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ABSTRACT. This research wants to investigate the possibility to highlight and track the 
looseness or compactness of climate change using a network model based on long-term 
weather changes for five major cities in Hungary, for which an important daily scale 
dataset is available starting from 1901 to 2020. Climate study based on network models 
is a novel approach, it does not have a well-developed research, methodological and 
literature background. Even if several network models can be developed, in that used in 
the present study the edges of a network connect the same periods of different years based 
on the greatest aggregate weather similarity. One of the results of this research was 
actually the development of the model itself using functions developed in the R CRAN 
system. In this case of large-scale data processing, it was very important to use 
programming methods that could do all this in a time-efficient manner. Using three 
different study intervals there were results that converged, but there were also results for 
which in the larger study period disappeared or equalized the results obtained for the 
shorter periods. The most pronounced looseness occurs in in the late autumn and winter 
months and in early spring periods. In addition to all these main trends, high looseness 
values can be observed for some settlements in the summer as well as in the late spring 
or early autumn periods, while summer typically appears as a more compact period. 
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1. INTRODUCTION 
The scientific literature regarding climate change is very extensive as its 

consequences affects more and more people. However, these felt effects are locally 
differentiated which suggests that it should be analyzed and assessed according to 
local specificities. (Meresa et al., 2017).  

For climate study there are many models and methods but one of the most 
important possibilities, that of network models (Barabási 2002, 2013) can hardly be 
found in the literature for climate studies. Network models are used in many different 
domains (Li and Maini, 2005; Light et al, 2005; Borgs et al., 2007; Hopkins, 2007; 
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Emmert-Streib et al., 2018; Arquilla and Ronfeldt, 2001) and might have be 
successful in weather analysis. Since the weather that generates climate implies a 
succession of dates, and these periods, large or small, form a temporal chain, it 
seemed logical to ask how far the spatial similarity expressed in Moran's first law 
(Moran, 1950) could be applied to time (events closer in time are more similar than 
events further away in time). It was soon realized that this was not always true; 
synthesized data for the weather of a later day, week or month might be more similar 
to a past period of similar duration than to the weather of a day, week or month 
immediately before it.  

The existence of the connection between periods that may be distant in time is a 
real situation, the expression, representation and study of which may prove useful as 
it indicates the dynamics of weather change.  

The aim of this research was to develop a new network model based on which 
the dynamic of climate change can be characterized. The terms of looseness or 
compactness wants to express whether the climate evolution is much similar to a 
flowing river different time periods are related to each other based on their weather 
similarity, or the climate is compact having multiple separate time periods which 
aren't connected to each other. The new network model was applied for five large 
cities in Hungary. At the city level, there are only a few studies either for Hungary 
or for other countries (Probáld, 2014; Stone, 2012) that include climate studies. 
However, climate change at the city level is important because cities are both 
generators and victims (Bulkeley, 2012; Hunt and Watkins, 2011). With the 
availability of daily meteorological datasets for five major cities in Hungary 
(Budapest, Debrecen, Pécs, Szeged and Szombathely) for the period 1901-2020 in 
2021, a dataset was available that seemed appropriate, both in terms of time period 
and detail, to carry out the climate studies that were set out.  

 
2. DATA AND METHODS 

 
As mentioned in the introduction the analyzed daily dataset was freely available 

on the site of Hungary’s National Meteorological Service for all the five stations 
covering the period between January 1, 1901 and December 31, 2020. 

 
2.1. Homogeneity of data 
In all data processing it is important to ensure homogenization of the data 

(reference). As measurements at different municipalities have changed a lot over the 
past 120 years, both in terms of location, measurement instruments and even 
methodology the homogeneity of data has to be ensured. 

Starting from metadata a temporal representation of the changes was constructed, 
changes that may have contributed to the inhomogeneities for each of the five 
municipalities (Fig. 1). Changes in location, in measuring instruments, changes in 
measuring methodology or data reconstruction based on data from other stations 
could all have contributed to the non-homogeneous data series. In figure 1 different 
colors indicate a new measurement site or a change of measurement instrument. The 
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time bands in black represent lack of measurements, the values in these periods are 
the result of posterior data reconstruction. 

