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Abstract

Since the inception of computing, we have been reliant on
CPU-powered architectures. However, today this reliance is
challenged by manufacturing limitations (CMOS scaling),
performance expectations (stalled clocks, Turing tax), and
security concerns (microarchitectural attacks). To re-imagine
our computing architecture, in this work we take a more radi-
cal but pragmatic approach and propose to eliminate the CPU
with its design baggage, and integrate three primary pillars of
computing, i.e., networking, storage, and computing, into a
single, self-hosting, unified CPU-free Data Processing Unit
(DPU) called Hyperion. In this paper, we present the case for
Hyperion, its design choices, initial work-in-progress details,
and seek feedback from the systems community.

1 Introduction

Since the inception of computing, we have been designing
and building computing systems around the CPU as the pri-
mary workhorse. This primary architecture has served us well.
However, as the gains from Moore’s and Dennard’s scaling
start to diminish, researchers have started to look beyond the
CPU-centric designs to accelerators and domain-specific com-
puting devices such as GPUs [26, 73, 115], FPGAs [84, 111],
TPUs [72], programmable-storage [87, 116, 121], and Smart-
NICs [50, 128]. The use of domain-specific computing de-
vices in wide-spread mainstream computing is heralded as
the Golden Age of Computer Architecture by by Hennessy
and Patterson in their 2017 Turning Award lecture [64].

However, even in this Golden Age, the CPU1 remains
in the critical path to manage data flows [113] (data copy-
ing, I/O buffers management [100]), accelerators (e.g. PCIe
enumeration [120]), and translate between OS-level (pack-
ets, request, files) to device-level abstractions (address, loca-
tions) [14, 66, 125, 129]). Table 1 shows an overview of prior

1referring to the CPU from the host (e.g. x86) as well as smart accelerators
like ARM SoC.

What Examples

Net + Accel SmartNICs [5, 110], AcclNet [53], hXDP [35]
Net + GPU GPUDirect [102], GPUNet [78]
Sto + GPU Donard [22], SPIN [25], GPUfs [124], GPUDi-

rect [103], nvidia BAM [113]
Net + Sto iSCSI, NVMoF (offload [117], BlueField [5]),

i10 [68], ReFlex [80]
Sto + Accel ASIC/CPU [60, 83, 121], GPUs [25, 26, 124],

FPGA [69, 116, 119, 143], Hayagui [15]
Hybrid System with ARM SoC [3, 47, 90], BEE3 [44], hybrid

CPU-FPGA systems [39, 41]

DPUs Hyperion (stand-alone), Fungible (MIPS64 R6
cores) DPU processor [54], Pensando (host-
attached P4 Programmable processor) [108],
BlueField (host-attached, with ARM cores) [5]

Table 1: Related work (§4) in the integration of network (net),
storage (sto), and accelerators (accel) devices.

approaches (§4). Additionally, accelerator integration is al-
ways done (via virtualization or multiplexing) while keeping
the CPU and accelerator view of systems resources (DRAM,
memory mappings, TLBs) coherent and secure. Though nec-
essary, such integration brings complexity to accelerator man-
agement and keeps the CPU as the final resource arbiter. In
contrast to accelerators and I/O devices, the CPU performance
is not expected to improve by a radical margin [101], and is
even dropping with each microarchitectural attack fix [23,81].
We are not the first one to raise issues associated with the
CPU-driven computing architecture [42, 101]. Despite this
awareness, CPU-driven designs and consequently, the CPU
remains in the critical path of end-to-end system building,
thus not escaping the dynamics of Amdahl’s Law [64].

The first-principle reasoning suggests the solution: a sys-
tem where there is no CPU, i.e., a zero-CPU or CPU-free
architecture. A completely new computing architecture like
zero-CPU will require a radical and destructive redesign
of computing hardware (buses, interconnects, controllers,
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Figure 1: Hyperion architecture and layout.

DRAM, storage), systems software, and applications. A prior
example of this approach is the MSR BEE3 system used for
emulations [44]. A recent example is ETH’s Enzian system
that designs a hybrid CPU-FPGA dual socket system [41].
The Enzian paper documents the heroic engineering effort
it took to design such a system where all board components
need to be re-designed to integrate an FPGA as a co-processor
with a CPU. Furthermore, such CPU-centric thinking encour-
ages us to inherit and integrate CPU-centric hardware and
software choices for an accelerator-centric design without re-
assessing if such choices make sense and/or can be simplified
(see §2).

In this work, we take a more pragmatic approach and in-
vestigate the design of a unified NIC-FPGA-storage Data
Processing Unit (DPU) called Hyperion (Figure 1). Hyper-
ion aims to establish end-to-end hardware control/data paths
within the DPU without any CPU involvement. The unique
design of Hyperion allows us to consider building a stan-
dalone, self-contained DPU, where no host system is needed
to run it, thus reducing the energy cost and increasing packag-
ing density. This directly, network-attached FPGA model has
been used before as well [69, 111, 123, 133]. In this paper, we
present a case for such a stand-alone DPU but without a CPU
(§2), and present design choices pertaining to hardware inte-
gration (§3.1), systems software (§3.2), and client-interface
and workload (§3.3).

2 The case for a CPU-free DPU

The CPU-driven design has its clear merits, and its elimi-
nation is not recommended for every workload in general
computing. However, for specialized data center workloads
(data-parallel, accelerator-amenable, disaggregated), the us-
ability of the CPU must be reassessed. There are three primary
impetuses that encourage us to think about a CPU-free DPU:

First, the era of one-CPU-fits-all is over (design, manufac-
turing, and thermal limits [34, 51, 63]) and the way forward is
specialization with reconfigurable hardware and accelerators.
The generality of the CPU has overheads (i.e., Turing Tax)
that hinder specialization for performance or efficiency. For

example, calculations for the Smith Waterman algorithm in
DNA sequence alignment takes 37 cycles with 40 instruc-
tions (35 arithmetic, 15 load/store) with 81 nanoJoules of
energy (on a 14nm CPU). In comparison, this calculation
on a specialized 40nm ASIC takes a single cycle instruction
with 3.1 picoJoules of energy [131]. The generality and over-
engineered design of CPUs for any workload also results in
poor on-chip resource utilization [52], unused silicon [51,63],
and elevated security risks [81]. At the same time, with the
availability of open-source EDA processes and projects [7, 8],
exploring workload-specialized hardware designs (with or
without CPU) has become more approachable and affordable.

