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Abstract 

 
 
 
 
 
The Basel Committee for Banking Supervision requires every financial institution to carry out 

efficient Risk Management practices, so that these are able to face adverse days in the market 

and, thus, avoid another potential meltdown of the financial system, such as the ‘Black 

Monday’ in 1987 or the ‘Subprime’ crisis in 2007.  To do so, traditional backtesting techniques 

assess the quality of commercial banks’ risk forecasts based on the number of the exceedances. 

However, these backtests are not sensitive to the size of the exceedances, which could lead to 

inaccurate risk models to be accepted. 

This way, this dissertation presents the Saddle-point backtest, a size-based procedure 

developed by Wong (2008) that evaluates risk models through the Tail-Risk-of-VaR. 

This approach is believed to constitute a reliable size counterpart to the Basel II Agreements, 

hence deserving an important role in backtesting. However, the Saddle-point backtest shows 

some drawbacks regarding its application to non-parametric risk models, which is explored 

throughout this dissertation’s empirical analysis. 
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Resumo 

 
 
 
 
 
O Comité de Basileia para a Supervisão Bancária requer a todas as instituições financeiras que 

levem a cabo práticas de Gestão de Risco eficientes, de modo a que estas sejam capazes de 

enfrentar dias adversos no mercado e, desta forma, evitar outro eventual colapso do sistema 

financeiro, tal como a ‘Segunda-feira Negra’ em 1987 ou a crise do ‘Subprime’ em 2007.  Para 

tal, as técnicas tradicionais de avaliação de modelos de risco aferem a qualidade das previsões 

dos bancos com base no número de excedências. No entanto, estes métodos não são sensíveis 

ao tamanho das excedências, o que pode levar a que modelos de risco pouco fiáveis sejam 

aceites. 

Assim sendo, esta dissertação apresenta o teste de Saddle-point, um procedimento baseado no 

tamanho das excedências desenvolvido por Wong (2008), que avalia modelos de risco através 

do Risco-da-Cauda do Valor em Risco. 

Crê-se que esta abordagem baseada no tamanho das excedências constitui uma fiável 

contraparte dos Acordos de Basileia II, merecendo, portanto, desempenhar um papel 

importante na avaliação de modelos de risco. No entanto, o teste de Saddle-point apresenta 

algumas falhas no que toca à sua aplicação a modelos de risco não paramétricos, algo que é 

explorado no decorrer da análise empírica desta dissertação. 
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1. Introduction 

This dissertation aims to analyse the performance of a recently developed method of 

backtesting Value-at-Risk models, the Saddle-point backtest, in comparison to the main 

existing methodologies in academic literature.  

This new framework appears as an alternative to the traditional set of Value-at-Risk backtests 

established by the Basel Accords for Banking Supervision, whose core consists in evaluating 

the performance of risk models according to the number and independence of exceedances, 

neglecting its size. The Saddle-point, created by Wong (2007), considers the number, as well 

as the size of the exceedances, for a more powerful way of assessing VaR models. 

The lack of power observed in traditional methods for rejecting models showing extreme losses 

is the main motivation for this approach. Recent crises, such as the Black Monday in 1987 and 

the Subprime in 2007, constitute evidence that models fail to measure risk correctly when it 

comes to extreme events, and current backtests have seldom enough power to reject them.  

Therefore, this dissertation seeks an answer to the following research question: “Does the 

Saddle-point test outperform traditional backtesting techniques for very low quantiles?”. 

Furthermore, coming up with a test that overcomes the previous feature does not suffice. It is 

also important that it performs correctly under “normal” market environment, i.e. during 

periods of low volatility in which extreme losses do not occur. Hence, a second research 

question arises: “Is this method a reliable backtest procedure over restful market climate?”. 

At last, Wong has applied the Saddle-point backtest to many parametric risk models, but never 

to non-parametric ones. Thus, another interesting research question to explore is: “Does the 

Saddle-point backtest work for non- and semi-parametric risk models as well?”.  

In this sense, section 2 states the literature review, which provides an overview on the Risk 

Management subject, as well as a theoretical contextualization of the Saddle-point backtest.  

Additionally, sections 3, 4 and 5 offers a theoretical description of the backtesting techniques 

and risk models employed throughout this dissertation.  

Moreover, section 6 introduces the financial data chosen to implement the risk models and 

draws some guidelines as how to apply all these theories empirically, whereas section 7 

summarizes the main results taken from the practical application.  
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Finally, the last section focuses on some concluding remarks regarding risk model performance 

and, most importantly, the prominence of Saddle-point backtest in Risk Management. 
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2. Literature Review 

Risk is defined as the probability of some adverse event to occur at some point in time.  

In financial markets, risk takes the form of eventual losses. There are many components that 

contribute to the uncertainty underlying financial markets, each one representing a different 

source of risk, such as market risk, liquidity risk, credit risk and operational risk. Thus, Risk 

Management is the approach each financial institution takes, aiming to supervise and control 

the existing sources of risk which their portfolio of investments is exposed to.   

A number of different approaches to measure the risk inherent to a portfolio of assets have been 

developed throughout the years. Alongside, several ways of testing these measures have gained 

a great deal of importance given that the Basel Accords rely on them to compute the Risk 

Capital Charge’s multiplier.  

Since the 1970’s that many financial institutions started to develop quantitative models trying 

to measure market risk. In the beginning of the 1990’s, JP Morgan released a technical 

document explaining how to put in practice an innovative way of quantifying risk, denominated 

Value-at-Risk. According to MacAleer (2009), Value-at-Risk may be seen as the “worst-case 

scenario on a typical day”, as it provides maximum expected loss forecasts, subject to past 

financial information. 

Krause (2003) points out that Value-at-Risk models – hereinafter denominated VaR, for 

simplicity - have become widespread amongst financial institutions due to its 

straightforwardness. Furthermore, VaR is currently a universal way of quantifying market risk, 

having been set as the standard methodology for risk assessment world-wide by the Basel 

Committee on Banking Supervision (BCBS). Additionally, VaR is used to determine the daily 

Capital Requirements for financial institutions, which is the amount of capital a bank must hold 

in order to prevent bankruptcy on a given day.  

The institutionalization of VaR as the main risk measure amongst financial institutions was 

followed by designated ways to test it. Not every risk model works properly for any portfolio 

composition or period of time, which is why the Basel Committee on Banking Supervision 

leave this choice for the financial institution to make. However, these models are subject to 

regulatory backtests in order to be approved. To assess the suitability of risk models, Basel 

Committee (1996b) amendment implemented the ‘traffic light’ backtest, a global standard 
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coverage test that determines the penalty attributed to the bank’s Risk Capital Charge, based 

on the number of exceedances verified during the previous 250 working days (more or less a 

working year of financial data). In addition, other coverage tests have been recommended and 

widely put into practice as well, such as the Unconditional Coverage backtest developed by 

Kupiec (1995), that computes the number of exceedances observed over a given period and 

assesses whether the verified exceedance rate corresponds to the expected exceedance rate; and 

Christoffersen’s Conditional Coverage test, which added an independence testing feature to 

Kupiec’s UC test, hence constituting an improved procedure that takes into account both the 

number and independence of exceedances.   

