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Abstract
Aim: Traditional approaches for including species' distributions in conservation plan-
ning have presented them as long-term averages of variation. Like these approaches, 
the main waterfowl conservation targeting tool in the United States Prairie Pothole 
Region (US PPR) is based primarily on long-term averaged distributions of breeding 
pairs. While this tool has supported valuable conservation, it does not explicitly con-
sider spatiotemporal changes in spring wetland availability and does not assess wet-
land availability during the brood rearing period. We sought to develop a modelling 
approach and targeting tool that incorporated these types of dynamics for breeding 
waterfowl pairs and broods. This goal also presented an opportunity for us to compare 
predictions from a traditional targeting tool based on long-term averages to predic-
tions from spatiotemporal models. Such a comparison facilitated tests of the underly-
ing assumption that this traditional targeting tool could provide an effective surrogate 
measure for conservation objectives such as brood abundance and climate refugia.
Location: US PPR.
Methods: We developed spatiotemporal models of waterfowl pair and brood abun-
dance within the US PPR. We compared the distributions predicted by these models 
and assessed similarity with the averaged pair data that is used to develop the current 
waterfowl targeting tool.
Results: Results demonstrated low similarity and correlation between the averaged pair 
data and spatiotemporal brood and pair models. The spatiotemporal pair model distribu-
tions did not serve as better surrogates for brood abundance than the averaged pair data.
Main conclusions: Our study underscored the contributions that the current targeting 
tool has made to waterfowl conservation but also suggested that conservation plans in 
the region would benefit from the consideration of inter- and intra-annual dynamics. We 
suggested that using only the averaged pair data and derived products might result in 
the omission of 58% - 88% of important pair and brood habitat from conservation plans. 
[Correction added on 5 February 2021, after first online publication: ‘Results’ text has 
been modified and the ‘Main conclusions’ omission percentages have been corrected.]
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1  | INTRODUC TION

The traditional approach to including species' distributions in conser-
vation planning has been to pool spatiotemporal variation and create 
a static snapshot of conditions (Pressey et al., 2007). However, spe-
cies' distributions and the processes on which they depend are not 
static, and conservation plans require consideration of the dynamic 
and highly complex ecological processes that change and maintain 
the biodiversity within an ecosystem (Pressey et  al.,  2003, 2007; 
Soule et al., 2004; Van Teeffelen et al., 2012; Wilson et al., 2009). A 
highly variable climate, for example, might cause changes in species' 
habitat use (Groves et al., 2012). Alternatively, natural disturbances 
can increase the overall habitat needed to support viable popula-
tions (Allison et  al.,  2003). Highly mobile species pose additional 
challenges for conservation planners, because their natural intra- 
and inter-annual movements also require consideration (Gilmore 
et  al.,  2007; Johnston et  al.,  2020; Runge et  al.,  2014; Schuster 
et al., 2019).

North American waterfowl are perhaps one of the best studied 
highly mobile groups in the literature with a long history of man-
agement and conservation planning (North American Waterfowl 
Management Plan Committee, 2012, 2018). Species distribution 
models for waterfowl have helped to support this history of con-
servation, particularly in the Prairie Pothole Region (PPR: Figure 1), 
where a disproportionately large number of North American water-
fowl breed each year. Most waterfowl modelling efforts have focused 
on describing patterns of breeding pair abundance and distribution 
(Barker et  al.,  2014; Doherty et  al.,  2015; Feldman et  al.,  2016; 
Janke et al., 2017). More recently, there have been efforts to model 
waterfowl brood abundance and distribution in the PPR as well 
(Carrlson et al., 2018; Kemink et al., 2019; Walker, Rotella, Schmidt, 
et al., 2013). Both avenues of investigation have highlighted spatial 
and temporal trends in both pair and brood distributions (Doherty 
et al., 2015; Janke et al., 2017; Kemink et al., 2019). However, we 
know of no studies that have contrasted pair and brood distributions 
during these different stages of reproduction. Further, the prevailing 
trend for conservation planning in the PPR still focuses on pooling 
variation to create a static distribution for targeting purposes (Prairie 
Habitat Joint Venture, 2014; Barker et al., 2014; Prairie Pothole Joint 
Venture, 2017, but see Humphreys et al., 2019; Adde et al., 2020).

In the US PPR, the leading tool for supporting decisions about 
breeding waterfowl conservation is developed through meth-
ods that parallel the traditional use of static distributions. The 
Waterfowl Breeding Pair Accessibility Map, colloquially known 
as the thunderstorm map (Figure  2; Reynolds et  al.,  2006, 2007), 
is used to display categorical ranges of duck pair numbers (mallard 
[Anas platyrhynchos], gadwall [Mareca strepera], Northern pintail 
[Anas acuta], Northern shoveler [Spatula clypeata] and blue-winged 
teal [S. discors]) that could nest in any given area within the US PPR 
of Montana, North Dakota and South Dakota. The current version is 
developed from pair abundance values that used wetland ponding in-
formation from >2,000 wetlands that were monitored annually from 
1987 to 2016 (Niemuth et al., 2010). These pair abundance values 

are scaled to a 0.152 km2 resolution grid and were collected through 
an annual regional survey known as the “Four Square Mile Survey” 
(Cowardin et al., 1995). To produce the map of “accessibility,” they 
are adjusted by species-specific constant values of waterfowl hen 
travel distances from core breeding wetlands to upland nest sites 
during the breeding season (Reynolds et al., 2006 [Table 1]; Reynolds 
et al., 2007; personal communication, Chuck Loesch, USFWS).

While these pair abundance values and their derivatives have 
provided support for decades of valuable conservation work, 
they preclude the explicit consideration of wetlands' inter-annual 
wet–dry cycles and ignore any intra-annual changes in wetland 
ponding across the region. Historically, the US Fish and Wildlife 
Service (FWS) conducted brood count surveys in the late summer 
to complement the May breeding population and habitat surveys. 
However, due to funding cuts and concern about methodology, 
this data collection was curtailed in the early 2000s. Conservation 
planners in the PPR might consequently be overlooking areas that 
have conservation value to waterfowl during periods of extreme 
weather variation (e.g. drought or deluge: Doherty et  al.,  2015; 
Wilson et al., 2009) or during the brood rearing period (Carrlson 
et al., 2018).