Knowing that the data sets cover a period spanning two world wars, it was 
necessary to map these metadata over time. It is noticeable that while the First World 
War only caused outages in the data collection at Pécs, the Second World War 
interrupted the measurement processes for shorter or longer periods for the other 
three stations, with the exception of Szombathely and Budapest. 

The homogeneity of the data was assured by Hungary’s National Meteorological 
Service for the daily air temperature and precipitation amount, data which were used 
in the current research. 

 
Fig. 1. Number of changes (location/ instrument) in data measuring for every decade  

T – (daily mean, maximum and minimum temperatures), R – daily preceipitation amount 

 
2.2. Data aggregation 
Starting from homogenized data derived and aggregated datasets were created to 

characterize and at the same time amplify the elements of weather that allows to 
track changes. Using and R CRAN script a total number of 32 values were derived 
and aggregated for different time periods to characterize the climate. 

Three aggregation interval was defined: a seasonal breakdown, a monthly 
breakdown and the half-month breakdown. The idea of seasonal aggregation was 
given by the fact that it has often been heard in recent times that winter or summer 
used to be different in the past then nowadays. The seasons appear with their 
meteorological time limits in the research. Aggregation at months level it may be 
useful because it defines a time interval that describes perhaps in the best way our 
time scale for characterizing the weather within a year. Findings about the weather 
for a given month are often used. Using the half-month time scale may reveal some 
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changes which occurs on a shorter time scale, changes that might be lost over a larger 
time interval. 

 
2.3. The network model 
The construction rules of the network data model are the key element in the 

evaluation of looseness or compactness of weather. Each aggregation period will 
represent a node in the network, while these nodes will be connected or not based on 
a weather similarity index discussed below. 

2.3.1. Similarity index 
To have a way for deciding whether two nodes should be connected or no a 

similarity index had to be defined expressing the higher or lower similarity for the 
different aggregation periods.  

Since the values of each derived weather characteristic is presented on a different 
scale and orders of magnitude, it was necessary to normalize these values (formula 
1). As their distribution does not necessarily follow a normal distribution, 
standardization didn’t represent a possibility. 

𝑛" =
$%&(()*(+

$,-(()*$%&(()
 [1] 

where, 
ni – normalized value 
vi – original value 

min(v), max(v) – minimum and maximum of original 
data series 

 
A similarity index can be define concentrating into a single value all the 

characterizing components, which would have a significant drawback the way 
deciding the importance, the weight of each component, or using other possibilities. 
There are several methods to determine the similarity between two value vectors. 
One of the best known is correlation, but also the Jaccard index, multidimensional 
Euclidean, Minkowski or Hamming distance, or cosine similarity (Tan et al., 2005).  

In this research the latter was used since this value is often used in data mining (Han 
et al., 2012) and shows how the values of the two vectors have the same orientation, 
representing the same direction in evolution. The cosine similarity index is the cosine 
of the differences between the vectors defined in a multidimensional (number of 
dimensions equals the number of features in the vectors) space (formula 2). 
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where, 
v and w – vectors holding the different derived characteristics of an 
aggregation period 
vi and wi – individual values of the vectors		

The R CRAN function calculating the similarity values between different nodes, 
based on the data table passed as a parameter, which contains the meteorological 
characteristics of the different aggregation periods in rows, returns the similarity 
matrix whose (i,j) element indicates how similar aggregation period i is to 
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aggregation period j is presented in figure 2. Higher value indicates a higher 
similarity. 

Parameters of the function: 
- df - the data table  
- idcols - the number of initial columns of the data table containing the identifiers 

of the aggregation period (e.g. year, month, etc.) which are not used in the 
determination of the similarity index. Default value for the dataset used in this 
research is 4. 

