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Abstract
Sustainable management of complex human–environment systems, and the essential services they provide, remains a major 
challenge, felt from local to global scales. These systems are typically highly dynamic and hard to predict, particularly in 
the context of rapid environmental change, where novel sets of conditions drive coupled socio-economic-environmental 
responses. Faced with these challenges, our tools for policy development, while informed by the past experience, must not 
be unduly constrained; they must allow equally for both the fine-tuning of successful existing approaches and the generation 
of novel ones in unbiased ways. We study ocean fisheries as an example class of complex human–environmental systems, 
and present a new model (POSEIDON) and computational approach to policy design. The model includes an adaptive agent-
based representation of a fishing fleet, coupled to a simplified ocean ecology model. The agents (fishing boats) do not have 
programmed responses based on empirical data, but respond adaptively, as a group, to their environment (including policy 
constraints). This conceptual model captures qualitatively a wide range of empirically observed fleet behaviour, in response 
to a broad set of policies. Within this framework, we define policy objectives (of arbitrary complexity) and use Bayesian 
optimization over multiple model runs to find policy parameters that best meet the goals. The trade-offs inherent in this 
approach are explored explicitly. Taking this further, optimization is used to generate novel hybrid policies. We illustrate this 
approach using simulated examples, in which policy prescriptions generated by our computational methods are counterintui-
tive and thus unlikely to be identified by conventional frameworks.

Keywords  Simulation · Policy · Agent-based modelling · Optimization · Fisheries · Socio-economic · Decision-support 
systems

Introduction

As the ‘great acceleration’ continues, achieving sustainable 
use of resources from coupled human–environmental sys-
tems (‘CHE’ systems) remains one of the key challenges 
facing humanity (Kotchen and Young 2007; Schlueter et al. 
2012). A broad range of ‘ecosystem services’ (Daily 1997) 
is provided by links between ecosystems (including linked 
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physical and biogeochemical processes) and complex human 
systems with embedded social, political, economic, and 
cultural components (Boyd and Banzhaf 2007; Carpenter 
et al. 2009; Crossman et al. 2013). These large systems are 
intrinsically difficult to manage, in part because of competi-
tion over resource allocation (‘common action problems’, 
e.g., Harding 1968; Ostrom 1999), but also because by their 
nature, they are among other things multi-scaled, spatially 
heterogeneous, time-varying, highly path-dependent, adap-
tive, and affected by both internal and external influences 
(An 2012; Liu et al. 2007). Predicting the effect of any inter-
vention in the face of such complexity presents difficulties, 
and it is the associated inherent uncertainty that drives the 
current need for innovative models and novel analytical 
approaches.

Ocean fisheries illustrate aspects of many CHE systems, 
namely, a dynamic environmental–ecological system, strong 
human presence, and a complex regulatory landscape (Ful-
ton et al. 2011; Hunt et al. 2013). As a result, management 
of marine living resources is a well-known difficult problem, 
and is far from resolved (Glaser et al. 2014). In 2016 the 
FAO (2016) reported on the state of fisheries globally, find-
ing 31.4% were fished at biologically unsustainable rates. 
Christensen et al. (2014) described a 65% global decline 
in predator fish biomass over the preceding 40 years, inter-
preted as due to overfishing. While some (mostly devel-
oped-world) fisheries are sustainably managed or in strong 
recovery, defining paths to recovery for the remainder, while 
maintaining acceptable levels of service provision over a 
spectrum of developed–developing-world contexts, is a key 
challenge (Costello et al. 2016). In the present work, we 
focus on marine fisheries as an example CHE system, and 
describe both a new model (POSEIDON) and a new com-
putational approach to goal-orientated policy generation. 
However, our approach is generalizable to other types of 
CHE systems.

Goal-orientated approaches—where policies are explic-
itly mapped on to specified desired outcomes (optimal sus-
tainable harvest, biological conservation, social equity, for 
example), informed by expert knowledge and by simulation 
of sets of candidate policies—have proved effective in many 
contexts (e.g., Marine Spatial Planning; see also Cabral et al. 
2016a). Indeed, part of the solution for improved sustainable 
management of natural resources is better implementation of 
known successful policies (e.g., Costello et al. 2016). How-
ever, tailoring existing approaches is not necessarily feasible 
when, for example, novel combinations of conditions occur 
(e.g., through anthropogenically induced combinations of 
environmental stressors), or because lack of management 
capacity precludes application of whole classes of otherwise 
successful management approaches.

In any governance context, there exists an array of indi-
vidual factors that can in principle be varied by regulators to 

attempt to influence behaviour, either directly (e.g., exclu-
sion) or indirectly (e.g., market-based incentives or techno-
logical constraints). Where there are relatively few factors, 
systematic exploration of possible combinations of measures 
may be feasible using simulations. In fisheries, this type of 
simulation approach is referred to as ‘management strategy 
evaluation’ (see Punt et al. 2016, for review). Alternatively, 
the system response to individual policies may be estimated 
using controlled experiments (including adoption of adap-
tive management in real time; Walters 1986) or analysis 
of historical empirical data (Porch et al. 2007). However, 
extensive experimentation in real human–environmental 
systems is seldom, if ever, achievable. In part this is due 
to the overwhelmingly large number of experimental fac-
tors involved (‘the curse of dimensionality’), both in policy 
choice and in the number of states in which the system may 
exist. There are also obvious practical and ethical problems 
associated with experimentation on real human–environ-
mental systems. This lack of opportunity for either empiri-
cal experimentation or ‘brute-force’ theoretical assessment 
of ‘all’ possible policy outcomes, means a different approach 
is required for screening policy choices. In this paper, we 
introduce the POSEIDON model for ocean fisheries (see 
Fig. 1), and use it to explore policy choice and novel meth-
ods of policy generation. We explore the behaviour of the 
model, and its capabilities in generating appropriate behav-
ioural responses, at a conceptual level. We simplify as many 
aspects of the model as possible, to remove extraneous influ-
ences and provide a focus on the core behaviour of the model 
in the absence of additional complication.

Computation and optimization as a solution

We present here a computational approach to policy devel-
opment. In essence, the process starts with a decision regard-
ing the desired system state/outcome—the management 
objective; following this, an automated computational pro-
cess is initiated which uses simulations of the CHE system to 
find policies that most closely achieve the desired outcome. 
This process is in a sense the reverse of policy evaluation 
strategies, where simulations are used to rank the outcomes 
of pre-defined policies. In later sections of this paper we 
use this approach to both optimize existing policies and to 
generate new hybrid policies.

If policies can be encoded as parameter sets, such that 
varying the parameters varies the policies, then automated 
numerical optimization is in principle possible. Multiple 
policy variants give rise to multiple parameter sets, which 
can be considered together as a large combinatorial param-
eter space, representing a set of possible policies. Any given 
policy or set of policies is then represented (defined) by a 
point or region in this space and in principle a CHE system 
model can be used to evaluate their success in relation to the 
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policy objective(s). This allows a goal-orientated approach 
to policy development in which the starting point is the defi-
nition of the desired outcome (the emergent system state), 
defined by a ‘scoring function’ (SF); the optimization pro-
cess then efficiently searches the parameter space to iden-
tify parameter combinations (policies) that best achieve the 
desired outcome, maximizing the value of the SF, subject 
to constraints. The emphasis in this process is, therefore, on 
defining the desired state for the system (and relevant met-
rics), and removes the need to attempt any design of policies 
to achieve the identified goals.

This approach requires sophisticated models to predict 
policy outcomes, which include the adaptive ‘counter-meas-
ures’ potentially employed by agents within the system in 
response to changing policies. This requirement amplifies 
the dimensionality problem, as regulations are now input 
parameters of a complicated, non-linear computational 
model. To be a feasible proposition, the search over policy 
parameters that maximizes the SF must be a highly efficient 
routine (Lee et al. 2015; see discussion of the ‘QBME’ 
method, Stonedahl and Wilensky 2010). An inherent trade-
off emerges between the needs of optimization (which works 
better with fewer parameters and faster models) and real-
ism (which involves more parameters and slower execution 

time). This trade-off can be tamed somewhat by efficient 
optimization. Below we describe the use of a Bayesian meta-
model to guide the optimization process, and also exploit 
the parallelizable nature of agent-based models. While the 
optimization approach is promising, it is not without possi-
ble drawbacks and the potential for ‘brittleness’ is one such 
weakness, and is discussed below.

The need for simulating adaptive responses

The set of subcomponents necessary for adequately real-
istic simulation of human–environmental systems, and the 
balance between parsimonious representation of necessary 
components and the need for realism and adaptability, is 
specific to each application, but we mention here what we 
consider to be relevant principles.

