

Automatic Generation of Natural Language Service

Descriptions from OWL-S Service Descriptions

Luís Filipe Delgado Alves Ribeiro Gonçalves

Dissertation submitted in partial fulfilment of the requirements for the degree of

Master in Computer Engineering

Adviser:

Doctor Luís Miguel Botelho, Associate Professor of ISCTE

October 2009

II

I Abstract

As the web grows in both size and diversity, there is an increased need to

automate aspects of its use such as service coordination (e.g., discovery, composition

and execution). Semantic web services combine semantic web and web service

technologies, providing the support for automatic service coordination. Semantic web

services are described using semantic languages (e.g., OWL-S) and can be

automatically processed by intelligent agents (agent based coordination).

This dissertation aims at enhancing the service coordination process, building

upon well-understood and widespread practices on natural language generation.

Automated service coordination relies on the existence of formal service descriptions

(semantic languages, such as OWL-S or WSML). The use of web services by people is

essentially associated with the discovery, composition and execution of services that

match their needs. According to the person’s will, the discovered or composed service is

or is not executed. This decision can only be made if the person understands the

description of the service. Therefore, it is necessary that formal descriptions be

converted into more natural descriptions, adequate to human comprehension.

This dissertation contributes to empower the users (knowledge engineers and

common citizens) of service coordination systems with the capability to better

understand and decide about discovered or composed services without the need of

understanding the formal language in which the semantic web service is described. We

implemented a software program capable of generating natural language service

descriptions from OWL-S description. It is a template-based natural language

generation system that receives the OWL-S description of a service as input and

converts it into an English description.

This system will leverage the use of service coordination technology by people

and allow them to have a more active role in the various stages of the service

coordination process.

III

II Acknowledgements

First and foremost, I would like to thank my adviser Luís Botelho for his

guidance and help on all aspects of my dissertation. I also thank professor António

Lopes and professor Rui Lopes for promptly answering all my questions and doubts

about OWL-S, XML Schema and xPath.

Thanks to the experts’ panel composed of António Lopes, Fábio Calhau,

Francisco Silva, João Silva and Lino Pereira for providing very useful feedback to

further improve this dissertation’s system, and thanks to all the people who answered

the users’ inquiry for helping in the evaluation of the system.

Finally, I thank my family for their enormous support and all my friends that

helped me to keep motivated and focused in the completion of this thesis. To all a big

thank you.

IV

III Index

I Abstract .. II

II Acknowledgements .. III

III Index ... IV

IV Figure Index ... VII

V Glossary .. IX

1 Introduction .. 1

1.1 Goals and Motivation .. 1

1.2 Approach Overview and Contributions .. 3

1.3 System’s Demonstration ... 6

1.4 System’s Evaluation and Results .. 7

1.5 Document Structure .. 8

2 State of the Art ... 9

2.1 Agent Based Service Coordination ... 9

2.1.1 Web Service Architecture ... 10

2.1.2 Semantic Web Service Coordination .. 12

2.1.3 Summary ... 15

2.2 Semantic Languages ... 16

2.2.1 SAWSDL .. 17

2.2.2 WSML ... 17

V

2.2.3 OWL-S .. 18

2.2.4 Summary ... 21

2.3 Natural Language Generation ... 22

2.3.1 Corpus Based Approach .. 23

2.3.2 Architecture ... 24

2.3.3 Types of Language Generation Systems ... 25

3 System’s demonstration ... 28

4 Natural Language Generation System .. 36

4.1 OWL-S Language ... 36

4.1.1 Profile .. 37

4.1.2 Process Model ... 40

4.1.3 Grounding ... 43

4.2 Natural Language Generation Approach .. 44

4.2.1 Information Extraction .. 46

4.2.2 Mapping .. 47

4.2.3 Template Filling .. 50

4.2.4 Surface Realiser .. 52

4.2.5 General Schema .. 53

4.3 Natural Language Generation System Implementation 54

4.3.1 Service Specification Interface ... 56

4.3.2 OWL-S Description Retriever .. 56

VI

4.3.3 OWL-S Parser and Information Extractor 57

4.3.4 Mapping .. 57

4.3.5 Template Filling .. 58

4.3.6 Template Combination .. 58

4.3.7 Surface Realiser .. 59

5 Evaluation Criteria and Results .. 60

5.1 Experts’ Inquiry .. 60

5.2 Experts Inquiry Outcome .. 62

5.3 System Improvements ... 63

5.4 Users’ Inquiry ... 65

5.5 Users’ Inquiry Outcome .. 66

6 Conclusions .. 68

7 References .. 72

8 Appendix .. 76

8.1 Appendix A Text Templates ... 76

8.2 Expert’s Inquiry .. 78

8.3 User’s Inquiry ... 89

VII

IV Figure Index

Figure 1 – Example of the NLG system use in the service coordination process 4

Figure 2 – Web service architecture ... 11

Figure 3 - Top level of the service ontology [Martin et al 2004a] .. 19

Figure 4 – NLG system’s first menu .. 28

Figure 5 – Natural Language Generation System ... 29

Figure 6 – Load OWL-S description from an URI ... 29

Figure 7 – Babel Fish Translator’s Profile .. 30

Figure 8 – Babel Fish Translator’s mapping table ... 31

Figure 9 – Examples of text templates used in Babel Fish Translator’s first sentence 32

Figure 10 – Aggregation of the text templates used in Babel Fish Translator’s description 32

Figure 11 – Output English description – Babel Fish Translator .. 33

Figure 12 – Load the OWL-S description from a file .. 34

Figure 13 – Text templates for atomic and compound services ... 34

Figure 14 – Output English description – Book Price Finder .. 35

Figure 15 - Top level of the service ontology [Martin et al 2004a] .. 37

Figure 16 - Profile [Martin et al 2004a] ... 38

Figure 17 - Example of the Profile for the service BabelFish Translator 40

Figure 18 – Atomic and Compound Processes ... 41

Figure 19 - Process Model class [Martin et al 2004a] .. 42

Figure 20 - OWL-S and WSDL [Martin et al 2004a] ... 44

Figure 21 - NLG System Overview .. 45

Figure 22 – Example of the mapping table for the Book Finder Service...................................... 48

VIII

Figure 23 – XML Schema for the mapping tables ... 49

Figure 24 – The property hasLinguisticMappings’ specification in the OWL-S Profile 49

Figure 25 – XML Schema for the LinguisticMappings .. 50

Figure 26 - Text Templates .. 51

Figure 27 - Templates for the service name ... 51

Figure 28 - NLG System Schema ... 54

Figure 29 – NLG system’s implementation schema ... 55

Figure 30 - Expert inquiry’s part for the service Zip Code Finder ... 61

Figure 31 - Text used to describe atomic and compound services ... 63

Figure 32 – Description of book information ... 64

IX

V Glossary

API - Application Program Interface. It is a set of commands, functions, and protocols

which programmers can use when building software for a specific operating system

CASCOM - Context-aware Business Application Service Co-ordination in mobile

Computing Environments. CASCOM was a project funded by the Framework Program

6.

ESSI - European Semantic Systems Initiative

IOPE - Input, Output, Precondition, and Effects

ISCTE-IUL – ISCTE Instituto Universitário de Lisboa

Java – Object-oriented programming language

KIF - Knowledge Interchange Format KIF is a computer-oriented language for the

interchange of knowledge among disparate programs

KB - Knowledge Base. It is database for knowledge management the provides means

for computerized collection, organization, and retrieval of knowledge

MINDSWAP - Maryland Information and Network Dynamics Lab Semantic Web

Agents Project

NAICS - North American Industry Classification System (NAICS) is the standard used

by Federal statistical agencies in classifying business establishments for the purpose of

collecting, analyzing, and publishing statistical data related to the U.S. business

economy.

NL - Natural Language

NLG - Natural Language Generation

X

OWL - Web Ontology Language. It is an ontology language for the Semantic Web.

OWL is supported by W3C (World Wide Web Consortium), the major standards

organization for web technology

OWL-S - Web Ontology Language for Services. OWL-S is a Semantic web service

description language based on the OWL language. OWL–S and OWL are both

supported by W3C (World Wide Web Consortium), the major standards organization

for web technology

OWL-S API - Java API for programmatic access to software that reads, executes and

writes OWL-S service descriptions

PDDL - Planning Domain Definition Language. It is the standard language for the

representation of planning domains

Prolog - (PROgramming in LOGic). It is a logic programming language associated with

artificial intelligence and computational linguistics

RDF - Resource Description Framework. RDF is a general-purpose language for

representing information in the Web

SAWSDL - Semantic Annotations for WSDL. It defines how to add semantic

annotations to various parts of a WSDL document. It allows to specify ways to describe

the abstract functionalities of a service and concretely how and where to invoke it

Semantic Language - The expression Semantic Language is to be interpreted as in the

semantic web literature in which it is used to refer to a language providing rich

information about the object / entity that is described such as a web service. When the

expression applies to service descriptions, it is meant to be understood as a language

that provides information enough about the service that it may be used in automatic

service coordination processes.

Shallow NLG systems – natural language systems that sacrifice some of the benefits of

complete NLG systems in order to reduce their costs, resources and development time

XI

SOAP - Simple Object Access Protocol. SOAP is an XML lightweight protocol for

exchange of information in decentralized, distributed environments

SWRL - Semantic Web Rule Language. It is a semantic web rules-language based on a

combination of the OWL Web Ontology Language (OWL DL and Lite) and Rule

Markup Language

tuProlog - tuProlog is a Java-based Prolog engine developed at the University of

Bologna, and maintained by the aliCE Research Group

UDDI - Universal Description, Discovery and Integration. UDDI is a XML-based

service descriptions registry that may be used for web service discovery

URI - Uniform Resource Identifier

W3C - World Wide Web Consortium. W3Cis an international consortium that works to

develop Web standards

WSDL - Web Services Description Language. WSDL is XML format for describing

network services as a set of endpoints operating on messages containing either

document-oriented or procedure-oriented information

WSML - Web Service Modelling Language. It is a language for the specification of

ontologies and different aspects of web services

WSMO - Web Service Modelling Ontology. WSMO is an ontology for describing

various aspects related to semantic web services.

XML - EXtensible Markup Language. XML is a markup language designed to describe

data

XII

1

1 Introduction

Present technology, namely web services technology, allows services to be

available for users or web-related programs. Web services provide some functionality

on behalf of their owners, the service providers. As the amount of web services on the

web increases, the need to automate web service coordination processes also grows.

Semantic web services are web services associated with publicly accessible

semantically rich service descriptions. Semantic web services were created with the

purpose of allowing automatic service coordination, chiefly, service discovery,

composition and execution. Automated service coordination is usually done by

intelligent agents able of processing the semantic information contained in semantic

web service descriptions. Semantic web services are described using semantic

languages such as OWL-S (Web Ontology Language for Services) and WSML (Web

Service Modelling Language).

In this first chapter we describe the motivation and goals for creating a natural

language system able of generating natural service descriptions from formal service

descriptions (i.e., OWL-S). We specify the contributions made by this dissertation to the

current state of service coordination, and summarily describe the approach. Also, we

briefly present the system’s demonstration, as well as a concise description about the

evaluation criteria and results of that evaluation. Finally, we show how the remaining of

the document is organized.

1.1 Goals and Motivation

Web service coordination usually involves three main processes: service

discovery, composition and execution. Service discovery is the process of finding a web

service that matches the needs of the service requester. Composition is an aggregation

of various services that matches the needs of the service requester that could not

satisfied by any of the available services alone. Service execution is the process of

executing the discovered or composed service.

2

The use of web services and service coordination by people is essentially

associated with the discovery, composition and execution of services that match their

needs. In the general case, the service client asks some service coordination system for a

service with desired specified features. Although not mandatory, this process may

involve a personal assistant agent that mediates the interaction between the service

client and the service coordination system. The service coordination system tries to

discover or to create (compose) a service that matches the client needs. Ideally, the

service client should be allowed to decide whether or not to use the service. If the client

wants the service to be executed, he or she will ask the service coordination system to

execute the returned service. Currently, service clients will only be capable of deciding

whether or not to use the service returned by the service coordination system if they

understand the formal language the service is described in (e.g., OWL-S or WSML).

This is possible only for the restricted minority of experts and specialists that

understand formal descriptions. By providing the means for the common citizen to

understand service descriptions, and hence creating enabling conditions for people to

decide if they actually want a given service to be executed, the number of users that can

make use of the web service technology will increase. This dissertation provides these

means through the generation of natural language descriptions from the formal service

description language, OWL-S. We adopted OWL-S because it is becoming a de facto

standard fully supported by the World Wide Web Consortium and because it is

extensively used in national and international research projects, in particular by the

research group in which this thesis was done. Moreover, the OWL-S language possesses

a large set of tools and applications supporting the adoption of OWL-S for semantic

web services. The generated natural language descriptions are written in English,

although other languages can be incrementally added later on.

The main goals of this dissertation are:

• Definition and implementation of a software system capable of

generating natural language descriptions of semantic web services from

their formal service descriptions (i.e., OWL-S); and

3

• Leveraging the use of semantic web services by common citizens (not

experts in formal computational descriptions), endowing them with the

possibility to consciously deciding whether or not to execute a given

service and making them accountable for the decision of using given

services.

In brief, this dissertation’s motivation is to solve both the technical issue

associated with the user’s decision - whether the client wants to execute (accepts) the

discovered or composed service - and the need of involving artificial actors as well as

people in more stages of the service coordination process.

1.2 Approach Overview and Contributions

This dissertation contributes to advance the current state of the art regarding

service coordination. It does not contribute to natural language generation technology.

We used well-accepted and widespread natural language generation approaches and

good practices to bring the service coordination process closer to the user.

The natural language generation system created for this dissertation solves a

problem never solved before. As shown in chapter 2, a system capable of generating

natural language descriptions from service descriptions (OWL-S or any other service

description language) has never been developed (at least, we could not find any in all

the literature we had access to). However, similar work has been done for Description

Logics (e.g. OWL DL [Mellish and Sun 2006]). This natural language system is the

major contribution of the dissertation. The developed system could be integrated in the

service coordination process. More precisely, it could be used by personal agents (PA)

in situations where the PA receives formal service descriptions resulting of the service

coordination process. The personal agent would use the developed system to generate

the natural language descriptions and present them to the user. Figure 1 depicts a

hypothetical service coordination system, in which two different users (Person A and

Person B) interact with the system through their Personal Agents. Person A’s personal

agent does not use the natural language system. A receives the OWL-S service

description of the service that matched his specifications – OWL-S description of the

Currency Converter service. Person B’s personal agent uses the developed NLG system

4

to generate the English description of the Currency Converter service and presents it to

Person B.

Figure 1 – Example of the NLG system use in the service coordination process

Natural language generation systems (as most software programs) usually use

some form of input to produce their outcomes. This dissertation’s natural language

generation system receives the OWL-S service description as input, producing an

English description. Not all information from the OWL-S description is used to generate

the NL description; this option is explained in further detail in section 4.2. We mainly

use data from the OWL–S service Profile
1
 as it contains a significant amount of useful

information (e.g., service inputs, outputs, preconditions and effects).

The NLG system presented in this dissertation is a template-based system, where

the extracted data from the OWL S service description guides the whole process of

1
 OWL-S service descriptions are composed of three main elements: The Profile, Process Model

and Grounding

5

language generation. That is, the templates are selected according to the information

obtained from the OWL-S service description. An alternative could be to seek the

required information in the OWL-S description, as guided by the selected template.

Although more general, this approach would involve a computationally more complex

process and would not lead to better results. We chose the less demanding data driven

process in which templates selection is guided by the information extracted from the

description.

