
VU Research Portal

A Case for a Programmable Edge Storage Middleware

Frascaria, Giulia; Trivedi, Animesh; Wang, Lin

2021

Link to publication in VU Research Portal

citation for published version (APA)
Frascaria, G., Trivedi, A., & Wang, L. (2021). A Case for a Programmable Edge Storage Middleware.
https://arxiv.org/abs/2111.14720

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 09. Jun. 2023

https://research.vu.nl/en/publications/1d21c49c-ee3f-451f-8a83-5b76c5dc8a15
https://arxiv.org/abs/2111.14720

A Case for a Programmable Edge Storage Middleware

Giulia Frascaria, Animesh Trivedi, and Lin Wang
Vrije Universiteit Amsterdam

Abstract
Edge computing is a fast-growing computing paradigm where
data is processed at the local site where it is generated, close
to the end-devices. This can benefit a set of disruptive applica-
tions like autonomous driving, augmented reality, and collabo-
rative machine learning, which produce incredible amounts of
data that need to be shared, processed and stored at the edge to
meet low latency requirements. However, edge storage poses
new challenges due to the scarcity and heterogeneity of edge
infrastructures and the diversity of edge applications. In par-
ticular, edge applications may impose conflicting constraints
and optimizations that are hard to be reconciled on the lim-
ited, hard-to-scale edge resources. In this vision paper we
argue that a new middleware for constrained edge resources
is needed, providing a unified storage service for diverse edge
applications. We identify programmability as a critical fea-
ture that should be leveraged to optimize the resource sharing
while delivering the specialization needed for edge appli-
cations. Following this line, we make a case for eBPF and
present the design for Griffin—a flexible, lightweight pro-
grammable edge storage middleware powered by eBPF.

1 Introduction

Cloud computing and its associated infrastructure services
(for storage and compute) have been the standard for com-
puting for the past two decades. However, in recent years we
have witnessed a shift in trends that goes under the name of
edge computing [45], that pushes computation and storage
resources towards the network edge, away from the central
clouds. In edge computing end-users are in close proximity
to edge data centers (typically referred to as cloudlets or edge
nodes), allowing to process data on the spot rather than trans-
ferring it to the remote cloud. This setup facilitates a set of
disruptive applications that benefit from reduced end-to-end
latency and network traffic, which can be derived from an
efficient edge infrastructure [44]. Examples of such applica-
tions are collaborative machine learning, autonomous driving,
augmented reality and live video analytics [43].

The centerpiece characteristic of these applications is that
various end-devices or edge nodes generate a vast quantity of
data that needs to be processed in due time. Overall, storing
and processing significant amounts of data with a diverse set
of applications is not a unique paradigm to edge computing.
In the cloud realm we witnessed how the Big Data trend
fuelled innovation for a variety of specialized services, such
as blob storage with infinite store (e.g., S3 [9]), elastic key-
value stores [5, 52], disaggregated storage [40], stores with
multiple APIs (block, key-value, timeseries databases) with
multi-consistency storage systems [32] to cater the needs
for different cloud data-processing applications. However,
the unique deployment scenario of edge computing makes
continuing this cloud-centric, multiple-service storage model
(different storage services for different needs) a challenging
task.

(i) First, unlike large central clouds equipped with abun-
dant resources and specialized hardware [4, 8], edge nodes
are more likely to be constrained by physical limitations, e.g.,
a cellular base station may only have space or power supply
to host a handful of commodity servers. Thus, edge nodes
are capacity-limited by construction and cannot be scaled in-
finitely. As a result, it would be impractical to deploy half a
dozen services at the edge to fit different edge application use
cases. In addition to it being resource-intensive, deploying
multiple services also works against their availability. While
different cloud storage services typically do not share stor-
age hardware and are deployed in different fault domains for
maximum availability [2, 3] this would not be feasible with
the restricted resources of edge nodes. Given the infrastruc-
tural constraints at the edge, it would be inefficient to deploy
multiple edge storage services tailored for a specific edge
applications as it is currently possible in the cloud.

(ii) Second, a strong trend in the cloud is resource dis-
aggregation which decouples storage (among other resources)
from the compute [26]. However, due to the limited (stor-
age and compute) resources at the edge and the preference
for Commodity Off-The-Shelf (COTS) devices to deploy
edge nodes, we are witnessing an opposite shift toward “re-

1

ar
X

iv
:2

11
1.