Fundamentally, the model must be driven by mechanistic 
processes to perform well under novel conditions. It must 
have sufficient granularity to capture relevant heterogene-
ity, both spatially and temporally, in all model components. 
This applies equally to the human components. For exam-
ple, representing human agents as aggregated, homogene-
ous, rational, optimal social-economic entities is a poor 
assumption in many contexts (Conlisk 1996). Models of 

Fig. 1   POSEIDON model 
structure, including optimiza-
tion routine. Elements within 
the dashed line are the core 
POSEIDON model (with 
titles of each module and 
brief descriptive key words). 
Outside of this is the optimiza-
tion routine, which iteratively 
adjusts policy parameters, based 
on system state, to achieve 
specified policy objectives. In 
the present conceptual version 
of the model, the environment 
and market modules were not 
activated, and both environmen-
tal conditions and sales prices 
were kept constant throughout 
all simulations. Further details 
are provided in the ESM
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social behaviour in natural environments should capture the 
known heterogeneity of the actors (their motives, prefer-
ences, etc.), the effects of their interactions through social 
networks (e.g., Barnes et al. 2016), and some characteristics 
of their adaptive behaviour. After all, those who are being 
regulated typically adapt in some way to new policies, and in 
potentially unexpected and undesirable ways (Kydland and 
Prescott 1977). This triggers the need to first be able to pre-
dict actors’ behaviour and then to use this ability to fine-tune 
regulation parameters (as part of the optimization process). 
The problem of trying to optimally manage adaptive agents 
is well-suited to computational approaches, because many of 
the conventional tools of control theory break down in such 
settings (Kydland and Prescott 1977).

Agent-based modelling approaches are uniquely suited 
in this regard, as the actions and behaviours of individual 
actors are explicitly represented (An 2012; Filatova et al. 
2013). There is a risk when modelling humans of ‘hard-
wiring’ behaviour and adaptation paths in to the model 
(Railsback and Grimm 2011). This can happen directly (‘if 
x then y’, for example, informed by simplified decision trees 
derived from social surveys) or indirectly (e.g., by focus-
ing only on certain behavioural parameters in a dynamic 
optimization). Hard-wiring generates fragility, in the sense 
that when the model is applied to new situations (that the 
modeller ignored or could not predict), the quality of the 
results is compromised (Grimm and Railsback 2012). One 
approach (which is adopted in our fisheries model described 
below) is instead to build agents with generic exploration 
routines that automatically adapt to changes in their environ-
ment (Berry et al. 2002; Tesfatsion 2003). That is, agents 
make choices with the same algorithm in all contexts (e.g., 
any imposed policy), and this same process incorporates the 
different incentives generated by each rule to produce dif-
ferent final behaviour. This generic approach can be made 
specific using relevant empirical data, either directly through 
model fitting or indirectly through interviews and focused 
group discussions, as a way to tune the adaptation hyper-
parameters to local behaviour (subsuming hard to quantify 
factors like appetite for risk).

Methods

The model

In this paper, we introduce concepts and methods for com-
putationally augmented policy development, using fisheries 
as an example. To avoid introducing the added complexities 
of parameterizing, simulating and interpreting models of 
specific real-world fisheries, the model presented here is a 
conceptual version of the more general POSEIDON model 
(Fig. 1). It nonetheless includes many of the components 

necessary for modelling real-world contexts, and real-world 
site-specific applications will be the focus of subsequent 
work.

The domain of the model is a near-shore capture fishery, 
represented spatially by a shoreline (which houses a single 
port), and an ocean. The ocean contains spatially distrib-
uted fish biomass, and a fishing fleet that can traverse the 
ocean catching fish. The framework includes a rudimentary 
representation of internal markets (for tradeable quotas—
see below) plus external market signalling through pricing 
(in the present conceptual version external pricing remains 
fixed). Policies can be imposed on the fleet using various 
restrictions and financial incentives. A full technical descrip-
tion of the model is given in the Electronic Supplementary 
Material (ESM). The ocean component is modular and all 
ocean module options are spatially explicit with biomass 
that responds to (is depleted by) fishing pressure. In the 
simplest case we have small numbers of non-interacting 
fish species, with population density that grows locally 
(per spatial cell) according to a simple logistic model, and 
diffuses spatially according to the local gradient (follow-
ing Soulié and Thébaud 2006; Cabral et al. 2010). A sig-
nificantly more sophisticated option for the biology is the 
OSMOSE model (Shin and Cury 2001, 2004; Grüss et al. 
2015) a computational model of fish dynamics simulated 
at school level. All options are described fully in the ESM, 
and in examples shown in the main paper the logistic model 
is used throughout.

While considerable effort has already been expended 
in developing models of marine ecological systems [e.g., 
OSMOSE (ibid.), ATLANTIS (Fulton 2010; Fulton et al. 
2004), ECOSIM (Christensen and Walters 2004)], the 
human components of ocean system models have received 
less attention, and for this reason much of our focus has 
been on fleet behaviour (Fulton et al. 2011; van Putten et al. 
2012). Rather than treating the fleet as a homogenous pop-
ulation, we simulate individual boats (including crew) as 
autonomous agents. Behaviour is determined by the multiple 
decisions the agents make each day, such as whether to go 
fishing, where to fish, which gear to use (Fig. 2). These deci-
sions must be made without precise and full knowledge of 
the simulated world, but rather on what can be gathered from 
agent’s past experience and from members of their social 
network (see also Little et al. 2004; Little and McDonald 
2007 for discussion of foraging strategies and influence of 
social networks). The value of this information then decays 
relatively rapidly, as conditions change (e.g., biomass dis-
tribution, market conditions, profit opportunities), and as 
resources are simultaneously exploited by competitor agents.

We model fishers’ decisions as so-called ‘bandit prob-
lems’ (Katehakis and Veinott 1987), in which the fishers’ 
goal is to allocate resources (e.g., time spent fishing) among 
competing options (e.g., fishing locations), with information 
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that is initially limited but which increases as subsequent 
choices are made. The ‘multi-armed bandit’ problem pro-
vides a framework for studying the exploration–exploita-
tion trade-off faced when repeatedly choosing among a 
finite set of options (i.e., the relative benefits of continu-
ing to exploit an existing choice versus exploring another 
option) (Bubeck and Cesa-Bianchi 2012; Kuleshov and Pre-
cup 2014) (pseudo-code is available; see ESM §1.1). Within 
our implementation of this scheme, agents initially make 
a random choice from the available options (in any given 
context), evaluate the outcome of this choice and compare 
this to the success of others in their social network. In sub-
sequent choices, and with some probability, they choose 
to continue with their present choice, copy the choice of a 
more successful agent, or randomly explore another option. 
We refer to this as explore–exploit–imitate (EEI). As this 
continues over time, and in parallel across the fleet, it gener-
ates an evolved group response that is successful in terms of 
whatever the agents’ value (which, in this relatively simple 
abstract model, is profit, but could be defined with arbitrary 
levels of sophistication). The ‘rules’ of the policies, there-
fore, do not change the behaviour algorithms, but do affect 
the agent (fisher) behaviour indirectly both at individual 

and group levels, through incentives in relation to profit. 
That is, choices that result in greater profit (or other benefit) 
will be reinforced and adopted more widely. A benefit of 
this approach is that fishers’ choice behaviour is dynamic, 
and general enough that it works regardless of the biologi-
cal model it exploits, or the policies it operates under. This 
results in a hallmark of agent-based models, which is the 
emergence of high-level dynamic patterns from low-level 
rules/incentives.

In this conceptual version of the model, environmental 
conditions (e.g., conditions that affect fishery productiv-
ity, such as ocean temperature) are unchanging and have 
no effect on agent behaviour or ecology. The nature of the 
imposed policies is described below, and as a simplification, 
we enforce full compliance in all agents in the present ver-
sion. However, adding dynamic environmental conditions 
or options for fisher compliance with regulations are natural 
extensions of the model, planned for subsequent work.

Optimization methods

Simulated policies are defined here by parameter sets, 
such that varying the policy parameter values changes the 

Fig. 2   Daily routine of the fish-
ing agents. Decision points are 
shown as grey boxes



264	 Sustainability Science (2019) 14:259–275

1 3

policies. A simple example would be a seasonal fishery clo-
sure policy, defined by two numbers (t1, t2) representing the 
start and end day of the annual season, operating over some 
period of years. It is then in principle possible to search 
the full parameter space (combinations of t1, t2), evaluat-
ing model performance for each combination against some 
desired outcome at the system level, calculated using a rel-
evant scoring function. The goal might be to maximize total 
catch, c, by varying both t1 and t2, and the model would be 
used to provide values of c, over the two dimensions t1, t2. 
The parameter values (t1, t2) that elicit the “best” response 
(largest value of c) could then in principle be found. In this 
sense we can treat the model as a ‘black-box’ function, 
where the input is the policy parameter set and the output is 
a score based on the simulation outcome; finding the “best” 
policy is a function maximization problem. In the present 
case we use Bayesian optimization (Shahriari et al. 2016) to 
achieve this outcome. Bayesian optimization works by cre-
ating a meta-model of the simulation outcomes, iteratively 
simulating new policies and using the outcomes to update 
the meta-model. In computational models (including agent-
based models) the search for optimality is tied to the ques-
tion of the number of simulation runs necessary for a given 
level of confidence that the output found is the best outcome 
(the global optimum), versus a relatively good outcome (a 
local optimum). The advantage of Bayesian optimization is 
that it answers both questions at once, and with great effi-
ciency. The posterior distribution (over all dimensions) gen-
erated by the Bayesian optimizer provides not only the aver-
age expected value of running a new simulation under any 
parameter combination, but also its uncertainty. The precise 
formulation of the scoring function is of course important 
in this process. In the above example of a seasonal fishery 
closure, whether the catch (c) being maximized was defined 
as that at the end of some interval or as the sum over that 
interval, may have a significant effect on the optimized val-
ues of t1 and t2.