Periods of drought and deluge are a well-known characteristic of 
the PPR (Johnson et al., 2010; Karl & Riebsame, 1984; Larson, 1995; 
Niemuth et al., 2010; Woodhouse & Overpeck, 1998). These weather 
patterns are the primary drivers of the region's wetland hydrology 

F I G U R E  1   Prairie Pothole Region and the major North 
American Level III Ecoregions that it encompasses
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and thus of aquatic invertebrate abundance and diversity (Euliss & 
Mushet, 2004; Euliss et al., 1999), which fulfil dietary requirements 
for breeding duck pairs, nesting hens and growing waterfowl recruits 
(Cox et al., 1998; Stafford et al., 2016). While both the adults and 
broods of wetland obligate birds often depend on resources provided 
by wetlands for survival and growth during the breeding season, the 
amount and type of habitat available to and used by each group can 
be quite different (Carrlson et al., 2018; Johnson et al., 2010).

Breeding dabbling duck pairs arrive in the early spring (April–
May) to establish territory in the PPR prior to nesting. It is widely 
accepted that densely ponded areas attract the highest number 
of pairs. At more local extents, small, seasonal (sensu Stewart & 
Kantrud, 1971) wetlands tend to provide the best habitat for breed-
ing dabblers (Bartzen et al., 2017; Cowardin et al., 1995; Fields, 2011; 
Reynolds et al., 2006). These ponds receive most of their water as 

spring snowmelt running over frozen ground (Hayashi et al., 2016) 
and thus are available earlier in the spring than their deeper semi-
permanent counterparts. Dabbling duck pairs feed along the edges 
of these ponds, concealing themselves from predators and con-
specifics (Bartzen et al., 2017; Kantrud & Stewart, 1977; Reynolds 
et al., 2006). Many of the temporary ponds used by dabbling duck 
pairs settling in the PPR are dry in the late summer (July–August) by 
the time waterfowl hens are raising broods (Johnson et al., 2010). 
Greater numbers of broods are often found on the deeper seasonal 
or semipermanent ponds (Kemink et al., 2019; Talent et al., 1982). As 
a result, conservation targeting for successful reproduction requires 
a diverse mix of wetland types, or hydrologic regimes, ranging from 
temporary, shallow ponds able to thaw early in the year, to deeper 
semipermanent wetlands that will remain inundated through hot, 
dry summers.

In this paper, we develop spatiotemporal models of waterfowl pair 
and brood abundance that incorporate layers describing water and 
land use changes on the landscape. Specifically, we seek to use these 
models to evaluate: (a) whether the pair abundance values scaled to a 
0.152 km2 resolution grid (hereafter averaged pair abundance) that are 
used to develop the thunderstorm map are a good surrogate measure 
for other conservation objectives including brood abundance and cli-
mate refugia and (b) whether spatiotemporal predictions of pair abun-
dance provide a surrogate measure for brood abundance.

2  | METHODS

2.1 | Study area

The PPR is a 700,000 km2 landscape dominated by small, shallow 
wetlands and historically covered in perennial grasslands (van der 
Valk, 1989). The region's major land uses, physiography, geography 
and climate have been described in detail elsewhere (Cowardin & 
Golet, 1995; Johnson et al., 1994; Reynolds et al., 2006). The PPR 
covers five states and three Canadian provinces. However, indepen-
dently collected brood data and the averaged FWS pair abundance 
data were available only for the PPR in North Dakota, South Dakota 
and part of the Montana PPR. Similarly, the annual pair data we used 
for this analysis were not available for the Iowa and Minnesota por-
tions of the PPR. Consequently, any spatial comparisons made be-
tween distributions were limited to the PPR of North Dakota, South 
Dakota and eastern Montana. The time period for which we mod-
elled pair and brood abundance (2008–2017) is described as one of 
the wetter periods of the PPR's climatic history since the mid-1900s. 
However, as was typical for the region, precipitation and tempera-
ture varied spatially within and between years (NOAA, 2020).

2.2 | Spatiotemporal breeding pair data

We used data from the publicly accessible Waterfowl Breeding 
Population and Habitat Survey database (WBPHS) to model 

F I G U R E  2   The primary waterfowl conservation targeting tool 
in the United States Prairie Pothole Region. Data on abundance of 
waterfowl pairs were generated using GIS modelling techniques 
utilizing United States Fish and Wildlife Service (USFWS) National 
Wetland Inventory digital data, the USFWS-Region 6 Four Square 
Mile Breeding Waterfowl Survey Results, and logistic regression 
(through 2008) or zero-inflated Poisson regression (post-2008). 
Equations predicting duck pair/wetland relationships were 
developed by the USFWS Habitat and Population Evaluation Team 
and US Geological Survey Northern Prairie Wildlife Research 
Center. The information presented represents the accessibility 
of 0.152 km2 landscape units to the combined predicted 
breeding pairs for mallard, blue-winged teal, gadwall, Northern 
pintail and Northern shoveler
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breeding pair abundance from 2008 to 2017. Since 1955, breed-
ing ducks have been counted along aerial transects in Canada 
and the United States. The traditional survey area for the 
WBPHS includes the PPR as well as additional breeding habi-
tat, covering approximately 3.4  million  km2. It is broken down 
hierarchically into strata, then east–west running transects and, 
finally, segments that are roughly 29 km in length (Smith, 1995: 
Figure 3a). During the annual survey, the transects are flown by 
a fixed-wing aircraft 30–45  m above the ground. An observer 
and the pilot count ducks and ponds 200  m on both sides of 
the segments (Smith, 1995). Ground counts are also completed 
simultaneously to allow estimation of detection rates (see 
Smith, 1995).

The dependent variable in our duck pair analysis was the total 
number of dabbling duck pairs counted within a segment. We in-
cluded the dabbling duck species considered in the averaged pair 
abundance data, which are the five most common dabbling duck 
species in the PPR: mallard, gadwall, Northern pintail, Northern 
shoveler and blue-winged teal. These species are the most tar-
geted in wetland and waterfowl management plans in the region 
(Prairie Pothole Joint Venture, 2017). We calculated the total num-
ber of pairs per segment from raw counts such that:

where P represents a duck pair (male and female), LM (isolated lone 
drake) represents an indicated pair, and VIF represents the detection 
adjustment factor specific to the strata relevant to that segment, year 
and species (Smith, 1995). We included only counts for segments that 
were completely within the US or Canadian PPR (Figure 3b).