Second, a direct consequence of keeping a CPU-driven
design is to inherit its choices of memory addressing, trans-
lation, and protection mechanisms such as virtual memory,
paging, and segmentation [45]. When an accelerator such as
FPGA, is attached to a CPU as an external device [39] or
as a co-processor [41], there is a temptation to provide/port
the familiar memory abstractions like unified virtual mem-
ory [84] and/or shared memory [94]. This design necessitates
a complex integration with further CPU-attached memory ab-
stractions such as page tables and TLBs, virtualization, huge
pages, IOMMU, etc., while keeping such an integration co-
herent with the CPU view of the system [84,94]. Furthermore,
the management of physical memory (or the illusion of a
flat, uniform physical address space) on modern computing
platforms with accelerators and heterogeneous CPUs is a non-
trivial and complex job [10]. Hence, in this work we argue
that eschewing CPU and its design baggage, we can explore
new memory management designs such as compiler/language-
assisted solutions even directly on physical addresses [126].

Lastly, the CPU-centric design encourages the active re-
sources disaggregation where resources remain attached to a
host CPU that manages the disaggregation logic. This design
results in a coarser disaggregation granularity with complex
and bloated software [56] and a tight integration of proces-
sor/memory [61, 122]. To achieve the vision painted by Han
et al. in their seminal HotNet’13 paper [62], there is a re-
newed push for passive disaggregation where disaggregation
logic/smartness lies with clients, and a remote resource only
serves requests as fast as possible [12,36,61,122,130]. Passive
disaggregation promotes a network-attached model, where
memory, storage, DPUs, and ASICs are directly connected to
a network, and offers a better match with fine-grained comput-
ing models like Serverless [37, 107]. It also enables systems
designers to rethink (i) network protocols for discovery and
configuration protocols (e.g., Catapult fabric [111]); (ii) work
division between clients and remote servers for distributed
resource allocation, and access (e.g., Clio [61], DUA [123]);
and (iii) offload-friendly abstractions with isolation, multi-
plexing mechanisms (e.g., group offloading and memory re-
assignments [12, 77, 93]).

To summarize: In this work, we make a case for the elim-
ination of the CPU and its design baggage, and argue that
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its elimination can bring substantially simplicity and offer
performance/energy advantages. Our attempt to design and
implement Hyperion is a step in this direction.

3 Hyperion

Hyperion is a standalone, network-attached DPU that unifies
100 Gbps Ethernet NIC, FPGA, and NVMe storage devices
in a single DPU. Figure 1 shows the overall architecture of
Hyperion with the FPGA board, and attached NVMe SSDs.

3.1 Hardware Design
Commercially, NICs and storage devices (e.g. NVM Express)
are available as separate PCIe devices. Communication be-
tween the two requires control coordination with P2P DMA
from the CPU (if supported, e.g., NVMe Controller Memory
Buffers (CMBs) [21]) via the PCIe root complex, which typ-
ically resides on the CPU complex (keeping it in the loop).
To make the DPU self-sufficient, Hyperion runs a PCIe root
complex with an NVMe controller on the FPGA board, which
is connected to a 100 Gbps network directly. The FPGA PCIe
lanes are connected (x16) to off-the-shelf NVMe storage de-
vices via a PCIe bifurcation. Hence, all access to the storage
is funneled through the FPGA. With such a design, Hype-
rion now has an end-to-end hardware path from network
to FPGA to storage devices. The end-to-end hardware path
can be specialized to a workload with an optimized network
transport (TCP, UDP, RDMA, HOMA [104]), storage API
(NVMoF [117], i10 [68], ReFlex [80], KV-SSDs [27]) with
any arbitrary storage functions on the FPGA (compression,
pointer chasing, deduplication, or application-defined codes).

Why FPGA? Three factors drive the selection of FPGA:

1. Application-specific reconfigurability: The use of
FPGA allows us to reconfigure hardware (deep pipelines,
unrolled loops, data parallelism, large caches) to the best
possible implementation of an application-specific logic.
ASICs offer similar benefits, but require high initial in-
vestment and manufacturing costs. Furthermore, as there
is an increasing trend to pack thousands of workload-
specific processing units (PU) in a close vicinity (e.g.,
Cerebras [2], Telsa Dojo [6]), the distance among PUs
and memories (SRAM, DRAM, or HBM) is of critical
importance. Here, we believe that an FPGA-based design
offers the best tradeoffs.

2. Improved FPGA systems software support: The pri-
mary challenge for managing FPGAs comes from care-
fully managing the pipelined execution of the workload
with Hardware Description Languages (HDLs). With
the availability of high-quality DSLs [18, 75, 82, 118],
OS-shells [84], and HDL compilers (hXDP [35]), it
has become more affordable to generate a high-quality
HDL for high data rates (100+ Gbps) [53, 92]. Overall

FPGA compilation and debugging processes have also
improved [95, 136].

3. Predictable performance with energy efficiency: Un-
like the CPU and I/O devices that target fine-grained
time-based statistical multiplexing (µsec to nsec) to max-
imize resource utilization, FPGAs target a much coarser
time-scale (10-100s milliseconds), or even spatial mul-
tiplexing which commits resources to a tenant. This
sharing model helps with building highly predictable
execution pipelines where once an associated bitstream
has been sent to the FPGA, the circuit runs a certain
clock frequency without any outside interference [70,89].
The use of FPGAs has been shown to be energy effi-
cient [35, 112, 116] as its energy consumption is propor-
tional to the active and used programmable LUTs and
the operating frequency. Unused logic elements do not
consume any energy, resulting in deployments which
consume 10-20 Watts, which is an order of magnitude
less than a server-grade machine [70].

Apart from the choice of FPGA, Hyperion uses NVM Ex-
press (NVMe) for block SSDs, Ethernet for network, and the
PCIe between FPGA and SSDs. These choices are dictated
by practicality and the engineering efforts required. For ex-
ample, the choice of PCIe over other high-performance local
interconnects (CXL, CAPI) or networks (TrueFabric [55]),
can be revised as workload demands increase.

3.2 Software and Programming
Due to the absence of the CPU and conventional operating
system, doing the classical resource management with ele-
vated privileges to mediate accesses to a shared resource in
Hyperion would be challenging. Hence, we must re-negotiate
the work division among hardware, compiler, and application
with the compiler taking a leading role. The role of compiler is
not unusual here. It has been shown that compiler-assisted de-
signs can help with the traditional OS roles such as for context
switching [48, 88, 97], memory virtualization [126], single-
level memory/storage [30, 67], extraction of parallelism [35],
virtualization and multi-tenancy [75, 138].

With this compiler-centric approach we run the risk of re-
peating the failure of the VLIW processors2. However, we
argue that there are two fundamental shifts that work in our
favor. First, domain/workload-specific architectures are com-
mon, and associated languages (e.g., OpenCL, Chisel [18])
and compilers are used extensively as the norm. There are
significant research and commercial interests in co-designing
domain- or workload-specific hardware/software. Second, un-
like VLIW processors, a DPU (specifically FPGA driven) is

2VLIW compilers were left responsible for parallelism extraction in gen-
eral workloads, which lead Donald Knuth to comment that “. . . the "Itanium"
approach that was supposed to be so terrific—until it turned out that the
wished-for compilers were basically impossible to write” [29].
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not aimed to deliver performance for all/any workload, hence,
restricting the optimization design space. For example, hXDP
has demonstrated that compile-time heuristics (the Bernstein
conditions) with a simple language (eBPF) can lend itself to
automatic parallelism extraction for packet processing work-
loads with a VLIW softcore processor [35].