- norm - provides the possibility to normalize data. It is on by default, but since 
the similarity matrix can be generated with other methods than cosine similarity it 
can be switched off. 

- SIM - function type parameter, name of the function that is used to determine 
the pairwise similarity index. In this research this is the cosine similarity but other 
functions can be used 

- simetric - can be used to control whether the similarity matrix has to be filled 
below the main diagonal or not. The similarity matrix is symmetric by nature but 
when choosing a period with the highest similarity to another aggregation period, 
and if we wish to take into account chronology of the aggregation periods it’s 
preferable not to fill in the elements below the main diagonal, i.e. not to symmetrize 
the matrix. 

 
create_similarity_matrix<-
function(df,idcols=4,norm=TRUE,SIM=cosine_similarity,simetric=TRUE) 
{ 
  norm_df<-df 
  factno<-length(df[1,]) 
  if (norm) { 
   for(i in (idcols+1):factno) 
     norm_df[,i]<-normalize(df[,i]) 
  } 
  norm_df[is.na(norm_df)] <- 0 
  recno<-length(df[,1]) 
  sim_mat<-matrix(rep(0,recno^2),nrow=recno,ncol=recno,byrow=TRUE) 
  den <- c() 
  for(i in 1:recno) 
    den <- c(den,sqrt(sum(norm_df[i,(idcols+1):factno]^2)))   
  for(i in 1:(recno-1)) { 
    for(j in (i+1):recno) { 
      sim_mat[i,j] <- SIM(norm_df[i,(idcols+1):factno],norm_df[j, 
                      (idcols+1):factno],den[i],den[j]) 
      if (simetric)  
        sim_mat[j,i] <- sim_mat[i,j] 
    } 
  } 
  return (sim_mat)  
}	

Fig. 2. R CRAN function to create the highest similarity matrix 

2.3.2. Network creation 
In the network model each aggregation period is a node that can be connected to 

any other whether it appears before or after it in time. The only criterion is the highest 
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similarity, each node will be connected to the one node it is most similar to. There 
may be situations where, for example considering nodes A and B, that A is most 
similar to B and B is most similar to A and not to any other node; in this case they 
will form a closed system. In fact, this is also the role of this model, to reveal the 
compactness or looseness of the weather. 

The R CRAN function creating this network model is presented in figure 3, 
having the following parameters: 

- path - path to the input data file folder 
- filename - name of the input data file containing the aggregated dataset  
- base - the base year after which the data series start; its role is only for possible 

data filtering, which can be controlled by the following two parameters 
- yearS - first year of the study interval (relative offset from the base year) 
- yearF - last year of the study interval (relative offset from the base year) 
The result is a file in gml format, which keeps the name of the input file, but adds 

the _M2_y1-y2 part, where y1 and y2 are the sequence numbers of the first and last 
year of the analyzed period. 

 
create_similarity_network<-function(path,filename,base=1900,yearS=1,yearF=120) 
{ 
  dataSet<-read.csv(paste(path,"//",filename,".csv",sep="")) 
  dataSet<-dataSet[dataSet$ye>=base+yearS & dataSet$ye<=base+yearF,]   
  simMatrix <- create_similarity_matrix(dataSet,simetric=FALSE)   
  len <- length(dataSet[,1]) 
  g <- make_empty_graph()  
  g <- add.vertices(g,len, 
           attr=list("year"=dataSet$ye,"month"=dataSet$mo,"part"=dataSet$part)) 
  for(i in 1:(len-1)) 
    for(j in (i+1):len) 
      simMatrix[j,i] <- simMatrix[i,j]  
  for(i in 1:len) { 
    y <- which(simMatrix[,i]==max(simMatrix[,i])) 
    g <- add.edges(g,c(i,y), 
               attr=list("weight"=max(simMatrix[,i]),"from"=i,"to"=y)) 
  } 
  write_graph(g,paste(paste(path,"\\",filename,"_M2_", 
              yearS,"-",yearF,".gml",sep="")),format="gml") 
  }	

