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Abstract

We analyze if large language models are
able to predict patterns of human reading
behavior. We compare the performance of
language-specific and multilingual pretrained
transformer models to predict reading time
measures reflecting natural human sentence
processing on Dutch, English, German, and
Russian texts. This results in accurate models
of human reading behavior, which indicates
that transformer models implicitly encode rel-
ative importance in language in a way that is
comparable to human processing mechanisms.
We find that BERT and XLM models success-
fully predict a range of eye tracking features.
In a series of experiments, we analyze the
cross-domain and cross-language abilities of
these models and show how they reflect human
sentence processing.

1 Introduction

When processing language, humans selectively at-
tend longer to the most relevant elements of a sen-
tence (Rayner, 1998). This ability to seamlessly
evaluate relative importance is a key factor in hu-
man language understanding. It remains an open
question how relative importance is encoded in
computational language models. Recent analy-
ses conclude that the cognitively motivated “at-
tention” mechanism in neural models is not a good
indicator for relative importance (Jain and Wal-
lace, 2019). Alternative methods based on salience
(Bastings and Filippova, 2020), vector normaliza-
tion (Kobayashi et al., 2020), or subset erasure
(De Cao et al., 2020) are being developed to in-
crease the post-hoc interpretability of model predic-
tions but the cognitive plausibility of the underlying
representations remains unclear.

In human language processing, phenomena of
relative importance can be approximated indirectly
by tracking eye movements and measuring fixation

Figure 1: From the fixation times in milliseconds of a
single subject in the ZuCo 1.0 dataset, the feature vec-
tor described in Section 3.2 for the wors “Mary” would
be [2, 233, 233, 431, 215.5, 1, 1, 1].

duration (Rayner, 1977). It has been shown that
fixation duration and relative importance of text
segments are strongly correlated in natural reading,
so that direct links can be established on the token
level (Malmaud et al., 2020). In the example in
Figure 1, the newly introduced entity Mary French
is fixated twice and for a longer duration because it
is relatively more important for the reader than the
entity Laurence, which had been introduced in the
previous sentence. Being able to reliably predict
eye movement patterns from the language input
would bring us one step closer to understand the
cognitive plausibility of these models.

Contextualized neural language models are less
interpretable than conceptually motivated psy-
cholinguistic models but they achieve high per-
formance in many language understanding tasks
and can be fitted successfully to cognitive features
such as self-paced reading times and N400 strength
(Merkx and Frank, 2020). Moreover, approaches
to directly predict cognitive signals (e.g., brain ac-
tivity) indicate that neural representations implic-
itly encode similar information as humans (Wehbe
et al., 2014; Abnar et al., 2019; Sood et al., 2020;
Schrimpf et al., 2020). However, it has not been an-
alyzed to which extent transformer language mod-
els are able to directly predict human behavioral
metrics such as gaze patterns.

The performance of computational models can
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be improved even further if their inductive bias is
adjusted using human cognitive signals such as eye
tracking, fMRI, or EEG data (Hollenstein et al.,
2019; Toneva and Wehbe, 2019; Takmaz et al.,
2020). While psycholinguistic work mainly fo-
cuses on very specific phenomena of human lan-
guage processing that are typically tested in ex-
perimental settings with constructed stimuli (Hale,
2017), we focus on directly generating token-level
predictions from natural reading.

We fine-tune transformer models on human eye
movement data and analyze their ability to pre-
dict human reading behavior focusing on a range
of reading features, datasets, and languages. We
compare the performance of monolingual and mul-
tilingual transformer models. Multilingual mod-
els represent multiple languages in a joint space
and aim at a more universal language understand-
ing. As eye tracking patterns are consistent across
languages for certain phenomena, we hypothe-
size that multilingual models might provide cog-
nitively more plausible representations and outper-
form language-specific models in predicting read-
ing measures. We test this hypothesis on 6 datasets
of 4 Indo-European languages, namely English,
German, Dutch and Russian.1

We find that pretrained transformer models are
surprisingly accurate at predicting reading time
measures in four Indo-European languages. Multi-
lingual models show an advantage over language-
specific models, especially when fine-tuned on
smaller amounts of data. Compared to previ-
ous psycholinguistic reading models, the accuracy
achieved by the transformer models is remarkable.
Our results indicate that transformer models im-
plicitly encode relative importance in language in a
way that is comparable to human processing mech-
anisms. As a consequence, it should be possible to
adjust the inductive bias of neural models towards
more cognitively plausible outputs without having
to resort to large-scale cognitive datasets.