Inspired by the LLVM project, in this work we argue that
FPGA programming needs to decouple the frontend (appli-
cation logic) and backend (HDL codes) with an accelerator-
independent, intermediate representation (IR) language. The
IR can be used to reason about correctness and safety proper-
ties of the program, with compiler-assisted transformations
for pointer swizzling and privilege calls. We make a case that
the extended Berkeley Packet Filter (eBPF) [40, 99] language
is a suitable match for such an IR for three key reasons. First,
eBPF is not tied to a specific application-domain and it is
used in networking [65,135], tracing [59], caching [58], secu-
rity [74], and storage [20, 28, 85, 141]. It is also supported by
healthy, growing communities (Cilium, the ebpf foundation),
thus, establishing expertise and a knowledge base. Second,
due to the simplified nature of the eBPF instruction set, it is
possible to verify and reason about its execution. The Linux
kernel already ships with an eBPF verifier [127] (with sim-
plified symbolic execution checks). Lastly, eBPF supports
efficient code generation (via JITing) for multiple hardware
devices such as x86, ARM, or FPGAs, thus solidifying its po-
sition as an accelerator-independent, unifying IR for heteroge-
nous computing [76]. Bear in mind, here we take a broader
position regarding eBPF where the Linux kernel implement is
one of many possible implementation of an eBPF execution
environment. For example, there are userspace BPF VMs [9],
checkers [57], and application-specific ISA extensions [35].
Apart from eBPF, we also consider P4, another popular pro-
gramming language for in-network acceleration (NICs and
switches). However, P4 programs are designed around packet
processing and network abstractions. In restricted capabili-
ties (with only filtering and forwarding) there are P4 to eBPF
compilers available, though the generality of P4 for general
data processing is yet to be explored.

Hyperion supports any eBPF-supporting programming lan-
guage as a frontend. It then uses clang/LLVM to generate
eBPF IR from the frontend. The eBPF IR is then passed
to a two stage compilation process. In the first stage, the
eBPF IR is passed through the open-source hXDP compiler
for parallelism extraction and optimized VLIW transforma-
tions [17, 35]. In the second stage, the optimized eBPF IR is
passed through an eBPF-to-HDL compiler for the final HDL
code generation. Unlike hXDP, Hyperion runs HDL codes
directly, not as a VLIW softcore processor on the FPGA.

Beyond the basic compilation of application-provided code
to HDL, there are challenges associated with (i) secure multi-
tenant execution; and (ii) FPGA configuration, management,
accessibility of data-center resources [123]. Many past design
choices here can be simplified as there are no host system

resources (on the CPU or OS) that need to be kept coherent
and secure while doing execution in the FPGA. We propose
to leverage the slot-style slicing of FPGA resources [75] with
a compiler to do workload partitioning [138]. Hyperion runs
a configuration kernel that can receive authorized FPGA bit-
stream over the network and assign slices to it.

3.3 Client Interface and Workloads

To provide a client interface that can be specalized, Hyperion
takes inspiration from Willow [121], which pioneered an RPC-
backed programmable SSD interface where a user provides
application- and SSD-side RPC stubs. Such a flexible design
can support any desired specialization of both network as
well as storage interfaces. For example, we can build network-
attached SSDs that can support Corfu consensus protocol [19,
134], block-level NVMoF accesses, NFS acceleration, or the
bump-in-the-wire/near-data execution of application-provided
codes (B+/LSM tree search, compaction and insertions, file
system walks, transactions) [116,139]. Here, we can leverage
client-driven request routing [91] with a shared-nothing, run-
to-completion datapath [24] for performance.

We focus on three application classes for Hyperion. First,
high volume applications such as fail2Ban [4], inspecting
and writing network traffic and logs authentication/malicious
data to attached SSDs. Such applications must handle high
volumes of packet data under a tight time budget (100s of
millions of packets/sec). Second, a latency-sensitive appli-
cation such as network pointer-chasing. In a disaggregated
storage, pointer chasing over B+ trees, extent trees, LSM
trees (used in many databases, file systems, and key-value
stores [109]) results in multiple network RTTs with signifi-
cant performance degradation [85]. Lastly, network-attached
SSDs that can export application-defined, high-level, fault-
tolerant abstractions such as trees, lookup-tables [27], dis-
tributed/shared logs [19,134], atomic writes [105], concurrent
appends [31], caches [58], and concurrent data structures and
transactional interfaces (similar to Boxwood [96]).

One primary challenge here is the composability of multi-
ple functionalities and the state management on FPGA during
processing. Often storage integration with FPGA is done at
the block-level for state-less data processing on data streams
(such as grep). Hence, appropriate APIs and abstractions
are needed to integrate high(er)-level storage abstractions
with efficient state management on FPGA/BPF such as file
systems [28, 116, 119], file/data format integration [86, 106],
data caching [58], OoS scheduling (priority sharing of stor-
age/network resources), checkpointing, deduplication, encryp-
tion, etc. We are in the process of building such modules as
shared libraries for FPGA codes.
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3.4 Current Status
We are prototyping Hyperion with a Xilinx Alveo U280 board
which has 2x100 Gbps QSFP [1]. We have designed a PCIe
cross overboard [46] to attach 4x NVMe devices to the U280
with power3.

The current system boots in a stand-alone mode without
any CPU when power is applied and FPGA JTAG self-tests
are passed. The board is currently attached to a host-system
via USB for programming, however, we are in the process
of developing an OS-shell and control path over the network
that can program the FPGA completely independently as
well, leveraging Partial Dynamic Reconfiguration through
the Internal Configuration Access Port (ICAP) of the FPGA.
We have chosen to use a B+ tree key-value store as one of
the first applications for Hyperion. We have written an XDP-
compatible B+ tree that runs on the in-kernel XDP path (in-
memory). On Hyperion, the tree will store all its data on
NVMe devices directly, and will serve get/put/delete requests
over the network.

Raw latencies of our hardware are: L2 network RTT ~1µs,
NVMe latency is [5− 8]µs. Currently we do not do any
caching, hence, all tree access results in an access to the
storage device. With this setup, the average (expected) lookup
latencies are: O(1+(tree_height×8)µsec)). From the past
experience with network packet processing pipelines, we ex-
pect Hyperion to support 1 million lookup operations/sec,
although the peak performance depends on how many PCIe
lanes, NVMe devices, and FPGA kernels are running in par-
allel. In our current compilation process, the B+ tree imple-
mentation generates 1000+ pipelines stages. This is one of
the largest designs we have tested with our toolchain, which
challenges the resource availability on the FPGA. Although
we are confident that even this unoptimized B+ tree imple-
mentation can fit on the FPGA and there is plenty of room for
optimization to achieve real multi-tenancy.