Fig. 3. R CRAN function creating the network model 

 
The network model was created for the five municipalities using the presented R 

functions (Ihaka and Gentlman, 1996). In t addition to the basic R system, the igraph 
package (Csárdi and Nepus, 2006) was used to perform all the network-related 
operations, such as network creation, adding edges, determining shortest paths, 
graph weighting, etc. Later, for network visualization the Cytoscape software 
(Shannon et al., 2003), was used which in addition to visualization also provides 
some basic network analysis facilities. 
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3. RESULTS AND DISCUSSION 
 
Based on the R CRAN script explained in the previous chapter the network 

models were created for all five cities at seasonal, monthly and semi-month time 
resolution.  

As it’s observable from figure 4 showing the seasonal scale representation for 
Szombathely in the network appear has many components. The coloring is according 
to seasons, blue is for winter, green for spring, red for summer and yellow for 
autumn. The size of the node is related to time distance from the beginning of study, 
recent years having higher diameter. 

 
Fig. 4. Season level network model for Szombathely 

The more components the network consists of, the more fragmented or loose the 
weather is in the given settlement.  

At season level network only in a few cases appear components in which nodes 
belonging to different seasons are mixed. Using a smaller time scale the mixing 
phenomenon is amplified and the components can no longer be separated to belong 
to a single month or half month. Because of this, separate networks were created for 
each studied time level. In these cases, the following indicators were used to 
characterize the compactness or looseness of the weather:  

- the number of components in the network 
- the standard deviation of network components’ size 
- the variability index of the year values for each component, defined as the 

ratio between the standard deviation of the year values and their average 
value.  

Because higher values for all three indicators show a higher looseness for a given 
period, combining them with multiplication the operation amplifies the result and 
the higher the final value is the more loose the period is. 
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At monthly scale the vertical axis of figure 5 shows the product of the above-
mentioned characteristic. The loosest weather appears for winter at Budapest, 
autumn at Debrecen, Pécs and Szeged, while winter seems to be the most loose in 
Szombathely. On the other hand, summer is the most compact season at Budapest, 
spring at Debrecen, Pécs and Szeged, and autumn at Szombathely. In some cases, 
the differences between the values that decide first and last place are very close. 
Winter stands out at Budapest, but the other three seasons have almost the same 
values. At Debrecen, the indicator values for spring and summer are almost the same, 
as in the case of Pécs. At Szeged, with the exception of spring, all three other seasons 
show almost the same high values. In the case of Szombathely, summer and winter 
show a significantly larger looseness than spring or autumn. 

 
Fig. 5. Instability (loose weather) indicator at season level 

At monthly level (fig. 6) the highest values representing the looseness are for 
January and May at Debrecen, February and December at Szeged, July at Pécs and 
February at Szombathely. The lowest values representing the compactness are 
appears for February and March at Budapest and for May at Pécs. It is also noticeable 
that there are months that manifest themselves in a similar way in different locations 
based on this complex indicator. Such a month is October and in a lesser way April, 
August and September, while for other months different things are experienced at 
different locations. Significant differences can be seen for January, February, but 
May and July manifest themselves differently in some locations. 

In case on the half-month level analysis the three defined indicators were plotted 
separately (fig. 7) in order to examine the locations and months where the two half-
months differ significantly in terms of that indicator. This also makes it possible to 
better follow the dynamics of successive periods. In case of Budapest between the 
instability of the second half of January and the last half of February includes a 
compact, stable manifestation for the second half of January and the first half of 
February. Similarly, we can see that the half-months of March at Pécs or Szeged, 
shows up differently. The looseness of the first half-month is much more pronounced 
than in the case of the second half-month. 



