts. Simple descriptive statistics were applied to investigate the answers 

of  the disaster managers, so as to evaluate if  the top-down view of  adaptive behaviour matches 

with the inquired and observed behaviour of  the smallholder farmers, as well as to compare the 

factors of  importance according to the disaster mangers with the components of  the existing 

bounded rational behavioural theories.  

4.3. Semi-structured smallholder farmer questionnaire design 

Additional empirical data about farmer behaviour was collected in a semi-structured 

questionnaire among 260 smallholder farmers in Kitui East, around different markets along the 

Kibwezi-Kitui-Kandwia road (Figure 3.2). Cluster sampling and a simple random approach were 

adopted to gather quantitative data – once a specific neighbourhood was randomly picked, all 

households in the neighbourhood were contacted for participation. Four trained enumerators, 

originating from the study area, used the smartphone application KOBO-Toolbox to collect the 
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answers of  households willing to participate. A pilot survey of  30 households was conducted to 

ensure clarity of  the questions and to train the enumerators, after which the list of  questions was 

optimized.  

The literature overview and the expert feedback from the key informant interviews (4.1) 

and disaster managers (4.2) were the basis for a household questionnaire designed to validate the 

use of  the Protection Motivation Theory and others for the case study of  smallholder farmers in 

Kitui (see Appendix Table 3B). We adopted the approach suggested by Temessa et al (2019) on 

testing for the links between drivers and adaptation in three steps: the direct-enquiry method, the 

direct-ranking method and recording proxies to be used in statistical models (Tessema et al 2019). 

This resulted in a set of  85 questions verbalising multiple behavioural factors—including people’s 

drought experience, risk perception, susceptibility, coping capacity, self-efficacy, perceived 

adaptation benefits, perceived adaptation costs, motivation and barriers to adapt, and questions 

related to the socioeconomic and demographic status of  the respondents (descriptive statistics on 

the socio-economic characteristics of  respondents can be found in Appendix table 3C). 

The collected data was used to uncover statistical correlations between socioeconomic, 

behavioural, or cognitive variables and farmers adaptive behaviour (e.g., (Smajgl et al., 2011; 

Valbuena et al., 2010)) (please find an overview in Appendix table 3D and 3E). We used binary 

logistic regression techniques to relate these variables to the farmers’ intention to adopt new 

measures in the next season and farmers’ past adoption of  measures. After doing a Pearson 

correlation analysis, we performed stepwise logistic regressions and evaluated their goodness of  

fit based on the Akaike Information Criterion and R-squared values. The Boruta and backward 

Wald methods were used as stepwise elimination algorithms on the logistic regression, thereby 

automatically optimising the models (removing correlated and redundant variables, obtaining the 

best AIC value) (Kursa & Rudnicki, 2010). The p-values and coefficients of  the independent 

variables of  the optimised models were used to identify the most critical drivers for adaptive 

behaviour. 
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Figure 3.2: LEFT: Location of study area within Kitui County (centre, grey) in Kenya; RIGHT Kitui town (triangle) and 
the Kibwezi-Kitui-Kandwia road (B7) along which the survey took place 

 

4.4. Smallholder farmer choice experiment design 

In addition to semi-structured survey questions, the 260 smallholder farmers were also asked 

to participate in a discrete choice experiment (DCE), a stated preference technique used to 

investigate smallholder farmers’ preference towards policy actions, as suggested by (Bateman et 

al., 2013; Holden, 2015). DCEs are often used to  describe the different effects of  both attributes 

of  scenarios and characteristics of  decision makers on choices they are presented with. Discrete 

choice analysis, an econometric approach, is often used to evaluate the preference for risk-reducing 

measures (e.g., (Conrad & Yates, 2018; Schaafsma et al., 2018)). DCE models specify the 

probability that an individual respondent chooses a certain scenario among a set of  alternative 

scenarios: in this case a specific combination of  governmental drought policies. Farmers are 

assumed to select the scenario that would increase their likelihood of  adopting the most. This 

highest utility scenario is the sum of  the utilities of  each attribute but is also influenced by the 

farmers’ socioeconomic situation (Train, 2020). The relative importance of  the attributes of  a 

DCE provides valuable information for the prediction of  future adaptive behaviour under 

changing policy conditions (Conrad et al., 2017). 

The DCE in this research was designed to evaluate the change in farmers’ intention to adopt 

drought adaptation measures, for scenarios with a mix of  top-down drought interventions 

(attributes) that could potentially erase the current barriers to adoption. This list is based on 

current policies regarding drought adaptation in Kenya, which were also mentioned during the key 

informant interviews. For example, the Kenya Vision 2030 promotes integrated proactive drought 

management for dryland farmers through improved extension services and increased access to 
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financial services, such as affordable credit schemes for people in the Arid And Semi-Arid Lands 

of  Kenya (Republic of  Kenya, 2013). Besides, building on the Ending Drought Emergencies plan 

(2013–2017) (Government of  Kenya, 2014), the National Drought Management Authority 

prioritises drought early warning systems, and aims to establish ex-ante cash transfers to upscale 

drought disaster risk financing (National Drought Management Authority (NDMA), 2015). Also 

other authors concluded that more resources in terms of  credit facilities, access to climate change 

information, and extension services should be availed to farmers in areas affected by climate 

change and variability (Mutunga et al., 2017). 

Table 3.4: Choice experiment setup: attributes (governmental actions) in the first column, their possible levels right of it 

 Level 0 (business as usual) Level 1 Level 2 

Extension services Infrequent; access for 15-25% 
of the households 

Access for everyone, 
Once a year 

Access for everyone, 
every season (Twice a 
year) 

Early Warning 
system 

Not reliable Yearly outlooks Seasonal predictions 

Cash transfer Ex-post at best; for less than 
40% of the farmers 

Ex-ante (lump sum) for 
all farmers in need 

Ex-ante (two sums) for 
all farmers in need 

Credit schemes Access for only 1.5% rates at 
>10% 

Access to everyone, rates 
at 5% 

Access to everyone, rates 
at 2% 

Using a DCE (table 3.4) can help identify preferences for governmental policies as well as 

analyse to what extent drought management policies will steer adaptive behaviour, which explains 

how effective they are at reducing the farm household drought disaster risk. Respondents were 

asked to choose eight times between two alternative policy scenarios (a combination of  four 

governmental actions with various combinations of  level 1 and 2) and the business-as-usual case 

(the four governmental actions on level 0) and indicate in which scenario they would most likely 

adopt a new adaptation measure. The experimental design was controlled random – the actions 

and their levels on each choice card were balanced and could overlap. Level overlap was allowed 

to occur, meaning that in a single decision situation an action could have the same level in both 

options presented (Holm et al., 2016).  

Multiple applications of  a mixed multinomial logit model, which assumes heterogeneity in 

preferences for different alternative-specific variables (McFadden & Train, 2000; Train, 2004), 

were tested to investigate the policy preferences of  the 260 farmers. The utility functions of  this 

mixed – also called random parameter – logit model consisted of  the linear sum of  the attribute 

values and their weight coefficients, indicating their importance and random variation error terms 

per attribute (Croissant, 2003a). Using 1000 draws, random parameters with normal distributions 

were estimated for all attributes, and an error-component was included for the two options versus 

the opt-out. They showed not only the average preferences of  the respondents but also its 

heterogeneity, indicating a distribution of  preferences caused by both observable and 

unobservable alternative characteristics (Croissant, 2003b). The goodness-of-fit of  the models was 

checked using the AIC test, a measure of  the relative quality of  statistical models, analysing the 

trade-off  between model complexity and goodness-of-fit for a given set of  data. 
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5. Results  

5.1. Key informant interview outcomes 

The concept diagram in Appendix 3B was created by combining Fuzzy Cognitive Maps of  

all key informant interviews, a bottom-up way of  displaying the Kitui context of  smallholder 

drought disaster risk management. Three layers can be distinguished: (1) adaptation measures, 

signifying the level of  vulnerability to drought disaster risk; (2) adoption factors, identifying the 

drivers for adaptation; and (3) governmental and nongovernmental organisations (NGOs), 

representing the policy context. Three types of  adaptation measures were identified by the 

respondents: practices related to soil and water conservation (i.e., grey infrastructure and 

techniques to avoid degradation); climate-smart agriculture (agronomic practices to avoid drought-

induced crop loss); and livelihood diversification (directly increasing resilience to shocks). The 

adoption factors revealed in the Fuzzy cognitive Map can be classified into drivers or barriers 

related to knowledge, self-efficacy, response efficacy, response costs, attitude, risk perception, and 

social networks. This means that the Protection Motivation Theory alone is not able to explain all 

possible drivers for adaptive behaviour mentioned by the key informants, as social network and 

attitude, two factors covered the Theory Of  Planned Behaviour, also appeared on the map. Lastly, 

key informants perceived that governmental organisations and NGOs can affect all of  the 

acknowledged drivers of/barriers to adoption through direct and indirect policies and actions.  

Moreover, from the key informant interviews with example farmers, three additional 

conclusions could be drawn: (1) Farmer-to-farmer networks spread the knowledge on adaptation 

strategies (guided by NGOs), thus enhancing the implementation of  adaptation measures. Besides, 

there are pioneer farmers who do not receive extension services but nevertheless want to adopt 

new structures; however, they lack the knowledge or financial means. (2) When not in poverty, and 

with knowledge on business and farm financial management (i.e., education), farmers have fewer 

barriers. However, when trapped in poverty, conditional food and financial aid can help build 

sustainable livelihoods, creating families that are not dependent on external support anymore. (3) 

Corruption is a critical factor hindering the implementation of  adaptation measures. Large costs 

are not bearable because of  corruption and fluctuating market prices. Interestingly, two of  the 

three key aspects mentioned above – networks, corruption - are not so pronounced or even absent 

in the Protection Motivation Theory, although one could argue that they indirectly influence the 

coping appraisal (self-efficacy, coping efficacy, and coping cost). The influence of  networks 

however also strongly relates to the subjective norm factor in the Theory of  Planned Behaviour, 

giving credibility to this latter theory. 

5.2. Disaster manager survey outcomes 

Based on the survey among policymakers and disaster risk reduction officers, the policy 

makers’ perspectives on smallholder drought disaster risk and adaptation could be obtained (figure 

3.3). Increasing knowledge was (on average) ranked as the most important motivation to adapt, 

above expected financial gain (on average 2nd), financial help (on average 3rd)  and experienced 
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drought disaster risk (on average 4th). While the effect of  neighbours is on average ranked lowest, 

opinions vary as 26% has ranked this as most important but 34% as least important. Asked about 

the timing of  decisions by smallholder farmers, they were thought to have the highest motivation 

to adapt right after a drought (52%) or after they receive training (33%), aligned with increasing 

knowledge (79%) and increasing awareness (71%) being the best strategies for supporting 

smallholder adoption of  adaptation measures. The disaster manager survey further revealed that 

adaptive behaviour is thought to be bounded by risk perception, response appraisal, and 

knowledge. These outcomes support the Protection Motivation Theory rather than the Theory of  

Planned Behaviour as the theory describing smallholder farmer adaptive behaviour under drought 

disaster risk, but it should be noted that the answers varied significantly among respondents 

making it challenging to draw hard conclusions. No pattern (e.g., country based differences or 

local versus national managers) in this heterogeneity of  answers could be found either. 

   
Figure 3.3: Ranking of importance of different factors influencing the decisions whether or not to adopt by Disaster risk 
managers (N = 49) (LEFT) and by smallholder farmers (N = 260) (RIGHT). 

5.3. Semi-structured smallholder farmer questionnaire outcomes 

When farm households were asked about the importance of  various factors in their decision 

whether to adopt new drought adaptation measures (figure 3.3), 50% found the yield gain, net 

present value, essential to be essential for their adaptive behaviour, whereas 48%, 47%, 46% found 

social influence (actions of  neighbour), experience of  multiple crop failures (drought disaster risk), 

and efficiency in reducing water shortages (adaptation efficacy), to be essential, respectively. 

Moreover, 43% of  the farm households would not install measures if  the installation costs were 

higher, 40% would not if  they did not receive financial help and 39% would not if  they did not 

receive extension services. Here, the social norm factor of  the Theory of  Planned Behaviour 

seems essential, in contrast to the results of  the disaster manager survey, which estimated social 

influences as less important. However, risk and efficacy, factors in the Protection Motivation 

Theory, are also seen as critical by almost half  of  the respondents.  
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Looking into the barriers (Table 3.5), clearly poverty tops the list in challenges to overcome 

for the decision to adopt measures. Both money and labour capital stops people from planning to 

adopt measures even while wanting to do so. Lack of  necessary skills is another important barrier, 

and also a lack knowledge on which measure to install is limiting adoption. Clearly, the (perceived) 

self-efficacy, a factor in both the Theory of  Planned Behaviour and Protection Motivation Theory, 

matters, next to purely financial constraints present in all theories. Moreover, contrasting the 

importance of  yield gain, net present value of  the measures, more than 50% of  the farm 

households never did perform a proper cost–benefit analysis, revealing a split in the respondent 

pool and refuting the assumptions of  perfect information and economic rationality used in e.g., 

the Expected Utility Theory. 

 

Table 3.5: Percentage of respondents acknowledging to have experienced the limiting factor in question. Table showcases (left) 
the barriers to adopting new adaptation measures (based on future adoption behaviour): challenges foreseen by those who plan 
to adopt new measures soon (N=106) and (right) the hurdles for those who wish to but are not able to plan to adopt new 
measures (N=147). 6 Households indicated they had no intention to have more measures, and thus were not asked either of 
these questions. 

Barriers for adoption of adaptation 
measures 

% of those who plan to 
adopt  

% of those who wish but not 
plan 

Limited access to credit markets 42% 20% 
Limited skills to implement measures 48% 24% 
Lack of a suitable location for the measures 20% 16% 
Lack of labour to install the measures 51% 35% 
Limited financial capacity to adopt the measures 86% 83% 
Limited access to input materials 35%  
No knowledge on effective measures   31% 

A logistic regression analysis (Table 3.6, accuracy 83%) evaluating the factors present in 

existing theory related to having adaptation measures, revealed that people who have adopted 

measures in the past have experienced less drought events. This is possibly a result of  being more 

resilient to drought disasters after adapting to them, rather than a driver at the time of  making the 

decision. However, risk perception (a factor in the Protection Motivation Theory) clearly plays a 

role: people who experience frequent seasons with water scarcity, and/or those who fear such 

seasons, and/or those who are afraid of  climate change, were more likely to have adopted 

measures. Furthermore, farm households with larger land had a 65% higher likelihood of  having 

adopted measures, a factor that can indicate the potential gain of  adaptation – assuming the 

drought-induced losses have a bigger influence on the livelihoods of  households with more land. 

Also household heads who attended extension services were almost three times more likely to 

have adopted measures in the past. Hence, access to knowledge, a factor also apparent in the Fuzzy 

Cognitive Map, indicated by the disaster managers and strongly linked to perceived self-efficacy (a 

factor of  both the Protection Motivation Theory and Theory of  Planned Behaviour), is an 

important driver for adaptation. Interestingly, farm households who trust forecasts were less likely 

to have adopted, maybe because they rely on preparedness rather than long-term adaptation. 
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Table 3.6: Binary logistic regression with "having adopted adaptation measures" as dependent variable. Model selection was 
based on maximizing overall fit for main effects with an estimated AIC of 215. Odds ratio and interval of odds ratios are 
shown. Significance levels: p<0.1 . ; p<0.05 *; p<0.01 **; p<0.001 ***. 

Drivers PAST behaviour ODDS Ratio  2.50% 97.50% Link with theory 

(Intercept) 0.58  0.16 2.13   
Experience seasons with water scarcity 1.18 . 0.99 1.41 Risk perception 
Scared of climate change 1.41 . 0.97 2.06 Risk perception 
Fear from droughts and water shortage 2.07 *** 1.55 2.83 Risk perception 
Number of drought disasters experienced 0.84 ** 0.75 0.93 unclear 
Trust in forecasts 0.72 . 0.48 1.06 unclear 
Access to forecasts 0.71  0.45 1.11 Knowledge 
Attended extension service trainings 2.97 ** 1.33 6.96 Knowledge 
Access to group credit scheme 1.82E8    Financial strength 
Recipient of farm subsidies 1.54E9    Financial strength 
Size of own land 1.65 *** 1.27 2.24 Financial strength 

Table 3.7: Multinomial Poisson regression with "number of adopted adaptation measures" as dependent variable. Model 
selection was based on maximizing overall fit for main effects with an estimated AIC of 757. Odds ratio and interval of odds 
ratios are shown. Significance levels: p<0.1 . ; p<0.05 *; p<0.01 **; p<0.001 ***. 

Drivers PAST behaviour ODDS Ratio  2.50% 97.50% Link with theory 

(Intercept) 0.69  0.44 1.08  
Perceived vulnerability 0.83 *** 0.74 0.93 Risk perception 
Fear from droughts and water shortage 1.23 *** 1.11 1.37 Risk perception 
Trust in forecast 0.84 *** 0.76 0.93 unclear 
Member of a farm group 1.38 ** 1.11 1.70 Knowledge 
Performed a cost-benefit analysis 1.41 ** 1.15 1.74 Knowledge 
Size of own land 1.05 *** 1.03 1.08 Financial strength 
Age of household head 1.01 . 1.00 1.02 Self-efficacy 
Amount of household members 1.06 * 1.00 1.12 Self-efficacy 

Table 3.8: Binary logistic regression with "planning to adopt new measures" as dependent variable. Model selection was based 
on maximizing overall fit for main effects with an estimated AIC of 280. Odds ratio and interval of odds ratios are shown. 
Significance levels: p<0.1 . ;p<0.05 *; p<0.01 **; p<0.001 ***. 

Drivers FUTURE behaviour Odds Ratio  2.5% 97.5% Link with theory 

(Intercept) 0.22  0.06 0.75  
Usefulness of Extension Services 0.47 . 0.20 1.09 unclear 
Faith in god as saviour 0.42 *** 0.26 0.64 Self-efficacy 
Household size 1.12 . 1.00 1.28 Self-efficacy 
Influence of adaptation neighbours 1.42  0.92 2.21 Social norm 
Number of adopted measures 1.44 ** 1.12 1.86 Self-effic. / knowl. 
Access to forecasts 1.64 * 1.11 2.45 Knowledge 
Trust in forecasts 0.71 . 0.49 1.00 unclear 
Perceived efficiency of the measures 1.77 ** 1.17 2.77 Adaptation efficacy 
Access to group credit scheme 6.90  0.81 152.06 Financial strength 
Access to individual credit scheme 3.30 . 0.95 13.74 Financial strength 
Performed a cost-benefit analysis 1.91 . 0.99 3.71 Financial strength 
Total farm expenses 1.00  1.00 1.00 Financial strength 

When analysing the multilinear relationship between behavioural factors present in existing 

theory and the number of  drought adaptation measures adopted (Table 3.7), risk perception and 

knowledge appeared to be relevant again: fear of  droughts and water shortage and the ability to 

perform a cost–benefit analysis were positively related to the number of  measures. The model 

(accuracy of  78%) showed that older people (having experienced more drought years) and larger 

households (more labour power), are positively linked to having more measures: both can be linked 
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to the perception of  self-efficacy. Also people with a larger farm size (more benefits/ larger 

financial consequence of  drought-induced production loss) have a higher odds. Again, farm 

households with less trust in forecasts appeared to have adopted more measures, supporting the 

notion that forecasts (trust) move people from relying on preparedness to investing in adaptation. 

Elements from the Expected Utility Theory (cost–benefit rationale), and Protection Motivation 

Theory (perceived capacity, perceived risk) were visible, but not one theory was able to 

contextualise all regression results. 

When statistically analysing potential future actions – namely predicting farmers’ plans to 

adopt new adaptation measures (Table 3.8, accuracy of  78%) – it was clear that having adopted 

multiple measures before, having a larger household, having performed a cost–benefit analysis, 

and having a positive attitude toward the efficiency of  these measures increased the likelihood of  

planning for new measures by 44%, 12%, 91%, and 77%, respectively. These factors are related to 

the perceived self-efficacy and perceived adaptation efficacy of  the Protection Motivation Theory. 

Understandably, the belief  that god is the only one that can protect households from disasters – 

decreasing self-efficacy – reduced the intention to adopt. On the other hand, having access to 

credit made farm households three times as likely to plan for new adaptation measures, possibly 

because this reduces initial investment costs. While having access to forecasts seemed to increase 

adaptation intention by 65%, trust in forecasts again appeared to negatively incentivise people to 

adopt new measures in the same analysis. Surprisingly, finding extension service training less useful 

increases the likelihood of  planning for new measures: maybe the lack of  extension support 

related to agronomic practices steers them to into making permanent adaptation decisions, but 

there may as well be another explanation for this. 

5.4. Smallholder farmer choice experiment outcomes 

In a first analysis evaluating discrete choices (Table 3.9), results indicated that, as expected 

from the key informant interviews and disaster manager survey, receiving more and better tailored 

extension services, having an improved early warning system, receiving ex-ante cash transfers, and 

having easier access to low-rate credit schemes  - none of  which were the case in the current 

situation (business-as-usual) - all increase farmers’ intention to adopt new drought adaptation 

measures. Clearly, overcoming the barriers of  access to credit, trust in forecasts, and relevance of  

training – as was evident from the previous regression analyses – can indeed increase farm 

households’ intention to adopt. If  people received extension services about innovative adaptation 

measures, they would be 51% more likely to adapt; if  they received timely and trustworthy early 

warning systems, they would be 54% more likely to adapt; and if  they received ex-ante cash 

transfers, they would be 11% more likely to adapt. The attribute credit was negative as lower 

interest schemes were preferred: per unit increase in the interest rate, their likelihood to adopt 

decreased by 7%. 

Significant standard deviations existed in the random parameters, revealing considerable 

heterogeneity. The standard deviations for all attributes, except early warning, were larger than the 

means of  the random parameters: there was a sign-switch within the sample meaning some 

respondents assigning positive utility changes to an attributes, while others expressed negative 
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utility change – showing substantial heterogeneity in the preferences. However, in general, the opt-

out rate was low, with only 21% of  choices for the business-as-usual scenario. The main motivation 

for choosing for this scenario was that respondents already planned to adopt new measures, and 

thus, governmental drought management policies would not increase their intention to adopt. It 

is thus not surprising that the business-as-usual situation (alternative-specific constant) had a large 

negative effect size and was significant, reflecting a general interest in change and dissatisfaction 

with the current situation – as was also clear from the survey where more than 80% indicated that 

the government should be responsible for increasing farm resilience to drought. There was also a 

large significant standard deviation, demonstrating heterogeneity towards business as usual, but 

there was no immediate switch in sign.  

Table 3.9: Random parameter logit model of the discrete choice experiment. Log-Likelihood: -1497. Odds ratio and interval 
of odds ration are shown. Significance levels: p<0.05 *; p<0.01 **; p<0.001 *** 

Attributes Odds Ratio  2.5% 97.5% 

Extra extension services 1.51 *** 1.38 1.65 

Better early warning system 1.54 *** 1.33 1.69 

Ex-ante cash transfers 1.11  * 1.03 1.20 

Low-rate credit schemes 0.93  *** 0.91 0.95 

Business-as-usual 0.01 *** 0.003 0.03 

standard deviation extension service  ***   

standard deviation early warning  *   

standard deviation cash transfer  ***   

standard deviation credit scheme  ***   

standard deviation business-as-usual  ***   

By evaluating discrete choices that allow for mixed interaction effects between scenario 

attributes themselves (Appendix Table 3F) and socioeconomic farm household characteristics 

(Appendix Table 3G, left) or cognitive–behavioural factors and perceptions (Appendix Table 3G, 

right) , it is evident that multiple factors influenced preferences for the four investigated attributes. 

Indeed, a preference for more extension services went hand in hand with one for ex-ante transfers 

and good credit schemes, and also transfers and credit schemes concurred. A preference for early 

warning systems did not quadrate with one for extension services or ex-ante transfers. The 

following two paragraphs try to scrutinize the underlying reasons why these preferences are 

heterogeneous and correlated.  

Firstly (Appendix Table 3G, left), households with more measures preferred extra extension 

services, better early warning systems, and ex-ante cash transfers more than average, and increased 

the effect of  lower-rate credit schemes on adaptation intention. Possibly, the need for tailored 

extension services (training) and ex-ante cash transfers (financial aid) to maintain already adopted 

measures when a drought early warning is sent out, can improve the effect of  these measures in 

mitigating the drought impact. Factors such as age, education level, and already attending 

extension training decreased the effect of  providing extra extension services on the intention to 

adapt: more experienced farmers did not prefer policies related to additional training. The effect 

of  better early warning systems was lower for more educated households and those who were 

members of  a farm group, probably because they have other means of  accessing up-to-date 

climate and weather data. Education level, attending extension training, and a larger off-farm 

income decreased the effect of  credit policies; logically wealthy households do not need such a 
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policy. Being a member of  a group strengthened the effect of  credit policies, probably because of  

the existence of  group credit schemes, and also those with more land did prefer low-rate credit 

schemes. Clearly – but not surprisingly, a differentiated “business-as-usual” or baseline regarding 

knowledge and finances strongly influences the effect of  the four policies on the intention to 

adopt new adaptation measures. 

Secondly (Appendix Table 3G, right), factors such as “being influenced by actions of  

neighbours (social norms)”, “having experienced more droughts (risk appraisal)”, and “having 

access to enough information (self-efficacy)” decreased the positive effect of  extension services 

on the intention to adapt. However, these factors had a positive interaction effect with credit 

schemes: having access to enough information increases the effect of  credit schemes on the 

intention to adapt; making this governmental action more successful in increasing uptake of  

measures among well-informed farm households. Total income (cost perception) had negative 

interactions with both extension services and early warning systems. Furthermore, perceiving that 

once has the capacity to cope (self-efficacy) had a positive interaction with early warning systems. 

Moreover, performing a cost–benefit analysis (behaving economically rational such as assumed in 

the Expected Utility Theory) and having large adaptation spending (adaptation appraisal) had 

positive interactions while being influenced by neighbours (social norm) had a negative interaction 

with ex-ante cash transfers. Clearly, the factors of  the socio-cognitive theories influence the effect 

of  governmental policies.   
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6. Discussion 

6.1. Adaptive behaviour of  smallholder farmers in Kitui 

By analysing interviews with key informants, the answers of  the disaster risk managers and 

the results from the smallholder farmer survey, we revealed that i.a. experience with water scarcity, 

perception of  climate change, fears from drought and water shortage, as well as attendance to 

trainings, faith in god, access to and faith in forecasts, the number of  previously adopted measures, 

size of  farm land, perceived efficiency of  measures, access to credit, total expenses and performing 

a cost-benefit analysis explain past and future adaptive behaviour. Comparing answers from 

disaster managers and smallholder farmers, the former seem to overestimate the effect of  

extension while underestimating the effect of  gains: while extension services indeed explain past 

behaviour in the regression analysis-  usefulness of  extension services seemed to limit the intention 

to adapt in the future. Summarizing all these findings, we can identify five main outcomes:  

First of  all, both adaptation costs and adaptation efficacy (linked amongst others with field 

size) are of  uttermost importance, as financial strength is the most-mentioned barrier – similar to 

(Drechsel et al., 2005; Gbegbelegbe et al., 2018a; Ifejika Speranza, 2010; Kasyoka Nthenge, 2016; 

Khisa1 et al., 2014; Muhammad et al., 2010a; Nkatha, 2017; Okumu, 2013b; Owuor et al., 2005; 

Shikuku et al., 2017; Tongruksawattana &#38; Wainaina, 2019) and others – and yield gain the 

most important motivator for decisions of  the smallholder farmers in this case study. The fact 

that farmers able to perform a cost-benefit-analysis have a higher likelihood of  adoption further  

strengthens this evidence, which is also found in (Drechsel et al., 2005; Muhammad et al., 2010a; 

Mwangi et al., 2015; Nkatha, 2017). While considering costs and benefits hints to utility 

maximizing behaviour (Expected Utility Theory), it is also on the basis of  the Theory of  Planned 

Behaviour (Sutton, 2001) and is in a less direct way present in the Protection Motivation Theory 

where coping appraisal is influenced by the response costs of  action and the perceived response 

efficacy (Maddux & Rogers, 1983).  

Secondly, our multi-method analysis proves the significance of  knowledge as driver for 

adaptation decisions in this case study. Attendance to trainings, farmer networks and access to 

forecasts, can be all classified under human capital. This human capital factor, leading to a 

perceived own ability to respond, is found to determine the adoption of  farm-level adaptation 

measures in preceding studies (e.g. (Adimo et al., 2012; Bedeke et al., 2019; Bryan et al., 2019, 

2013d; Deressa et al., 2009; Gbetibouo, 2009; Kurukulasuriya et al., 2006; Muhammad et al., 

2010a)) and can be seen as a proxy for perceived self-efficacy. Also mistrust in forecasts (from the 

questionnaire), corruption (from the interviews), belief  in god as saviour (from both) and the 

influence of  already adopted measures (from the DCE) can be related to this self-efficacy factor, 

although not much existing research literally mention these proxies. Self-efficacy, the perception 

of  how well one is able to cope with a situation based on their skills and circumstances, is an 

essential factor to describe the decision making process in both the Protection Motivation Theory 

and the Theory of  Planned Behaviour (Gebrehiwot & van der Veen, 2015; Keshavarz & Karami, 

2016c; Le Dang et al., 2014; Niles et al., 2016). 
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Thirdly, social networks (i.e., farm groups) were mentioned in the interviews (also in (Bedeke 

et al., 2019; van Duinen et al., 2012)) but appeared not to be significant in the statistical analyses 

and showed a lessening effect on the influence of  governmental actions. They clearly influence 

adaptation decisions, but this can be through knowledge distribution  - influencing the self-efficacy 

factor, or through inflicting normative believes, the subjective norm factor in the Theory of  

Planned Behaviour. Fourthly, the importance of  (a subjective) drought disaster risk as driver for 

adaptation decisions is apparent in this case study, through perceived vulnerability, experience with 

and fear of  droughts and water scarcity, and perception of  climate change. This risk-appraisal 

factor is found to motivate adoption of  farm-level drought adaptation measures in preceding 

studies (e.g. (Deressa et al., 2011; Di Falco, 2014b; Ochieng et al., 2016; Regasa & Akirso, 2019b; 

Tripathi & Mishra, 2017); but not found in (Carlton et al., 2016) and varying results in (Tessema 

et al., 2019)). Threat appraisal is an important factor in the Protection Motivation Theory, which 

states that people have to perceive a certain level of  risk before they will consider acting (REF). 

Finally, assessing the effect of  policy measures related to extension services, early warning 

systems, ex-ante cash transfers, and credit schemes, we evidence that all would have a positive 

influence on adaptation intention, thus encouraging adaptation decisions; a similar positive link 

was found in (E. Bryan et al., 2009; Ochieng et al., 2016; Tessema et al., 2019) (credit); (Gbetibouo, 

2009; Kurukulasuriya et al., 2006) (extension services), (Evelyn & Charles, 2018; Silvestri et al., 

2012b) (early warning), (E. Bryan et al., 2013e; Silvestri et al., 2012b)(aid). However, the effect was 

found to be highly heterogeneous: Farm households who were already able to adopt certain 

measures generally had a higher preference for the policies, and household heads with higher 

education levels generally had a lower preference; however, the opposite was true for low-rate 

credit schemes. The effect of  neighbours or farm groups decreased the positive effects, showing 

the capacity of  social networks to complement the need for governmental action.  