The natural description generation process carried out by the system comprises

four main steps. The first step extracts necessary information from the OWL-S service

description. This information consists of selected service variables (e.g. service name,

inputs and outputs). Unfortunately, service designers may freely label their variables

(e.g., add010 or address). This situation poses a problem if our system uses those labels

to generate natural language text. The second step solves this problem: it maps the

original service variable names into their linguistic equivalents, adequate for human

comprehension. In fact, this is one of this dissertation’s main contributions. Later in this

document, we propose to extend the present OWL-S structure with the possibility to

represent linguistic mappings. Now we are ready to advance to step number three. In

template-based systems, sentences are represented as fixed text structures normally

containing gaps that need to be filled. We use the information resultant from the second

step to fill those gaps in the selected text templates. The outcome of this step is a natural

language description close to its final form. The fourth and last step structures the

description generated in step number three by adding paragraphs, producing the final

description.

This dissertation contributes to the current state of service coordination with the

following:

• Allows users to make an informed decision;

• Makes users accountable for their decisions (to use the service); and

• Brings the service coordination process closer to common citizens,

making the whole process more natural and human while still keeping

6

the service coordination process automate (automatic discovery,

composition and execution);

Next, we present a brief description of the system’s demonstration implemented

for this dissertation.

1.3 System’s Demonstration

Demonstrations can help readers understand the way the developed system

works and especially the natural language descriptions it generates. To a certain extent,

the examples used in the demonstration will help readers develop a preliminary idea

regarding the quality of the system’s results.

The greater the diversity in the examples the better can we attest the system’s

quality and comprehensiveness. Even though we generated descriptions from several

OWL-S described services, in chapter 3, we only display two demonstration examples:

one for an atomic service with preconditions, and another one for a compound service.

The purpose of the designed demonstration is not to provide a thorough demonstration

of the system’s abilities, but merely to illustrate the way the system works and the

generated results.

The examples used in the demonstration were taken from the OWL-S service

descriptions publically available on the mindswap’s
2
 web page. Mindswap, Maryland

Information and Network Dynamics Lab Semantic Web Agents Project, is being carried

out by a research group of the MIND LAB at University of Maryland Institute for

Advanced Computer Studies. This group is accountable for web service tools such as

OWL-S API, Pellet and Web Service Composer.

For each service the corresponding natural language service description was

generated. The details and results of these demonstration examples, presented in chapter

3, show that the developed NLG system is easy to use and generates useful and

understandable English service descriptions.

2
 http://www.mindswap.org

7

1.4 System’s Evaluation and Results

Using a system capable of converting OWL-S descriptions into descriptions that

can easily be understood by people, users will be able of deciding whether they accept

the (compound or atomic) service returned to them by the service coordination system.

Since the purpose of the system developed in this dissertation is to help web service

users, the best way of evaluating its success is by enquiring potential users. Besides

evaluating the usefulness of the generated descriptions, an enquiry to OWL-S experts

can also help evaluating the technical correctness of the generated descriptions.

Two different enquiries were created: one inquiry addressed OWL-S experts,

and another one designed for potential system users, users that do not have any

knowledge about the used formal description language (i.e., OWL-S).

First, we applied the experts’ inquiry and used the produced outcome to

overcome some deficiencies of the originally generated English descriptions, both

regarding their usefulness and their correctness. In this context, “correctness” means the

degree to which the generated natural description correctly matches the formal service

description. For the Experts Inquiry, we have created an evaluation panel composed of

five OWL-S experts.

The enquiry for non expert system users mainly focuses on their comprehension

of the services from the generated natural language descriptions.

On one hand, these enquiries allowed to show how well people could understand

the service from the generated descriptions. On the other hand, they gave an expert’s

perspective on how well the natural language descriptions matched the OWL-S

descriptions.

The experts’ inquiry helped us improve the system’s output before the non

expert systems users’ inquiry was applied. More precisely, information about the type

of service (atomic or compound) was originally presented in technical terms not

appropriate to common users (without knowledge about formal service descriptions).

Being so, we changed the output description before the non-experts’ inquiry was done.

8

The results obtained from the experts’ inquiry show that the descriptions

generated by the system correctly match the formal service descriptions. Experts

evaluated most of the generated natural language service descriptions with the highest

score regarding the system’s “correctness”. In the case of service comprehension from

the generated natural language description, results were also satisfactory, although not

as good as the ones related to the system’s “correctness”. This inquiry also showed that

experts value detail in the description. Most suggest more depth in the description of

inputs and outputs. For example, adding the type of the variables (e.g., integer, string or

double) to the description, or provide more detail to variables described in other

ontologies.

In the users’ inquiry we asked twenty two people to rate the quality and

usefulness of the generated natural language description. Results indicated that the

majority of users were able to easily understand each of the described services and use

the generated description to decide whether or not to use the service. Further details

about the results of this evaluation are presented in chapter 5.

1.5 Document Structure

The remaining chapters of this dissertation are organized as follows. Chapter 2

presents the state of the art on the topics of semantic web service coordination, OWL-S

and natural language generation. In chapter 3, we describe in detail the examples used in

the system’s demonstration. Chapter 4 presents a detailed description of all the aspects

of the designed and implemented natural language generation system. It describes the

features of the OWL-S language, as well as the taken approach and system’s

implementation. Chapter 5 presents the system’s evaluation and obtained results.

Finally, chapter 6 concludes about the work done in this dissertation and presents

directions for future developments.

9

2 State of the Art

The main goal of this dissertation is to enhance the service coordination process,

by enabling users without computer science background to understand service

descriptions returned to them by the service coordination system, and hence allowing

them to make informed decisions of whether or not to execute the discovered or the

composed service. We start this chapter by describing the topic of agent based service

coordination (section 2.1). To achieve this goal, we defined and implemented a software

system capable of generating natural language descriptions of semantic web services

from their formal service descriptions (i.e., OWL-S). In section 2.2 we describe some of

the most used semantic service description languages. We also point out the reasons for

choosing OWL-S instead of any other language, and briefly present the OWL-S

structure. Finally, in section 2.3 we present some common good practices in natural

language generation as this dissertation’s main contribution is not to natural language

generation but service coordination.

2.1 Agent Based Service Coordination

Agent based service coordination makes use of two different technologies:

intelligent agents and semantic web services.

According to a widespread definition, Agent is a computer system situated in

some environment and capable of autonomous action in this environment in order to

meet its design objectives [Wooldridge 2002]. An agent has to fulfil some properties to

be considered an intelligent agent: reactivity, pro-activeness, social ability (being able to

interact with other agents) [Wooldridge 2002], and other properties such as temporal

continuity, reasoning, rationality, veracity, mobility and learning ability [García-

Sanchez et al 2009]. Intelligent agents can decide for themselves what they need to do

in order to satisfy their design objectives. Agents can also be stand-alone entities or be

in an environment with other agents (MAS - Multi-Agent Systems) that can potentially

interact with each other and collaborate to achieve a common goal [Shoham and

Leyton-Brown 2008].

10

Semantic web services use a technology resultant of the combination of two

other technologies - semantic web and web services - in which, web services are

described using semantic languages, bringing them to their full potential, and by so

providing support to automatic service discovery, composition and execution [Fensel

and Bussler 2002]. These can be done, for example, by intelligent agents able of

processing semantic service descriptions [McIlraith, Son and Zeng 2001]. Agent-based

service coordination can lead to the development of new, more powerful applications by

using these different technologies cooperatively.

In subsection 2.1.1, the web service architecture, its actors, their roles and

relationships are described. Subsequently the topic of semantic web service

coordination (2.1.2) - processes of service discovery, composition and execution - is

addressed. In the end of the semantic web service coordination subsection we identify

specific shortages of current service coordination technology and elect them as the

major areas for the contributions of this dissertation.

2.1.1 Web Service Architecture

The internet was created as a distributed source of information. The appearance

of the web service technology enabled to extend it to a distributed source of

functionality [García-Sanchez et al 2009]. A web service can be defined simply as a

service with the capability of performing tasks located at some point in the Internet that

can be accessed through a standard protocol [Booth et al 2004]. Web services are also

described as software systems designed to support interoperable machine-to-machine

interaction over a network [Haas and Brown 2004].

The web service architecture relies on the interaction of three entities: the

service requester, the service broker (or service registry) and the service provider

[Gottschalk et al 2002] [Booth et al 2004].

The service provider creates a web service and publishes the service by

registering to the service broker’s registry. Maybe the widest disseminated service

registry is the UDDI (Universal Description, Discovery and Integration). UDDI is a

XML-based registry which contains information about existing web services and their

11

functionalities [Clement et al 2004]. UDDI enables businesses to publish service listings

and discover each other. A service on the UDDI is usually described using WSDL (Web

Services Description Language), a XML-based description language providing

information regarding the web service’s invocation, location, available operations and

signatures [Christensen et al 2001].

The service requester is an entity that uses a web service, provided by a service

provider, to perform a task. The service requester locates the entries in the service

broker’s registry and binds to the service provider using SOAP (Simple Object Access

Protocol), a W3C standard communication protocol [Gudgin et al 2007]. A view of the

mentioned entities and their relationships is depicted in Figure 2.

Figure 2 – Web service architecture

With this technology, any available web service can be found and used without

taking into account the programming language in which the service was originally

implemented. However there is an increased need to automate aspects of web services

such as automatic web service discovery, automatic web service execution, automatic

web service selection and composition. In fact, one of the key advantages of web

12

services is that they enable dynamic service composition using independent, reusable

software components.

Intelligent agents are suited for automating aspects of web services. [Huhns

2002] [Chi and Song 2007] suggest that agents have characteristics that can

complement web services in various aspects. For instance web services have a detailed

definition of the describing, publishing and searching mechanism, but are static, lack

autonomy and work in a passive way. On the other hand, intelligent agents are

communicative, active and proactive. One of the main properties usually assigned to

agents is their autonomy [Russell and Norvig 1995]. Together with their adaptability,

intelligent agents have a set of characteristics suited to help with the automation of web

services.

2.1.2 Semantic Web Service Coordination

As mentioned in the previous subsection, agents are active autonomous entities

that interact with one another to achieve their objectives [Barker 2005]. Agent’s

autonomy and intelligence have been used to automate and improve the process of

semantic web service coordination.

Semantic web service coordination aims at the coherent and efficient discovery,

composition, negotiation, and execution of web services in a given context [Klush

2008]. A semantic web service is a web service whose functionalities are described

using a logic-based semantic annotation over a well-defined ontology.

Service discovery is the process of locating existing web services based on the

description of their functional and non-functional semantics, for example “Finding a

service that sells airline tickets between Lisbon and London and that accepts payment

with MasterCard credit card”. Three main components are involved in service

discovery: the service description language (e.g., OWL-S) that represents the functional

and non-functional semantics of web services; service matching means, which can be

non-logic based, logic based (using for instance OWL-S) and hybrid (combination of

both); and the discovery architecture that refers to the environment in which the

13

discovery is performed (including physical or semantic overlay network, a kind of

service information storage, and location mechanisms, among others).

If the service requester needs a service that cannot be provided by any of the

known service providers alone, then service composition is needed. We can then

describe service composition as the process of taking a set of component services and

bundling them together, using the adequate structure, to meet the whole set of the

criteria put forth by the service requester [Schumacher, Helin and Schuldt 2008]. The

new compound service combines and links existing web services and other components

to create new processes. Standards for service composition cover three different

(overlapping) viewpoints [Barros, Dumas and Oaks 2005]:

• Choreography – This viewpoint captures collaborative processes

involving multiple services. The interactions between these services are

seen from a global perspective.

• Behavioural interface - This viewpoint captures the behavioural

dependencies between the interactions.

• Orchestration - This viewpoint deals with the description of the

interactions in which a given service can engage with other services, as

well as the internal steps between these.

Although service composition can be done automatically by service composition

planning systems, often service composition requires the service requester to specify an

abstract workflow of the required compound service. Service composition can be also

static or dynamic depending on whether services have to be composed at design time or

at run time, respectively.

The last process comprised in service coordination is service execution, which

executes the service description including the possible selection and ordered invocation

of web service providers [Schumacher, Helin and Schuldt 2008]. On successful

execution, a set of output results may be returned to the service requester. Sometimes,

service execution also causes some effects to take place in the world. For instance, after

a table reservation service in a restaurant has made the desired reservation, one or more

14

restaurant tables become reserved during a certain period of time. In the interest of both

the service requester and the service provider certain properties/conditions need to be

met, such as preserving a consistent state before and after the execution even in the

presence of failures.

In both processes, service discovery and service composition, the service

requester must have the possibility of evaluating the discovered or the composed

service, and decide if it should be executed. In case the service requester is a person, a

description of the service is required so he or she can decide whether or not to execute

the service, when and under which circumstances. This description has to be understood

by the person using the service even though automatic service coordination requires

formal description languages. Therefore, formal service descriptions must be translated

into some form of human-readable descriptions that can be understood by human

service clients. Since there are no computational tools that perform such a translation,

this dissertation aims to offer a solution to that problem, where formal service

descriptions are translated into natural language.

Even though agents can completely automate the process of service

coordination, there might be some issues worth considering. Take the case of service

discovery, where the agent finds the service by itself. If the service requester is a person,

he or she should have the opportunity to decide whether or not to use the received

service, so that he or she may be deemed responsible for the consequences of using it.

Although technically agents can automate the whole service coordination process, it is

not ethically acceptable to ever leave humans out of the loop when it comes to the

decision of whether or not to use discovered or composed services. Providing human

readable service descriptions will allow people analyzing and evaluating received

services and to make their decisions, while avoiding the need of understanding formal

service description languages. The subject of this dissertation goes along with the

growing amount of work on Natural Language Generation from semantic web material,

due to practical importance of presenting such material to people [Mellish and Sun

2006].

15

In our view, service coordination may take advantage of context information by

using the context-aware computing paradigm. In this paradigm, applications can use

context information to better adapt their behaviour to the current situation. Context

information can be defined as any information that characterizes a situation related to

the interaction between users, applications, and the surrounding environment [Dey,

Abowd and Salber 2001]. In context-aware computing, context information on an

entity (person, places or objects relevant to the interaction between a user and

application, including themselves) is collected by some component/process of the

application or by some third party system (often termed context management system),

next this information is analyzed and context-dependent actions are executed

accordingly. This process aims at tailoring the system’s behaviour to its or its user’s

context [Schumacher, Helin and Schuldt 2008].

The generation of natural language descriptions from formal service descriptions

may also take advantage of the context computing paradigm, so that the generated

natural description is more adapted to the current circumstances including the user

profile. For instance, if the natural language generation system has several target

languages, context information may be used to help it choose a language that may be

understood by the user; or if a word has two possible translations, context information

may be used to help choose the translation that makes more sense in that context. Even

though this paradigm is gaining attention of the research community [Gonçalves, Costa

and Botelho 2008] and may present some benefits to use in software systems, the

context computing paradigm was not used in present work because its use is not the

main purpose of this dissertation and because it would not be possible to implement it

within the dissertation time constraints.

2.1.3 Summary

Summarizing, the research on agent-based service coordination has been

focusing mainly on service discovery [Sivashanmugam, Verma and Sheth 2004]

[Oundhakar et al 2005], service matchmaking [Fenza, Loia and Senatore 2008], service

composition processes [Guidi, Lucchi and Mazzara 2007][Chi and Song 2007], service

execution [Lopes and Botelho 2005], and their automation by using agents in the

16

service coordination process [Barker 2005] [Schumacher, Helin and Schuldt 2008].

Also, a significant amount of research has been made regarding the acquisition,

management and use of context information for improving several aspects of agent

based service coordination [Gonçalves, Costa and Botelho 2008]. Although there has

been some work aiming the natural language presentation of formal semantic web

material, such as OWL DL [Mellish and Sun 2006] or other web material [Wilcock

2003] [Bontcheva and Wilks 2004], no work has been done regarding the translation of

formal service descriptions in general, and OWL-S descriptions in particular, to human

understandable descriptions. This was selected as the main contribution of this

dissertation.