Additionally, there have been developed plenty of different backtesting methodologies that rely 

on the number or/and independence of exceedances. For instance, the Dynamic Quantile test 

of Engle & Manganelli (2004); the Berkowitz, Christoffersen and Pelletier (2011) test; the 

Regression Quantile backtest developed by Gaglianone et al (2011); and many others. For a 

summarized description of backtesting methodologies carried out in academic literature, see 

Nieto & Ruiz (2016). 

Even though the traditional backtesting framework has gained popularity due to its plainness 

and easiness of implementation, it has also been subject of plenty criticism. For instance, 

Pritsker (2006) documented that Kupiec’s test lacks power to reject unfeasible VaR models, 

and Escaciano & Olmo (2010) point out that Christoffersen’s test procedure, joining UC and 

independence, may not consider the uncertainty inherent to the parameter estimation carried 

out by VaR models with some degree of parameterization, thus producing misleading results 

in a complex environment. 

Nevertheless, according to Dias (2013) and Halbheib & Pohlmeier (2012), these backtesting 

procedures are still the most popular ones amongst both practitioners and scientific literature. 

In addition to the already mentioned shortcomings, some authors such as Wong (2007, 2008) 

and Colletaz et al (2013), further criticize traditional backtests for overlooking the size of 

exceedances. Colletaz et al (2013) stress the fact that a risk model showing a pair of 

exceedances during the test period, is most likely to be accepted by the traditional backtesting 

procedures, even though these exceedances may be large enough to make the financial 

institution to go bankrupt.    
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The proliferation of complex financial products and the global rise in leverage have contributed 

to the increasing occurrence of extreme events, having led some authors to measure risk 

through the size of tail losses. For instance, Artzner et al (1999) suggest Expected Tail Loss 

(ETL) as an alternative to Value-at-Risk, which has been shown by Basak & Shapiro (1998) to 

produce lower losses than interval-based forecasts. Furthermore, Yamai & Yoshiba (2005), 

Taasche (2002) and Lucas & Siegmann (2008) study the relevance of Expected Shortfall as a 

reliable risk measure and further discuss its advantages over Value-at-Risk.  

Likewise, backtesting through tail losses have been subject of thorough research. Berkowitz 

(2001) and Kerkhof & Melenberg (2004) have designed innovative backtests suitable for ETL 

and Expected Shortfall, respectively. However, as referred in Wong (2007, 2008), these tests 

require a large data set in order to be applied properly, which may not be available.  

More recently, Colletaz et al (2013) developed the Risk Map, a three-dimensional 

representation of the number and magnitude of exceedances, as well as an overall graphical 

summary of the risk model’s performance. The intuition behind this approach is not only to 

account for the regular – usually 1% – VaR exceedances, but also for the super-exceedances, 

which assume much lower VaR quantiles than 1%. This way, Colletaz et al (2013) propose to 

compute both sequences of exceedances and super-exceedances, in order to jointly test whether 

these satisfy the conditions stated in Kupiec’s Unconditional Coverage backtest. 

Although there are quite a few backtesting methodologies based on tail losses, the scope of this 

dissertation lies on Wong’s Saddle-point backtest. In his first article, Wong (2007) alerts to the 

need of backtesting VaR models through the size of tail losses as an alternative to the 

frequency-based tests. Hence, the stated author proposes an innovative way of backtesting 

Expected Shortfall – in Wong (2007) – and Tail-Risk-of-VaR – in Wong (2008) –, accounting 

for the magnitude of exceedances rather than its frequency. Wong (2008) resorts to the Saddle-

point technique, derived through the Lugannani & Rice (1980) formula, in order to 

asymptotically approximate tail loss distribution to the normal gaussian one. The major 

assumption over which this approach is built is that financial returns are independent and 

identically distributed, following a standard normal distribution. Furthermore, when the risk 

model assumes non-normal distributions for the returns, the Saddle-point backtest applies the 

same procedure as in Berkowitz & O’Brien (2002) and Kerkhof & Melenberg (2004), thus 

transforming the non-normal density into a normal one.  
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However, in his pioneer study, Mandelbrot (1963) found evidence of volatility clustering and 

autocorrelation in financial markets, which jeopardizes the reliability of the previous 

assumption. Nonetheless, the Saddle-point backtest was shown in Wong (2007, 2008) to 

increase test power and accuracy, when compared either to the traditional frequency-based 

framework or to the magnitude tests of Berkowitz (2001) and Kerkhof & Melenberg (2004).  

Additionally, the Saddle-point approach is also suitable for small samples, which constitutes 

an advantage over the two previously stated tail losses backtesting procedures. 

Overall, there is a vast variety of VaR models to choose from; see Kuester et al (2006) for an 

extensive comparative analysis of existing models. Attending to Gerlach et al (2011), these 

VaR models may be further divided into three different parametrization categories: non-

parametric, semi-parametric and parametric. Amongst these, the parametric category has a 

much wider number of models to choose from, including the widespread RiskMetrics, 

Autoregressive Moving Average models with Bollerslev’s Generalized Autoregressive 

Conditional Heteroskedasticity process – hereinafter denominated GARCH –, as well as 

various distribution functions for innovations, return processes and volatility dynamics. 

Conversely, the non- and semi-parametric categories have lower representation in what comes 

to variety of models. However, according to a study put forward by Pérignon & Smith (2010), 

thereabout three quarters of commercial banks worldwide prefer to use non-parametric 

Historical Simulation rather than any other method. 

Following his first two papers, Wong has published two more articles with regard to the Saddle-

point backtest – Wong (2009) and Wong et al (2012) – where he empirically applied this 

methodology to the exchange and stock markets, respectively. However, the analyses were 

always carried out based solely on parametric models. In fact, to my knowledge, neither Wong 

nor any other author has applied the Saddle-point backtest to non-parametric risk models so 

far, which constitutes a novelty put forward by this dissertation. 
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3. Risk Management according to the Basel Committee 

In 1974, shortly after the collapse of the Bretton Woods international monetary system, central 

bankers of the G10 countries gathered down and created the Basel Committee on Banking 

Supervision. Aiming to prevent major crashes from happening and to promote responsible Risk 

Management practices, this organization designed a list of guidelines every financial institution 

should follow. Amongst these, one of the most relevant guidelines is the Market Risk Charge, 

which is the obligation of setting aside a certain amount of capital in order to face eventual 

short-term losses.  

Although the BCBS gives autonomy to commercial banks regarding the choice of the risk 

model, it requires the following compliance criteria to be met: computation of daily VaR 

figures; VaR significance levels of 1%; minimum 250 working days of in-sample financial 

data; data sample updates at least every 3 months and a minimum holding period of 10 days, 

although it is accepted the square root scaling rule up until 10 days-ahead-VaR. See Basel 

Committee (1996) for details.   

Following the previous steps, financial institutions must hold a minimum capital requirement 

established by the formula below: 

𝑀𝑅𝐶𝑡  =  𝑀𝑎𝑥 [ 𝑉𝑎𝑅𝑡+1
𝛼 ;  𝑘 ×

1

60
×∑𝑉𝑎𝑅𝑡−𝑖

𝛼

60

𝑖=1

] + 𝑐 (1) 

Where α represents VaR’s significance level, which according to the BCBS should be 1%; 𝑘 

is a penalty multiplier that varies between 3 and 4, subject to the backtesting performance of 

the risk model and, at last, 𝑐 accounts for an additional idiosyncratic capital charge.    