14
72

0v
1

 [
cs

.D
C

]
 2

9
N

ov
 2

02
1

aggregation” of storage and compute resources, where data
should be processed in-place with the least amount of move-
ment. This calls for the need for functionalities like secure
multi-tenancy, data management, access control, and data
ownership maintenance in any edge storage system. More-
over, edge applications also expose different data management
goals. For example, online edge gaming applications may pri-
oritize data movement with the client mobility, whereas a
medical application may necessitate on-premise data process-
ing with zero data movement off-premise. In these examples,
data processing is highly coupled with how the data is man-
aged and staged for processing.

(iii) Last, different edge applications have different data
access requirements [34, 49]. For example, an edge machine
learning (ML) application can benefit from having an ML-
specific storage API [20], whereas for machine vision ap-
plications a simple key-value API would be sufficient [41].
Hence, an ideal edge storage service must be able to support
a variety of APIs, abstractions, access semantics, and poten-
tial application-specific policy optimizations regarding data
mobility and lifetime.

In this vision paper, we make a case for a single storage
service on shared edge storage resources with application-
specific customization for semantics and data management.
We argue that the seemingly impossible requirements of shar-
ing and customization can be attained with a programmable
storage service. Unlike hardware programmability (e.g., just
FGPA [28, 42, 46], or a mix of FPGAs, GPUs and ASICs
at the Edge as presented by Theophilus A. Benson in his
EdgeSys’20 keynote [16]) in this work we argue for “soft-
ware” programmability using the eBPF language support and
runtime [12, 23, 24]. An element of such language-supported
and run-time programmability has been explored for compute
management at the edge, e.g., Sledge [25]. In this work we
push such capabilities to the storage and present a design for
an eBPF-powered programmable edge storage middleware.
As we will expand in Section 3, the use of eBPF brings a set
of unique features that make it desirable for a programmable
storage service for the edge.

2 Edge Storage: A New Start?

The edge is composed of distributed, heterogeneous nodes
that operate with potentially limited resources. In contrast,
the cloud has abundant resources which enable users to de-
ploy arbitrary applications without worrying about resource
exhaustion. In a way, cloud computing is a “double-blind”
deployment where applications do not need to worry about
cloud infrastructure maintenance, and cloud providers do not
need to worry about application scalability due to the resource
abundance. Instead, the scarcity of edge resources forces both
applications and edge providers to revisit basic operational
assumptions and revise design implications for that. Table 1
summarizes our discussion in this section.

Storage resources: Cloud data centers have an abundance
of storage capacity (10-100 TBs), servers (in thousands), and
network bandwidth (40/100/200 Gbps) between servers. Con-
sequently, a cloud provider can support multiple storage ser-
vices to accommodate multiple workloads while assuming
virtually unbound storage (and compute) resources. In con-
trast, edge nodes typically have much more modest configura-
tions. For example, Dell Edge gateway 3000 series contains a
2-core Intel Atom processor, with 2 GB DRAM and 64 GB
flash storage [22]. Furthermore, edge storage resources can
not be easily scaled out because of the geographical disper-
sion and limited network bandwidth. As a result, unlike the
current cloud deployments, it is likely that we can not deploy
multiple edge storage services such as a key-value store, a
shared file system, shared block storage, and a cache, on the
edge, simultaneously. A more practical solution would be to
build a single service that can support a multitude of use cases
in a unified but customizable manner.

Deployment model: Cloud deployments typically use a
disaggregated storage deployment model where compute and
storage nodes are not co-located, but kept separate and con-
nected through high-speed networks [33]. This improves the
utilization by better storage provisioning. However, due to
the limited resources at the edge, we are more likely to see
an aggregated deployment model where compute and storage
functions are co-located. Such a deployment model presents
two key challenges. First, due to the multi-tenant nature of
edge computing, the storage service must support a secure
way in which multiple untrusted functions can co-exist on
the edge. Second, the storage service must ensure that edge
functions do not over-consume compute/storage resources,
with deterministic quality of service (QoS) and service-level
agreements (SLAs) on data processing. Delivering these ob-
jectives would require constantly monitoring the system status
to optimize for smart data placement and function execution
to meet application access demands.