Clearly, even with the strong presence of  financial factors in the decision-making process 

of  smallholder farmers in Kitui, this Chapter shows that the assumption of  purely economic 

rational behaviour should be avoided. From the more complex behavioural theories, most of  the 

factors with significant influence in this case study can be linked to factors of  the Protection 

Motivation Theory (such as in (Dang et al., 2014b; Grothmann & Patt, 2005; Keshavarz & Karami, 

2016d; Regasa & Akirso, 2019b; van Duinen et al., 2016) and others), while there is less evidence 

for the other theories. For multiple variables, it remains unclear whether they can be seen as a 

proxy for a factor in one of  the decision-making theories, which complicates validating the use of  

a specific theory in this case study. Moreover, the heterogeneity in and correlation between policy 

references are not apparent in most behavioural theories, which in general assume that people 

behave more or less in the same way, while this case study evidences the opposite. Notwithstanding, 

it is evident that if  adaptive behaviour is to be included in dynamic drought disaster risk models, 

in addition to the costs and benefits, the perceived self-reliance, the perceived risk, the social 

network and the knowledge must also be considered. 
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6.2. Future modelling applications 

The information presented in this manuscript – combining theories and empirics- brings 

insight in the complexities of  the adaptive behaviour of  smallholder farmers in Kitui. It can be 

useful for both scientific and decision maker audiences as it can help improve the vulnerability 

and adaptation dynamics in drought disaster risk models and it can thus both directly and indirectly 

support the design drought disaster risk reducing policies that are effective and efficient. Our 

findings could be used to create a theoretical agent-based drought disaster risk model with simple 

rules depicting the adaptive behaviour of  smallholder farm households in semi-arid Kenya 

(following the framework suggested in Chapter 2) and also provide quantitative evidence of  the 

factors shaping adaptive behaviour, which can be used to calibrate the decision rules of  ABMs. 

Besides, they could be used to structure a system dynamics model (Gies et al., 2014) depicting the 

socio-hydrological reality of  smallholder farmers under drought disaster risk. Such models can 

deepen the understanding of  the intertwined nature of  the human and hydrological systems as 

well as the role of  drought disaster risk perception therein. Moreover, DCE allow to explore future 

adaptation decisions under a changing policy context, providing input for predictive models 

capable of  simulating the effect of  policies on future drought disaster risk. 

6.3. Methodological considerations 

The mixed-methods data collection presented in this Chapter was based on both empirical 

evidence from other studies as well as behavioural theories, thereby overcoming the limitations of  

both. The participatory cognitive mapping exercise allowed to address the drought disaster risk 

perceptions of  the key informants and improved our understanding of  the decision making of  

smallholder farm households in the semi-arid-Kenyan context. The interviews with the disaster 

managers provided a top-down view on current drought management practices and policies. As 

such, the methods can be seen as complementary to study adaptive behaviour and assure both 

views are included in the design of  a detailed household survey with smallholder farm households.  

Ideally a multi-year survey would have been set up to evaluate the adaptation decisions of  

smallholder farmers over time in relation to socio-economic, environmental and policy changes. 

In our study, this was not feasible so as a proxy, both smallholder farmers’ past adaptation 

decisions and their intention to adopt were evaluated. While doing the former, it is hard to extract 

the drivers and barriers that existed at the point of  decision – as they might have changed over 

time-, the latter is based on self-reported plans to invest in measures, which might deviate from 

reality. While both are not ideal, evaluating past behaviour is a method frequently applied in 

adoption studies and evaluating the intention to adapt is also relevant as this might even better 

reflect the behavioural drivers for decision (Bryan et al., 2019). Besides, the sampling method 

might have a bias to farmers with relatively good access to the market, which might not be a ful 

representation of  the diversity of  farm household sin the region. 

Further, the unconventional application of  discrete choice experiments in this Chapter does 

not investigate a willingness to pay for policies. Rather, we investigated preferences for policies 

and the potential of  policies influencing the respondent’s intention to adapt, a technique also 



CHAPTER 3 

applied in other fields (Blaauw et al., 2010; Pechey et al., 2014; Ryffel et al., 2014). This application 

can be seen as complementary to the logistic regressions linking drivers, barriers and past or 

intended actions, as this method is able to link factors, smallholder farmer characteristics, not 

directly to adaptation actions but to preferences for support concerning these adaptation actions. 

7. Conclusion 

In this Chapter, interviews with key informants and a disaster manager survey, 

complemented by scientific literature on the application of  sustainable drought management 

practices, were used to identify the factors influencing the adaptive behaviour of  smallholders at 

risk of  drought. The significance of  these factors was tested using data from an extensive survey 

of  small farming families, including a questionnaire and a choice experiment. We compared the 

empirically discovered drivers and barriers to adaptation with components of  existing behavioural 

theories, and found that risk perception, social networks and knowledge, in addition to adaptation 

costs and benefits, are essential for drought adaptation decisions among smallholders in Kitui, 

semi-arid Kenya. In addition, we found that there is significant heterogeneity in the adaptive 

behaviour of  smallholders, which also translates into the heterogeneous - although moderately 

positive - effect of  different government policies, such as relevant extension services, reliable early 

warning systems, reduced credit rates or cash transfers . 

This research supports the conclusion of  a variety or research that has suggested the 

presence of  adoption restrictions (such as access to training or financial markets) that hinder the 

implementation of  drought adaptation. Clearly, the assumption of  economic rationality and 

perfect information in the Expected Utility Theory is not sufficient to explain perceived adaptive 

behaviour. The drivers and barriers that appeared to influence behaviour in this case study have 

been linked to components of  more complex cognitive theories such as the Protection Motivation 

Theory and Theory of  Planned Behaviour: multiple factors, which have been found to be 

significantly related to past adaptation decisions or adaptation intentions, can be seen as proxies 

for threat appraisal, self-efficacy and social norms. However, for our case study, no theory could 

fully describe the observed adaptive behaviour.  

Nevertheless, the applied theories were useful in explaining the causal relationships between 

different socioeconomic and cognitive factors and the eventual adaptive behaviour. The findings 

help unravel the processes behind smallholder farmer adoption decisions in Kitui and evaluate the 

impact of  four drought policies in this region, while the method showed promise for evaluating 

the complexity of  drought adaptation behaviour, including outside semi-arid Kenya or a 

smallholder context. Both can be used to identify the most vulnerable groups and developing well-

targeted adaptation policies, and to design, calibrate, and validate utility functions to model 

heterogeneous individual adaptation decisions in dynamic drought disaster risk models.  
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Appendix Chapter 3 

Table 3A: Key informants: Both the name of the company/organisation and the function of persons interviewed are mentioned 
in the first column, the second column contains some background information about the company/organisation. 

Key informant Explanation 

ACRE (an Agricultural Climate data 
analysis and a Business analyst, 
impact assessment expert) 

ACRE Kenya, an agriculture and climate risk enterprise, focuses on the whole production chain, adopting a multi-risk 
approach. They work on irrigation adoption  over insurance development (IBLI project, reduced premiums for good 
practices) to improve access to markets and finance, by surveying and monitoring the production risk (actual and 
perceived) for farmers. Their current focus is on planting date info and suggestions for crop type, as this is proven to 
highly influence crop yield. 

SASOL NGO (head of SASOL and 
technical advisor) 

Sasol supports local farmers with sustainable agricultural solutions, i.e., water allocation, restocking, providing tools 
and knowledge. Sasol is the main receiver of an EU funded project on ending drought emergencies (focussing on 
recovery). While the governmental extension services are based on supply and demand regarding crop production, 
SASOL focusses mostly on improving and stabilising food supply in order to provide sustainable livelihoods for the 
impoverished local small-scale farmers. 

Nyumbani Village (Orphanage 
director) 

The orphanage is a perfect example of a self-subsistence community, but a lot of foreign money was needed to 
establish this resilient environment. They implemented a plethora of sustainable land management practices, adopting 
both soil and water conservation measures and climate-smart agricultural practices. The community is autarkic, and 
they have projects on improving the water and food security and financial stability of the organisation.  

Ministry of Agriculture, Livestock 
and Fishing (Director of Water and a 
water technologist) 

The department we speak focusses on farmer food security through water supply services. Most priority extension 
services that they offer concern financial management, investments and on system diagnosis (e.g., Pump failure). 
Besides, they are responsible for the installation of community water harvesting structures like sand dams, bore holes, 
drink water tanks, wastewater management and river conservation. 

Kitui Enterprise Promotion 
Company on Mango farming 
(Mango cooperative board member) 

Before it was an enterprise, the mango cooperative (producing mango, mango juice and mango flour, managed from 
central Kitui by a committee) was a project outcome of an NGO but then value addition became possible and stable, 
so a business case was developed. Now it is a company owned for 70% by the farmers, providing stable income for 
more than 1150 farmers (mostly woman). The participant have a role in the management of the enterprise.  

5 first generation students from 
South-eastern Kenyan University  

Students (BSc Hydrology and Water Resource Management) from different parts of Kenya: West Kenya, Lake 
Nailot, Turkana, Plain Nailot, close to Tanzania, Turkana, Plain Nailot, Coast, Malingi, Turkana, Plain Nailot with 
parents occupied in (agro-)pastoral livelihood activities. 

5 different example farmers, 
introduced by SASOL foundation. 

All visited farmers have ‘show farms’ where other farmers can go to have a look and learn. We asked them how they 
try to convince others to adopt beneficial adaptation measures and what the largest limitations were for other 
farmers. Further, we asked their opinion on why other farmers are or are not as successful in implementing climate-
smart agriculture, and how government / NGOs could improve to assure climate-smart agriculture in the region 
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Table 3B: Survey questions related to PROTECTION MOTIVATION THEORY (RA: risk appraisal; SE: self-
efficacy; AE: adaptation efficacy; AC: adaptation costs) and THEORY OF PLANNED BEHAVIOUR (SN: 
subjective norm; AT: attitude; SE: behavioural control) and their rationale. 

Variable Theory Question Rationale 

Experienced 
Impact 

RA 

When a drought hit, how severe were the 
impacts on your farming activities? 

5-Likert-scale question from ‘not 
severe’ (I didn’t feel an impact) to 
‘very severe’(I lost a lot of my 
crops) 

Attitude to 
risk RA 

I am very scared about droughts affecting my 
crop production. I want to do anything to 
protect my farm from water shortage 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Future risk 
perception 1 RA 

How likely do you think it is that a severe 
drought in the next five years will have a 
negative impact on your farming activities? 

5-Likert-scale question from ‘it is 
impossible to happen’ to ‘it will 
certainly happen’ 

Future risk 
perception 2 

RA 

How do you think, in future, the amount of 
water available to you will change if there are 
no additional water harvesting systems build 

5-Likert-scale question from ‘there 
will be way less water available’ to 
‘there will be a lot more water 
available’ 

Relative 
vulnerability  

RA 

If you compare the situation of your family 
situation to the rest of the community, do 
droughts affect you...? 

5-Likert-scale question from ‘a lot 
less than other households in my 
community’ to ‘much more than 
other households in my 
community’ 

Perceived 
vulnerability  RA 

I am very vulnerable to drought disaster 
risks. I suffer a lot from the possible impacts 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Perceived self-
efficacy 

SE 

I do believe that I am able to avoid the 
consequences of droughts in my household. 
I do have control over the expected drought 
impacts 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Faith 
SE 

I do believe that only God can protect my 
household against droughts. Everything is 
decided by fate 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Risk 
information 1 SE 

I do receive enough forecasts and early 
warnings in face of droughts 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Risk 
information 2 SE 

The forecasts and drought warnings I 
receiver are trustworthy; I can use them to 
adjust my farm practices 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Risk appraisal 
1 RA 

If the risk on drought and water shortage 
was lower, I would not have adopted these 
agricultural water management measures 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Risk appraisal 
2 

RA 

How important is "having had a lot of water 
shortages for my crop production" for your 
decision to install new drought adaptation 
measures? 

5-Likert-scale question from ‘not 
important at all (I would install it 
anyway)’ to ‘absolutely essential’ 

Perceived 
efficiency AE / 

AT 

I think drought adaptation measures such as 
zai pits, ponds or extra watering through 
irrigation are effective in reducing drought 
impact" 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Importance 
costs 

AC 

How important is "the cost of installation 
and maintenance" for your decision to install 
new drought adaptation measures? 

5-Likert-scale question from ‘not 
important at all (I would install it 
anyway)’ to ‘absolutely essential (I 
would not install it if the costs 
were very high)’ 
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Importance 
benefit 

AE 

How important is "the expected yield gain" 
for your decision to install new drought 
adaptation measures? 

5-Likert-scale question from ‘not 
important at all (I would install it 
anyway)’ to ‘absolutely essential (I 
would not install it if there was no 
yield gain)’ 

Importance 
financial aid 

AC 

How important was getting financial help for 
your decision to install new drought 
adaptation measures? 

5-Likert-scale question from ‘not 
important at all (I would install it 
anyway)’ to ‘absolutely essential (I 
would not install it if there was no 
support)’ 

Adaptation 
information SE 

I do receive enough information about 
drought adaptation measures options for 
agriculture 

5-Likert-scale question from 
‘strongly disagree’ to ‘strongly 
agree’ 

Importance 
information 

SE 

How important is it to get information from 
an NGO or Governmental extension 
workers / trainings about drought adaptation 
measures for your decision to install new 
measures? 

5-Likert-scale question from ‘not 
important at all (I would install it 
anyway)’ to ‘absolutely essential (I 
would not install it if there was no 
information)’ 

Importance 
social network 

SN 

How important are/were the drought 
adaptation measures choices of your 
neighbours or farmers in your network for 
your decision to install new water harvesting 
measures? 

5-Likert-scale question from ‘not 
important at all (I would install it 
anyway)’ to ‘absolutely essential (I 
would not install it if nobody 
recommended it)’ 

 

Table 3C: Descriptive statistics of the 260 farm households in the semi-structured questionnaire and the discrete choice 
experiment 

CHARACTERISTICS VALUE 

Age of respondent 42  
Gender of respondent (female) 63%  
Illiterate respondent 4.6% 
Able to perform a proper cost benefit analysis 52% 
Household size 5.9 
Farmer network size 18 
Farm size 1.25 ha 
Farm under maize 0.71ha 
Producing maize 97% 
Earning less than 1000 USD per year 37% 
Earning more than 400 USD per year 33% 
Installed a drought adaptation measures 77% 
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Figure 3A: Mapping the drought disaster risk context in Kitui based on key informant interviews with scholars, first-
generation students, local authorities and NGOs, and pioneer farmers. This fuzzy cognitive map (FUZZY COGNITIVE 
MAP) served as guidance on further questionnaire development to be able to simulate the situation in Kitui in more detail.
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Table 3D: Correlation coefficients (R values) for all variables that have a p<0.001 significant relation with the variable on top of the columns.  

access to forecast  Perceived capacity  
number of droughts 
experienced 

 
Intention to adopt 
new measures 

 
No. measures 
adopted 

 Attending trainings  Sufficient information  

access to information 0.66 Total expenses 0.53 importance of efficiency 0.60 
Importance of the 
outcome of a CBA 

0.31 size of the farmland 0.39 useful trainings 0.51 forecast 0.66 

thrust in forecasts 0.65 Food expenditures 0.51 Importance risk 0.60 Able to perform a CBA 0.27 
Importance of 
neighbours’ decisions 

0.3 Effect of  neighbours 0.44 useful trainings 0.62 

useful trainings 0.57 Expenditures off-farm 0.38 importance of costs 0.56 
Amount of droughts 
experienced 

0.26 
influence of risk 
perception 

0.25 Member group 0.38 importance of trainings 0.60 

importance of trainings 0.54 Farm expenses 0.34 Importance of fin. aid 0.44 
Perceived efficiency of 
existing measures 

0.27 farm expenses 0.24 importance of CBA 0.33 thrust in forecasts 0.55 

Importance of fin. aid 0.42 Expenditures farm 0.34 importance of CBA 0.36 
Importance of  
adaptation efficacy 

0.25 
getting financial help in 
terms of a gift 

0.21 Drought years 0.32 Importance of fin. aid 0.49 

importance of costs 0.41 Climate change fear 0.33 access to information 0.34 Effect of neighbours 0.23 
being able to perform a 
CBA 

0.21 CBA 0.31 importance of costs 0.47 

Limited Skills 0.35 
importance of actions 
neighbours 

0.30 Effect neighbours 0.34 
Importance of risk 
perception 

0.25 
Importance of financial 
help 

-0.21 Lack Labour 0.30 perceived efficiency 0.42 

perceived efficiency 0.34 Adaptation spending 0.28 useful trainings 0.33 access to information 0.21 
Importance of 
extension services 

-0.23 access to information 0.28 importance of CBA 0.38 

Perceived frequency 0.34 
Seasons spend in water 
shortage 

0.26 Attendance to trainings 0.32 faith in god  -0.29 
Having access to 
forecast 

-0.26 importance of trainings 0.28 Importance risk 0.38 

importance of risk 0.32 Measures adopted 0.23 Disaster fear 0.31   Feeling vulnerable to 
droughts 

-0.3 importance of risk 0.28 Limited Skills 0.36 

importance of efficiency 0.30 No financial help 0.22 CBA 0.28     No Access Credit 0.26 Perceived frequency 0.35 
Attendance to trainings 0.28 Education level 0.21 remittances 0.27     remittances 0.25 Drought years 0.34 
Disaster fear 0.27 thrust in forecasts -0.21 Perceived frequency 0.27     thrust in forecasts 0.25 CBA 0.33 
importance of CBA 0.27 Importance of fin. aid -0.23 forecast 0.26     aid 0.25 Effect of neighbours 0.32 
Size cropland 0.27 Effect neighbours -0.23 intention 0.26     importance of efficiency 0.24 Attendance to trainings 0.32 
Drought years 0.26 No Location -0.26 planning 0.25     forecast 0.24 importance of efficiency 0.32 
Effect neighbours 0.25 Attendance to trainings -0.26 thrust in forecasts 0.25     importance of costs 0.23 No Location 0.29 
Income off-farm 0.25 aid -0.28 importance of trainings 0.24     Income farm 0.22 female 0.28 
HHsize +12y 0.23 Limited Skills -0.32       Limited Skills 0.21 Disaster fear 0.25 
CBA 0.22 Perceived frequency -0.33 aid 0.21     capacity -0.26 Size cropland 0.24 
female 0.21 perceived efficiency -0.33 age 0.21       Had credit before 0.23 
measures -0.22 No Access Credit -0.38 Attendance to trainings 0.21       Lack Labour 0.22 
importance of actions 
neighbours 

-0.24 importance of risk -0.40         HHsize12 0.22 

Sum measures -0.26 importance of costs -0.40 
Seasons spend in water 
shortage 

-0.17       intention 0.21 

Water shortage -0.29 importance of efficiency -0.44 measures -0.21       importance of actions 
neighbours 

-0.22 

Size land -0.33 Drought years -0.48 Faith in god -0.23       Size land -0.32 
  vulnerability -0.49 Farm expenses -0.25         

  Lack Labour -0.49           
  Disaster fear -0.50 No financial help -0.26         
    Expenditures off-farm -0.27         

    importance of actions 
neighbours 

-0.29         

    Adaptation spending -0.32         
    Climate change fear -0.43         
    Total expenses -0.46         
    capacity -0.48         
    Food expenditures -0.50         
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Table 3E: Correlation coefficients (R values) for all variables that have a p<0.001 significant relation with the variable on top of the columns (Likert scale importance: from not 
important at all to essential). 

Importance of risk in 
making decisions 

 
Importance of costs in 
making decisions 

 
Importance of 
adaptation efficacy in 
making decisions 

 
Importance of financial 
help in making 
decisions 

 
Importance of 
extension services in 
making decisions 

 
Importance of cost-
efficiency in making 
decisions 

 
Importance of 
neighbours’ actions in 
making decisions 

 

Importance costs 0.74 importance efficiency 0.84 importance costs 0.84 Importance Extension 0.56 useful trainings 0.63 importance 0.42 sum measures 0.30 
importance efficiency 0.72 importance risk percept 0.74 importance risk percept 0.72 importance costs 0.55 information access 0.60 Limited Skills 0.40 capacity 0.30 
no. droughts 
experienced 

0.60 perceived efficiency 0.57 no. droughts experienced 0.60 importance risk percept 0.50 useful trainings 0.56 useful trainings 0.40 effect neighbours 0.29 

perceived efficiency 0.58 no. droughts experienced 0.56 perceived efficiency 0.53 information access 0.49 Importance fin. aid 0.56 information access 0.38 measures 0.24 
Importance fin. aid 0.50 Importance fin. aid 0.55 Lack of Labour 0.48 useful trainings 0.46 respondent 0.55 importance costs 0.37 adaptation spending 0.24 
Lack Labour 0.46 information access 0.47 Importance fin. aid 0.45 importance efficiency 0.45 forecast 0.54 effect neighbours 0.37 farm expenses 0.23 
Limited Skills 0.46 Lack Labour 0.44 Limited Skills 0.42 no. droughts experienced 0.44 thrust in forecasts 0.47 no. droughts experienced 0.36 expenditures farm 0.23 
No Access Credit 0.43 Limited Skills 0.44 No Access Credit 0.39 forecast 0.42 Limited Skills 0.43 importance risk percept 0.33 information access -0.22 
perceived frequency 0.38 perceived frequency 0.43 perceived frequency 0.35 Limited Skills 0.40 importance costs 0.42 Attendance to trainings 0.33 importance efficiency -0.23 
information access 0.38 Importance extension 0.42 effect neighbours 0.33 thrust in forecasts 0.40 importance CBA 0.42 importance efficiency 0.33 forecast -0.24 
farm income 0.37 useful trainings 0.41 

  
perceived efficiency 0.36 size cropland 0.38 Limited Skills 0.32 perceived frequency -0.24 

remittances 0.35 forecast 0.41 importance CBA 0.33 useful trainings 0.35 effect neighbours 0.36 intention 0.31 Importance fin. aid -0.26 
No Location 0.34 importance CBA 0.37 

  
perceived frequency 0.35 female 0.35 perceived efficiency 0.31 importance costs -0.26   

effect neighbours 0.35 information access 0.32 respondent 0.34 perceived efficiency 0.34 respondent 0.30 No Access Credit -0.26 
importance CBA 0.33 No Access Credit 0.34 useful trainings 0.31 effect neighbours 0.30 Attendance to trainings 0.33 planning 0.30 importance risk percept -0.27 
useful trainings 0.33 No Location 0.34 No Location 0.30 No Location 0.30 CBA 0.32 Importance fin. aid 0.29 vulnerability -0.27 
willingness 0.33 CBA 0.33 disaster fear 0.30 importance CBA 0.29 Income off-farm 0.32 useful trainings 0.28 no. droughts experienced -0.29 
forecast 0.32 thrust in forecasts 0.33 forecast 0.30 remittances 0.27 importance risk percept 0.30 No Access Credit 0.28 Limited Skills -0.30 
effect neighbours 0.30 Disaster fear 0.28 remittances 0.29 Lack Labour 0.27 perceived frequency 0.29 Edu 0.28 Lack Labour -0.32 
Importance extension 0.30 willingness 0.27 farm income 0.29 size cropland 0.26 importance efficiency 0.28 forecast 0.27   
CBA 0.28 useful trainings 0.27 CBA 0.29 disaster fear 0.26 Attendance to trainings 0.28 perceived frequency 0.23 

  

Attendance to trainings 0.28 remittances 0.26 Importance extension  0.28 No Access Credit 0.25 No Location 0.27 farm income 0.23   
thrust in forecasts 0.26 farm income 0.23 intention 0.25 CBA 0.24 no. droughts experienced 0.24 thrust in forecasts 0.23   
intention 0.25 Attendance to trainings 0.23 Attendance to trainings 0.24 Attendance to trainings 0.23 sum measures -0.23 No Location 0.22 

  

disaster fear 0.24 intention 0.22 thrust in forecasts 0.23 vulnerability 0.21 perceived future -0.26 Lack Labour 0.20 
  

age 0.22 age 0.21 age 0.22 Attendance to trainings 0.20 water shortage -0.30 climate change -0.20 
  

No financial help -0.25 climate change -0.20 planning 0.22 farm expenses -0.20 size land -0.40 water shortage -0.20 
  

Expenditures off-farm -0.25 farm expenses -0.23 aid 0.22 expenditures farm -0.20 
      

god -0.26 expenditures farm -0.23 farm expenses -0.20 tot expenses -0.20   
    

Importance neighbours -0.27 No financial help -0.24 expenditures farm -0.20 sum measures -0.21     
  

climate change -0.27 Expenditures off-farm -0.25 food expenditures -0.18 capacity -0.23     
  

tot expenses -0.40 Importance neighbours  -0.26 tot expenses -0.20 size land -0.23 
      

capacity -0.40 food expenditures -0.33 capacity -0.23 measures -0.25 
  

  
  

food expenditures -0.44 tot expenses -0.35 
  

Importance neighbours -0.26 
      

  
capacity -0.40     

      

 



Complexities in drought adaptation behaviour 

93 

Table 3F: Mixed logistic regression models investigating policy influence in farmer’s intention to adopt individual drought 
adaptation measures. Significance: p<0.1 . ; p<0.05 *; p<0.01 **; p<0.001 *** 

Household characteristics Estimate Pr(>|z|) 

extension.onceperyear 0.14  
extension.onceperseasons 0.90 *** 
Ewarning.yearlyoutlook 0.57 ** 
ewarning.seasonaloutlook 0.94 *** 
transfer.lumpsum 0.13  
transfer.twosums 0.21 . 
credit.fivepercentpercent 0.41 * 
credit.twopercentpercent 0.59 *** 
Business-as-usual -5.64 *** 
chol.extension.onceperyear:extension.onceperyear 0.88 ** 
chol.extension.onceperyear:extension.onceperseasons 0.84 *** 
chol.extension.onceperseasons:extension.onceperseasons 1.34 *** 
chol.extension.onceperyear:ewarning.yearlyoutlook -0.81 * 
chol.extension.onceperseason:ewarning.yearlyoutlook -0.22  
chol.ewarning.yearlyoutlook:ewarning.yearlyoutlook 1.24 ** 
chol.extension.onceperyear:ewarning.seasonaloutlook -0.03  
chol.extension.onceperseason:ewarning.seasonaloutlook 1.12 *** 
chol.ewarning.yearlyoutlook:ewarning.seasonaloutlook 0.24  
chol.ewarning.seasonaloutlook:ewarning.seasonaloutlook 0.23  
chol.extension.onceperyear:transfer.lumpsum -0.09  
chol.extension.onceperseason:transfer.lumpsum -0.07  
chol.ewarning.yearlyoutlook:transfer.lumpsum -0.18  
chol.ewarning.seasonaloutlook:transfer.lumpsum 0.41  
chol.transfer.lumpsum:transfer.lumpsum 0.77 * 
chol.extension.onceperyear:transfer.twosums 0.00  
chol.extension.onceperseason:transfer.twosums 0.17  
chol.ewarning.yearlyoutlook:transfer.twosums -0.49 . 
chol.ewarning.seasonaloutlook:transfer.twosums 0.52 * 
chol.transfer.lumpsum:transfer.twosums 0.53 ** 
chol.transfer.twosums:transfer.twosums 0.14  
chol.extension.onceperyear:credit.fivepercent -0.39  
chol.extension.onceperseason:credit.fivepercent 1.55 *** 
chol.ewarning.yearlyoutlook:credit.fivepercent -0.10  
chol.ewarning.seasonaloutlook:credit.fivepercent 0.16  
chol.transfer.lumpsum:credit.fivepercent -0.29  
chol.transfer.twosums:credit.fivepercent 0.19  
chol.credit.fivepercent:credit.fivepercent -0.26  
chol.extension.onceperyear:credit.twopercent 0.19  
chol.extension.onceperseason:credit.twopercent 0.75 ** 
chol.ewarning.yearlyoutlook:credit.twopercent -0.29  
chol.ewarning.seasonaloutlook:credit.twopercent 0.35  
chol.transfer.lumpsum:credit.twopercent -0.81  
chol.transfer.twosums:credit.twopercent 0.56  
chol.credit.fivepercent:credit.twopercent -0.09  
chol.credit.twopercent:credit.twopercent -0.13  
chol.extension.onceperyear: Business-as-usual -4.53 *** 
chol.extension.onceperseason: Business-as-usual 0.31  
chol.ewarning.yearlyoutlook: Business-as-usual -1.01 * 
chol.ewarning.seasonaloutlook: Business-as-usual -1.30 * 
chol.transfer.lumpsum: Business-as-usual 0.84 * 
chol.transfer.twosums: Business-as-usual 3.00 *** 
chol.credit.fivepercent: Business-as-usual 0.75  
chol.credit.twopercent: Business-as-usual 1.49 * 
chol. Business-as-usual: Business-as-usual 2.70 *** 
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Table 3G: Mixed logistic regression models investigating policy influence in farmer’s intention to adopt individual drought 
adaptation measures with multiple farm household characteristics (left) and factors related to the PROTECTION 
MOTIVATION THEORY and THEORY OF PLANNED BEHAVIOUR (right) as case-specific variables. 
Significance levels: p<0.1 . ; p<0.05 *; p<0.01 **; p<0.001 *** 

Household characteristics Estimate Pr(>|z|) Behavioural factors Estimate Pr(>|z|) 

extension 0.96 *** extension 1.63 *** 
ewarning 0.63 * ewarning 0.97 *** 
transfer -0.11  transfer -0.15  
credit -0.14 * credit -0.20 ** 
asc -4.32 *** asc -3.45 *** 
extension_sizeland 0.03  extension_effect neigbours -0.12 * 
extension_Attendance to trainings -0.09 *** extension_CBA 0.03  
extension_god 0.12 * extension_nr. droughts experienceds -0.03 * 
extension_membergroup 0.05  extension_totexpenses 0.00  
extension_summeasures 0.21 *** extension_perceived efficiency -0.05  
extension_edu -0.14 *** extension_vulnerability -0.07  
extension_age -0.01 ** extension_capacity 0.08 . 
extension_incomeoffarm -0.01  extension_disasterfear -0.10  
extension_hhsize -0.01  extension_information -0.10 * 
ewarning_sizeland 0.02  extension_totincome -0.07 ** 
ewarning_Attendance to trainings 0.04  extension_adaptationspending -0.01  
ewarning_god 0.01  ewarning_effect neigbours -0.03  
ewarning_membergroup -0.23 * ewarning_CBA 0.06  
ewarning_summeasures 0.16 *** ewarning_nr. droughts experienceds -0.02  
ewarning_edu -0.09 ** ewarning_totexpenses 0.00  
ewarning_age 0.00  ewarning_perceived efficiency 0.05  
ewarning_incomeoffarm -0.01  ewarning_vulnerability 0.06  
ewarning_hhsize 0.00  ewarning_capacity 0.07 . 
transfer_sizeland -0.03  ewarning_disasterfear -0.06  
transfer_Attendance to trainings 0.00  ewarning_information -0.07  
transfer_god 0.04  ewarning_totincome -0.06 * 
transfer_membergroup -0.08  ewarning_adaptationspending -0.03  
transfer_summeasures 0.11 ** transfer_effect neigbours -0.14 * 
transfer_edu -0.01  transfer_CBA 0.14 . 
transfer_age 0.00  transfer_nr. droughts experienceds 0.00  
transfer_incomeoffarm 0.04  transfer_totexpenses 0.00  
transfer_hhsize -0.01  transfer_perceived efficiency 0.04  
credit_sizeland -0.02 *** transfer_vulnerability 0.00  
credit_Attendance to trainings 0.01 * transfer_capacity 0.02  
credit_god 0.00  transfer_disasterfear -0.01  
credit_membergroup -0.08 ** transfer_information -0.07  
credit_summeasures -0.02 . transfer_totincome 0.01  
credit_edu 0.02 ** transfer_adaptationspending 0.05 * 
credit_age 0.00  credit_effect neigbours 0.01  
credit_incomeoffarm 0.02 ** credit_CBA 0.01  
credit_hhsize 0.00  credit_nr. droughts experienceds 0.00  
   credit_totexpenses 0.00  
   credit_perceived efficiency -0.02  
   credit_vulnerability -0.01  
   credit_capacity -0.01  
   credit_disasterfear 0.03  
   credit_information 0.03 ** 
   credit_totincome 0.01  
   credit_adaptationspending 0.00  
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Samenvatting 

In Oost-Afrika leiden de toenemende klimaatvariabiliteit en de veranderende 

sociaaleconomische omstandigheden tot een toename van de frequentie en intensiteit van 

droogterampen. Droogte vormt een ernstige bedreiging voor de voedselzekerheid in deze regio, 

die wordt gekenmerkt door een grote afhankelijkheid van – van regen afhankelijke - kleinschalige 

landbouw en een laag niveau van technologische ontwikkeling in de voedselproductiesystemen. 