Semantic service description languages provide means for automatic web service

discovery, composition and execution. In section 2.2 we present three of the most

widespread semantic description languages - SAWSDL, WSML and OWL-S and then

further elaborate about OWL-S.

2.2 Semantic Languages

In the semantic web, services are described using semantic languages, such as

OWL-S. For a web service to be discovered and used, service coordination software

agents need computer interpretable service descriptions that help them understand what

the service does and how, as well as the way it can be accessed.

Until recently, web services have been described using the Web Service

Description Language (WSDL), an XML format for describing network services

[Christensen et al 2001]. However the WSDL language does not provide enough

support for the purpose of automatic service discovery and composition. In order to

solve this problem a mechanism was developed in which semantic annotations could be

added to WSDL components, the Semantic Annotations for WSDL (SAWSDL).

Other prominent semantic web service description language is the OWL-S

language. Contrary to SAWSDL, OWL-S is not a mere extension to other language, but

a new language for web service description based on OWL.

17

Another language recently proposed for the description of web services is the

Web Service Modelling Language (WSML), created by the European Semantic Systems

Initiative (ESSI) WSML working group. WSML is a rule-based language for describing

semantic web services, but is not a W3C recommendation as SAWSDL or OWL-S.

For the purpose of this dissertation, a semantic service description language had

to be chosen. In order to decide which language to pick, a comparison between the most

used service description languages is made in the subsections 2.2.1, 2.2.2 and 2.2.3. We

briefly describe the SAWSDL, WSML e OWL-S languages and present the reasons

why OWL-S was selected for this dissertation, its advantages and disadvantages.

2.2.1 SAWSDL

Since WSDL lacked the required information for automated service

coordination, W3C proposed to extend it with so-called semantic annotations. The result

is actually named SAWSDL (Semantic Annotations for WSDL). SAWSDL only

provides mechanisms to help define how to add semantic annotations to various parts of

a WSDL document such as input and output message structures, interfaces and

operations [Farrell and Lausen 2007]. However SAWSDL does not specify a language

for representing such semantic models. Therefore SAWSDL is simply a syntactic

extension of WSDL, unlike OWL-S or WSML that are new languages for semantic

service description. Moreover, although being a W3C standard, SAWSDL has limited

software support and no defined formal grounding, which constitutes two serious

disadvantages [Schumacher, Helin and Schuldt 2008].

2.2.2 WSML

Web Service Modelling Ontology (WSMO) is an ontology for describing

various aspects associated to semantic web services, while WSML provides the syntax

and the semantics for this ontology [Bruijn 2008]. WSML can describe semantic web

services in terms of their functionality (service capability), imported ontologies, and the

interface through which they can be accessed for orchestration and choreography

[Schumacher, Helin and Schuldt 2008]. WSML is based on logical formalisms (e.g., F

Logic). As opposed to SAWSDL and OWL-S, WSML is not a W3C standard. Due to

18

the fact that in WSMO’s submission to the W3C in 2005, WSMO was considered to be

developed apart from the W3C standards, specifically, it did not make use of the RDFS

concept of Class and Property; and it did not connect to WSDL’s definition of services.

In addition WSML still lacks formal semantics for the service interface part

(orchestration and choreography) [Schumacher, Helin and Schuldt 2008].

2.2.3 OWL-S

OWL-S is a language, replacing the former language known as DAML-S, used

to describe the semantics of services. This language is also based on the Ontology Web

Language (OWL), a recommendation produced by the Web-Ontology Working Group

at the World Wide Web Consortium (W3C) and is grounded in WSDL (Web Services

Description Language), an XML-based language that provides a model for describing

web services [Schumacher, Helin and Schuldt 2008].

One of the main problems of OWL-S is its limited expressiveness. It does not

take into account the notion of time, change or uncertainty, only describing static

aspects of the world. Also OWL-S conditional effects can only be conditioned by their

results, not their inputs [Schumacher, Helin and Schuldt 2008]. Finally, OWL-S

documentation does not provide a specification regarding the way conditions should be

written and interpreted. Thus, preconditions, conditional effects and control constructs

involving conditions cannot be written in OWL-S, they must be written in another

language. Nevertheless, OWL-S is supported by W3C and is based on its standards,

such as OWL or WSDL, and there is a large set of applications and research using and

about this language [Schumacher, Helin and Schuldt 2008].

After considering various available web services descriptions languages, OWL-S

was the language adopted, as it is fully supported by W3C and widely used in

international research projects such as CASCOM, and in the industry. In particular, the

ISCTE-IUL Agents and Artificial Intelligence research group, in which this dissertation

was done, is using OWL-S in their projects. The OWL-S language also possesses a

large set of tools and applications supporting the adoption of OWL-S for semantic web

services.

19

2.2.3.1 OWL-S Structure

The OWL-S language is composed of three main elements [Martin et al 2004a]:

Profile, Process Model, and Grounding. The Profile describes what the service does. It

is used mainly for service discovery and service composition using artificial intelligence

planners. The Process Model provides a detailed perspective of how to interact with a

service, and describes the way the service is composed of simpler elements. The

Grounding specifies the details of how to access the service, as provided by specific

service providers. Each of these elements is explained in further detail in subsections

2.2.3.2, 2.2.3.3 and 2.2.3.4.

Figure 3 - Top level of the service ontology [Martin et al 2004a]

2.2.3.2 Service Profile

The Service Profile provides a high-level description of a service and its

provider, it is also used to request or advertise services. OWL-S Profile describes a

service as a function of three basic types of information: the organization that provides

the service, the function computed by the service and a host of features that specify

characteristics of the service [Martin et al 2004a]. Information regarding the owner of

the service includes contact information of the organization responsible for it, such as

references to entities responsible for the service (or some aspect of the service). For the

second type of information, the functional description, OWL-S describes the service,

20

inputs and generated outputs, its pre-conditions (if any), and the effects produced by its

execution. Finally, the last type of information is an unbounded list of service

parameters that can contain any type of information, for example characteristics of the

service such as an estimate of the average response time.

2.2.3.3 Process Model

The Process Model provides a detailed perspective of the way the service works

and specifies the ways to interact with it. It describes the service control flow and data

flow and the possible steps performed during service execution. In OWL-S, processes

can be distinguished between atomic, simple and compound.

Atomic processes have no sub-processes, and are executed on a single step, from

the requester’s point of view. They are also required to have the Grounding. Simple

processes, however, are not associated with the Grounding, thus not having a specific

binding to a physical service. They too have single-step executions as atomic processes,

and can be used to be realized by an atomic process or to provide a simplified

representation of some compound process [Martin et al 2004a].

On the other hand, compound services are workflows, consisting of other

non-compound or compound processes. For such workflows to be constructed, different

control flow operators are used, such as Sequence, Split or If-Then-Else. While atomic

processes expect one message and returns one message in response, compound

processes maintain some state that is changed following the reception of messages

[Martin et al 2004a].

Processes may have two types of purpose. First, they can create and return some

new information based on the information given and the state of the world. The

generated information is described by the inputs and outputs of the process. Secondly,

they can change the world. This transformation is described by the preconditions and

effects of the process.

21

2.2.3.4 Grounding

The Service Profile and the Process Model are considered as abstract

representations, while the Grounding deals with the concrete level of specification.

The grounding specifies the details of how to access the service, including

communication protocol information, serialization information, etc. The Grounding

maps from an abstract to a concrete specification of the service description elements

required for interacting with the service, the mapping is made between OWL-S and

WSDL [Martin et al 2004a].

2.2.4 Summary

In this section we made a comparison between the most used service description

languages. SAWSDL is only a syntactic extension of WSDL, unlike OWL-S or WSML

that are new languages for semantic service description. Although being a W3C

standard, SAWSDL has limited software support and no defined formal grounding. The

WSML language can describe semantic web services in terms of their functionality

(service capability), imported ontologies, and the interface through which they can be

accessed for orchestration and choreography. But contrarily to SAWSDL and OWL-S,

WSML is not a W3C standard. It is also known that this language still lacks formal

semantics for the service interface part (orchestration and choreography). Finally,

OWL-S is based on the W3C standard OWL. One of the main problems of OWL-S is its

limited expressiveness, also OWL-S documentation does not provide a specification

regarding the way conditions should be written and interpreted. Thus, preconditions,

conditional effects and control constructs involving conditions cannot be written in

OWL-S, they must be written in another language. However, it is supported by W3C

and based on other W3C standards (OWL and WSDL). Moreover, OWL-S is widely

used in international projects and there is a large set of applications and research using

and about this language. All this reasons lead us to choose OWL-S instead of the other

service description languages.

None of the semantic languages described in subsections 2.2.1, 2.2.2 and 2.2.3

provide support to allow their translation to some human understandable form. However,

22

this dissertation’s NLG system generates human readable descriptions using

information directly extracted from the formal description. Most of the expressions used

to label the variables in the formal descriptions (e.g., inputxpto or output2009) are

completely idiosyncratic of the service designers and cannot be directly used in human

readable descriptions. Due to their idiosyncratic nature, it is not feasible to provide

linguistic equivalents to such expressions for all possibly existing services. These

linguistic equivalents must be provided for each service description. OWL-S and the

other service description languages do not provide ways to describe the mappings

between the idiosyncratic expressions used in the service description and their linguistic

equivalents. This dissertation proposes an approach to advance the state of the art

regarding this problem. More precisely, we propose an extension to the current OWL-S

structure that will allow the addition of such linguistic mappings.

2.3 Natural Language Generation

The amount of work on natural language generation (NLG) from semantic web

contents is increasing [Mellish and Sun 2006] [Bontcheva and Wilks 2004].The reason

behind this uprising interest is the importance of offering such contents (semantic web

material) in an easy and understandable way to both knowledge engineers and common

citizens. Section 2.3 aims at describing, understanding, and selecting common good

practices in natural language generation systems. However, as the main contribution of

this dissertation is not to natural language generation, this section does not provide a

detailed critical comparative analysis of concurrent approaches. Nevertheless, the last

subsection 2.3.3 presents a brief comparative analysis of three of the most used

approaches to natural language generation.

Natural language generation is the process of generating natural language

outputs (e.g., texts and sentences) from computer based representations or building

computer software systems that can produce meaningful texts in English or other human

languages from some underlying non-linguistic representation of information [Reiter

and Dale 2000]. Daniel Jurafsky and James Martin define Natural Language

23

Generation as the process of constructing natural language outputs from non linguistic

inputs [Jurasfsky and Martin 1999].

The Corpus Based Approach [Reiter and Dale 2000] is a widely used approach

to analyse and design natural language generation systems. It is explained in subsection

2.3.1. Subsequently, we will make a brief overview of a generic architecture of many

natural language generation systems. Section 2.3 ends with a summary of the different

types of natural language generation systems described in the literature.

2.3.1 Corpus Based Approach

The determination of the inputs the NLG system will be provided with, the

outputs it is expected to produce, and whether the output only communicates the data

and information available in the system’s input is of key importance for the

requirements analysis of specific NLG system [Reiter and Dale 2000].

The Corpus, in the Corpus Based approach, is a collection of natural language

outputs and associated inputs. The Corpus Based approach goes through a series of

steps. The first step is to create the initial Corpus. The outputs contained in the initial

Corpus are human-authored texts - natural language outputs expected to be produced by

the NLG system. As in some natural language generation systems, human-authored

texts may not exist. In such cases, no output texts will be used in the analysis.

Subsequently to the creation of the Initial Corpus, the NLG system analysis per

se can begin. The main goal is to identify and classify the information content of the

texts in the Initial Corpus, particularly if any of the human-authored Corpus texts

contains information not accessible to the system. This analysis requires classifying all

the grammatical constituents of the Corpus text (sentences, clauses, others) into

categories. In [Reiter and Dale 2000], four categories of constituents are proposed:

Unchanging text (always present in the output texts); Directly-available data (accessible

directly in the input data or an associated knowledge or database); Computable data

(information derived from the input data through some computation or reasoning

involving other data sources) and Unavailable data (information which is not present in

or derivable from the input data).

24

There are a number of solutions to the problem of unavailable data:

• Make more information available to the NLG system;

• Change the output text to eliminate constituents that express unavailable

data; and

• Expect a human to write and incorporate textual constituents which

communicate unavailable data.

After the natural language generation system’s analysis the people responsible

for the system (developers and users) must agree on a final text Corpus. This takes into

account the required changes to the initial Corpus, such as improving the target texts

readability, dealing with the unavailable data or removing textual constituents

(computable data elements) that provide insufficient benefit to justify the cost of

generating them. The outcome of all these changes is a set of texts that represents the

output to be generated by the NLG system, the Target Text Corpus.

2.3.2 Architecture

There is no definite architecture when it comes to language generation systems,

as it depends on the requirements of the system itself. In spite of that, the architecture

presented in [Reiter and Dale 2000] is used, to a certain extent, by many NLG systems

and allows us to get a brief overview of all the decisions that need to be addressed when

building such systems.

A language generation system can be decomposed into three modules: the

Document Planner; the Microplanner and the Surface Realiser. These three modules can

be seen as a linear pipeline, starting in the Document Planner and ending in the Surface

Realiser.

The Document Planner is responsible for deciding what information should be

presented in the output text (Content Determination) and how the parts of the content

should be grouped in a single document (structural aspect of the Document Planner,

also known as Document Structuring).

25

The Microplanner’s task is to take the output of the Document Planner and

refine it to produce a more detailed text specification. That is achieved by making the

following decisions:

• Lexicalisation - choosing the particular words, syntactic constructs or

other linguistic resources to express the content selected by the Content

Determination of the Document Planner;

• Referring Expression Generation - determining the expressions that

should be used to refer to entities; and

• Aggregation - making decisions of how the structures generated by the

Document Planner are transformed into linguistic structures as sentences

and paragraphs.

Finally the Surface Realiser is accountable for converting the Microplanner’s

abstract representations of sentences (Linguistic Realisation) and structures (Structure

Realisation) into real text.

2.3.3 Types of Language Generation Systems

We will now present some of the possible types of language generation systems

as described in the literature. [Hovy 1992] divides generation systems in four types:

canned-text based, template based, phrase-based and feature-based. Also Reiter and

Dale [Reiter and Dale 1997] split between systems that use template-based approaches

for what they call sentence plans, and systems that use Abstract Sentential

Representations. [Jurasfsky and Martin 1999] have similar thoughts to those of Reiter

and Dale [Reiter and Dale 1997] and Hovy [Hovy 1992] since they distinguish three

types of Natural Language Systems similar to the ones of the mentioned authors:

canned-text, template filling and a third more complex type with a similar architecture

to the one of the subsection 1.3.2, what van Deemter, Krahmery & Theunez [van

Deemter, Krahmery and Theunez 2003] call “real” Language Generation System.

26

Now we illustrate the known pros and cons of three types of NLG systems

mentioned above: Canned-Text, Template-Based and “real” Language Generation

Systems.

In a Canned-Text system [Hovy 1992] [Jurasfsky and Martin 1999] the

character sequence to be used has already been determined by the author of the

program. It is used to display unchangeable information as error messages, warnings,

titles, and so on.

• Pros: it is trivial to produce.

• Cons: it is unable to adapt to new situations without the intervention of a

programmer which makes it completely inflexible.

Template-Based systems represent sentences as “boilerplate” text and

parameters that need to be inserted into the boilerplate [Reiter and Dale 1997]. This

“boilerplate” represents fixed linguistic structures that usually contain gaps, where these

gaps are filled by the NLG system’s inputs [Hovy 1992]. These inputs usually don’t

receive any further processing in older systems. However some new systems do perform

linguistic processing (intermediate representations). Template-Based approaches are

normally used in systems that produce messages or text with slight alterations, since

they are not flexible enough to handle applications with any realistic variation in the

content to be expressed or the context of the expression [Jurasfsky and Martin 1999].