Mobility: Cloud data centers are geographically dis-
tributed, but they are still designed around a hyper-converged
architecture that serves wide geographical areas. Edge nodes
instead are smaller and more distributed in the field, increas-
ing the likelihood of a user moving from one node to another.
In latency-sensitive applications accessing the closest edge
node is a desirable feature. While cloud data centers do sup-
port a limited form of data mobility where they follow usage
patterns (e.g., diurnal) [11], these efforts are focused on the
daily or weekly patterns, rather than seconds or milliseconds
which may be needed at the edge. As the user moves, the
storage availability in the closest node can also vary. For this
reason, it is relevant to ensure that active storage management
can maintain a buffer of storage space for moving users and
remove old and unused data from storage. Furthermore, a user
should be able to express a limited or no mobility preference
to preserve privacy, since sensitive data may not be allowed
to leave specific edge node premises. Nonetheless, the end-

2

Property Cloud Edge Implications

storage resources abundant scarce can not deploy multiple, separate storage services
deployment model disaggregated aggregated need support for (i) secure execution of multi-tenant compute

and storage logic, (ii) less variable QoS and SLA objectives
mobility absent likely need support for application-dependent data/state mobility
resource types mostly homogeneous mostly heterogenous need support for diverse device types and ISAs
storage API multiple supported multiple needed need support application-dependent customizations
maintenance provider dependent deployment dependent need support deployment-dependent customizations

Table 1: Properties of cloud and edge storage and their implications.

device mobility pattern, frequency, data retention goals, and
the amount of storage needed is very application-dependent
features and require an API to express these features as stor-
age system policies regarding data mobility.

Resource types: Traditionally cloud data centers prefer
to host homogeneous machines for the ease of maintenance
and economy of scale [38]. In contrast, the edge represents
a very heterogeneous deployment environment for any ser-
vice [29], and the notion of heterogeneity goes beyond the
storage capacity per node and the speed of the storage tech-
nology. As we discussed previously, we are more likely to see
an aggregated compute-storage deployment of applications
at the edge. These applications can run on multiple CPUs of
different ISAs (x86, ARM, POWER) and accelerators (GPUs,
FPGAs, TPUs, or ASICs) [14]. As a result, a storage system
should be able to support low-level device and CPU man-
agement, code optimization techniques, execution policies
(performance, energy, cost)—many or all of them cannot be
hard-coded and pre-optimized without the knowledge of the
final deployment hardware resources and architecture. Conse-
quently, techniques from programming languages literature
such as JIT compilation and language/runtime supported IR
representations would be an important avenue to explore for
supporting edge-heterogeneity for storage customization.

Storage API: As a direct consequence of having an abun-
dance of networking and storage resources, cloud data cen-
ters have specialized services catered for different applica-
tion needs [35]. Examples of such systems include file sys-
tems (Luster, PVFS, GPFS), various blob, object, and key-
value stores (Ceph, Swift, Redis, Memcached), NoSQL DBs,
etc. However, edge storage systems are still in develop-
ment and in a need of application-specific customization to
meet their needs [49]. When building a single storage ser-
vice, we need to support a multitude of application data and
state access requirements (discussed in detail in our previ-
ous work [49]): multiple APIs (KV, timeseries, transactions,
events, and CRDTs) with support for application-specific mo-
bility policies, data-access policies (sharing), etc. For example,
in the case of concurrent updates to an object, an application
can define its customized policy regarding if the first write
should win, or the last one. Similarly, based on the value of
the data (compute data duality) and application resiliency

(e.g., ML training), applications can decide how to tolerate
faults in case of an edge storage node failure. While it is yet
to be explored up to what extent a single unified edge storage
service can be designed and implemented, we highlight that
there is a similar push inside cloud data centers for single
unified services [48].

Maintenance: Cloud storage services strive to keep multi-
ple 9s uptimes, and hence invest heavily in the deployment
and maintenance of the storage hardware and services. Data
is backed up and replicated, and the lifetime of storage me-
dia within cloud data centers is continuously monitored by
the cloud provider who takes care of transparently substitut-
ing the worn-out infrastructure while migrating the data. Old
storage devices are then physically destroyed at the end of
their lifecycle to prevent any possibility of data recovery. In
edge computing landscapes this is an infeasible maintenance
commitment, due to the dispersion of the infrastructure. It is
then crucial that some degree of “active” health monitoring is
implemented in the infrastructure in order to facilitate main-
tenance operations and to avoid data loss. This is especially
relevant since it is not possible to assume active, continu-
ous maintenance of edge nodes as we can assume for cloud
storage services.

To summarize, so far we systematically analyze funda-
mental properties that have changed when moving from the
cloud to the edge, and how these changes affect the design
of a storage service for the edge. We are clearly not the first
one to make a case for an edge store service [36, 39]. How-
ever, prior work only addresses a subset of the edge storage
requirements [49]. In the next section we explain how a pro-
grammable storage middleware can help to meet the require-
ments of edge applications.