Het toekomstige droogterisico zal worden bepaald door de aanpassingskeuzes van de agrariërs, 

maar toch zijn er maar weinig droogterisicomodellen die aanpassingsgedrag – het maken van 

beslissingen over droogtemaatregelen – in het droogterisico integreren.  

In dit hoofdstuk gebruiken we een innovatief  dynamisch model voor aanpassing aan 

droogterisico's, genaamd ADOPT, om de factoren te evalueren die van invloed zijn op 

aanpassingsbeslissingen en de daaropvolgende toepassing van droogtemaatregelen, en hoe dit het 

droogterisico voor de landbouwproductie beïnvloedt. ADOPT combineert sociaal-hydrologische 

en agent-gebaseerde modelbenaderingen door het gewasmodel AquacropOS te koppelen aan een 

gedragsmodel dat in staat is verschillende adaptieve gedragstheorieën te simuleren. In dit 

hoofdstuk vergelijken we de ‘Protection Motivation Theory’, die begrensde rationaliteit beschrijft, 

met een basisniveau uitgaande van geen nieuwe droogtemaatregelen, en een economisch rationeel 

aanpassingsgedrag. Het opnemen van deze scenario's dient om het effect van verschillende 

veronderstellingen over adaptief  gedrag op de evolutie van het droogterisico in de tijd te evalueren 

en te vergelijken.  

ADOPT is in dit hoofdstuk geparametriseerd aan de hand van veldgegevens verzameld bij 

250 huishoudens en gesprekken met plaatselijke besluitvormers in Kitui, een semi-aride provincie 

in Kenia. De resultaten tonen aan dat schattingen van droogterisico's en de behoefte aan 

noodvoedselhulp kunnen worden verbeterd met een agent-gebaseerde aanpak: we laten zien dat 

het negeren van individuele huishoudkenmerken leidt tot een onderschatting van de behoefte aan 

voedselhulp. Bovendien tonen we aan dat het begrensde rationele scenario beter de historische 

voedselzekerheid, armoedeniveaus en oogstopbrengsten kan weergeven. We tonen dus aan dat de 

realiteit van complexe menselijke aanpassingsbeslissingen het best kan worden beschreven door 

uit te gaan van begrensd rationeel aanpassingsgedrag; bovendien zijn een op agenten gebaseerde 

aanpak en de keuze van de aanpassingstheorie van belang bij het kwantificeren van risico's en het 

ramen van de behoefte aan noodhulp.  
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Summary 

In Eastern Africa, increasing climate variability and changing socioeconomic conditions are 

exacerbating the frequency and intensity of  drought disasters. Droughts pose a severe threat to 

food security in this region, which is characterized by a large dependency on smallholder rain-fed 

agriculture and a low level of  technological development in the food production systems. Future 

drought disaster risk will be determined by the adaptation choices made by farmers, yet few 

drought disaster risk models incorporate adaptive behaviour in the estimation of  drought disaster 

risk.  

In this Chapter, we use an innovative dynamic drought disaster risk model, ADOPT, to 

evaluate the factors that influence adaptation decisions and the subsequent adoption of  measures, 

and how this affects drought disaster risk for agricultural production. ADOPT combines socio-

hydrological and agent-based modelling approaches by coupling the FAO crop model 

AquacropOS with a behavioural model capable of  simulating different adaptive behavioural 

theories. In this Chapter, we compare the protection motivation theory, which describes bounded 

rationality, with a business-as-usual and an economic rational adaptive behaviour. The inclusion 

of  these scenarios serves to evaluate and compare the effect of  different assumptions about 

adaptive behaviour on the evolution of  drought disaster risk over time.  

Applied to a semi-arid case in Kenya, ADOPT is parameterized using field data collected 

from 250 households in the Kitui region and discussions with local decision-makers. The results 

show that estimations of  drought disaster risk and the need for emergency food aid can be 

improved using an agent-based approach: we show that ignoring individual household 

characteristics leads to an underestimation of  food-aid needs. Moreover, we show that the 

bounded rational scenario is better able to reflect historic food security, poverty levels, and crop 

yields. Thus, we demonstrate that the reality of  complex human adaptation decisions can best be 

described assuming bounded rational adaptive behaviour; furthermore, an agent-based approach 

and the choice of  adaptation theory matter when quantifying risk and estimating emergency aid 

needs.
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1. Introduction 

Droughts regularly affect communities, leading to water and food shortages, reduced crop 

yields, loss of  livelihood, and famine (Barron et al., 2003; Ifejika et al., 2008). The impacts are 

difficult to quantify because they are often delayed and may last several years (Wilhite, 2000; United 

Nations Development Programme, 2007). Moreover, the magnitude of  these impacts not only 

depends on the severity of  the drought event and the number of  people exposed but also on how 

people adapt to periods of  reduced water availability (Mude et al., 2007; Birkmann et al., 2013). 

Although several studies have dealt with uncertainties in estimating drought hazard, the interplay 

between adaptation and drought disaster risk has often been neglected (Chapter 2). Consequently, 

vulnerability has typically been included as a static factor, which assumes a “business-as-usual” 

level of  future adaptation (Adger et al., 2018; De Pinto et al., 2019). 

In reality, adaptive behaviour is highly dynamic (Dobbie, 2013; De Koning, 2019). People 

implement drought adaptation measures based on past experiences and changes in their natural 

and socioeconomic environment (e.g., Wilhite, 2002; Stefanovi, 2015; González et al., 2016). 

Understanding the dynamic interplay between the physical water system and human adaptation 

has sparked the novel socio-hydrology scientific field (Sivapalan et al., 2012; Baldassarre et al., 

2015). Recognizing this socio-hydrological feedback is found necessary for better understanding 

the fluctuations in drought disaster risk over time, driven by a combination of  physical drivers 

(e.g., climate variability), socioeconomic developments, and human adaptive behaviours (e.g., Van 

Loon et al., 2016; Hagenlocher et al., 2019). 

Research has attempted to simulate the adaptive decisions of  individuals facing the harmful 

effects of  hazard events using recognized economic theories, such as the expected utility theory 

(EUT, Von Neumann and Morgenstern, 1945) for economic rational decision-making under 

uncertainty (e.g., Haer et al., 2019). However, human adaptive behaviour under uncertain 

conditions is rarely rational (Eiser et al., 2012; Holden, 2015), and people tend to exhibit “bounded 

rational” logic when deciding on adaptation measures (Asgary and Levy, 2009; Van Duinen et al., 

2016). For example, research in disaster risk management has shown people overestimate the 

probability of  rare events, and adaptive behaviour and risk perception are shaped by factors 

including worry, past experiences, and socioeconomic conditions (Tongruksawattana, 2014; 

Mwongera et al., 2017). 

The existence of  bounded rational behaviour has been confirmed by studies on agricultural 

drought disaster risk (e.g., Van Duinen et al., 2012; Gebrehiwot and van der Veen, 2015; Elagib et 

al., 2017), evidenced by low adoption of  wells and irrigation measures among farmers, despite 

such measures being economically efficient (Ngigi et al., 2005b; Khisa et al., 2014b; Bouma et al., 

2016; Wambua and Akuja, 2016). It has been suggested that farmers' adaptation decisions are 

influenced by a biased perception of  risk and a lack of  trust in their own control over drought 

disaster risk (Murgor et al., 2013; Ochieng et al., 2016; Nkatha, 2017; Khisa, 2018; Van Valkengoed 

and Steg, 2019). Other factors that have been shown to influence the adoption of  adaptation 

practices include limited access to financial, human, social, natural, and physical capital (Kalungu 

et al., 2013; Matere et al., 2016; Bunclark et al., 2018). Knowledge dissemination through social 
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networks and the gaining of  required skills through extension services are increasingly seen as 

essential for improving the agricultural drought practices of  smallholder farmers (Kitinya et al., 

2012; Van Duinen et al., 2016). 

Although the importance of  including such complex human adaptive behaviour in risk 

assessments is increasingly recognized (Palmer and Smith, 2014; Groeneveld et al., 2017; Schlüter 

et al., 2017), identifying the key variables that steer adaptation decisions is difficult (e.g., Klabunde 

and Willekens, 2016; Aerts et al., 2018). Alternative theories for modelling adaptive behaviour—

adding psychological and sociological drivers in addition to economic ones—can be applied to 

overcome this challenge. Examples of  such complex theories include the prospect theory 

(Kahneman and Tversky, 1979; Asgary and Levy, 2009; Holden and Quiggin, 2017), the theory of  

planned behaviour (Wheeler et al., 2013; Sutton, 2014; Van Dijk et al., 2016), and the protection 

motivation theory (Maddux and Rogers, 1983; Grothmann and Patt, 2005). Among these, the 

protection motivation theory (PMT) is one that has been successfully applied to describe farmers' 

dynamic drought-adaptive behaviour in multiple studies (Dang et al., 2014b; Gebrehiwot and van 

der Veen, 2015; Van Duinen et al., 2015a; Keshavarz and Karami, 2016; Zheng and Dallimer, 

2016). 

In this Chapter, we study the factors that drive drought adaptation decisions of  smallholder 

farmers by comparing business-as-usual and economic rational behaviour—the latter modelled 

following the EUT–, with the more complex, empirically supported bounded rational behaviour—

modelled following the PMT. We developed an innovative dynamic drought disaster risk model, 

ADOPT, which links the physical crop growth model AquacropOS (FAO, 2009; Vanuytrecht et 

al., 2014; Foster et al., 2017b) with a behavioural model capable of  simulating each of  the 

abovementioned scenarios. ADOPT thus simulates the adaptive actions and interactions of  

individual farm households in relation to experienced agricultural drought disaster risk. It applies 

an agent-based approach, the primary tool for modelling individual adaptation decisions and 

complex interactions (Railsback and Grimm, 2012). In agent-based models (ABMs), agents (e.g., 

government, households) have the capacity to learn and adapt in response to changes in other 

agents and the environment (Matthews et al., 2007; Palmer and Smith, 2014). As introduced in 

Chapter 2, ABMs provide a bottom-up method for tracing behaviour over time and simulate 

human–human and human–environment interactions at the local level, which can lead to the 

emergence of  patterns at the macro-level (Dobbie et al., 2018). Such models include probabilistic 

functions that describe the individual behavioural dynamics of  heterogeneous decisions-makers 

with different socio-economic backgrounds, are actively applied to study farmers' behaviour in 

several contexts, such as drought management and farm innovation (Barreteau et al., 2004; 

Gunkela and Külls, 2011; Schreinemachers and Berger, 2011; Van Oel and Van Der Veen, 2011; 

Van Duinen et al., 2012; Blair and Buytaert, 2016). In this Chapter, the ADOPT model framework 

is showcased for subsistence households in semi-arid rural Kenya over the period 1982–2013. 

Survey data on household behaviour in Kitui, Kenya were used to create a heuristic understanding 

of  the co-evolution of  drought disaster risk and human adaptation decisions and to initialize the 

agents (farm households) in the model. The intent of  this Chapter is not to be predictive; but to 
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demonstrate how an agent-based approach and the choice of  behavioural theory affect the 

estimation of  drought vulnerability and risk over time. 

The remainder of  this Chapter is organized as follows: section Case Study Description 

introduces the semi-arid study area in Kenya for which the model is calibrated. Section ADOPT 

Model Description contains the model description detailing both agricultural drought simulations 

using the FAO crop model AquacropOS, and human decision simulations following three 

scenarios: business-as-usual, economic rational (expected utility theory), and bounded rational 

(protection motivation theory). Section Results presents the results of  drought disaster risk 

simulations using ADOPT, and section Discussion provides the discussion and conclusions on 

how different assumptions on adaptive behaviours influence drought disaster risk estimations.  

2. Materials and Methods 

2.1. Case Study Description 

The case study is representative for the rural areas of  three semi-arid counties, Kitui (30.430 

km2, 1.136187 citizens), Machakos (6.043 km2, 1.421.932 citizens), and Makueni (8.008 km2, 

987,653 citizens) in south-eastern Kenya (TEGEMEO, 2000; ILRI, 2006; Rapsomanikis, 2010). 

They are characterized by a dry savannah/warm tropical climate (Njoka et al., 2016). Agriculture 

in this area is dominated by rain-fed subsistence production systems with households largely 

dependent on crop and livestock production for income (United Nations Development 

Programme, 2007; Wambua and Akuja, 2016). Maize remains the most important food crop, and 

drought-induced yield reductions of  maize are largely synonymous with food insecurity and 

dependence on external aid (Brooks et al., 2005, 2009; Alessandro et al., 2015). High temperatures 

coupled with unreliable rainfall have caused significant shocks for rural communities in past 

decades, such as in 1999/2000, 2004/2005, 2010/2011, and 2017/2019 (Erenstein et al., 2011b; 

Kioko, 2013). Furthermore, extreme temperature and rainfall deficiency events have been 

occurring on an increasingly frequently basis (FEWSNET, 2010; Khisa et al., 2014a; Government 

of  the Republic of  Kenya, 2017; Khisa, 2017). 

Kenyan households have a long history of  adapting to droughts using traditional and 

emerging practices (Black et al., 2012; Recha et al., 2012; KEFRI et al., 2014; Shiferaw et al., 2014; 

Kalungu et al., 2015; Kimani et al., 2015; Gbegbelegbe et al., 2017). An example is the building of  

Fanya Juu terraces, which are a combination of  trenches and sand bunds in sloping cropland to 

increase the storage of  runoff  on horizontally created terraces (Biamah et al., 1993; Makurira et 

al., 2011; Hailu et al., 2012; Muriu et al., 2017; Wolka et al., 2018). Another method is residue 

mulching, which involves covering the soil surface with plant material to retain soil moisture 

through reduced evaporation and increased infiltration (Okeyo et al., 2014; Mo et al., 2016; 

Mfitumukiza et al., 2017; Mugambiwa, 2018). While the maintenance of  these two in-soil water 

storage measures can be demanding in terms of  labour, implementation knowledge is available 

and they do not require large initial investments (Lasage and Verburg, 2015). Irrigation—although 

highly efficient economically (Nakawuka et al., 2018)—is less popular among smallholder farmers 

because the implementation of  irrigation techniques requires advanced and often costly 
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infrastructure, technical knowledge, and institutional support (Sijali and Okumu, 2002; Ngigi et al., 

2005a; Kulecho and Weatherhead, 2006; Ngigi, 2019). Moreover, the amount of  surface runoff  

that many areas receive is too small to irrigate (Barron and Okwach, 2005; Rockström and 

Falkenmark, 2015). To provide extra water, cost-effective shallow wells can be installed, which can 

be linked to automated irrigation systems, such as a drip system (Ngigi, 2003; Venzi et al., 2015). 

Recently, I administered a survey in the case study area to build an understanding on 

households' drought vulnerability dynamics and changing capacity to cope with droughts. The 

data collection method involved administration of  a short questionnaire among employees of  

Kenyan national disaster coordination units (n = 10); semi-structured expert interviews (n = 10) 

with NGOs, governmental water authorities, and pioneer farmers in the Kitui district in Kenya; 

and an in-depth questionnaire among smallholder farmers in central Kitui (n = 250). While this 

questionnaire only provides data about a snapshot in time, questions were focused on the 

dynamics of  vulnerability. Rather than asking only questions related to current practices, the survey 

was designed to also inquire aspirations, challenges and intentions to adopt new drought 

adaptation measures in the past and the future. Based on this survey, the following on-farm 

drought adaptation measures were considered in the present research: (i) the improvement of  in-

soil storage using mulch cover; (ii) the construction of  Fanya Juu terraces; (iii) the digging of  

shallow wells on property; and (iv) the installation of  drip irrigation infrastructure. Currently, 

mulch, Fanya Juu, well, and drip irrigation techniques are applied by 15, 45, 15, and 5% of  

households interviewed in the area, respectively. The survey was also applied to create economic 

household profiles (see ODD+D in Supplementary), estimate the investment and maintenance 

costs of  the measures, and drive the utility functions and decision rules of  the ADOPT model. 

2.2. ADOPT Model Description 

ADOPT (Figure 4.1) works on the resolution of  a subsistence farm managed by one rural 

household, and consists of  two dynamically linked subroutines: (i) the agricultural model 

AquacropOS (Foster et al., 2017a), which simulates maize yield based on crop characteristics, soil 

characteristics, daily weather conditions and farm water management (blue box in Figure 1; 

subsection Simulating Annual Maize Yield per Farm); and (ii) a behavioural model, which can 

simulate the adaptation decisions of  households assuming either business-as-usual behaviour, or 

through applying a behavioural theory: the expected utility theory (EUT, assuming economic 

rational behaviour) or the protection motivation theory (PMT, assuming bounded rational 

behaviour) (red box in Figure 1; subsection Simulating the Adaptive Behaviour of  Subsistence 

Farmers). This setup allows for the assessment of  socio-hydrological feedbacks between farm 

decisions concerning the level of  drought adaptation measures and the drought impacts they 

experienced (purple arrows; subsection Simulating Annual Drought Impact for Subsistence 

Farmers): in ADOPT, it is explicitly modelled how drought adaptation measures influence crop 

yield, which impacts the farm income thus household food security and financial assets, which 

ultimately alters farmers' risk perception and capacity to adopt new adaptation measures (as 

detailed impact assessments are highly location-specific and effective adaptation depends on the 

understanding of  drought disaster risk at scales close to which decisions are made, the spatial 
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resolution of  the model is at the field scale of  the farm households (on average 0.6 ha). A complete 

model description including an overview, design concepts, details, and decision making, as well as 

a summary of  the input data can be found in the ODD+D in Supplementary of  this thesis, 

following the ODD + D protocol for ABMs (Müller et al., 2013). 

Figure 4.1. Modelling scheme of the agricultural drought disaster risk adaptation model ADOPT. Seasonal maize crop 
production is simulated using weather and agronomic data in AquacropOS at the household scale. The resulting household 
maize yield is translated into farm income, which is fed into a behavioural model. Adaptive behaviour is modelled per farm 
household using one of three scenarios: No adaptive behaviour, economic rational adaptive behaviour, or bounded rational 
behaviour. Following expected utility theory, the intention to adapt is modelled to be a function of Adaptation costs, adaptation 
efficacy, and household assets. Following protection motivation theory, the intention to adapt is a function of risk perception, 
self-efficacy, adaptation costs, and adaptation efficacy. The individual farm households' intention to adapt leads to the yearly 
decision whether or not to adopt a new adaptation measure. These adaptation decisions influence their future on-farm water 
management, thus establishing a feedback. Survey, weather, and agronomic data used as input to the model, whereas yearly 
risk indicators (household assets, poverty, food insecurity, and food aid) and the adoption rate of drought adaptation measures 
are outputs of the model. 
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2.3. Simulating Annual Drought Impact for Subsistence Farmers 

To simulate individual crop yield and adaptation decisions over time, a heterogeneous 

sample of  1,000 farm households in an area of  100 km2, representative for the case of  Kitui, 

Makueni, or Machakos, was chosen to be initialized (Tegemeo Institute, 2000, 2004, 2007, 2010). 

These households have several characteristics that influence their annual harvest, adaptation 

decisions, and drought vulnerability, including family and farm size, social network, access to 

extension services, possible adaptation measures, and off-farm income sources. All household 

characteristics were stochastically derived from the averages and standard deviations of  different 

household characteristics in previous research and a questionnaire (n = 250) performed as part of  

this research (Chapter 3). The average farm size is 0.6 ha, heterogeneously distributed among the 

households. Other spatial characteristics, such as proximity to a river of  town were omitted, as 

they do not influence the model variables. To simulate seasonal market volatility in response to 

maize availability, the average maize price of  Kitui Town market (US$0.35/kg) was weighted by 

comparing the percentage of  total seasonal harvest with the average (30 years) harvest in the study 

area. From this, maize prices fluctuate between US$0.2/kg (favourable seasons) and US$0.5/kg 

(seasons with drought-induced crop losses; (Winter-nelson and Amegbeto, 1998; Nyoro et al., 

2005; FEWSNET, 2018). 

ADOPT runs as follows: 

▪ For each season and household, maize production is simulated using AquacropOS (subsection 

2.2.2) based on daily weather conditions as well as the drought adaptation measures applied 

by the households. This maize harvest is partly allocated to account for the households' food 

needs—estimated as 103 kg per year per adult (DTMA, 2015) and any additional harvest is 

sold (farm income, increasing the households' financial assets). Shortages are made up through 

purchasing (reducing the households' financial assets) at the maize price of  the simulated 

season. 

▪ Each year, all households spend money on non-food and farm input (expenditure), reducing 

their financial assets, and have a potential off-farm income source (e.g., casual labour, livestock 

breeding, private business, and brick making) that increases their financial assets. Moreover, 

based on demographic data, a household could increase or decrease in size over the simulation 

period, altering its food demand (demographic numbers are based on the survey results). 

▪ Each year, all households evaluate their intention to adopt a new drought adaptation measure. 

This intention is influenced by the household's financial assets and the behavioural rules of  

the scenario applied (subsection Simulating the Adaptive Behaviour of  Subsistence Farmers). 

The adoption of  such measures influences the households' individual maize production in the 

following years. 

To express the direct and indirect effects drought disaster risk, it is chosen to track, in addition to 

agricultural production, the following metrics in ADOPT: 

▪ Poverty (households) is calculated per household assuming a poverty line of  US$ 1 per day 

▪ Food insecurity (households) occurs if  households' food needs exceeds their maize production 

▪ Food aid (US$) is estimated as the food shortage of  all households multiplied by the maize 

price. 
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The cumulative amount of  food shortage (kg) is estimated following two procedures. The 

first excludes the agent-based approach, assuming all farm households have the same farm area, 

number of  family members, and are equally wealthy (and rich enough to buy their food needs). In 

this procedure, food shortage is calculated by examining how many households the total regional 

food supply (sum of  the harvest for all households) could feed. Food shortage is thus the 

difference between supply and needs. The second includes the agent-based approach and food 

shortage is calculated on an individual household level. Food shortage occurs if  households are in 

food insecurity, and if  they do not have the financial means to meet their needs or if  the regional 

food supply does not allow them to buy the extra maize required to fulfil their food needs. The 

difference between the two procedures helps exemplifying the added value of  an agent-based 

approach. 

2.4. Simulating Annual Maize Yield per Farm 

The open source version of  the FAO crop-water model AquacropOS, AquacropOS 

(Steduto et al., 2009, 2012; Foster et al., 2017a; Foster and Brozović, 2018), was used to simulate 

biomass and harvestable yield responses of  maize to water availability (Vanuytrecht et al., 2014). 

The model is designed for regions with water-limited agricultural production, such as semi-arid 

Kenya. By explicitly modelling the plant growth up to harvestable yield, AquacropOS enables the 

assessment of  the effects of  water and agricultural management on crop production (Heng et al., 

2009). It has been used by numerous studies in Kenya (e.g., Ngetich et al., 2012; Wamari et al., 

2012; Omoyo et al., 2015). 

 
Figure 4.2. Standardized Precipitation Evaporation Index (SPEI) calculated using CHIRPS Precipitation data and CFSR 
Evaporation data for 1982–2013. An accumulation time of 3 months was used to show the seasonal climate variability. 
Values below 0 indicate conditions dryer than average. If such dryer than average conditions are prolonged and occur during 
the crop growing cycle, drought impacts on agricultural production can be expected. 
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Historical weather data (1981–2013; Figure 4.2) for Kitui were used as input for 

AquacropOS, which includes the daily gridded CHIRPS rainfall dataset (Funk et al., 2015b), which 

combines 0.05° resolution satellite imagery with in-situ station data. Furthermore, daily minimum 

and maximum temperature (°C), relative humidity, wind speed (m/s), and solar radiation (s) from 

the Kitui area were obtained from the Climate Forecast System Reanalysis (CFSR) dataset from 

the National Center for Environmental Prediction of  the United States National Oceanic and 

Atmospheric Administration (Dile and Srinivasan, 2014). These data were employed to calculate 

reference evapotranspiration using the Penman–Monteith equation (Allen, 2004; Ayugi et al., 

2020). 

Maize-specific parameters, such as the duration of  flowering and number of  plants per 

hectare were derived from Ngetich et al. (2014) and Wamari et al. (2012), who conducted an 

extensive study on the calibration and validation of  AquacropOS for Katumani maize in Kenya. 

Remaining factors were calibrated to obtain realistic crop yield in the range (700–1,200 in good 

years) reported by Brooks et al. (2009). The period of  cropping (growing period of  75–180 days) 

is limited to the rainy seasons (May–June and October–February) (Government of  Kenya, 2007; 

Black et al., 2012; Mo et al., 2016). The hydraulic properties of  the soil were adopted from the 

case study in semi-arid Kenya executed by Ngetich et al. (2014). 

To simulate the effect on crop yield for the four drought adaptation measures discussed, 

AquacropOS was run for all possible combinations of  these measures: It is possible for a 

household to have a well, perform manual or drip irrigation, and/or have Fanya Juu terraces, 

and/or apply mulch to fields simultaneously (see section Case Study Description). Here it was 

assumed that households who apply mulch to their fields were assumed to have a year round 50% 

coverage of  mulch, which AquacropOS converted to a lower evaporation from the soil by 0.6 

(Raes et al., 2012). Households with Fanya Juu terraces were assumed to have contour pits and 

bunds with a height of  60 cm (Wolka et al., 2018). Households with a shallow well are assumed to 

manually water their crops in times of  deficit; the maximum irrigation depth was set at 12 mm, 

the wetted area was set at 30%, and the soil moisture target was set at 40% depletion (Filho and 

de Trinchera Gomez, 2018). Since no distributed hydrological model was included, wells are 

assumed to provide enough water for irrigation at any time, not influenced by the digging of  other 

wells in their surroundings or by long-lasting droughts. In our AquacropOS setup, we assumed 

that manual watering was a soil moisture-based technique: households will water their field if  it 

feels dry (below 50% of  total plant available water). Furthermore, the application efficiency was 

assumed to be rather low: 45% for manual watering (Howell, 2003). Drip irrigation infrastructure 

allows for daily irrigation but can only be implemented if  a shallow well is already installed. The 

application efficiency was set to 90% (Kenya Ministry of  Environment, Water and Natural 

Resources and Kenyan Water Resources Management Authority, 2013). Results of  the 

AquacropOS pre-runs showed that crop yields averaged to 0.5 (±0.25) t/ha under no adaptation 

measures; 0.6 (±0.25) t/ha under mulching or terraces; 0.8 t/ha using manual irrigation; and 1 

t/ha using drip irrigation. 
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2.5. Simulating the Adaptive Behaviour of  Subsistence Farmers 

In ADOPT, three different behavioural scenarios were explored (see Table 4.1): (1) business 

as usual (BAU); (2) economic rational behaviour [following expected utility theory, EUT]; and (3) 

bounded rational behaviour [following the Protection Motivation theory, PMT (e.g., Grothmann 

and Patt, 2005; Dobbie, 2013; Dang et al., 2014a,b; Gebrehiwot and van der Veen, 2015; Stefanovi, 

2015; Van Duinen et al., 2015a,b, 2016; Keshavarz and Karami, 2016; Zheng and Dallimer, 2016)]. 

The BAU and EUT scenarios reflected the common assumptions of  no or full economic rational 

adaptive behaviour in drought disaster risk models, and helped to position the more complex, 

empirically observed bounded rational behaviour (PMT). 

Table 4.1: scenarios used in the ADOPT model 

 
BAU scenario 
Section 2.2.3.1 

EUT scenario 
Section 2.2.3.2 

PMT scenario 
Section 2.2.3.3 

Adaptive 
Behaviour 

Business as usual Economic rational Bounded rational 

Theory / Expected Utility Theory Protection Motivation Theory 

Adaptation 
decisions 

No implementation of new 
adaptation measures; static 
representation of 
vulnerability 

Implementation based on net 
present value of adaptation 
costs, and benefits (yearly 
gains) over ten year 

Implementation influenced by 
risk appraisal, perceived self-
efficacy, perceived adaptation 
efficacy and adaptation costs 

2.6. Business as usual: no new adaptation 

To represent the case of  risk negligence, no additional adaptation decisions are made by 

households in the BAU scenario. This suggests that households do not perceive any change in risk 

or see no benefit in adaptation, and hence will act independently from it. Households have an 

initial level of  drought adaptation (see ODD+D in Supplementary) which does not change over 

time. It was assumed that these farmers take loans to maintain the measures if  needed. The use 

of  this scenario helps position the dynamic-adaptation approach in drought disaster risk 

assessments. 

2.7. Economic rational behaviour: expected utility theory 

The EUT assumes that people seek to maximize their preferences for safety or risk, 

evaluating the value ascribed to the outcomes (“the utility”) of  different adaptation actions and 

the probability that each will occur (Haer et al., 2016a; Schlüter et al., 2017). Applied to the Kenya 

case of  drought management, rational households are fully self-interested, have full information 

about expected gains and losses, and always choose the adaptation option that gives the highest 

utility within their budget constraint. Households evaluate costs (e.g., possible yield loss and 

installation costs of  drought adaptation measures) and benefits (e.g., reduction in possible yield 

loss) and their associated probabilities objectively and attempt to maximize their expected utility 

given these costs and benefits (Shaw and Woodward, 2008). Social behaviour, habits, and norms 

are ignored, and suboptimal choices are not considered (Gigerenzer and Goldstein, 1996). It was 

also assumed that these farmers (as in BAU) cannot lose measures as they take loans to maintain 
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them if  required. The use of  this scenario helps position the bounded rational adaptation 

approach in drought disaster risk assessments. 