2 Related Work

Using eye movement data to modify the inductive
bias of language processing models has resulted in
improvements for several NLP tasks (e.g., Barrett
et al. 2016; Hollenstein and Zhang 2019). It has
also been used as a supervisory signal in multi-task
learning scenarios (Klerke et al., 2016; Gonzalez-

1Code available on GitHub: https://github.com/
DS3Lab/multilingual-gaze

Garduno and Søgaard, 2017) and as a method to
fine-tune the attention mechanism (Barrett et al.,
2018). We use eye tracking data to evaluate how
well transformer language models predict human
sentence processing. Therefore, in this section,
we discuss previous work on probing transformers
models as well as on modelling human sentence
processing.

2.1 Probing Transformer Language Models
Contextualized neural language models have be-
come increasingly popular, but our understanding
of these black box algorithms is still rather limited
(Gilpin et al., 2018). Current intrinsic evaluation
methods do not capture the cognitive plausibility of
language models (Manning et al., 2020; Gladkova
and Drozd, 2016). In previous work of interpreting
and probing language models, human behavioral
data as well as neuroimaging recordings have been
leveraged to understand the inner workings of the
neural models. For instance, Ettinger (2020) ex-
plores the linguistic capacities of BERT with a set
of psycholinguistic diagnostics. Toneva and We-
hbe (2019) propose an interpretation approach by
learning alignments between the models and brain
activity recordings (MEG and fMRI). Hao et al.
(2020) propose to evaluate language model quality
based on the degree to which they exhibit human-
like behavior such as predictability measures col-
lected from human subjects. However, their metric
does not reveal any details about the commonalities
between the model and human sentence processing.

The benefits of multilingual models are contro-
versial. Transformer models trained exclusively
on a specific language often outperform multilin-
gual models trained on various languages simul-
taneously, even after fine-tuning. This curse of
multilinguality (Conneau et al., 2020; Vulić et al.,
2020) has been shown for Spanish (Canete et al.,
2020), Finnish (Virtanen et al., 2019) and Dutch
(Vries et al., 2019). In this paper we investigate
whether a similar effect can be observed when lever-
aging these models to predict human behavioral
measures, or whether in that case the multilingual
models provide more plausible representations of
human reading due to the common eye tracking
effects across languages.

2.2 Modelling Human Sentence Processing
Previous work of neural modelling of human sen-
tence processing has focused on recurrent neu-
ral networks, since their architecture and learn-

https://github.com/DS3Lab/multilingual-gaze
https://github.com/DS3Lab/multilingual-gaze


Language Corpus Subjs. Sents. Sent. length Tokens Types Word length Flesch

English
Dundee 10 2,379 21.7 (1–87) 51,497 9,488 4.9 (1–20) 53.3
GECO 14 5,373 10.5 (1–69) 56,410 5,916 4.6 (1–33) 77.4
ZuCo 30 1,053 19.5 (1–68) 20,545 5,560 5.0 (1–29) 50.6

Dutch GECO 19 5,190 11.64 (1–60) 59,716 5,575 4.5 (1–22) 57.5
German PoTeC 30 97 19.5 (5–51) 1,895 847 6.5 (2–33) 36.4
Russian RSC 103 144 9.4 (5–13) 1,357 993 5.7 (1–18) 64.7

Table 1: Descriptive statistics of all eye tracking datasets.2 Sentence length and word length are expressed as the
mean with the min-max range in parentheses. The last column shows the Flesch Reading Ease score (Flesch, 1948)
which ranges from 0 to 100 (higher score indicates easier to read). Adaptations of the Flesch score were used for
Dutch (nl), German (de) and Russian (ru) (see Appendix B).

ing mechanism appears to be cognitively plausi-
ble (Keller, 2010; Michaelov and Bergen, 2020).
However, recent work suggests that transformers
perform better at modelling certain aspects of the
human language understanding process (Hawkins
et al., 2020). While Merkx and Frank (2020) and
Wilcox et al. (2020) show that the psychometric pre-
dictive power of transformers outperforms RNNs
on eye tracking, self-paced reading times and N400
strength, they do not directly predict cognitive fea-
tures. Schrimpf et al. (2020) show that contex-
tualized monolingual English models accurately
predict language processing in the brain.

Context effects are known to influence fixations
times during reading (Morris, 1994). The notion of
using contextual information to process language
during reading has been well-established in psy-
cholinguistics (e.g., Inhoff and Rayner 1986 and
Jian et al. 2013). However, to the best of our knowl-
edge, we are the first to study to which extent the
representations learned by transformer language
models entail these human reading patterns.