2.3 | Spatiotemporal pair models: 
predictor variables

The predictor variables we tested were supported by previous stud-
ies and tied ecological and anthropogenic processes together. They 
included two variables describing wetlands and moisture and variables 
describing our hypotheses about human-driven processes (Table  1). 
The variables describing wetlands included the number of wet wetlands 
counted per segment in the survey (pond count) and climate moisture 
index, which is the difference between annual precipitation and po-
tential evapotranspiration on a vegetated landscape. Landscapes with 
more wet area and higher wetland densities overall generally provide 
more habitat for breeding duck pairs (Johnson & Grier, 1988). As most 
wetlands used by pairs in the spring are filled through rainfall and snow-
melt, we expected areas with more ponded wetland counts and higher 
climate moisture indices to coincide with higher pair counts each year 
(Doherty et al., 2015; Johnson et al., 2010; Zimpfer et al., 2009).Total = (P + LM) × VIF

TA B L E  1   Description of fixed effects incorporated in pair and brood abundance models with brief justifications for their inclusion as well 
as the sources of raw data

Model Fixed effect Justification Data source

Pair Pond count Landscapes with more wet area and higher wetland 
densities overall provide more habitat for breeding duck 
pairs

Waterfowl Breeding Population and Habitat 
Survey

Pair Climate moisture 
index

Landscapes with more moisture on average will tend 
towards higher wetland densities and more breeding 
habitat

Doherty et al. (2015); Wang et al. (2016)

Pair & brood Perennial cover Perennial cover provides the optimal nesting habitat for 
duck pairs

Cropland data index; annual crop inventory 
(Natural Resource Conservation Service; 
Agriculture and Agri-food Canada)

Pair DD5 (Degree days 
over 5C)

Areas with more growing degree days are more conducive 
to cropping and will be less likely to have large expanses 
of perennial cover available for nesting ducks

Wang et al. (2016)

Brood July landscape-level 
wet area

More wet area available at the landscape scale results in 
fewer broods per wetland at the individual wetland level

Walker, Rotella, Schmidt, et al. (2013); 
Carrlson et al. (2018); Kemink et al. (2019)

Brood May wetland count Higher May pond counts will lead to more duck pairs and 
subsequently more duck broods

Walker, Rotella, Schmidt, et al. (2013); 
Carrlson et al. (2018); Kemink et al. (2019)

Brood Emergent cover Intermediate levels provide optimum amounts of cover for 
escape and navigation

Walker, Rotella, Schmidt, et al. (2013); 
Carrlson et al. (2018); Kemink et al. (2019)

Brood Year Inter-annual variation is a key characteristic of the Prairie 
Pothole Region

Walker, Rotella, Schmidt, et al. (2013); 
Carrlson et al. (2018); Kemink et al. (2019)

Brood Wet wetland area Brood abundance increases at a decreasing rate with wet 
wetland area

Walker, Rotella, Schmidt, et al. (2013); 
Carrlson et al. (2018); Kemink et al. (2019)

Brood Regime Seasonal and semipermanent wetlands tend to hold water 
later into the summer and thus, provide more habitat for 
broods than temporary wetlands

Walker, Rotella, Schmidt, et al. (2013); 
Carrlson et al. (2018); Kemink et al. (2019)
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Human-driven processes like agriculture that alter the landscape 
might also impact pair abundance. Perennial cover surrounding wet-
lands has been shown to increase nest success and productivity and 
thus is believed to be the preferred habitat of pairs (Greenwood 
et  al.,  1995; Reynolds et  al.,  2001; Stephens et  al.,  2005, but see 
Walker, Rotella, Stephens, et al., 2013). We included a variable to 
represent the amount of perennial cover surrounding a survey seg-
ment as well as the amount of growing degree days (degree days 
>5°C; Doherty et al., 2015). We expected that perennial cover would 
demonstrate a positive relationship with breeding pair abundance, 
while areas with higher growing degree days would be more con-
ducive to cropping and thus have less habitat suitable for breeding 
duck pairs. Like Doherty et  al.  (2015), we summarized the climate 
moisture index, perennial cover and degree day variables using a 
moving window analysis in ArcMap 10.6 with an area equivalent to 
the average area of a survey segment (11.52 km2). We extracted the 
value of the resulting layers to the centroid of each survey segment 
within the PPR.

2.4 | Spatiotemporal pair models: analysis

Preliminary analyses indicated that the Poisson distribution pro-
vided the best fit for dabbling duck pair abundance between 2008 

and 2017 and that residuals contained spatial and temporal correla-
tion (Zuur et al., 2007). We used Bayesian hierarchical models to ex-
amine the data. The hierarchical approach allowed us to test several 
hypotheses about the structure of spatial and temporal correlation. 
We binned the data by year and randomly selected 80% of the data 
for the analysis and withheld 20% of the dataset to test model fit. 
The remaining analysis contained two stages. We first compared 
support for different global model structures with regards to the 
presence or absence of spatial and/or temporal correlation. Global 
models contained all four fixed effects: pond count, climate moisture 
index, perennial cover and growing degree days. We assessed sup-
port for the fixed effects within the most supported model structure 
in the second stage of analysis.

In the first stage of our analysis, we considered six model 
structures to test different hypotheses about how the spatial ran-
dom field changed over time. The first model contained no spatial 
or temporal correlation and was an ordinary Poisson model (M1). 
The second model incorporated a constant spatial correlation over 
time (M2). Models 3–5 tested three different multiplicative rela-
tionships between space and time, while the final model assessed 
support for additive impacts of space and time on pair abundance. 
We approximated posterior distributions for covariates in all mod-
els using the r-INLA package (Rue et  al.,  2009). INLA provides 
an efficient alternative to Markov chain Monte Carlo (MCMC) 

F I G U R E  3   Study areas for waterfowl modelling. (a) United States Fish and Wildlife Service and Canadian Wildlife Service Waterfowl 
Breeding Population and Habitat Survey. Traditional survey strata are yellow polygons. (b) Centroids of survey segments in traditional strata 
in the Prairie Pothole Region included in the breeding pair modelling. (c) 10.36 km2 plots used in brood surveys between 2008–2012 and 
2013–2017, identified by frequency of years visited
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for fitting latent Gaussian models, avoiding convergence prob-
lems often associated with large spatiotemporal datasets (Rue 
et al., 2009).