Based on the AquacropOS pre-runs for all combinations of  each of  the four adaptation 

measures, the yield gains (B) calculated as the difference in losses between situations with- and 

without additional measures as well as the drought probability (p) were derived. Wealth (W) is an 

individual household variable tracked over time. Implementation and maintenance costs (C) of  

the adaptation options were obtained from experts in the fields. Assuming a slight risk adversity 

among the households, the general utility function applied in model is U (x) = ln x, which is a 

function with constant relative risk aversion. As is generally done in studies applying the EUT (e.g., 

Haer et al., 2016b), Every year, households adopt the adaptation measure with the highest expected 

utility (Equation 1), if  its action utility proved higher than the utility of  no action over a period of  

10 years and if  they can afford the initial implementation costs. 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑎𝑐𝑡𝑖𝑜𝑛   = 𝑝 ∗ 𝐿𝑁( 𝑊 − 𝐶 + 𝐵𝑑  ) + (1 − 𝑝) ∗ 𝐿𝑁(𝑊 − 𝐶 + 𝐵𝑛)                    𝐸𝑞. 1 
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑛𝑜 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑝 ∗ 𝐿𝑁( 𝑊 ) + (1 − 𝑝) ∗ 𝐿𝑁(𝑊)                                                           

where             

▪ p, the probability of  a drought season—defined as a season with SPEI-3 value < −1. 

▪ W, the wealth (total assets in USD) of  the household. 

▪ C, the cost of  the adaptation measure in USD. 

▪ B, the benefits (yield gain) in drought years (Bd) and non-drought years (Bn) in USD. 

2.8. Bounded rational behaviour: protection motivation theory 

the EUT has been recognized as having limitations because of  the assumptions of  full 

information and the lack of  social interactions (Van Duinen et al., 2012). Bounded rational 

behaviour, influenced by social, economic, and psychological factors, can be included either by 

adding it to the utility maximization functions or by choosing alternative theories. the use of  the 

PMT, which has been proven to be a valuable tool for understanding the adaptation decisions of  

individuals under drought disaster risk, backed up by stakeholder surveys in lower-income 

countries (subsection Bounded rational behaviour: protection motivation theory). This socio-

cognitive model of  bounded rational private adaptation integrates the effect of  available resources 

and perceived climate risks into one framework for explaining the determinants of  individual 

adaptation (Floyd et al., 2000; Grothmann and Patt, 2005). Indeed, the inclusion of  socioeconomic 

and cognitive factors has been supported by a number of  local case studies, which have found off-

farm employment, group membership, labour availability, access to extension services, and farm 

experiences, to be the main drivers for the adoption of  drought adaptation measures (e.g., Mutune 

et al., 2011; Jager and Janssen, 2012; Oremo, 2013; Mutua-Mutuku et al., 2017; Mutunga et al., 

2017; Shikuku et al., 2017). Furthermore, the survey in Kitui confirmed that the factors included 

in PMT are indeed key determinants for the adaptive behaviour in the face of  agricultural drought 

disaster risk (Chapter 3). 

PMT states that a person's intention to adapt is formed through the risk appraisal process, 

and coping appraisal process (Grothmann and Patt, 2005; Bubeck et al., 2012). While the PMT is 
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a qualitative theory, in ADOPT we have formalized this theory, assigning a value between 0 and 1 

to all factors of  the theory, while allowing room for uncertainties in the form of  varying weights 

for all the factors. In ADOPT, all the individual households form an intention to adapt (Equation 

2), a certain adaptation measure (m), on an annual basis (t) as follows: 

𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑇𝑜𝐴𝑑𝑎𝑝𝑡𝑡,𝑚 = 𝛼 ∗ 𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡 + 𝛽 ∗ 𝐶𝑜𝑝𝑖𝑛𝑔𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡,𝑚                                𝐸𝑞. 2 

If  a household has the financial capacity to pay for a considered measure (Stefanovi, 2015), 

the intention to adapt is translated into the likelihood the household will adopt this measure in the 

following years. Whether the household actually adopts the measure is stochastically determined 

for each household, each year, based on this likelihood. When households have adopted a measure, 

they will keep the measure. They are assumed to take a loan if  they cannot pay then maintenance 

costs: not maintaining a measure is assumed to double the maintenance costs for the following 

year. 

Although Stefanovi (2015), Van Duinen et al. (2015a), and Keshavarz and Karami (2016) 

have found positive relationships between the factors of  PMT and observed protective behaviour, 

a level of  uncertainty exists related to the relative importance of  risk appraisal and coping appraisal 

in the specific context of  smallholder households' adaptation decisions in semi-arid Kenya. 

Therefore, the α and β parameters were introduced as weights for the two cognitive processes. To 

address the associated uncertainty, they were widely varied (α, β ϵ [0.334:0.666]) in a sensitivity 

analysis. 

Risk appraisal (Equation 3), in our model-application a value between 0 (not aware of  any 

risk) and 1 (frequently exposed to risk and lost all crop yield last year due to drought), is formed 

by combining the perceived risk probability and perceived risk severity, shaped by rational and 

emotional factors (Deressa et al., 2009, 2011; Van Duinen et al., 2015b). Whereas risk perception 

is based in part on past experiences, several studies have suggested that households place greater 

emphasis on recent harmful events (Gbetibouo, 2009; Rao et al., 2011; Eiser et al., 2012). To 

include this cognitive bias, each household has a drought disaster memory, defined as follows 

(Viglione et al., 2014). 

𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡 = 𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡−1 + ( 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑡 ∗ 𝐷𝑎𝑚𝑎𝑔𝑒𝑡  ) − 0.125 ∗  𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡−1 
𝑤𝑖𝑡ℎ  𝐷𝑎𝑚𝑎𝑔𝑒𝑡 = 1 − 𝑒𝑥𝑝(−ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑙𝑜𝑠𝑠𝑡)                                                                                         𝐸𝑞. 3 

The drought occurrence in year t is a binary value with a value of  1 if  the SPEI-3 value falls 

below −1. The disaster damage of  a household is related to their harvest loss during the drought 

year, which is defined as the difference between their current and average harvest over the last 10 

years. 

Coping Appraisal (Equation 4, in our model-application a value between 0 (no appreciation 

of  the adaptation options at all, no ability to pay for the measures) and 1 (full trust in own capacity, 

in the efficiency of  the measures and easily able to pay for it) represents a households' subjective 

“ability to act to the costs of  a drought adaptation measures, given the adaptation measures' 

efficiency in reducing risk” (Stefanovi, 2015; Van Duinen et al., 2015a). In ADOPT, coping 

appraisal is a combination of  the households' perceived Self-Efficacy (financial, labour, and 

knowledge capacity of  the farming households), adaptation efficacy (or response efficacy) of  the 

measure, and its adaptation costs (or response cost): 
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𝐶𝑜𝑝𝑖𝑛𝑔𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡,𝑚 = 𝛾 ∗ 𝑆𝑒𝑙𝑓𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑡 + 𝛿 ∗ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑡,𝑚 + 휀 ∗ (1 −
                                                                𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑠𝑡)                                                                           Eq.4 

Although Stefanovi (2015), Van Duinen et al. (2015b), and Keshavarz and Karami (2016) 

quantified the relationships between the factors driving the subjective coping appraisal of  

individuals, a level of  uncertainty remains related to the relative importance of  these drivers in the 

context of  smallholder households' adaptation decisions in semi-arid Kenya. Therefore, weights 

(γ, δ, ε ϵ [0.25:0.50]) were introduced and varied in a sensitivity analysis using different ADOPT 

model runs. 

The Adaptation Costs of  the possible measures (see ODD+D in Supplementary) were 

expressed in terms of  a percentage of  the households' assets (value between 0 and 1, with a 

maximum of  1 as this reduces the intention to adapt to 0). 

The Adaptation Efficacy (value between 0 and 1) of  each measure was calculated as the 

percentage of  yield gain, with a maximum of  100%. Because a lack of  information is a significant 

barrier to the adoption of  drought adaptation measures (Deressa et al., 2009; Ifejika, 2010; Below 

et al., 2012), this expected yield gain was estimated for two types of  households: those that receive 

regular extension services (training in farm practices by the government or NGOs) and those that 

do not: 

▪ For households that receive extension services (randomly assigned during model initialization), 

the expected yield gains were calculated as the change in annual average yield after the adoption 

of  the drought adaptation measure, using estimates from pre-runs of  AquacropOS. Therefore, 

this assumed prior, unbiased knowledge about the efficacy of  adaptation measures. 

▪ Households without access to extension services had to rely on their neighbours to obtain 

information on adaptation efficacy, and their expected yield gain was estimated as the 

difference between the yields of  neighbouring households that had already adopted a specific 

measure and the households' own current yield. These households thus have a biased 

adaptation efficacy. 

A meta-analysis of  factors motivating climate change adaptive behaviour found that 

perceived self-efficacy was strongly associated with adaptation decisions (Van Valkengoed and Steg, 

2019). In this research, we assumed that younger household heads, household heads with a higher 

education (human capacity), larger households (labour), and female household heads have a higher 

self-efficacy (value between 0 and 1) and thus are more likely to adopt the adaptation measures 

(Oremo, 2013; Charles et al., 2014; Tongruksawattana, 2014; Muriu et al., 2017). 

2.9. Model Sensitivity 

ADOPT was run 50 times per adaptive behavioural scenario in a Monte-Carlo simulation 

to average the effect of  the initialization of  household characteristics (household size, farm-size, 

age, education, off-farm income, and expenditures). To support generalizability and simplicity, 

these household characteristics were stochastically determined at the start of  each run, assuming 

a normal distribution, with the averages and standard deviations of  household characteristics 

reported in the survey datasets (Chapter 3). Moreover, the bounded rational scenario in ADOPT 

was run 48 × 50 times, with 6 × 8 differentiating combinations of  weights for the Risk Appraisal 
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and Coping Appraisal factors (α, β ϵ [0.334:0.666], sum always equals 1) and the Self-Efficacy, 

Adaptation Efficacy, and Adaptation Costs factors (γ, δ, ε ϵ [0.25:0.50], sum always equals 1). Since 

it was not possible to calibrate the weights of  all PMT factors (this would require more surveys 

over a long period of  time), this sensitivity assessment where each factor was halved or doubled 

in importance, was conducted to explore the possibility space when accounting for bounded 

rational behaviour. 

Besides, it was also investigated what the effect of  the share of  households receiving 

extension services on the outcome would be. This is done because the survey results (60%) and 

the literature (often estimated around 30%, e.g., TEGEMEO datasets) strongly disagreed on the 

amount of  households who have a correct idea about the costs and benefits, and do not rely on 

their neighbours to show how measures should be implemented). 

3. Results 

In this section, the results of  the ADOPT model runs are presented to explore the 

difference in adoption rate of  drought adaptation measures under BAU, economic rational 

behaviour (EUT), and bounded rational (PMT) behaviour (section Adoption of  Drought 

Adaptation Measures). Moreover, we investigate the difference in maize harvest and financial 

assets of  the households in the three scenarios (section Maize Harvest and Financial Assets), and 

the consequences of  this on the evolution of  drought disaster risk over time in the form of  

poverty rates, household food insecurity, and food aid needs (section Drought disaster risk). 

3.1. Adoption of  Drought Adaptation Measures 

Using the three behavioural theories, ADOPT simulated the intention to adopt and the 

resulting adoption rate of  adaptation measures over time. Based on a pre-run in AquacropOS, it 

is clear that a combination of  all four measures is the most effective way to reduce negative impacts 

of  droughts on crop yield, while a combination of  a well with irrigation is the most economic 

efficient solution. Figure 4.3 shows the adoption rate of  the four different drought adaptation 

measures by the modelled households. Applying mulch to the fields was a cheap and economic 

efficient adaptation option, and therefore its adoption in the economic rational scenario reaches 

81% after 5 years (Figure 4.3, upper left panel). In contrast, a gradual adoption was found in the 

bounded rational simulation, reaching 34% (11–49%) adoption by the end of  the simulation 

period. The adoption in this scenario is influenced by the households' risk perception as can be 

seen in the steep increase in the application of  mulch during and after the 1999–2000 drought. 

Fanya Juu terraces, an indigenous technique already applied by 25% of  the farmers at the start of  

the simulation, were very popular (Figure 4.3, upper right panel). An immediate adoption of  85% 

was seen in the economic rational simulation, and a gradual adoption up to 43% (35–53%) after 

30 years was seen in the bounded rational simulation. The installation of  a shallow well is 

economically efficient but expensive, which led to less overall and more gradual adoption in the 

economic rational and bounded rational scenarios. Households prefer to install a well and then 

install drip irrigation (Figure 4.3, bottom panels): first they apply manual irrigation, and after saving 
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money they are able to buy drip irrigation infrastructure. Overall, 44 and 10% (3–20%) of  the 

economic rational and bounded rational households were able to install a well, which could 

drastically increase their crop yields. In general, the households with a larger farm were the ones 

able to adopt this technique. Furthermore, 43% of  all economic rational households and 5% (1–

11%) of  the bounded rational households were able to then further reduce their drought 

vulnerability by adopting drip irrigation by 2010. 

  

  
Figure 4.3. Adoption of different drought adaptation measures over time, for three behavioural scenarios—economic rational 
(EUT, green), bounded rational (PMT, blue), and business as usual/no adaptation (red)—and for four different drought 
adaptation measures (Fanya Juu terraces, mulching, manual irrigation and drip irrigation). Shaded blue areas show the 
variance across 48 bounded rational model runs, a result of the variety in weights of the PMT factors.  

In the bounded rational scenario, adoption occurred gradually since households that do not 

receive extension services cannot adopt measures they do not see in use in their neighbours’ fields. 

Bounded rational farmers also adopted less economically efficient measures as their limited 

information reduced their ability to calculate the costs and benefits of  all adaptation options. 

Given the observed adoption rates (Chapter 3) of  Fanya Juu terraces (45%), mulching (12%), well 

construction (16%), and drip irrigation techniques (6%), we find that the economic rational 

scenario largely overestimated the adaptation of  all measures. Besides, in this scenario, we see that 

after 30 years, 42.5% of  the households adopted one measure, 19.5% adopted two, 3% households 

adopted three and only 0.5% households adopted all four measures. From the survey, it is reported 

that 42.3% of  the respondents adopted one measure, 12.3% adopted two, 1.5% adopted three and 

0.7% adopted all four measures. The estimated adoption rates using bounded rational scenario 
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thus best reflected the observations, except in the case of  mulch application. The inclusion of  

PMT behaviour is thus better able to capture some of  the variability in adoption decisions but is 

nevertheless still not a complete explanation of  the observed adaptive behaviour of  households 

in semi-arid Kenya. 

3.2. Maize Harvest and Financial Assets 

Figure 4.4 presents the ADOPT average maize harvest results (in kg, based on two growing 

seasons) for the three behavioural scenarios. These maize harvests were affected by drought events 

(orange bars) and the adoption of  drought adaptation measures over time. The results showed 

that the historical drought disasters registered in EMDAT (1984, 1991/1992, 1994, 1999/2000, 

and 2008/2009) were also apparent in our modelled harvest, boosting confidence in the capacity 

of  ADOPT to simulate maize harvest variability. The highest harvest numbers were achieved by 

economic rational households, which proactively invest in the most economically efficient 

adaptation measures. Economic rational drought management leads to a more efficient adaptation 

strategy, and thus lower vulnerability to water shortage and higher average maize production 

compared with bounded rational drought management. When comparing the bounded rational 

and BAU scenarios, the bounded rational households yielded greater harvests over time. They 

adopted adaptation measures mostly after experiencing droughts, thereby gradually moving away 

from the BAU scenario. 

Figure 4.4. Average annual maize harvest of the modelled households in kg/year for three behavioural scenarios: no adaptation 
decisions (BAU), economic rational (EUT), and bounded rational (PMT). Drought years (SPEI3 value in crop season < 
−1) are visualized as vertical orange bars. The shaded area show the variance among 48 bounded rational model runs, a 
result of the variety in weights of the PMT factors. 

The average harvest varied by ~1,467 kg under economic rational conditions, 992 kg (935–

1,062 kg) under bounded rational conditions, and 919 kg under BAU conditions. The average crop 

yield was 614 kg/ha (591–644 kg/ha) under the bounded rational scenario, whereas it elevated to 

805 kg/ha when assuming economic rational households and decreased to 583 kg/ha when 

assuming BAU households. The bounded rational simulation numbers were close to the observed 
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values in Kitui of  680 kg/ha (605 kg/ha with outliers (biased answers of  the survey) removed) 

(Chapter 3). 

The adoption of  drought adaptation measures and resulting yield gains has a prominent 

effect on the household's wealth over time (Figure 4.5). Although adaptation initially required a 

large investment, thereby reducing financial assets, it is economically efficient in the long turn. 

This is most clear in the economic rational scenario, where a high initial adoption happens in 1981, 

and a return on investment after ~12 years, resulting in much wealthier households compared with 

the business-as-usual rational scenario. The more gradual adoption in the bounded rational 

scenario only results in an initial decrease, then a slight increase in average wealth, as compared to 

the BAU scenario. Besides, also droughts have a pronounced effect on a household's wealth over 

time, as illustrated by the sharp decline in wealth during and following the consecutive droughts 

of  1983–1984, 1999–2000, and 2004–2005. The increased frequency of  severe droughts, starting 

with the millennium drought, had a distinct effect on the households in the bounded rational and 

BAU scenarios. The economic rational scenario households proved more resilient to these shocks, 

as majority of  the farmers are able to adopt irrigation infrastructure resulting in an almost constant 

increase in wealth over time. 

 

Figure 4.5. Households' financial assets (in US$/year) over time. Visualized is the median assets stock of all households 
modelled for three scenarios: no adaptation decisions (BAU), economic rational (EUT), and bounded rational (PMT) 
adaptive behaviour. Drought years (SPEI value in crop season < −1) are visualized as vertical orange bars. The shaded blue 
area shows the variance among 48 bounded rational model runs, a result of the variety in weights of the PMT factors. 

3.3. Drought disaster risk 

As expected, droughts have a negative effect on household food security (Ifejika et al., 2008; 

Erenstein et al., 2011a), whereas drought adaptation measures have a neutralizing effect. Figure 

4.6 shows that the peaks in food insecurity in the economic rational scenario were significantly 

lower than those of  the BAU scenario, the food insecurity rate in the bounded rational scenario 

slightly reduced over time compared with BAU. This highlights that economic rational households 

are less food insecure compared with bounded rational households because of  their relatively large 
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uptake of  adaptation measures before a drought event. However, the resilience to droughts of  

bounded rational households was higher compared with the BAU scenario; that is, they were less 

food insecure during and after drought years. On average, 44, 39 (36–43%), and 30% of  the 

households lived in food insecurity in the BAU, bounded, and economic rational behaviour 

scenarios, respectively. Food insecurity rates in the bounded rational scenario aligned with (Ulrich 

et al., 2012) who reported a food insecurity rate of  15% in normal years (on average 17% in the 

bounded rational scenario)—with a sharp outlier to 91% in the 1999–2000 drought and 

subsequent years (87% in the bounded rational scenario). 

 

Figure 4.6. Share of households in food insecurity over time. Variability over time visualized for three behavioural scenarios: 
economic rational (EUT), bounded rational (PMT), and no adaptation decisions (BAU). Drought years (SPEI value in 
crop season < −1) are visualized as vertical orange bars. The shaded blue area shows the variance among 50 bounded rational 
model runs, a result of the variety in weights of the PMT factors. 

The ADOPT results presented in Figure 4.7 show averages of  35, 45 (41–49%), and 49% 

of  the households in poverty under the economic rational, bounded rational, and BAU scenarios, 

respectively. These estimates were similar to the 46% reported in rural areas by the (Kitui County, 

2013). Drought shocks have a profound effect on the poverty level, as can be clearly seen during 

the recent drought of  2008–2009, when 80% of  all households fell into poverty conditions after 

being hit. The effect of  droughts on poverty was also observed by (Few et al., 2006; Mwongera et 

al., 2013). Notably, our results exhibited an overall increase in poverty while the average financial 

assets increased through time. The standard deviation of  households' maize harvest and financial 

assets widened over time, which could be a sign that inequality in wealth increased. 
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Figure 4.7. Share of households in poverty. Variability over time is visualized for three behavioural scenarios: economic rational 
(EUT), bounded rational (PMT), and no adaptation decisions (BAU). Drought years (SPEI value in crop season < −1) 
are visualized as vertical orange bars. The shaded blue area shows the variance among 50 bounded rational model runs, a 
result of the variety in weights of the PMT factors. 

Tracking individual households over time, ADOPT showed that it was predominantly the 

rich households that were able to optimize their drought management, produce more, become 

richer over time, and thus be able to adopt even more drought adaptation measures. By contrast, 

less wealthy households did not succeed in adopting sufficient drought adaptation measures, 

suffered more from large drought impacts, and thus stayed poor. This is clear from Figure 7 where, 

although gradual adoption happens, poverty levels do not decrease over time: This can be 

attributed to the “poverty trap effect” (Muyanga, 2004; Mango et al., 2009) as identified by (Ifejika 

et al., 2008; Ulrich et al., 2012). This is also evident when evaluating the average assets of  

households with zero, one, two, three or four measures, equalling on average US$600, US$850, 

US$2600, US$4,800, and US$5,400 by the end of  the running period, and while evaluating 

households' start income, start assets and end assets (Table 4.2). There appears to be a significant 

difference (one,-sided t-test, alpha = 0.05) between the start income of  all groups and between 

the end assets of  all groups of  Table 4.2. This shows that existing inequalities between households 

are exacerbated over time as a result of  a path-dependent Matthew effect. The ability to adopt 

measures at an early stage reduces the vulnerability to droughts and thereby increases financial 

capacity to further increase resilience. Conversely, a lack of  capacity to adapt translates to a 

progressively diminishing lack of  capacity, a poverty trap. 

Table 4.2. Economic profile households. 

Measures adopted at simulation end start income start assets end assets 

no measures 1232 358 602 

Mulch 1344 369 1250 

Fanya Juu 1300 371 1071 

Well 1564 390 5274 

Drip Irrigation 1599 381 6536 

Average 1295 366 1146 
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Figure 4.8 depicts the amount of  food aid (US$) required to ensure food security per 1,000 

households as modelled through ADOPT. Food aid was calculated as the sum of  US$ required 

for all households to fulfil their food requirements, accounting for a variable food price. Thus, 

ADOPT can be used to calculate the average annual costs of  droughts (i.e., the direct economic 

loss for a government assuming it provides full food aid to all households in need; see Table 3). 

In the BAU, bounded rational, and economic rational scenarios, the annual average losses caused 

by droughts (costs to governments) equalled US$ 71.1k, 48.0k, and 19.9k per 1,000 households, 

respectively, on an annual basis. These estimates are a result of  food supply shortages in the study 

area caused by droughts as well as the limited possibilities for households to buy food because of  

extreme poverty. Differences were significant between the three scenarios, as the bounded rational 

scenario estimated needs 32.5% lower and the economic rational scenario estimated needs 72.0% 

lower than the business as usual scenario where no additional adaptation happened. There is a 

clear decrease in drought vulnerability in the economic rational scenario, with emergency needs 

reduced to almost zero. The high total production, due to the large amount of  households which 

adopted irrigation techniques, results in ample food supply even in times of  drought. This is not 

the case in the BAU and bounded rational scenario, where the regional food supply is insufficient 

during drought years. 

 

Figure 4.8. Food aid required per thousand households. Food aid was calculated as the cumulative amount of food shortage 
of all individual households multiplied by the maize price, accounting for a variable food price. Variability over time is 
visualized for three behavioural scenarios: economic rational (EUT), bounded rational (PMT), and no adaptation decisions 
(BAU). Drought years (SPEI value in crop season < −1) are visualized as vertical orange bars. The shaded blue area shows 
the variance among 50 bounded rational model runs, a result of the variety in weights of the PMT factors. 

Table 4.3. Average annual simulated cost of droughts (US$ per thousand households). 

Behavioural scenario Estimated average annual aid need (USD) assuming 

 heterogeneous set of households homogeneous set of households 

Business-as-usual scenario 71.4K 34.7K 
Bounded rational scenario 56.9K 27.6K  
Economic rational scenario 16.0K 7.7K 

Furthermore, Table 4.3 shows the ADOPT estimation of  the average annual cost of  

droughts for a government (US$ per thousand households) for providing all the food needs for 
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households in food insecurity in case of  a heterogeneous and homogeneous set of  households. 

When the total harvest in the study area was assumed to be equally distributed among all 

households and all households could afford to buy their food need equivalents, average annual 

food aid needs over this period would be US$ 34.7k, 27.6k, and 7.7k USD for the BAU, bounded 

rational decision, and economic rational decision scenarios, respectively. This method of  

calculating aid needs, through excluding the agent-based approach, yielded underestimations of  

food aid needs by 51% as compared to the respective heterogeneous, multi-agent-based 

estimations. This showcases the added value of  evaluating risks and the needs for food aid on an 

individual household basis. 

Moreover, comparing food aid numbers for the severe droughts of  1984, 2000, and 2009, 

the influence of  the different adaptive behaviours on the drought disaster impact can be observed. 

In the '83–'84 drought, a food aid peak of  US$ 745k could be observed in the bounded rational 

scenario, whereas BAU assumptions resulted in an estimate of  US$ 758k and the economic 

rational scenario yielded an estimate of  only US$ 256k. This is 66% less than the BAU scenario, 

which means the sudden adoption of  drought adaptation measures in the economic rational 

scenario is immediately effective in disaster risk reduction. During the 1999–2001 drought, the 

BAU, bounded rational, and economic rational scenarios exhibited emergency aid needs of  

US$ 820k, US$ 428k, and US$ 0, respectively, and the 2009 drought ends up with emergency aid 

needs of  US$ 490k, US$ 205k, and US$ 0 in the BAU, bounded rational and economic rational 

scenarios, respectively. For the bounded rational scenario, this translates to a reduction in the 

disaster impact of  47.8% in 2000 and 58.1% in 2009, as compared to the BAU conditions. For the 

economic rational scenario, this translates to a full reduction in the disaster impact, resilience is 

achieved. These vast differences reveal the large influence of  adaptation, and the assumptions 

about the dynamics of  it, on drought disaster risk assessments. 

4. Discussion 

In this contribution, we present a socio-hydrological, agent-based model, ADOPT, which 

integrates the crop model AquacropOS with a behavioural model to apply different decision 

theories. The ADOPT model framework is capable to be calibrated for any drought-prone area 

dominated by smallholder farmers. Here, ADOPT is deployed to model subsistence farmers in 

Kitui, Kenya. Our model highlights the importance of  accounting for the behaviour of  individuals 

and households who, through adaptive decision-making, influence the drought disaster risk they 

are subjected to. A failure to account for behaviour in drought disaster risk models leads to an 

underestimation of  required food aid. While results should be interpreted with care given the 

assumptions and simplifications made, the use of  various behavioural models show the range of  

possible behavioural effects as they emerge from an integrated social-hydrological feedback. The 

ADOPT model is thus useful as a first step in integrating adaptive behaviour in drought disaster 

risk modelling, while more work is required to parameterize the complex behavioural rules needed 

to accurately predict future drought disaster risk scenarios. The following paragraphs discuss the 

differences between the applied model scenarios, model calibration, and validation and sensitivity 

analysis. 
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4.1. Model Scenarios 

Insights into the co-evolution of  human adaptation and drought disaster risk are vital to the 

assessment of  future drought disaster risk and the development of  any disaster risk reduction 

strategy. However, the assumptions about adaptive behaviour, implemented through the use of  

different decision theories, highly influence the estimations of  future risk (De Koning, 2019). 

Through comparing complex behavioural dynamics against a BAU and an economic rational 

scenario, we were able to show the relative influence of  empirical adaptive behaviour (and its 

uncertainty) on general food security and poverty indicators in a Kenya-based case study. 

While economically rational farmers implement affordable adaptation measures at a fast rate, 

thereby increasing their maize yield, the adoption of  drought adaptation measures occurs more 

gradually under bounded rational conditions. This slower uptake is influenced by the occurrence 

of  droughts, which have a negative effect on the financial assets of  households, thus reducing 

their coping appraisal. However, the frequency of  droughts in the study area keeps their risk 

appraisal rather high. The intention to adopt for bounded rational farmers is therefore almost 

never zero, which is also confirmed by empirical evidence (Chapter 3). The bounded rational 

scenario leads to more realistic estimations of  the adoption of  drought adaptation measures, 

except for the estimations on mulching. This labour-intensive technique, which also limits the 

feeding of  unharvested crop residue to livestock, is potentially undervalued in the model. 

Furthermore, the ADOPT results clearly shows the ability to simulate the dynamics of  a 

poverty trap: smallholder farmers can be impoverished due to drought shocks, disabling them 

from adopting drought adaptation measures, and consecutive droughts can be a reason for 

remaining poor and increasing food insecurity. The adoption of  drought adaptation measures by 

bounded rational households reduced drought-related economic loss by 30% compared with the 

BAU scenario; economic rational households exhibited a reduction of  78% compared with BAU. 

From this estimation, it is evident that the choice of  adaptation theory matters when estimating 

risk. 

4.2. Model Validation 

The validation of  a complex behavioural model is challenging because of  unique feedbacks 

and a lack of  empirical data (Claessens et al., 2012; Brown et al., 2017). Hence, the research in this 

Chapter must be seen as a sensitivity analysis for assessing the influence of  behavioural dynamics 

on drought disaster risk rather than an attempt to reproduce the correct absolute estimates on 

yield and risk. However, to derive realistic results, we followed some of  the recommendations 

described by Cirillo and Gallegati (2012) to establish the model and used observed data to initialize 

and calibrate ADOPT. For example, (1) we used reanalysis climate data from CHIRPS (Funk et 

al., 2015a); (2) AquacropOS is specifically designed for semi-arid areas, such as Eastern Africa 

(Vanuytrecht et al., 2014) and was calibrated to the specific geographical characteristics of  Kenya 

(based on Ngetich et al., 2012); and (3) we undertook a survey in the region (Chapter 3) to obtain 

the empirical socioeconomic parameters to initialize ADOPT. While this data was complemented 

with existing household survey data from 2000, 2004, 2007, 2010 (Tegemeo Institute, 2000, 2004, 
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2007, 2010), it remains a limitation to represent 30 years of  model dynamics by data from a few 

snapshots in time 

The calibration of  AquacropOS was done based on research done by other authors, who 

calibrated AquacropOS for this region. A dedicated experiment of  crop yield under different 

weather, soil and management circumstances would have decreased this uncertainty, but this was 

beyond the scope of  this research. However, A validation of  ADOPT model results against 

historical average maize yields showed that simulated yields of  0.6 t/ha (±0.25) matched the peaks 

and averages for the Kitui region of  0.6 t/ha (±0.4) (e.g., Hansen and Indeje, 2004; Barron and 

Okwach, 2005; Aylward et al., 2015; Mumo et al., 2018; Ayugi et al., 2020). Furthermore, the 

simulated range of  people in food insecurity and people in poverty fitted the observed ranges and 

variance over time: Ifejika et al. (2008) reported that 91% of  rural households experienced food 

insecurity during the 1999–2000 drought, which is similar to the modelled peak using ADOPT. 

Peaks in poverty in 2000, around 2004, and 2009–2010 were also observed by (Nyariki and Wiggins, 

1997; Johnson and Wambile, 2011; Oluoko-Odingo, 2011). 

4.3. Sensitivity Analysis 

A sensitivity analysis was performed to evaluate the effect of  assumptions in PMT on the 

uptake of  adaptive measures and related effects on yields. Sensitivities were visualized by shaded 

uncertainty ranges in the graphs found in section Results. Changing the initialization values of  the 

households did not significantly affect the average maize harvest nor average aid needed over time. 