• Pros: a little more complex than Canned-Text, but still easy to

implement.

• Cons: this systems weakness is also their inflexibility, even though more

flexible than Canned-Text; as Canned-Text systems, they are difficult to

maintain.

Finally, ‘real’ language generation systems [van Deemter, Krahmery and

Theunez 2003] are much more complex than the types of systems previously presented.

These systems are based on linguistic principles, and use grammars that apply rules so

that syntactically, morphologically, and orthographically correct texts are produced

27

[Reiter and Dale 1997]. Systems of this kind specify phrasal units (nouns, verbs,

adjectives, adverbs) and their relations with abstract representation languages.

• Pros: better maintainability, better output quality and variation, and

linguistically well-founded.

• Cons: complex and more costly to implement.

There has been some discussion on the advantages of choosing one of the NLG

system approaches over the other. Busemann and Horacek [Busemann and Horacek

1998] go as far as claiming that shallow approaches combining different granularity in a

flexible way are better suited for small applications when compared to “real” NLG

systems. Shallow approaches or “intermediate” techniques [Reiter and Mellish 1993]

are approaches that sacrifice some of the benefits of “real” NLG systems in order to

reduce their costs, resources and development time. Reiter & Mellish [Reiter and

Mellish 1993] also defend that shallow approaches are more suitable as long as the

corresponding “real” NLG approaches are poorly understood, less efficient, or more

costly to develop. In their turn, Deemter, Krahmery & Theunez [van Deemter,

Krahmery and Theunez 2003] challenge the thoughts that template-based approaches

are necessarily inferior to other approaches and report some recent systems that are able

of achieving generative capabilities beyond what is usually expected from

template-based systems.

After taking into account all the pros and cons of the different types of natural

language systems, a decision was made to use a Template-Based system in this thesis.

This decision was based on the fact that the general form of sentences or other

constructions present on the Natural Language descriptions generated from the OWL-S

description are sufficiently invariant so that they can be predetermined and stored as

templates. Also the fact that this kind of system is easier to implement (no need to

specify phrase representations) is a plus since there is a limited time schedule to the

completion of this NLG system.

28

3 System’s demonstration

The system developed for this dissertation was tested with nine OWL-S service

descriptions, all of them taken from the public website of the Mindswap project.

Although the system has generated natural language descriptions for all the nine

OWL-S descriptions, this chapter illustrates the way the system works for only two

service descriptions. However, the nine services were all used for the system’s

evaluation, as explained in chapter 5.

The examples presented in this chapter allow us to understand the way the

implemented natural language generation system works. With this demonstration we

want to explain, through examples, the generation of natural language descriptions from

OWL-S service descriptions with special emphasis on the interaction between the

system and the user. Figure 4 depicts the user’s first interaction with the natural

language system’s interface.

Figure 4 – NLG system’s first menu

The user must choose between loading the OWL-S service description from an

URI or a file stored in her or his computer disk. According to the user’s choice, the

system either opens an input frame to allow the insertion of the URI of the input service

description, or opens a file chooser in which the user can specify the OWL-S

description’s pathname. From this stage on the user intervention is no longer required.

The NLG system will produce a natural language description of the specified service

and present it back to the user. Figure 5 shows the user’s interaction with the service.

29

Figure 5 – Natural Language Generation System

This demonstration chapter describes two examples, one for an atomic service

with specified preconditions, and another for a compound service. The used OWL-S

service descriptions are both taken from public website of the Mindswap project.

• The first example is the atomic service Babel Fish Translator.

• The second example is the compound service Book Price Finder.

Babel Fish Translator Example

As previously illustrated in Figure 4, the users choose between loading the

OWL-S service description from a disk file or from a specified URI. Assuming the

description is loaded from an URI, a frame as the one in Figure 6 appears. The user now

inserts the service description’s web address - http://www.mindswap.org/2004/owl-

s/1.1/BabelFishTranslator.owl for the Babel Fish Translator’s OWL-S description.

Figure 6 – Load OWL-S description from an URI

30

The system will retrieve the entire service description from the hosting server

and extracts the relevant information. Figure 7 shows Babel Fish Translator’s Profile

since the NLG system mainly uses that part of the service description to generate its

output.

<!-- Profile description -->

<mind:LanguageService rdf:ID="BabelFishTranslatorProfile">

<service:presentedBy rdf:resource="#BabelFishTranslatorService"/>

<profile:serviceName xml:lang="en">BabelFish Translator</profile:serviceName>

<profile:textDescription xml:lang="en">

Convert text from one language to another language. Supported languages are Dutch,

English, French, German, Italian, Japanese, Korean, Portuguese, Spanish, and Russian.

The valid input output pairs is given by the property canBeTranslatedTo.

</profile:textDescription>

<profile:hasInput rdf:resource="#InputString"/>

<profile:hasInput rdf:resource="#InputLanguage"/>

<profile:hasInput rdf:resource="#OutputLanguage"/>

<profile:hasOutput rdf:resource="#OutputString"/>

<profile:hasPrecondition rdf:resource="#SupportedLanguagePair"/>

</mind:LanguageService>

Figure 7 – Babel Fish Translator’s Profile

From this Profile, and using the OWL-S API, the system extracts the following

variables:

• Service name: BabelFish Translator.

• Service inputs: InputString, InputLanguage and OutputLanguage.

• Service output: OutputString.

• Service precondition: SupportedLanguagePair.

The system also extracts the informal service description explicitly provided by the

service owner. In addition to the Profile, we use the Process Model to determine if the

service is atomic or compound. If the process is an instance of an atomic process it

means that the service is atomic, else it is a compound service.

All the extracted information, with the exception of the informal description

provided by its owner, as a comment, is converted into a more understandable form.

31

This is accomplished by mapping the extracted variables into their linguistic

equivalents, using a linguistic mapping table. Currently, OWL-S descriptions do not

include linguistic mapping tables. They have been built-in within the system. One of the

main contributions of this dissertation is to propose an extension to OWL-S that

represents the linguistic mapping tables, one for each desired language. This

contribution is described in more detail in section 4.2.2. Figure 8 shows an example of

the linguistic mapping applied to the current service variables. The variables originally

extracted from the OWL-S description appear on the left of the � symbol, and their

linguistic equivalents appear on the right.

BabelFish Translator -> Babel Fish Translator

InputLanguage -> input language

OutputLanguage -> output language

InputString -> the text to be translated

OutputString -> translated text

SupportedLanguagePair -> the input and output language pair

is supported

Figure 8 – Babel Fish Translator’s mapping table

The system uses the output from the linguistic processing to guide the selection

and filling of the text templates used to generate the natural language description. That

is, according to the value of the variables the system selects and fills the appropriate

templates. For instance, if the service had no inputs, meaning the value of the inputs

variable would be none, that would lead to the selection of the text template

representing the no inputs situation. On the other hand if the input’s value were input

language, the system would select the template representing the case with only one

input and fill the template with the value - input language.

Figure 9 depicts the text templates selected by the NLG system used to generate

the first sentence of Babel Fish Translator’s English description. It also shows the result

of filling those templates with the linguistically processed information extracted from

the OWL-S description.

32

Used templates

1. “The service ______”

2. “ needs to receive the ______”

3. “, ______”

4. “ and ______ as parameters.”

Filled templates

1. “The service Babel Fish Translator”

2. “ needs to receive the input language”

3. “, output language”

4. “ and the text to be translated as parameters.”

Figure 9 – Examples of text templates used in Babel Fish Translator’s first sentence

After all the remaining selected templates are filled, the system aggregates them

into a filled single final text template representing an almost ready natural language

description. Figure 10 shows the result of aggregating all the filled templates of the

Babel Fish Translator example.

“The service Babel Fish Translator needs to receive the

input language, output language and the text to be

translated as parameters. It has only the translated text

as output./ln This service also has the following

precondition: the input and output language pair is

supported./ln The owner of the service describes it as:

"Convert text from one language to another language.

Supported languages are Dutch, English, French, German,

Italian, Japanese, Korean, Portuguese, Spanish, and

Russian. The valid input output pairs is given by the

property canBeTranslatedTo."./ln Moreover, this service is

self-sufficient in the sense that it does not use other

services. Technically, it is called an atomic service.”

Figure 10 – Aggregation of the text templates used in Babel Fish Translator’s

description

33

At this stage the English description requires only structural

processing - addition of paragraphs (represented in Figure 10 by the unique special

symbol “/nl”). This is done when the description is presented to the user. In Figure 11

we show the Babel Fish Translator’s final English description, the NLG system’s

output.

Figure 11 – Output English description – Babel Fish Translator

In the next subsection we describe the example for the compound service Book

Price Finder.

Book Price Finder Example

In the first example the OWL-S description was loaded from an URI. In the

Book Price Finder’s example we chose to load the service description from a file. The

system provides an interface as the one shown in Figure 12, allowing users to navigate

their file system and select the service.

34

Figure 12 – Load the OWL-S description from a file

The steps leading to the generation of the natural language description for the

Book Price Finder service, and compound services, are very similar to ones for atomic

services. In fact, the only changes in the generation of English description for each type

of service are the information about the type of service extracted from the OWL-S

description and the selection of the correct template. That is, instead of selecting the

first text template (1) in Figure 13, which corresponds to atomic services, the system

chooses the second template (2) for compound services.

1. Moreover, this service is self-sufficient in the

sense that it does not use other services.

Technically, it is called an atomic service.

2. Technically, this is a compound service because it

combines other services in a new aggregate service.

Figure 13 – Text templates for atomic and compound services

The natural language generation system’s outcome for the service Book Price

Finder is depicted in Figure 14. In this example, the text template for compound

services is used.

35

Figure 14 – Output English description – Book Price Finder

In this chapter we explained how the system interacts with the user. Through this

demonstration’s examples we were able to describe the steps taken by the system in

order to generate the English descriptions and demonstrate how the implemented natural

language generation system works. Moreover, we identified the main differences in

generating descriptions for atomic and compound services: the information about the

type of service extracted from the OWL-S description and the selection of the

corresponding template. We also described how OWL-S variables (inputs, outputs,

preconditions) are presented in the English description. In the next chapter we describe

the natural language system in detail.

36

4 Natural Language Generation System

In this chapter we describe the natural language generation system created in the

scope of this dissertation. This NLG system follows a template-based approach, where

text templates are defined prior to the time of generation. It receives OWL-S service

descriptions and produces the corresponding natural language (English) descriptions.

We chose to generate the natural language descriptions from OWL-S descriptions

because the OWL-S language is vastly used in industry projects and has a large set of

tools and applications supporting the adoption of OWL-S for semantic web services.

Additionally, OWL-S is a W3C standard, building upon the also standard OWL

Semantic Web language, and can be used in the context of other web service standards

such as WSDL or UDDI [Martin et al 2004b]. We selected English to be the NL

description’s language because it is the most spoken language worldwide, and is the

dominant international language in communications, science, business and other areas.

However, our choosing the English language does not preclude other languages to be

incrementally added later.

In section 4.1 we present the OWL-S language. Section 4.2 describes the approach

used in this system. More specifically, we reveal and justify the choices we made and

describe the parts composing the system. Finally, in 4.3 we briefly present the system’s

implementation.

4.1 OWL-S Language

The OWL-S description language was created with the purpose of providing the

support for automatic service coordination. As described in subsection 2.2.3 an OWL-S

description is composed of three main elements: Profile, Process Model, and

Grounding. These elements provide three essential types of knowledge about a service:

what it does (Profile), how it works (Process Model) and how to access it (Grounding).

OWL-S descriptions are organized in an object-oriented fashion. The description

top class, that is, the root of an OWL-S description, is the Service class, which provides

an organizational point of reference for a declared web service. The Service class has

37

the properties presents, describedBy, and supports. Each instance of Service will

present a ServiceProfile, will be described by (describedBy) a ServiceModel, and will

support a ServiceGrounding [Martin et al 2004a]. This is depicted in Figure 15.

Figure 15 - Top level of the service ontology [Martin et al 2004a]

The Profile, Process Model and Grounding are specified in more detail in

subsections 4.1.1, 4.1.2 and 4.1.3.

4.1.1 Profile

The service Profile presents information suitable for service discovery and

service selection. The service coordination client specifies the desired services through

the specification of a possibly incomplete Profile. The service discovery process seeks

for services whose Profile matches the specification. If more than one service is found,

one is selected using its Profile. If no service matches the specification, the service

composition process tries to create a compound service that matches the specified

Profile. The composition process may also use service Profiles for discovering and

selecting services to use in the new compound service, in a similar fashion as the

discovery process.

The Profile holds different types of information. It provides human-readable

information such as the service name, text description or contact information,

represented in OWL-S Profiles through the properties: serviceName, textDescription

38

and contactInformation. The serviceName property refers to the name of the service and

can also be used as service identifier. The textDescription presents a brief description of

the service, produced by the service owner. Ideally it summarizes what the service

offers, it describes what the service requires to work, and any additional useful

information. Only one service name and text description is allowed per service Profile.

The property contactInformation offers a mechanism of referring to humans or

individuals responsible for the service. However the range of this property is

unspecified within OWL-S, but can be restricted to some ontology [Martin et al 2004a].

Both the service name and text description are used to generate the natural language

description. The former is used to identify the service in the NL description; the latter

may add information not present in the generated part of the description. Figure 16

shows the properties and classes of the Profile.

Figure 16 - Profile [Martin et al 2004a]

The Profile also specifies information about the transformations the service is

capable of (represented by inputs and outputs) and information about the state changes

produced by the execution of the service (represented by preconditions and effects).

This last set of information is also known as IOPE (Inputs, Outputs, Preconditions and

Effects). The OWL-S Profile does not provide a schema to describe IOPE instances.

39

That information is provided in the Process Model. Profile’s IOPEs are expected to be a

subset of those published by the Process, where the Process Model part of a description

creates all the IOPE instances while the Profile instance simply points to these instances

[Martin et al 2004a]. As shown in Figure 16, the Profile uses the hasParameter,

hasInput, hasOutput, hasPrecondition and hasResult as properties for pointing to the

IOPEs. The role of the hasParameter property is only making domain knowledge

explicit (inputs and outputs are kinds of parameters) therefore, it is not expected to be

instantiated. The properties hasInput and hasOutput range over instances of Inputs and

Outputs as defined in the Process Model. The hasPrecondition property specifies one of

the preconditions of the service and also ranges over a Precondition instance defined in

the Process Model. At last, the property hasResult specifies one of the results of the

service as defined by the Result class of the Process Model. It also describes the

conditions under which the outputs are generated and the domain changes that are

produced during the execution of the service [Martin et al 2004a]. The Profile

information regarding IOPEs is used to generate the output description of the NLG

system as it presents key information about web services: information needed to

produce the service input (input), the information it produces (output), the conditions

that need to be satisfied before executing the service (preconditions) and state changes

produced by the execution of the service (effects).

Finally, the Profile may also contain additional information about quality

guarantees provided by the service, possible classification of the service, and additional

parameters that the service owner may want to specify. This is specified by the

properties: serviceParameter, serviceCategory, serviceClassification and

serviceProduct. This information can help the user decide whether or not to execute the

service, mainly the information about the classification and quality of service. However,

we do not present this information in the natural language description because it is not

essential to the comprehension of the service and chiefly because this information is

described in most cases outside OWL-S: categories of services are described on the

bases of some classification that may be outside OWL-S and possibly outside OWL

(this may require some specialized reasoner if any inference has to be done); and service

classifications are instances of classes specified in OWL ontologies of services and

products (OWL specification of NAICS - North American Industry Classification

40

System). Moreover, due to its complexity and time constraints, this information could

only be added to the natural language description in future work.