See Appendix-A after the references for images.

4 Related Work

Nider and Fedorova also question of the utility of “the Last
CPU” in the system and investigate the design of a sys-
tem management bus to take over the OS/CPU responsibili-
ties [101]. Table 1 shows efforts for pair-wise device interac-
tions such as GPU-with-storage [22, 25, 26, 113, 124], GPU-
with-network [43, 78, 102], accelerator-to/from-storage [13,
15, 16, 90], SmartNICs [50, 110, 128], and networked stor-
age accesses [79, 117]. FPGA are explored with (1) net-
works [35, 53, 132, 142]; and (2) storage [116, 119, 121].
BPF offloading to NIC/FPGA for processing are done with
Endance DAG cards [49], Netronome [71], Combo6 [98],
but mostly limited to monitoring and traffic shaping. FPGA-
assisted KV stores have considered a close integration of

3All Hyperion artifacts (compilers, board design) will be open-sourced.

network and KV processing (in-memory) [32, 38, 69, 89] and
selective integration of NAND flash (e.g., BlueDB and Xilinx-
KV [33,137]). One of the closest design inspirations to Hype-
rion is LeapIO [90] that integrates NVMe flash with RDMA
NIC and ARM SoC. Hyperion and LeapIO share the sim-
ilar motivations (cost, energy, and performance efficiency),
however, Hyperion could eschew much of design complex-
ity of LeapIO (interaction of host x86 CPU and ARM SoC).
Hyperion targets a broader design space, where we consider
unification of reconfigurable hardware (here FPGA), network
transport (100 Gbps Ethernet) and storage (NVMe flash). This
unification offers multiple hardware/software specializations
to support multiple workload needs.

5 Discussion and Feedback

Hyperion is still in its early prototyping phase. From the
systems community, we seek feedback on issues like:
(1) Is eliminating the CPU a worthy pursuit? In this paper
we made a controversial case for removing the CPU, and we
believe that with the recent hardware and software advance-
ments it is the right time to re-evaluate the role of the CPU
and the design baggage that it brings. However, we are in-
terested in hearing counter-arguments. We understand that
beyond technology, operational costs and complexities might
put limits to the realization of this idea. At what levels of
performance, energy, and packaging efficiency gains from
a CPU-free design will be worth it? The elimination of the
CPU-side mediation also necessitates a bigger supporting role
from the FPGA toolchains, languages, and compilers, a role
which was previously split between the host CPU and OS.
Are FPGA toolchains ready?
(2) What is the right client-interface to build dis-
tributed Hyperion applications? Looking beyond hardware
and a single DPU, what kind of application-level inter-
faces/abstractions are required for building distributed CPU-
free applications that can be executed over multiple DPUs?
A passive resource disaggregation puts the responsibility of
control coordination on the client-side. Multiple clients ei-
ther have to coordinate themselves or use an external ser-
vice [11, 70]. However, in order to realize the full potential
of Hyperion, applications should also reduce the client-side
CPU/OS involvement (e.g., use RDMA or DPDK) while in-
teracting with Hyperion. How should one build distributed
applications and composable service ecosystems of such stan-
dalone, passively disaggregated DPUs?
(3) Operational complexity in multi-tenant clouds? In dat-
acenters, hardware and software fail. Tenants are untrusted.
The costs of inefficiency and downtime are high. Hence, how
to ensure that Hyperion can offer secure, multi-tenant exe-
cution in FPGAs [140]? How to reduce microarchitectural
attacks with Hyperion? Can or should micro-architectural
resources of Hyperion be managed explicitly with tenants to
ensure sufficient isolation with Hyperion DPUs [114]?
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hardware in a scala embedded language. In DAC De-
sign Automation Conference 2012, pages 1212–1221,
2012.

[19] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D. Davis.
CORFU: A shared log design for flash clusters. In 9th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 1–14, San Jose,
CA, April 2012. USENIX Association.

[20] Antonio Barbalace, Martin Decky, Javier Picorel, and
Pramod Bhatotia. Blockndp: Block-storage near data
processing. In Proceedings of the 21st International
Middleware Conference Industrial Track, Middleware
’20, page 8–15, New York, NY, USA, 2020. Association
for Computing Machinery.

6

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-CS-2-Whitepaper.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-CS-2-Whitepaper.pdf
https://github.com/DFC-OpenSource
https://github.com/DFC-OpenSource
https://www.fail2ban.org/wiki/index.php/Main_Page
https://www.fail2ban.org/wiki/index.php/Main_Page
https://www.mellanox.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://www.datacenterdynamics.com/en/news/tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-tile-module/
https://www.datacenterdynamics.com/en/news/tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-tile-module/
https://www.datacenterdynamics.com/en/news/tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-tile-module/
https://chipsalliance.org/
https://chipsalliance.org/
https://theopenroadproject.org/
https://github.com/iovisor/ubpf
https://github.com/axbryd/hXDP-Artifacts
https://github.com/axbryd/hXDP-Artifacts


[21] Stephen Bates. Enabling the NVMe™ CMB and
PMR Ecosystem. https://nvmexpress.org/wp-
content/uploads/Session-2-Enabling-the-
NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-
Mell....pdf. Accessed: 2022-Feb-02.

[22] Stephen Bates. Project Donard: NVM Express
for Peer-2-Peer between SSDs and other PCIe
Devices. https://www.snia.org/sites/default/
files/SDC15_presentations/nvme_fab/
StephenBates_Donard_NVM_Express_Peer-
2_Peer.pdf. Accessed: 2022-Feb-02.

[23] Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Be-
lay, M. Frans Kaashoek, and Nickolai Zeldovich. Effi-
ciently Mitigating Transient Execution Attacks Using
the Unmapped Speculation Contract. USENIX Asso-
ciation, USA, 2020.

[24] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 49–65, Broomfield, CO, October
2014. USENIX Association.

[25] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and
Mark Silberstein. Spin: Seamless operating system
integration of peer-to-peer dma between ssds and gpus.
ACM Trans. Comput. Syst., 36(2), apr 2019.

[26] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat
Verma. Shredder: Gpu-accelerated incremental stor-
age and computation. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies,
FAST’12, page 14, USA, 2012. USENIX Association.

[27] Janki Bhimani, Jingpei Yang, Ningfang Mi, Changho
Choi, Manoj Saha, and Adnan Maruf. Fine-grained
control of concurrency within kv-ssds. In Proceedings
of the 14th ACM International Conference on Systems
and Storage, SYSTOR ’21, New York, NY, USA, 2021.
Association for Computing Machinery.

[28] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension framework for file systems in user space.
In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 121–134, 2019.

[29] Andrew Binstock and Donald Knuth. Interview
with Donald Knuth. https://www.informit.com/
articles/article.aspx?p=1193856, 2008. Ac-
cessed: 2022-Feb-02.