When varying the share of  households receiving extension services between 10 and 90%, 

estimates on average household maize harvest varied between 971 and 1,000 kg per year, 

respectively. When varying the PMT weights α and β, changing the relative importance of  risk 

appraisal and coping appraisal (subsection 2.2.3, Adaptation Intention Equation 2), between 66 

and 33%, the resulting household maize harvest estimates ranged between 993 and 987 kg per 

year, respectively. Varying the weights in the coping appraisal equation, changing the relative 

importance of  self-efficacy, adaptation-efficacy and adaptation costs (γ, δ, and ε, subsection 

Simulating the Adaptive Behaviour of  Subsistence Farmers, Equation 4) between 25 and 50%, 

household maize harvest estimates ranged between 982 kg (when adaptation costs have a weight 

of  50%) and 1,003 kg (when adaptation efficacy has a weight of  50%). 

The estimated average food aid needs over the 30 years of  simulations varied between 

US$ 61.544–53.584 when changing the share of  households receiving extension services between 

10 and 90%; between US$ 57.152 and 57.391 when changing the relative influence of  risk 

perception from 66 to 33% (Equation 2); and between US$ 54.360 and 58.955 when altering the 

weights of  self-efficacy, adaptation efficacy, and adaptation costs (Equation 4). It is clear that the 

weights used to estimate the intention to adopt did influence the final outcome: Increasing the 

influence risk perception or giving more importance to adaptation efficacy increased the average 

maize harvest, while it decreased the average aid needed. assumptions about an external factor—

the extension services—are shown to have a larger impact on the results: raising the share of  

households receiving this form of  training increased the average maize harvest and reduced the 

aid needed more than any of  the changes in weight of  the PMT factors. This indicates that 
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increasing the frequency of  extension services in addition to raising households' risk perception 

or thrust in the adaptive efficacy, can positively influence the adoption rate hence decrease drought 

disaster risk. However, the variability introduced by the different behavioural scenarios, and thus 

the assumptions of  BAU (static vulnerability) and economic rational behaviour (full information), 

are highlighted as the largest influencing factors on the results, proving the importance of  correctly 

including human adaptive behaviour in drought disaster risk models. 

4.4. Scope for Further Research 

Not all possible adaptive behaviours could be included in our modelling setup. For example, 

Kenyan households often cope with droughts by increasing livestock sales, serving as a buffer 

against absolute poverty in times of  failed harvests (Few et al., 2006; Ifejika, 2010; Oluoko-Odingo, 

2011). In ADOPT, livestock trade is not included, explaining the relatively high peaks in poverty 

during droughts. Furthermore, the potential application of  different drought tolerant seeds and/or 

varieties can be included, which would require detailed information about the variety’s agronomic 

sensitivity to water stress. Another way to reduce modelling uncertainty in future applications is 

including a changing planting date based on weather predictions, as is reported on the field 

(Chapter 4) but currently impossible in AquacropOS. Future research could work to include these 

drought adaptation strategies to create a broader picture of  smallholder adaptive behaviour in the 

face of  droughts in semi-arid Kenya. Besides, while now only precipitation was seen as a source 

of  water, a follow up study could couple the ADOPT model to a spatially distributed hydrological 

model and investigate the influence of  water abstractions on the water availability in rivers or 

groundwater. As such, proximity to the river and other geographic drivers for adaptation can be 

included. 

5. Concluding Remarks 

Smallholder farms in Africa are increasingly affected by droughts, which are expected to 

intensify with climate change and socioeconomic trends. However, while these farmers have a 

critical role regarding efficient use of  water and the production of  food (e.g., UN Water Action 

decade 2018–2028, UN Decade of  Family Farming 2019–2029), their individual decision-making 

is often neglected in drought disaster risk assessments (Moran et al., 2007). Disentangling the role 

of  emergent adaptation decisions improves the understanding of  current and future drought 

disaster risk (Aerts et al., 2018). Aiming to address this modelling gap, we developed a socio-

hydrological, agent-based drought disaster risk model, ADOPT, which couples a physically based 

crop growth model (AquacropOS) with an adaptation decision model. Designed using socio-

hydrological and agent-based modelling approaches, ADOPT simulates the two-way interaction 

between rain-fed agricultural production variability and the emergence of  drought adaptation 

measures. Initialized with new survey data from households in central Kitui, the model showcased 

its ability to analyse historical yield losses caused by droughts, the impact of  these losses on 

smallholder farmers, and the adaptive response of  farmers to droughts. Three different 

behavioural scenarios were tested: one where households could not adopt new adaptation 
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measures (business as usual), one where they behaved economically rationally (following the 

expected utility theory), and a more realistic approach where they followed a bounded rational 

logic (using the protection motivation theory). 

Results highlight that current estimations of  drought disaster risk and the need for 

emergency food aid can be improved using an agent-based approach. Besides, we show that 

working with an “average household”—thus not accounting for the existing inequality—

underestimates the number of  aid needs. Furthermore, our study finds that assumptions about 

the adaptive behaviour of  households highly influence drought disaster risk estimations. ADOPT 

simulations show how the dynamics of  adaptive decision-making, which emerge from interactions 

between individual agents and their environments, influence yields and other risk indicators. 

Accounting for bounded rational decision-making, a significant difference in annual average yield 

loss could be seen in comparison to the more conventional BAU or economic rational scenarios. 

Moreover, the magnitudes estimated while assuming bounded rational households were found to 

be closest to observed data. By incorporating the effects of  bounded rational adaptive behaviour, 

we conclude that ADOPT is better able to better simulate drought disaster risk over time than 

classic assumptions with respect to adaptation behaviour. 

Following recent research in socio-hydrology, the ADOPT model can be seen as an 

experimental setup for improving our understanding of  the socioeconomic and environmental 

factors that influence drought disaster risk and management over time. While now, it shows how 

different drivers steer household's adaptation decisions and how these affects their personal and 

community drought disaster risk, it could also be used to assess future drought disaster risk and 

to evaluate the effect(iveness) of  specific NGO or governmental actions and policy. The ADOPT 

framework can be applied to study food insecurity in other case studies, or used to answer 

questions about other adaptation strategies, aiming at improved livelihoods and reduced drought 

disaster risk. Besides, it can be employed to study the effect of  certain governmental policies on 

households' drought disaster risk behaviour or, coupled to a spatially distributed hydrological 

model, it can enable us to study trade-offs between drought disaster risk for different water users 

up- and downstream catchments. This work represents an important next step in drought disaster 

risk modelling and toward enhanced agricultural water management. 
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Samenvatting 

Analyses van toekomstige gevolgen van droogte in de landbouw vereisen een 

multidisciplinaire aanpak waarin zowel de menselijke als de milieudynamiek worden bestudeerd. 

In dit hoofdstuk hebben we het agent-gebaseerde droogterisicomodel ADOPT toegepast om het 

effect van verschillende droogterisico-beperkende interventies op kleine agrariërs in de Keniaanse 

rurale gebieden te beoordelen. Bovendien werd de robuustheid van deze droogte-interventies 

onder verschillende klimaatveranderingsscenario's geëvalueerd. Het ADOPT model simuleert 

waterbeheerbeslissingen van kleine agrariërs, en evalueert de voedselonzekerheid, armoede en 

noodhulpbehoeften van huishoudens als gevolg van droogterampen. Het model is gebaseerd op 

uitgebreide veldonderzoeken en interviews waaruit beslissingsregels zijn gedistilleerd op basis van 

theorieën over begrensd rationeel gedrag.  

De modelresultaten suggereren dat aangepaste trainingen voor agrariërs de toepassing van 

goedkope, nieuwere droogtemaatregelen vergroten, terwijl kredietregelingen nuttig zijn voor 

kosteneffectieve maar dure droogtemaatregelen, en financiële transfers vóór de droogte de minst 

vermogende huishoudens in staat stellen goedkope welbekende maatregelen te nemen. Systemen 

voor vroegtijdige waarschuwing blijken doeltreffender in klimaatscenario’s waar droogte minder 

frequent voorkomt. Het tegelijkertijd toepassen van deze vier beleidsacties heeft een wederzijds 

versterkend effect: het zorgt voor een sterke toename van droogtemaatregelen onder agrariërs en 

leidt tot minder voedselonzekerheid, minder armoede en een drastisch lagere behoefte aan 

noodhulp, zelfs onder warmere en drogere klimaatomstandigheden. Deze niet-lineaire synergiën 

wijzen erop dat een holistisch perspectief  nodig is om de weerbaarheid van kleine agrariërs in de 

droge Keniaanse gebieden te ondersteunen. 
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Summary 

Analyses of  future agricultural drought impacts require a multidisciplinary approach in 

which both human and environmental dynamics are studied. In this study, we used the socio-

hydrologic, agent-based drought risk adaptation model ADOPT. This model simulates the 

decisions of  smallholder farmers regarding on-farm drought adaptation measures, and the 

resulting dynamics in household vulnerability and drought impact over time. We applied ADOPT 

to assess the effect of  four top-down disaster risk reduction interventions on smallholder farmers’ 

drought risk in the Kenyan drylands: The robustness of  additional extension services, lowered 

credit rates, ex-ante rather than ex-post cash transfers, and improved early warnings was evaluated 

under different climate change scenarios.  

Model results suggest that extension services increase the adoption of  low-cost, newer 

drought adaptation measures while credit schemes are useful for measures with a high investment 

cost, and ex-ante cash transfers allow the least wealthy households to adopt low-cost well-known 

measures. Early warning systems show more effective in climate scenarios with less frequent 

droughts. Combining all four interventions displays a mutually-reinforcing effect with a sharp 

increase in the adoption of  on-farm drought adaptation measures resulting in reduced food 

insecurity, decreased poverty levels and drastically lower need for emergency aid, even under hotter 

and drier climate conditions. These nonlinear synergies indicate that a holistic perspective is 

needed to support smallholder resilience in the Kenyan drylands.
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1. Introduction 

Droughts, defined as below-normal meteorological or hydrological conditions, are a 

pressing threat to the food production in the drylands of  Sub-Saharan Africa (Brown et al., 2011; 

Cervigni & Morris, 2016; UNDP et al., 2009). Over the last decades, increasing temperatures and 

erratic or inadequate rainfall have already intensified drought disasters (Khisa, 2017). Climate 

change, population growth and socio-economic development will lead to additional pressures on 

water resources (Erenstein, Kassie, & Mwangi, 2011; Kitonyo et al., 2013). In Kenya, three 

quarters of  the population depend on smallholder rain-fed agricultural production and nearly half  

of  the population is annually exposed to recurring drought disasters causing income insecurity, 

malnutrition and health issues (Alessandro et al., 2015; Khisa, 2018; Mutunga et al., 2017; Rudari 

et al., 2019; UNDP, 2012). Reducing drought risk is imperative to enhance the resilience of  the 

agriculture sector, to protect the livelihoods of  the rural population, and to avoid food insecurity 

and famine in Kenya’s drylands (Khisa, 2017; Shikuku et al., 2017).  

Drought risk models are important tools to inform policy makers about the potential 

effectiveness of  adaptation policies and enable the design of  customized drought adaptation 

strategies under different future climate scenarios (Carrao et al., 2016; Stefano et al., 2015). 

Traditionally, such models express disaster risk as the product of  hazard, exposure and 

vulnerability, and are based on historical risk data. Recent disaster risk models have dealt with 

climate change adaptation in a two-stage framework; first describing a few scenarios regarding 

adaptation choices of  representative households, then estimating the impacts of  adaptation on 

(future-) welfare while assuming climate change scenarios (di Falco, 2014). However, most existing 

research does not account for more complex dynamics in  adaptation and vulnerability (Conway 

et al., 2019b), for the heterogeneity in human adaptive behaviour (Aerts et al. 2018) or for the 

feedback between risk dynamics and adaptive behaviour dynamics (Di Baldassarre et al., 2017). 

Though, these are the aspects that determine, for a large part, the actual risk (Eiser et al., 2012). 

It appears that farmers often act boundedly rational towards drought adaptation rather than 

economically rational: their economic rationality is bounded in terms of  cognitive capability, 

information available, perceptions, heuristics and biases (Schrieks et al., 2021; Wens et al., 2021). 

To account for such individual adaptive behaviour in drought risk assessments, an agent-based 

modelling technique can be applied (Berger & Troost, 2014; Blair & Buytaert, 2016; Filatova et al., 

2013; Kelly et al., 2013; Matthews et al., 2007; Smajgl et al., 2011; Smajgl & Barreteau, 2017). 

Agent-based models allow explicit simulation of  the bottom-up individual human adaptation 

decisions and capture the macro-scale consequences that emerge from the interactions between 

individual agents and their environments. Combining risk models with an agent-based approach 

is thus a promising way to analyse drought risk, and the evolution of  it through time, in a more 

realistic way (Wens et al., 2019). 

Here we present how an agent-based drought risk adaptation model, ADOPT (designed in 

Wens et al 2020), can increase our understanding of  the effect of  drought policies on community-

scale drought risk for smallholder farmers in Kenya’s drylands. The design of  ADOPT as an agent-

based drought risk adaptation model is described in Wens et al., 2020. Moreover, Wens et al. (2021) 
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detail the empirical data on past adaptive behaviour (used to calibrate the model), as well as 

empirical data on adaptation intentions that can be used to compare with the model outputs.   

In this Chapter, we apply the ADOPT model, to test the variation in household drought 

risk under different drought management policies: (i) a reactive government only providing 

emergency aid, (ii) a pro-active government, which provides sufficient drought early warnings and  

ex-ante cash transfer in the face of  droughts , and (ii) a prospective government that, in addition 

to early warnings and ex-ante transfers, subsidises adaptation credit schemes and provides regular 

drought adaptation extension services to farmers. In addition, ADOPT is used to evaluate the 

robustness of  these policies under different climate change scenarios. We acknowledge that 

ADOPT should be subject to additional validation steps in order to more accurately and precisely 

predict future drought risk. Yet, in this Chapter we elaborate the potential of  this proof-of-concept 

model by showcasing the trends in drought risk under risk reduction interventions and climate 

change for a case study in semi-arid Kenya.  

2. Case study description 

The ADOPT model has been applied to the context of  smallholder maize production in 

the dryland communities in the areas  Kitui, Makueni and Machakos in south-eastern Kenya (fig. 

1). This semi-arid to sub-humid  region is drought-prone, being hit by drought disasters in 1983/84, 

1991/92, 1995/96, 1998/2000, 2004/2005, and 2008-11, 2014-2018 (data from Em-Dat and 

DesInventar). The majority of  the population in this dry transitional farming zone is directly or 

indirectly employed through agriculture. However. technology adoption and production level 

remain rather low, making the region very vulnerable to droughts and climate change (Khisa & 

Oteng, 2014; Mutunga et al., 2017).  

In Kenya, 75% of  the country’s maize is produced by smallholder farms. Maize is grown in 

the two rainy seasons, with the aim to meet household food needs (subsistence farming) (Erenstein, 

Kassie, & Mwangi, 2011; Erenstein, Kassie, Langyintuo, et al., 2011; Speranza et al., 2008). While 

during the long rainy season (March-April-May) multiple crops are planted, the short rainy season 

(October-November-December) is considered the main growing season for maize in the region 

(Rao et al., 2011). Reported smallholder maize yields often do not exceed 0.7 ton/ha. However, 

with optimal soil water management, yields can elevate to 1.3 ton/ha in the semi-arid medium 

potential maize growing zone in south-eastern Kenya (Omoyo et al., 2015). Few farmers use 

pesticides, improved seeds or other adaptation strategies (Tongruksawattana & Wainaina, 2019) . 

In Kitui, Makueni and Machakos, the most preferred seed-variety is the high yielding but 

less drought resistant Kikamba/Kinyaya variety (120 growing days) with a potential yield of  only 

1.1 tons per hectare (Speranza, 2010; Recha et al., 2012). Trend analysis (1994-2008) shows that 

yields are declining due to the increasing pace of  recurring droughts (Nyandiko, 2014). Over 97% 

of  the smallholder farmers in this area grow maize, mainly for own consumption or local markets 

(Brooks et al., 2009; Kariuki, 2016; Nyariki & Wiggins, 1997). It is the main staple food, providing 

more than a third of  the caloric intake, and is also the primary ingredient used in animal feeds in 

Kenya (Adamtey et al., 2016; FAO, 2008).  . Only about 20% of  the farmers are able to sell their 

excess crops, while 66% have to buy maize to complement their own production (Muyanga, 2004).  
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Figure 5.1: Study area: dry transitional maize agro-ecological zone (right) located in South-Eastern Kenya (centre) in 
the Horn of Africa (left). Area where the survey data (Wens 2021) is collected is indicated with a star on the right 
map. Map adjusted from Barron and Okwach (Barron & Okwach, 2005) 

3. Model and scenario description 

ADOPT (fig. 2, Wens et al 2020, ODD+D (Overview, Design concept, Details + Decision) 

protocol in Appendix 5A) is an agent-based model that links a crop production module to a 

behavioural module evaluating the two-way feedback between drought impacts and drought 

adaptation decisions. ADOPT was parameterized with information from expert interviews, a farm 

household survey with 260 households including a semi-structured questionnaire executed in the 

Kitui Region, Kenya (Wens et al. 2021). Moreover, a discrete choice experiment (a quantitative 

method to elicit preferences from participants without directly asking them to state their preferred 

options) was executed to get information on changes in adaptation intentions under future top-

down DRR interventions (Wens et al. 2021). This empirical dataset feeds the decision rules in 

ADOPT describing farm households’ adaptive behaviour in the face of  changing environmental 

conditions (drought events), social networks(actions of  neighbouring farmers), and top-down 

interventions (drought management policies).  

In ADOPT, crop production is modelled using AquacropOS (Foster & Brozović, 2018), 

simulating crop growth on a daily basis and producing crop yield values at harvest time twice per 

year. Calibrated for the Kenyan dryland conditions (Ngetich et al., 2012; Wamari et al., 2007), 

AquacropOS considers the current water management of  the farm (i.e., the applied drought 

adaptation measures) and yields vary with weather conditions. The adaptive behaviour of  the farm 

households (agents) is modelled based on the Protection Motivation theory (PMT, Rogers 1975). 

This theory was derived as promising in an earlier study (Wens et al, 2020) and includes multiple 

relevant factors that drive the observed behaviour of  farm households (Wens et al 2021). In this 

application of  ADOPT, the model was run over 30 historical years as baseline followed by 30 

years of  future scenarios (combinations of  policy and climate changes; the start of  these changes 
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is indicated as “year 0”). Through a sensitivity analysis, both the average effect of  individual 

adaptation decisions and its endogenous model variability are analysed (similar to Wens et al 2020). 

We used 12 different initialisations per scenario to include variations in model initialisation, the 

stochasticity that determines the individual adaptation decisions, and the relative weights of  factors 

influencing behaviour (See 3.1).  

 
Fig. 5.2: ADOPT model overview, adjusted from Chapter 5. Description of the model in ODD+D in Supplementary. 

3.1. Individual adaptive behaviour in ADOPT 

Various soil water management practices, further called drought adaptation measures, can 

be adopted by smallholder farmers in ADOPT. There are shallow wells to provide irrigation water, 

the option to connect these to drip irrigation infrastructure, and Fanya Juu terraces as on-farm 

water harvesting techniques. Moreover, a soil protection measure reducing the evaporative stress, 

mulching, is included. These measures are beneficial in most – if  not all – of  the years and have a 

particularly good effect on maize yields in drought years. Nonetheless, current adoption rates of  

these measures are quite varied and often remain rather low (Gicheru, 1990; Kiboi et al., 2017; 

Kulecho & Weatherhead, 2006; Mo et al., 2016; S. Ngigi, 2019; S. N. Ngigi et al., 2000; Rutten, 

2004; Zone, 2016). 



Reducing smallholder farmers’ vulnerability to drought under climate change 

 131 

ADOPT applies the Protection Motivation Theory, a psychological theory often used to 

model farmer’s bounded rational adaptation behaviour (Schrieks et al 2021). It describes how 

individuals adapt to shocks such as droughts and are motivated to react in a self-protective way 

towards a perceived threat (Grothmann & Patt, 2005; Maddux & Rogers, 1983).  Four main factors 

determining farmers’ adaptation intention under risk are modelled: (1) risk perception is modelled 

through the number of  experienced droughts and number of  adopted measures, household 

vulnerability, and experienced impact severity. Moreover, trust in early warnings is added, which 

can influence the risk appraisal if  a warning is sent out. Coping appraisal is modelled through a 

(2) farmers’ self-efficacy (household size / labour power, belief  in God, vulnerability), (3) 

adaptation efficacy (perceived efficiency, cost and benefits, seasons in water scarcity, choices of  

neighbours, number of  measures), and (4) adaptation costs (farm income, off-farm income, 

adaptation spending, access to credit). These four PMT factors receive a value between 0 and 1 

and define a farmer’s intention to adopt. Which smallholder farmers adopt which measures in 

which years is then stochastically determined based on this adaptation intention. More information 

regarding the decision making can be found in the Supplementary. 

3.2. Drought disaster risk indicators in ADOPT 

In ADOPT, annual maize yield influences the income and thus assets of  the (largely) 

subsistence farm households. This influence is indirect, because the farm households are assumed 

to be both producers and consumers, securing their own food needs. The influence is also a direct 

one, because these farm households sell their excess maize on the market at a price sensitive to 

demand and availability. Farm households who cannot satisfy their food needs by their own 

production, turn to this same market. They buy the needed maize – if  they can afford it and if  

there is still maize available on the market. If  they do not have the financial capacity or if  there is 

a market shortage, they are deemed to be food insecure. Their food shortage (the kilogram maize 

short to meet household food demand) is multiplied by the market price to estimate their food aid 

needs. Adding the farm income of  the household with their income from potential other sources 

of  income, it is estimated whether they fall below the poverty line of  1.9 USD per day. As climate 

and weather variability causes maize yields to fluctuate over time, so do the prevalence of  poverty, 

the share of  households in food insecurity and the total food aid needs. These factors can be seen 

as proxies for drought risk and were evaluated over time.  

3.3. Climate change scenarios 

Multiple climate change scenarios – all accounting for increased atmospheric carbon dioxide 

levels - were tested: a rising temperature of  10%, a drying trend of  15%, a wetting trend of  15%, 

and various combinations of  these. The warming and drying trends were based on a continuation 

of  the trends observed in the last 30 years of  daily NCEP temperature (Kalnay et al., 1996) and 

CHIRPS precipitation (Funk et al., 2015) data (authors’ calculations; similar trends found in 

(Gebrechorkos et al., 2020)). The wetting trend was inspired by the projections from most climate 

change models which predict an increase in precipitation in the long rain season – a phenomenon 
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known as the ‘East African Climate Paradox’(Gebrechorkos et al., 2019; Lyon & Vigaud, 2017; 

Niang et al., 2015). The no change scenario was a repetition of  the baseline period, without 

changing precipitation or temperature hence only elevated carbon dioxide levels. Reference 

evaporation was calculated for each scenario using the Penman-Monteith model and thus 

influenced by temperature changes (Allen, 2005; Droogers & Allen, 2002). 

 

Table 5.1: Average (daily temperature, annual precipitation) weather conditions (1980-2010) in ADOPT  

 min temperature max temperature precipitation reference evaporation 

No change 16.3 (+- 0.8) °C 26.9 (+- 0.9) °C 888 (+-319) mm 1547 (+-298) mm 

Wet 16.3 (+- 0.8) °C 26.9 (+- 0.9) °C 1021 (+-367) mm  1547 (+-298) mm 

Hot 17.9 (+- 0.9) °C 29.6 (+- 0.9) °C 888 (+-319) mm 1659 (+-320) mm 

Dry 16.3 (+- 0.8) °C 26.9 (+- 0.9) °C 755 (+-271) mm 1547 (+-298) mm 

 

These trends were added to time series of  30 years of  observed data. While such approach 

does not account for an increased variability, it allows to account for the temporal coherence in 

the data and the interrelationships among different weather variables (weather generators – 

another option to downscale projected climate - have still some progress to make in order to 

accurately account for extreme events (Ailliot et al., 2015; Mehan et al., 2017)). This resulted of  

30 years of  synthetic ‘future’ data, for each of  the six - wet, hot-wet, hot, dry, hot-dry and no 

change - scenarios . While they do not have a known probability of  occurring, they enable testing 

the effect of  the on-farm adaptations and top-down drought disaster risk reduction strategies on 

drought risk under changing average hydro-meteorological conditions.  

 
Fig. 5.3: Probability of having a year with three or more consecutive months under a SPEI < -1, for the climate change 
scenarios. 

Droughts, here defined as at least three months with standardized precipitation index (SPEI) 

values below – 1 , have a different rate of  occurrence under these different future climate scenarios 

(Fig. 3). SPEI is calculated through standardizing a fitted Generalized Extreme Value distribution 

over the historical monthly time series and superimposing this onto the climate scenario time series. 

Under the no change scenario, 25% of  the thirty simulated years  fall below this  threshold. Under 

the wet scenario, fewer droughts occur (15% of  the years), but under the dry scenario, the number 

of  droughts years more than doubles (54% of  the years). Temperature is dominant over 

precipitation in determining drought conditions, as under the hot-wet scenario, 41% drought years 

are recorded, and  under hot-dry conditions, 78% of  the years can be considered drought years.  
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3.4. Drought disaster risk reduction intervention scenarios 

Four policy interventions are evaluated, chosen based on key informant interviews (chapter 

4) and current national policy documents. Kenya Vision 2030 for the ASAL promotes drought 

management through extension services and aims to increase access to financial services such as 

affordable credit schemes (Government of  Kenya, 2012; Kenya, 2016). Besides, building on the 

Ending Drought Emergencies plan, the National Drought Management Authority prioritizes the 

customization, improvement and dissemination of  drought early warning systems. It aims to 

establish trigger levels for ex-ante cash transfer so as to upscale drought risk financing 

(Government of  the Republic of  Kenya, 2013; National Drought Management Authority, 2015; 

Republic of  Kenya, 2017). Improved extension services tailored to the changing needs of  farm 

households (Muyanga & Jayne, 2006), a better early warning system with longer lead times 

(Deltares, 2012; van Eeuwijk, n.d.), ex-ante cash transfers to the most vulnerable when a drought 

is expected (Guimarães Nobre et al., 2019) and access to credit-markets (Berger et al., 2017; Fan 

et al., 2013) are all assumed to increase farmers’ intention to adopt new measures.  

As shown in Wens et al (2021), extension services are most effective when offered to 

younger, less rich and less educated people, or to those who already adopted the most common 

measures. Similarly, early warning systems are changing the intention to adapt mostly for less 

educated, less rich farmers, or those not part of  farmer knowledge exchange groups. The ex-ante 

cash transfer drives the adoption of  more expensive measures for those who spend already a lot 

of  money on adaptation, the most. Access to credit is preferred by less rich farmers, who have a 

larger land size, are members of  a farm group, went to extension trainings, have easy access to 

information and/or are highly educated (Wens et al. 2021).   

In this application of  ADOPT, the effect of  these four interventions - extension services, 

early warning systems, ex-ante cash transfer and credit schemes - were tested individually. 

Additionally, three scenarios, combining different types of  interventions, were evaluated, all 

initiated in year “0” in the model run. 

I. Reactive policy intervention “supporting drought recovery”: No (new, pro-active) interventions 

are implemented. Only emergency aid (standard in the ADOPT model to avoid households to 

die) is given to farmers who lost their livelihoods after drought disasters; this food aid is 

distributed to farmers who are on the verge of  poverty to avoid famine. 

II. Pro-active policy intervention plan “preparing for drought disasters”: Improved early warnings 

are sent out each season if  a drought is expected. This is assumed to raise all farmers’ risk 

appraisal with 20%. Ex-ante cash transfers are given to all smallholder farmers (those without 

income off-farm  and without commercialisation) to strengthen resilience in the face of  a 

drought. This is done when severe and extreme droughts (SPEI <-1, and <-1.5) are expected 

that could lead to crop yield lower than respectively 500kg/ha and 300kg/ha. Money equivalent 

to the food insecurity following these yields is paid out to farmers with low external income 

sources. Moreover, like in the reactive government scenario, emergency aid is given to farmers 

who need it. 

III. Prospective policy intervention plan (UNDRR 2021) “mitigating (future) drought disasters”: 

Credit rates are lowered so that it is affordable to people to take a loan for adaptation measures, 
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at an interest rate of  2% and a pay-back period of  five years. Besides, emergency services are 

provided in the form of  frequent trainings given in communities with poor practices to improve 

their capacity related to drought adaptation practices for agriculture. Moreover, like in the 

proactive government scenario, an improved early warnings system is set up and ex-ante cash 

transfer is given. Lastly, emergency aid is given to farmers who need it. 

4. Results  

4.1. Maize yield under different adaptation measures and future climate scenarios 

The annual average maize yields under the different climate scenarios, for  the four on-farm 

drought adaptation measures implemented in ADOPT  - mulch, Fanya Juu bunds, shallow well 

and drip irrigation -, were calculated using AquacropOS (Fig. 4). Under wetter future climate 

conditions, maize yields are expected to increase under all management scenarios, with mulch 

having a particular positive effect on the soil moisture conditions throughout the full growing 

season. Hotter climate conditions reduce yields slightly:  the assumptions in this model on the 

frequency and amount of  manual irrigation or drip irrigation water are not sufficient to diminish 

this effect, even under wetter conditions. Paired with drier conditions, this hotter future has 

dramatically negative effects on yields, showing on average 28% lower yields compared to the no 

climate change scenario over all management scenarios.  

 
Fig. 5.4: Average maize yield under different agricultural water management conditions and different future climate scenarios.  

4.1. 4.2 The adoption of  adaptation measures over time 

In ADOPT, all evaluated  top-down interventions increased the adoption rate of  the 

evaluated adaptation measures compared to the reactive “no intervention” scenario (Fig.5): 

reduced credit rates, improved early warning systems, tailored extension services, and ex-ante cash 

transfers, as well as the proactive and prospective scenarios  lead to increases in adoption as 

compared to the reactive scenario (colours in Fig. 5).  
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Fig. 5.5: Total amount of measures adopted per 1000 initialized households under no climate change, averaged over all runs. 
The shaded area indicates the variation - uncertainty introduced by different model initialisations and by different relative 
importance of the PMT factors on the decisions of households (sensitivity analysis). Year 0 initiates policy drought risk 
reduction interventions (indicated with different line colours). 

Looking into detail to the effect of  possible policy interventions (Fig. 5, table 5B in 

Appendix), affordable credit schemes had the highest effect on the adoption rate of  drought 

adaptation measures. Furthermore, ex-ante cash transfers (which cannot be seen as large sums of  

investment money but as a mere means to keep families food secure) were more effective to 

increase adoption of  the more affordable measures. Indeed, richer families mostly had already 

adopted these measures before policy interventions were in place. Extended extension service 

training increased the adoption of  less popular measures and decreased the adoption of  the 

popular but not as cost-effective Fanya Juu terraces. Early Warning Systems had more effect in 

wetter climate conditions. The dry-hot scenario has so many drought episodes that risk perception 

is automatically high while the alert lowers when droughts become scarcer in the less dry scenarios.  

Overall, although the processes through which the interventions support households to 

adapt differ significantly, the differences in eventual adoption rate under the different interventions 

were small (they overlap in uncertainty interval). Also, the effect of  climate change on the adoption 

rate (Figure 5A, Table 5B in Appendix) was rather small when evaluating the reactive (no 

intervention) scenario. However, with interventions, the climate change scenarios differed more.  