3.1.   Backtesting 

Backtesting constitutes one of the most relevant practices risk managers have to take on. On 

the one hand, backtesting allows Risk Management departments at commercial banks to assess 

whether their risk models are correctly capturing the risk inherent to its portfolio of assets, thus 

assisting in the decision-making process. On the other hand, as mentioned in the previous 

section, the BCBS relies on backtesting procedures for the calculation of banks’ capital 

requirement, which also makes backtesting a tool for rewarding and penalizing good and poor 

Risk Management practices, respectively. 
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This way, given the opportunity cost imposed by the BCBS to financial institutions whose risk 

models show insufficient risk coverage, commercial banks have an incentive to keep working 

on better ways to quantify the risk and improve their Risk Management practices.  

3.1.1. Traffic Light Backtest  

Alongside with Capital Requirements calculation, the Basel Committee (1996b) also specified 

a global standard backtesting methodology to assess banks’ proprietary VaR models, named 

Traffic Light Coverage test. The implementation of this backtest requires the financial 

institution to respect the previously stated criteria regarding the computation of its VaR figures.  

In order to perform this test, it is first necessary to sum up the number of exceedances produced 

by the VaR model during the test period. An exceedance takes place any time an observed loss 

in the market surpasses the Value-at-Risk predicted by the model. 

After comparing the daily VaR forecasts with the actual returns observed in the market 

throughout the test period, the number of exceedances is recorded so that the VaR model can 

be scored inside one of three different coloured categories described in figure 1.   

 

 
Figure 1: Traffic Light backtest – penalties 

 

 

 

 

 

 

 

 

On the one hand, the green zone includes VaR forecasts that registered a maximum of 4 

exceedances during the 250 days test period, constituting no concern to the regulation authority 

Zone Number of Exceedances k

0 3.00

1 3.00

2 3.00

3 3.00

4 3.00

5 3.40

6 3.50

7 3.65

8 3.75

9 3.85

Red 10 or more 4.00 or rejection

Green

Yellow
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in what comes to wrongly accept inaccurate models and, therefore, are not subject to any 

penalty. On the other hand, the yellow zone indicates that the VaR model has come up short in 

predicting market risk between 5 and 9 times throughout the test sample, which does not allow 

any definitive conclusion about its accuracy. Thus, as shown in figure 1, the Basel Committee 

(1996b) recommends attributing penalties to the financial institutions whose VaR models stand 

within this intermedium category. At last, any model producing 10 or more exceedances end 

up falling in the red zone, resulting either in a maximum penalty of 4 being applied to the 

bank’s Market Risk Charge, or in the rejection of the risk model by the regulatory authority. 

Actually, in these cases, the second alternative is the most commonly seen in practice and 

requires the bank to change its VaR model.   

Given its simplicity, the BCBS adopted the Traffic Light Coverage test as the global 

backtesting procedure amongst financial institutions. However, as a result of its plainness, it 

lacks power to reject inaccurate models.  

Moreover, this test is based upon the assumption that returns are independent from each other 

- which has been disproved by Mandelbrot (1963) - and, in addition, it also neglects the sizes 

of tail losses, which makes it suitable only to a preliminary analysis on the performance of risk 

models. There are other backtesting methodologies known to provide higher accuracy and test 

power than the Traffic Light backtest. 

3.1.2. Kupiec’s Unconditional Coverage test  

The Unconditional Coverage backtest, created by Kupiec (1995) and further discussed in 

Christoffersen (1998), assesses whether the exceedance rate verified throughout the test period 

(𝜋𝑜𝑏𝑠) corresponds to the expected exceedance rate (𝜋𝑒𝑥𝑝), defined as the VaR significance 

level α. Hence, the null hypothesis of the test takes the form:  

 H0: 𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥𝑝 ≡ 𝛼 (2) 

Specifically, the observed rate 𝜋𝑜𝑏𝑠 is defined as 
𝑥

𝑛
, where 𝑥 is the number of exceedances 

observed in the sample test and n represents the total number of observations in the sample. 

Therefore, alternatively one may write down the null hypothesis as follows: 
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H0: 𝜋𝑜𝑏𝑠 =
𝑥

𝑛
= 𝛼 (3) 

Furthermore, Kupiec (1995) resorts to the likelihood-ratio test presented below, as to assess 

whether the exceedances sample estimate is statistically consistent with the significance level 

of the underlying VaR model. 

 −2ln ((
𝛼

𝜋𝑜𝑏𝑠
)
𝑥

× (
1−𝛼

1−𝜋𝑜𝑏𝑠
)
𝑛−𝑥

) ~𝝌1
2 

(4) 

 

Whenever the test statistic exceeds the critical value established according to its significance 

level, the Unconditional Coverage backtest rejects the null hypothesis, thus rejecting the VaR 

model. Moreover, if no exceedance is recorded throughout the entire sample test period, then 

this test cannot be applied. 

Overall, even though Kupiec’s coverage test constitutes a useful benchmark in backtesting VaR 

models, the fact that it is not applicable to a scenario where there are no exceedances during 

the test period, makes it a poor methodology for high confidence levels and small sample 

analysis, which is especially concerning given that the BCBS requires solely a year of past 

financial data for backtesting purposes. In addition, Kupiec also does not assess the 

trustworthiness of the independence assumption of the exceedances. Nevertheless, in spite of 

showing low power to reject inaccurate models - especially when the number of exceedances 

is zero -, this methodology has Basel Committee’s stamp of approval, being still one of the 

most widespread backtests amongst financial institutions for Capital Requirements calculation 

purposes. 

3.1.3. Christoffersen’s Independence test 

As previously stated, Kupiec’s Unconditional Coverage test considers the number of 

exceedances observed in the test sample, but disregards whether they are clustered in time. 

Aiming to overcome this issue, Christoffersen (1998) implemented the Independence backtest, 

based on the null hypothesis that Kupiec’s observed exceedance rate 𝜋𝑜𝑏𝑠 follows an 

independent and identically distributed (i.i.d.) Bernoulli process.  
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                                                   H0:  𝜋𝑜𝑏𝑠  𝐵𝑒𝑟𝑛~    
𝑖.𝑖.𝑑.   (5) 

In order to assess the independent assumption, the author created the following likelihood-ratio 

statistic: 

 
𝐿𝑅𝑖𝑛𝑑 =

𝜋𝑜𝑏𝑠
𝑛1 × (1 − 𝜋𝑜𝑏𝑠)

𝑛0

𝜋01
𝑛01 × (1 − 𝜋01)𝑛00 × 𝜋11

𝑛11 × (1 − 𝜋11)𝑛10
 (6) 

On the one hand, 𝑛0  represents the number of days in which the model made a correct 

assessment of the risk. On the other hand, 𝑛1 stands for the number of days an exceedance took 

place. Moreover, following the same reasoning, 𝑛11 accounts for the frequency with which two 

consecutive exceedances occurred, 𝑛00  represents how often two consecutive days without 

recording exceedances took place, 𝑛10  stands for the number of times an exceedance was 

followed by a non-exceedance and, conversely, 𝑛01  sums up the situations in which an 

exceedance followed a non-exceedance.  

In turn, 

• 𝜋01 =
𝑛01

𝑛01+𝑛00
 represents the proportion of exceedances given that a non-exceedance took 

place the previous day; 

• 𝜋00 =
𝑛11

𝑛01+𝑛00
 represents the proportion of exceedances given that an exceedance took 

place the previous day. 