<mind:LanguageServicerdf:ID="BabelFishTranslatorProfile">

<service:presentedByrdf:resource="#BabelFishTranslatorService"/>

<profile:serviceNamexml:lang="en">BabelFish Translator</profile:serviceName>

<profile:textDescriptionxml:lang="en">

Convert text from one language to another language. Supported languages are Dutch,

English, French, German, Italian, Japanese, Korean, Portuguese, Spanish, and Russian.

The valid input output pairs is given by the property canBeTranslatedTo.

</profile:textDescription>

<profile:hasInputrdf:resource="#InputString"/>

<profile:hasInputrdf:resource="#InputLanguage"/>

<profile:hasInputrdf:resource="#OutputLanguage"/>

<profile:hasOutputrdf:resource="#OutputString"/>

<profile:hasPreconditionrdf:resource="#SupportedLanguagePair"/>

</mind:LanguageService>

Figure 17 - Example of the Profile for the service BabelFish Translator

Figure 17 shows the Profile for the service “BabelFish Translator”. From this

example, we are able to know the name of the service (BabelFish Translator) and to

have access to the text description created by the service owner. We can also learn that

the service has two inputs (InputString and InputLanguage) and only one output, the

OutputString. Moreover, the service can only properly execute if the precondition

SupportedLanguagePair is satisfied. In the next subsection we take a closer look at the

Process Model.

4.1.2 Process Model

The Process Model gives a detailed perspective on how to interact with a service. It

details the possible steps required to execute a service. For each type of service (i.e.,

atomic or compound) there is a different kind of process. An atomic process expects one

(possibly complex) message and returns one (possibly complex) message in response. A

compound process maintains some state and each message the client sends advances it

through the process [Martin et al 2004a]. We use the information about the type of

process present in the Process Model to indentify the type of service in the output NLG

description. That is, if the process described by the Process Model is an instance of an

AtomicProcess the service is atomic; else if the described process is an instance of a

41

CompositeProcess it is a compound service. Atomic and compound services are

specified in OWL-S as depicted in Figure 18.

Atomic Process:

<process:AtomicProcess rdf:ID="BookFinderProcess">

Compound Process:

<process:CompositeProcess rdf:about="FindCheaperBookProcess ">

Figure 18 – Atomic and Compound Processes

Processes can either produce a change in the world or create and return new

information based on the received information and the world state. The latter is

described by the inputs and outputs of the Process Model, while the former is described

by the preconditions and effects. Classes and properties of the Process Model are

presented in Figure 19.

In OWL-S, both preconditions and effects are represented as logical formulas.

These expressions are treated as literals (string or XML). Since the Profile already

presents information about the service’s IOPEs, the Process Model’s IOPE description

is not used to generate the natural language service description. However, such type of

information could be used to create more complex descriptions in future research. For

example, thoroughly describing service variables specified in domain ontologies would

allow presenting a more complete perspective on the service.

As described before there are two types of services: atomic and compound.

However, OWL-S distinguishes between atomic, simple and compound processes.

Simple and atomic processes have no sub processes and are executed in a single step, at

least from the service requester’s point of view. For each atomic process, a grounding

must be provided. Simple processes differ from atomic ones in that they are not

evocable and are not associated with grounding.

Contrary to atomic and simple processes, compound processes can be

decomposed into other (non-compound or compound) processes. Control constructs

help specify the decomposition and organization of compound processes. Example of

control constructs include:

42

• Sequence - list of control constructs to be executed in a sequential order.

• Split - elements of a bag of processes to be executed concurrently.

Completes as soon as all the processes have been scheduled for

execution.

• If-Then-Else - if the specified condition is true, executes the Then part,

else executes the Else part.

The Process Model provides information about both the control structure and

data flow structure of the service. Although this is undoubtedly useful information to

understand how the service works and interacts with the world we chose not to use this

information in the natural language description. In fact, we only use Process Model’s

information to determine the type of service. These choices are explained in 4.2.

Figure 19 - Process Model class [Martin et al 2004a]

43

The service description is not complete if we do not have a way of evoking the

service. In the next subsection we present the last element of OWL-S, which is

responsible for specifying the way the service is accessed and evoked - the Grounding.

4.1.3 Grounding

The Grounding maps the description elements necessary for the interaction with

the service from an abstract specification (Process Model) to a concrete specification.

Specifically, the Grounding fundamental function is to show how the (abstract) inputs

and outputs of an atomic process are to be realized as concrete messages [Martin et al

2004a]. However, the OWL-S language does not specify the details of particular

message formats, protocols, and network addresses by which a web service is

instantiated. For that reason, OWL-S uses WSDL (Web Service Description Language)

to help ground OWL-S services. Hence, for specifying the Grounding, both languages

are required as they do not cover the same conceptual space. This is depicted in Figure

20.

44

Figure 20 - OWL-S and WSDL [Martin et al 2004a]

An OWL-S/WSDL grounding uses OWL classes as the abstract types of

message parts declared in WSDL, and then relies on WSDL binding constructs to

specify the formatting of the messages [Martin et al 2004a]. In conclusion, the

Grounding is based upon the correspondences between OWL-S and WSDL. We not use

information from the Grounding to produce outcome description. The Grounding’s

main goal is to provide ways of realizing the inputs and outputs of an atomic process as

concrete messages, but the Profile already possesses information about inputs and

outputs, making it a useless source of information. Section 4.2 further elaborates on this

issue.

4.2 Natural Language Generation Approach

In this section, we describe the template-based Natural Language Generation

(NLG) system used in this dissertation. This system takes relevant information from the

OWL-S service description and generates a natural language description of the specified

service. Before describing the system itself, we first reason about the information to be

present in the natural language description.

OWL-S descriptions are composed of Profile, Process Model and Grounding.

The main source of information for the output description is the Profile, as it contains

key information about the service (name, inputs and outputs, pre conditions and effects,

among others). Although the Process Model and the Grounding parts of the OWL-S

service description provide information about the service, they are not thoroughly used

(except the Process Model to determine the type of service) in the natural language

description, for different reasons. Some of the relevant information contained in the

Process Model (service name, inputs, outputs, pre conditions and effects) is also present

in the Profile. The part of the Process Model describing the ways to interact with the

service, which is not contained in the Service Profile, could in fact be useful

information for the user, since, to make an informed decision regarding the service, it

might be convenient for him or her to know how the service interacts with the world.

However, mainly due to time constraints, we have decided to focus exclusively on

45

declarative information regarding the service. Procedural information, as contained in

the Process Model section of the description, will be handled in future research.

As a result of this choice, generated natural language descriptions do not explain

how the service works. Instead, they provide a brief overview of what the service is and

what it does. Although arguably incomplete, such declarative view of the service can

help users deciding whether or not to use (execute) the service.

As for the Grounding, it specifies the details of how to access the service.

Information about providers of a service would be useful and interesting to have in the

natural language description, as it would allow people to know who the service

providers are, and choose between them. However, we are not able to extract that type

information from the Grounding, which makes it a not exploitable source of

information.

In this approach, the process of generating natural language descriptions from

OWL-S descriptions is a data driven algorithm. That is, it is the information extracted

from the OWL-S service description that guides the subsequent processing of the

generation. After having extracted a relevant piece of information from the OWL–S

description, the system selects the appropriate templates guiding the content and the

structure of the output natural language description.

We first present a brief summary of the various elements composing the NLG

system, and further elaborate about each of these elements in the following subsections.

The NLG system presented in this dissertation is a template-based system similar to a

pipeline, where the output of one element is used as input for the next. The system is

composed of four main elements as presented in Figure 21.

Figure 21 - NLG System Overview

46

The first element, Information Extraction, is responsible for dealing with the

system’s inputs. It extracts the parts of the OWL-S service description that will be

present in the natural language description. Since it is possible that information

extracted directly from the OWL-S description is not linguist information, the Mapping

element maps the extracted information into meaningful text so that it can be used in the

natural language description later on. At this point the system has all the information

extracted from the OWL-S service description in a human readable form. Now it needs

to take this information and use it to fill the text templates. This process is called

Template Filling. In the fourth and last element of the system, Surface Realisation, the

templates are processed so that the description is easier to read (presented as structured

text with paragraphs and other phrase structures if necessary).

4.2.1 Information Extraction

The first element, Information Extraction, is responsible for extracting the

information of the OWL-S service description to be present in the natural language

description. As stated previously, the main source of information for the natural

language description is the Profile, namely information about the service name, inputs,

outputs, pre-conditions, results and the service description made by the programmer (if

there is any). The Process Model is used only to determine whether the service is

compound or atomic. Human-written OWL-S descriptions are not just pure non-

linguistic inputs. They contain a large amount of complex linguistic material. Service

creators label their variables freely – they may use meaningful names people will

understand (Fictitious Price Finder, for example) but they may also label their variables

in an arbitrary manner (e.g., service FPF0709, or parameter x). This freedom causes a

problem when the system tries to use such possibly human readable labels to generate

natural language outputs. The systems needs to make sure that the used labels are in fact

human-comprehendible names. We try to achieve this by mapping “raw” information

from the OWL-S description into information that can be understood by people. The

mapping process is explained in further detail in subsection 4.2.2.

47

4.2.2 Mapping

The mapping process, in this context, can be seen as taking “raw” information

the system extracts from the OWL-S service description and mapping it to the

corresponding linguistic equivalent expressions. For instance, if the creator of the

service named it FPF0709 the linguistic equivalent could be Fictitious Price Finder.

The mapping process is represented by the predicate mapping/3 such that

mapping(Service,OwlsLabel,LinguisticExpression) means that the specified OWL-S

label (OwlsLabel) of the specified service (Service) is mapped into the corresponding

specified linguistic expression (LinguisticExpression). The mapping of the previous

example would be represented as mapping(FPF0709,FPF0709,’Fictitious Price

Finder’). This avoids the problem of possible non-meaningful labels in the OWL-S

description. However this requires a mapping to be made.

In this dissertation, we argue that such mappings should be provided by the

service owner, attached to the OWL-S service description because, given the

idiosyncratic nature of used labels, it is impossible or at least very difficult to create a

mapping that could be used to all and every existing service description. However as it

is of now, OWL-S descriptions do not provide support to integrate these mapping tables

We propose adding specifications (in XML Schema) about linguistic mapping tables to

the OWL-S descriptions. More precisely, integrate the mapping table in the OWL-S

Profile since this type of information could also be used to describe the service. Each

mapping table could be integrated in the service Profile in a similar way as the

following example:

48

<mappingtable target_language="English">

<mapping_pair>

<original_label>//mind:BookInformationServiceBook[@rdf:ID=’BookFinde
rProfile’]/profile:serviceName[@xml:lang=’en’]

</original_label>

<linguistic_equivalent>Book Finder</linguistic_equivalent>

</mapping_pair>

<mapping_pair>

<original_label>//mind:BookInformationServiceBook[@rdf:ID=’BookFinde
rProfile’]/profile:hasInput[@rdf:resource=’#BookName’]

</original_label>

<linguistic_equivalent>name of the book</linguistic_equivalent>

</mapping_pair>

<mapping_pair>

<original_label>//mind:BookInformationServiceBook[@rdf:ID=’BookFinde
rProfile’]/profile:hasOutput[@rdf:resource=’#BookInfo]

</original_label>

<linguistic_equivalent>book information</linguistic_equivalent>

</mapping_pair>

</mapping_table>

Figure 22 – Example of the mapping table for the Book Finder Service

 Mapping tables as the one in Figure 22 would be written according to the

following XML Schema:

49

<xs:element name="mapping_table">

<xs:complexType>

<xs:sequence>

<xs:element name="mapping_pair" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="original_lable" type="xpath"/>

<xs:element name="linguistic_equivalent" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:attribute name="target_language" type="xs:string" use="required"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 23 – XML Schema for the mapping tables

If the natural language description were to be generated in multiple languages,

multiple mappings would also have to be created. This however does not seem to be a

problem. As a matter of fact most users would understand English descriptions. In any

case, a single mapping is better than no mapping at all and the fact that, in a given

moment a given service description is associated to only a single mapping does not

prevent new mappings, for new languages, to be incrementally added.

 Multiple mapping tables could be included in the OWL-S Profile using the

hasLinguistMappings property as presented in Figure 24.

<owl:ObjectProperty rdf:ID="hasLinguisticMapping"/>

<rdfs:domain rdf:resource="#Profile"/>

<rdfs:range rdf:resource="#LinguisticMappings"/>

</owl:ObjectProperty>

Figure 24 – The property hasLinguisticMappings’ specification in the OWL-S Profile

50

The value of the property hasLingisticMappings is defined by the range

LinguisticMappings. LinguisticMappings needs to have one or more mapping tables as

specified in the XML Schema of Figure 25.

<xs:element name="LinguisticMappings">

<xs:complexType>

<xs:sequence>

<xs:element ref="mapping_table" minOccurs="1" maxOccurs="unbounded">

</xs:sequence>

</xs:complexType>

 </xs:element>

Figure 25 – XML Schema for the LinguisticMappings

Due to the OWL-S’ restrictions described above, we have built-in the mapping

tables within this system. This allowed us to properly test the NLG system. Since all the

information is now in a human understandable form, the system needs to fill the text

templates with this information. This process is called Template Filling and will be

explained in further detail in subsection 4.2.3.

4.2.3 Template Filling

Template-based systems have fixed linguistic structures typically containing

gaps that need to be filled by the system with information extracted from or adapted out

of its inputs. In the system described in this dissertation, the templates are filled with the

result of the Mapping process and are represented by the predicate template/3. The first

parameter of this predicate is the name of the OWL-S variable, to which the template is

assigned (e.g. service name, input). The second parameter specifies the cases of that

variable – there are three possible cases for OWL-S variables: they have no value, have

only one value or have several values (e.g. the service may have no inputs, only one

input or various inputs). The third parameter is the actual text template that is

appropriate for the situation specified by the first two parameters. For the moment, we

will focus on the third parameter, the text templates. Text templates are fixed linguistic

structures that require no further orthographic or grammatical treatment other than some

51

structural processing (paragraphs, for example). In Figure 26 we present some examples

of the text templates that can be used in the system.

1. [‘ needs no parameters.’]

2. [‘ needs to receive the ’, Input, ‘ as parameter.’]

Figure 26 - Text Templates

The first text template (1) is applied when there are no inputs to the OWL-S

service description, so there is no need to fill the template with any information. The

second text template (2) represents the case where there is only one input to the service.

This template must be filled with the name of the single input parameter, which will be

inserted where specified by the variable Input (underlined in the figure just for

improving readability). Text parts of the template and variables are separated with

commas.

In Figure 27 we present two examples of the template/3 predicate for the case of

the service name variable. Templates, for which the first argument is service name can

only be used for the service name variable of the OWL-S service description. The use of

each template is determined, in the first place, by its first argument. For instance, the

first parameter of the templates representing the service inputs or pre-conditions would

be service inputs and preconditions respectively.

1. template (service name, [], ['This service']).

2. template (service name, [Service name], ['The

service ', Service name]).

Figure 27 - Templates for the service name

Supposing the service has no inputs, the system cannot use the template for

when there is one or more inputs to the service. This issue is common to all the

variables. Being so, the second parameter of the predicate template/3 specifies the

particular situation of the variable represented in that template. Figure 27 shows two

templates used to represent two possible situations regarding the service name part of

52

the service description: (1) the case where the name of the service is not specified; and

(2) the case where the name of the service is specified. In the first situation, the second

parameter is an empty list meaning that there is no specified service name, whereas in

the second situation the second parameter is a list with one element, the Service name,

meaning that a service name is specified. In this representation, Service name is the

name of the variable, not its value. The third parameter of the predicate template/3

represents the actual text template, as seen previously and in Figure 26.