We modelled spatial correlation in M2–M6 using the sto-
chastic partial differential equation (SPDE: Lindgren et al., 2011). 
The SPDE approach models spatial autocorrelation across a tri-
angular mesh rather than a grid or polygons and has been used 
to model spatial autocorrelation in a similar manner on waterfowl 
data from eBird (Humphreys et al., 2019) and Eurasian crane data 
(Soriano-Redondo et al., 2019) as well as on processes such as tor-
nadoes (Gómez-Rubio et al., 2015) and pollution spread (Cameletti 
et al., 2013). More recently, a study has also applied the SPDE ap-
proach to Canadian WBPHS data to predict the abundance of 15 
waterfowl species (Adde et al., 2020). We used a low-resolution 
mesh (fewer and larger triangles) in the first stage of analysis to 
speed processing time as recommended by Krainski et al.  (2018) 
and Bakka (2019).

In models M3-M6, spatiotemporal correlation was represented 
using SPDE in combination with an autoregressive structure AR1 
process for residuals (Zuur et al., 2017). Because we used a Bayesian 
analysis, the models required priors as starting values. For all fixed 
effects but the intercept, we used normal priors provided by the 
INLA package (Rue et  al.,  2009). For the intercept, we provided a 
prior with a mean of 0 and precision of 0.001 (Kifle et  al.,  2017). 
We used penalized complexity (PC) priors for the latent effects 
in our models as recommended by both Simpson et al.  (2017) and 
Fuglstad and Beguin  (2018). These priors penalize departure from 
a base model and encourage parsimony in model selection. We also 
used information from the early stages of analysis to inform the 
prior nominal range of the SPDE mesh in final models. The nomi-
nal range is the distance at which residual autocorrelation declines 
to 0.1 (Krainski et  al.,  2018). We fitted all models using the INLA 
package (Rue et al., 2009) in the r statistical environment (R Core 
Team, 2019). We compared the six described model structures using 
our hold-out dataset and Spearman's correlation test (Humphreys 
et al., 2019).

The model that provided the highest R-squared values was 
then used for the second stage of the analysis, in which we applied 
a remove-one approach to test support for our predictor variables 
(Chambers,  1992; Walker, Rotella, Schmidt, et al., 2013). In this ap-
proach, a variable was removed from the global stage-one model, 
its Watanabe–Akaike's information criterion recorded, and then the 
variable put back into the model (WAIC: Gelman et al., 2014; Vehtari 
et  al.,  2017). When the removal of a variable decreased the WAIC 
score of a model by any amount, that variable was not included in the 
final reduced model. After we applied the remove-one approach to all 
variables in the model, we ran the reduced model with a high resolu-
tion SPDE mesh to acquire parameter estimates.

We assessed the fit of the most supported model from stage 2 
using the hold-out data. We compared model-based predictions to 
actual pair counts using Spearman's correlation test. R-squared val-
ues over 0.7 with p-values below .01 were considered to support 
correlation and model predictive ability.

2.5 | Spatiotemporal brood count data

We used data from several previous studies conducted from 2008 to 
2010 (Walker, Rotella, Schmidt, et al., 2013), 2012 to 2013 (Carrlson 
et al., 2018) and from 2014 to 2017 (Kemink et al., 2019) to develop 
spatially explicit brood abundance models (Figure 3c). Data were not 
collected during 2011. The data collection for these surveys was 
conducted at individual wetland basins. Observers surveyed basins 
either from a vehicle on the roadside or on foot from the edge of 
the basin. Each basin was visited two to three times in a 36-hr pe-
riod. Because the models we intended to use did not permit missing 
response data, and most of our data were collected via two visits 
per basin, we selected only two visits from surveys with three vis-
its (Walker, Rotella, Schmidt, et al., 2013). We then had early morn-
ing (sunrise—12:00) and late afternoon surveys (15:00—sunset) for 
comparison. More details on data collection can be found in previ-
ously published literature (Carrlson et al., 2018; Kemink et al., 2019; 
Walker, Rotella, Schmidt, et al., 2013).

2.6 | Spatiotemporal brood models: 
predictor variables

We tested the explanatory strength of a suite of covariates that 
had significant influence on brood abundance in previous analyses 
(Table  1). These included perennial cover (Carrlson et  al.,  2018), 
log of the basin wet area (Carrlson et al., 2018; Kemink et al., 2019; 
Walker, Rotella, Schmidt, et al., 2013), May pond counts (Carrlson 
et  al.,  2018; Kemink et  al.,  2019), landscape-level wet area in the 
summer (Carrlson et al., 2018; Kemink et al., 2019) and basin-level 
emergent cover (Carrlson et al., 2018; Kemink et al., 2019; Walker, 
Rotella, Schmidt, et al., 2013). Finally, we included basin regime to 
separate more ephemeral (typically pair habitat) from more perma-
nent water (typically brood habitat: Johnson et al., 2010; Stewart & 
Kantrud, 1971). This covariate differentiated between wetlands that 
were permanent (lakes), experienced strong summer drawdowns 
(semipermanent), were ponded only through July or August (sea-
sonal) and those that were ponded for only 1–2 months early in the 
breeding season (temporary: Johnson et al., 2010). We also incorpo-
rated several wetland-level variables in the brood detection models. 
The detection models were, however, not the focus of the analysis, 
and we included them largely so that we could ensure abundance 
estimates were being adjusted for imperfect detection rates (Pagano 
& Arnold, 2009; Royle, 2004).

Two of the landscape covariates we included in our models we 
expected to have positive relationships with brood abundance. 
Here, we define landscape as a 10.36  km2 plot on which brood 
data were collected during the survey. As described previously, 
we expected higher May pond counts to lead to more breeding 
duck pairs (Johnson & Grier, 1988) and subsequently greater num-
bers of broods on surveyed basins. Similarly, we predicted a pos-
itive relationship between perennial cover and brood abundance. 
Hypotheses regarding this relationship have typically stemmed 
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from the relationship of covariates with pair nesting success 
(Carrlson et al., 2018; Kemink et al., 2019; Stephens et al., 2005; 
Walker, Rotella, Schmidt, et al., 2013). In contrast, we predicted 
that higher amounts of wet area on the landscape in July would 
provide greater opportunity for birds to spread out, fewer de-
tection opportunities and lower basin-level abundance (Carrlson 
et al., 2018; Kemink et al., 2019).