[30] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell
D. E. Long, and Ethan L. Miller. Twizzler: a Data-
Centric OS for Non-Volatile memory. In 2020 USENIX

Annual Technical Conference (USENIX ATC 20), pages
65–80. USENIX Association, July 2020.

[31] Matias Bjørling. Zone append: A new way of writing
to zoned storage. Santa Clara, CA, February 2020.
USENIX Association.

[32] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers,
Jeremia Bär, and Zsolt István. Achieving 10gbps line-
rate key-value stores with FPGAs. In 5th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 13), San Jose, CA, June 2013. USENIX Associ-
ation.

[33] Michaela Blott, Ling Liu, Kimon Karras, and Kees Vis-
sers. Scaling out to a Single-Node 80gbps memcached
server with 40terabytes of memory. In 7th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 15), Santa Clara, CA, July 2015. USENIX
Association.

[34] Shekhar Borkar and Andrew A. Chien. The future of
microprocessors. Commun. ACM, 54(5):67–77, may
2011.

[35] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient software packet processing on FPGA NICs.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 973–990.
USENIX Association, November 2020.

[36] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking Software Runtimes for Disaggregated
Memory, page 79–92. Association for Computing Ma-
chinery, New York, NY, USA, 2021.

[37] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless com-
puting. Communications of the ACM, 62(12):44–54,
2019.

[38] Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright,
Alvin AuYoung, Parthasarathy Ranganathan, and Mar-
tin Margala. An fpga memcached appliance. In Pro-
ceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA ’13, page
245–254, New York, NY, USA, 2013. Association for
Computing Machinery.

[39] Young-Kyu Choi, Jason Cong, Zhenman Fang, Yuchen
Hao, Glenn Reinman, and Peng Wei. In-depth analysis
on microarchitectures of modern heterogeneous cpu-
fpga platforms. ACM Trans. Reconfigurable Technol.
Syst., 12(1), feb 2019.

7

https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
https://www.informit.com/articles/article.aspx?p=1193856
https://www.informit.com/articles/article.aspx?p=1193856


[40] Cilium. https://ebpf.io/. Accessed: 2022-Feb-02.

[41] David Cock, Abishek Ramdas, Daniel Schwyn,
Michael Giardino, Adam Turowski, Zhenhao He,
Nora Hossle, Dario Korolija, Melissa Licciardello,
Kristina Martsenko, Reto Achermann, Gustavo
Alonso, and Timothy Roscoe. Enzian: An open,
general, cpu/fpga platform for systems software
research. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS 2022, page 434–451, New York, NY, USA,
2022. Association for Computing Machinery.

[42] William J. Dally, Yatish Turakhia, and Song Han.
Domain-specific hardware accelerators. Commun.
ACM, 63(7):48–57, jun 2020.

[43] Feras Daoud, Amir Watad, and Mark Silberstein. Gpur-
dma: Gpu-side library for high performance network-
ing from gpu kernels. In Proceedings of the 6th Inter-
national Workshop on Runtime and Operating Systems
for Supercomputers, ROSS ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[44] John Davis, Chuck Thacker, and Chen Chang. Bee3:
Revitalizing computer architecture research. Technical
Report MSR-TR-2009-45, Microsoft, April 2009.

[45] Peter J. Denning. Virtual memory. ACM Comput.
Surv., 2(3):153–189, sep 1970.

[46] Design Gateway. PCIe x16 Lanes Crossover
adapter board for NVMe-IP evaluation. Accessed:
2022-Feb-02, https://eu.mouser.com/datasheet/
2/854/AB18-PCIEx16-MAN-E-1594818.pdf.

[47] Jaeyoung Do, Sudipta Sengupta, and Steven Swanson.
Programmable Solid-state Storage in Future Cloud
Datacenters. Commun. ACM, 62(6):54–62, May 2019.

[48] Stephen Dolan, Servesh Muralidharan, and David
Gregg. Compiler support for lightweight context
switching. ACM Trans. Archit. Code Optim., 9(4),
jan 2013.

[49] Endace. Endace dag packet capture cards: Part 1.
https://tryingtokeepitsecure.bz/index.php/
8-network-engineering/14-endace-dag-
packet-capture-cards. Accessed: 2022-Feb-
02.

[50] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka,
and Mark Silberstein. NICA: An infrastructure for
inline acceleration of network applications. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 345–362, Renton, WA, July 2019. USENIX
Association.

[51] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In Proceed-
ings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, page 365–376, New
York, NY, USA, 2011. Association for Computing Ma-
chinery.

[52] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the Clouds: A Study
of Emerging Scale-out Workloads on Modern Hard-
ware. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII,
pages 37–48, London, England, UK, 2012. ACM.

[53] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and Al-
bert Greenberg. Azure accelerated networking: Smart-
NICs in the public cloud. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 51–66, Renton, WA, April 2018.
USENIX Association.

[54] Fungible. Fungible F1 Data Processing Unit.
https://www.fungible.com/wp-content/
uploads/2021/09/PB0028.02.12020914-
Fungible-F1-Data-Processing-Unit.pdf. Ac-
cessed: 2022-Feb-02.

[55] Fungible. TrueFabric: A Fundamental Advance to
the State of the Art in Data Center Networks. https:
//www.fungible.com/wp-content/uploads/
2020/08/WP0033.00.02020818-TrueFabric-
A-Fundamental-Advance-to-the-State-of-
the-Art-in-Data-Center-Networks.pdf, 2022.
Accessed: 2022-Feb-02.

[56] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16), pages 249–264, Savannah, GA, November
2016. USENIX Association.

8

https://ebpf.io/
https://eu.mouser.com/datasheet/2/854/AB18-PCIEx16-MAN-E-1594818.pdf
https://eu.mouser.com/datasheet/2/854/AB18-PCIEx16-MAN-E-1594818.pdf
https://tryingtokeepitsecure.bz/index.php/8-network-engineering/14-endace-dag-packet-capture-cards
https://tryingtokeepitsecure.bz/index.php/8-network-engineering/14-endace-dag-packet-capture-cards
https://tryingtokeepitsecure.bz/index.php/8-network-engineering/14-endace-dag-packet-capture-cards
https://www.fungible.com/wp-content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/WP0033.00.02020818-TrueFabric-A-Fundamental-Advance-to-the-State-of-the-Art-in-Data-Center-Networks.pdf
https://www.fungible.com/wp-content/uploads/2020/08/WP0033.00.02020818-TrueFabric-A-Fundamental-Advance-to-the-State-of-the-Art-in-Data-Center-Networks.pdf
https://www.fungible.com/wp-content/uploads/2020/08/WP0033.00.02020818-TrueFabric-A-Fundamental-Advance-to-the-State-of-the-Art-in-Data-Center-Networks.pdf
https://www.fungible.com/wp-content/uploads/2020/08/WP0033.00.02020818-TrueFabric-A-Fundamental-Advance-to-the-State-of-the-Art-in-Data-Center-Networks.pdf
https://www.fungible.com/wp-content/uploads/2020/08/WP0033.00.02020818-TrueFabric-A-Fundamental-Advance-to-the-State-of-the-Art-in-Data-Center-Networks.pdf


[57] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted linux kernel extensions. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2019, page 1069–1084, New York, NY, USA,
2019. Association for Computing Machinery.