There are secondary benefits of tying together optimisers 
and computer simulations. First is the ability to calibrate the 
model. To achieve this, the scoring function is changed to 
represent some distance of the model output from empirical 
data (Hartig et al. 2011; Grazzini and Richiardi 2015). The 
optimizer then proceeds to tune model parameters to achieve 
the best fit (with the usual caveats of calibration, in particular 
the need to cross validate the results to have a fair estimate of 
the fit quality). A second benefit is the ability to assess the 
‘brittleness’ of solutions, which is a response to a core dif-
ficulty: computational models are somewhat opaque (source 
code for many models is long and difficult to read, for non-
experts particularly), parameters interact non-linearly and 
the input space is so large that most of it lays unexplored. In 
developing and testing models there is a risk associated with 
focusing on model configurations and parameter choices that 

produce expected behaviour. The more the realistic behav-
iour of a model depends on fine-tuning of parameters, the 
greater its ‘brittleness’. A model system that is brittle tends 
to operate acceptably within a relatively small volume of the 
control parameter space, but performance degrades sharply 
otherwise (Bush et al. 1999). Fine-tuning of parameters may 
lead to improved performance, but risks increasing the brit-
tleness of the modelled behaviour. A trade-off potentially 
exists between finely tuned high performance (e.g., bet-
ter model/data comparison, highly sensitive to parameter 
choice) and robust poorer performance (with lower sensitiv-
ity to change in parameters). Testing for robustness both of 
the model behaviour, and of the parameters defining the poli-
cies generated by our approach, is, therefore, essential. Here, 
we use the Automated Non-linear Tests (ANTs) approach 
(Miller 1998), in which we objectively define the degree 
to which parameters must be changed to force the model in 
to ‘incorrect’ behaviour. We do this by devising a scoring 
function to favour unwanted/unrealistic model behaviour and 
searching within given bounds (using Bayesian optimiza-
tion) for parameters that generate the unwanted behaviour. 
Any investigated model behaviour can then be described as 
robust under the identified parameter variation if it cannot 
be ‘denatured’ through this approach. This is conceptually 
allied to the ‘pattern-orientated’ approach of Jakoby et al. 
(2014), in that both approaches guard against inclusion of 
unrealistic parameter values, and those parameter sets that 
lead to unwanted behaviour. The ANTs approach does have 
limitations and these are outlined in ESM §2.1.3, along with 
ANTs results for each of the model behaviours shown.

Quantifying trade‑offs

Implicit in the discussion of optimization and scoring 
functions so far, has been the notion that there exists a 
single outcome targeted by the policy and that this was the 
sole focus of the optimization, or that if a combination of 
outcomes existed then an appropriately weighted summa-
tion of these outcomes had been defined. While for many 
such problems it is possible to combine and explicitly 
weight multiple variables, it is not necessarily desirable 
to define a priori a single numerical definition of policy 
success. An alternative is to assign multiple objectives and 
present a set of policies that represents the best possible 
trade-offs between them. This is multi-objective optimisa-
tion (Deb 2001; Luke 2009) the output of which is a Pareto 
front: the set of efficient (highest scoring) choices over the 
full range of policy variable combinations (see Jacobsen 
et al. 2017, for a fisheries example). One way to under-
stand the Pareto front is to consider it as the ‘budget con-
straint’ for the policy maker, in that it expresses what must 
be given up in one objective to improve another. We pro-
duce Pareto fronts in the present work using the NSGA-II 
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algorithm (Deb et al. 2002; see ESM §4.3). Examples of 
simulated trade-offs between ‘competing’ policy objec-
tives are discussed below.

Approach to model assessment

As the model presented here is a conceptual model, full 
validation through quantitative comparison to empiri-
cal data is not a relevant means of assessment. While a 
range of biological representations can be used within 
the POSEIDON model (described above), for the present 
simulations, the highly simplified ‘logistic growth with 
diffusion’ model was used. This provides a sufficiently 
responsive spatially distributed stock for the present 
model experiments, but is not adequately realistic for data/
model comparisons (an externally validated model such 
as OSMOSE (ESM §2.5) would be used in this case). The 
stronger focus in the present work on fleet dynamics does, 
however, require evidence that our formulation of vessel 
behaviour, and in particular the simple bandit algorithms 
that determine individual agent choices, are an adequate 
way to model fishing fleets in broad terms. Evidence is 
found in the nature of emergent behaviours generated in 
response to: (1) imposed policies, including marine pro-
tected areas (MPA’s), seasonal fishery closures, fishing 
gear (technology) regulations, and the use of tradeable 
and non-tradeable catch quotas and (2) non-policy-related 

factors, including fuel and fish sale prices—the fleet 
should respond in qualitatively realistic ways under such 
changes.

Optimization experiments

To explore the use of our policy optimization methods in 
both fine-tuning individual policies and in generating novel 
policy combinations, we present three cases: (1) the set-
ting of tradeable and non-tradeable quotas in the context of 
geographically mixed and geographically separated target/
bycatch species; (2) the optimal placement of an MPA when 
trading-off catch against conservation in a mixed (two boat 
types) fishery; and (3) the use of the optimizer to generate 
novel (hybrid) policies in the context of a trade-off between 
catch and conservation.

To improve readability in the following section, we pre-
sent sequentially for each experiment, the background, meth-
ods and results, after first presenting the model assessment 
results.

Experiments and results

Model assessment results

Model assessment results are summarised in Table 1 (with 
references to relevant ESM sections for full details). We 
focus first on the fleet response to two relatively direct 

Table 1   Summary list of model behaviour in response to simulated policy and changes in boundary conditions

The first column provides the simulation context and reference to the section in the ESM, where full details can be found. ‘Results’ summarises 
the model behaviour, and ‘Comment’ provides the basis on which the model behaviour is considered reasonable

Conditions Results Comments

Marine protected area [ESM §2.4] Fishing the line Murawski et al. (2005), Parnell et al. (2007), 
Kellner et al. (2007) and Cabral et al. 
(2016b)

Gear restrictions on habitat [ESM §2.4] Fishing the habitat line Hannah (2003) and Bellman et al. (2005)
Two co-located species with different bio-

masses [ESM §2.7]
Target switching until biomasses equalize Sutton and Ditton (2004), Béné and Tewfik 

(2001) and Katsukawa and Matsuda (2003)
Fuel price increase [ESM §2.3 and §2.8] Fishing closer to port and/or switch to gear 

with better efficiency
Poos et al. (2013), Abernethy et al. (2010) and 

Basurko et al. 2013
ITQ versus TAC: heterogeneous catchability 

[ESM §3.1]
Positive correlation between catchability and 

total catches for both policies
A ‘common sense’ finding

ITQ versus TAC: heterogeneous efficiency 
[ESM §3.1]

Positive correlation between efficiency and 
catches for ITQ but not TAC​

A ‘common sense’ finding

ITQ–TAC–open access: fish prices negatively 
proportional to landings [ESM §3.2]

ITQ solves race to fish and maximizes profits Birkenbach et al. (2017)

ITQ versus TAC: choke species geographically 
separated [ESM §3.3]

ITQ incentivizes fishing away from choke spe-
cies; TAC does not

Miller and Deacon (2017)

ITQ versus TAC: choke species co-located 
with target [ESM §3.4]

ITQ incentivizes selection of gear that avoids 
bycatch; TAC incentivizes higher catchabil-
ity overall

Miller and Deacon (2017)
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effects: changes in the total biomass and distribution of 
fish species, and changes in fuel price. To summarise these 
results, agents react to local biomass depletion by moving 
to fish in areas of the ocean with higher biomass, and when 
biomass fluctuates, agents naturally target more abundant 
species, all without explicit knowledge of stock levels and 
locations. With regard to fuel price, agents incur a financial 
cost in buying fuel, and respond to changes in fuel prices 
by changing fishing location, fishing at distances from port 
that better balance the trade-off between fuel costs and catch 
(for any given distribution of biomass in the ocean). Fur-
thermore, when we allow for adoption of more fuel efficient 
gear, higher fuel prices drive faster uptake of this gear by the 
agents. While both sets of responses are relatively easy (for 
knowledgeable humans) to predict, and would be expected 
of any real fleet, we note that none of these behaviours are 
programmed into the agents. For example, agents have no 
built-in concept of distance, and all related changes in fish-
ing location emerge as a consequence of their decision-
making process. Other responses, to policies, are perhaps 
less obvious a priori, but nonetheless expected in hindsight.

Following imposition of a (no-take) marine protected 
area (MPA), which agents can traverse but not fish, agents 
react by ‘fishing the line’ (McClanahan and Kaunda-Arara 
1996; Kellner et al. 2007) to benefit from ‘spill-over’ effects 
of fish leaving the protected area, in spite of the concepts 
‘border’ and ‘line’ not being part of their programming. We 
can impose global quotas (total allowable catch—TAC—
per species per season over the whole fishery), in which the 
season for a species is closed once its TAC is reached. Here, 
the agents naturally learn as a group to race (competitively) 
to catch the full quota as quickly as possible. This is a clas-
sic commons problem, as there is no incentive not to fish 
as effectively as possible. Implementation of a simulated 
individual tradeable quota (ITQ) system resolves this “race 
to fish”, and results in greater overall earnings (as explained 
by Branch et al. 2006). Furthermore, mismatches between 
quotas and availability incentivise agents to target species 
whose quota is cheaper either by changing to more species-
selective gear or by changing fishing location if the species 
occupy different regions of the ocean. Where we introduce 
variation in the efficiency of gear or fuel use, the more effi-
cient agents prosper further under the ITQ system by buying 
quota from less efficient agents, therefore, eventually lead-
ing to consolidation of the fleet (if we allow boats to exit 
the fishery once earnings drop below some prescribed level; 
also shown in the model of Little et al. 2009). We assessed 
the robustness of these seemingly realistic behaviours using 
ANTs (described above), and found all behaviours were per-
sistent under at least ± 20% variation in relevant parameter 
values.