3 Programmable Edge Storage

Based on the discussion so far, the central premise of this pa-
per is: Can we build a unified storage service for the edge that
can be customized to serve all edge applications efficiently?
In this section we argue it is possible, since by leveraging
programmability of a storage service as its first class citizen
the storage middleware can allow users to customize to their
needs. In particular, we make a case for software-based pro-

3

grammability and show how the extended Berkeley Packet
Filter (eBPF) can be leveraged to address the edge storage
challenges.We then present the design of Griffin—our pro-
posed edge storage middleware powered by eBPF.

3.1 Why eBPF for Edge Programmability

eBPF, short for extended Berkeley Packet Filter [37], is a
software infrastructure that operates within the Linux ker-
nel. BPF has been used for user-defined packet filtering for
decades, but was extended and redesigned for additional func-
tionalities. The extended BPF enables use cases such as ad-
vanced network packet processing, monitoring, tracing, and
security [1, 6, 7], and is now being expanded constantly in
the Linux kernel development efforts. We argue that the ver-
satility of eBPF makes it a good candidate for designing a
programmable edge store due to:
• Expressiveness: Previous work on eBPF applicability in the

storage domain highlights its performance and flexibility
benefits [15, 17]. The basic instruction set is expressive to
capture many common storage-related usecases like aggre-
gation, filtering, transformation, etc. These functions use
cases can be attached to the execution of virtually any func-
tion within the Linux kernel and can be (re)programmed
without halting the system.

• Wide availability: The eBPF toolchain is supported by the
Linux kernel, and the clang and gcc compilers. Hence, it
is immediately available on any device supporting Linux
(including sensors and IoT). This availability decreases the
inherent inertia when deploying a new software stack.

• Secure and bounded multi-tenant execution: Thanks to
its simple(r) ISA, eBPF is amenable for verification and
extensions [27]. The current Linux/eBPF toolchain can
inject and run user-defined code in the Linux kernel in a
safe way by providing symbolic execution and termination
guarantees that ensure the extension is safe and will not
stall in lengthy or infinite computation. Reusing the rest of
the Linux’s isolation machinery, we can ensure a safe and
secure multi-tenancy execution of storage customization
logic for all applications.

• A unified ISA for all: Currently eBPF toolchains exist for
multi-arch CPUs, (smart) NICs and switches (P4 supports
eBPF compilation), and even FPGAs [19,51] with a support
for JITing. As a result, we believe that eBPF is what comes
the closet to a unified ISA with support for heterogenous
computing and I/O devices. Such unified support also open
possibilities for a unified optimizations across the network-
storage stacks. For example, network support can be use to
replicate data packet necessary for storage replication in a
distributed setting.

What are the alternatives: Alternatives would have
been hardware-supported programmability (FPGAs, ISCs,
ASICs) [13, 42], though their broader applicability is yet
to be seen at the edge [18]. We also look into other lan-

Node 1
Node 2

Node 3
Node 4

Griffin API

Application 1 Application 2 Application 3

Replication

Garbage
Collection

Health
Monitor

Encryption

Offloading

Consistency

SSD

Session
Migration

NIC

eBPF
eBPF

Figure 1: An overview of the Griffin design.

guage provided isolation like with Rust, Java script, or We-
bAssembly. Such techniques have been used in the context
of storage [31, 53] in data centers, and with compute on the
edge as well [25]. However, they (i) have high runtime over-
heads (JVM); (ii) does not support enhancing kernel storage
routines; (iii) do not support multiple devices. A complete
userspace based solution with a lightweight virtualization
support [10] would be possible, however, building such in-
frastructure depends a lot on underlying hardware capabilities
(support for hardware virtualization) of edge node devices.
However, in a modular system, the mechanism for programma-
bility can be changed to a better alternative, if necessary.

3.2 Griffin Design

We now present the design of Griffin—our proposed edge
storage middleware. An overview of the system architecture
is depicted in Figure 1. Griffin spans a large set of potentially
heterogeneous storage nodes at the edge. Our proposed ap-
proach with software programmability is very similar to the
spirit of Malacology [47]. Malacology, presents a customized
re-use of battle-hardened code of a mature and stable code-
base of the Ceph file system. Here, we argue for building the
re-usable pieces using the eBPF language support, which can
be selectively used by applications based on their needs. The
code snippets can be made available to wider egde application
as a library.