Compared to neural models of human sentence
processing, we predict not only individual metrics
but a range of eye tracking features covering the
full reading process from early lexical access to
late syntactic processing. By contrast, most models
of reading focus on predicting skipping probability
(Reichle et al., 1998; Matthies and Søgaard, 2013;
Hahn and Keller, 2016). Sood et al. (2020) propose
a text saliency model which predicts fixation du-
rations that are then used to compute the attention
scores in a transformer network.

3 Data

We predict eye tracking data only from naturalistic
reading studies in which the participants read full

2Note that the exact numbers might differ slightly from the
original publications due to different preprocessing methods.

sentences or longer spans of naturally occurring
text in their own speed. The data from these stud-
ies exhibit higher ecological validity than studies
which rely on artificially constructed sentences and
paced presentation (Alday, 2019).

3.1 Corpora

To conduct a cross-lingual comparison, we use eye
tracking data collected from native speakers of four
languages (see Table 1 for details).

English The largest number of eye tracking data
sources are available for English. We use eye track-
ing features from three English corpora: (1) The
Dundee corpus (Kennedy et al., 2003) contains 20
newspaper articles from The Independent, which
were presented to English native readers on a screen
five lines at a time. (2) The GECO corpus (Cop
et al., 2017) contains eye tracking data from En-
glish monolinguals reading the entire novel The
Mysterious Affair at Styles by Agatha Christie. The
text was presented on the screen in paragraphs. (3)
The ZuCo corpus (Hollenstein et al., 2018, 2020)
includes eye tracking data of full sentences from
movie reviews and Wikipedia articles.3

Dutch The GECO corpus (Cop et al., 2017) ad-
ditionally contains eye tracking data from Dutch
readers, which were presented with the same novel
in their native language.

German The Potsdam Textbook Corpus (PoTeC,
Jäger et al. 2021) contains 12 short passages of 158
words on average from college-level biology and
physics textbooks, which are read by expert and
laymen German native speakers. The full passages
were presented on multiple lines on the screen.

3We use Tasks 1 and 2 from ZuCo 1.0 and Task 1 from
ZuCo 2.0.



Short Name Language Model Checkpoint Reference

BERT-NL Dutch WIETSEDV/BERT-BASE-DUTCH-CASED Vries et al. (2019)
BERT-EN English BERT-BASE-UNCASED Wolf et al. (2019)
BERT-DE German BERT-BASE-GERMAN-CASED Chan et al. (2019)
BERT-RU Russian DEEPPAVLOV/RUBERT-BASE-CASED Yu and Arkhipov (2019)
BERT-MULTI 104 languages BERT-BASE-MULTILINGUAL-CASED Wolf et al. (2019)

XLM-EN English XLM-MLM-EN-2048 Lample and Conneau (2019)
XLM-ENDE English + German XLM-MLM-ENDE-1024 Lample and Conneau (2019)
XLM-17 17 languages XLM-MLM-17-1280 Lample and Conneau (2019)
XLM-100 100 languages XLM-MLM-100-1280 Lample and Conneau (2019)

Table 2: Pretrained transformer language models analyzed in this work.

Russian The Russian Sentence Corpus (RSC,
Laurinavichyute et al. 2019) contains 144 naturally
occurring sentences extracted from the Russian Na-
tional Corpus.4 Full sentences were presented on
the screen to monolingual Russian-speaking adults
one at a time.

3.2 Eye Tracking Features
A fixation is defined as the period of time where the
gaze of a reader is maintained on a single location.
Fixations are mapped to words by delimiting the
boundaries around the region on the screen belong-
ing to each word w. A word can be fixated more
than once. For each token w in the input text, we
predict the following eight eye tracking features
that encode the full reading process from early lex-
ical access up to subsequent syntactic integration.

Word-level characteristics We extract basic fea-
tures that encode word-level characteristics: (1)
number of fixations (NFIX), the number of times
a subject fixates w, averaged over all subjects; (2)
mean fixation duration (MFD), the average fixation
duration of all fixations made on w, averaged over
all subjects; (3) fixation proportion (FPROP), the
number of subjects that fixated w, divided by the
total number of subjects.

Early processing We also include features to
capture the early lexical and syntactic processing,
based on the first time a word is fixated: (4) first
fixation duration (FFD), the duration, in millisec-
onds, of the first fixation on w, averaged over all
subjects; (5) first pass duration (FPD), the sum of
all fixations on w from the first time a subject fix-
ates w to the first time the subject fixates another
token, averaged over all subjects.