In summary, relatively simple (but adaptive) agents used 
in POSEIDON are able to reproduce a broad range of fleet 

behaviours observed in real fisheries. For example, without 
being explicitly coded in to the model, under open access 
a race-to-fish emerges endogenously from the simulated 
fleet, which then responds appropriately to policies aimed 
at solving this problem (ESM §3.3). Similarly, agents learn 
to avoid bycatch through location choice (ESM §3.4) and 
gear selection (ESM §3.5), in the presence of complex pol-
icy scenarios. This flexibility suggests great potential for 
POSEIDON to answer a wide range of policy-related ques-
tions. The following sections provide use-case examples of 
policy optimization, both for fine-tuning prescribed policies, 
and for generating policy hybrids.

Experiment 1: tradeable versus non‑tradable quotas

As described above, a well-used output control in fishery 
management is the imposition of fishery-wide quotas of 
total allowable catches (TAC, in units of mass), enforced 
at species (or species group) level. Here, the fishery sea-
son remains open for that species until total catches across 
the fleet reach the TAC. An unintended consequence of this 
approach is the ‘race to fish’ it incentivizes between fish-
ers who aim to maximize, competitively, their individual 
catch (hence profit) (see review by Branch et al. 2006). By 
distributing amongst the fishers, before the season starts, 
permits/quotas to catch a given amount of fish within the 
season, and then allowing them to trade these quotas (an 
individual tradeable quota [ITQ] system, see Costello et al. 
2008), the race-to-fish can be eliminated, as the incentives 
to race no longer exist. According to Costello et al. (2008), 
121 fisheries worldwide were using this approach by 2003, 
distributing the TAC amongst some proportion of the extant 
fishers. We describe two experiments to explore the use of 
TACs (Expt.1a) and ITQs (Expt.1b) using the present model.

Experiment 1a (TACs): methods

As in model runs described above, we use two versions of a 
highly simplified simulated world to demonstrate optimiza-
tion of both TACs and ITQs. Two moderately mobile species 
of fish inhabit a rectangular ocean: in the first case, species 
‘A’ (‘red fish’) live in the upper half, species ‘B’ (‘blue fish’) 
live in the lower half (both can be caught and sold), and pop-
ulations regrow logistically (with a rate constant of 0.7/year; 
ESM §2.1.2); in the second case, the populations of red and 
blue fish are well-geographically mixed, occurring homoge-
neously in all parts of the ocean in an arbitrary proportion 
(the conclusions we present are not sensitive to this ratio). 
The chosen policy goal, through adjusting quota levels, is 
to maximize the total red fish catch over 20 years (

∑20

t=1
C
A

t
) 

while preserving the maximum blue fish biomass (MB

t=20
) 

(here, index t is model year, C is total annual catch, and 
superscript A and B refer to species). The scoring function 



267Sustainability Science (2019) 14:259–275	

1 3

S (necessary for the optimization procedure), is defined 
S = M

B

t=20
+
∑20

t=1
C
A

t
 (also see caption to Fig. 3). For both 

the ITQ and the TAC there are two parameters to set: annual 
quotas for species A and species B, Qred and Qblue, respec-
tively (which in the case of the ITQ are distributed equally 
amongst the N = 100 agents; we did not investigate how vari-
ation in the initial allocation of quota impacts our results, 
and this will be explored in future work).

Experiment 1a (TACs): results

Figure 3 shows the estimated score distributions generated 
during the optimization of quotas for TAC (Fig. 3a, b) and 
ITQ (Fig. 3c, d) policies. The position of these points is 
decided iteratively by the Bayesian Optimizer. As each result 

(value of S) is calculated, following each successive run of 
the model, the optimizer updates the estimate of the distribu-
tion of scores (and associated uncertainty) across the [Qred, 
Qblue] parameter space, and provides the ‘coordinates’ for 
the next model run. The contours plotted in Fig. 3 represent 
this meta-model of the score distribution at the end of 200 
simulation runs (equivalent plots of the uncertainty in the 
estimated value of the meta-model are shown in ESM §4.2).

For the ‘separated’ and ‘mixed’ cases (Fig. 3a, b), the 
scores produce an L-shaped pattern. For ‘separated’ species, 
with the two limbs intersect at Qred ≈ Qblue ≈ 2.6e5, while 
for ‘mixed’ the intersection happens at Qred ≈ Qblue ≈ 3.75e5 
(arbitrary units). For the agents, whose goal is to maximize 
profit, the fleet-wide TACs provide no individual incentive 
to target either species, since both can be sold for profit, and 

Fig. 3   Results from the Bayesian optimization process for TAC and 
ITQ quota allocation. Each black dot (n = 200) represents the out-
come of a 20-year model run with unique Qred and Qblue combinations 
(red/blue fish quota values), from which scores are calculated. Plots 
a, b relate to the geographically separated north/south red/blue fish 

modelled world, while c, d are for geographically mixed populations. 
Plots a, c show the estimate of the scoring function (over the red/blue 
quota space) for the TAC policy; plots b, d show equivalent data for 
the ITQ simulation. Colours represent estimated policy scores (S), 
with values shown in the side colour bars
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agents tend to catch whatever is close to port (to reduce fuel 
costs). This results in well-mixed yearly landings. Since the 
policy score is a simple (non-weighted) sum, catching reds 
contributes to the score by the same amount as preserving 
blues; hence, the L-shaped results are shown in Fig. 3a, b. 
That is, to avoid a low policy score by year 20, total catch 
must be constrained (to preserve blue and ensure red fish 
are not caught at a rate that depletes the stock too rapidly) 
but not constrained to the extent that catches are too heavily 
limited. This is achieved by constraining either the red or the 
blue quota, and once this constraint is present for one spe-
cies, the results (policy score) are insensitive to the quota for 
the other species so long as that quota is large enough avoid 
further constraining the catch. This explanation applies to 
both the ‘separated’ and the ‘mixed’ cases, with the opti-
mizer ‘discovering’ what is effectively the maximum profit 
yield for red species in both cases (over the 20 year period), 
which is larger for the ‘mixed’ case as there is greater total 
biomass.

Experiment 1b (ITQs): methods

We now turn to the ITQ under otherwise identical model 
conditions (‘mixed’ and ‘separated’). Quotas for each spe-
cies are allocated to each agent at the start of each simu-
lated season. Throughout the season, agents participate in an 
open auction market for quotas at the end of each day. Each 
agent needs sufficient quotas to cover their catch and based 
on their earnings needs and catch rate, they decide whether 
to buy/sell quotas from/to other fishers (see ESM §3.1 for 
details of quota valuation and trading). If they catch more 
than the quotas they have, they sell only the portion of the 
catch covered by the quota (the remaining fish are discarded) 
and they are disqualified from fishing until the end of the 
season (when the quota allowance refreshes—see ESM §3 
for full description). In this experiment the boat holds are 
relatively small and the effect of discards is insignificant.

Experiment 1b (ITQs): results

In this experiment, the optimizer returns a TAC for each 
species (Qred and Qblue) which is then distributed equally 
amongst the fishers. Results are shown in Fig.  3c, d: 
in the case of mixed populations, optimal quotas are 
Qred ≈ Qblue ≈ 3.75e5; for geographically separated popula-
tions, the results are Qred ≈ 3.75e5 and Qblue ≈ 0.

Comparing Fig. 3a and c shows, for the case of geo-
graphically separated fish populations, the optimal quota 
allocation under TAC and ITQ to be significantly different. 
The optimal blue quota under the ITQ is found to be zero. 
Agents operating under the simulated ITQ are in general 
incentivized to avoid species whose quotas are rare, and in 
this is an extreme instance of this tendency. Agents who by 

experimentation land in the south of the map and catch blue 
fish are unable to fish again for the entire season and those 
within their social network learn not to imitate them. The 
Bayesian optimizer exploits this ability of the fleet to adapt, 
and converges, quite logically, to a scheme, where red quota 
is at the discovered MSY and blue fish are conserved by 
setting their quota to zero. To demonstrate this difference is 
caused by agents’ reaction to policy, we run the same optimi-
sations on the well-geographically mixed distribution of red 
and blue fish (see Fig. 1c, d). Agents in this case are unable 
to modulate the ratio of blue to red catches by fishing loca-
tion choice, and the optimal ITQ and TAC quotas are largely 
indistinguishable (yielding the familiar L-shaped optimum, 
since blue/red landings are always correlated). A somewhat 
counterintuitive result from our model is that the optimal 
total quota allocated under an ITQ is not necessarily equal to 
the optimal (fishery-wide) TAC. In the case outlined above, 
this is because ITQs, unlike TACs, incentivise changes in 
fishing location choices (further discussion in ESM).