The goal of Griffin is then to provide an expressive APIs
for the user to specify their application needs such as data
format (e.g., key-value, timeseries, graph-based), data life-
time, replication, consistency (e.g., strong, read-after-write,
or eventual), and common or customized data operations with
service-level objectives (e.g., latency). In the following, we
explain the system-wide services, such as data replication,
consistency, and session migration, provided by Griffin. We
also show how eBPF serves as the fundamental technology
to enable light-weight programmable storage functionalities
including garbage collection, encryption, data erasure and

4

API Description

ret = execute(ac, object) execution of a application-defined ac logic on an object, the basic eBPF functionality
t = register(ac_trigger, event | code_path) a generic trigger registration on certain event or code path (similar to the eBPF)
replica_list = replica_ac(nodes, state) selection of replica nodes based on any arbitray user criteria
new_replica_list = loadbalancer_ac(replica_nodes, state) ac executed with the current replicas, state, and outputs the new list
{state, action} = consistency(object, new_data, state) ac takes an object, new data, and the current state, and returns a new state and action
new_replica_list = migration_ac(replica_nodes, t, state) ac take the trigger, old replia set, monitoring state and outputs the new replica list

Table 2: Abridged Griffin API. ac stands for eBPF powered AppCode (ac).

replication, and customized computation offloading, which
are essential in implementing the APIs in Griffin. We refer
to these eBPF provided logic as appcode that the system will
run. See Table 2 for a brief overview of the API.

Computation offloading: Griffin introduces a computa-
tion offloading service for applications to run customized
computation appcode directly on the storage device that holds
the data needed for the computation. This can benefit a wide
range of data-intensive edge applications where moving the
data is typically more expensive than performing the com-
putation itself. Griffin employs eBPF to implement such a
service since it allows to perform computation in the Linux
kernel and supports runtime updates. Despite the limits on
the function complexity, eBPF allows to chain user-defined
functionalities in order to implement an expressive set of func-
tionalities that can be offloaded in the kernel. Thanks to this
in-kernel function execution it is possible to remove layers of
abstraction from the computation. This would help to shrink
the overhead of the execution, reducing the latency perceived
by the application and improves the CPU utilization for useful
computation.

Monitoring: Apart from the basic code execution, light-
weight monitoring of the infrastructure is the most significant
operation that eBPF supports out of the box. The monitoring
data is very critical to gather and maintain in a light-weight
manner, and is used in the other storage system service cus-
tomizations. To this end, Griffin provides a health monitoring
service to continuous monitor the status of the edge storage
devices including the CPU utilization, storage utilization and
health, and network statistics. Furthermore, eBPF/XDP can
also be used to monitor the network latencies. Based on the
collected data, the system has some predefined triggers. For
example, when a storage device is reaching the end of its life-
time, the health monitoring service carries out two tasks: (i)
It notifies the data replication service to find a new device to
replicate the data stored on this device and performs complete
data erasure. (ii) It signals the edge provider about this situ-
ation so that the edge provider can perform maintenance in
due time. Observability and monitoring are currently among
the most widespread use cases of eBPF. We plan to leverage
eBPF to implement a health monitoring service for the stor-
age middleware so that data safety is always guaranteed and
timely maintenance can be performed by edge provider.

Load balancing and replication: Replication of data is a
crucial factor to consider in edge computing. First, data repli-
cation is key to the availability of edge applications. Edge
nodes can become unavailable due to both unfavorable net-
work conditions or system failures. With data replication we
can ensure an edge application can always have its required
data at its disposal and remain operative. Second, data repli-
cation can be used to improve edge application performance.
As we previously highlighted, many edge applications are
collaborative and rely on data sharing to achieve their goals,
and since users are distributed on the territory placing data on
multiple edge nodes can be beneficial to end-to-end latency
improvement for as many users as possible. On the other
hand, the scarcity of edge resources highlights the need to
perform replication only when needed, in order to save stor-
age space across edge nodes. For this reason we believe that
it is necessary to let the users specify the replication policies
and preferences, in order to allow the storage middleware to
allocate resources in optimally. Griffin features a data repli-
cation service which provides an eBPF-powered API to help
customize many decisions when doing replication and load
balancing. The default policy is not to replicate data. Appli-
cations can provide eBPF appcode to enable replication. The
input to the code is a set of edge nodes (with further properties
like location, load, capacity), and the eBPF replication code
returns a list of nodes where replicas should be placed. The
application is free to apply any criteria it sees fit like best
locality, the least loaded, or maximum capacity, etc. The head
of the list is the primary node, others are replica in the chain-
replication protocol [50] (the only one supported). Similarly,
load-balancing appcode can be attached to a load balancing
trigger (e.g., CPU or network utilization). The code takes the
list of replica machines and can output a new replica where
the data should replicated. The collection of tigger metrics
can be made light-weight and distributed using network-wide
eBPF distribution.