In 4.2.2, we acknowledged that if we needed to generate the description in

multiple languages, different mappings would have to be provided by the service owner

within the service description. Since it is possible to create a set of text templates

covering the whole OWL-S description, used templates do not have to be provided by

service owners. Instead, they are represented in the natural language generation

system’s knowledge base. Because text templates are in a final static form, no further

grammatical or orthographic processing is required, for every new language a new set of

text templates has to be created and loaded into the system’s knowledge base. Moreover

there is other important difference between mappings for formal description labels and

text templates. The text templates are specific of a given service description language,

in this case, the OWL-S. This means that the same set of templates, developed for

OWL-S descriptions, may be used for every service described in OWL-S. Mappings,

contrarily to text templates, are specific of each service. Therefore text templates may

be created, at once, for all OWL-S service descriptions; whereas mappings must be

provided for each description.

Subsection 4.2.4 describes the last element of the Natural Language System, the

Surface Realiser.

4.2.4 Surface Realiser

The outcome of the Template Filling system element is a close approximation to

the final natural language description, with the filled text templates producing a

meaningful description. In this last element of the NLG system, the filled templates are

subject to the process of Surface Realisation, where they are mapped from an abstract

text representation to surface text, made up of sequences of words, punctuation symbols

53

and text structures. Because the text present in the templates already encompasses

words and punctuation symbols (Linguistic Realisation), the task of the Surface Realiser

is restricted to adding paragraphs to the description. In this NLG system, paragraphs are

represented in the templates by a unique special symbol (i.e., “/nl”). If we wanted to add

a paragraph at the end of the sentence “This service needs no parameters.”, the resulting

template would be [' This service needs no parameters./nl'] . In this example, the special

symbol “/nl” indicates that a new line needs to be added by the Surface Realiser.

In subsection 4.2.5 we present a general schema of the whole process of creating

a natural language description using this kind of NLG System.

4.2.5 General Schema

In Figure 28, the system begins by selecting and extracting information from the

OWL-S service description FPF0709, which is to be present in the natural language

description. This information is then mapped to meaningful linguistic equivalents. In

this particular example, the name of the service FPF0709 is mapped to Fictitious Price

Finder. This same mapping process is applied for the rest of the information extracted

from the OWL-S description. Subsequently, the already mapped information is used to

fill the templates and, according to its properties, the right templates are chosen. For

example, this service has no parameters, hence the chosen text template is [' This service

needs no parameters. ']. After filling the chosen templates with all the information, the

system is now ready for the Surface Realisation. After being mapped by the Surface

Realiser from an abstract text representation to a surface text format, the final Natural

Language Description is created.

54

Figure 28 - NLG System Schema

In the next section we detail the implementation of the natural language system.

More precisely, we describe the choices taken in the implementation of the service such

as the software and programming languages we used as well as some the details

intrinsic to the implementation.

4.3 Natural Language Generation System Implementation

In this section, we describe the implementation of the natural language

generation system and all their various modules.

55

Figure 29 – NLG system’s implementation schema

Users interact with the system through a User Interface, as depicted in Figure 29.

The User Interface is composed of two modules: Service Specification Interface and

Surface Realiser. Users specify the services whose formal descriptions are to be

translated to natural language in the Service Specification Interface. The specification

may be either the URI of the formal service description or its pathname in case the

description is stored on the computer disk. The NLG system uses this information to

retrieve the service description (OWL-S Description Retriever) and extract the

information that it will later use to generate the natural description (OWL-S Parser and

Information Extractor). The Natural Content Generator part of the implementation -

Mapping, Template Filling and Template Combination - uses the extracted information

to create the natural language content. The Surface Realiser module, part of the User

Interface, structures the generated NL content and presents it back to the user.

56

In the following sections we describe in detail each of the modules composing

the natural language generation system.

4.3.1 Service Specification Interface

The Service Specification Interface module, which is part of the User Interface,

allows users to select the service they want to be translated. It was implemented in Java

because this language possesses various tools that help building user interfaces, such as

Swing.

Users have two options: specify the service via URI, or select a service saved in

their file system. This module’s output is either the service’s URI address or the file

path of the disk file containing the service formal description, that is, the OWL-S

description.

4.3.2 OWL-S Description Retriever

While users specify the service’s URI address or file path in the Service

Specification Interface module, the OWL-S Description Retriever uses that information

to retrieve the service’s OWL-S description, either from the specified server (in the case

of the URI), or from the system’s disk (in the case of the file pathname). From this point

on user intervention is no longer required.

If the user specifies the service’s URI, the system retrieves the OWL-S

description from the web server where the description is hosted. If the user chooses a

service from her or his own file system, the system converts the file path to an URI and

proceeds the same way as if a URI had been provided in the first place. We picked this

approach since the alternative would be to install a web server in the user’s computer,

which would also require that all the information associated with the service (e.g.

ontologies that describe inputs or outputs) would be accessible to the local web server.

With the selected approach it is required to have an active Internet connection but the

whole process becomes much simpler to the user.

We use the OWL-S API to retrieve the OWL-S description. OWL-S API is a

Java API for programmatic access to read, execute and write OWL-S service

57

descriptions, developed by the Mindswap Project of the Maryland University (Maryland

Information and Network Dynamics Lab Semantic Web Agents Project)
3
. OWL-S

API’s OWLKnowledgeBase.readService (URI) method retrieves the OWL-S description

receiving its URI as parameter. The outcome of this module would ideally be the

retrieved OWL-S description and the attached linguistic mapping table as depicted in

Figure 29. But as described in 4.2.2, OWL-S service descriptions do not provide means

to integrate a linguistic mapping table. If these tables were to be specified within

OWL-S descriptions, the OWL-S API, used in this dissertation to parse the description

into Java objects, would have to be modified. In the present system the mapping tables

are produced by ourselves and coded into the program in order to test the system. The

OWL-S Description Retriever is also implemented in Java.

4.3.3 OWL-S Parser and Information Extractor

Once the OWL-S description is retrieved the OWL-S Parser and Information

Extractor module parses the OWL-S service description also with the help of the

OWL-S API. With this API, we are able to read OWL-S service descriptions and

convert them into java objects. This is the reason this module is also implemented in

Java. Using the OWL-S API we can create an instance of Service class, from which we

can access other java classes such as the Profile. The relevant information for the

natural language description to be generated is taken from instances of the Profile class,

calling methods such as Profile.getServiceName(), Profile.getInputs() or

Profile.getOutputs(). The former returns a string containing the service name, while the

other two methods return the input and output lists respectively. The result of this

module is the relevant information extracted from the service description, which is

composed of several OWL-S variable values.

4.3.4 Mapping

This module uses the linguistic mapping table to convert the encoded names of

the information extracted by the OWL-S Parser and Information Extractor module into

3
 http://www.mindswap.org/2004/owl-s/api/

58

their linguistic equivalents, which we hope, will be easier to understand. Contrary to the

previous modules, the Mapping module is implemented in Prolog. Prolog ability to

represent relationships makes it a good choice for representing and processing the

required linguistic mapping table. Java could as well be used but, since the template

filling process is also implemented in Prolog, we chose to use Prolog for the mapping

process. Specifically, we used the tuProlog as our Prolog engine Java implementation

because, since it is written in Java, it is easily integrated with the system’s Java blocks.

The linguistically processed information will be the Mapping module output.

4.3.5 Template Filling

The Template Filling module is responsible for filling the adequate templates

with the information generated by the Mapping module. The templates used in this task

are stored in the system’s natural language knowledge base (KB), which is represented

in Prolog. Similarly to the previous module and the knowledge base, the Template

Filling part of the system is also implemented in Prolog. Since Prolog is a declarative

language with powerful pattern matching capabilities, we decided to use it to actively

find and fill the correct templates, which is the goal of this stage of the generation

process. The outcome of Template Filling module is a sequence of filled text templates.

4.3.6 Template Combination

Receiving the filled text templates as argument, the Template Combination’s

task is to aggregate all these text templates into a single one. Although lacking some

processing, it already contains the entire information to be present in the NL

description. Template Combination is the last module where Prolog language is used

because it would not be easy to pass the several templates, represented as Prolog lists, to

the Java modules of the Program. The output of this module is a single text template

resulting of appending all the filled templates, one after the other (aggregate template, in

the figure).

59

4.3.7 Surface Realiser

The last module of this system, the Surface Realiser, receives the natural

language content from the Template Combination module and applies structural

processing in order to present the NL description in a suitable way to the user.

Structural processing comprises the addition of paragraphs. This module then presents

the final natural language to the user requesting the translation. The Surface Realiser is

implemented in Java for the same reasons described in 4.3.1.

In summary, the natural language generation system developed in this

dissertation was implemented in two different programming languages: Java and

Prolog. Java was used for interacting with the user, retrieving the specified OWL-S

descriptions and extracting the relevant information from them; for the structural

processing; and for presenting the NL description text. Prolog was used for mapping the

OWL-S variables to meaningful linguistic text; and for representing and processing the

used natural language templates, filling them with the information.

60

5 Evaluation Criteria and Results

The natural language generation system described in this dissertation was

created with the goal of providing means by which people can understand service

descriptions without knowing the formal language they are described in. As presented in

section 1.4, one of the ways we can measure this system’s success is by questioning

potential users of the NLG system. Hence, we have designed an inquiry for users

without computer science background, addressing their comprehension of the services

from the generated natural language descriptions. Since this inquiry does not allow us to

evaluate the correctness of the generated natural language description, we also created

an inquiry to OWL-S experts, asking them to rate the degree to which the generated

natural description correctly matches the formal service description. In the remaining of

this chapter, we describe both inquiries, analyse the results, and show how the responses

from the inquired OWL-S experts contributed to improve the system.

5.1 Experts’ Inquiry

The experts’ inquiry was created to evaluate the correctness of the generated

natural language description, that is, the degree to which it matches the OWL-S

description, and also to use the expert’s feedback to improve the system so that better

(more correct) descriptions can be generated. The experts’ inquiry was applied to a

panel of five OWL-S experts. For this inquiry we used seven atomic and two compound

service OWL-S descriptions from the OWL-S service examples publicly available on

the site of the Maryland Information and Network Dynamics Lab Semantic Web Agents

Project (Mindswap). The same OWL-S descriptions are used in the user inquiry. Figure

30 depicts an example of the expert inquiry for the atomic service Zip Code Finder.

61

Profile:

<!-- Profile description -->

<mind:MapService rdf:ID="ZipCodeFinderProfile">

<service:presentedBy rdf:resource="#ZipCodeFinderService"/>

<profile:serviceName xml:lang="en">Find ZipCode</profile:serviceName>

<profile:textDescription xml:lang="en">

Returns the zip code for the given city/state. If there are more than one zip codes

associated with that city only the first one is returned.

</profile:textDescription>

<profile:hasInput rdf:resource="#City"/>

<profile:hasInput rdf:resource="#State"/>

<profile:hasOutput rdf:resource="#ZipCode"/>

</mind:MapService>

Natural Language Description:

The service Zip Code Finder is not a compound service.
This service needs to receive the city and state as
parameters. It has only the zip code as output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "Returns
the zip code for the given city/state. If there are more
than one zip codes associated with that city only the first
one is returned".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

Figure 30 - Expert inquiry’s part for the service Zip Code Finder

To allow the evaluation of the system’s correctness, the expert inquiry presents

the OWL-S service Profile along with the generated natural language description for

each service. We included only the Profile part of the OWL-S description because the

system does not make use of either the Process Model, apart from determining the type

of service, or the Grounding to generate the NL description. The inquiry also possesses

non-mandatory fields to comment each service description. In its last page, the inquiry

62

contains a non-mandatory field prompting experts for general comments and

suggestions about the global results.

The results obtained from this inquiry provide helpful and expert feedback about

the generated descriptions. The first question tests the correctness of the description

generated by the system. Positive results ensure that the NL description matches the

corresponding OWL-S description. Questions two and three address the degree to which

the descriptions can be understood and their usefulness. These questions are similar to

those in the user inquiry. Finally, comment and suggestion fields may offer a valuable

source of information, contributing with ideas and ways to improve the English

description and possibly the whole system. In the following we present the results for

the experts’ inquiry.

5.2 Experts Inquiry Outcome

Since the evaluation panel for the experts inquiry was composed of only five

OWL-S experts, a qualitative analysis of the inquiry outcome is more adequate then a

quantitative one. Nonetheless, and only for the sake of completeness, we also show the

quantitative results. The first question had the best results from all the questions with

the average of 3.97 (in an integer scale from 1 to 4). This implies that OWL-S experts

consider the natural language description to be very accurate, having a high degree of

correctness. That is, the experts found the generated descriptions to accurately match the

Profiles section of the OWL-S descriptions. The second question, regarding the

comprehension of the English generated description, also attained good results with the

average of 3.75 from the nine service descriptions. In this case, experts consider that the

generated description allows the user to understand the basics and essentials of the

service. Finally, the third question has the lowest average of the three - 3.68. It is still a

very good result and shows that the natural language description can be very useful to

help users decide whether or not to execute the service.

One of the OWL-S experts’ main concerns was about the level of detail in the

description. They suggested more depth in the description of inputs and outputs, more

specifically detail about the variables described in the service domain ontologies. Other

issue appointed by experts was the relevance and technical terms in which we presented

63

the information about the type of service. The natural language description began by

presenting the name of the service and whether it was atomic or compound. This choice

(presenting the service type – atomic or compound – upfront) exaggerated the relevance

of this information in the description’s context. However, this is not a very important

piece of information. For example, information about inputs and outputs plays a more

important role in the understanding of the service description. Another concern of the

OWL-S specialists was the fact that the service being atomic or compound is not

understandable to users without any background in this area. Some of these suggestions

led to system modifications described next.

5.3 System Improvements

We applied the experts’ inquiry before the users inquiry, which allowed

improving the system’s output before the users inquiry was applied. Instead of

presenting the type of service in the first paragraph we provide this information only in

the last paragraph, decreasing its importance in the description’s context. We chose to

do so because this information is mainly informative about the service, not providing

key elements to service understanding as the ones in the previous paragraphs.

1. Technically, this is a compound service because it

combines other services in a new aggregate service

2. Moreover, this service is self-sufficient in the

sense that it does not use other services.

Technically, it is called an atomic service.

Figure 31 - Text used to describe atomic and compound services

Other problem about the natural language system output was the use of technical

terms not appropriate to common users, namely in the type of service (atomic or

compound) related information. To solve this issue we added a little description

together with that information. Figure 31 depicts the new text description used to

describe atomic and compound services. These changes were applied in the user inquiry

presented in the next section.

64

Some of the experts also suggested more depth in the description of inputs and

outputs described in the service domain ontologies. Even though this was not part of

this dissertation’s goal, we tried to extract information about inputs and outputs from

the OWL ontology in which they were described in. This proved to be an arduous and

not straightforward. In fact, similar work is already being done [Mellish and Sun 2006],

and as described by the authors of this project, this task can be very complex as

information about a concept, in our case inputs and outputs, usually cannot be presented

in a single sentence but requires an extended text with multiple sentences where the

overall structure has to be planned so as to be coherent as a discourse. Moreover, the

same concept may be described in many different ways. To produce elegant and easily

understandable natural language descriptions of these concepts, a solution similar to the

one proposed as extension to OWL-S (use of mappings) would have to be created.

Additionally, we would also have to develop a set of text templates, this time for OWL

ontologies.

Nonetheless we were able to obtain some results, although some of the OWL

constructs were not yet implemented (e.g., intersectionOf, unionOf, complementOf

constructs).

This problem appears in some of the OWL-S service descriptions with book

information as input or output. Book information is described in the domain ontology in

which the OWL-S description is based. This ontology is written in OWL. We have

developed a computational procedure that was able to generate the description depicted

in Figure 32.