Experiment 2: optimizing marine protected area 
(MPA) placement

Experiment 2 (MPA placement): methods

In this experiment, we investigate the optimal placement 
of an MPA in a simulated world, where there is only one 
species of fish (with biomass density that increases lin-
early with distance from shore), and two types of fishing 
agents [real-world decisions, e.g., Watts et al. (2009), rest 
on larger bodies of information, but we maintain relative 
simplicity here, to ease interpretation]. In our simulation, 
the first agent type has large boats with large travel range, 
large holds and efficient gear (high probability of catching 
fish per unit effort); the second has small boats, with small 
holds, inefficient gear and limited travel range (see ESM 
§4 for details). The policy goal is to protect the catch of 
small-scale fishers, in the face of competition from the 
larger boats while maximizing the total fishery catch. The 
total catch, which is most likely to be dominated by the 
larger boats, is expressed in terms of summed catches 
from all boats over a 20-year period. The policy choice 
is the size and location of a limited-entry MPA in which 
small-scale fishers can fish but larger boats cannot (tra-
versing the MPA is allowed for all). This situation is akin 
to a developing country setting (e.g., Philippines), where 
commercial vessels are allowed to fish only beyond a pre-
scribed distance from shore, while small-scale fishers face 
no such restrictions. In Experiment 1, there was an implicit 
assumption that the two terms in the score function (S) 
were equally weighted, allowing for a straightforward opti-
mization of each policy. However, in this second example 
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we wish to explore the possible trade-off between the two 
objectives (total catch versus small-boat catch), and we 
explore the associated Pareto front.

Experiment 2 (MPA placement): results

Results from Experiment 2 are shown graphically as a 
Pareto front in Fig. 4a, where the nature of the trade-off 
between the two policy objectives can be seen. Three 
example protected areas, generated by the Bayesian opti-
mizer, are also shown in Fig. 4b–d. Figure 4b shows the 
MPA that prioritizes small-boat catches. The optimizer 
creates a large MPA around the port within which small 
boats fish, without competition from larger boats. Fig-
ure  4c shows the MPA that maximizes total catch, at 
the expense of small boat catch. When prioritizing total 
catches the optimizer no longer protects the small boats, 
which then must compete against the larger boats close to 
port. It does, however, still create an MPA further out at 
sea. This region of the ocean is too far from port for small 
boats to reach and the effect of the MPA is to prevent 
overfishing by the large boats. The optimizer ‘discovers’ 
this protected area is necessary to maximize long-term 
catches and prevent early depletion, and the (large boat) 
agents duly learn to fish the line to maximize their catch. 
Finally, Fig. 4c represents the numerically optimal trade-
off between the extremes (the equally weighted case).

Experiment 3: generating hybrid policies

A natural development from the first two examples is to 
move away from the need to decide a priori the particu-
lar policy to be optimized in any given context. In real 
world situations this choice may be constrained by prac-
ticalities, but in principle (and in the modelling context) 
we can make such unconstrained choices. To achieve this, 
we expand the ‘policyspace’ by allowing the optimizer 
to take control simultaneously of all policy parameters 
across all applicable policies (in this case, policies for 
MPAs, TAC and ITQ allocations, and season start- and 
end-dates). This provides opportunity for the optimizer 
to ‘create’ higher-scoring hybrid policies by combining 
aspects of different individual policies (see Fig. 5 for an 
explanatory example). We describe two examples of the 
use of this approach that echo the previous experiments: 
Experiment 3a in which target/bycatch species are geo-
graphically mixed, and Experiment 3b in which they are 
separated. Computationally, optimization of hybrid poli-
cies is more intensive (the search space is larger), and 
while it is also possible that optimal hybrid policies may 

Fig. 4   Exploration of trade-offs associated with MPA placement. a 
Pareto front showing the range of outcomes due to size and place-
ment of the MPA. A strong trade-off exists between small-scale fish-
ers’ income and total catches. Parts b–d show the simulation map 
together with example MPAs generated by the optimizer at points 
shown along the front. Green areas are land and the port is located 
(vertically) in the centre of the land

Fig. 5   Generation of hybrid policies. In this example, two simplified 
policy tools (Season length and MPA area) are available. Each policy 
is defined by a single parameter (depicted graphically in parts (a) and 
(b)). The set of possible combinations of policies is described by the 
2D-space shown in part (c), with points in this space relating to the 
two parameters. Scoring the outcome of these choices results in a 
surface, with maximum value indicating the most effective parameter 
choice, and this can be extended to a many dimensional volume rep-
resenting aspects of many individual policies, over which optimiza-
tion can be performed
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retain the simplicity of individual existing policies (i.e. 
hybrids are no better than the best individual policy), there 
is also a risk of the process creating impractical levels of 
complication in the highest scoring policy. Ways of avoid-
ing these potential difficulties are also discussed below.

Experiment 3a (geographically mixed species): methods

The model configuration for Experiment 3a is identical to 
Experiment 1a (two species of geographically mixed fish 
populations, red [A] and blue [B]), and we use the same scor-
ing function, with higher scores for greater catch of red fish 
and greater conservation of blue fish: S = M

B

t=20
+
∑20

i=1
C
A

t=i
. 

As a baseline case, we optimize a fisher-wide TAC and the 
optimizer returns two policy parameters (Qred, Qblue), and a 
score for the policy outcome (S). We do the same for other 
individual policies: (1) a permanent MPA (4 parameters 
defining MPA location); (2) a temporal MPA (4 location 
parameters plus 1 parameter defining the number of days the 
MPA is active, counting from day 1); (3) season length (1 
parameter, number of days the season is open, counting from 
day 1); and (4) ITQ (2 parameters controlling initial quota 
for each species per fisher). For the generation of hybrid 
policies, we combine the parameters of the TAC, temporal 
MPA and season length policies (8 parameters in total) and 
allow the optimizer to search over this enlarged policy space.

Experiment 3a (geographically mixed species): results

The optimization routine yields a policy score, as defined 
above, for the TAC (denoted by the relevant subscript) of 
STAC​ = 1.3e7, which we normalized to 1 and use as a base-
line for comparison to the other policies. For each of the 
different policy options, the optimal policy version was 
found (using the Bayesian optimizer); a further 100 simula-
tions were then run, with the optimal policy imposed for the 
duration of the 20 year simulation, to provide a mean and 
standard deviation for each score. The resultant normalized 
scores (S) and standard deviations (σ) are: permanent MPA, 
SpMPA = 1.09 (σpMPA = 0.04); temporary MPA, StMPA = 1.48 
(σtMPA = 0.008); season length, SSL = 0.99 (σSL = 0.005); ITQ, 
SITQ = 1.03 (σpMPA = 0.006).

For this model setup, the hybrid policy produced results 
that were indistinguishable from the top scoring individual 
policy (the temporary MPA; SHybrid = 1.45, σHybrid = 0.0158). 
While the expectation might be that more degrees of free-
dom (policy parameters) would routinely produce higher 
scores, in this case the optimizer effectively ‘switches off’ 
both of the TACs (by setting red, blue TACs to 1.2e6 and 
2.0e6, respectively, which are so large as to be non-binding) 
and the season length restriction (by setting season length 
to 366 days). The resultant policy is a relatively large MPA 
adjacent to the port (see ESM, §4.5.1), which is imposed for 

part of the year (283 days). The optimizer (without being 
coded to do so, and working only to maximize the score, S) 
exploits the logistic growth characteristics of the individual 
fish populations. It sets a policy that avoids local biomass 
being depleted to the point, where growth rates become 
drastically reduced. Without any regulation, the fleet would 
naturally generate radial ‘fishing fronts’, first depleting cells 
closest to port and working outwards. Were the effort more 
dispersed, fewer cells would be emptied and the recruitment 
rates would be higher (for the same global biomass). A tem-
porary MPA close to port is a way to achieve a more dis-
persed effort. When the MPA region is open, it is exploited 
by the agents (it is close to port and more profitable), but 
since the MPA is only open for a portion of the year, the 
effect of fishing is insufficient to cause major depletion. For 
the rest of the year agents ‘fish the line’ around the MPA 
(see ESM §2.4 for equivalent examples), which causes some 
local depletion but this is tempered by the days agents spend 
fishing within the protected area. No other policy approach 
is able to improve on this situation.

Experiment 3b (geographically separated species): 
methods

In the second hybrid optimization, we re-run the same sce-
nario as for Experiment 3a, with the exception that red/blue 
fish are geographically split: red in northern half, blue in 
southern half of the ocean (as for Experiment 1).

Experiment 3b (geographically separated species): results

In the case of geographically separated species, the high-
est scoring individual policy is the ITQ, with individual 
blue and red quotas being Qred ≈ 3.75e5 and Qblue ≈ 0, with 
a score of ~ 1e7. As for Experiment 3a, normalized mean 
scores and standard deviations for 100 model runs of each 
optimized individual policy were calculated, here yielding: 
permanent MPA, SpMPA = 1.54 (σpMPA = 0.03); temporary 
MPA, StMPA = 1.54 (σtMPA = 0.03); season length, SSL = 1.00 
(σSL = 0.02); ITQ, SITQ = 1.66 (σpMPA = 0.02).