When examining the effect of  the three intervention scenarios (Figure 5B, table 5B in 

Appendix), it is clear that implementing multiple policies at once resulted in a stronger increase in 

adoption: a proactive and prospective intervention plan increased the adoption of  different 

adaptation measures with respectively 40% and 140% more than under the “reactive, no climate 

change” scenario where no intervention takes place. Both a proactive and prospective approach 

increased the adoption of  cheaper adaptation measures to close to 100% of  the farm households. 

For more expensive measures, the proactive scenario showed to be less effective while the 

prospective scenario reached quite high adoption rates in the more extreme climate scenarios. 
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Fig. 5.6: Household maize harvest (kg/year, sum of two growing seasons) over 30 ‘scenario years’ under different climate 
change and policy intervention scenarios. The shaded area indicates the variation - uncertainty introduced by different model 
initialisations and by different relative importance of the PMT factors on the decisions of households (sensitivity analysis)   

The adoption of  adaptation measures by households influenced their maize yield and thus 

affected the average and median maize harvest  under the different future climates and drought 

risk reduction interventions – with an increasing effect over the years (increasing difference in 

harvest between reactive and other scenarios, Fig. 6). This becomes clear comparing the first thirty 

baseline years with the following thirty scenario years: When no policy interventions were in place, 

average maize yields increased with almost 30% under a wet-hot future and decreased over 25% 

under a dry-hot climate. Under a prospective government supporting the adoption of  adaptation 

measures, average maize yields increased up to 100% under a wet-hot future and increased by over 

60% under dry-hot future conditions. Clearly, an increased uptake of  measures under this 

intervention scenario would potentially offset a potentially harmful drying climate trend.  

4.2. Drought risk dynamics under policy and climate change 

Assuming off-farm income to fluctuate randomly but not steadily increasing or decreasing, 

the changing harvests over time directly affected the poverty rate and the share of  households in 

food insecurity (Fig. 7). Both trends in yield caused by droughts or by the adoption of  new 

adaptation measures, could drive farm household in or out of  poverty. Running ADOPT with a 

reactive and no climate change scenario, a slight increase of  5 percentage points (pp) in poverty 

levels was visible. Poverty levels increased up to 15pp compared to the baseline situation, when a 

dryer and/or hotter climate scenario was run. A proactive intervention plan reduced poverty by 

11pp under no climate change. In the dry-hot climate scenario this combination of  improved early 

warning systems and ex-ante cash transfers lead to reductions of  20-30pp compared to the 

baseline years. However, the prospective government scenario showed the most prominent results, 

projecting reductions of  45pp under no climate change and around 60pp under dryer and hotter 
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climate conditions. It is important to remark that the different between the intervention scenarios 

and the reactive scenario is only clearly visible after more than 10 years under most future climate 

scenarios. 

 

 
Fig. 5.7: Share of households in poverty (earning under the 2USD/day income line, under different climate and policy 
intervention scenarios). The shaded area indicates the variation - uncertainty introduced by different model initialisations and 
by different relative importance of the PMT factors on the decisions of households (sensitivity analysis). 

Food insecurity is partly caused by a lack of  income or assets, but also by the farm market 

mechanism. Droughts, climate change and adaptation levels influence the availability of  maize on 

this market. Farm households which do not produce enough to be self-sufficient, buy maize on 

the market if  they have the money and if  there is maize locally available. Households are assumed 

to be in food shortage if  they have to rely on food aid to fulfil their caloric needs. On average in 

the ‘no climate change’ and ‘no policy interventions’ scenarios, food security rates were predicted 

to remain stable compared to the baseline period (fig. 8). However, policy interventions and 

climate change can alter this balance.  

Fig. 5.8: Absolute change (average and standard deviation introduced by sensitivity analysis - variation caused by different 
model initialisations and by different relative importance of the PMT factors on the decisions of households) in average share 
of households in food shortage of the 20 last years of scenario run, compared to the first 20 years of baseline run before “year 
0“, under different climate and policy intervention scenarios. ADOPT model output.  
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Improving extension services or providing ex-ante cash transfers individually showed on 

average 7.5% more reduction in food insecurity than the reactive government scenario. Improved 

early warning systems showed on average - over all climate scenarios- an increased reduction of  

4.5%. It should be kept in mind that ADOPT does not consider (illicit) coping activities in the 

face of  droughts which can – if  a drought warning is send out – allow households to avoid buying 

food at high market prices or to engage in other income-generating activities such as food stocking 

or charcoal burning (Eriksen et al., 2005). However, both of  them might reduce the food security 

threat. Credit schemes at 2%, individually, lead to more than 8% reduction in food insecurity levels 

as compared to the reactive scenario; but even then, on average net food insecurity rates increase 

due to climate change. A proactive intervention resulted in a food insecurity rate which is 6 percent 

points lower than under the reactive scenario; but still showed increases in the prevalence of  food 

insecurity under hotter and drier conditions. A prospective intervention, combining all four 

interventions, was able to consistently reduce the food insecurity levels over time, even under the 

dry-hot climate scenario. This scenario was able to counteract the increase in food insecurity, 

achieving a reduction of  households in food shortage over time with on average 28% compared 

to the reactive scenario, all climate scenarios considered.  

Expressing drought impacts in average annual food aid required (in USD) can help to 

evaluate the effect of  different climate change scenarios or different policy intervention scenarios 

on the drought risk of  the community. These estimations are translated to USD, assuming a maize 

price for shortage markets, as price volatility is considered. Table 2 shows the change in aid needs 

compared to the no-climate change, no-top-down intervention baseline period (based on the 

1980-2000 situation). When assuming no climate change, it seemed that the community is stable, 

only slightly increasing the share in vulnerable households. More measures were adopted as 

information is disseminated thought the farmer networks, but those who stay behind will face 

lower sell prices as markets get more stable and have a harder time accumulating assets. Under 

wetter conditions, reductions in drought emergency aid did reduce. However, drier, hotter climates 

had a detrimental effect on the food needs, with more vulnerable people crossing the food 

shortage threshold.  

Table 5.2: Change in aid needs (%) in 2030-2050 compared to 1980-2000 (average and standard deviation introduced by 
sensitivity analysis - variation caused by different model initialisations and by different relative importance of the PMT factors 
on the decisions of households) under different climate and policy intervention scenarios. ADOPT model output. 

 No change  Wet Wet Hot Hot Dry Hot Dry 

Reactive scenario 4 (+-4)% -29(+-20)% -11(-+6)% 37(+-6)% 117(+-6)% 94(+-24)% 

Ex ante cash transfer -2(+-4)% -31(+-15)% -20(+-5)% 24(+-5)% 92(+-3)% 76(+-17)% 

Early warning system -6(+-6)% -42(+-18)% -24(+-6)% 25(+-5)% 109(+-8)% 86(+-25)% 

Extension services -20(+-7)% -49(+-17)% -33(+-6)% 15(+-4)% 96(+-9)% 71(+-15)% 

Credit at 2% rate -24(+-10)% -50(+-18)% -33(+-8)% 10(+-12)% 86(+-12)% 62(+-28)% 

Proactive scenario -15(+-6)% -48(+-12)% -37(+-3)% 13(+-5)% 73(+-6)% 58(+-17)% 

Prospective scenario -80(+-1)% -81(+-1)% -82%(+-1) -78(+-2)% -68(+-3)% -66(+-4)% 

Under the no climate change scenario, each of  the four policy interventions did cause a 

reduction in aid needs, with credit schemes having the largest effect. Under wetter conditions, they 

also increased the reduction of  aid needs compared to the reactive scenario. However, no 

individual measure, was able to offset the effect of  hotter and drier climate conditions. Even under 
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a proactive intervention, there would still be an increase in aid needs under such climate conditions. 

Only under the prospective intervention scenario, a decrease in aid needs was visible under all 

possible climate change scenarios. 

5. Discussion   

5.1. The effect of  early warning, extension services, ex-ante transfers and low 

interest rates 

Under a reactive strategy (“no intervention”) and assuming no climate change, a slow but 

steady adoption of  mulch, Fanya Juu, shallow well and irrigation practices is estimated. This is a 

result of  an ever increasing information diffusion through the farmer networks and existing 

extension services, as also found in Hartwich et al., 2008a; van Duinen et al., 2016a; Villanueva et 

al., 2016; Wossen et al., 2013. Yet, multiple smallholder households still suffer from the effects of  

droughts, indicated by the elevated food insecurity rates and poverty rates. While some can break 

the cycle of  drought and subsequent income losses, others are trapped by financial or other 

barriers and end up in poverty and recurring food insecurity. This is also found by e.g., Enfors & 

Gordon, (2008); Mango et al., (2009); Mosberg & Eriksen, (2015); Sherwood, (2013). In the 

reactive scenario, it is clear that adaptation intention is limited by factors such as a low risk 

perception, high (initial) adaptation costs, a limited knowledge of  the adaptation efficacy or a low 

self-efficacy. Some of  these barriers are alleviated through the different government interventions. 

As compared to this reactive scenario, an increased rate of  adoption is observed for all policy 

interventions. This translates into a comparatively lower drought risk (expressed by the indicators: 

community poverty rate, food security and aid needs). While initially extension services have the 

largest effect on the adoption of  on-farm drought adaptation measures, over time access to credit 

results in the highest adoption rates and is also estimated to decrease emergency aid the most. The 

former, alleviating the knowledge (self-efficacy) barrier, increases adoption under no climate 

change with 27% as compared to no intervention. It is indeed widely recognized as an innovation 

diffusion tool in different contexts (e.g., Aker, 2011; Hartwich et al., 2008b; Wossen et al., 2013). 

The latter, alleviation the financial (adaptation costs) barrier, increases adoption under no climate 

change with 30% as compared to no intervention. It is also found to be an effective policy to 

reduce poverty in Ghana by Wossen and Berger (Wossen & Berger, 2015). Ex-ante cash transfers 

also tackle the financial barrier but less effectively (the cash sum is small and fixed – only significant 

for less wealthy households), increasing adoption under no climate change with 25% as compared 

to no intervention. This matches empirical evidence on the positive effects of  ex-ante cash 

transfers (Asfaw et al., 2017; Davis et al., 2016; Pople et al., 2021). However, ADOPT model 

estimations might be an underestimation as the model does not account for many preparedness 

strategies of  households such as stocking up food while the price is still low, fallowing land to 

reduce farm expenses, or searching for other sources of  income (Khisa & Oteng, 2014). Seasonal 

early warning systems,  which raise awareness of  upcoming droughts, increase the adoption of  

measures with 22% as compared to no intervention. Early warnings have a stronger effect on the 

adoption of  mulching or Fanya Juu (cheaper measures, lower financial barrier) than on drip 
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irrigation. Clearly, the positive effect of  the interventions on household resilience varies, which is 

confirmed by the empirical findings of  Wens et al. 2021. 

The proactive government scenario, “preparing for drought disasters” by improving early 

warning systems and supporting ex-ante cash transfers, has a larger effect on drought risk. 

However, this effect is not as much as the sum of  the effect of  the two interventions. In contrast, 

the prospective government scenario “mitigating drought disasters” by combining all four 

interventions, alleviates multiple barriers to adoption at once. This creates a significant, non-linear 

increase in adoption,  matching the significant positive correlation between the preferences for 

extension, credit, early warning in Wens et al. 2021. Consequently, this scenario results in a clear 

growth in resilience of  the farm households, shown in more stable income, lower poverty rates 

and less food insecurity. However, depending on the climate scenario applied, the effect of  

increased adoption due to a prospective interventions on household maize production, thus on 

food security and poverty, is only visible after a few years under drier conditions and after more 

than ten years under wetter conditions.  

5.2. The robustness of  drought risk reduction interventions under climate change 

Climate change influences the effectivity of  the measures as well as farm households’ 

experience with droughts. Under all climate change scenarios, a lower adoption of  adaptation 

measures compared to the “no climate change” assumption is observed. This could be explained 

by the fact that the perceived need to adapt is lower under wet conditions and the financial strength 

to adapt is lower under dry or hot conditions. This highlights two different barriers to adoption: 

risk appraisal lowers when the occurrence of  drought impacts is less frequent, while coping 

appraisal lowers due to experiencing more drought impacts. This link between drought experiences, 

poverty and adaptation was also found in other studies (e.g., Gebrehiwot & van der Veen, 2015; 

Holden, 2015; Makoti & Waswa, 2015; Mude et al., 2007; Oluoko-Odingo, 2011; Winsen et al., 

2016) 

While their effect on the adoption rates seems rather small, the diverse climate change 

scenarios have a distinctly different effect on the evolution of  drought risk in the rural 

communities. Due to the adaptation choices of  the farm households, average maize harvests are 

estimated to slightly increase under the “no climate change” scenario. A major increase is estimated 

under wet and wet-hot conditions where both increased adoption and better maize producing 

weather conditions play a role. Under hot, dry and dry hot conditions, the average household 

harvests are estimated to decrease (also found in Wamari et al., 2007). Increases in median and 

mean assets (household wealth) are estimated slightly increase under the no climate change 

scenario. In this case, adaptation efforts are able to reduce the drought disaster risk. Drier climates 

might lead to decreases in median and mean assets, if  farm households are not supported through 

top-down interventions, Hotter climates are estimated to result decreased median but increased 

average assets of  the households. In this case, adaptation rates are not high enough to avoid 

increasing drought risk for the median households. 

The proactive government scenario is estimated to level poverty and food security under 

hotter or drier climate change scenarios. The prospective government scenario is the only scenario 
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estimated to reduce emergency aid under all possible future climates. However, it should be noted 

that it takes one to two decades to make a significant difference between the reactive stance and 

prospective intervention plan. In other words: with climate change effects already visible through 

an increased frequency of  drought disasters, and more to be expected within the following 10-20 

years, prospective intervention should be started now in order to be benefit from the increased 

resilience in time under any of  the evaluated futures. 

5.3. ADOPT as a dynamic drought risk adaptation model 

 In the past decade, the use of  agent-based models (ABM) in ex-post and ex-ante evaluations 

of  agricultural policies and agricultural climate mitigation has been progressively increasing 

(Huber et al., 2018; Kremmydas et al., 2018). A pioneer in agricultural ABM is Berger (2001) who 

couples economic and hydrologic components into a spatial multi-agent system. This is followed 

more recently by for example Berger and Troost (2011), Van Oel and Van Der Veen (2011),  

Mehryar et al. (2019) and Zagaria et al. (2021). The socio-hydrological, agent-based ADOPT 

model follows this trend in that it fully couples a biophysical model—AquacropOS—and a social 

decision model—simulating adaptation decisions using behavioural theories—through both 

impact and adaptation interactions.  

The initial  ADOPT model setup was created through interviews with stakeholders (Wens 

et al. 2020), and the adaptive behaviour is based on both existing economic – psychological theory 

and on empirical household data (Wens et al. 2021). The assumption of  heterogeneous, bounded 

rational behaviour is addressed yet only by a few risk studies (e.g. Van Duinen et al. 2015, 2016; 

Hailegiorgis et al. 2018, Keshavarz and Karami 2016, and Pouladi et al. 2019). These studies have 

implemented empirically supported and complex behavioural theories in ABMs similarly to 

ADOPT (Schrieks et al. 2021; Jager, 2021; Taberna et al., 2020; Waldman et al., 2020). 

ADOPT differs from these models, however, through its specific aim to evaluate households 

and community drought disaster risk beyond the number of  measures adopted, crop yield, or 

water use. Rarely (except e.g., Dobbie et al 2018) do innovation diffusion ABM use socio-economic 

metrics to evaluate drought impacts over time – while such risk proxies are of  great social relevance. 

As such, ADOPT evaluates the heterogeneous changes in drought risk for farm households, 

influenced by potential top-down drought disaster risk reduction (DRR) interventions. It does so 

through simulating their influence on individual bottom-up drought adaptation decisions by these 

farm households and their effect on socio-economic proxies for drought risk (poverty rate, food 

security and aid needs). To our knowledge, this is rather novel in the field of  DRR and drought 

risk assessments.  
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5.4. Uncertainties in ADOPT and limitations in investigated measures and 

interventions 

While yield data has been validated over the historical period (Wens et al. 2020),  the model 

output cannot be used as a predicting tool. This would require more extensive validations for 

which, currently, data is not available. Such data would include longitudinal information on 

household vulnerability and adaptation choices from areas where certain policies are being 

implemented, or detailed data on aid needs for the case study area. The past average poverty and 

food insecurity rates matched observations (Wens et al. 2020). However, absolute amounts of  

emergency aid needs are sensitive to the averages and fluctuations of  household assets which 

proved harder to verify. Besides, poverty and food insecurity depend also on external, food or 

labour market and other influences which might change towards the future. Moreover, the 

simulated climate scenarios are not entirely realistic (because variability changes are ignored and 

because the synthetic future data is created based on statistics rather than physical climate and 

weather system changes). Moreover, the East African Climate Paradox (Funk et al., 2021) creates 

its own set of  challenges predicting future weather conditions in the study area.  

Unavoidably, multiple possible smallholder adaptation measures are omitted in this study: 

many more agricultural water management measures, agronomic actions, and other options under 

the umbrella of   climate-smart agriculture,  exist. Besides, only four different policy interventions 

are evaluated while various other exists. Costs of  these top-down interventions are unknown, 

making cost-benefit estimates regarding drought risk reduction strategies not possible for this 

study. Studying additional measures or interventions is possible using the ADOPT model but 

requires (the collection of) more data for parametrization and calibration.  

Another future improvement to the model could be to directly sample the empirical 

household survey data (Wens et al 2020) to create a synthetic agent set. Now, the creation of  agents 

(households) with different characteristics is drawn from distribution functions based on 

frequencies in the empirical data. Such one-to-one data-driven approach is similar to 

microsimulation and gaining popularity among ABMs (Hassan et al 2010). Lastly, the model 

application does assume no shifts in the underlying weather and decision-making processes. To 

avoid the effect of  systemic changes and black swan effect, only 30 “future” years are modelled.  

Because the model setup could not be fully validated, and scenarios do not provide a 

complete overview of  all possibilities, this study does not claim to provide a prediction of  the 

future for south-eastern Kenya. However, ADOPT is meant to – rather than forecast drought 

impact -  increase understanding of  the differentiated effect of  adaptation policies: the relative 

differences in the risk indicators are informative for the comparison of  these top-down 

interventions under different changes in temperature and precipitation. This study showcases the 

application of  ADOPT as a decision support tool. It evaluates the robustness of  a few, dedicatedly 

chosen policy interventions on farm household drought risk under climate scenarios that are 

deemed to be relevant for the specific area. Future research can use ADOPT to study the 

differentiated effect of  these interventions on different types of  households, in order to tailor 

strategies and target the right beneficiaries of  government interventions. .  
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6. Conclusion  

Top-down interventions, providing drought and adaptation information as well as 

supporting the capacity to act on the basis of  this information, are needed to increase the resilience 

of  smallholder farmers to current and future drought risk. However, to which extent these 

interventions will steer farmers’ intention to adopt drought adaptation measures, hence how 

effective they are in reducing the farm household drought risk, often remains unknown. In this 

study, the agent-based drought risk adaptation model ADOPT is applied to evaluate the effect of  

potential future scenarios regarding climate change and policy interventions on agricultural 

drought risk in south-eastern Kenya. The smallholder farmers in this region face barriers to adopt 

drought adaptation measures such as mulching, Fanya Juu terraces, shallow wells, and drip 

irrigation, to stabilize production and income.  

ADOPT simulates their adaptive behaviour, influenced by drought occurrences under 

changing climate conditions. Adaptive behaviour is also influenced by top-down drought risk 

reduction interventions such as the introduction of  ex-ante cash transfers, affordable credit 

schemes, improved early warning systems and tailored extension services.  We demonstrate that 

the investigated interventions  all increase the uptake of  adaptation measures as compared to the 

reactive scenario under no climate change (business-as-usual). Extension services (+27% uptake) 

multiply adaptation knowledge and thus increase self-efficacy among the smallholders, which 

raises the adoption of  less popular drought adaptation measures. Accessible credit schemes (+30% 

uptake), alleviating a financial barrier, are effective especially for more expensive drought 

adaptation measures. Early warning systems (+22% uptake), creating risk awareness, are more 

effective in climate scenarios with less frequent drought. Ex-ante cash transfers (+25% uptake) 

allow the least endowed households to climb out of  the poverty trap by adopting low-cost drought 

adaptation measures and thus reducing future shocks. The effect of  climate change on the 

adoption of  adaptation measures is limited.  

Moreover, this study proves that alleviating only one barrier to adoption has a limited result 

on the drought risk of  the farm households. Under the pro-active scenario (+40% uptake), 

combining early warning with ex-ante cash transfers, smallholder farmers are better supported to 

adopt drought adaptation measures and to create, on average, more wealth. However, the effect 

of  climate change on farm households risk differs significant under this proactive scenario. While 

for wetter conditions, this scenario is able to increase food security and reduce poverty, this is not 

sufficient to diminish the need for external food aid under every evaluated climate scenario. Only 

by combining all four interventions (+139% uptake), a strong increase in the adoption of  measures 

is estimated. Simultaneously increasing risk perception, reducing investment costs, and elevating 

self-efficacy, creates nonlinear synergies. Under such prospective government approach, ADOPT 

implies significantly reduced food insecurity, decreased poverty levels, and drastically lower 

drought emergency aid needs after 10 to 20 years, under all investigated climate change scenarios.  

This study suggests that, in order to reach the current targets of  the Sendai Framework for 

Disaster Risk, which aims at building a culture of  resilience, and to achieve Sustainable 

Development Goals “zero hunger”,  “sustainable water management” and “climate resilience”, a 

holistic approach is needed. While we present a proof-of-concept rather than predictive model, 
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the results improve the understanding of  future agricultural drought disaster risk under socio-

economic, policy and climate trends. We provide evidence that agent-based models such as 

ADOPT can serve as decision support tools to tailor drought risk reduction interventions under 

uncertain future climate conditions: More research into the heterogeneous effect of  the 

investigated top-down interventions on households’ adaptation decisions and drought risk can 

provide information for the effective and efficient tailoring of  the policy interventions. However, 

from this study, it is clear that multiple interventions  - both (risk and adaptation) information 

provision and the creation of  action perspective - should be combined now to build a sustainable 

future for smallholder farmers in Kenya’s drylands. 

Appendix Chapter 5 

 

Adoption rates of adaptation measures 

Table 5A Adoption ratio (in share of population) at run year 30 under different climate and intervention scenarios. Note 
that the model showed an adoption rate of 25% for mulch,  70% for Fanya Juu, 9% for well and X% for irrigation at run 
year 0 (start of climate change and policy scenarios) . 

Mulch NoChange  Wet Wet Hot Hot Dry Hot Dry 

Reactive 50.2% 47.8% 45.6% 42.1% 35.9% 38.5% 

Proactive 83.8% 83.6% 89.4% 90.1% 90.7% 88.1% 

Prospective 100% 100% 100% 100% 100% 100% 

Fanya Juu NoChange  Wet Wet Hot Hot Dry Hot Dry 

Reactive 71.1% 70.9% 69.1% 68.8% 60.7% 63.3% 

Proactive 87.2% 88.1% 90.7% 90.9% 91.9% 90.1% 

Prospective 93.7% 93.5% 94.7% 94.8% 95.1% 94.9% 

Well NoChange  Wet Wet Hot Hot Dry Hot Dry 

Reactive 9.4% 9.6% 9.4% 9.2% 9.1% 9.0% 

Proactive 11.7% 12.7% 13.4% 12.0% 12.1% 11.4% 

Prospective 79.4% 82.6% 92.1% 92.9% 95.0% 91.1% 

Irrigation NoChange  Wet Wet Hot Hot Dry Hot Dry 

Reactive 3.7% 3.7% 3.5% 3.4% 3.3% 3.4% 

Proactive 5.2% 5.6% 5.6% 5.3% 5.2% 4.8% 

Prospective 48.7% 59.6% 73.3% 75.8% 82.0% 71.8% 
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Table 5B Difference in adoption RATIO (in share of population) under different climate and intervention scenarios compared 
to the reactive government scenario under no climate change (the BAU scenario). 

mulch NoChange  Wet Wet Hot Hot Dry Hot Dry 

Reactive 0 -2.5% -4.6% -8.1% -14.3% -11.6% 

Proactive 33.7% 33.4% 39.3% 39.9% 40.5% 38.0% 

Prospective 49.4% 49.4% 49.8% 49.8% 49.8% 49.8% 

EWS 18.0% 19.7% 18.8% 13.5% -4.5% 1.2% 

transfer 23.2% 14.4 19.6% 24.6% 23.8% 18.4% 

Credit2 19.5% 16.6% 14.7% 8.5% 5.4% 9.1% 

training 30.1% 27.6% 24.9% 20.4% 10.8% 15.1% 

       

Fanya Juu NC  Wet Wet Hot Hot Dry Hot Dry 

Reactive 0% -0.2% -2% -2.3% -10.3% -7.7% 

Proactive 16.2% 17.0% 19.6% 19.8% 20.8% 19.1% 

Prospective 22.6% 22.4% 23.6% 23.8% 24.1% 23.8% 

EWS 8.2% 9.2% 8.5% 6.0% -0.2% 1.3% 

transfer 9.0% 5.9% 6.9% 10.3% 10.1% 8.4% 

Credit2 8.0% 7.3% 5.1% 6.0% -0.1% 1.5% 

training -1.7% -2.9% -5.1% -5.5% -11.2% -9.9% 

       

Well NC  Wet Wet Hot Hot Dry Hot Dry 

Reactive 0% 0.2% -0.1% -0.3% -0.4% -0.4% 

Proactive 2.4% 3.2% 3.9% 2.6% 2.7% 2.0% 

Prospective 69.9% 73.2% 82.7% 83.4% 85.5% 81.6% 

EWS 1.7% 2.% 1.4% 1.1% -0.4% 0.2% 

transfer 10.% 1.0% 1.1% 0.2% 0.4% 0.2% 

Credit2 9.4% 9.1% 7.4% 6.9% 4.2% 5.1% 

training 5.2% 5.5% 4.4% 3.2% 1.5% 1.9% 

       

Irrigation NC  Wet Wet Hot Hot DRY Dry Hot 

Reactive 0% 0% -0.1% -0.3% -0.4% -0.3% 

Proactive 1.5% 1.9% 1.9% 1.6% 1.5% 1.2% 

Prospective 45.1% 56.0% 69.6% 72.1% 78.3% 68.1% 

EWS 1.3% 1.6% 1.6% 1.4% 0.5% 0.7% 

transfer 0.6% 0.3% 0.1% -0.2% -0.4% -0.4% 

Credit2 3.7% 3.7% 2.8% 2.4% 1.2% 1.7% 

training 2.8% 3.3% 2.2% 1.7% 0.9% 1.3% 

       

% change tov 1343 adopted measures under NC reactive 

Total  NC  Wet Wet Hot Hot DRY Dry Hot 

Reactive 0% -1.8% -5.0% -8.2% -18.9% -15.0% 

Proactive 40.0% 41.2% 48.2% 47.6% 48.8% 44.8% 

Prospective 139.2% 149.6% 167.9% 170.5% 176.9% 166 

2% 

EWS 21.7% 24.2% 22.6% 16.4% -3.4% 2.5% 

transfer 25.1% 16.1% 20.7% 25.9% 25.2% 19.8% 

Credit2 30.2% 27.3% 22.3% 17.7% 7.9% 12.9% 

training 27.0% 24.9% 09.7% 14.8% 1.6% 6.2% 



CHAPTER 5 

 
Figure 5A: Total amount of measures adopted per 1000 initialized households under the reactive scenario, averaged over all 
runs. The shaded area indicates the uncertainty introduced by different model initialisations and by different relative importance 
of the PMT factors on the decisions of households. Year 0 initiates policy drought risk reduction interventions (indicated with 
different line colours). 

 
Figure 5B: Total amount of measures adopted per 1000 initialized households under the three intervention scenarios and three 
climate change scenarios, averaged over all runs. The shaded area indicates the uncertainty introduced by different model 
initialisations and by different relative importance of the PMT factors on the decisions of households. Year 0 initiates policy 
drought risk reduction interventions (indicated with different line colours). 
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CHAPTER 6: 
 

CAPTURING ADAPTATION DYNAMICS 

 IN DISASTER RISK MODELS  
 

A SYNTHESIS TO THIS THESIS 
 

 

 

“Through explicitly including the adaptive behaviour of  smallholder 

farmers, including their interactions with each other and their agro-

hydrological context, the dynamics of  agricultural drought disaster risk 

under socio-economic, policy and climate change can be estimated” 

 - Conclusion of  this PhD dissertation (Marthe Wens, 2022) 
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1. Research findings  

In this thesis, I investigated how the two-way feedback between agricultural adaptation 

decisions of  Kenyan farmers and the agro-hydrological system can be explicitly incorporated into 

a dynamic drought disaster risk model. Guided by four research questions, I reviewed literature, 

developed a conceptual framework, performed multi-method empirical data collection and analysis, 

and developed socio-hydrological agent-based modelling techniques. The results of  this research 

and the answers to the research questions are summarised.  

 

Improving modelling approaches for dynamic drought disaster risk models 

To respond to research question A ‘What modelling approaches are suitable for simulating individual 

adaptive behaviour in drought disaster risk management?’ (Table 6.1 row 1), I summarised recent studies 

related to drought, adaptation modelling, socio-hydrology, risk adaptation behaviour and agent-

based modelling. Based on these summaries, I argued that the interdependence of  different actors, 

exposed systems, and drought hazards makes traditional disaster risk models inadequate for 

addressing the dynamic nature of  drought disaster risks. I demonstrate that an agent-based socio-

hydrological modelling design is more suitable for dynamic drought disaster risk modelling. 

In Chapter 2, an overview of  the use of  ABMs for explicitly modelling individual drought 

adaptation actions is provided. Such models are particularly well suited to simulate the influence 

of  bounded rational decisions on adaptation under varying biophysical, hydrological, and socio-

economic conditions. I noted that it is key to apply a suitable psychological or economic 

behavioural theory to avoid ad-hoc rules about the decision-making process of  the agents in the 

ABM. Therefore, a brief  overview of  four relevant theories for simulating the adaptive behaviour 

of  farmers under agricultural drought disaster risk was given. The strengths and weaknesses of  

each theory were highlighted, and the need for applying empirical methods to collect individual-

level data for the parameterisation and calibration of  the chosen theory was emphasised. 

The presented conceptual framework extends traditional risk modelling with two-way 

feedback between heterogeneous individual adaptation decisions and drought exposure, 

vulnerability, and hazard. The framework guides modellers to create dynamic drought disaster risk 

models based on theory and empirical data, supported by socio-hydrologic and agent-based 

approaches. Further, the framework indicates how the interactions between government policies 

and individual adaptation strategies; upstream and downstream decisions; and the effect of  short-

term and long-term priorities can be assessed. Hence, the framework provides a testing ground for 

understanding adaptive behaviour and drought disaster risk dynamics in an increasingly drought-

prone environment. 
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Comparing theoretical and empirical factors influencing adaptive behaviour 

To answer research question B, ‘Which socio-economic, cognitive and policy factors influence the decision 

making of  smallholder farmers facing droughts?’ (Table 6.1 row 2), I collected, compared, and combined 

empirical data with existing behavioural theories (protection motivation theory (PMT), theory of  

planned behaviour (TPB), expected utility theory (EUT)) for the case of  smallholder farmers’ 

adaptive behaviour in Kitui, Kenya. Multi-method field surveys including key informant interviews, 

stakeholder discussions, fuzzy cognitive mapping exercises, semi-structured questionnaires, and 

discrete choice experiments were executed. With the information collected, I evaluated the past 

and future adaptive behaviour of  smallholder farmers and the applicability of  existing behavioural 

theories to the case of  Kitui.  