What’s more, resembling the Unconditional Coverage test, Christoffersen’s independence test 

statistic and p-value are calculated through a Chi-square distribution function with one degree 

of freedom, as stated below: 

 −2ln (𝐿𝑅𝑖𝑛𝑑)~𝝌1
2 (7) 

In conclusion, this procedure constitutes a reliable assessment tool for the independence 

assumption. However, performed alone, this test is not relevant for VaR backtesting purposes 

since it only takes into account the occurrence of consecutive exceedances and not its size. 



Saddle-point approach: backtesting VaR models in the presence of extreme losses | Ricardo Gouveia 

 

12 

 

3.1.4. Christoffersen’s Conditional Coverage test 

After overcoming the independence pitfall showed in Kupiec’s test, Christoffersen (1998) 

carried on and built another test that could assess both assumptions at the same time: correct 

risk coverage and independence of the exceedances. This way, the author created the 

Conditional Coverage backtest, underlying the following null hypothesis: 

 H0: 𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥𝑝 ≡ 𝛼  ⋀  𝜋𝑜𝑏𝑠  𝐵𝑒𝑟𝑛~    
𝑖.𝑖.𝑑.  (8) 

The true purpose for which Christoffersen (1998) came up with the Independence test in the 

first place, was so that its likelihood-ratio statistic could be added to the one in Kupiec (1995), 

thus creating the Conditional Coverage test statistic, which follows a Chi-square distribution 

with 2 degrees of freedom, as shown in the appendix of Christoffersen (1998).  

 𝐿𝑅𝐶𝐶 = 𝐿𝑅𝑈𝐶 + 𝐿𝑅𝑖𝑛𝑑 (9) 

 −2ln (𝐿𝑅𝐶𝐶)~𝝌2
2 (10) 

In a similar way as in section 3.2, according to this methodology, the null hypothesis is rejected 

anytime the test statistic overshoots the critical value, leading to the rejection of the VaR model. 

Otherwise, the risk model is believed to simultaneously respect the independence property and 

to show correct risk coverage. 

 

 

 

 

 

 

 



Saddle-point approach: backtesting VaR models in the presence of extreme losses | Ricardo Gouveia 

 

13 

 

4. Wong’s Saddle-point backtest 

Having performed an outlook to BCBS’s Risk Management requirements, as well as to the 

traditional backtesting techniques in section 3, it will now be put forward an alternative 

methodology to assess risk models based on the sizes of tail losses proposed by Wong (2008). 

4.1.   Backtesting through sizes of exceedances  

Wong et al (2012) point out that recent financial crisis arose some pitfalls regarding traditional 

frequency-based backtests described in the previous section, claiming that these showed not to 

perform adequately when big losses occur, contrarily to the widespread belief that they 

correctly evaluate VaR models. In order to improve VaR backtesting, the stated author 

introduces the Saddle-point backtest, a size-based procedure that allows to assess the 

performance of a risk model, attending to Tail-Risk-of-Var and Expected Shortfall measures 

as alternative Basel II counterparts. 

4.1.1. Tail Risk of VaR 

Given a random portfolio return series 𝑅  and denoting 𝐺  as its absolutely continuous 

cumulative distribution function (CDF), the number of exceedances over a sample period of T 

days required by the BCBS is: 

𝑛 =∑𝐼(𝑟𝑡 < 𝑞)

𝑇

𝑡=1

 (11) 

Where I(.) is an indicator function and −𝑞 = −𝐺−1(𝛼) stands for the VaR at the α significance 

level, which, according to Basel II, should be set at 1% for market risk. However, as seen in 

Wong (2007 & 2008), traditional frequency-based backtesting framework lacks power 

compared to size-based backtests, leading Wong (2008) to use a Tail-Risk-of-VaR (TR) test 

statistic:  

𝑇𝑅̂ = −
1

𝑇
∑(𝑟𝑡 − 𝑞) ∙ 𝐼(𝑟𝑡 < 𝑞)

𝑇

𝑡=1

 (12) 
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Tail Risk may be seen as a size counterpart of Basel II rules instead of the previously stated 

frequency-based one, since it sums up the sizes of all losses exceeding VaR. By doing so, 𝑇𝑅̂ 

provides information to risk managers about the potential loss the institution may incur in 

beyond the VaR boundary.  

4.1.2. Expected Shortfall 

Moreover, Expected Shortfall has gained some popularity since the subprime crisis took place, 

appearing as an alternative to VaR. As already referred, some authors like Artzner et al (1999) 

present its advantages over VaR, pointing it as a more reliable risk measurement tool. In fact, 

in his first article regarding the Saddle-point backtest, Wong (2007) used Expected Shortfall as 

the size-based risk measure to be tested. Assuming again the series of portfolio returns R and 

VaR figures given by −𝑞, ES may be regarded as the loss the financial institution expects to 

incur in when VaR is breached. Thus, setting a series of T random returns {𝑟1, … , 𝑟𝑇} and 

assuming there are n exceedances {𝑟(1), … , 𝑟(𝑛)} inside the sample, then Expected Shortfall can 

be estimated just as in Kerkhoff & Melenberg (2004) and Wong (2007): 

𝐸𝑆̂ = −𝐸(𝑅|𝑅 < 𝑞) = −
1

𝑛
∑𝑟(𝑖)

𝑛

𝑖=1

 (13) 

4.1.3. Relationship between TR and ES 

Both approaches presented above take into account the size of the exceedances. Although, 

while ES is regarded as the average loss beyond VaR, TR is proportional to the aggregate sum 

of all tail losses. Furthermore, as Wong (2008) and Wong et al (2012) point out, these are 

related in the following way: 

𝑇𝑅̂ =
𝑛

𝑇
∙ 𝐸𝑆̂ −

𝑛𝑞

𝑇
    𝛼−1𝑇𝑅̂ = 𝐸𝑆̂ − 𝑉𝑎𝑅 (14) 

Where the α for market risk is set at 1%, according to Basel II amendment. In his latest article, 

Wong (2012) explains that Kerkhoff & Melenberg (2004) compute ES using the 100α% worse 

returns in the sample, which makes 
𝑛

𝑇
 constantly equal to α for any sample, resulting in the 

previous formula to hold regardless of the parameters. Such an approach would lead to the 

conclusion that there is no difference between backtesting Tail Risk or Expected Shortfall. 
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However, VaR is the risk metric sanctioned by the BCBS, and the procedures for risk model 

evaluation stipulated by this committee, require that VaR figures are compared with its 

homologous returns on a daily basis. All in all, it means that TR and ES should be calculated 

using ex-ante VaR figures, causing n to vary from sample to sample and, thus, 
𝑛

𝑇
 not to be 

necessarily equal to α for any sample. Consequently, under this assumption, TR and ES are 

regarded as complementary in backtesting.  

Tail-Risk-of-VaR represents the risk at the part of the tail that VaR does not account for, and 

even though it is closely related to Expected Shortfall, there are statistical differences between 

them in backtesting. On the one hand, by summing up the sizes of all losses in excess of VaR, 

TR can work as a direct size counterpart for the BCBS’s traffic light test, whereas ES, which 

accounts only for the average of losses in days where the loss has exceeded VaR, cannot. On 

the other hand, due to the fact that VaR has become the worldwide standard risk metric, having 

been target of thorough research in academic literature for the last 20 years, Wong (2009) 

suggests it might be more useful to focus on improving VaR backtesting through Tail Risk, 

rather than delving into backtesting an alternative measure such as Expected Shortfall. This 

way, it is important to note that Tail-Risk-of-VaR Saddle-point backtest works as a 

complement to the Basel II rules, since the latter counts the number of all exceedances while 

the former sums up its sizes. 