Unlike Experiment 3a, a higher score can in this case 
be achieved using the hybrid approach. The optimiser 
finds a mixture of an MPA plus a restricted season to be 
superior to the ITQ (the normalized score is SHybrid = 1.70, 
σpMPA = 0.01). The hybrid policy includes a year-round 
MPA covering the entire area, where blue fish live and a 
short season length (118 days) to fish the remaining (red 
fish) areas; the quotas (TACs) are set at levels so high as 
to be un-restrictive (1.1e6 for red fish, and 1.2e6 for blue, 
although the blue TAC is inactive in this particular case as 
blue fish are in a protected area, but is calculated as this 
is not necessarily the case for other hybrid policies). This 
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hybrid solution combines the obvious effect of protecting 
blue fish using an MPA and discovers that effort control 
through season length returns a better long-term yield than 
the use of quotas. The improvement of the hybrid policy 
over the ITQ, while statistically significant (p < 1e−10) is 
not dramatic in terms of score, but demonstrates that hybrid 
policies can indeed produce better outcomes than individual 
policies in some cases.

Discussion

The conceptual version of POSEIDON presented here is 
highly simplified compared to real fisheries, and the sensi-
tivity of the observed model outcomes to the various sim-
plifications imposed requires careful investigation before 
meaningful lessons can be learnt for specific fisheries. For 
example, increasing the heterogeneity of the agents, the ini-
tial allocation of quotas in the simulated ITQ, and the level 
of fidelity with which physical/environmental/economic 
conditions are represented, are all likely to affect the model 
outcomes. Nonetheless, the flexibility of POSEIDON in sim-
ulating known behavioural characteristics of fishing fleets in 
response to a broad range of management policies suggests 
considerable potential for real-world application, once addi-
tional empirically informed model complexity is included.

The use of numerical optimization to achieve policy 
goals, both by tuning existing policies and by generating 
policy hybrids, has been demonstrated in the previous sec-
tions. A necessary part of the approach advocated is the 
use of models that include human actors who behave adap-
tively under the influence of management policies. Rather 
than driving our simulated agents with statistical models 
of historical/empirically informed decision outcomes, we 
provided the agents with a means of making decisions. The 
use of an explore–exploit–imitate (EEI) algorithm repre-
sents what is perhaps the simplest approach to developing 
this fully adaptive group (fleet) response. While individual 
human behaviour is undoubtedly more complex than this 
algorithm, demonstration that this approach is indeed rea-
sonable for fleet-level simulation is the appearance of higher 
level behaviour (emergent in modelled time and/or space) 
which is unexpected or hard to predict—for example, the 
emergence of ‘fishing the line’ around an MPA. The fea-
tures listed in Table 1 provide some confidence that EEI 
agents collectively react realistically (i.e., produce behav-
ioural patterns documented empirically) across a range of 
relevant contexts, and provide means for gaining insights 
in to the outcomes of real-world management decisions. 
For example, results of Experiment 1 show that optimal 
ITQ allocation is not achieved necessarily by dividing the 
optimal TAC amongst the fishers. This is by no means an 
obvious result and is due to the adaptation of the fleet to 

financial constraints/opportunities and the spatial distribu-
tion of biomass.

However, while the use of EEI agents is potentially 
powerful, it is also not without limitations. It is not nec-
essarily expected that the transient response of the EEI 
fleet would closely match that of a real fishing fleet. This 
is because, under the present scheme, improvements in 
behaviour are incremental, requiring both ‘bad’ choices 
by some agents, which are then avoided by others, and 
randomly found ‘good’ choices which are then actively 
reinforced. More cognitively sophisticated agents (and real 
fishers) would be expected, through a variety of potential 
mechanisms, such as forward planning, to discount pre-
dictably bad choices or risky options and, therefore, adapt 
their behaviour more rapidly. Such additional behavioural 
features would require further (empirical) calibration, 
which adds complication and potential biases, and these 
were avoided in the present conceptual work, at the poten-
tial cost of less-realistic dynamic responses.

An unsurprising feature of the optimization approach 
is that the outcome (the optimal policy) is sensitive to the 
specification of the scoring function. For example, if the 
management goal is to maximize whole fishery earnings 
over a short interval, the optimizer may find policies that 
lead to full collapse of the stock, if this is the best way 
to maximize catch and earnings over that particular time 
interval. Specification of the scoring function, therefore, 
requires some effort, and in real-world contexts, some 
expert knowledge. We do not see this as a drawback, but 
rather an appropriate allocation of human effort. Users of 
this approach must spend time deciding what is required 
from the system (the preferred system state), and how best 
to quantify it, rather than attempting the difficult task of 
deciding which specific policies might achieve that state, 
and which may then be tested using simulation or other 
means.

The ability to optimize across a range of competing 
objectives is a necessary inclusion within this approach, 
and we present tools which allow policy trade-offs to be 
explored. In real-world applications, decisions over trade-
offs would likely entail factors such as management costs, 
and a variety of risks and rewards (e.g., Little et al. 2016). 
These have not been included in the present model, but are a 
natural extension, and while likely complex in nature, would 
be conceptually straightforward to include in relevant policy 
scoring functions.

Results from Experiment 3 show it is possible to use opti-
mization to generate hybrid policies, by presenting a broad 
collection of policy options to the optimizer. Two interesting 
observations came of Experiment 3 in this regard. In the first 
experiment, the optimiser effectively ‘turned off’ some pol-
icy options to achieve the best score (e.g., ignoring season 
length by setting it to > 365 days). In doing so, it effectively 
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reverted to a single policy option of a temporal MPA. In the 
second, it produced a hybrid policy with better outcomes 
than the best of the single policies. The improvement of the 
hybrid policy over this single policy (an ITQ) was statisti-
cally significant (p < 1e−10), but was not dramatic in terms 
of score. It demonstrates, nonetheless, that improvements 
are possible.

While the examples described for Experiment 3 showed 
the optimiser turning off some policies to achieve the best 
score, or producing relatively simple hybrids, the opti-
miser could in principle create a complex mix of policy 
components. Such a mix might be unworkable in terms of 
real-world implementation, and in some contexts it may 
be necessary to set an arbitrary level for maximum policy 
complexity. A response to this might be to adjust the scoring 
function, such as directly “penalizing” for policy complexity 
or by including the associated implementation costs. Alter-
natively, the optimization could be run as a multi-objective 
optimisation, with policy complexity or implementation cost 
as one of the dimensions. In the case of Experiment 3b (and 
imagining a real-world application), the minor increase in 
score (as defined) may also entail a subsidiary advantage 
in terms of ease of implementation (i.e., it may be cheaper 
and easier to implement a season closure and an MPA than 
to run an ITQ), and this could naturally be included in the 
score, such that the difference between the single and hybrid 
options may be more stark.

The approach of using computational methods to evalu-
ate candidate policies, or to generate hybrids of existing 
policies, has a number of advantages over more traditional 
assessments in which policy candidates are created a priori 
and scored using simulations. Two classes of advantages are: 
(1) avoiding constraining the policy type and (2) optimiza-
tion in light of unforeseen (or poorly resolved) risks and 
opportunities.

On point (1), it is notoriously difficult to confidently 
predict what type of policy (typically referenced against 
those already in use) is likely to be successful (let alone 
optimal in some sense) in achieving specified goals over 
extended time periods. In some well-resourced fisher-
ies, strict top–down (TD) control may be successful (e.g., 
enforced protected areas or observers enforcing no-discard 
policies); in resource-poor contexts, policies that facili-
tate self-organizing/-policing bottom–up (BU) responses 
(e.g., TURF reserves; Christy 1982; Afflerbach et al. 2014) 
may promote better outcomes (as compared to a sub-opti-
mal implementation of TD controls). In the optimization 
scheme we describe, decisions on whether to opt for TD or 
BU approaches, or mixtures of both, need not be made early 
in the process, thereby closing off potentially (and unex-
pectedly) useful options. The optimization process naturally 
‘experiments’ with a wide range of policies that incorporate 
specified TD controls and naturally include BU responses 

due to the adaptive nature of the group (fleet) response. It is 
the score of the outcome that is the focus of the optimiza-
tion, and unless factors associated with penalizing TD or BU 
solutions are included in the scoring function, all possibili-
ties will be explored.

Point (2) is largely about unintended consequences, be 
they detrimental or serendipitous, that may operate over a 
variety of temporal and spatial scales. An immediate and 
well-studied consequence of incorporating spatial effort con-
trols, for example, may be the displacement of effort (ABP-
mer 2017). Dynamic responses may be less obvious. For 
example, a suite of policy goals may include the long-term 
stability of fish catch, defined perhaps by scoring highly 
for reduced catch variance (or discounting for variability 
in catch; Mangel 2000). There is evidence in some systems 
that policies intended to smooth-out shorter term variation 
may increase the risk of pushing the system towards malign 
critical transitions in the longer term. Actively suppressing 
higher frequency variability risks losing valuable (perturba-
tion response) information on the underlying system state, 
but also may condition the system towards resilience to a 
limited spectrum of disturbances (Carpenter et al. 2015). In 
other words, managing for short-term variability (which may 
be politically favourable) may entail higher long-term risk 
to both economic and biological sustainability—a somewhat 
counterintuitive possibility. The optimization procedures we 
describe could in principal accommodate such phenomena, 
requiring no special vigilance or even knowledge of such 
effects by the user. Policies that promote strong short-term 
stability would be down-weighted once the associated longer 
term risks were realised in the model results (so long as 
the model was run for sufficient time), and it may not be 
obvious why these policies were avoided. If such concerns 
are placed also within the context of non-analogue present/
future environmental conditions, and the recognition that 
many complex systems become increasingly fragile as levels 
of stress are increased (Scheffer et al. 2009), the need to use 
a freely searching, process-based, coupled human–environ-
mental model becomes even more compelling.