[58] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating mem-
cached using safe in-kernel caching and pre-stack pro-
cessing. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
487–501. USENIX Association, April 2021.

[59] Brendan D. Gregg. Linux Enhanced BPF (eBPF)
Tracing Tools. Accessed: 2022-Feb-02, http://
www.brendangregg.com/ebpf.html.

[60] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon
Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang,
Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jae-
heon Jeong, and Duckhyun Chang. Biscuit: A frame-
work for near-data processing of big data workloads.
In Proceedings of the 43rd International Symposium
on Computer Architecture, ISCA ’16, page 153–165.
IEEE Press, 2016.

[61] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong
Huang, and Yiying Zhang. Clio: A hardware-software
co-designed disaggregated memory system. In Pro-
ceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2022, page 417–433,
New York, NY, USA, 2022. Association for Computing
Machinery.

[62] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Rat-
nasamy, Guangyu Shi, and Scott Shenker. Network
support for resource disaggregation in next-generation
datacenters. In Proceedings of the Twelfth ACM Work-
shop on Hot Topics in Networks, HotNets-XII, New
York, NY, USA, 2013. Association for Computing Ma-
chinery.

[63] Nikos Hardavellas, Michael Ferdman, Babak Falsafi,
and Anastasia Ailamaki. Toward dark silicon in servers.
IEEE Micro, 31(4):6–15, 2011.

[64] John L. Hennessy and David A. Patterson. A New
Golden Age for Computer Architecture. Commun.
ACM, 62(2):48–60, January 2019.

[65] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert,
David Ahern, and David Miller. The express data path:

Fast programmable packet processing in the operating
system kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, page 54–66, New York,
NY, USA, 2018. Association for Computing Machin-
ery.

[66] Michio Honda. Packets as persistent in-memory data
structures. In Proceedings of the Twentieth ACM Work-
shop on Hot Topics in Networks, HotNets ’21, page
31–37, New York, NY, USA, 2021. Association for
Computing Machinery.

[67] Morteza Hoseinzadeh and Steven Swanson. Corun-
dum: Statically-enforced persistent memory safety. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2021, page 429–442,
New York, NY, USA, 2021. Association for Computing
Machinery.

[68] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP == RDMA: CPU-efficient remote storage
access with i10. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
20), pages 127–140, Santa Clara, CA, February 2020.
USENIX Association.

[69] Zsolt István, David Sidler, and Gustavo Alonso. Cari-
bou: Intelligent distributed storage. Proc. VLDB En-
dow., 10(11):1202–1213, aug 2017.

[70] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a box: Inexpensive coordina-
tion in hardware. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
16), pages 425–438, Santa Clara, CA, March 2016.
USENIX Association.

[71] Jakub Kicinski, Nicolaas Viljoen. Netronome systems,
ebpf hardware offload to smartnics: cls bpf and xdp.
https://www.netronome.com/media/documents/
eBPF_HW_OFFLOAD_HNiMne8_2_.pdf. Accessed:
2022-Feb-02.

[72] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,

9

http://www.brendangregg.com/ebpf.html
http://www.brendangregg.com/ebpf.html
https://www.netronome.com/media/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://www.netronome.com/media/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf


Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter perfor-
mance analysis of a tensor processing unit. In Pro-
ceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, page 1–12, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[73] Anuj Kalia, Dong Zhou, Michael Kaminsky, and
David G. Andersen. Raising the bar for using gpus
in software packet processing. In 12th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 15), pages 409–423, Oakland, CA, May
2015. USENIX Association.

[74] Michael Kerrisk. Using seccomp to limit
the kernel attack surface. Linux Plumbers
Conference, 2015. Accessed: 2022-Feb-
02, https://man7.org/conf/lpc2015/
limiting_kernel_attack_surface_with_seccomp-
LPC_2015-Kerrisk.pdf.

[75] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J. Ross-
bach. Sharing, protection, and compatibility for re-
configurable fabric with AmorphOS. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 107–127, Carlsbad, CA,
October 2018. USENIX Association.

[76] Jakub Kicinski. Using ebpf as a hetero-
geneous processing abi. Linux Plumbers
Conference, 2018. Accessed: 2022-Feb-02,
http://vger.kernel.org/lpc_bpf2018_talks/
Using_eBPF_as_a_heterogeneous_processing_ABI_LPC_2018.pdf.

[77] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-based NIC-
offloading to Accelerate Replicated Transactions in
Multi-tenant Storage Systems. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 297–312,
Budapest, Hungary, 2018. ACM.

[78] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu,
Amir Wated, Emmett Witchel, and Mark Silberstein.

GPUnet: Networking abstractions for GPU programs.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 201–216,
Broomfield, CO, October 2014. USENIX Association.

[79] Ana Klimovic, Christos Kozyrakis, Eno Thereska,
Binu John, and Sanjeev Kumar. Flash storage dis-
aggregation. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, New
York, NY, USA, 2016. Association for Computing Ma-
chinery.

[80] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
ReFlex: Remote Flash = Local Flash. In Proceed-
ings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, pages 345–359,
Xi’an, China, 2017. ACM.

[81] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. Commun. ACM, 63(7):93–101,
jun 2020.

[82] David Koeplinger, Matthew Feldman, Raghu Prab-
hakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel,
Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos
Kozyrakis, and Kunle Olukotun. Spatial: A language
and compiler for application accelerators. SIGPLAN
Not., 53(4):296–311, jun 2018.

[83] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven
Swanson, and Murali Annavaram. Summarizer: Trad-
ing communication with computing near storage. In
Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50
’17, page 219–231, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

[84] Dario Korolija, Timothy Roscoe, and Gustavo Alonso.
Do OS abstractions make sense on FPGAs? In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 991–1010. USENIX
Association, November 2020.

[85] Kornilios Kourtis, Animesh Trivedi, and Nikolas Ioan-
nou. Safe and efficient remote application code execu-
tion on disaggregated NVM storage with ebpf. CoRR,
abs/2002.11528, 2020.

[86] Lucas Kuhring, Eva Garcia, and Zsolt István. Spe-
cialize in Moderation—Building application-aware
storage services using FPGAs in the datacenter. In
11th USENIX Workshop on Hot Topics in Storage and

10

https://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
https://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
https://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
http://vger.kernel.org/lpc_bpf2018_talks/Using_eBPF_as_a_heterogeneous_processing_ABI_LPC_2018.pdf
http://vger.kernel.org/lpc_bpf2018_talks/Using_eBPF_as_a_heterogeneous_processing_ABI_LPC_2018.pdf


File Systems (HotStorage 19), Renton, WA, July 2019.
USENIX Association.