Late processing Finally, we also use measures
reflecting the late syntactic processing and general

4https://ruscorpora.ru

disambiguation, based on words which were fixated
more than once: (6) total reading time (TRT), the
sum of the duration of all fixations made on w, av-
eraged over all subjects; (7) number of re-fixations
(NREFIX), the number of times w is fixated after
the first fixation, i.e., the maximum between 0 and
the NFIX-1, averaged over all subjects; (8) re-read
proportion (REPROP), the number of subjects that
fixated w more than once, divided by the total num-
ber of subjects.

The values of these eye tracking features vary
over different ranges (see Appendix A). FFD, for
example, is measured in milliseconds, and aver-
age values are around 200 ms, whereas REPROP

is a proportional measure, and therefore assumes
floating-point values between 0 and 1. We standard-
ize all eye tracking features independently (range:
0–100), so that the loss can be calculated uniformly
over all feature dimensions.

Eye movements depend on the stimulus and are
therefore language-specific but there exist universal
tendencies which remain stable across languages
(Liversedge et al., 2016). For example, the average
fixation duration in reading ranges from 220 to
250 ms independent of the language. Furthermore,
word characteristics such as word length, frequency
and predictability affect fixation duration similarly
across languages but the effect size depends on
the language and the script (Laurinavichyute et al.,
2019; Bai et al., 2008). The word length effect,
i.e., the fact that longer words are more likely to be
fixated, can be observed across all four languages
included in this work (see Appendix A).

4 Language Models

We compare the ability to predict eye tracking
features in two models: BERT and XLM. Both
models are trained on the transformer architec-
ture (Vaswani et al., 2017) and yield state-of-the-

https://ruscorpora.ru
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Figure 2: True and predicted feature values for two example sentences. On the left the fixation proportion (FPROP)
values for an English sentence from the ZuCo dataset, and on the right the number of fixations (NFIX) values for a
Russian sentence from the RSC dataset.

art results for a wide range of NLP tasks (Liang
et al., 2020). The multilingual BERT model simply
concatenates the Wikipedia input from 104 lan-
guages and is optimized by performing masked
token and next sentence prediction as in the mono-
lingual model (Devlin et al., 2019) without any
cross-lingual constraints. In contrast, XLM adds a
translation language modeling objective, by explic-
itly using parallel sentences in multiple languages
as input to facilitate cross-lingual transfer (Lam-
ple and Conneau, 2019). Both BERT and XLM
use subword tokenization methods to build shared
vocabulary spaces across languages.

We use the pretrained checkpoints from the Hug-
gingFace repository for monolingual and multilin-
gual models (details in Table 2).5

5 Method

We fine-tune the models described above on the
features extracted from the eye tracking datasets.
The eye tracking prediction uses a model for to-
ken regression, i.e., the pretrained language models
with a linear dense layer on top of it. The final
dense layer is the same for all tokens, and performs
a projection from the dimension of the hidden size
of the model (e.g., 768 for BERT-EN or 1,280 for
XLM-100) to the dimension of the eye tracking fea-
ture space (8, in our case). The model is trained for
the regression task using the mean squared error
(MSE) loss.

Training Details We split the data into 90%
training data, 5% validation and 5% test data. We
initially tuned the hyper-parameters manually and
set the following values for all models: We use an
AdamW optimizer (Loshchilov and Hutter, 2018)
with a learning rate of 0.00005 and a weight decay
of 0.01. The batch size varies depending on the

5https://huggingface.co/transformers/
pretrained_models.html

model dimensions (see Appendix C.2). We employ
a linear learning rate decay schedule over the to-
tal number of training steps. We clip all gradients
exceeding the maximal value of 1. We train the
models for 100 epochs, with early stopping after 7
epochs without an improvement on the validation
accuracy.

Evaluation Procedure As the features have
been standardized to the range 0–100, the mean
absolute error (MAE) can be interpreted as a per-
centage error. For readability, we report the pre-
diction accuracy as 100−MAE in all experiments.
The results are averaged over batches and over 5
runs with varying random seeds. For a single batch
of sentences, the overall MAE is calculated by con-
catenating the words in each sentence and the fea-
ture dimensions for each word, and padding to the
maximum sentence length. The per-feature MAE
is calculated by concatenating the words in each
sentence. For example, for a batch of B sentences,
each composed of L words, and G eye tracking
features per word, the overall MAE is calculated
over a vector of B*L*G dimensions. In contrast,
the MAE for each individual feature is calculated
over a vector of B*L dimensions.