Nevertheless, ES plays an important role in backtesting since it is able to detect some 

inaccuracies that TR cannot. For instance, Wong (2012) refers that if a risk model records a 

very small number of exceedances during the test period, but each one revealing a huge tail 

loss, then TR might not capture this pitfall as effectively as ES, which has more power to reject 

such model. However, if the risk model registers too many small exceedances, then the average 

of losses would probably be too small to be rejected by ES, in which case TR would be 

preferred, given that it sums up the sizes of all exceedances.  

Overall, the Saddle-point backtest may be applied to both Tail-Risk-of-VaR and Expected 

Shortfall.  However, even though Wong (2012) demonstrated that these can be complementary 

to each other for backtesting, this dissertation focuses solely on VaR backtesting, for it is the 

most prominent approach among financial institutions and academic literature. Therefore, 

hereinafter the TR Saddle-point backtest will be described in detail and empirically analysed, 

along with the traditional backtesting framework. 
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4.2.  Normality assumption 

The whole Saddle-point backtest is based upon the assumption that the series of portfolio 

returns 𝑅 are independent and identically distributed (i.i.d.), following a normal distribution. 

In fact, theoretically, according to the central limit theorem, the sampling distribution of TR 

can be approximated by a normal gaussian distribution when the sample size is large. However, 

Tail Risk is measured by summing up the sizes of exceedances which, following BCBS’s rules 

for market risk, should occur only 1% of the times, making it virtually impossible to gather a 

data sample large enough to allow the practical application of the central limit theorem. 

Therefore, this sub-section introduces the Saddle-point technique used by Wong (2007), which 

constitutes a small sample asymptotic approach to accurately approximate the sampling 

distribution of TR to the normal distribution. 

4.2.1. TR-statistic 

As already mentioned, the test statistic of the Saddle-point backtest applied in the next chapters 

of this dissertation, is the Tail-Risk-of-VaR, hereinafter denominated TR-statistic.  

Assume again a series of 𝑇 normally-distributed returns as stated above 𝑅 ∈ {𝑟1, … , 𝑟𝑇}, whose 

CDF and PDF are the ones of a standard normal distribution, being represented by Փ and 𝜙, 

respectively. Note that, at the moment, VaR is computed as 𝑞 = Փ−1(𝛼).  

Moreover, define the mixed discrete-continuous random variable 𝑋  with realization x 

described below: 

𝑥 = {
𝑟 − 𝑞    𝑖𝑓 𝑟 < 𝑞
0            𝑖𝑓 𝑟 ≥ 𝑞

 (15) 

Given that 𝑇𝑅 = −𝐸(𝑋) and 𝑥 ∈ ]−∞, 0] is the summand in equation (12), TR-statistic can be 

defined as: 

𝑇𝑅̂ = −𝑥̅ = −𝑇−1 ∙ ∑ 𝑥𝑡
𝑇
𝑡=1 .   (16) 

Additionally, the CDF and PDF of X are given, respectively, by the functions below: 
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𝐹(𝑥) = {
Փ(𝑥 + 𝑞)   𝑖𝑓 𝑥 < 0
1                  𝑖𝑓 𝑥 = 0

 (17) 

𝑓(𝑥) = {
𝜙(𝑥 + 𝑞)    𝑖𝑓 𝑥 < 0
1 − 𝛼            𝑖𝑓 𝑥 = 0

 (18) 

Furthermore, Wong (2008) shows that, assuming TR-statistic – 𝑋  – is a mixed discrete-

continuous random variable whose CDF is given by equation (17), then its moment-generating 

function is calculated in the following manner:   

𝑀(𝑡) = exp(−𝑞𝑡 +
𝑡2

2
) ∙ Փ(𝑞 − 𝑡) + 1 − 𝛼 (19) 

Moreover, the derivatives with respect to t are represented by the expressions below: 

𝑀′(𝑡) = exp (−𝑞𝑡 +
𝑡2

2
) ∙ [(𝑡 − 𝑞) ∙ Փ(𝑞 − 𝑡) − 𝜙(𝑞 − 𝑡)] (20) 

𝑀′′(𝑡) = (𝑡 − 𝑞) ∙ 𝑀′(𝑡) + 𝑀(𝑡) − (1 − 𝛼) (21) 

𝑀(𝑛)(𝑡) = (𝑡 − 𝑞) ∙ 𝑀(𝑛−1)(𝑡) + (𝑛 − 1) ∙ 𝑀(𝑛−2)(𝑡),          𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 3 (22) 

Finally, the first two moments of TR-statistic are given by: 

𝜇𝑋 = 𝐸(𝑋) = −𝑞𝛼 −
𝑒−

𝑞2

2

√2𝜋
 (23) 

𝜎𝑋
2 = 𝑣𝑎𝑟(𝑋) = 𝛼 + 𝑞2𝛼 +

𝑞 ∙ 𝑒−
𝑞2

2

√2𝜋
− 𝜇𝑋

2  (24) 
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For mathematical proof regarding TR-statistic’s moments, one can consult Appendix A.1 and 

Appendix A.2 in Wong (2008). 

In the next sub-section, it will be presented the formula which Wong (2007 & 2008) has based 

his work upon, that allows the asymptotical approximation of distribution 𝑋  to a standard 

normal distribution and, thus, the computation of the Saddle-point p-value for statistical 

inference.  

4.2.2. Saddle-point p-value 

Lugannani and Rice (1980), as explained by Wong (2007), came up with an elegant formula 

that accurately determines the tail probability of the sample mean of an independent and 

identically distributed (i.i.d.) random sample {𝑋1, … , 𝑋𝑛} from a continuous distribution 𝐹 with 

density 𝑓. 

In order to understand the reasoning behind the saddle-point technique, Wong (2007, 2008) 

draws our attention to the inversion formula for the PDF of TR-statistic’s sample mean: 

𝑓𝑥̅(𝑥̅) =
𝑇

2𝜋
∫ 𝑒𝑇∙[𝐾(𝑖𝑡)−𝑖𝑡𝑥̅]
∞

−∞

𝑑𝑡,   𝑤ℎ𝑒𝑟𝑒 𝑥̅ < 0  (25) 

Above, 𝑖  represents an imaginary number and 𝐾(𝑡) = ln 𝑀(𝑡)  is the cumulant generating 

function of 𝑋. Additionally, by setting the derivative (with respect to 𝑖𝑡) of 𝐾(𝑖𝑡) − 𝑖𝑡𝑥̅ to zero, 

one gets the saddle-point ϖ that must satisfy the condition: 

𝐾′(𝜛) = 𝑥̅ (26) 

Once the saddle-point ϖ is settled, the p-value of the test can be obtained through the Lugannani 

and Rice’s formula following the procedure described below.1  

Defining 𝜂 = 𝜛 ∙ √𝑇 ∙ 𝐾′′(𝜛)  and 𝜍 = 𝑠𝑔𝑛(𝜛) ∙ √2𝑇 ∙ (𝜛𝑥̅ − 𝐾(𝜛)) , where 𝑠𝑔𝑛(𝜛)  is 

equal to zero when 𝜛 = 0 or takes the same sign of 𝜛 when 𝜛 ≠ 0, then the p-value of the 

test can be constructed denoting the probability of 𝑋̅ being lower than the realized sample {𝑥̅}. 