[87] Dongup Kwon, Dongryeong Kim, Junehyuk Boo, Won-
sik Lee, and Jangwoo Kim. A fast and flexible
hardware-based virtualization mechanism for computa-
tional storage devices. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 729–743.
USENIX Association, July 2021.

[88] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J.
Rossbach, and Eric Schkufza. Compiler-Driven FPGA
Virtualization with SYNERGY, page 818–831. Associ-
ation for Computing Machinery, New York, NY, USA,
2021.

[89] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. Kv-direct: High-performance in-
memory key-value store with programmable nic. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 137–152, Shanghai,
China, 2017. ACM.

[90] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan R. K. Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and
Anirudh Badam. LeapIO: Efficient and Portable Vir-
tual NVMe Storage on ARM SoCs, page 591–605. As-
sociation for Computing Machinery, New York, NY,
USA, 2020.

[91] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast
in-memory key-value storage. In Proceedings of the
11th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’14, pages 429–444,
Seattle, WA, 2014.

[92] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A High-
Performance programmable NIC for multi-tenant net-
works. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
243–259. USENIX Association, November 2020.

[93] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading
distributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 318–333,
New York, NY, USA, 2019. Association for Computing
Machinery.

[94] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe
Cheng, Yanqiang Liu, Abel Mulugeta Eneyew, Zheng-
wei Qi, and Baris Kasikci. A Hypervisor for Shared-

Memory FPGA Platforms, page 827–844. Association
for Computing Machinery, New York, NY, USA, 2020.

[95] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang
Zhang, Andrew Quinn, and Baris Kasikci. Debugging
in the brave new world of reconfigurable hardware. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2022, page 946–962,
New York, NY, USA, 2022. Association for Computing
Machinery.

[96] John MacCormick, Nick Murphy, Marc Najork, Chan-
dramohan A. Thekkath, and Lidong Zhou. Boxwood:
Abstractions as the foundation for storage infrastruc-
ture. In 6th Symposium on Operating Systems Design
& Implementation (OSDI 04), San Francisco, CA, De-
cember 2004. USENIX Association.

[97] Kiwan Maeng and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing.
In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 129–144,
Carlsbad, CA, October 2018. USENIX Association.

[98] Evangelos Markatos, Ji Y, Michalis Polychronakis,
Vladimir Smotlacha, and Sven Ubik. Scampi - a
scaleable monitoring platform for the internet. 05
2004.

[99] Steven McCanne and Van Jacobson. The bsd packet fil-
ter: A new architecture for user-level packet capture. In
Proceedings of the USENIX Winter 1993 Conference
Proceedings on USENIX Winter 1993 Conference Pro-
ceedings, USENIX’93, page 2, USA, 1993. USENIX
Association.

[100] Ryo Nakamura, Yohei Kuga, and Kunio Akashi. How
beneficial is peer-to-peer dma? In Proceedings of the
11th ACM SIGOPS Asia-Pacific Workshop on Systems,
APSys ’20, page 25–32, New York, NY, USA, 2020.
Association for Computing Machinery.

[101] Joel Nider and Alexandra (Sasha) Fedorova. The last
cpu. In Proceedings of the Workshop on Hot Topics in
Operating Systems, HotOS ’21, page 1–8, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[102] NVIDIA. Developing a Linux Kernel Module us-
ing GPUDirect RDMA. https://docs.nvidia.com/
cuda/gpudirect-rdma/index.html. Accessed:
2022-Feb-02.

[103] NVIDIA. GPUDirect Storage: A Direct
Path Between Storage and GPU Mem-
ory. https://developer.nvidia.com/blog/
gpudirect-storage/. Accessed: 2022-Feb-02.

11

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/


[104] John Ousterhout. A linux kernel implementation of
the homa transport protocol. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 99–
115. USENIX Association, July 2021.

[105] Xiangyong Ouyang, David Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K. Panda. Beyond
block i/o: Rethinking traditional storage primitives. In
2011 IEEE 17th International Symposium on High
Performance Computer Architecture, pages 301–311,
2011.

[106] Johan Peltenburg, Lars T.J. van Leeuwen, Joost Hooze-
mans, Jian Fang, Zaid Al-Ars, and H. Peter Hofstee.
Battling the cpu bottleneck in apache parquet to arrow
conversion using fpga. In 2020 International Con-
ference on Field-Programmable Technology (ICFPT),
pages 281–286, 2020.

[107] Nathan Pemberton and Johann Schleier-Smith. The
serverless data center : Hardware disaggregation meets
serverless computing. 2019.

[108] Pensando. The Pensando Distributed Services Card
(DSC). https://pensando.io/products/dsc/. Ac-
cessed: 2022-Feb-02.

[109] Alex Petrov. Algorithms behind modern storage sys-
tems: Different uses for read-optimized b-trees and
write-optimized lsm-trees. Queue, 16(2):31–51, apr
2018.

[110] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
nic offloads. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASP-
LOS 2021, page 18–35, New York, NY, USA, 2021.
Association for Computing Machinery.

[111] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung,
Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram
Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger.
A Reconfigurable Fabric for Accelerating Large-scale
Datacenter Services. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture,
ISCA ’14, pages 13–24, Minneapolis, Minnesota, USA,
2014. IEEE Press.

[112] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vis-
sers, Joseph Zambreno, and Phillip H. Jones. Com-
paring energy efficiency of cpu, gpu and fpga imple-
mentations for vision kernels. In 2019 IEEE Interna-

tional Conference on Embedded Software and Systems
(ICESS), pages 1–8, 2019.

[113] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado,
Seung Won Min, Amna Masood, Jeongmin Park, Jinjun
Xiong, CJ Newburn, Dmitri Vainbrand, I Chung, et al.
Bam: A case for enabling fine-grain high throughput
gpu-orchestrated access to storage. arXiv preprint
arXiv:2203.04910, 2022.

[114] Kaveh Razavi and Animesh Trivedi. Stratus: Clouds
with microarchitectural resource management. In 12th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20). USENIX Association, July 2020.

[115] Christopher J. Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: Operating
System Abstractions to Manage GPUs As Compute
Devices. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
’11, pages 233–248, Cascais, Portugal, 2011. ACM.

[116] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing In-Storage Computing System for Emerging
High-Performance Drive. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 379–
394, Renton, WA, 2019.

[117] Deboleena Sakalley. Using FPGAs to
accelerate NVMe-oF based Storage Net-
works, 2022. Accessed: 2022-Feb-02,
https://www.flashmemorysummit.com/
English/Collaterals/Proceedings/2017/
20170810_FW32_Sakalley.pdf.

[118] Eric Schkufza, Michael Wei, and Christopher J. Ross-
bach. Just-in-time compilation for verilog: A new
technique for improving the fpga programming ex-
perience. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’19, page 271–286, New York, NY, USA, 2019.
Association for Computing Machinery.