In Chapter 3, the statistical and econometric analysis of  the responses of  the household 

survey is elaborated. This analysis firstly demonstrated that both adaptation costs and adaptation 

efficacy are of  the highest importance to the adaptive behaviour of  smallholder farmers. These 

factors are linked to field size (odds ratio of  1.05), performance of  a cost-benefit analysis (odds 

ratio of  1.41), and perceived efficiency of  the measure (odds ratio of  1.77), among other factors. 

Secondly, the analysis proved the significance of  household knowledge on drought and adaptation 

as a driver for adaptation through the analysis of  the proxy variable ‘attended extension services’ 

(odds ratio of  2.97).  Thirdly, social networks (i.e., farm groups; odds ratio of  1.38) significantly 

influenced adaptation decisions. Fourthly, risk perception (fear from droughts; odds ratio of  1.23; 

trust in forecast; odds ratio of  0.84) and self-efficacy (perceived vulnerability; odds ratio of  0.83; 

faith in god as saviour; odds ratio of  0.42) play a role in explaining past adaptive behaviour. These 

results confirm the importance of  risk appraisal, social norm, self-efficacy, and response cost and 

efficacy on adaptive behaviour under drought. These factors are components of  existing theories 

of  bounded rationality, but none of  the evaluated theories could fully explain the observed 

behaviour.  

I further demonstrated that tailored extension services (on average 1.51 times more likely to 

adapt), improved early warning systems (on average 1.54 times more likely to adapt), ex-ante cash 

aid (on average 1.11 times more likely to adapt) and low-interest credit schemes (on average 1.07 

times more likely to adapt per % decreased interest rate) do increase the intention to adapt. While 

an aversion to the current situation of  no new policy actions (on average 0.01 times ‘more’ likely 

to adapt under no additional governmental actions) was evident, there was significant heterogeneity 

in the preferences for these new policies.  
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Testing assumptions on adaptive behaviour in drought disaster risk models 

To investigate research question C, ‘How do different assumptions about the adaptive behaviour of  

smallholder farmers influence agricultural drought disaster risk estimations?’ (Table 6.1 row 3), I created a 

dynamic drought disaster risk model, ADOPT, which simulates the drought adaptation decisions 

of  smallholder farmers over time. ADOPT combines the FAO crop model AquacropOS with an 

ABM capable of  simulating different adaptive behavioural theories. ADOPT contains four bottom-

up, on-farm adaptation measures: (1) applying mulch, (2) terracing farm field using the Fanya Juu 

technique, (3) creating additional shallow wells, and (4) applying drip irrigation and evaluates 

fluctuations in household food insecurity, poverty, and emergency aid needs due to drought 

disasters. 

In Chapter 4, I used two behavioural theories (economic rationality under expected utility 

theory (EUT) and bounded rationality under protection motivation theory (PMT)) and one 

business-as-usual scenario to create decision rules for ADOPT. Under these three scenarios, I 

simulated the intention to adopt and the resulting adoption rate of  adaptation measures over time. 

The results indicate that a combination of  all four measures is the most effective way to reduce the 

negative impacts of  droughts on crop yield, while a combination of  a well and irrigation system 

has the highest initial costs but is also the most cost-efficient. 

The results show that farmers under the economic rational scenario implement affordable 

adaptation measures at a fast rate (adoption rates at the end of  the 30-year model run of  81%, 

85%, 44%, 43% for mulch, Fanya Juu, wells, and drip irrigation, respectively), thereby increasing 

their maize yield. The adoption of  drought adaptation measures occurs more gradually under the 

bounded rational scenario (simulated adoption rates of  on average 34%, 43%, 10%, 5%, 

respectively), better matching the observed adoption rates from the surveys (12%, 45%, 16%, 6%, 

respectively). Furthermore, the bounded rational scenario exhibited variability in food security and 

poverty levels closest to the observed levels. This finding highlighted that the inclusion of  PMT 

behaviour is better able to capture some of  the variability in adoption decisions than the inclusion 

of  EUT.  

Moreover, the model runs indicated that the estimation of  drought disaster risk and the need 

for emergency food aid can be improved using an agent-based approach. Ignoring individual 

household characteristics leads to an underestimation of  food-aid needs: when the total harvest in 

the study area was assumed to be equally distributed among all households and all households 

could meet their food needs (mimicking modelling approaches which do not consider a 

heterogeneous set of  actors), the estimated annual average aid needs were 48%-53% lower than 

under the scenario where access to food is heterogeneous, a more factual representation of  reality. 

While these results should be interpreted with care given the assumptions and simplifications made, 

they highlight that current estimations of  drought disaster risk and the need for emergency food 

aid can benefit from the household scale used in agent-based approaches. 
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Evaluating drought disaster risk dynamics under policy and climate change 

To explore research question D, ‘Which external policy actions targeting smallholder farmers effectively 

reduce agricultural drought disaster risk under climate change?“ (Table 6.1 row 4), I applied ADOPT to 

investigate four top-down drought disaster risk reduction policies (tailored extension services, 

improved early warning systems, ex-ante cash transfers, and lower credit schemes) that can be 

implemented by governments or NGOs. In addition, I created six different climate change 

scenarios—wetter, hotter, wetter+hotter, drier, drier+hotter, and no change—to evaluate the effect 

of  different drought frequencies (likelihood of  occurrence of, respectively, 15%, 65%, 41%, 55%, 

78%, and 24%) on maize yields. The AquacropOS results revealed a positive maize yield trend 

under wetter future climate conditions, under all types of  adaptation measures. Hotter climate 

conditions reduce yields slightly (on average -13%), but paired with drier conditions, this results in 

28% lower yields on average compared to the no climate change scenario over all management 

scenarios.  

In Chapter 5, I demonstrate that all investigated top-down interventions have a positive effect 

on the uptake of  adaptation measures. However, the positive effect on household resilience varies 

under different climate change scenarios and for different household types (wealthy, educated, large 

farm). As compared to reactive intervention, the proactive government scenario, ‘preparing for 

drought disasters’, increased  

- the adoption of  mulch (on average +90% under all climate scenarios)  

- the adoption of  Fanya Juu terraces (on average +33% under all climate scenarios)  

- the adoption of  shallow wells (on average +33% under all climate scenarios) 

- the adoption of  drip irrigation (on average +66% under all climate scenarios) 

This proactive government scenario is estimated to lessen poverty and food security under 

most climate change scenarios. For example, under no climate change, a 10% decrease poverty 

compared to a 5% decrease under no intervention is estimated. This effect translates into reducing 

aid needs under most climate change scenarios. For example, under wet hot conditions, a 48% drop 

in aid needs compared to a 29% drop under no intervention is estimated. However, under dry or 

dry-hot conditions, a 25% increase in household food shortage is estimated, which is lower than 

under no intervention (+35%) but still an increase over time. This effect then leads to an increase 

in aid needs of  73% (compared to 117% under no intervention).  

Compared to reactive intervention, the prospective government scenario ‘mitigating drought 

disasters’ alleviates multiple barriers to adoption at once and creates a significant increase in  

- the adoption of  mulch (on average +100% under all climate scenarios)  

- the adoption of  Fanya Juu terraces (on average +33% under all climate scenarios)  

- the adoption of  shallow wells (on average +800% under all climate scenarios) 

- the adoption of  drip irrigation (on average +2000% under all climate scenarios) 

This prospective government scenario displays nonlinear positive synergies and results in 

reduced food insecurity, decreased poverty levels, and a drastically lower need for emergency aid. 

Even under hotter and drier climate conditions, over all climate scenarios an average reduction of  

76% in aid needs is estimated. On the contrary, no intervention would lead to an average increase 

of  +35% of  emergency aid needs. However, it should be noted that it takes one to two decades to 

make a significant difference between the reactive stance and proactive or prospective top-down 

actions due to the delayed effect of  the return-on-investment: significant gains for the first 

adaptation measure support further adoption of  adaptation measures. 
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Table 6.1: Overview of research questions, key highlights of the applied methods to answer them, and resulting answers. 

Question Method  Answer 

What modelling approaches can 
account for adaptive behavior in 
drought disaster risk models? 
(Chapter 2) 

• Review of existing research on drought disaster risk, 
human adaptation, and agent-based modelling. 

• Development of conceptual framework that extends the 
traditional approach to risk modelling to include the 
two-way feedback between temporal adaptation 
decisions and drought exposure, vulnerability, and 
hazard. 

• Discussion and comparison of (subjective) expected 
utility theory, prospect theory, planned behaviour 
theory, protection motivation theory.  

• Establishment of guidelines for the integration of 
behavioural theories in agent-based models. 

• A socio-hydrological, agent-based modelling approach focussing on individual 
and collective actions can best simulate the adaptive behaviour of different 
stakeholders.  

• Such an approach could be a testing ground for understanding adaptive 
behaviour in a climate increasingly prone to drought. 

• There is no single perfect-fitting behavioural theory. 

• Empirical data at the individual level is needed for parameterisation and 
calibration of theories. 

• The choice of processes and effects of drought disaster risk and the type of 
agents to be included should influence the choice of theory. 

Which factors influence the 
decision-making process of 
farmers in the face of droughts 
(in Kenya)? (Chapter 4) 

• Conducting of interviews with key informants and 
design of an extensive survey and experiment among 
local smallholder farmers in Kitui, the semi-arid eastern 
region of Kenya.  

• Comparison and combination of this empirical data 
with factors from existing behavioural theories. 

• Distrust of predictions and a strong belief in God are barriers to adaptation. 

• Farmer groups and previous adaptation decisions stimulate the intention to 
take new measures. 

• There is a clear heterogeneity in decision behaviour.  

• Different components (risk perception, self-efficacy, social norms, response 
cost-benefits) of existing bounded rational theories significantly influence 
adaptation decisions. 

Do different assumptions about 
adaptive behaviour influence 
agricultural drought disaster risk 
estimations? (Chapter 5) 

• Development of a dynamic drought disaster risk 
adjustment model, ADOPT, which simulates water 
management decisions by smallholder farmers and 
evaluates food insecurity, poverty, and household 
emergency needs due to droughts.  

• Comparison of risk outcomes under ADOPT 
assumptions based on conservation motivation theory, 
which describes bounded rationality, with business-as-
usual and economic rational behaviour. 

• Estimates of drought disaster risk and food aid need can be improved using an 
agent-based approach. 

• Ignoring individual household characteristics leads to an underestimation of 
food aid need.  

• The bounded rational scenario better reflects historical food security, poverty 
levels, and crop yields compared to the economic rational scenario. 

How do external policy 
incentives influence agricultural 
drought disaster risk under 
climate change? (Chapter 6) 

• Application of ADOPT 

• Examination of the impact of four top-down drought 
disaster risk reduction policies that can be implemented 
by governments or NGOs (policies all included in 
current policy documents).  

• Creation of climate change scenarios to assess the 
impact of changing drought conditions on agricultural 
risks for smallholder farmers.  

• Evaluation of the robustness of the four policies under 
different potential future climates. 

• Extension services promote the adoption of low-cost, new drought adaptation 
measures; credit schemes are useful for cost-effective but expensive measures; 
ex-ante cash transfers allow the least wealthy households to adopt low-cost 
known measures. Early warning systems prove more effective in reducing risk 
under wetter climate conditions. 

• The combination of these four interventions shows mutually reinforcing 
effects, with a strong increase in uptake of measures resulting in dramatically 
lower emergency needs, even under hotter and drier climate conditions. 
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2. The innovation of  the ADOPT model  

Agent-based agricultural drought disaster risk adaptation model 

This thesis innovates the use of  ABM for dynamic drought disaster risk assessments in the 

context of  policy and climate change. This thesis presents a dynamic agent-based drought disaster 

risk model, ADOPT, developed for a case study in Kenya as a proof-of-concept. The model 

simulates the effect of  policies on smallholder farmers’ drought resilience and evaluates the 

robustness of  these policies under climate change. It focuses on smallholders, which in itself  is 

not unusual. Indeed, the use of  ABM in ex-post and ex-ante evaluations of  agricultural policies and 

agricultural climate mitigation has been progressively increasing (Huber et al., 2018; Kremmydas 

et al., 2018). Examples of  agricultural ABM can be found in the work of  Berger and Troost (2011), 

Mehryar et al. (2019), Van Oel and Van Der Veen (2011), and Zagaria et al. (2021).  

However, while ABMs have the potential to represent full ‘closed-loop’ couplings of  

environmental and social subsystems, this is not yet standard practice (Filatova et al., 2013). 

Further, the integration of  ABMs with other hydrological or agricultural models to evaluate 

disaster risk is still in its infancy. Multiple ABMs currently evaluate the effects of  individual water 

use decisions, for example on the propagation of  droughts, or conversely evaluate the effect of  

agricultural droughts on farm income and food security (Schulze et al., 2017b). The ADOPT 

model, in contrast, does fully couple a biophysical model—AquacropOS—and a social model—

simulating adaptation decisions using behavioural theories—through both impact and adaptation 

interactions. This advanced setup allows for simulating closed-loop feedback processes: the agro-

hydrological conditions influence smallholders’ adaptation decisions (through financial capacity, 

risk perception, adaptation benefits), which in turn influence the agro-hydrological system 

(affecting the vulnerability of  crop production to droughts).  

 

Complex, heterogeneous behaviour and theory 

In socio-environmental systems modelling, representing the human dimension—and the 

heterogeneity within agent groups—is seen as a grand challenge (Elsawah et al., 2020). Few studies 

have implemented empirically supported and complex behavioural theories in ABMs (Schrieks et 

al. 2021; Jager, 2021). The assumption of  individual, heterogeneous, bounded rational behaviour 

by smallholders at risk is relatively new in drought disaster risk science (An, 2012; Kennedy, 2012; 

Taberna et al., 2020; Waldman et al., 2020). In ADOPT, farm households have the ability to learn, 

adapt, and recover from a drought shock, as the model considers both individual and community 

risk perceptions as well as changing adaptation knowledge, which can be communicated through 

a farmers' network. One of  the few preceding studies including such complex adaptive behaviour 

of  farmers is the research by van Duinen et al. (2015, 2016).  

In addition to risk information, adaptation information is circulated in the modelled farmers’ 

network in ADOPT, granting the social network a central role while accounting for biased 

(imperfect) knowledge related to adaptation benefits (see also Jager & Janssen, 2012). This 

inclusion of  imperfect information ensures that the effect of  maladaptation can be simulated. 
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Moreover, accounting for the effects of  knowledge limitations, communication patterns, risk 

considerations, and self-efficacy that guide farmers' actual adaptation decisions allows for better 

representing barriers to adaptation in drought disaster risk adaptation models. 

In the ADOPT model, the complex behaviour of  smallholder farmers is based on 

established behavioural theories and is calibrated with empirical data collected through both 

qualitative and quantitative methods (Elsawah et al., 2020; Filatova et al., 2013a; Groeneveld et al., 

2017a; O’Sullivan et al., 2016; Schlüter, Baeza, Dressler, Frank, Groeneveld, Jager, Janssen, 

McAllister, et al., 2017; Schrieks et al., 2021). This theory-driven and empirically supported setup 

is already present in some form in the work of  Hailegiorgis et al. (2018), Keshavarz and Karami 

(2016), and Pouladi et al. (2019). The theories used in this thesis were selected at an early stage of  

model development to ensure that all elements of  the theory were accounted for. Indeed, rigorous 

empirical methods (as suggested by Smajgl et al., 2011)—such as fuzzy cognitive mapping with 

stakeholders, individual household surveys, and economic experiments—were developed to obtain 

data on individual behaviour. Thus, the decision module of  ADOPT relies on individual 

household data that allows for parameterising and calibrating the behavioural theories underlying 

the model.  

 

Drought disaster risk and risk reduction estimations 

A further novel feature is that ADOPT produces drought disaster risk proxies (i.e., drought 

impacts measured using socio-economic metrics) beyond the number of  measures adopted, crop 

yield, and water use budgets, which have been used in multiple ABM studies. Dobbie et al. (2018) 

and Acosta-Michlik and Espaldon (2008) also tracked socio-economic metrics—food security and 

vulnerability to global change; however,  they did not link these metrics directly to disaster risk or 

disaster risk reduction. Through the disaster risk setup, ADOPT is able to demonstrate the effect 

of  adaptation actions on food security, poverty, and aid needs. It therefore is able to simulate the 

emergence of  a disaster-induced poverty trap. Moreover, the micro scale of  ADOPT allows for 

differentiating risk estimates for different types of  smallholder farm households.  

ADOPT has been used to estimate the impact of  governmental and non-governmental 

policies on the reduction of  drought disaster risk at the household level, which to my knowledge 

has not been done before. By simulating the decision process of  farmers concerning the adoption 

of  adaptation measures in a bottom-up manner, it is possible to calculate the effect of  potential 

future policy actions on the individual factors that are part of  this decision process. Instead of  

applying a statistical relationship between a policy and the adoption rate of  adaptation measures, 

ADOPT simulates how those policies interact with the individual barriers to adaptation in a 

process-based way. ADOPT thus explicitly considers the heterogeneous effect of  policies on 

smallholder farmers and can therefore be used to evaluate the effect of  policies targeting specific 

groups. 

  



SYNTHESIS 

3. Remaining challenges and scientific advances 

This thesis presents a proof-of-concept for the use of  agent-based dynamic drought disaster 

risk models as decision support tools for forward-looking policy assessment. As with any ABM 

that simulates human behaviour, the results are subject to considerable uncertainties given that the 

model is based on several assumptions. In ADOPT, the crop-water production and decision-

making modules have been parameterised and partially calibrated based on existing theories and 

empirical data. Stakeholders have been directly involved in the definition and design of  the model. 

Furthermore, a sensitivity analysis has been performed to evaluate the epistemic and aleatoric 

uncertainty and the effect of  initialisation (as suggested by Muelder & Filatova, 2018). The brief  

sensitivity analysis of  ADOPT confirmed that the uncertainty created by the model’s 

implementation of  behavioural theory does not critically influence the model results. However, 

the current model requires a few additional steps before it can be considered a prototype usable 

for prediction. 

 

Stakeholder involvement to co-validate model processes 

The primary challenges associated with ABM stem from difficulties in data availability (Blair 

& Buytaert, 2015b, 2016a) and model parameterisation and validation (Grimm et al., 2006; Smajgl 

& Barreteau, 2017 O’Sullivan et al., 2016; Polhill et al., 2016; Schrieks et al., 2021). Comparing 

model results with observed dynamics in adaptation could help confirm the reality of  the modelled 

adaptive behaviour (Filatova et al., 2013b), but a time series of  real-world household-scale data 

regarding drought perceptions, adaptation intentions, and adaptation decisions does not exist. 

However, to overcome this data availability challenge, a further step of  model validation could 

include the participation of  multiple stakeholders with different knowledge of  the system 

(Barreteau et al., 2004; Etienne, 2014; Gober & Wheater, 2015).  

Stakeholder (e.g., farming community, policy makers, local experts) cooperation in the 

validation of  ADOPT could be facilitated through role-playing games or workshops that 

triangulate model results with experts (Klügl, 2009; Lamarque et al., 2013; Rangecroft et al., 2020; 

Savic et al., 2016). Other ways of  engaging stakeholders, including creative practices such as 

storytelling (e.g., Van Loon et al., 2020), could enable the co-creation of  scenarios to evaluate the 

model, making the model results more useful to potential end users (Basco-Carrera et al., 2017; 

Le Pira et al., 2017). Stakeholder validation exercises may reveal the need for model adjustments: 

One promising way to improve ADOPT is the inclusion of  the cost of  drought disaster risk 

reduction policies—an element that is crucial for the full evaluation of  these policies. This factor 

could easily be incorporated through collaboration with stakeholders if  the latter help identify the 

financial and implementation details of  the policies.  
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Upscaling and transferability  

ADOPT is parameterised for the test case of  smallholder farmers in semi-arid Kenya, which 

makes it difficult to generalise the results to other places or other systems that could equally benefit 

from a dynamic model of  drought disaster risk. However, the model framework can easily be 

adapted and parameterised if  sufficient input data from another region are available. While it is 

often seen as a challenge to develop transferable methods and strategies between regions (Mishra 

et al., 2015), ADOPT could be applied for the evaluation of  policy measures to increase drought 

resilience anywhere, from small- to large-scale farming systems in developing and developed areas. 

This application would require local data on adaptation behaviour (drivers and barriers), as 

context- and culture-specific factors influence adaptive behaviour (Noll et al., 2020). Additionally, 

agricultural production characteristics are needed to tailor AquacropOS-OS to new contexts.  

ADOPT only includes four on-farm measures that affect crop production. Additional or 

other context-specific adaptation measures—such as changing planting dates, using drought-

resistant seeds, and the use of  sand dams—could easily be integrated into ADOPT. Doing so 

would require information on the effect of  these measures on crop yield and on the specific drivers 

for adaptation of  these measures. However, decisions on some measures need to be made on 

different time scales  or might introduce other types of  interaction among the agents. In that case, 

an understanding of  the influence of  power dynamics and complementary decisions on people's 

adaptive behaviour is necessary.  

Moreover, since many of  the world's vulnerable semi-arid areas are inhabited by pastoralists 

and most of  the world's drought exposure occurs in cities, it would also be relevant to include 

pastoral and urban systems in a dynamic drought disaster risk model. Although integrating these 

different types of  actors is also possible through an ABM setup as described in the conceptual 

framework of  this thesis, this integration would require adding new modules to ADOPT. As crop 

production is only part of  these systems, the interaction between adaptation decisions and risks 

to soil and surface water must be expanded. Moreover, the inclusion of  other types of  water users 

requires an understanding of  the hierarchy of  water use and the power relations involved among 

water users (Etienne, 2014; Nespeca et al., 2020).  

 

Drought propagation and multi-risk framing  

ADOPT is designed as a drought disaster risk model and considers the systemic risk caused 

by (consecutive) droughts. One important aspect that can be added to ADOPT is a link to a 

spatially explicit hydrological model that is capable of  evaluating the impact of  multiple individual 

adaptation measures on the distribution of  water resources in the river basin. Modelling this 

distribution on a basin scale is of  great importance for spatial planning (Van Oel et al., 2012). With 

a good understanding of  local catchment characteristics, positive and negative effects, locally and 

downstream, caused by widespread adoption of  the measures can be considered and the effect of  

this widespread adoption on propagation of  drought through the hydrological cycle can be 

evaluated. 
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Moreover, although it does not explicitly address them, ADOPT does take different types 

of  drought (both meteorological and soil moisture droughts) and heat waves into account, as both 

temperature and evaporation directly influence crop growth in AquacropOS. As silo thinking 

rather than multi-risk thinking in disaster risk management may lead to adverse effects of  

adaptation measures on overlooked risks, ADOPT could be improved by considering other hydro-

meteorological hazards (de Ruiter, 2020; Ward et al., 2020). For example, the effect of  hail/frost 

and flooding could be included by adding their respective damage curves. Although the effects of  

low temperatures and heavy rain days are simulated in the model, they are currently assumed to 

only influence crop yields through limiting crop growth, and no direct destructive impact is 

simulated.  

Consecutive events such as drought-to-floods or compound events such as pests during 

droughts can exponentially increase the adverse impact on crop yields and worsen the livelihood 

situation of  smallholder farmers. Such multi-hazards would therefore be an interesting addition 

to ADOPT. However, this inclusion would require a deeper understanding not only of  compound 

extreme events and their impacts, but also of  the influence of  diverse risk perceptions—and of  

the effect of  a variety of  in(ter)dependent adaptation measures—on farmers' adaptive behaviour. 
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4. A dynamic drought disaster risk adaptation model 

This thesis offers proof-of-concept for a dynamic drought disaster risk adaptation model. 

Through developing a model that includes smallholder adaptation dynamics, this thesis improved 

the understanding of  current and future agricultural drought disaster risk under socio-economic, 

policy and climate trends. The contribution of  this research can be summarised in two outcomes 

for science and society: 

Capturing adaptation dynamics in the context of  drought disaster risk 

The first outcome of  this thesis is a better understanding of  the decision-making process in 

agricultural water management in the context of  drought. Studying the adoption of  adaptation 

measures by smallholder farmers in semi-arid Kenya through multi-method data collection 

revealed the drivers and barriers for adaptation to drought. Additionally, the findings revealed the 

connection between these drivers and barriers and the factors explaining adaptive behaviour in 

existing behavioural theories. This relationship between behavioural theories and field data on the 

micro scale can be used to parameterise socio-hydrologic, agent-based dynamic drought disaster 

risk models. 

Furthermore, the heterogeneity of  individual drought adaptation decisions was explored 

through combining theories and empirical data. The results demonstrated farm households’ 

diverse preferences for drought disaster risk reduction actions. This empirical information can be 

directly used to develop and refine drought disaster risk reduction strategies in the semi-arid region 

of  Kenya. Local policy makers can use these results to focus policies on the relevant barriers 

experienced by smallholder farmers, and to tailor these policies to specific groups or types of  

smallholder farmers. 

Dynamic drought disaster risk models as a decision support tool 

The second outcome of  this thesis is the demonstrated potential of  a dynamic drought 

disaster risk model as a decision support tool for policies related to climate change adaptation and 

drought disaster risk reduction. The conceptual modelling framework I developed is broad and 

relatively non-technical, discussed at a level suitable for researchers without a strong background 

in the various fields of  drought disaster risk and behavioural theories. It provides a guide on which 

critical aspects to consider when building models, as well as a direction for the future development 

of  drought disaster risk models in all forms. Furthermore, by developing ADOPT, I demonstrated 

that an ABM approach and the application of  bounded rational adaptation theory are promising 

ways to improve drought disaster risk estimates. I evidenced that ignoring individual household 

characteristics and their heterogeneous behaviour leads to an underestimation of  food aid needs.  

Moreover, I demonstrated the value of  ADOPT through estimating the effect of  four 

different drought policies on changes in drought disaster risk under six different climate change 

scenarios. With the ability to simulate the effects of  knowledge limitations, communication 

patterns, risk considerations, and other factors that guide actual adaptation decisions, policy 

makers can design and test policies targeting both entire communities or specific groups. For 

example, one can use ADOPT to explore the choice of  households to receive ex-ante cash transfers 
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or the choice of  communities to provide extra extension services or improved early warning 

systems (Government of  Kenya, 2014; WFP, 2019)(Government of  Kenya, 2014; WFP, 

2019)(Government of  Kenya, 2014; WFP, 2019)(Government of  Kenya, 2014; WFP, 2019). The 

evaluation of  the robustness of  the examined disaster risk reduction policies under climate change 

can directly inspire policy makers to take timely action in agricultural areas in semi-arid Kenya. 

Therefore, this thesis offers a timely and valuable contribution to the Kenya agenda 2030 and to 

achieving the SDGs, in particular ‘clean water for all’, ‘reduced inequalities’, ‘no poverty’, and ‘zero 

hunger’.   
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ODD+D description ADOPT 

I. Overview 

I.i Purpose 

What is the purpose of  the model?  

The purpose of ADOPT is to improve agricultural drought disaster risk assessments by including 

the complex adaptive behaviour of smallholder farmers. The ADOPT model simulates the welfare (poverty 

level, food security & aid needs) of smallholder farm households over time as a function of climate effects 

on agricultural production, mitigated by implemented adaptation measures, and simulates the adoption of 

such measures as a function of economic, social and psychological household characteristics. 

Understanding the two-way feedback between households’ adaptation decisions and maize yield losses over 

time can help optimize drought impact estimations under climate and policy changes. ADOPT can be used 

to evaluate the adoption rate of adaptation measures under different climate and policy scenarios hence 

contrast their effect on the drought disaster risk – approximated by food security and welfare - of 

smallholder farmers.  

For whom is the model designed?  

The ADOPT model can allow scientists to increase their understanding of the socio-hydrological 

reality of drought disaster risk and drought adaptation in a smallholder farming context. It can also help 

decision makers to design drought policies that target specific farm household and evaluate the effect of 

these policies on their drought vulnerability. 

I.ii Entities, state variables, and scales 

What kinds of  entities are in the model?  

The agents in ADOPT are individual farm households that have a farm of varying size and 

potentially an off-farm income source. Two other entities exist: the crop land (multiple fields) that yields 

maize production and is owned by the farm households, and the market (one) where maize is sold and 

bought. 

By what attributes are these entities characterized? 

Farm households (see UML, figure A.1) have a farm – characterised by its farm size and the 

adaptation measures implemented on it-. They also have a family size, a household head (male/female) 

with a certain age and education level, financial assets (wealth, expressed in USD), off-farm employment, 

and farm, food and other expenses. Household heads have a memory regarding past drought impacts, have 

a perception about their own capacity, and, in varying degrees, have information about potential adaptation 

measures.  

Crop land (farms) (see UML, figure S.1), belonging to households, produce maize under changing 

weather conditions, influenced by potential adaptation measures affecting water management conditions. 

The market (see UML, figure S.1) is influenced by local production and consumption, which results in a 

variable maize price depending on the balance between supply and demand. In the presented case study, 
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we consider relatively isolated areas, less subjected to globalized market systems: maize price is variable 

following the total amount of locally produced maize to replicate the observed price volatility (with 

minimum and maximum prices derived from FEWSnet) during years of reduced production. 
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Figure S1. UML diagram  
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What are the exogenous factors / drivers of  the model?  

Two exogenous factors influence the farm household systems: daily weather (influenced by gradual 

climate change) and drought disaster risk reduction policies (top-down policy interventions supporting 

smallholder farmers). The first factor might alter the frequency and severity of droughts – which may lead 

to failed crop yields, while the latter affects the knowledge, access to credit, and risk perception of 

households who are recipient of the policies. 

How is space included in the model?  

ADOPT runs on the scale of farm fields (size adjusted to the case study area). On this field scale, 

agricultural water management decisions (adaptation) interact with rainfall variability (drought hazard). 

However, spatially-explicit fields are used only in the initialisation phase so neighbouring farms can be 

identified but does not play any further role: space is only represented in a spatially-implicit way, all farms 

(crop land) receive the same amount of rain and sun, have the same soil type with a similar slope and differ 

only in their farm size and management applied. 

What are the temporal resolution and extent of  the model?  

One time step of ADOPT represents one year. The crop model part runs on a daily basis, producing 

maize crop yield in every cropping season, but decisions by the farm households to eventually adopt new 

adaptation measures are only made once a year. Each year, the poverty status, food security situation, and 

potential food aid needs of all farm households are evaluated. The model runs 30 years historical baseline 

(+ 10 initialisation years) and 30 scenario years. 

I.iii Process overview and scheduling 

What entity does what, and in what order?  