                                                        
1 This formula has already been established by Lugannani & Rice (1980) and proved by Daniels (1987). 
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Moreover, since TR-statistic is nonnegative, the Saddle-point’s p-value may also be regarded 

as the likelihood with which 𝑋̅ will be greater than the test statistic: 

𝑃(𝑋̅ < 𝑥̅) = 𝑃(𝑋̅ > 𝑇𝑅̂) ≈ Փ(𝜍) − 𝜙(𝜍) ∙ [
1

𝜂
−
1

𝜍
] (27) 

Finally, in the cases where the test statistic is zero – 𝑥̅ = 𝑇𝑅̂ = 0 – the associated p-value for 

the saddle-point backtest is then given by: 

𝑃(𝑋̅ = 0) = (1 − 𝛼)𝑇 (28) 

4.3.  Hypothesis testing  

The Basel Committee solicits banks to carry out one-tail frequency-based backtests such as the 

Traffic Light test, which means risk models cannot be rejected for being over-conservative, i. 

e. risk models yielding very few or zero exceedance. According to this regulatory entity, only 

in case the number of exceedances is too large should the VaR model fail the test. In turn, being 

two-tailed backtests, Kupiec and Christoffersen’s coverage tests do not fulfil this requirement, 

for they take the risk of rejecting a model for having too few exceedances, whereas Wong’s 

saddle-point backtest can either perform as a one-tailed or a two-tailed backtest, subject to the 

choice of the alternative hypothesis. 

In order to comply with BCBS’s criteria, this dissertation applies the Saddle-point backtest 

considering the following null and alternative hypotheses for statistical inference described in 

Wong (2008): 

{
𝐻0: 𝑇𝑅 = 𝑇𝑅0
𝐻1: 𝑇𝑅 > 𝑇𝑅0

 (29) 

Where 𝑇𝑅 is the empirical Tail-Risk-of-VaR collected from the sample test period, which 

represents the Saddle-point test-statistic; and 𝑇𝑅0 defines the value 𝑇𝑅 should denote in order 

not to reject the test’s null hypothesis. Furthermore, admitting a standard normal distribution 

for the null hypothesis and sticking to Basel Committee’s approach for market risk, 𝛼 = 0.01, 

then 𝛼−1 ∙ 𝑇𝑅0 = 𝛼−1 ∙ 𝜇𝑋 = 0.3389.  
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If the observed tail risk (𝑇𝑅) is not significantly larger than 𝑇𝑅0, the null hypothesis is not 

rejected, implying that the risk model is consistent with the empirically observed Tail-Risk-of-

VaR. Conversely, in case 𝑇𝑅 is in fact considerably larger than 𝑇𝑅0, then the risk model is 

believed to have inconsistent tail risk coverage, leading to the rejection of the test’s null 

hypothesis and, consequently, to the rejection of the risk model. 

In addition, if one wants to perform two-tail backtesting analysis using the saddle-point 

technique, then the statistical hypotheses may take the form: 

{
𝐻0: 𝑇𝑅 = 𝑇𝑅0
𝐻1: 𝑇𝑅 ≠ 𝑇𝑅0

 (30) 

However, this dissertation will not perform such statistical inference, for it is not the standard 

procedure recommended by the regulatory entity.  

4.4.  Non-normal null hypothesis 

The whole Saddle-point backtest is based upon the assumption that the series of portfolio 

returns is independent and normally distributed. Although, if the null hypothesis assumes a 

non-normal distribution for the returns, then it is possible to transform the non-normal series 

of returns into a normal one by following Berkowitz & O’Brien (2002) and Kerkhof & 

Melenberg (2004). Given, for instance, some return series 𝑅 following a student-t distribution 

with 5 degrees of freedom whose standard cumulative distribution function (CDF) is denoted 

by 𝑓5(𝑅), can easily be transformed into a normalized variable as described below: 

𝑍 = Փ−1(𝑓5(𝑅)) (31) 

Note that, once again, Փ−1 represents the standard normal CDF. 

Moreover, Wong (2008) adds that when the return distribution of the risk model assumes fatter 

tails, then the transformation above results in thinner tails than the one of the standard normal 

distribution, which in turn leads to TR-statistic significantly lower than if it had been assumed 

a standard normal distribution from the beginning. Oppositely, in case the risk model predicts 

a thinner-tailed distribution for the returns, the transformed variable will denote fatter tails than 

the normal distribution, ergo resulting in considerably larger TR-statistic. 
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Now that the Saddle-point backtest has already been contextualized and described in detail, 

along with the BCBS Risk Management rules and the traditional backtesting framework, it is 

time to apply it empirically to the financial markets. Hence, the next section provides a 

comprehensive overview on the Value-at-Risk methodology, which is the risk modelling 

followed by this dissertation in order to put forward the empirical analysis of the Saddle-point 

backtest. In addition, section 5 also explains how to apply the referred statistical test to each 

risk model, including non-parametric VaR. 
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5. Value-at-Risk 

Value-at-Risk is defined as some loss threshold that, for a given time horizon ℎ, will not be 

exceeded 100(1-α)%  of the times, assuming that the portfolio’s composition remains 

unchanged during this period. This way, it is important to reinforce that VaR denotes a lower 

boundary for the portfolio’s P&L that is expected to be surpassed only 100𝛼% of the times, 

rather than the maximum possible portfolio loss. 

Thus, VaR consists in the α-quantile of the distribution of returns, conditional on past 

information, such that there is a 100𝛼% probability to occur a portfolio loss 𝑅𝑡 that will exceed 

it: 

 Prob(-Rt > VaRt
α| t-1) = α (32) 

In order to construct a risk model following the VaR methodology described above, it is 

important to make certain assumptions and establish some parameters a priori, specifically: 

• Holding period (ℎ) 

• Significance level (α) 

• Type of model 

Note that BCBS’s rules specify 𝛼 = 1% for market risk, which is the value to be used in this 

dissertation. Furthermore, this regulatory authority requires a holding period of at least 10 days, 

allowing the scaling computation from 1-day-ahead-VaR to 10-days-ahead VaR by multiplying 

the former by the square root of the holding period as follows:  

 VaR10 days
α =  VaR1 day

α ∙ √ℎ (33) 

However, BCBS does not regard this scaling operation as being applicable for time horizons 

greater than 10 days.  

Krause (2003) points out that VaR models have become widespread amongst financial 

institutions due to its simplicity, being nowadays the universal way of quantifying market risk 

for Regulatory Capital purposes. 



Saddle-point approach: backtesting VaR models in the presence of extreme losses | Ricardo Gouveia 

 

23 

 

Although there are many VaR models to choose from, this dissertation uses five models often 

seen in literature and used in practise amongst commercial banks: 

• JP Morgan’s RiskMetrics 

• Student-t VaR 

• Skewed-Student VaR 

• Historical Simulation 

• Vol. Adj. Historical Simulation 

Moreover, according to Gerlach (2011), these models may be inserted into different 

parametrization categories. The first three models are regarded as parametric since these assign 

a certain distribution function to the returns and its volatility dynamics, assuming the market 

behaves accordingly. The fourth VaR model is inside the non-parametric category, as it simply 

takes the empirical α-quantile out of the sample of returns and defines it as the VaR figure for 

the next day, without making any assumption about the returns’ distribution or its volatility. 