1. Book information has at least 1 Publisher, at least 1

Title, at least 1 Year, at least 1 humanCreator and

is subclass of Entry.

Figure 32 – Description of book information

From this description we can understand what composes the book information,

but it also presents unnecessary information that can, in fact, confuse the user. For

example stating that the book information is a subclass of Entry (Entry is a base class

for all entries in that ontology) is not natural or comprehendible to users. We would

65

have to be able to filter some of the information contained in the OWL description.

However, in some other cases, the class / super-class relationship might indeed be very

useful. The decision of whether or not to discard some of the information contained in

the OWL ontology would have to involve thorough context aware computation which

falls off this dissertation objectives.

Since the information we were able of extracting from the OWL ontology should

not be presented to users as is, and since the generation of adequate English descriptions

from OWL class descriptions would involve at least another MSc dissertation

(templates for OWL ontologies, linguistic mappings for OWL ontologies, use of context

to filter some useless information present in the OWL ontology), we chose not to

present this information in the final description. However, information generated about

inputs and outputs from OWL can be used to complement the OWL-S description

presented in this dissertation in future work: either by creating a new more complete

system (e.g., capable of generating English descriptions from OWL ontologies) or by

integrating the current NLG system with work being done in this area [Mellish and Sun

2006].

5.4 Users’ Inquiry

The inquiry for users without computer science background focuses on their

understanding of the information provided by the generated natural language service

descriptions. It comprises various natural language descriptions generated from OWL-S

service descriptions. The users’ inquiry was answered by twenty two non-expert users.

For each service, we asked users to rate the NL description, in a scale from one

(bad) to four (good) regarding the degree to which they understand the description and

the degree to which the description would be useful for them to decide whether or not to

use it:

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description

were the result of a service discovery made by the user in the Internet,

66

would the information be useful to decide whether or not to use the

described service?

From this inquiry we can attest the quality and usefulness of the generated

natural language description. Good (bad) results in the first question show that the

generated description and, by extension the NLG system, present good (bad) quality.

The second question, on the other hand, addresses the usefulness of both the system and

the descriptions.

If the results of this inquiry are positive it means the system achieved its goal,

that is, it empowers users with the capability to better understand and decide about

discovered or composed services independently from the formal service description

language used to describe them. These questions also offer useful feedback about the

descriptions. For instance, if users cannot understand the service NL description, it

probably indicates that there is either not enough information about the service in the

description or the English used in the NL description is not adequate for non-specialized

users. In summary, this information can be used to further improve the system.

5.5 Users’ Inquiry Outcome

To evaluate the system from the users’ point of view, we applied this inquiry to

twenty two people. This number of people, despite not being a large-scale sample, can

already provide us with some practical feedback. The user inquiry was composed of two

questions. Results to the first question, average of 3.51 from nine OWL-S descriptions,

indicate that the majority is able to easily understand each of the described services. The

second question prompted users about the usefulness of the generated description in

order to decide whether or not to use it. This question obtained slightly worst results

compared to the first question with an average of 3.44. These results provide evidence

that the English description and NLG system are undoubtedly useful to help people

decide about using the service.

We must, however, take into account that the users sample is not extensive or

people may not be entirely satisfied with the service descriptions although they

understand them. People we inquired, although not many, evaluated some generated

67

descriptions poorly. This situation can be caused by either the lack of information in

OWL-S descriptions, or by system deficiencies in the generation of NL descriptions.

We only have control of the latter as OWL-S descriptions are the responsibility of the

service owner. Unfortunately to us, it is impossible to know at this stage the exact

reasons behind this slight discontent. This is mainly because the inquiry did not

comprise questions requiring users to justify their choices. Also, the time span

necessary to realize a new inquiry would be far too great in order to incorporate the

results in this dissertation.

Nevertheless, if the NLG system was really the cause for this minor discontent it

means that there is still room for improvement. Users (all of them are Portuguese) might

be a little puzzled to find out that the descriptions were written in English. They may

also consider them too technical. Comprehension could be made easier if we added

different output description languages and allowed the user to choose the one they were

most comfortable with. Other reason for the slight discomfort may be the generation of

descriptions that lack some information that could be useful for better comprehension.

But these are all hypotheses. Users may already be very happy with the descriptions

(proved by the average rating of both questions). And there might be even different

reasons from the ones advanced in this subsection to why some NL service descriptions

were classified below average.

In conclusion, we evaluated the NLG system through its outcome, the natural

language descriptions. With the two inquiries, one for potential users and one for

OWL-S experts, we had a more complete and accurate evaluation of the system. On one

side experts with vast knowledge of OWL-S provided exact and pertinent criticism that

allowed us to further improve the system and its outcome. On the other side users, the

system target-public, stated their ratings of the description. The results from both

inquiries were very satisfactory, attesting the system’s usefulness in understanding the

service and deciding about its execution.

68

6 Conclusions

The main objective of this dissertation was enhancing the service coordination

process. We set out to develop a natural language generation system that empowers

users of service coordination systems with the capability of better understanding and

deciding whether or not to use discovered or composed services without the need of

understanding the formal language (i.e., OWL-S) in which the semantic web service is

described.

We opted to create a template-based NLG system because the general form of

sentences in the generated natural language descriptions is invariant enough to be

represented as templates. Moreover, if we used a more complex natural language

generation approach, besides requiring a lot more time and effort, it would not bring

significant benefits compared to the template-based approach. This system receives an

OWL-S service description as input and produces the corresponding English

description. The natural language generation process uses mainly the Profile of the

OWL-S service description since it contains key information about the service - service

name, inputs, outputs, preconditions, effects and description provided by the service

owner. It also uses the Process Model to determine the type of service. The generated

natural language descriptions are written in the English because it is the most spoken

and dominant international language in areas such as communications, science and

business. By providing descriptions in English common citizens (without computer

science background) are able to better understand the service and be made responsible

for their decision of whether or not to use the service.

Besides templates, the used technical approach requires linguistic mapping

tables that are used to provide linguist expressions for each OWL-S variable used to

generate the English description. This mapping allows the generated descriptions to be

written in more human form. Once we have chosen to generate the natural descriptions

in English, the text templates can be applied to all OWL-S descriptions. However, each

OWL-S description uses its own variables with specific names. Therefore, there must be

a linguistic mapping table for each service. One of the main contributions of this

dissertation was to propose an extension of the OWL-S formalism with the

69

representation of linguistic mapping tables, one for each desired language. At this time

OWL-S descriptions do not include such type of tables, for that reason they have been

built-in within this system. We think the addition of these linguistic mapping tables

within OWL-S descriptions could prove to be an advantage for future work in this area,

that is, the generation of natural language from semantic web material.

Other of this dissertation’s contribution is a proposal regarding the possible

integration of the NLG system in the service coordination process. More precisely,

personal agents (PA) would use this system to generate natural language descriptions

from the formal descriptions resultant from the service coordination process, and

present them to their users.

In order to evaluate the NLG system we created two inquiries: one addressed

OWL-S experts and other for potential users of the system. The experts’ inquiry

addressed the degree to which the OWL-S experts understood the descriptions, the

degree to which the generated description is useful to inform the decision of whether or

not to use the service, as well as the degree to which the generated natural description

correctly matches the formal service description - correctness. The experts’ inquiry

provided evidence that the generated natural language descriptions not only accurately

matched the OWL-S descriptions, but also allowed to understand the described services

and helped users decide whether or not to use the service. It also provided very useful

feedback that allowed us to further improve the system. More precisely, the information

about the type of service (atomic or compound) was presented in technical terms not

appropriate to common users and was given too much relevance. We opted to add a

little description together with that information to facilitate users’ comprehension as

well as provide this information only in the last paragraph, decreasing its importance in

the description’s context. These modifications were applied before the users’ inquiry.

The users’ inquiry addressed the users understanding of the service from the

generated description and whether it would be useful to help them decide to use or not

to use the service. Results from this inquiry were positive. In a scale from one (bad) to

four (good), the first question scored an average of 3.51 showing that people can easily

understand each of the described services. The second question with an average score of

70

3.44 proved that the generated description can be used in order to decide whether or not

to use the service. The outcome of both inquiries provided evidence that the English

description, and by extension the NLG system, fulfilled the goals of this dissertation:

potentiate the use of service coordination technology by common citizens (not expert in

formal computational descriptions), endowing them with the possibility to consciously

decide whether or not to execute a given service and making them accountable for the

decision of using given services.

Despite the good results achieved in the system’s evaluation, there are various

ways to further improve it and to carry out future work. Present generated descriptions

only describe the inputs and outputs of the OWL-S service but do not specify their

types. For example, some of the OWL-S service descriptions used to test the system

received the variable book information as input. From this label we cannot understand

what the book information is. It might be the book name, the ISBN, both or something

else. We created a computational procedure that was able to generate descriptions from

OWL concepts such as the book information, but as described in section 5.3 the

outcome of this procedure presented some problems and would involve at least another

MSc dissertation (templates for OWL ontologies, linguistic mappings for OWL

ontologies, use of context to filter some useless information present in the OWL

ontology), so we chose not to present this information in the final description.

Providing more detail about inputs and outputs could be one additional improvement to

the present system in future work. This could be achieved either by creating a new more

complete system (e.g., capable of generating English descriptions from OWL ontologies)

or by integrating the current NLG system with work being done in this area [Mellish

and Sun 2006]. Information about service quality guarantees and classification could

also be present in a future description. Natural language descriptions were generated

from information mainly extracted from the OWL-S service Profile, except the service

type (atomic or compound) that was determined from the OWL-S Process Model.

Future work may focus on the procedural part of OWL-S’ Process Model, providing

information about how the service interacts with the world as well as presenting a view

of the service’s workflow. The latter is useful mainly to compound services which make

use of other services. Finally, the NLG system could also generate descriptions in

71

different languages and even make use of context information to choose the language of

the output description.

72

7 References

[Wooldridge 2002] M. Wooldridge, “An Introduction to Multi Agent Systems”, John

Wiley & Sons, ISBN 9780471496915, 2002

[Shoham and Leyton-Brown 2008] Y. Shoham and K. Leyton-Brown, “Multiagent

Systems”, Cambridge University Press, ISBN 9780521899437, 2008

[Fensel and Bussler 2002] D. Fensel and C. Bussler, “The Web Service Modeling

Framework WSMF”, Electronic Commerce Research and Applications, 2002

[McIlraith, Son and Zeng 2001] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic

Web Services”, IEEE Intelligent Systems Volume 16 Issue 2, Stanford University, 2001

[Booth et al 2004] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C.

Ferris and D. Orchard, “Web services architecture”, W3C working group note, 2004

[Haas and Brown 2004] H. Haas and A. Brown, “Web Services Glossary”, W3C

Working Group Note, 2004

[Gottschalk et al 2002] K. Gottschalk, S. Graham, H. Kreger and J. Snell, “Introduction

to Web services architecture”, IBM Systems Journal Vol 41, 2002

[Clement et al 2004] L. Clement, A. Hately, C. von Riegen, T. Rogers, “UDDI version

3.0.2.”, UDDI Spec Technical Committee Draft, 2004

[Gudgin et al 2007] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. F. Nielsen,

A. Karmarkar, Y. Lafon, “SOAP Version 1.2 Part 1: Messaging Framework (Second

Edition)”, W3C Recommendation, 2007

[Klush 2008] M. Klush, “CASCOM: Intelligent Service Coordination in the Semantic

Web”, Chapter 4 “Semantic Web Service Coordination” Birkhäuser Basel, ISBN

9783764385743, 2008

[Gonçalves, Costa and Botelho 2008] B. Gonçalves, P. Costa and L. Botelho,

“CASCOM: Intelligent Service Coordination in the Semantic Web”, Chapter 5

“Context-Awareness” Birkhäuser Basel, ISBN 9783764385743, 2008

[Oundhakar et al 2005] S. Oundhakar, K. Verma, K. Sivashanmugam, A. Sheth,

J.Miller, “Discovery of Web Services in a Multi-Ontology and Federated Registry

Environment”, International Journal of Web Services Research, 2005

[Sivashanmugam, Verma and Sheth 2004] K. Sivashanmugam, K. Verma, A. Sheth,

“Discovery of Web Services in a Federated Registry Environment”, Proceedings of the

IEEE International Conference on Web Services, 2004

[Guidi, Lucchi and Mazzara 2007]C. Guidi, R. Lucchi and M. Mazzara, “A Formal

Framework for Web Services Coordination”, Electronic Notes in Theoretical Computer

Science, 2007

73

[Fenza, Loia and Senatore 2008] G. Fenza, V. Loia and S. Senatore, “A hybrid approach

to semantic web services matchmaking”, International Journal of Approximate

Reasoning, 2008

[Wilcock 2003] G. Wilcock, “Talking owls: Towards an Ontology Verbalizer”, Human

Language Technology for the Semantic Web and Web Services, 2003

[Bontcheva and Wilks 2004] K. Bontcheva and Y. Wilks, “Automatic report generation

from ontologies:the MIAKT approach”, Ninth International Conference onApplications

of Natural Language to Information Systems (NLDB’2004), 2004.

[Barker 2005] A. Barker, “Agent-Based Service Coordination for the Grid”,

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT’05), 2005

[Barros, Dumas and Oaks 2005] A. Barros, M. Dumas and P. Oaks, “A Critical

Overview of the Web Services Choreography Description Language (WS-CDL)”,

BPTrends Newsletter 3, 2005

[Christensen et al 2001] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana,

“Web Services Description Language (WSDL) 1.1”, W3C Note, 2001

[Farrell and Lausen 2007] J. Farrel and H. Lausen, “Semantic Annotations for WSDL

and XML Schema”, W3C Recommendation, 2007

[Bruijn 2008] J. de Bruijn, “The Web Service Modeling Language WSML”,

http://www.wsmo.org/wsml/wsml-syntax, 2008

[Huhns 2002] M. N. Huhns, “Agents as Web Services”, IEEE Internet Computing 6 (4),

93 – 95, 2002

[Chi and Song 2007] J. Chi and J. Song, “Intelligent-Agent and Web-Service Based

Service Composition for E-Business”, Electrical and Computer Engineering CCECE

Canadian Conference on, 2007

[Lopes and Botelho 2005] A. Lopes and L. Botelho, "Agent Technology for

Context-aware Execution of Semantic Web Services", Proceedings of the First UK

Young Researchers Workshop on Service Oriented Computing, 2005

[García-Sanchez et al 2009] F. García-Sanchez, R. Valencia-García, R. Martínez-Béjar

and J. T. Fernández-Breis, “An ontology, intelligent agent-based framework for the

provision of semantic web services”, Expert Systems with Applications Issue 2 Part 2

(3167–3187), Elsevier Ltd, 2009

[Russell and Norvig 1995] S. Russell and P. Norvig, “Artificial Intelligence: A Modern

Approach”, Chapter 2 “Intelligent Agents”, Prentice-Hall, Inc, ISBN 9780131038059,

1995

74

[Schumacher, Helin and Schuldt 2008] M. Schumacher, H. Helin, H. Schuldt,

“CASCOM: Intelligent Service Coordination in the Semantic Web”, Birkhäuser Basel,

ISBN 9783764385743, 2008

[Dey, Abowd and Salber 2001] A. Dey, G. Abowd, D. Salber, “A conceptual

framework and toolkit for supporting the rapid prototyping of context-aware

applications in special issue on context-aware computing”, Human-Computer

Interaction Vol. 16, 2001

[Martin et al 2004a] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.

McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, K.

Sycara, “OWL-S: Semantic Markup for Web Services”, W3C Member Submission,

2004

[Martin et al 2004b] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott,

D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K.