During all brood surveys used in our modelling, concurrent 
flights were used to acquire ponding data on surveyed wetlands 
and the surrounding landscape. Both technicians and automated 
software techniques were used in combination to classify the re-
sulting imagery. Specific methodologies can be viewed in previous 
publications (Carrlson et  al.,  2018; Kemink et  al.,  2019; Walker, 
Rotella, Schmidt, et al., 2013). We used these shapefiles in addi-
tion to data collected by observers during the surveys to parame-
terize the models.

2.7 | Spatiotemporal brood models: analysis

We analysed brood count data (2008–2010, 2012–2017) in two 
stages. Our main impetus was to minimize processing time because 
the final models we used would have been temporally prohibitive 
to run through model selection criteria. Prior to any modelling, we 
stratified the data by year and randomly split them into training 
(80%) and testing (20%) datasets.

In the first stage of the analysis, we tested the explanatory 
strength of our selected predictor variables on the training dataset, 
modelling data within a maximum likelihood framework using N-
mixture models in the r package unmarked (Fiske & Chandler, 2011). 
Applying a remove-one approach, we identified variables that in-
creased the model AIC value and earmarked those to be removed 
from the final reduced model. We used the reduced model in the 
second stage of analysis.

We modelled brood abundance in the second stage using 
Bayesian N-mixture intrinsic conditional autoregressive models 
(iCAR: Besag, 1974), which allowed us to account for both imperfect 
detection and spatial autocorrelation (Guélat et  al.,  2018; Latimer 
et al., 2006; Vielledent et al., 2015). This model combines an ecologi-
cal process dealing with the abundance of duck broods due to habitat 
suitability and an observation process that accounts for the probabil-
ity of detection being less than one (Pagano & Arnold, 2009). Others 
have used this modelling approach in a similar manner on shorebirds 
and pintails (Specht, 2018) and on cetaceans (Vilela et al., 2016).

These models treated the true wetland-level abundance (N) as 
a latent variable with a Poisson distribution and estimated N via a 
simple reflective random walk algorithm (Hastings, 1970; Vielledent 
et al., 2015). The observed counts of broods (y) on site i during visit j 
followed a binomial distribution with index parameter Ni and success 
parameter pij. The ecological process (Abundance: λi,) was modelled 
through a log link as a function of U covariates and the observation 
process (detection probabilities) through a logit link as a function of 
V covariates. The ecological process contained an additional term 

rhoji to account for the spatial autocorrelation between observations 
wherein the abundance of broods on one wetland depends on the 
abundance of the broods on neighbouring wetlands. Here, uj is the 
mean of ρj in the neighbourhood of j, Vρ is the variance of the spatial 
random effects, and nj is the number of neighbours for the spatial 
entity j. The models were parameterized with flat priors and fitted 
using the “hSDM” package (Vielledent, 2019) in the r statistical envi-
ronment (R Core Team, 2019).

We assessed model fit in the second stage by conducting 
Spearman correlation tests between predicted and actual count val-
ues for the hold-out dataset (Humphreys et al., 2019; Kendall, 1938). 
We conducted these tests at both the basin and the plot (10.36 km2) 
resolution because previous analyses have advised that the plot is 
the best grain for planning with these data and models (Carrlson 
et al., 2018). Model fit was considered sufficient if correlation values 
were over 0.70 with p-values less than .01.

2.8 | Spatiotemporal model-based predictions

Developing predictions for each year within the time period 2008–
2017 required annual PPR-wide layers describing spring and summer 
ponding as well as overall wetland seasonality. We developed these 
layers using the Global Surface Water Layer (Pekel et al., 2016). We 
used layers describing the monthly maximum ponding extent (April–
May and July–August) to describe May pond counts (pair and brood 
models), July wet areas (brood models), basin regime (brood models) 
and ponded wetland hectares (brood models). We assessed these 
input variables for accuracy and excluded outliers and data points 
with missing or invalid predictor data. Other input variables for the 
pair and brood predictions were obtained from layers used in the 
original modelling process. In the brood models, the exception to this 
was the emergent cover variable. Because it was not feasible to ob-
tain region-wide information on the status of this variable, we devel-
oped brood predictions at the mean level of this variable observed 
across all survey years and ponds (2008–2010, 2012–2017: 30.67%).

Model-based predictions of pair abundance were developed 
through a posterior bootstrapping method described in Fuglstad 
and Beguin (2018). Using 10,000 posterior samples, we developed 
predictions for each cell in a 1 km × 1 km grid across the traditional 
waterfowl breeding population and habitat survey sampling area in 
the PPR. Since models were developed for 11.52 km2 areas, results 

Ni = Poisson
(
�i
)

yij = Binomial
(
Nipij

)

log
(
�i
)
= �0 + �1xi1 +…�UxiU + �j(i)

logit
(
pij
)
= �0 + �1xij1 +…�VxijV

p (�j|j� ) ∼ Normal (uj,V� |nj )
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were scaled by this amount to obtain per km values. This process 
was completed for each year of the analysis (2008–2017), to obtain 
10 raster layers.

Brood abundance predictions and population estimates were 
developed using 110,000 bootstrapped samples created during 
the modelling process following methods described by Vielledent 
et  al.  (2015). Because sampling was not completed for broods in 
Canada, Iowa or Minnesota, we limited our predictions for broods 
to the US PPR of North Dakota, South Dakota and eastern Montana. 
Using ArcMap 10.6 focal statistics, we summarized the results within 
a 10.36 km2 neighbourhood as suggested by Carrlson et al. (2018). 
This process was completed for each year of the analysis (2008–
2010; 2012–2017) until we had nine 1  km  ×  1  km layers wherein 
each cell represented the total number of predicted broods within 
the surrounding 10.36 km2.