Conclusions

We argue there is a strong need for new approaches to gener-
ating policies in the domain of complex human–environmen-
tal systems. Models which couple environmental processes 
to complex (adaptive) human components are essential for 
exploring system-level responses to changes in policy. We 
have employed agent-based modelling in our ocean fisheries 
model (POSEIDON), which captures qualitatively a wide 
range of empirically observed fishing behaviour and fisher-
ies responses. The fleet responds adaptively to novel changes 
in policy and/or other conditions and this frees the model 
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user to explore policies and behaviours beyond those which 
have been observed empirically in the past. As such, we can 
define policy objectives (of arbitrary complexity) and use 
Bayesian optimization (over multiple model runs) to find 
policies that best meet the management goals. In addition, 
we can generate hybrid policies which outperform single 
policies by running the optimization over all (individual 
policy) parameters simultaneously. For future work, we 
identify three key areas: (1) a focus on adaptive management 
strategies, in which there is optimization of management 
algorithms rather than the parameters of statically imposed 
policies; (2) incorporation of agents with greater cognitive 
sophistication than the explore–exploit–imitate agents cur-
rently used, to explore transient aspects of policy response; 
and (3) ‘concrete models’ of specific real-world fisheries, to 
explore the effects on behaviour and policy choice of hetero-
geneity in both the ecology and the fishing fleet.

Acknowledgements  This work was funded by the Oxford Martin 
School (within the Sustainable Oceans Programme; PI Bailey) and 
also by Ocean Conservancy, supported by grants from Packard Founda-
tion, Walton Family Foundation, Gordon and Betty Moore Foundation.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Abernethy KE, Trebilcock P, Kebede B, Allison EH, Dulvy NK (2010) 
Fuelling the decline in UK fishing communities? ICES J Mar Sci 
67(5):1076–1085

ABPmer (2017) Displacement of fishing effort from marine protected 
areas. ABPmer Report No. R.2790. Commissioned Reports, Num-
ber 241. York. http://publi​catio​ns.natur​aleng​land.org.uk/publi​
catio​n/56742​65573​06470​4

Afflerbach JC, Lester SE, Dougherty DT, Poon SE (2014) A global 
survey of “TURF-reserves”. Territorial Use Rights for Fisheries 
coupled with marine reserves. Glob Ecol Conserv 2:97–106

An L (2012) Modeling human decisions in coupled human and 
natural systems: review of agent-based models. Ecol Model 
229(24):25–36

Barnes ML, Lynham J, Kalberg K, Leung P (2016) Social networks and 
environmental outcomes. Proc Natl Acad Sci 113(23):6466–6471

Basurko OC, Gabiña G, Uriondo Z (2013) Energy performance of fish-
ing vessels and potential savings. J Clean Prod 54:30–40

Bellman MA, Heppell SA, Goldfinger C (2005) Evaluation of a US 
west coast groundfish habitat conservation regulation via analysis 
of spatial and temporal patterns of trawl fishing effort Canadian. J 
Fish Aquat Sci 62(12):2886–2900

Béné C, Tewfik A (2001) Fishing effort allocation and fishermen’s 
decision making process in a multi-species small-scale fishery: 
analysis of the conch and lobster fishery in Turks and Caicos 
Islands. Hum Ecol 29(2):157–186

Berry BJ, Kiel LD, Elliott E (2002) Adaptive agents intelligence and 
emergent human organization: capturing complexity through 
agent-based modeling. Proc Natl Acad Sci 99(3):7187–7188

Birkenbach AM, Kaczan DJ, Smith MD (2017) Catch shares slow the 
race to fish. Nature 544(7649):223–226

Boyd J, Banzhaf S (2007) What are ecosystem services? The need 
for standardized environmental accounting units. Ecol Econ 
63:616–626

Branch TA, Hilborn R, Haynie AC, Fay G, Flynn L, Griffiths J, Mar-
shall KN, Randall JK, Scheuerell JM, Ward EJ, Young M (2006) 
Fleet dynamics and fishermen behavior: lessons for fisheries man-
agers Canadian. J Fish Aquat Sci 63:1647–1668

Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic and 
nonstochastic multi-armed bandit problems. arXiv preprint. http://
arxiv​.org/abs/1204.5721

Bush SF, Hershey J, Vosburgh K (1999) Brittle system analysis. 
arXiv preprint cs/9904016. http://arxiv​.org/abs/cs/99040​16 
[csNI]

Cabral RB et al (2010) Effect of variable fishing strategy on fisher-
ies under changing effort and pressure: an agent-based model 
application. Ecol Model 2212:362–369

Cabral RB, Halpern BS, Costello C, Gaines SD (2016a) Unexpected 
management choices when accounting for uncertainty in eco-
system service tradeoff analyses. Conserv Lett. https​://doi.
org/10.1111/conl.12303​

Cabral RB, Gaines SD, Johnson B, Bell TW, White C (2016b) Driv-
ers of redistribution of fishing and non-fishing effort after the 
implementation of a marine protected area network. Ecol Appl. 
https​://doi.org/10.1002/eap.1446

Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, 
Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, 
Perrings C (2009) Science for managing ecosystem services: 
beyond the Millennium Ecosystem Assessment. Proc Natl Acad 
Sci 106(5):1305–1312

Carpenter RS, Brock WA, Folke C, van Nes EH, Scheffer M (2015) 
Allowing variance may enlarge the safe operating space for 
exploited ecosystems. PNAS 112(46):14384–14389

Christensen V, Walters C (2004) Ecopath with ecosim: methods, 
capabilities and limitations. Ecol Model 172:109–139

Christensen V, Coll M, Piroddi C, Steenbeek J, Buszowski J, Pauly 
D (2014) A century of fish biomass decline in the ocean Marine. 
Ecol Prog Ser 512:155–166

Christy FT (1982) Territorial use rights in marine fisheries: defini-
tions and conditions. FAO Fisheries Technical Paper 227

Conlisk J (1996) Why bounded rationality? J Econ Lit 34(2):669–700
Costello C, Gaines SD, Lynham J (2008) Can catch shares prevent 

fisheries collapse? Science 321(5896):1678–1681
Costello C, Ovando D, Clavelle T, Strauss CK, Hilborn R, Melnychuk 

MC, Branch TA, Gaines SD, Szuwalski CS, Cabral RB, Rader DN 
(2016) Global fishery prospects under contrasting management 
regimes. Proc Natl Acad Sci 113:5125–5129

Crossman ND, Burkhard B, Nedkov S, Willemen L, Petz K, Palomo I, 
Drakou EG, Martín-Lopez B, McPhearson T, Boyanova K, Alke-
made T, Egoh B, Dunbar MB, Maes J (2013) A blueprint for 
mapping and modelling ecosystem services. Ecosyst Serv 4:4–14

Daily G (1997) Nature’s services: societal dependence on natural eco-
systems. Island Press, Washington

Deb K (2001) Multi-objective optimization using evolutionary algo-
rithms. Wiley-Interscience series in systems and optimization. 
Wiley, Chichester

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol 
Comput 6(2):182–197. https​://doi.org/10.1109/4235.99601​7

FAO (2016) The state of world fisheries and aquaculture. FAO, Rome

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://publications.naturalengland.org.uk/publication/5674265573064704
http://publications.naturalengland.org.uk/publication/5674265573064704
http://arxiv.org/abs/1204.5721
http://arxiv.org/abs/1204.5721
http://arxiv.org/abs/cs/9904016
https://doi.org/10.1111/conl.12303
https://doi.org/10.1111/conl.12303
https://doi.org/10.1002/eap.1446
https://doi.org/10.1109/4235.996017


274	 Sustainability Science (2019) 14:259–275

1 3

Filatova T, Verburg PH, Parker DC, Stannard CA (2013) Spatial agent-
based models for socio-ecological systems: challenges and pros-
pects. Environ Model Softw 45:1–7

Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar 
Syst 81(1–2):171–183

Fulton EA, Parslow JS, Smith ADM, Johnson CR (2004) Biogeochemi-
cal marine ecosystem models II: the effect of physiological detail 
on model performance. Ecol Model 173:371–406

Fulton EA, Smith AD, Smith DC, van Putten IE (2011) Human behav-
iour: the key source of uncertainty in fisheries management. Fish 
Fish 12(1):2–17

Glaser SM, Fogarty MJ, Liu H, Altman I, Hsieh CH, Kaufman L, 
MacCall AD, Rosenberg AA, Ye H, Sugihara G (2014) Com-
plex dynamics may limit prediction in marine fisheries. Fish Fish 
15(4):616–633

Grazzini J, Richiardi M (2015) Estimation of ergodic agent-based 
models by simulated minimum distance. J Econ Dyn Control 
51:148–165

Grimm V, Railsback SF (2012) Designing formulating and communi-
cating agent-based models. Agent-based models of geographical 
systems. Springer, Dordrecht, pp 361–377

Grüss A, Schirripa MJ, Chagaris D, Drexler M, Simons J, Verley 
P, Shin YJ, Karnauskas M, Oliveros-Ramos R, Ainsworth CH 
(2015) Evaluation of the Trophic structure of the West Florida 
Shelf in the 2000s using the ecosystem model OSMOSE. J Mar 
Syst 144:30–47. https​://doi.org/10.1016/j.jmars​ys.2014.11.004

Hannah RW (2003) Spatial changes in trawl fishing effort in response 
to footrope diameter restrictions in the US west coast bottom trawl 
fishery. N Am J Fish Manag 23(3):693–702