6 Results & Discussion

Tables 3 and 4 show that all models predict the eye
tracking features with more than 90% accuracy for
English and Dutch. For English, the BERT models
yield high performance on all three datasets with
standard deviations below 0.15. The results for
the XLM models are slightly better on average but
exhibit much higher standard deviations. Similar
to the results presented by Lample and Conneau
(2019), we find that more training data from mul-
tiple languages improves prediction performance.
For instance, the XLM-100 model achieves higher
accuracy than the XLM-17 model in all cases. For

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html


Model Dundee (en) GECO (en) ZuCo (en) ALL (en)

BERT-EN 92.63 (0.05) 93.68 (0.14) 93.42 (0.02) 93.71 (0.06)
BERT-MULTI 92.73 (0.06) 93.73 (0.12) 93.74 (0.05) 93.74 (0.07)
XLM-EN 90.41 (2.16) 91.15 (1.42) 92.03 (2.11) 90.88 (1.50)
XLM-ENDE 92.79 (0.15) 93.89 (0.12) 93.76 (0.15) 93.96 (0.08)
XLM-17 92.11 (1.68) 91.79 (1.75) 92.05 (2.25) 93.80 (0.38)
XLM-100 92.99 (0.05) 93.04 (1.40) 93.97 (0.09) 93.96 (0.06)

Table 3: Prediction accuracy over all eye tracking features for the English corpora, including the concatenated
dataset. Standard deviation is reported in parentheses.

Model GECO (nl) PoTeC (de) RSC (ru) ALL-LANGS

BERT-NL 91.81 (0.23) – – –
BERT-DE – 78.38 (1.69) – –
BERT-RU – – 78.73 (1.38) –
BERT-MULTI 91.90 (0.16) 76.86 (2.42) 76.54 (3.59) 94.72 (0.07)

XLM-ENDE – 80.94 (0.88) – –
XLM-17 91.04 (0.70) 86.26 (1.31) 90.96 (3.96) 94.46 (0.83)
XLM-100 92.31 (0.22) 86.57 (0.54) 94.70 (0.60) 94.94 (0.11)

Table 4: Prediction accuracy over all eye tracking features for the Dutch, German and Russian corpora, and for all
four languages combined in a single dataset. Standard deviation is reported in parentheses.

the smaller non-English datasets, PoTeC (de) and
RSC (ru), the multilingual XLM models clearly
outperform the monolingual models. For the En-
glish datasets, the differences are minor.

Size Effects More training data results in higher
prediction accuracy even when the eye track-
ing data comes from various languages and was
recorded in different reading studies by different de-
vices (ALL-LANGS, fine-tuning on the data of all
four languages together). However, merely adding
more data from the same language (ALL (en), fine-
tuning on the English data from Dundee, GECO
and ZuCo together) does not result in higher per-
formance.

To analyze this further, we perform an ablation
study on varying amounts of training data. The re-
sults are shown in Figure 3 for Dutch and English.
The performance of the XLM models remains sta-
ble even with a very small percentage of eye track-
ing data. The performance of the BERT models,
however, drops drastically when fine-tuning on less
than 20% of the data. Similar to Merkx and Frank
(2020) and Hao et al. (2020) we find that the model
architecture, along with the composition and size
of the training corpus have a significant impact on
the psycholinguistic modeling performance.

Eye Tracking Features The accuracy results are
averaged over all eye tracking features. For a better
understanding of the prediction output, we plot the
true and the predicted values of two selected fea-

tures (FPROP and NFIX) for two example sentence
in Figure 2. In both examples, the model predic-
tions strongly correlate with the true values. The
difference to the mean baseline is more pronounced
for the FIXPROPfeature.

Figure 4 presents the quantitative differences
across models in predicting the individual eye track-
ing features.6 Across all datasets, first pass dura-
tion (FPD) and number of re-fixations (NREFIX)
are the most accurately predicted features. Propor-
tions (FPROP and REPROP) are harder to predict
because these features are even more dependent
on subject-specific characteristics. Nevertheless,
when comparing the prediction accuracy of each
eye tracking feature to a baseline which always
predicts the mean values, the predicted features
FPROP and REPROP achieve the largest improve-
ments relative to the mean baseline. See Figure 5
for a comparison between all features for the best
performing model XLM-100 on all six datasets.

Performance of Pretrained Models To test the
language models’ abilities on predicting human
reading behavior only from pretraining on textual
input, we take the provided model checkpoints and
use them to predict the eye tracking features with-
out any fine-tuning. The detailed results are pre-
sented in Appendix D.1. The achieved accuracy ag-
gregated over all eye tracking features lies between
75-78% for English. For Dutch, the models achieve

6Plots for the remaining datasets are in Appendix D.2
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84% accuracy but for Russian merely 65%. Across
the same languages the results between the differ-
ent language models are only minimal. However,
on the individual eye tracking features, the pre-
trained models do not achieve any improvements
over the mean baseline (see Appendix D.1).