2.9 | Comparison of distributions

To facilitate comparison to the brood data, we applied similar methods 
to both the averaged pair data and our pair prediction raster layers. We 
aggregated the averaged pair abundance data to a 1 km × 1 km raster 
layer. Then, we applied focal statistics using a 10.36 km2 neighbour-
hood to both the averaged pair data layer and the 10 modelled pair 
abundance layers. We clipped the spatiotemporal pair distributions to 
the extent of the spatiotemporal brood and averaged pair abundance 
data. Next, we used the Spearman correlation statistic to test for simi-
larities between the averaged pair, and spatiotemporal pair, and brood 
data distributions in these areas. All raster comparisons were com-
pleted using the stats package in program r (cor: R Core Team, 2019). 
For all correlation results, we considered values greater than 0.70 to be 
significant, indicative of highly similar distributions and to suggest the 
potential for surrogacy as a conservation measure.

Finally, we examined the overlap among our predicted pair and 
brood distributions and the averaged pair abundance data (Reynolds 
et al., 2006). We considered larger proportional areas of overlap to 
be more indicative of similar distributions and to suggest the po-
tential for surrogacy as a conservation measure. We examined only 
the most abundant 7,203.41  km2 of our predicted pair and brood 
distributions for similarities with each other and with the highest 
7,203.41 km2 of the averaged pair abundance data. We chose this 
figure because it was the remaining high priority wetland habitat 
area in need of protection under the current Prairie Pothole Joint 
Venture Implementation Plan (2017). The same averaged pair abun-
dance data layer was used for each year.

3  | RESULTS

3.1 | Spatiotemporal pair models

The two stages of our modelling process for the breeding duck pair 
data provided support for a reduced model with spatial and temporal 

autocorrelation. In the first stage of our analysis, we found most 
support for a model structure demonstrating an additive relation-
ship between spatial and temporal autocorrelation (Appendix  S1: 
Table S1). In the second stage, the remove-one analysis showed 
support for the removal of all variables except adjusted pond count 
(Appendix S1: Table S2).

The final reduced model consisted of an SPDE mesh of 27,862 
vertices, an AR1 temporal structure and contained ponded basin 
count (log-scale median of the posterior distribution = 0.32, 95% CI: 
0.31–0.32) and an intercept term (log-scale median of the posterior 
distribution = 5.23, 95% CI: 5.00–5.46). This model explained 78% 
(p < .01 CI: 76%–80%) of the variation in our testing dataset. Model-
based estimates for latent effects revealed support for low autocor-
relation among years (Table 2) and a high spatial autocorrelation with 
a median nominal range of 78 km (CI: 70–88 km: Appendix S1: Figure 
S1).

3.2 | Spatiotemporal brood models

Our initial remove-one analysis did not support the removal of any 
predictor variables in the brood abundance or detection models. Thus, 
we used a global model in the Bayesian analysis to obtain parameter 
estimates. Results supported the major conclusions of previous stud-
ies, indicating that wetland area is a strong driver of duck brood abun-
dance in the PPR. Further, variables at a larger spatial resolution had 
both positive (May pond count, perennial cover) and negative (July wet 
area) associations with brood abundance. However, the credible inter-
vals for the perennial cover relationship crossed zero, suggesting some 
ambiguity in this effect (Table 3). We also saw support for inclusion of 
variables describing the seasonality of ponds. The largest difference 
was between the “Lake” category and the more ephemeral pond types. 
Finally, model parameter estimates suggested that abundance varied 
significantly across years and that spatial correlation was relatively 
high (Appendix S1: Figure S2).

TA B L E  2   Log-scale median posterior estimates of AR-1 lag 
effects

Year 2.50% 50% 97.50%

2008 −0.25 −0.08 0.10

2009 −0.19 −0.02 0.16

2010 −0.37 −0.20 −0.02

2011 −0.17 0.00 0.18

2012 0.03 0.20 0.38

2013 −0.16 0.02 0.19

2014 −0.12 0.06 0.23

2015 −0.10 0.07 0.25

2016 −0.18 0.00 0.17

2017 −0.15 0.03 0.20

Note: 2.50% and 97.50% represent the lower and upper 95% credible 
intervals.
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Spearman tests of hold-out data revealed moderate correlation 
with actual count data at the resolution of individual basins (0.53, 
p  <  .001) but high correlation at the 10.36  km2 resolution (0.80, 
p < .001).

3.3 | Spatiotemporal pair and brood predictions

Using the top models from each analysis, we provided year-
specific pair and brood predictions of abundance for all years 
2008–2017, except for year 2011 when no data were collected on 
broods. Median bootstrapped estimates of pair abundance for the 
traditional WBPHS area within the US and Canadian PPR varied 

annually and ranged from 12,188,879 (2008: 95% CI 10,753,552 
- 13,861,340) to 16,898,488 (2014: 95% CI 14,915,348 - 
19,204,329; Appendix S1: Figure S3a). Predicted distributions at 
the 10.36 km2 resolution reflected these temporal changes but did 
not change dramatically across the study period, with the highest 
densities of pairs remaining concentrated in the western PPR each 
year (Appendix S1: Figure S4).

Median bootstrapped estimates of brood abundance for the 
surveyed areas of Montana, North and South Dakota ranged from 
81,070 (2009: 95% CI 60,802 - 108,727) to 754,767 (2012: 95% CI 
560,666 - 1,033,458; Appendix S1: Figure S3b). Predicted distribu-
tions at the 10.36 km2 resolution reflected these temporal changes 
(Appendix S1: Figure S5). Brood density appeared to concentrate in 
similar areas to the predicted pair distributions of the western PPR 
along the Northwestern Glaciated Plains. However, portions of the 
Northern Glaciated Plains and the Lake Agassiz were highlighted as 
well. [Correction added on 5 February 2021, after first online publi-
cation: the data results have been corrected in this section.]

3.4 | Distribution comparisons

The strongest correlations occurred between the averaged pair 
distribution (Appendix S1: Figure S6) and our predicted pair distri-
butions. Spearman correlation coefficient values exceeded 0.70 in 
the comparison of the averaged pair distribution with our predicted 
pair distributions from 2011 (ρ = 0.71, p < .001) and 2017 (ρ = 0.71, 
p < .001: Figure 4; Appendix S1: Figure S7). We did not see strong 
correlations between either the predicted brood distributions and 
the averaged pair distribution or our predicted pair distributions 
(Figure 4; Appendix S1: Figures S8 and S9).