	124	

	
Fig. 6. Instability (loose weather) indicator at monthly level 

	
a) number of components	

	
b) variability index 

	

	
c) standard deviation of network components’ size	

Fig. 7. Individual indicators of monthly level network 
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It can also be observed that for this analysis level the number of components 
of the networks and the average number of nodes participating in the components 
correlate much better with each other than for longer aggregation periods. We can 
hardly find a situation where these two indicators determined from completely 
different data sources would not show the same relationship, or if it occurs (ex. 
Pécs in October or Szombathely in June) the differences are not significant. 

It can be observed that in case of Budapest, Debrecen and Szombathely the 
winter half-months are most compact at the beginning of the year, while in the 
case of Pécs and Szeged the early spring months, the first half of March shows 
outstanding looseness. In these settlements March is the month in which the first 
and second half-months differ the most. If we look at these differences within a 
month, October shows the biggest differences in case of Budapest, November in 
case of Debrecen and February in case of Szombathely. 

 

Fig. 8. Loose weather indicator at half-month level 

 
At the end of July and the beginning of August in case of Debrecen, considering 

the standard deviation of the components compared to the number of components 
(which is not very high), we can see that some large components appear, which 
means the compactness of the given period. Similar situations occur in the second 
half of May at Szeged and in April at Szombathely. The real remarkable value, 
however, appears at Szeged in the second half of October. The high standard 
deviation and the low component number indicates that there are one or just a few 
huge components and several small components with about the same number of 
nodes. In any case, a strong compactness characterizes this period. 

Based on the aggregated indicator (fig. 8.) which includes all three indicators 
presented above, four outstanding values can be observed. These are the case of 
Debrecen in the second half of June, then the first half of July at Budapest and in 
case of Szeged, two outstanding values, which refer to the second half of March and 
October. These are the half-months that appear to be most loose. If we look at the 
settlements, the second half of April and the beginning of May are loose at Budapest, 
outside the first half of July already mentioned. In case of Debrecen the second half 
of January and July and the first half of September and November show looseness. 
Pécs shows the highest value in the second half of September, but the first half of 
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February and August and the second half of April are also worth mentioning. At 
Szeged both halves of March and April and the second half of October are the loosest 
periods, while in case of Szombathely the only outstanding value occurs in the 
second half of October. 

 
 

4. CONCLUSION 

Climate study based on network models is a novel approach, it does not have a 
well-developed research, methodological and literature background. Based on own 
research experience so far, different network data models provide different 
opportunities for data mining, which suggests that it is worth doing more research 
on different network data models. In this model the edges of a network connect the 
same periods of different years based on the greatest aggregate weather similarity. 

The preparatory operations required to carry out the research required the 
handling of a considerable amount of data, which would not have been possible with 
existing software, as there is no software to do all this on a click. Therefore, one of 
the results of this research was actually the development of the model itself using 
functions developed in the R CRAN system. In this case of large-scale data 
processing, it was very important to use programming methods that could do all this 
in a time-efficient manner. In this direction a number of optimizations were made 
through the research, as a total of more than 100 network data models had to be 
created and analyzed for the five settlements at the level of seasons, months and half-
months. 

Using three different study intervals there were results that converged, but there 
were also results for which in the larger study period disappeared or equalized the 
results obtained for the shorter periods. What can be concluded as a general 
appreciation for the five studied settlements is that changes considering the 
compactness or looseness of weather can be detected based on network data model. 
The most pronounced looseness occurs in in the late autumn and winter months and 
in early spring periods. In addition to all these main trends, high looseness values 
can be observed for some settlements in the summer as well as in the late spring or 
early autumn periods, while summer typically appears as a more compact period. 

The present research was based on four weather characteristics covering which 
have covered the entire study period. By expanding them (eg humidity, number of 
hours of sunshine), the similarity indicator will be able to show a more precisely the 
individual characteristics of shorter aggregation periods (months, half-months) even 
more accurately making the changes more easier to recognize. In this case, even the 
aggregation periods could be reduced and new indicators could appear in the 
analyzes process, for example, the internal homogeneity of each month could be 
examined, which in this case could only be done at season level. 
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