[119] Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eber-
hardt, and Andreas Polze. Accessible near-storage
computing with fpgas. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[120] Adrian Schüpbach, Andrew Baumann, Timothy
Roscoe, and Simon Peter. A declarative language ap-
proach to device configuration. In Proceedings of the
Sixteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XVI, page 119–132, New York, NY,
USA, 2011. Association for Computing Machinery.

12

https://pensando.io/products/dsc/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FW32_Sakalley.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FW32_Sakalley.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FW32_Sakalley.pdf


[121] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, page 67–80, USA,
2014. USENIX Association.

[122] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiy-
ing Zhang. LegoOS: A Disseminated, Distributed
OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 69–87, Carlsbad, CA,
2018.

[123] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei
Qu, Yongqiang Xiong, Derek Chiou, and Thomas
Moscibroda. Direct Universal Access: Making Data
Center Resources Available to FPGA. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 127–140, Boston, MA,
2019.

[124] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. Gpufs: Integrating a file system with gpus.
In Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, page
485–498, New York, NY, USA, 2013. Association for
Computing Machinery.

[125] Theano Stavrinos, Daniel S. Berger, Ethan Katz-
Bassett, and Wyatt Lloyd. Don’t be a blockhead: Zoned
namespaces make work on conventional ssds obsolete.
In Proceedings of the Workshop on Hot Topics in Op-
erating Systems, HotOS ’21, page 144–151, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[126] Brian Suchy, Souradip Ghosh, Drew Kersnar, Siyuan
Chai, Zhen Huang, Aaron Nelson, Michael Cuevas,
Alex Bernat, Gaurav Chaudhary, Nikos Hardavellas,
Simone Campanoni, and Peter Dinda. Carat cake: Re-
placing paging via compiler/kernel cooperation. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2022, page 98–114,
New York, NY, USA, 2022. Association for Computing
Machinery.

[127] Daniel Thompson and Leo Yan. Kernel analysis
using ebpf, 2018. Accessed: 2022-Feb-02, https:
//elinux.org/images/d/dc/Kernel-Analysis-
Using-eBPF-Daniel-Thompson-Linaro.pdf.

[128] Maroun Tork, Lina Maudlej, and Mark Silberstein.
Lynx: A smartnic-driven accelerator-centric architec-

ture for network servers. In Proceedings of the Twenty-
Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’20, page 117–131, New York, NY,
USA, 2020. Association for Computing Machinery.

[129] Animesh Trivedi, Nikolas Ioannou, Bernard Metzler,
Patrick Stuedi, Jonas Pfefferle, Ioannis Koltsidas, Ko-
rnilios Kourtis, and Thomas R. Gross. Flashnet:
Flash/network stack co-design. In Proceedings of the
10th ACM International Systems and Storage Confer-
ence, SYSTOR ’17, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

[130] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated Key-
Value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48. USENIX
Association, July 2020.

[131] Yatish Turakhia, Gill Bejerano, and William J. Dally.
Darwin: A genomics co-processor provides up to
15,000x acceleration on long read assembly. In Invited
talk at the 2019 USENIX Annual Technical Conference
(USENIX ATC 19), Renton, WA, July 2019. USENIX
Association.

[132] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee,
Vishal Shrivastav, Nate Foster, and Hakim Weather-
spoon. P4fpga: A rapid prototyping framework for p4.
In Proceedings of the Symposium on SDN Research,
SOSR ’17, page 122–135, New York, NY, USA, 2017.
Association for Computing Machinery.

[133] Jagath Weerasinghe, Raphael Polig, Francois Abel, and
Christoph Hagleitner. Network-attached fpgas for data
center applications. In 2016 International Conference
on Field-Programmable Technology (FPT), pages 36–
43, 2016.

[134] Michael Wei, John D. Davis, Ted Wobber, Mahesh
Balakrishnan, and Dahlia Malkhi. Beyond block i/o:
Implementing a distributed shared log in hardware. In
Proceedings of the 6th International Systems and Stor-
age Conference, SYSTOR ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[135] XDP: eXpress Data Path. https://
www.iovisor.org/technology/xdp.

[136] Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew
Hofmann, Marc Alston, Matthew Goldsmith, Andrew
Merczynski-Hait, and André DeHon. Pld: Fast fpga
compilation to make reconfigurable acceleration com-
patible with modern incremental refinement software

13

https://elinux.org/images/d/dc/Kernel-Analysis-Using-eBPF-Daniel-Thompson-Linaro.pdf
https://elinux.org/images/d/dc/Kernel-Analysis-Using-eBPF-Daniel-Thompson-Linaro.pdf
https://elinux.org/images/d/dc/Kernel-Analysis-Using-eBPF-Daniel-Thompson-Linaro.pdf
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp


development. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS 2022, page 933–945, New York, NY, USA, 2022.
Association for Computing Machinery.

[137] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,
Jamey Hicks, and Arvind. Bluecache: A scalable dis-
tributed flash-based key-value store. Proc. VLDB En-
dow., 10(4):301–312, nov 2016.

[138] Yue Zha and Jing Li. Virtualizing FPGAs in the Cloud,
page 845–858. Association for Computing Machinery,
New York, NY, USA, 2020.

[139] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, Zhongdong Huang, and Jian-
ling Sun. FPGA-Accelerated compactions for LSM-
based Key-Value store. In 18th USENIX Conference
on File and Storage Technologies (FAST 20), pages
225–237, Santa Clara, CA, February 2020. USENIX
Association.

[140] Mark Zhao, Mingyu Gao, and Christos Kozyrakis.
Shef: Shielded enclaves for cloud fpgas. In Proceed-
ings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS 2022, page 1070–1085,
New York, NY, USA, 2022. Association for Computing
Machinery.

[141] Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon,
Ryan Stutsman, Amy Tai, and Junfeng Yang. Bpf for
storage: An exokernel-inspired approach. In Proceed-
ings of the Workshop on Hot Topics in Operating Sys-
tems, HotOS ’21, page 128–135, New York, NY, USA,
2021. Association for Computing Machinery.

[142] Noa Zilberman, Yury Audzevich, Georgina Kalogeri-
dou, Neelakandan Manihatty-Bojan, Jingyun Zhang,
and Andrew Moore. Netfpga: Rapid prototyping of net-
working devices in open source. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, page 363–364,
New York, NY, USA, 2015. Association for Computing
Machinery.

[143] Yu Zou and Mingjie Lin. FERMAT: fpga-accelerated
heterogeneous computing platform near nvme stor-
age. In 29th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines,
FCCM 2021, Orlando, FL, USA, May 9-12, 2021, page
262. IEEE, 2021.

Appendix-A: Hyperion Images

Hyperion is prototyped with a Xilinx U280 FPGA and NVMe
device as shown in Figure 2 and Figure 3.

Figure 2: Hyperion: U280 FPGA-side up.

Figure 3: Hyperion: SSD-side up.
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