Every year, farm income of the households is updated with the maize harvest sold at the current 

market price (see centre of the flowchart in Fig. S.2). This harvest depends on the farm size of the 

household, the maize yields (defined by AquacropOS) which may be affected by a drought potentially 

mitigated by implemented drought adaptation measures, and on the food needs of the own household 

(subsistence is prioritized over selling; household members can die or be born (stochastically determined, 

based on birth and mortality rates in the study area). This farm income, together with a potential (fixed) 

off farm income, and with farm-size-dependent farm expenses, family-size-dependent household expenses, 

and potentially extra food expenses (if the own production was not sufficient to fulfil household food 

needs), alters the assets of the farm household. The farm household’s memory of drought impacts (risk 

perception) is updated, and they interact with their network of neighbours exchanging adaptation 

information. 

Once a year, the household head decides whether they want to adopt a new drought adaptation 

measure. They make this decision based on their memory of past drought impacts, their perception of the 

adaptation costs, the knowledge on adaptation measures through their networks and training, and their 

perception of their own capacity. The adoption of a new measure changes the farm management of those 

farmers, directly changes their wealth (implementation costs) and the farm expenses for the following years 

(maintenance costs), and influences crop yield and crop vulnerability to drought – thus potential farm 

income - during the following years. 
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Fig. Figure S2: Flowchart showing process overview 
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II. Design Concepts 

II.i Theoretical and Empirical Background 

Which general concepts, theories or hypotheses are underlying the model’s 

design at the system level or at the level(s) of  the sub-model(s) ?  

The multi-disciplinary modelling approach of ADOPT is rooted in socio-hydrology (Sivapalan et al., 

2012b), where the human system both influences and adapts to the changing physical environment (in this 

case agricultural drought), and applies an agent-based approach to deal with heterogeneity in adaptive 

behaviour of smallholder households. 

The setup / design of the model (the drought disaster risk system) is a result of participatory concept 

mapping with researchers and students of SEKU University, technical advisors of Kitui County 

Department of Water, Agriculture, Livestock and Fishing, experts from SASOL foundation, and five pilot 

households that have example farms for agricultural extension. This information informed the decision 

context of ADOPT.  

On what assumptions is/are the agents’ decision model(s) based?  

In the first design of ADOPT, three adaptive behaviour scenarios were analysed, with increasing 

complexity. A ‘business as usual’ scenario with no changing drought adaptation measures was tested, 

characterizing the ‘fixed adaptation’ approach. The conventional Expected Utility Theory (von Neumann 

and Morgenstern, 1944) represents the widely-used economist assessment of choice under risk and 

uncertainty. Simulating bounded rational rather than economic rational adaptation decisions, the Protection 

Motivation Theory (Rogers, 1983) is used as a way to include psychological factors in the heterogeneous 

adaptive behaviour of smallholders.  

Indeed, it is often stated that households’ adaptive behaviour is bounded rational and embedded in 

the economic, technological, social, and climatic context of the farmer (Adger, 2006). Knowing the risk is 

not enough to adapt; farmers should also believe the adaptation measure will be effective, be convinced 

that they have the ability to implement the measure, and be able to reasonably pay the costs (van Duinen 

et al., 2015b). Financial or knowledge constraints may limit economic rational decisions. Also age, gender 

and education – intrinsic factors - can play a role (Burton, 2014). The perceived ability to do something 

(Coping Appraisal) influences the decision making process(Eiser et al., 2012). This coping appraisal can be 

subject to intrinsic factors such as education level, sources of income, farm size, family size, gender, 

confidence and beliefs, risk-aversion, and age (Le Dang et al., 2014; Okumu, 2013; Shikuku et al., 2017; 

Zhang et al., 2019) .  

In order to understand the observed adaptive behaviour of smallholder households, it is critical to 

incorporate such social-economic factors in the decision-making framework of drought adaptation models 

(Bryan et al., 2009, 2013; Deressa et al., 2009; Gbetibouo, 2009; Gebrehiwot & van der Veen, 2015a; 

Keshavarz & Karami, 2016; Lalani et al., 2016; Mandleni & Anim, 2011; O’BRIEN et al., 2007; Rezaei et 

al., 2017; Singh & Chudasama, 2017; van Duinen et al., 2015b, 2015a, 2016b; Wheeler et al., 2013). After 

we had promising results running ADOPT with the bounded rational scenario, it is assumed that farmers 

show a bounded rationality in the further application of ADOPT.  

Why is a/are certain decision model(s) chosen?  

Analysis of the past and intended behaviour of farm households in the region provided support for 

the choice of theory, but also showed the need to include network influencing risk perception and capacity 
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of the households. Besides helping to parameterize the model, it also helped to calibrate the influence of 

the different factors affecting the decision making process of the farm household. Showing the effect of 

different assumptions about decision making in the first exploration of ADOPT (M. Wens et al., 2020), 

and with empiric evidence on the adaptive behaviour (M. L. K. Wens et al., 2021), the decision rules in 

ADOPT are assumed be a good enough representation of the decision making process regarding drought 

adaptation.  

If  the model / a sub-model (e.g., the decision model) is based on empirical data, 

where does the data come from?  

ADOPT is designed/initialised with data from existing longitudinal household surveys (Tegemeo 

Institute, 2000, 2004, 2007, 2010) and from a fuzzy cognitive map of key informants, and 

parameterized/partially calibrated with data from a semi-structured household questionnaire among 260 

smallholder farmers Survey reports can be found here: 

- https://research.vu.nl/en/publications/survey-report-kitui-kenya-expert-evaluation-of-model-setup-

and-pr 

- https://research.vu.nl/en/publications/survey-report-kitui-kenya-results-of-a-questionaire-

regardings-us  

At which level of  aggregation were the data available?  

Data from the surveys are available on individual household level. 

II.ii Individual Decision Making 

What are the subjects and objects of  decision-making? On which level of  

aggregation is decision-making modelled?  

In ADOPT, individual farm households make individual adaptation decisions about their farm water 

management (in the case study in Kenya: mulching, Fanya Juu terraces, drip irrigation or shallow well) to 

reduce their production vulnerability to droughts. There are no multiple levels of decision making included. 

What is the basic rationality behind agents’ decision-making in the model? Do 

agents pursue an explicit objective or have other success criteria?  

Farmers generally try to reduce their drought disaster risk (achieve food security, evade poverty and 

avoid needing emergency aid) and thus try to maximise crop yields (diminish yield reduction under water-

limited conditions) given the capacity they have to adopt adaptation measures. 

How do agents make their decisions?  

The Protection Motivation Theory (Maddux & Rogers, 1983) (see II.i) is used to explain the decision 

making process of the households. PMT consists of two underlying cognitive mediating processes that 

cause individuals to adopt protective behaviours when faced with a hazard (Floyd et al., 2000): It suggests 

that the intention to protect (in this study, the farmers’ intention to adopt a new adaptation measure) is 

motivated by a persons’ risk appraisal and the perceived options to cope with risks. The former depends 

on, for example, farmers’ risk perception, on their own experiences with drought disasters and memory 

thereof, and on experiences of risk events in their social networks. The latter is related to different factors 

such as perceived self-efficacy (i.e., assets and sources of income, education level, and family size), 

adaptation efficacy (land size, adaptation measure characteristics) and adaptation costs (expenses in relation 

https://research.vu.nl/en/publications/survey-report-kitui-kenya-expert-evaluation-of-model-setup-and-pr
https://research.vu.nl/en/publications/survey-report-kitui-kenya-expert-evaluation-of-model-setup-and-pr
https://research.vu.nl/en/publications/survey-report-kitui-kenya-results-of-a-questionaire-regardings-us
https://research.vu.nl/en/publications/survey-report-kitui-kenya-results-of-a-questionaire-regardings-us
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to their income) (Gebrehiwot & van der Veen, 2015; Keshavarz & Karami, 2016; van Duinen et al., 2015, 

2016a). Households do not have any other objective or success criteria. A detailed description of how PMT 

is modelled – including the sensitivity analysis regarding the relative weights of the PMT factors - can be 

found in Wens et al. (2019): In ADOPT, farm households develop an intention to adapt (protect) for each 

potential adaptation measure (m) which changes every year (t). If a household has the financial capacity to 

pay for a considered measure (Stefanovi, 2015), the intention to adapt is translated into the likelihood the 

household will adopt this measure in the following years. (This can be influenced by having access to credit.) 

The actual adoption is stochastically derived from this likelihood to adopt a measure.   

𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑇𝑜𝐴𝑑𝑎𝑝𝑡𝑡,𝑚 =  𝛼 ∗ 𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡 +  𝛽 ∗ 𝐶𝑜𝑝𝑖𝑛𝑔𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡,𝑚 

Although Stefanovi (2015), Van Duinen et al. (2015a), and Keshavarz and Karami (2016) have found 

positive relationships between the factors of PMT and observed protective behaviour, a level of uncertainty 

exists related to the relative importance of risk appraisal and coping appraisal in the specific context of 

smallholder households' adaptation decisions in semi-arid Kenya. Therefore, the α and β parameters were 

introduced as weights for the two cognitive processes. To address the associated uncertainty, they were 

widely varied (α, β ϵ [0.334:0.666]) in a sensitivity analysis. 

Risk appraisal is formed by combining the perceived risk probability and perceived risk severity, 

shaped by rational and emotional factors (Deressa et al., 2009, 2011; Van Duinen et al., 2015b). Whereas 

risk perception is based in part on past experiences, several studies have suggested that households place 

greater emphasis on recent harmful events (Gbetibouo, 2009; Rao et al., 2011; Eiser et al., 2012). To include 

this cognitive bias, risk appraisal is seen as a sort of subjective, personal drought disaster memory, defined 

as follows (Viglione et al., 2014): 

𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡 = 𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡−1 + (𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑡 ∗ 𝐷𝑎𝑚𝑎𝑔𝑒𝑡) − 0.125 ∗ 𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡−1 

With              𝐷𝑎𝑚𝑎𝑔𝑒𝑡 = 1 −  𝑒−ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑙𝑜𝑠𝑠𝑡  

The drought occurrence in year t is a binary value with a value of 1 if the SPEI-3 value falls below 

−1. The disaster damage of a household is related to their harvest loss during the drought year, which is 

defined as the difference between their current and average harvest over the last 10 years. 

Coping Appraisal represents a households' subjective “ability to act to the costs of a drought 

adaptation measures, given the adaptation measures' efficiency in reducing risk” (Stefanovi, 2015; Van 

Duinen et al., 2015a). It is a combination of the households' self-efficacy, adaptation efficacy of the measure, 

and its adaptation costs: 

𝐶𝑜𝑝𝑖𝑛𝑔𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡,𝑚 = 𝛾 ∗ 𝑆𝑒𝑙𝑓𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑡 + 𝛿 ∗ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑡,𝑚 + 휀 ∗ (1 − 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑠𝑡,𝑚)  

Although Stefanovi (2015), Van Duinen et al. (2015b), and Keshavarz and Karami (2016) quantified 

the relationships between the factors driving the subjective coping appraisal of individuals, a level of 

uncertainty remains related to the relative importance of these drivers in the context of smallholder 

households' adaptation decisions in semi-arid Kenya. Therefore, weights (γ, δ, ε ϵ [0.25:0.50]) were 

introduced and varied in a sensitivity analysis using different ADOPT model runs. 

The Adaptation Costs of the possible measures are expressed in terms of a percentage of the 

households' assets. The Adaptation Efficacy is calculated as the percentage of yield gain per measures 

compared to the current yield. This can be influenced by access to extension services (which gives an 

objective yield gain based on future climate rather than an estimate based on current practices of 

neighbours) 

Self-efficacy is assumed to be influenced by education level (capacity), household size (labour force), 

age and gender; all social factors found to influence risk aversion and adaptation decision (Oremo, 

2013; Charles et al., 2014; Tongruksawattana, 2014; Muriu et al., 2017). 

https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B128
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B128
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B23
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B153
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B106
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Do the agents adapt their behaviour to changing endogenous and exogenous 

state variables? And if  yes, how? 

Exogenous factors influencing adaptation decisions in ADOPT include the climate and the policy 

context in which households exists. Drought (a feature of the climate context) induced crop losses steer a 

households’ perception of the drought disaster risks they face (Risk Appraisal). For example, experiences 

of historical droughts or receiving early warnings about upcoming drought affects individuals’ evaluation 

of drought disaster risk, leading to a personal drought disaster risk judgement (e.g. Keshavarz et al., 2014; 

Singh & Chudasama, 2017). Besides, access to extension services (a feature of the climate context) can have 

profound effect on whether or not individuals take proactive action (Kitinya et al., 2012; Shikuku et al., 

2017). Endogenous factors, as explained above, include age, household size, education level, maize yield 

variability and assets (and the potential access to credit market). 

Do spatial aspects play a role in the decision process?  

Farmer networks (connections with neighbours) exist, and information is passed through this social 

network. 

Do temporal aspects play a role in the decision process?  

Yes, risk memory is based on the crop yield variability of the accumulated past years and gives farm 

households an expectation about the upcoming crop yield.  

Do social norms or cultural values play a role in the decision-making process?  

No (only implicitly included, see II.ix) 

To which extent and how is uncertainty included in the agents’ decision rules  ? 

No 

II.iii Learning  

Is individual learning included in the decision process? How do individuals 

change their decision rules over time as consequence of  their experience?  

Decision rules follow the PMT and are thus fixed, but some rules differ among type of households. 

Households that do not regularly receive extension services, are limited to only implement measures that 

their neighbours have installed as they are not aware of the existence of others. Besides, farmers who 

receive training will form their perception about the adaptation efficacy in a more objective way (as they 

have knowledge of average yield results under the adaptation measures while other farmers estimate this 

based on yield of their peers with such measure). 

Is collective learning implemented in the model?  

No 



SUPPLEMENTARY 

II.iv Individual Sensing 

What endogenous and exogenous state variables are individuals assumed to sense 

and consider in their decisions? Is the sensing process erroneous?  

Households are aware of their assets, past yields, income sources and their stability, and household 

food needs (Fig. A1). Following the socio-hydrologic setup of the model, households with bounded rational 

behaviour are embedded in and interact with their social and natural environment. Changes in rainfall 

patterns during the growing season will change households’ risk perception through fluctuations in crop 

yield; drought memory will influence the adaptive behaviour of these households. Besides, there is a 

diffusion of technology due to interactions and knowledge exchanges among farm households as discussed 

above. 

What state variables of  which other individuals can an individual perceive?  

Households know their own but also their neighbours’ current yields and management practices. 

They make assumptions about the adaptation efficacy based on this. 

What is the spatial scale of  sensing?  

Individual sensing happens on household level, but also through the individual social network that 

the farmers have, containing 3 to 30 other farmers. 

Are the mechanisms by which agents obtain information modelled explicitly, or 

are individuals simply assumed to know these variables? 

Households can get information about early warnings and through extension training. Households 

also have a simulated information transfer moment with the farmers in their neighbourhood to exchange 

information on risk and yields.  

Are the costs for cognition and the costs for gathering information explicitly 

included in the model?  

No 

II.v Individual Prediction  

Which data uses the agent to predict future conditions?  

By extrapolating from historical yield experiences, farmers have expectations about their maize yield 

every year. If an early warning system is in place, farmers know about upcoming droughts that can influence 

their crop yield. 

What internal models are agents assumed to use to estimate future conditions or 

consequences of  their decisions?  

Households receiving extension services have knowledge about the average (future) yield gain of 

adopting a new adaptation measure, which will influence their coping appraisal.  
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Might agents be erroneous in the prediction process, and how is it  

implemented?  

Households without this access to training will predict the yield gain based on the extra yield of their 

neighbours who have already adopted the considered adaptation measure. 

II.vi Interaction  

Are interactions among agents and entities assumed as direct or indirect?  

In ADOPT, households interact with their neighbours, shaping risk awareness and response attitude 

(Nkatha, 2017; Okumu, 2013; van Duinen et al., 2016b). Such networks can enhance social learning and 

knowledge spill over, which influences people’s adaptation intention and choice of specific measures (T. 

Below et al., 2010; Tongruksawattana, 2014).  Smallholder households learn from the other households in 

their social network about the implementation and benefits of drought adaptation measure through 

neighbouring households’ (Below et al 2010; Shikuku 2017). In ADOPT, exchanges with neighbours shape 

risk perception – the individual perception moves in the direction of the social network average – and also 

shape perceived adaptation effectivity. Moreover, households with no access to extension can only adopt 

measures already implemented by neighbours. 

On what do the interactions depend? 

Households are either more self-oriented, discussing matters with 10 neighbours, or group-oriented, 

sharing knowledge within a group / collective of 30 neighbouring households. 

Spatial distance (neighbourhood) at initialisation is the key driver for networks;  it is assumed that 

s(he) would not walk more than 5km to reach people in her/his network. 

If  the interactions involve communication, how are such communications 

represented? 

 Communication is not explicitly modelled. 

If  a coordination network exists, how does it affect the agent behaviour? Is the 

structure of  the network imposed or emergent?  

No coordination network exists. 

II.vii Collectives 

Do the individuals form or belong to aggregations that affect, and are affected by, 

the individuals?  How are collectives represented?  

No, no fixed collectives exist as the social networks the agents have, are individual in nature.  
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II.viii Heterogeneity 

Are the agents heterogeneous? If  yes, which state variables and/or processes 

differ between the agents?  

Household agents are heterogeneous in terms of state variables (i.e. farm size, household size, assets), 

and differ in access to credit market, extension services and early warning beneficiaries, changing their 

adaptive behaviour (Asfaw et al., 2017; Okumu, 2013; Shikuku et al., 2017) 

Are the agents heterogeneous in their decision-making? If  yes, which decision 

models or decision objects differ between the agents?  

Okumu (2013), Shikuku (2017), among others, found that state variables such as age, beliefs. gender, 

education of the household head, and the household size have significant effects on their risk attitude. 

These factors are included in the model application of the Protection Motivation Theory through the self-

efficacy factor. 

II.ix Stochasticity  

What processes (including initialization) are modelled by assuming they are 

random or partly random?  

The likelihood to adopt a measure of a household is directly derived from the intention to adapt of 

the measure with the highest intention for that household. This is stochastically transferred into an actual 

decision whether or not to adopt the measure. For every time step of the simulation, a random number 

between 0-1 is drawn for each household; if this is lower than their adaptation intention (also between 0-

1) and the household is able to pay for the measure, then the household adopts it. This probabilistic way 

of looking at adaptation intention and the stochastic step to derive the actual decisions allow to account 

for non-included factors introducing uncertainty in adaptive behaviour such as conservatism, social / 

cultural norms, physical health, ambitiousness etc. of the households. Moreover, also a stochastic 

perturbation (multiplied with a random number with average 1 and SD 0.1)  is added to the maize yield per 

farm as calculated through AquacropOS. This additional heterogeneity-inducing step is done to include 

effects of pests and diseases on the income and food security of farming households. 

II.x Observation  

What data are collected from the ABM for testing, understanding and analysing 

it, and how and when are they collected?  

The adoption of adaptation measures and their effect on the total crop production (and food stock 

on the market) and individual household wealth are tracked over the simulated years. 

What key results, outputs or characteristics of  the model are emerging from the 

individuals? 

Drought disaster risk (the annual average of impacts over the run period) - expressed in terms of 

average annual poverty rate, level of food security and total emergency aid needs - is emerging from the 

model. They are defined based on the socio-economic conditions of individual farm households.  
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III. Details 

II.i Implementation 

How has the model been implemented?  

The model is coded in R, which is able to link the two sub models in Netlogo (the adaptive behaviour 

sub model) and MATLAB (AquacropOS). 

Is the model accessible, and if  so, where?  

No(t) yet  

III.ii Initialization 

What is the initial state of  the model world, i.e., at time t=0 of  a simulation run?  

At the initial stage, households and their characteristics are randomly created based on the mean and 

standard deviation (Table A1) derived from the household dataset, obtained from a survey on agricultural 

drought disaster risk with smallholders in the case study area (Wens, 2019). Income off farm is linearly 

related to the household size, education level and negatively related to the farm size. Food and non-food 

expenditures are linearly related to the household size. Farm expenditures are linearly related to the farm 

size.  

Table S1: Initialisation parameters for farm households in ADOPT  

Parameter Explanation of initialization parameters for farm households Value 

Age Age of the household head (based on Wens 2019) 42 +- 9 

Edu Years of education of the household head (based on Wens 2019) 6 +- 3 

Sex Gender of the household head (male 1, female 0)  0.66 

HH-size Family size of the households (people living under same roof) (Wens 2019) 6 +- 2.5 

Assets Household financial assets (USD) that can be spend (based on IFPRI 2012) 80% < 100 

Farm-size Size of the farm (in hectare) used for planting crops (Wens 2019) 0.7 +- 0.6 

Off-farm Income from activities not on the own farm in USD (Wens 2019) 1200 +- 500 

Food-needs Kilogram of maize to fulfil daily caloric intake needs, per adult 125 

Exp-farm Farm expenditures made by the household (USD/hectare/year) (Wens 2019) 118 +- 146 

Exp-food Food expenditures made by the household (USD/year) (Wens 2019) 567 +- 655 

Exp-nonf Other expenditures made by the household (USD/year) (Wens 2019) 446 +- 500 

Network Neighbouring farmers creating the social network of the farmer 10-30 

 

Is initialization always the same, or is it allowed to vary among simulations?  

In ADOPT, multiple climate change scenarios and policy scenarios were initialised – this changed 

the exogeneous variables in the model. Moreover, each initialization creates another synthetic agent set 

based on the average household characteristics,  Besides, a sensitivity analysis is done to evaluate 

assumptions on the relative weights of the PMT factors (II.ii). Each combination of climate and policy 

scenario is run 12 times  (3 possible α; 4 possible combinations of  γ, δ, ε) to account for the endogenous 

variability and uncertainty.  

Are initial values chosen arbitrarily or based on data?  

The initialisation values are based on observed household data. Survey data includes a short 

questionnaire among employees of the Kenyan national disaster coordination units (n=10), semi-structured 

expert interviews (n=8) with NGOs, governmental water authorities and pioneer farmers in the Kitui 
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district in Kenya, and an in-depth questionnaire among 250 smallholder farmers in the central Kitui. Extra 

information is derived from household surveys of 2000, 2004, 2007 and 2010, conducted by the Tegemeo 

Agricultural Policy Research Analysis (TARAA) Project of the Tegemeo Institute. Besides, the model 

initialization draws heavily from reports of CIAT (CIAT & World Bank, 2015), FAO (Ansah et al., 2014), 

IFPRI (Erenstein et al., 2011) and the government of Kenya (Kitui County Integrated report 2013-2017, 

2017), CCAFS (CCAFS, 2015), and from research (e.g., Muhammad et al., 2010). 

III.iii Input Data 

Does the model use input from external sources such as data files or other 

models to represent processes that change over time?  

The daily weather conditions from 1980-2010 (from CHIRPS and CFSR) is used as input time series; 

for the future climate scenarios, the same data but with temperature and/is used.  

Besides, survey data on household behaviour and drought risk context are used. Raw reporting can 

be found in:  

• Wens, M. (2019). Survey report Kitui, Kenya: Results of a questionnaire regarding subsistence 

farmers' drought risk and adaptation behaviour.  

https://research.vu.nl/ws/portalfiles/portal/98864069/MissionRapport.pdf 

• Wens, M (2018) Survey report Kitui, Kenya: Expert evaluation of model setup and preparations 

of future fieldwork  

https://research.vu.nl/ws/portalfiles/portal/98863978/MissionRapport2018.pdf 

Where does data come from? How is it collected? What is the level of  available 

data? How is it structured?  

Data (also discussed in Wens et al. 2021) is collected in the field using a multi-method data survey 

approach (key informant interviews, fuzzy cognitive map, household questionnaire and choice 

experiment). This data is used to design the model, to validate the use of PMT, to initialise the agent set 

and to calibrate model outputs.  

What are the variables, entities and classes available in data? What do they 

represent?  

A full set of behavioural factors were evaluated through the household questionnaire, and these 

were linked to their actual behaviour and to their behavioural intentions, as well as to the results of the 

choice experiment investigating future behaviour (Wens et al. 2021). Besides, socio-economic and farm 

characteristics were questioned.  

How are data selected to form the agent entities? How is agent population 

generated and synthesized?  

As discussed above, the data is used to create a representative set of agents. Household variable 

means and standard deviations were used to create distribution functions and a synthetic agent set was 

created based on random draws from these functions. Moreover, correlation between different variables 

were maintained. 

https://research.vu.nl/ws/portalfiles/portal/98863978/MissionRapport2018.pdf


ODD+D description ADOPT 

 175 

What are the relationships and patterns that exist in data?  

As discussed above, relationship between household income and household head education level or 

farm size exist. Next to corelations between socio-economic or agricultural characteristics, correlations 

between psychological factors and actual or prospective adaptation decisions were investigated and used 

to design the behavioural module of ADOPT.   

III.iv Sub-models 

What, in detail, are the sub-models that represent the processes listed in ‘Process 

overview and scheduling’?  

The FAO crop-water model AquacropOS (coded in MATLAB© by Tim Foster (Foster et al., 2017)) 

calculates seasonal crop production, based on hydro-climatologic conditions provided by the climate data 

and based on the agricultural management of the households. The agent-based model in which farming 

households decide on their drought adaptation measures, is coded in Netlogo®, a language specialized in 

ABMs. This contains the -making-decision module, which is a model-application of the Protection 

Motivation theory as explained in section  II.i. More detailed explanation about how this is done can be 

found in Wens et al 2020. 

How were sub models designed or chosen, and how were they parameterized and 

then tested?  

AquacropOS was applied parameterized and calibrated following Ngetich (2011) and Omoyo (2015), 

who both analysed and approved the functioning of this model to simulate maize yield under different 

climates in Kenya. 

The decision sub-model is described above in the sections about decision-making and theoretical 

foundations (II.ii). A more detailed description can be found in Wens et al 2020. 

What are the model parameters, their dimensions and reference values? 

For AquacropOS, Table S3 and S4 give an overview of the parameters that are used. For the 

decision-making module, Table S2 gives an overview of the factors used. 

Table S2: Initialisation parameters for the behavioural module in ADOPT  

Factor Explanation of the PMT factors 

Current Yield Average yield of last 5 years 

Potential Yield Expected / perceived yield when adopting a new adaptation measure 
Either based on yield of neighbours with that measure or on training info 

Adaptation costs Perception of the costs of new measures as percentage of assets 

Knowledge-measures 1 if attending trainings, else the percentage of people in network with 
measure 

Risk perception Drought memory, 1 if last harvest there was 0 yield, 0 if never impacted 

Adaptation efficacy Yield gain as percentage of current yield, based on potential yield 

Self – efficacy Belief in own capacity, based on gender, age, HH size and access to training 

Adaptive capacity Product of self-efficacy, adaptation efficacy and -1 * adaptation costs 

Adaptation intention Product of adaptive capacity and risk perception, 0 if one of the underlying 
factors is 0 or if assets are smaller than costs of measure 

 
Table S3: Initialisation parameters for AquacropOS in ADOPT  

Value Explanation of calibration parameters for AquacropOSv6.0 maize 
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60 / 80 Curve number value under Fanya Juu bunds or under absence of such bunds 

06 Bund height (m) 

50 Area of surface covered by mulches (50%) 

0.5 Soil evaporation adjustment factor due to effect of mulches 

SMbased Irrigation method 

7 / 3 Interval irrigation in days under manual / automated irrigation 

40 Soil moisture target (% of TAW below which irrigation is triggered) 

12 Maximum irrigation depth (mm/day) 

50 / 75 Application efficiency under manual / automated irrigation 

50 Soil surface wetted by irrigation (%) 
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Table S4: Crop parameters for maize AQUACROPOS in ADOPT  

Value  Crop parameters for AquacropOS  

3           : Crop Type (1 = Leafy vegetable, 2 = Root/tuber, 3 = Fruit/grain) 

1           : Planting method (0 = Transplanted, 1 =  Sown) 

1           : Calendar Type (1 = Calendar days, 2 = Growing degree days) 

0           : Convert calendar to GDD mode if inputs are given in calendar days (0 = No; 1 = Yes) 

16/03    : Planting Date (dd/mm) 

31/08    : Latest Harvest Date (dd/mm) 

5           : Growing degree/Calendar days from sowing to emergence/transplant recovery 

40         : Growing degree/Calendar days from sowing to maximum rooting 

80         : Growing degree/Calendar days from sowing to senescence 

90         : Growing degree/Calendar days from sowing to maturity 

40         : Growing degree/Calendar days from sowing to start of yield formation 

5           : Duration of flowering in growing degree/calendar days (-999 for non-fruit/grain crops) 

65         : Duration of yield formation in growing degree/calendar days 

3           : Growing degree day calculation method 

8           : Base temperature (degC) below which growth does not progress 

30         : Upper temperature (degC) above which crop development no longer increases 

1           : Pollination affected by heat stress (0 = No, 1 = Yes) 

35         : Maximum air temperature (degC) above which pollination begins to fail 

40         : Maximum air temperature (degC) at which pollination completely fails 

1           : Pollination affected by cold stress (0 = No, 1 = Yes) 

10         : Minimum air temperature (degC) below which pollination begins to fail 

5           : Minimum air temperature (degC) at which pollination completely fails 

1           : Transpiration affected by cold temperature stress (0 = No, 1 = Yes)  

12         : Minimum growing degree days (degC/day) required for full crop transpiration potential 

0           : Growing degree days (degC/day) at which no crop transpiration occurs 

0.3        : Minimum effective rooting depth (m) 

0.8        : Maximum rooting depth (m) 

1.3        : Shape factor describing root expansion 

0.0105  : Maximum root water extraction at top of the root zone (m3/m3/day) 

0.0026  : Maximum root water extraction at the bottom of the root zone (m3/m3/day) 

6.5        : Soil surface area (cm2) covered by an individual seedling at 90% emergence 

37000   : Number of plants per hectare 

0.89      : Maximum canopy cover (fraction of soil cover) 

0.1169  : Canopy decline coefficient (fraction per GDD/calendar day) 

0.2213   : Canopy growth coefficient (fraction per GDD) 

1.05       : Crop coefficient when canopy growth is complete but prior to senescence 

0.3         : Decline of crop coefficient due to ageing (%/day) 

33.7       : Water productivity normalized for ET0 and C02 (g/m2) 

100        : Adjustment of water productivity in yield formation stage (% of WP) 

50          : Crop performance under elevated atmospheric CO2 concentration (%) 

0.48       : Reference harvest index 

0            : Possible increase of harvest index due to water stress before flowering (%) 

7            : Coefficient describing positive impact on harvest index of restricted vegetative growth during yield formation  

3            : Coefficient describing negative impact on harvest index of stomatal closure during yield formation  

15          : Maximum allowable increase of harvest index above reference value 

1            : Crop Determinacy (0 = Indeterminant, 1 = Determinant)  

50          : Excess of potential fruits 

0.02       : Upper soil water depletion threshold for water stress effects on affect canopy expansion  

0.20       : Upper soil water depletion threshold for water stress effects on canopy stomatal control 

0.69       : Upper soil water depletion threshold for water stress effects on canopy senescence  

0.80       : Upper soil water depletion threshold for water stress effects on canopy pollination  

0.35       : Lower soil water depletion threshold for water stress effects on canopy expansion  

1            : Lower soil water depletion threshold for water stress effects on canopy stomatal control  

1            : Lower soil water depletion threshold for water stress effects on canopy senescence  

1            : Lower soil water depletion threshold for water stress effects on canopy pollination  

1            : Shape factor describing water stress effects on canopy expansion  

2.9         : Shape factor describing water stress effects on stomatal control  

6            : Shape factor describing water stress effects on canopy senescence  

2.7         : Shape factor describing water stress effects on pollination 
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