Sycara, “Bringing Semantics to Web Services:The OWL-S Approach”, First

International Workshop on Semantic Web Services and Web Process Composition

(SWSWPC), 2004

[Berglund et al 2007] A. Berglund, S. Boag, D. Chamberlin, M. Fernández, M. Kay, J.

Robie, J. Siméon, “XML Path Language (XPath) 2.0”, W3C Recommendation, 2007

[Reiter and Dale 2000] E. Reiter and R. Dale, “Building Natural Language Generation

Systems, Cambridge University Press”, ISBN 0521620368

[Jurasfsky and Martin 1999] D. Jurafsky and J. H. Martin, “Natural Language

Generation”, chapter to be included in “Speech and Language Processing: An

introduction to speech recognition computational linguistics and natural language

processing “, 1999

[Hovy 1992] E. H. Hovy, “A New Level of Language Generation Technology:

Capabilities and Possibilities”, IEEE Expert: Intelligent Systems and Their

Applications, 1992

[Reiter and Dale 1997] E. Reiter and R. Dale, “Building Applied Natural Language

Generation Systems”, Natural Language Engineering Volume 3 Issue 1, Cambridge

University Press, 1997

[van Deemter, Krahmery and Theunez 2003] K. van Deemter, E. Krahmery and M.

Theunez, “Real vs. template-based natural language generation: a false opposition?”,

Computational Linguistics Volume 31 Issue 1, 2003

[Busemann and Horacek 1998] S. Busemann and H. Horacek, “A Flexible Shallow

Approach to Text Generation”, Workshop On Natural Language Generation EWNLG,

1998

[Reiter and Mellish 1993] Ehud Reiter and Chris Mellish , “Optimizing the Costs and

Benefits of Natural Language Generation “, Proceedings of the 13th International Joint

Conference on Artificial Intelligence, 1993

75

[Mellish and Sun 2006] Chris Mellish and Xiantang Sun, “The semantic web as a

Linguistic resource: Opportunities for natural language generation”, Knowledge-Based

Systems 19, 2006

[Bontcheva and Wilks 2004] K. Bontcheva, Y. Wilks, “Automatic report generation

from ontologies: the MIAKT approach”, 9th International Conference on Applications

of Natural Language to Information Systems, 2004.

76

8 Appendix

8.1 Appendix A Text Templates

In this section we present all the text templates used to generate the natural

language description.

Service name templates:

1. 'This service'

2. 'The service '

Inputs templates:

1. ' needs no parameters.'

2. ' needs to receive the ',Input,' as parameter.'

3. ' needs to receive the ',First_input

4. ' and ',Input,' as parameters.'

5. ', ',Input

Outputs templates:

1. ' This service has no output./ln'

2. ' It has only the ',Output,' as output./ln'

3. 'It has ',First_output

4. ' and',Output,' as output./ln'

5. ', ',Output

Preconditions templates:

1. ' The system was not able to process the
precondition(s).'

2. ' This service does not have any pre-conditions.'

3. ' This service also has the following precondition:
',Precondition,'.'

77

4. 'This service also has the following preconditions:
',First_precondition

5. ' and ',Precondition,'.'

6. ', ',Precondition

Results templates:

1. ' The system was not able to process the result(s).'

2. ' This service only has ',Result,' as result.'

3. 'It has the following results: result',First_result

4. ' and ',Result,'.'

5. ', ',Result

Description templates:

1. '/ln The owner of the service describes it as:
"',Description,'".'

Type of service templates:

2. '/ln Technically, this is a compound service because
it combines other services in a new aggregate
service.'

3. '/ln Moreover, this service is self-sufficient in the
sense that it does not use other services.
Technically, it is called an atomic service.'

78

8.2 Expert’s Inquiry

Service: Book Finder

Profile:

<!-- Profile description -->

<mind:BookInformationService rdf:ID="BookFinderProfile">

<service:presentedBy rdf:resource="#BookFinderService"/>

<profile:serviceName xml:lang="en">Book Finder</profile:serviceName>

<profile:textDescription xml:lang="en">

This service returns the information of a book whose title best matches the given string.

</profile:textDescription>

<profile:hasInput rdf:resource="#BookName"/>

<profile:hasOutput rdf:resource="#BookInfo"/>

</mind:BookInformationService>

Natural Language Description:

The service Book Finder is not a compound service.
This service needs to receive the name of the book as
parameter. It has only the book information as output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "This
service returns the information of a book whose title best
matches the given string".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

79

Service: Zip Code Finder

Profile:

<!-- Profile description -->

<mind:MapService rdf:ID="ZipCodeFinderProfile">

<service:presentedBy rdf:resource="#ZipCodeFinderService"/>

<profile:serviceName xml:lang="en">Find ZipCode</profile:serviceName>

<profile:textDescription xml:lang="en">

Returns the zip code for the given city/state. If there are more than one zip codes

associated with that city only the first one is returned.

</profile:textDescription>

<profile:hasInput rdf:resource="#City"/>

<profile:hasInput rdf:resource="#State"/>

<profile:hasOutput rdf:resource="#ZipCode"/>

</mind:MapService>

Natural Language Description:

The service Zip Code Finder is not a compound service.
This service needs to receive the city and state as
parameters. It has only the zip code as output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "Returns
the zip code for the given city/state. If there are more
than one zip codes associated with that city only the first
one is returned".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

80

Service: Find Latitude & Longitude

Profile:

<!-- Profile description -->

<mind:MapService rdf:ID="FindLatLongProfile">

<service:isPresentedBy rdf:resource="#FindLatLongService"/>

<profile:serviceName xml:lang="en">

Find Latitude & Longitude

</profile:serviceName>

<profile:textDescription xml:lang="en">

Find the latitude and longitude of the given US zip code.

</profile:textDescription>

<profile:hasInput rdf:resource="#ZipCode"/>

<profile:hasOutput rdf:resource="#LatLong"/>

</mind:MapService>

Natural Language Description:

The service Find Latitude & Longitude is not a compound
service.
This service needs to receive the zip code as parameter. It
has only the latitude and longitude as output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "Find the
latitude and longitude of the given US zip code".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

81

Service: Barnes and Nobles Price Check

Profile:

<!-- Profile description -->

<mind:BookInformationService rdf:ID="BNPriceProfile">

<service:presentedBy rdf:resource="#BNPriceService"/>

<profile:serviceName xml:lang="en">BN Price Check</profile:serviceName>

<profile:textDescription xml:lang="en">

This service returns the price of a book as advertised in Barnes and Nobles web site

given the ISBN Number.

</profile:textDescription>

<profile:hasInput rdf:resource="#BookInfo"/>

<profile:hasOutput rdf:resource="#BookPrice"/>

</mind:BookInformationService>

Natural Language Description:

The service Barnes and Nobles Price Check is not a compound
service.
This service needs to receive the book information as
parameter. It has only the price of the book as output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "This
service returns the price of a book as advertised in Barnes
and Nobles web site given the ISBN Number".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

82

Service: Amazon Book Price

Profile:

<mind:BookInformationService rdf:ID="AmazonPriceProfile">

<service:isPresentedBy rdf:resource="#AmazonPriceService"/>

<profile:serviceName xml:lang="en">Amazon Book Price</profile:serviceName>

<profile:hasInput rdf:resource="#BookInfo"/>

<profile:hasOutput rdf:resource="#BookPrice"/>

</mind:BookInformationService>

Natural Language Description:

The service Amazon Book Price is not a compound service.
This service needs to receive the book information as
parameter. It has only the price of the book as output.
This service does not have any pre-conditions.

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

83

Service: Babel Fish Translator

Profile:

<!-- Profile description -->

<mind:LanguageService rdf:ID="BabelFishTranslatorProfile">

<service:presentedBy rdf:resource="#BabelFishTranslatorService"/>

<profile:serviceName xml:lang="en">BabelFish Translator</profile:serviceName>

<profile:textDescription xml:lang="en">

Convert text from one language to another language. Supported languages are Dutch,

English, French, German, Italian, Japanese, Korean, Portuguese, Spanish, and Russian.

The valid input output pairs is given by the property canBeTranslatedTo.

</profile:textDescription>

<profile:hasInput rdf:resource="#InputString"/>

<profile:hasInput rdf:resource="#InputLanguage"/>

<profile:hasInput rdf:resource="#OutputLanguage"/>

<profile:hasOutput rdf:resource="#OutputString"/>

<profile:hasPrecondition rdf:resource="#SupportedLanguagePair"/>

</mind:LanguageService>

Natural Language Description:

The service Babel Fish Translator is not a compound
service.
This service needs to receive the language the text is
written in, the language the text will be translated to and
the text to be translated as parameters. It has only the
translated text as output.
This service also has the following precondition: the input
and output language pair is supported.
Also, the owner of the service describes it as: "Convert
text from one language to another language. Supported
languages are Dutch, English, French, German, Italian,
Japanese, Korean, Portuguese, Spanish, and Russian. The
valid input output pairs is given by the property
canBeTranslatedTo".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

84

Service: Currency Converter

Profile:

<!-- Profile description -->

<mind:CurrencyService rdf:ID="CurrencyConverterProfile">

<service:isPresentedBy rdf:resource="#CurrencyConverterService"/>

<profile:serviceName xml:lang="en">Price Converter</profile:serviceName>

<profile:textDescription xml:lang="en">Converts the given price to another

currency.</profile:textDescription>

<profile:hasInput rdf:resource="#InputPrice"/>

<profile:hasInput rdf:resource="#OutputCurrency"/>

<profile:hasOutput rdf:resource="#OutputPrice"/>

</mind:CurrencyService>

Natural Language Description:

The service Price Converter is not a compound service.
This service needs to receive the input price and output
currency as parameters. It has only the output price as
output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "Converts
the given price to another currency".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

85

Service: Book Price Finder

Profile:

<mind:BookInformationService rdf:about="#BookPriceProfile">

<service:presentedBy rdf:resource="#BookPriceService"/>

<profile:serviceName xml:lang="en">Book Price Finder</profile:serviceName>

<profile:textDescription xml:lang="en">

Returns the price of a book in the desired currency. First the ISBN number for the given

book is found and then this ISBN number is used to get the prive of the book from

Barnes & Nobles service.

</profile:textDescription>

<profile:hasInput>

<process:Input rdf:ID="BookName">

<rdfs:label>Book Name</rdfs:label>

<process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://www.w3.org/2001/XMLSchema#string

</process:parameterType>

</process:Input>

</profile:hasInput>

<profile:hasInput>

<process:Input rdf:ID="Currency">

<rdfs:label>Output Currency</rdfs:label>

<process:parameterType

rdf:datatype=http://www.w3.org/2001/XMLSchema#anyURI">

http://www.daml.ecs.soton.ac.uk/ont/currency.owl#Currency

</process:parameterType>

</process:Input>

</profile:hasInput>

<profile:hasOutput>

<process:Output rdf:ID="BookPrice">

<rdfs:label>Output Price</rdfs:label>

<process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://www.mindswap.org/2004/owl-s/concepts.owl#Price

</process:parameterType>

</process:Output>

</profile:hasOutput>

</mind:BookInformationService>

86

Natural Language Description:

The service Book Price Finder is a compound service.
This service needs to receive the currency and name of the
book as parameters. It has only the price of the book as
output.
This service does not have any pre-conditions.
Also, the owner of the service describes it as: "Returns
the price of a book in the desired currency. First the ISBN
number for the given book is found and then this ISBN
number is used to get the prive of the book from Barnes &
Nobles service".

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

87

Service: Cheaper Book Finder

Profile:

<!-- Profile description -->

<profile:Profile rdf:ID="FindCheaperBookProfile">

<service:isPresentedBy rdf:resource="#FindCheaperBookService"/>

<profile:serviceName xml:lang="en">Cheaper Book Finder</profile:serviceName>

<profile:hasInput rdf:resource="#BookName"/>

<profile:hasOutput rdf:resource="#BookInfo"/>

</profile:Profile>

Natural Language Description:

The service Cheaper Book Finder is a compound service.
This service needs to receive the name of the book as
parameter. It has only the book information as output.
This service does not have any pre-conditions.

1. In a scale from 1 (bad) to 4 (good), do you think the English description matches

the Profile of the OWL-S description?

2. In a scale from 1 (bad) to 4 (good), do you think the English generated

description allows understanding the service’s essential?

3. In a scale from 1 (bad) to 4 (good), do you think the service’s English

description is useful to the potential user, assuming it is a person?

4. Commentary (facultative)

88

About all the previous services:

- Final comments on the generality of the obtained results (facultative)

- Suggestions, for example what extra information could be added to the English

descriptions from other parts of the OWL-S description (facultative)

89

8.3 User’s Inquiry

Service: Book Finder

Natural Language Description:

The service Book Finder needs to receive the name of the
book as parameter. It has only the book information as
output.
This service does not have any pre-conditions.
The owner of the service describes it as: "This service
returns the information of a book whose title best matches
the given string".
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

Service: Zip Code Finder

Natural Language Description:

The service Zip Code Finder needs to receive the city and
state as parameters. It has only the zip code as output.
This service does not have any pre-conditions.
The owner of the service describes it as: "Returns the zip
code for the given citystate. If there are more than one
zip codes associated with that city only the first one is
returned".
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

90

Service: Find Latitude & Longitude

Natural Language Description:

The service Find Latitude & Longitude needs to receive the
zip code as parameter. It has only the latitude and
longitude as output.
This service does not have any pre-conditions.
The owner of the service describes it as: "Find the
latitude and longitude of the given US zip code".
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

Service: Barnes and Nobles Price Check

Natural Language Description:

The service Barnes and Nobles Price Check needs to receive
the book information as parameter. It has only the price of
the book as output.
This service does not have any pre-conditions.
The owner of the service describes it as: "This service
returns the price of a book as advertised in Barnes and
Nobles web site given the ISBN Number".
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

91

Service: Amazon Book Price

Natural Language Description:

The service Amazon Book Price needs to receive the book
information as parameter. It has only the price of the book
as output.
This service does not have any pre-conditions. This service
only has description as result.
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

Service: Babel Fish Translator

Natural Language Description:

The service Babel Fish Translator needs to receive the
language the text is written in, the language the text will
be translated to and the text to be translated as
parameters. It has only the translated text as output.
This service also has the following precondition: the input
and output language pair is supported.
The owner of the service describes it as: "Convert text
from one language to another language. Supported languages
are Dutch, English, French, German, Italian, Japanese,
Korean, Portuguese, Spanish, and Russian. The valid input
output pairs is given by the property canBeTranslatedTo".
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

92

Service: Currency Converter

Natural Language Description:

The service Price Converter needs to receive the input
price and output currency as parameters. It has only the
output price as output.
This service does not have any pre-conditions.
The owner of the service describes it as: "Converts the
given price to another currency".
Moreover, this service is self-sufficient in the sense that
it does not use other services. Technically, it is called
an atomic service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

Service: Book Price Finder

Natural Language Description:

The service Book Price Finder needs to receive the currency
and name of the book as parameters. It has only the price
of the book as output.
This service does not have any pre-conditions.
The owner of the service describes it as: "Returns the
price of a book in the desired currency. First the ISBN
number for the given book is found and then this ISBN
number is used to get the prive of the book from Barnes &
Nobles service".
Technically, this is a compound service because it combines
other services in a new aggregate service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

93

Service: Cheaper Book Finder

Natural Language Description:

The service Cheaper Book Finder needs to receive the name
of the book as parameter. It has only the book information
as output.
This service does not have any pre-conditions. This service
only has description as result.
Technically, this is a compound service because it combines
other services in a new aggregate service.

1. In a scale from 1 (bad) to 4 (good), do you think you can understand the

described service?

2. In a scale from 1 (bad) to 4 (good), if the natural language description were the

result of a service discovery made by the user in the Internet, would the

information be useful to decide whether or not to use the described service?