Finally, although the last model makes certain assumptions concerning the volatility of the 

errors, it does not parametrize the returns distribution, thus belonging to the semi-parametric 

category. 

5.1.  JP Morgan’s RiskMetrics 

In 1994, JP Morgan in partnership with Reuters, developed a technical document introducing 

the RiskMetrics, a fully parametrized way of measuring market risk, whose goal was to become 

the global benchmark approach to compute VaR. This document was updated several times 

throughout the years, but this dissertation bases on Morgan (1996).  

The main assumption present in RiskMetrics methodology is that financial returns are 

normally-generated, following the autoregressive process described below: 

 𝑟𝑡+1 = 𝜇𝑡 + 𝜎𝑡𝜀𝑡,                𝜀𝑡~𝑁(0,1) (34) 

Where 𝜇𝑡  is the mean of the returns, 𝜎𝑡  represent the volatility of returns and 𝜀𝑡  is the 

innovation process which follows a standard normal distribution. In addition, RiskMetrics 
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methodology structures volatility considering the Exponential Weighted Moving Average 

(EWMA) technique, whose goal consists in attributing greater preponderance to recent market 

conditions in comparison to distant observations:  

 𝜎̂
𝑡+1│𝑡
2 = 𝜆𝜎̂𝑡

2 + (1 − 𝜆)𝑟𝑡
2, λ = 0,94 (35) 

Here, 𝜎̂𝑡
2 stands for the latest variance estimator, 𝑟𝑡

2 represents the square of the most recent 

realized return and λ is a scaling parameter that assigns different weights to the previous 

variables for the forecast of the next day’s volatility. 

This method resembles the Integrated GARCH (IGARCH) model to forecast volatility. 

However, while IGARCH writes down a statistical model and computes its parameters through 

Maximum Likelihood estimation, RiskMetrics keeps λ = 0,94 for the entire analysis, for its 

goal is to derive a simple way of modelling returns that is consistent empirically; for extensive 

analysis regarding the IGARCH model, see Lumsdaine (1995). 

All in all, RiskMetrics VaR model can be formulated in a straightforward way: 

 VaRt+1
α = −𝜇𝑡 − 𝜎𝑡 ∙ Փ

−1(𝛼) (36) 

Being Փ−1 the inverse standard normal CDF, which for market risk is set at Փ−1(0.01) ≈

−2.33; and the volatility being estimated through EWMA as described above. 

Shortly after its release, RiskMetrics rapidly took off and many commercial banks around the 

world adopted this market risk measure, mainly due to its success during the first years of 

implementation. Although, after the fall of some important hedge funds and investment 

companies in the late 1990’s, such as L.T.C.M., RiskMetrics was no longer seen as foolproof. 

However, that was not reason enough for the world of Finance to disregard RiskMetrics 

completely, having remained as one of the most widespread risk measures so far. Moreover, 

Pafka & Kondor (2008) suggest that RiskMetrics performs satisfactorily much of the times, 

but only for confidence levels no higher than 95%. For lower quantiles it underestimates market 

risk more frequently than would be expected, which constitutes a concern since it was designed 

to provide accurate forecasts at the 99% confidence level.  
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Nevertheless, as long as the market does not exhibit extreme returns, RiskMetrics is believed 

to perform rather well.  

At last, the application of the saddle-point backtest in evaluating RiskMetrics VaR is quite 

simple since it already follows a normal distribution from the start. Hence, one simply needs 

to standardize the returns as described below, and then assume the α-quantile of the normal 

distribution Փ−1(𝛼) as the VaR figure. 

𝑧𝑡 =
𝑟𝑡 − 𝜇𝑡
𝜎𝑡

 (37) 

5.2.  Student-t VaR 

In its pioneer findings, Mandelbrot (1963) highlighted that the behaviour of financial time 

series deviated from standard gaussian assumptions, specially the one that regards returns as 

being independent and identically distributed. In fact, this author gathered empirical evidence 

confirming that extreme financial returns tend to take place more frequently than predicted by 

a gaussian distribution, which brings up the need to account for fatter tails in the returns 

distribution.  With that goal in mind, there have been used a number of different distributions 

in order to properly model returns, one of which being the student-t distribution. Within this 

scope, Lin & Shen (2006) show that Student-t Value-at-Risk helps improving financial markets 

forecasts in comparison to the normal distribution, mostly due to the fact that it accounts for 

fatter tails. 

Table 1: Student-t distribution 

 

 

 

 

 

 

ν 0.1% 0.3% 0.5% 1% 5%

2 -22.33 -12.85 -9.92 -6.96 -2.92

3 -10.21 -6.99 -5.84 -4.54 -2.35

10 -4.14 -3.47 -3.17 -2.76 -1.81

50 -3.26 -2.87 -2.68 -2.40 -1.68

100 -3.17 -2.81 -2.63 -2.36 -1.66

500 -3.11 -2.76 -2.59 -2.33 -1.65

(Normal) -3.11 -2.76 -2.58 -2.33 -1.65

Quantile

∞
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Table 1 displays values computed from the student-t distribution’s CDF for different quantiles 

and degrees of freedom (𝜈), which allows us to conclude that, on the one hand, as the number 

of degrees of freedom approach infinity, the student-t becomes asymptotically normal. On the 

other hand, the lower the quantile of the distribution, the higher is the discrepancy between 

them, especially for low degrees of freedom. Therefore, it is clear that student-t expects extreme 

occurrences much more often than the normal distribution does. 

Moreover, constructing VaR models using the student-t distribution is performed in a similar 

matter as described in the previous section. However, instead of assuming that the returns are 

normally distributed, this time a standard student-t distribution is implemented instead:  

 VaRt+1
α = −𝜇𝑡 − 𝜎𝑡 ∙ 𝑓𝜈

−1(𝛼) ∙ √
𝜈 − 2

𝜈
 (38) 

Where 𝜈 = [2,+∞[ stands for the number of degrees of freedom of the student-t distribution 

and the volatility is, once again, calculated through the EWMA methodology. Furthermore, it 

is important to highlight that in equation (37) the inverse of the student-t’s cumulative density 

function is multiplied by a square root in order to standardize the distribution, i.e. to transform 

it into a homogenous distribution with zero mean and standard deviation equal to one. 

What’s more, note that the methodology is similar to the one of RiskMetrics, except a standard 

student-t distribution with 𝜈  degrees of freedom replaces the standard gaussian approach, 

which permits to account for fatter tails than a normal distribution does. 

Additionally, this dissertation resorts to Maximum Likelihood estimation in order to compute 

the optimal degrees of freedom for the returns’ distribution, at each point in the sample. To do 

so, firstly, it is necessary to standardize the returns in the sample in the same way as in equation 

(37): 

Then, defining 𝛤(∙) as the Gamma function, the optimal number of degrees of freedom is 

calculated by maximizing the following log-likelihood function, which is the log-function of 

the standardized (mean zero and unit variance) student-t probability density function: 
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max
𝜈
{∑ ln [𝛤 (

𝜈 + 1

2
)] − ln [𝛤 (

𝜈

2
)] − ((

𝜈 + 1

2
) ∙ ln [𝛤 (1 +

𝑧𝑡−𝑖
2

𝜈 − 2
)]) −

ln(𝜈 − 2) − ln (𝜋)

2

𝑛

𝑖=1

} (39) 

Since the VaR forecast is performed using a rolling window that changes every day, this 

maximum likelihood estimation is performed the same way.  