Consistency: Griffin also builds a consistency manage-
ment service which is directly attached to the replication
service. It allows each edge application to specify its required
consistency model (e.g., strong, read-my-write, and eventual)
via a high-level API and automatically enforces the selected
consistency model when data is replicated by the data repli-
cation service. eBPF consistency appcode can be attached

5

and executed everytime a read and/or write is issued. The
code can be attached for a particular object or objects satis-
fying certain criteria (name, creation time, or location). The
appcode initializes a state associated with the object at the
start. Upon execution, the appcode is expected to return the
new state associated and action (hold, reject, accept) with
the object. Using this basic mechanism one can implement
multiple consistency models. For example, a state can be as-
sociated with a timestamp which can be used to resolve if the
write or read should be admitted or rejected from the system.
A hold action can be used to wait for a quorum response.
Presence or absence of the state can be use to implement the
first-writer-wins or the last-writer-wins consistency model.
Read-my-write consistency model can be used by compar-
ing the timestamps (vector clocks can also be stored as the
state). Once a read or write is accepted in the system, it will
follow the chain replication protocol for data reading and writ-
ing. This design is very similar to the client-driven semantic
reconciliation of vector-clocked objects in Dynamo [21].

Session migration: Griffin includes a session migration
service to handle user mobility. The decisions what to migrate
and when is taken with the input data from the monitoring
service with user-defined triggers. These triggers can be on
the capacity, geo-area bounds, load, and any other monitored
property of the system. By default, there is no user session
migration with the user mobility. A user can register their
triggers to represent interests in system properties. When the
session migration trigger executes, it takes input the current
replica servers, cause of the trigger, and should output a new
list of replica servers. Griffin ensures that happens in a safe
and atomic manner (at an appropriate time) by coordinating
user traffic between different edge storage nodes.

Data erasure and garbage collection: While data storage
and sharing is fundamental in stateful edge applications, the
data may only be useful for the application within a certain
time frame. In central clouds it is not crucial to dispose old
data immediately since the resources are elastic and virtu-
ally infinite (for the user). However, edge computing does
not possess such a luxury of resource abundance. Thus, it is
important to proactively retrieve storage space as soon as old
data is no longer actively being used. Valid options include
performing a data backup to a central cloud or simply erasing
the data. Griffin has a dedicated data erasure and garbage
collection (GC) service, expanding what is already an essen-
tial component of modern storage technologies. This service
exposes APIs for the user to explicitly specify the lifetime
of the data and the policy to use for GC in their applications
(for example once read/write, delete after certain time period,
or if certain event has happened). Such lifecycle-based data
management is also explored in data center for short-lived
data, e.g., serverless [30]. At runtime, Griffin reclaims stor-
age space according to the specified data lifetime and policy
defined in eBPF triggers. eBPF can also be used in this case
to enforce different GC policy implementations as well as

data erasure instrumenting the storage accesses with garbage
collection and data erasure behavior at runtime, depending
the lifetime of the data.

4 Conclusion

Edge computing is emerging as a fundamentally new way
how we design, build, and deploy our distributed applica-
tions. It shifts the center of computing from data centers to
the data sources and users. As a result we have to re-evaluate
many basic assumptions made with the design of foundational
infrastructure services in data centers and must re-design ser-
vices for the edge. In this vision paper we presented our vision
for one such service: an eBPF-based programmable storage
middleware for edge computing. Based on the differences
between cloud and edge storage characteristics, we propose
the design of Griffin as a programmable storage service that
allows applications to customize policies like replication, con-
sistency, garbage collection, as well as to offload part of the
computation to the storage service in order to improve the
latency. We are currently in the process of building Griffin.

References

[1] Open-sourcing Katran, a scalable network load bal-
ancer, 2018. https://engineering.fb.com/2018/
05/22/open-source/open-sourcing-katran-a-
scalable-network-load-balancer/.

[2] Increase availability for Amazon Elasticsearch
Service by deploying in three Availability
Zones. https : / / aws.amazon.com / blogs /
database/increase-availability-for-amazon-
elasticsearch - service - by - deploying - in -
three-availability-zones-2/, 2020. Accessed:
2021-2-20.

[3] Manage the availability of Linux virtual machines.
https : / / docs.microsoft.com / en - us / azure /
virtual- machines/manage- availability, 2020.
Accessed: 2021-2-20.

[4] The OpenPOWER Foundation, 2020. https://
openpowerfoundation.org.

[5] Amazon Elastic Block Store. https :
//aws.amazon.com/ebs/, 2021. Accessed: 2021-2-20.

[6] Cilium: eBPF-based Networking, Observability, and Se-
curity, 2021. https://cilium.io/.

[7] The Falco Project: Cloud-Native runtime security, 2021.
https://falco.org/.