The most abundant 7,203.41 km2 in the averaged pair abundance 
data overlapped similar areas of our predicted pair and brood dis-
tributions (Figure 5). The overlap between the averaged pair distri-
bution and our predicted pair distribution ranged from 18.05% in 
2008 to 35.69% in 2016. Likewise, the overlap between the aver-
aged pair distribution and our predicted brood distribution ranged 
from 12.34% in 2008 to 41.59% in 2015. For both the pair and brood 
distributions, more overlap with the averaged pair data occurred 
consistently in the Northwestern Glaciated Plains of North Dakota.

Our predicted duck pair and brood distributions' areas of overlap 
changed annually with the lowest amount appearing in 2009 (8.23%) 
and the highest in 2014 (37.69%: Figure 5). The highest percentage 
overlap occurred consistently in the Northwestern Glaciated Plains 
of North Dakota and in small areas of the Northern Glaciated Plains 
of northeast North Dakota and South Dakota.

Over the time series, neither the averaged pair distribution nor 
the spatiotemporal predicted distributions represented more than 
41.59% and 37.69% of high abundance brood areas, respectively. 
Put another way, over 55% of high priority brood habitat was not 
represented by the most abundant 7,203.41 km2 in the averaged 
pair abundance data from 2008 to 2017 and similar amounts 
would have still been unrepresented even if our spatiotemporal 

TA B L E  3   Log-scale median posterior estimates of brood spatial 
model parameters

Covariate 2.50% 50% 97.50%

Abundance model

Intercept −2.76 −2.08 −1.24

log(basin wet area) 1.16 1.20 1.23

July wet area (10.36 
km2)

−0.14 −0.07 −0.01

Regime—seasonal 0.79 1.59 2.34

Regime—semipermanent 0.73 1.52 2.27

Regime—temporary 0.39 1.19 1.96

May wetland count 
(10.36 km2)

−0.01 0.06 0.13

Basin emergent cover 0.04 0.11 0.20

Basin emergent cover2 −0.48 −0.43 −0.39

Perennial cover (10.36 
km2)

−0.07 0.01 0.08

Year 2009 −0.93 −0.72 −0.51

Year 2010 −0.56 −0.19 0.17

Year 2012 1.06 1.42 1.79

Year 2013 −0.22 0.12 0.46

Year 2014 −0.17 0.29 0.67

Year 2015 −0.02 0.43 0.81

Year 2016 0.38 0.82 1.19

Year 2017 0.26 0.71 1.09

Detection model

Intercept −1.06 −0.96 −0.87

Basin wet area −0.16 −0.13 −0.10

Date 0.57 0.60 0.63

Basin emergent cover −0.27 −0.16 −0.05

Survey mode 
(walk-in = 0/
vehicle = 1)

0.88 1.14 1.39

Variance of spatial random 
effects

2.01 2.24 2.48

Note: 2.50% and 97.50% represent the lower and upper 95% credible 
intervals.
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pair models were used. [Correction added on 5 February 2021, 
after first online publication: the data results have been corrected 
in this section.]

4  | DISCUSSION

Our results underscore the contributions that current conserva-
tion targeting tools have made to waterfowl conservation to date 
but also suggest that conservation plans in the PPR would benefit 
from the additional consideration of intra- and inter-annual dynam-
ics of habitat use by breeding duck pairs and broods. We used ad-
vanced modelling techniques to assess the extent to which average 
pair abundance is a good surrogate measure for other conservation 
measures and to assess whether spatiotemporal predictions of pair 
abundance provide a surrogate measure for brood abundance. Our 
predictions also supported previous waterfowl distribution model-
ling in the region.

The comparison of the averaged pair data distribution with 
our spatiotemporal pair and brood distributions suggested higher 
and more consistent overlap between the averaged pair and our 

predicted breeding pair distributions than between the former and 
our predicted brood distributions. This relationship provided cor-
roboration for the overall robustness of our modelling approach 
because the averaged pair data, despite being collected through 
a different survey, should in theory have represented the same 
population as our breeding pair models (Prairie Pothole Joint 
Venture, 2017) although our surveys represented a much shorter 
period of time. Overall though, results of the comparison between 
our annual pair and brood predictions, and the averaged pair data 
distributions suggested that relying only on the averaged data and 
products produced from it might give undue low priority to im-
portant areas that could provide refugia to waterfowl during peri-
ods of climate variation.

In the PPR, the cyclic weather patterns of drought and deluge 
drive many of the changes in annual carrying capacity for water-
fowl. Evidence of these dynamics has been displayed in other stud-
ies (Doherty et al., 2015; Janke et al., 2017; Johnson & Grier, 1988) 
and is most obvious in our pair predictions from 2008 to 2012. Low 
densities of breeding pairs were predicted from 2008 to 2010 in the 
northernmost portions of the US PPR. This distribution shifted in 
2011 and 2012 due to a higher concentration of pairs in these areas, 

F I G U R E  4   Scaled correlation plots with Spearman correlation coefficients (R) and associated p-values. Graphs show correlations 
between: (a) predicted brood abundance layer and averaged pair layer in 2009; (b) predicted brood abundance layer and averaged pair layer 
in 2010; (c) predicted brood abundance layer and predicted pair abundance layer in 2009; (d) predicted brood abundance layer and predicted 
pair abundance layer in 2010; (e) predicted pair abundance layer and averaged pair layer in 2011; and (f) predicted pair abundance layer 
and averaged pair layer in 2017. Additional years' plots are in Appendix S1: Figures S7-S9 [Correction added on 5 February 2021, after first 
online publication: figure 4 has been replaced and the legend has been updated.]
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which parallels reports of improved pond conditions in that area and 
period (USFWS, 2008, 2009, 2010, 2011). The averaged pair data 
identified the Northwest Glaciated Plains as an area that was con-
sistently important for breeding pairs. However, in portions of the 
Northern Glaciated Plains there were areas where our distributions 
predicted higher densities than the averaged pair data because of 
changes in wetland numbers.