Harding G (1968) The tragedy of the commons. Science 
162(3859):1243–1248

Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A (2011) Sta-
tistical inference for stochastic simulation models—theory and 
application. Ecol Lett 14:816–827

Hunt LM, Sutton SG, Arlinghaus R (2013) Illustrating the critical role 
of human dimensions research for understanding and managing 
recreational fisheries within a social-ecological system frame-
work. Fish Manag Ecol 20(2–3):111–124

Jacobsen NS, Burgess MG, Andersen KH (2017) Efficiency of fisheries 
is increasing at the ecosystem level. Fish Fish 18:199–211

Jakoby O, Grimm V, Frank K (2014) Pattern-oriented parameteriza-
tion of general models for ecological application: towards realistic 
evaluations of management approaches. Ecol Model 275:78–88

Katehakis MN, Veinott AF (1987) The multi-armed bandit problem: 
decomposition and computation. Math Oper Res 12(2):262–268. 
https​://doi.org/10.1287/moor.12.2.262

Katsukawa T, Matsuda H (2003) Simulated effects of target switching 
on yield and sustainability of fish stocks. Fish Res 60(2):515–525

Kellner JB, Tetreault I, Gaines SD, Nisbet RM (2007) Fishing the line 
near marine reserves in single and multispecies fisheries. Ecol 
Appl 17(4):1039–1054. https​://doi.org/10.1890/05-1845

Kotchen MJ, Young OR (2007) Meeting the challenges of the anthro-
pocene: towards a science of coupled human–biophysical systems 
Glob Environ Change 17(2):149–151

Kuleshov V, Precup D (2014) Algorithms for multi-armed bandit prob-
lems. arXiv preprint. http://arxiv​.org/abs/1402.6028

Kydland F, Prescott E (1977) Rules rather than discretion: the incon-
sistency of optimal plans. J Polit Econ 85(3):473–491

Lee J-S, Filatova T, Ligmann-Zielinska A, Hassani-Mahmooei B, 
Stonedahl F, Lorscheid I, Voinov A, Polhill G, Sun Z, Parker DC 
(2015) The complexities of agent-based modeling output analysis. 
J Artif Soc Soc Simul 18(4):4

Little LR, McDonald AD (2007) Simulations of agents in social net-
works harvesting a resource. Ecol Model 204:379–386

Little LR, Kuikka K, Punt AE, Pantus F, Davies CR, Mapstone BD 
(2004) Information flow among fishing vessels modelled using a 
Bayesian network. Environ Model Softw 19:27–34

Little LR, Punt AE, Mapstone BD, Begg GA, Goldman B, Williams 
AJ (2009) An agent-based model for simulating trading of multi-
species fisheries quota. Ecol Model 220:3404–3412

Little LR, Punt AE, Dichmont CM, Dowling N, Smith DC, Fulton 
E, Sporcic M, Gorton RJ (2016) Decision trade-offs for cost-
constrained fisheries management. ICES J Mar Sci 73:494–502

Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell 
AN, Deadman P, Kratz T, Lubchenco J, Ostrom E (2007) 
Complexity of coupled human and natural systems. Science 
317(5844):1513–1516

Luke S (2009) Essentials of metaheuristics: a set of undergraduate 
lecture notes. Lulu, Morrisville. https​://cs.gmu.edu/~sean/book/
metah​euris​tics/Essen​tials​.pdf

Mangel M (2000) Irreducible uncertainties sustainable fisheries and 
marine reserves. Evol Ecol Res 2(4):547–557

McClanahan TR, Kaunda-Arara B (1996) Fishery recovery in a coral-
reef marine park and its effect on the adjacent fishery. Conserv 
Biol 10:1187–1199

Miller JH (1998) Active nonlinear tests (ANTs) of complex simulation 
models. Manag Sci 44(6):820–830

Miller SJ, Deacon RT (2017) Protecting marine ecosystems: regulation 
versus market incentives. Mar Resour Econ 32(1):83–107. https​
://doi.org/10.1086/68921​4

Murawski SA, Wigley SE, Fogarty MJ, Rago PJ, Mountain DG (2005) 
Effort distribution and catch patterns adjacent to temperate MPAs. 
ICES J Mar Sci Journal du Conseil 62(6):1150–1167

Ostrom E (1999) Coping with tragedies of the commons. Annu Rev 
Polit Sci 2:493–535

Parnell PE, Dayton PK, Margiotta F (2007) Spatial and temporal pat-
terns of lobster trap fishing: a survey of fishing effort and habitat 
structure. Bull South Calif Acad Sci 106(1):27–37

Poos JJ, Turenhout MN, van Oostenbrugge AE, Rijnsdorp AD (2013) 
Adaptive response of beam trawl fishers to rising fuel cost. ICES 
J Mar Sci 70(3):675–684

Porch CE, Turner SC, Schirripa MJ (2007) Reconstructing the com-
mercial landings of red snapper in the Gulf of Mexico from 1872 
to 1963. In: American Fisheries Society symposium, vol 60. 
American Fisheries Society Bethesda

Punt AE, Butterworth DS, Moor CL, De Oliveira JA, Haddon M 
(2016) Management strategy evaluation: best practices. Fish Fish 
17:303–334

Railsback SF, Grimm V (2011) Agent-based and individual-based 
modeling: a practical introduction. Princeton University Press, 
Princeton

Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos, 
V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-
warning signals for critical transitions. Nature 461:53–59

Schlueter M, McAllister RRJ, Arlinghaus R, Bunnefeld N, Eisenack K, 
Hoelker F, Milner-Gulland EJ, Müller B, Nicholson E, Quaas M, 
Stöven M (2012) New horizons for managing the environment: a 
review of coupled social-ecological systems modeling. Nat Resour 
Model 25(1):219–272

Shahriari B, Swersky K, Wang Z, Adams RP, Freitas N (2016) Taking 
the human out of the loop: a review of bayesian optimization. Proc 
IEEE 104(1):148–175. https​://doi.org/10.1109/jproc​.2015.24942​
18

Shin Y-J, Cury P (2001) Exploring fish community dynamics through 
size-dependent trophic interactions using a spatialized individ-
ual-based model. Aquat Living Resour 14(2):65–80. https​://doi.
org/10.1016/S0990​-7440(01)01106​-8

Shin Y-J, Cury P (2004) Using an individual-based model of fish 
assemblages to study the response of size spectra to changes 

https://doi.org/10.1016/j.jmarsys.2014.11.004
https://doi.org/10.1287/moor.12.2.262
https://doi.org/10.1890/05-1845
http://arxiv.org/abs/1402.6028
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://doi.org/10.1086/689214
https://doi.org/10.1086/689214
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1016/S0990-7440(01)01106-8
https://doi.org/10.1016/S0990-7440(01)01106-8


275Sustainability Science (2019) 14:259–275	

1 3

in fishing. Can J Fish Aquat Sci 61(3):414–431. https​://doi.
org/10.1139/f03-154

Soulié J, Thébaud O (2006) Modeling fleet response in regulated fisher-
ies: an agent-based approach. Math Comput Model 445:553–564

Stonedahl F, Wilensky U (2010) Finding forms of flocking: evolu-
tionary search in ABM parameter-spaces. In: Bosse T, Geller A, 
Jonker CM (eds) Multi-agent-based simulation XI. Lecture notes 
in computer science, vol 6532. Springer, Berlin, pp 61–75. https​
://doi.org/10.1007/978-3-642-18345​-4_5

Sutton SG, Ditton RB (2004) The substitutability of one type of fishing 
for another. N Am J Fish Manag 2:536–546

Tesfatsion L (2003) Agent-based computational economics: modeling 
economies as complex adaptive systems. Inf Sci 149(4):262–268

van Putten IE et al (2012) Theories and behavioural drivers underlying 
fleet dynamics models. Fish Fish 13(2):216–235

Walters CJ (1986) Adaptive management of renewable resources. Mac-
millan Publishers Ltd, Basingstoke

Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C, 
Lourival R, Kircher L, Possingham HP (2009) Marxan with 
zones: software for optimal conservation based land- and sea-use 
zoning. Environ Model Softw 24:1513–1521

https://doi.org/10.1139/f03-154
https://doi.org/10.1139/f03-154
https://doi.org/10.1007/978-3-642-18345-4_5
https://doi.org/10.1007/978-3-642-18345-4_5

	A computational approach to managing coupled human–environmental systems: the POSEIDON model of ocean fisheries
	Abstract
	Introduction
	Computation and optimization as a solution
	The need for simulating adaptive responses

	Methods
	The model
	Optimization methods
	Quantifying trade-offs
	Approach to model assessment
	Optimization experiments


	Experiments and results
	Model assessment results
	Experiment 1: tradeable versus non-tradable quotas
	Experiment 1a (TACs): methods
	Experiment 1a (TACs): results
	Experiment 1b (ITQs): methods
	Experiment 1b (ITQs): results

	Experiment 2: optimizing marine protected area (MPA) placement
	Experiment 2 (MPA placement): methods
	Experiment 2 (MPA placement): results

	Experiment 3: generating hybrid policies
	Experiment 3a (geographically mixed species): methods
	Experiment 3a (geographically mixed species): results
	Experiment 3b (geographically separated species): methods
	Experiment 3b (geographically separated species): results


	Discussion
	Conclusions
	Acknowledgements 
	References