[8] The Open Compute Project, 2021. https : / /
www.opencompute.org.

6

https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://aws.amazon.com/blogs/database/increase-availability-for-amazon-elasticsearch-service-by-deploying-in-three-availability-zones-2/
https://aws.amazon.com/blogs/database/increase-availability-for-amazon-elasticsearch-service-by-deploying-in-three-availability-zones-2/
https://aws.amazon.com/blogs/database/increase-availability-for-amazon-elasticsearch-service-by-deploying-in-three-availability-zones-2/
https://aws.amazon.com/blogs/database/increase-availability-for-amazon-elasticsearch-service-by-deploying-in-three-availability-zones-2/
https://docs.microsoft.com/en-us/azure/virtual-machines/manage-availability
https://docs.microsoft.com/en-us/azure/virtual-machines/manage-availability
https://openpowerfoundation.org
https://openpowerfoundation.org
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://cilium.io/
https://falco.org/
https://www.opencompute.org
https://www.opencompute.org

[9] What is Amazon S3? https://docs.aws.amazon.com/
AmazonS3/latest/userguide/Welcome.html, 2021.
Accessed: 2021-2-20.

[10] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtualiza-
tion for serverless applications. In NSDI, pages 419–434,
Santa Clara, CA, February 2020. USENIX Association.

[11] Muthukaruppan Annamalai, Kaushik Ravichandran,
Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Sa-
vor, David Nagle, and Michael Stumm. Sharding the
shards: Managing datastore locality at scale with akkio.
In OSDI, page 445–460, USA, 2018.

[12] Antonio Barbalace, Martin Decky, Javier Picorel, and
Pramod Bhatotia. Blockndp: Block-storage near data
processing. In Middleware, page 8–15, New York, NY,
USA, 2020.

[13] Antonio Barbalace and Jaeyoung Do. Computational
storage: Where are we today? In CIDR, 2020.

[14] Antonio Barbalace, Mohamed L. Karaoui, Wei Wang,
Tong Xing, Pierre Olivier, and Binoy Ravindran. Edge
computing: The case for heterogeneous-isa container
migration. In VEE, page 73–87, New York, NY, USA,
2020.

[15] Antonio Barbalace, Javier Picorel, and Pramod Bhatotia.
Extos: Data-centric extensible os. In APSys, pages 31–
39, 2019.

[16] Theophilus A. Benson. Life on the Edge:
Challenges in Specializing and Accelerating the
Edge. http : / / cs.brown.edu / ~tab / papers /
TABenson_EdgeSyS20_KeyNote.pdf, 2020. Accessed:
2021-02-24.

[17] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In ATC,
pages 121–134, 2019.

[18] Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren.
Are fpgas suitable for edge computing? In HotEdge,
Boston, MA, July 2018.

[19] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hxdp:
Efficient software packet processing on FPGA nics. In
OSDI, pages 973–990, November 2020.

[20] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Randy H. Katz. Cirrus: a serverless frame-
work for end-to-end ML workflows. In SoCC, pages
13–24, 2019.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In SOSP, page 205–220, New York,
NY, USA, 2007.

[22] Dell. Edge Gateway 3003 Specification.
https : / / i.dell.com / sites / doccontent /
shared- content/data- sheets/en/Documents/
Dell_Edge_Gateway_3000_Series_spec_sheet.pdf,
2021. Accessed: 2021-02-15.

[23] Giulia Frascaria. Bpf tales, or why did i recompile the
kernel to average some numbers?, 2020.

[24] Giulia Frascaria. Can ebpf save us from the data deluge?
a case for file filtering in ebpf, 2020.

[25] Phani Kishore Gadepalli, Sean McBride, Gregor Peach,
Ludmila Cherkasova, and Gabriel Parmer. Sledge: a
serverless-first, light-weight wasm runtime for the edge.
In Middleware, pages 265–279, 2020.

[26] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,
Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In OSDI, pages 249–264, 2016.

[27] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted linux kernel extensions. In PLDI,
page 1069–1084, New York, NY, USA, 2019.

[28] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework
for near-data processing of big data workloads. In ISCA,
pages 153–165, 2016.

[29] Cheol-Ho Hong and Blesson Varghese. Resource man-
agement in fog/edge computing: A survey on archi-
tectures, infrastructure, and algorithms. ACM Comput.
Surv., 52(5), September 2019.

[30] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
OSDI, pages 427–444, 2018.

[31] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
metal extensions for multi-tenant low-latency storage.
In OSDI, page 627–643, USA, 2018.