Model-based predictions of brood abundance also suggested 
disagreement with the averaged pair data, supporting our hy-
pothesis and the research of others (Carrlson et  al.,  2018; Talent 

et al., 1982; Walker, Rotella, Schmidt, et al., 2013) that the habitats 
used by duck pairs and duck broods would not always coincide. The 
lowest amount of overlapping area between averaged pair data and 
brood distribution occurred in 2008 when our models predicted rel-
atively low brood numbers as well. We suspect this type of mismatch 
is related to the underlying carrying capacity of the landscape as 
driven by pond availability throughout the breeding season. Most of 
the US PPR in 2008 experienced moderate to severe drought condi-
tions in the spring (NOAA, 2020), forcing pairs to settle in more con-
centrated areas of available habitat. Cooler summer temperatures 

F I G U R E  5   Most abundant 7,203.41 km2 of averaged pair, predicted pair and predicted brood distributions. Areas of overlap between 
averaged pair and predicted pair (royal blue), averaged pair and predicted brood (yellow), predicted pair and predicted brood (light blue), all 
three distributions (red), superimposed on major level III North American ecoregions
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coupled with moderate levels of precipitation, particularly in the gla-
ciated plains of southeast South Dakota and eastern North Dakota, 
provided pockets of brood-rearing habitat that might not have been 
available or as attractive to pairs earlier in the season (USFWS, 
2008). [Correction added on 5 February 2021, after first online pub-
lication: this paragraph has been corrected.]

Brood abundance is often influenced by environmental factors 
like pond abundance, pond size, weather and climate (Amundson 
& Arnold,  2011; Bloom et  al.,  2012; Carrlson et  al.,  2018; Kemink 
et al., 2019; Walker, Rotella, Schmidt, et al., 2013). The inter-annual 
variation we observed could reflect these environmental factors 
as well as high nest survival rates. As with the pair models, we saw 

evidence of spatial correlation in brood abundance, possibly sug-
gesting that areas with broods already present signals to others that 
these areas are “good” to inhabit (whether true or false: Hobbs & 
Hanley,  1990). Although the spatial effect within our model was 
heterogeneous, on average, we observed more positive spatial cor-
relation among smaller basins than larger basins. Previous studies of 
brood abundance have emphasized the importance of small, shal-
low wetlands as habitat and a food resource (Carrlson et al., 2018; 
Gleason & Rooney,  2017; Kemink et  al.,  2019; Walker, Rotella, 
Schmidt, et al., 2013).

The consideration of spatial and temporal effects in both 
our pair and brood abundance predictions did not lead to higher 

F I G U R E  5
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extents of overlap when compared to the overlap between the 
brood distributions and the averaged pair data. The overall dissim-
ilarities between the two sets of distributions still outweighed any 
spatiotemporal similarities across all years. In drier years (2009, 
2010) we observed the least overlap between the highest abun-
dance areas of pair and brood distributions (8.23%, 12.27%). This 
result supports our hypothesis of intra-annual variation in habi-
tat use. Further, we suggest that the differences in distribution 
might be more pronounced during drier years when temporary 
and seasonal ponds are less available during the brooding pe-
riod. Targeted surveys of these pond types during more variable 
climatic conditions would be needed to support this hypothe-
sis though. According to our results, if a primary goal of water-
fowl conservation planning in the PPR is sustaining a persistent 
regional breeding population, achieving this goal requires not 
only attention to habitat needed by breeding pairs but also to 
habitat important to brood survival and recruitment (Hoekman 
et  al.,  2002; Prairie Pothole Joint Venture,  2017). [Correction 
added on 5 February 2021, after first online publication: this para-
graph has been corrected.]

Based on the spatiotemporal variability we observed in both 
the pair and brood distributions, we suggest that conservation pri-
oritization for waterfowl in the PPR would benefit from consider-
ing both intra- and inter-annual variation. Other studies have made 
similar recommendations based upon pair modelling that displayed 
highly clustered and spatiotemporally heterogeneous distribu-
tions of breeding waterfowl in the PPR (Doherty et al., 2015; Janke 
et al., 2017). Both Doherty et al. (2015) and Janke et al. (2017) ad-
vised that areas capable of consistently attracting large numbers 
of waterfowl should be considered high value habitat for conser-
vation purposes. While we agree with this advice, we also suggest 

that targeted areas will be highly dependent on whether an orga-
nization's conservation goal is minimizing poor, increasing aver-
age or facilitating excellent production in good years. If the latter 
is true, a conservation strategy that targeted areas with consis-
tently high brood numbers would be most appropriate. However, 
if the goal was to minimize poor production, areas used less often 
but during drought years might be equally if not more import-
ant because of their value as refugia (Bino et  al.,  2015; Murray 
et al., 2012; Stralberg et al., 2020).

Even with the addition of pair and brood spatiotemporal distri-
butions, the efficacy of a conservation prioritization tool for the 
PPR would depend, in part, on the uncertainty and error accompa-
nying the predictions. The noisy nature of the input data and the 
questions we asked resulted in uncertainty in our predictions, par-
ticularly for the pair data which were modelled at a coarser spatial 
resolution than the brood data (Hermoso & Kennard, 2012). While 
we feel the results presented herein are robust given the spatial 
and temporal resolution of the data used, we also note that the 
datasets incorporated for developing annual predictive surfaces 
could be improved. The Global Surface Water layer we used had a 
30 × 30 m resolution and was not developed for identifying wet-
lands obscured by vegetation (Pekel et al., 2016). As a result, we 
expect that abundance was underestimated in some areas, most 
likely the abundance of pairs because of their preference for small, 
temporary and seasonal wetlands (Cowardin et al., 1995; Johnson 
& Grier, 1988; Reynolds et  al.,  2006). However, preliminary cor-
relation analyses indicated that the layers developed from the data 
were positively correlated with both May pond counts from the 
WBPHS and brood survey wetland data. Thus, we were comfort-
able using these data for predictions and maintain that, until an 
easily accessible data source at a comparable spatiotemporal scale 

F I G U R E  5
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is made publicly available, the Global Surface Water data might 
represent the best option for regional geospatial wetland data in 
the PPR (Davidson, 2014; Guo et  al.,  2017). Further, we empha-
size the importance of addressing uncertainty in any conservation 
planning strategy (Langford et al., 2009).

5  | CONCLUSION

Waterfowl conservation is perhaps one of the oldest fields of conserva-
tion management but has yet to adopt many of the new conservation 
practices such as the integration of spatiotemporal processes addressed 
in this analysis (Prairie Pothole Joint Venture, 2017). Future studies will 
need to improve upon our work here by incorporating better remote 
sensing data for predictions (more geared towards the PPR), brood data 
from Canada so that predictions can be expanded to that area and sen-
sitivity analyses regarding uncertainty that include cost data.
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