7 Data Sensitivity

For the main experiment, we always tested the mod-
els on held-out data from the same dataset. In this

section, we examine the influence of dataset prop-
erties (text domain and language) on the prediction
accuracy. In a second step, we analyze the influ-
ence of more universal input characteristics (word
length, text readability).

7.1 Cross-Domain Evaluation

Figure 6 shows the results when evaluating the eye
tracking predictions on out-of-domain text for the
English datasets. For instance, we fine-tune the
model on the newspaper articles of the Dundee
corpus and test on the literary novel of the GECO
corpus. We can see that the overall prediction accu-
racy across all eye tracking features is constantly
above. 90% in all combinations. This shows that
our eye tracking prediction model is able to general-
ize across domains. We find that the cross-domain
capabilities of BERT are slightly better than for
XLM. BERT-EN performs best in the cross-domain
evaluation, possibly because its training data is
more domain-general since it includes text from
Wikipedia and books.

7.2 Cross-Language Evaluation

Figure 7 shows the results for cross-language eval-
uation to probe the language transfer capabilities
of the multilingual models. We test models fine-
tuned on language A on the test set of language
B. It can be seen that BERT-MULTI generalizes bet-
ter across languages than the XLM models. This
might be due to the fact that the multilingual BERT
model is trained on one large vocabulary of many
languages but the XLM models are trained with
a cross-lingual objective and language informa-
tion. Hence, during fine-tuning on eye tracking



Figure 6: Cross-domain evaluation on pretrained English models. The results are expressed as the difference in
the prediction error compared to the in-domain prediction. A smaller error (i.e., a color more similar to the color
of the diagonal) represents better domain adaptation.

Figure 7: Cross-language evaluation on multilingual models across English, Dutch, German and Russian data. The
results are expressed as the difference in the prediction error compared to the prediction on the same language. A
smaller error (i.e., a color more similar to the color of the diagonal) represents better language transfer.

data from one language the XLM models lose some
of their cross-lingual abilities. Our results are in
line with Pires et al. (2019) and Karthikeyan et al.
(2020), who showed that BERT learns multilingual
representations in more than just a shared vocabu-
lary space but also across scripts. When fine-tuning
BERT-MULTI on English or Dutch data and test-
ing on Russian, we see surprisingly high accuracy
across scripts, even outperforming the in-language
results. The XLM models, however, show the ex-
pected behavior where transferring within the same
script (Dutch, English, German) works much better
than transferring between the Latin and Cyrillic
script (Russian).

7.3 Input Characteristics

Gaze patterns are strongly correlated with word
length. Figure 8 shows that the models accurately
learn to predict higher fixation proportions for
longer words. We observe that the predictions of

the XLM-100 model follow the trend in the origi-
nal data most accurately. Similar patterns emerge
for the other languages (see Appendix D.3). No-
tably, the pretrained models before fine-tuning do
not reflect the word length effect.

On the sentence level, we hypothesize that eye
tracking features are easier to predict for sentences
with a higher readability. Figure 9 shows the accu-
racy for predicting the number of fixations (NFIX)
in a sentence relative to the Flesch reading ease
score. Interestingly, the pretrained models with-
out fine-tuning conform to the expected behavior
and show a consistent increase in accuracy for sen-
tences with a higher reading ease score. After fine-
tuning on eye tracking data, this behavior is not as
visible anymore since the language models achieve
constantly high accuracy independent of the read-
ability of the sentences.

These results might be explained by the nature
of the Flesch readability score, which is based only
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Figure 8: Prediction accuracy of FPROP with respect to
word length. The gray dashed line is the result of the
pretrained BERT-MULTI model without fine-tuning.

on the structural complexity of the text (see Ap-
pendix B for a description of the Flesch Reading
Ease score). Our results indicate that language
models trained purely on textual input are more
calibrated towards such structural characteristics,
i.e., the number of syllables in a word and the num-
ber of words in a sentences. Hence, the Flesch
reading ease score might not be a good approxima-
tion for text readability. In future work, comparing
eye movement patterns and text difficulty should
rely on readability measures that take into account
lexical, semantic, syntactic, and discourse features.
This might reveal deviating patterns between pre-
trained and fine-tuned models.

Our analyses indicate that the models learn to
take properties of the input into account when pre-
dicting eye tracking patterns. These processing
strategies are similar to those observed in humans.
Nevertheless, the connection between readability
and relative importance in text needs to be analysed
in more detail to establish how well these properties
are learned by the language models.