7

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
http://cs.brown.edu/~tab/papers/TABenson_EdgeSyS20_KeyNote.pdf
http://cs.brown.edu/~tab/papers/TABenson_EdgeSyS20_KeyNote.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell_Edge_Gateway_3000_Series_spec_sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell_Edge_Gateway_3000_Series_spec_sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell_Edge_Gateway_3000_Series_spec_sheet.pdf

[32] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
OSR, 44(2):35–40, 2010.

[33] Sergey Legtchenko, Hugh Williams, Kaveh Razavi,
Austin Donnelly, Richard Black, Andrew Douglas,
Nathanaël Cheriere, Daniel Fryer, Kai Mast, An-
gela Demke Brown, Ana Klimovic, Andy Slowey, and
Antony Rowstron. Understanding rack-scale disaggre-
gated storage. In HotStorage, page 2, USA, 2017.

[34] Zach Leidall, Abhishek Chandra, and Jon Weissman.
An edge-based framework for cooperation in internet of
things applications. In HotEdge, 2019.

[35] Haoyuan Li. Alluxio: A Virtual Distributed File System.
PhD thesis, EECS Department, University of California,
Berkeley, May 2018.

[36] Ruben Mayer, Harshit Gupta, Enrique Saurez, and
Umakishore Ramachandran. Fogstore: Toward a dis-
tributed data store for fog computing. In 2017 IEEE Fog
World Congress (FWC), pages 1–6. IEEE, 2017.

[37] Steven McCanne and Van Jacobson. The bsd packet
filter: A new architecture for user-level packet capture.
In USENIX Winter, volume 46, 1993.

[38] Andrew W. Moore. Technical perspective: Jupiter rising.
Commun. ACM, 59(9):87, August 2016.

[39] Seyed Hossein Mortazavi, Bharath Balasubramanian,
Eyal de Lara, and Shankaranarayanan Puzhavakath
Narayanan. Pathstore, a data storage layer for the edge.
In MobiSys, pages 519–519, 2018.

[40] Mihir Nanavati, Jake Wires, and Andrew Warfield. Deci-
bel: Isolation and sharing in disaggregated rack-scale
storage. In NSDI, pages 17–33, 2017.

[41] Arun Ravindran and Anjus George. An edge datas-
tore architecture for latency-critical distributed machine
vision applications. In HotEdge, 2018.

[42] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
designing in-storage computing system for emerging
high-performance drive. In ATC, pages 379–394, 2019.

[43] Mahadev Satyanarayanan. Edge computing: Vision and
challenges. In Keynote talk at HotCloud/HotStorage
2017, Santa Clara, CA, July 2017.

[44] Mahadev Satyanarayanan. The emergence of edge com-
puting. Computer, 50(1):30–39, 2017.

[45] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cac-
eres, and Nigel Davies. The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[46] Sudharsan Seshadri, Mark Gahagan, Meenakshi Sun-
daram Bhaskaran, Trevor Bunker, Arup De, Yanqin
Jin, Yang Liu, and Steven Swanson. Willow: A user-
programmable SSD. In OSDI, pages 67–80, 2014.

[47] Michael A. Sevilla, Noah Watkins, Ivo Jimenez, Pe-
ter Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos
Maltzahn. Malacology: A programmable storage sys-
tem. In EuroSys, page 175–190, New York, NY, USA,
2017.

[48] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of temporary storage in the nodekernel ar-
chitecture. In ATC, page 767–781, USA, 2019.

[49] Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru
Iosup. Sharing and caring of data at the edge. In Hot-
Edge, June 2020.

[50] Robbert van Renesse and Fred B. Schneider. Chain repli-
cation for supporting high throughput and availability.
In OSDI, page 7, USA, 2004.

[51] Marcos A. M. Vieira, Matheus S. Castanho, Racyus
D. G. Pacífico, Elerson R. S. Santos, Eduardo P. M. Câ-
mara Júnior, and Luiz F. M. Vieira. Fast packet pro-
cessing with ebpf and xdp: Concepts, code, challenges,
and applications. ACM Comput. Surv., 53(1), February
2020.

[52] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar,
Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,
Feng Yan, and Yue Cheng. Infinicache: Exploiting
ephemeral serverless functions to build a cost-effective
memory cache. In FAST, pages 267–281, 2020.

[53] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the gap between serverless and its state with
storage functions. In SoCC, page 1–12, New York, NY,
USA, 2019.

8

	1 Introduction
	2 Edge Storage: A New Start?
	3 Programmable Edge Storage
	3.1 Why eBPF for Edge Programmability
	3.2 Griffin Design

	4 Conclusion