8 Conclusion

While the superior performance of pretrained trans-
former language models has been established, we
have yet to understand to which extent these mod-
els are comparable to human language processing
behavior. We take a step in this direction by fine-
tuning language models on eye tracking data to
predict human reading behavior.

We find that both monolingual and multilingual
models achieve surprisingly high accuracy in pre-
dicting a range of eye tracking features across four
languages. Compared to the XLM models, BERT-
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Figure 9: Prediction accuracy for NFIX relative to the
Flesch reading ease score of the sentence. A higher
Flesch score indicates that a sentence is easier to read.
The dashed lines show the results of the pretrained lan-
guage models without fine-tuning on eye tracking data.

MULTI is more robust in its ability to generalize
across languages, without being explicitly trained
for it. In contrast, the XLM models perform better
when fine-tuned on less eye tracking data. Gener-
ally, fixation duration features are predicted more
accurately than fixation proportion, possibly be-
cause the latter show higher variance across sub-
jects. We observe that the models learn to reflect
characteristics of human reading such as the word
length effect and higher accuracy in more easily
readable sentences.

The ability of transformer models to achieve
such high results in modelling reading behavior
indicates that we can learn more about the com-
monalities between language models and human
sentence processing. By predicting behavioral met-
rics such as eye tracking features we can investigate
the cognitive plausibility within these models to ad-
just or intensify the human inductive biases.
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A Eye Tracking Data

Table 6 presents information about the range of the
eye tracking features.
Figure 10 shows the word length effect found in
eye tracking data recorded during reading. i.e., the
fact that longer words are more likely to be fixated.
This effect is observable across all languages.
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Figure 10: Word length effect on all datasets in all four
languages.

Figure 11 shows the mean fixation duration (MFD)
for adjectives, nouns, verbs, and adverbs for all six
datasets. We use spacy7 to perform part-of-speech
tagging for our analyses. For Russian we load an
externally trained model8, for Dutch, English and
German we use the provided pretrained models.
Figure 12 shows an additional analysis where we
explore which parts-of-speech can be predicted
more accurately by the language models.

B Readability Scores

We use the Flesch Reading Easy score (Flesch,
1948) to define the readability of the English text in
the eye tracking corpora. This score indicates how
difficult a text passage is to understand. Since this
score relies on language-specific weighting factors,
we apply the Flesch Douma adaptation for Dutch
(Douma, 1960), the adaptation by Amstad (1978)
for German, and the adaptation by Oborneva (2006)
for Russian.

C Implementation Details

C.1 Tokenization
When using BERT or XLM for token classification
or regression, a pressing implementation issue is

7spaCy.io
8https://github.com/buriy/spacy-ru

represented by the subword tokenizers employed
by the models. This tokenizer, in fact, handles un-
known tokens by recursively splitting every word
until all subtokens belong to its vocabulary. For
example, the name of the Greek mythological hero
“Philammon” is tokenized into the three subtokens
“[‘phil’, ‘##am’, ‘##mon’]”. In this case, our mod-
els for token regression would produce an eight-
dimensional output for all three subtokens, and we
had the choice as to what to do in order to compute
the loss, having only one target for the full word
“Philammon”. We chose to compute the loss only
with respect to the first subtoken.

C.2 Training Setup

As described in the main paper, all experi-
ments are run over 5 random seeds, which are
{12, 79, 237, 549, 886}.
All models were fine-tuned on a single GPU Titan
X with 12 GB memory. Due to memory restrictions
of the GPUs and the dimensions of the language
models, the batch size was adapted as needed. Ta-
ble 5 shows the batch sizes for each model.

Model Batch size

BERT-EN, BERT-NL, 16
BERT-MULTI

BERT-DE, BERT-RU, 8
XLM-ENDE, XLM-17,
XLM-100
XLM-EN 2

Table 5: Batch sizes used for each of the language mod-
els.

On average the validation accuracy of BERT mod-
els stops improving after ∼ 50 epochs, while the
XLM models only take ∼ 10 epochs. There is no
noteworthy difference in training speed between
monolingual and multilingual models.

D Detailed Results

In this section we present addition plots that
strengthen the results shown in the main paper.

D.1 Pretrained Baseline

Tables 7 and 8 show the prediction accuracy of the
pretrained models.
Moreover, Figure 13 shows the results of individ-
ual gaze features for all pretrained models (without

spaCy.io
https://github.com/buriy/spacy-ru


fine-tuning) on the Dundee (en) and RSC (ru) cor-
pora.
Figure 14 presents the differences in prediction
accuracy for the pretrained XML-100 model pre-
dictions relative to the mean baseline for each eye
tracking feature. The pretrained models clearly can-
not outperform the mean baseline for any language
or dataset.

D.2 Individual Feature Results
Figure 15 shows the prediction accuracy of the
fine-tuned language models for the individual eye
tracking features for all datasets.

D.3 Word Length Effect
Figure 16 presents the comparison between models
predictions and original word length effects for
further languages.



Corpus NFIX MFD FPROP FFD FPD TRT NREFIX REPROP

Dundee (en) 0.8 (0.5) 119.5 (62.1) 0.6 (0.3) 120.7 (63.4) 140.6 (88.5) 156.1 (105.5) 0.2 (0.3) 0.2 (0.2)
GECO (en) 0.8 (0.5) 128.4 (59.0) 0.6 (0.2) 129.3 (60.1) 143.3 (77.5) 168.2 (102.4) 0.2 (0.3) 0.2 (0.2)
ZuCo (en) 1.1 (0.7) 78.4 (34.8) 0.7 (0.3) 77.3 (34.4) 92.3 (52.2) 129.8 (89.7) 0.4 (0.5) 0.3 (0.2)
GECO (nl) 0.8 (0.6) 121.3 (80.1) 0.6 (0.4) 121.8 (81.1) 134.1 (98.0) 158.1 (131.2) 0.2 (0.4) 0.1 (0.2)
PoTeC (de) 2.7 (2.9) 217.5 (117.3) 0.8 (0.4) 167.9 (157.4) 224.7 (264.2) 675.6 (727.0) 1.7 (2.2) 0.6 (0.5)
RSC (ru) 0.8 (0.4) 203.4 (115.1) 0.6 (0.3) 233.6 (49.5) 285.1 (101.9) 314.2 (179.8) 0.1 (0.1) 0.1 (0.1)

Table 6: Mean and standard deviation for all eye tracking features of the corpora used in this work.
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Figure 11: Mean fixation duration (MFD) for the most common parts of speech across all six datasets.
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Figure 12: Accuracy of the language models predicting the mean fixation duration (MFD) across various parts of
speech for Dutch (left) and English (right).

Model Dundee GECO (en) ZuCo (en) ALL (en)

BERT-EN 77.42 (0.21) 77.67 (0.13) 76.06 (0.38) 78.69 (0.09)
BERT-MULTI 77.41 (0.21) 77.68 (0.13) 76.07 (0.37) 78.66 (0.07)

XLM-EN 77.21 (0.29) 77.65 (0.24) 75.97 (0.60) 78.47 (0.11)
XLM-ENDE 77.40 (0.29) 77.67 (0.10) 76.10 (0.41) 78.66 (0.12)
XLM-17 77.31 (0.23) 77.66 (0.19) 75.99 (0.39) 78.39 (0.15)
XLM-100 77.35 (0.29) 77.63 (0.34) 75.93 (0.43) 78.49 (0.11)

Table 7: Prediction accuracy of the pretrained language models aggregated over all eye tracking features for the
English corpora, including the concatenated dataset. Standard deviation is reported in parentheses.



Model GECO (nl) PoTeC (de) RSC (ru) ALL-LANGS

BERT-NL 84.20 (0.10) - - -
BERT-DE - 73.55 (3.07) - -
BERT-RU - - 64.83 (2.09) -
BERT-MULTI 84.28 (0.10) 73.47 (3.01) 64.82 (2.11) 86.22 (0.29)

XLM-ENDE - 73.49 (2.99) - -
XLM-17 83.93 (0.16) 73.17 (2.86) 65.02 (2.11) 85.84 (0.27)
XLM-100 83.94 (0.27) 73.28 (2.91) 64.67 (2.10) 85.94 (0.38)

Table 8: Prediction accuracy of the pretrained language models aggregated over all eye tracking features for the
Dutch, German and Russian corpora, and for all four languages combined in a single dataset. Standard deviation
is reported in parentheses.
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Figure 13: Results of individual gaze features for all pretrained models (without fine-tuning) on the Dundee (en)
and RSC (ru) corpora.
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Figure 14: Differences in prediction accuracy for the pretrained XLM-100 model predictions (without fine-tuning
on eye tracking data) relative to the mean baseline for each eye tracking feature.
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Figure 15: Results of individual eye tracking features for all fine-tuned models on all datasets not presented in the
main paper.
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Figure 16: Word length versus predicted fixation probability for Russian, German and English. The gray dashed
line is the result of the pretrained BERT-MULTI model without fine-tuning.