Finally, in order to apply the saddle-point backtest to such a distribution, it is necessary to 

normalize it using the same technique described in section 4.4. In this case, financial returns 

are assumed by the risk model to follow a student-t distribution with 𝜈 degrees of freedom. 

Therefore, through the standard student-t cumulative density function stated below, it is 

possible to transform afterwards student-t returns into normal ones by applying equation (31).  

𝑓𝜈(𝑧𝑡) =
𝛤 (
𝜈 + 1
2 ) ∙ (1 +

𝑧𝑡
2

𝜈 − 2)
−(
𝜈+1
2
)

𝛤 (
𝜈
2) ∙ √(𝜈 − 2) ∙ 𝜋

 
(40) 

Overall, although it is a theoretical improvement comparing to the normal distribution, this 

method still requires plenty assumptions regarding the properties of returns, not to mention that 

the parameters of the distribution are again entirely on the hands of the analysts, who get the 

fall in case the model performs poorly. 

5.3.  Skewed-Student VaR 

In real financial markets, it is rare to find a symmetrically distributed sample of returns. 

Usually, it has some sort of bias, either to the right (positively skewed) or to the left (negatively 

skewed). In other words, it means that, typically, financial returns either have frequent small 

gains and few large losses or few large gains and several small losses. Therefore, since normal 

and student-t are symmetrical (in relation to zero) distributions, these may not be appropriate 

to model the risk inherent to a P&L portfolio.  

Thus, the third and last parametric VaR model used in this dissertation assumes a skewed-

student distribution, which adds a skewness parameter to the student-t distribution.  
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First of all, in order to apply the Skewed-Student VaR model, one needs to define the quantile 

function required to perform the Value-at-Risk computation. Hence, the skewed-student 

quantile is defined below as stated by Lambert & Laurent (2001). 

𝑠𝑘𝑠𝑡−1𝜉,𝜈(𝛼)

{
 
 

 
 

1
𝜉
∙ 𝑓𝜈

−1 [
𝛼
2 ∙
(1 + 𝜉2)] − 𝑚

𝑠
,   𝑖𝑓   𝛼 <

1

1 + 𝜉2
 

−𝜉 ∙ 𝑓𝜈
−1 [

1 − 𝛼
2 ∙ (1 + 𝜉−2)] − 𝑚

𝑠
,   𝑖𝑓   𝛼 ≥

1

1 + 𝜉2

 

   

(41) 

Where 𝛼 represents the quantile, 𝜉 is the skewness parameter and 𝑓𝜈
−1(∙) is the standardized 

quantile student-t function as stated in equation (40), and 𝑚  and 𝑠2  represent the non-

standardized mean and variance of the skewed-student distribution:  

𝑚 =
𝛤 (
𝜈 − 1
2 ) ∙ √(𝜈 − 2) 

𝛤 (
𝜈
2) ∙ √𝜋

∙ (𝜉 −
1

𝜉
) (42) 

𝑠2 = (𝜉2 −
1

𝜉2
− 1) −𝑚2                (43) 

Moreover, this dissertation computes the Skewed-Student Value-at-Risk in a similar manner 

as RiskMetrics, i.e. using EWMA volatility estimates described in equation (35) and modelling 

the α-quantile VaR as follows: 

 VaRt+1
α = −𝜇𝑡 − 𝜎𝑡 ∙ 𝑠𝑘𝑠𝑡

−1
𝜉,𝜈(𝛼) (44) 

In addition, Fernandez & Steel (1998) introduced a location scale skewed-student CDF, which 

constituted the pilar of the conditional mean and conditional variance skewed-student CDF 

brought up by Lambert & Laurent (2001). Furthermore, Trottia & Ardia (2016) have re-

parametrized this last CDF, in order to create the standardized skewed-student CDF used in 

this dissertation and stated below. 
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𝑠𝑘𝑠𝑡𝜉,𝜈(𝑧𝑡)

{
 
 

 
 2

𝜉 +
1
𝜉

∙ [𝜉 ∙ 𝑓𝜈 (
1

𝜉
∙ (𝑠 ∙ 𝑧𝑡 +𝑚)) +

1

𝜉
] − 1,   𝑖𝑓   𝑧 ≥ −

𝑚

𝑠
 

2

1 + 𝜉2
∙ 𝑓𝜈[𝜉 ∙ (𝑠 ∙ 𝑧𝑡 +𝑚)],                            𝑖𝑓   𝑧 < −

𝑚

𝑠

 (45) 

Where 𝑓𝜈(∙) is the standardized student-t CDF described in equation (40) and 𝑧𝑡 represents the 

standardized returns as defined in equation (37). 

Finally, in order to test this risk model using the Saddle-point approach, one needs to normalize 

the returns in the same way as in the previous section. In this sense, taking into account the 

CDF stated by equation (45), the entire sample of returns can be normalized resorting again to 

equation (31), thus allowing for the Saddle-point analysis to be carried out.   

Nevertheless, regardless of the distribution chosen in order to better reflect financial returns, 

the parameters choice represents a huge responsibility for risk managers, who take the fall if 

the model ends up failing to predict reliable forecasts.  

5.4.  Historical Simulation 

Historical Simulation is perhaps one of the oldest ways of measuring VaR and, according to 

many authors such as Pritsker (2006) and Pérignon & Smith (2010), it is also the method 

commercial banks resort to more often. This is mostly due to the fact it does not require any 

assumption in order to be put forward, which takes the weight of responsibility off risk 

managers’ shoulders, regarding the choice of distribution’s parameters.  

The Historical Simulation method is quite simple to understand and implement, since one only 

needs to extract the α-quantile of an empirical time series of portfolio returns. Hence, it is a 

pure non-parametric model, which means that neither assumptions regarding the distribution 

of returns, nor of the volatility dynamics, need to be made.  

Nonetheless, despite its simplicity, Historical Simulation suffers from a few pitfalls that must 

be considered when being applied. For instance, HS assumes the past will always repeat itself 

in the future, thus neglecting the future possibility of occurring higher losses than in the sample 

test period. Moreover, Barone-Adesi et al (1999) bring our attention to the fact that this 

approach is inappropriate unless the returns are actually independent and identically 

distributed, condition that is not always verified in practice in financial markets. And finally, 
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this methodology attributes the same weight to every observation in the sample, which means 

that when some extreme loss entries the sample, it increases the following risk forecasts for a 

long time, until one day it no longer counts for its calculation, which is especially worrying for 

large sample sizes. 

Furthermore, similarly to the VaR calculation procedure using parametric models, this 

dissertation considers a rolling window that is moved forward every day until the end of the 

test period. In addition, when using Historical Simulation, the size of the window constitutes 

an important choice that may ultimately determine whether the model fails or succeeds.  

For large data sets, the model is not very precise in capturing current market conditions, 

whereas for small samples it is unlikely to accurately predict the empirical distribution of 

returns. Thus, the analysts face a trade-off between, on the one hand, big samples with good 

forecast accuracy, but poor representation of current market conditions; and on the other hand, 

small samples that, although being more likely to capture actual market movements, may fall 

short in modelling extreme quantiles correctly. 

Overall, in comparison to the number of assumptions and parameters choice inherent to fully-

parametric methods, this approach entails much smaller responsibilities for risk managers.  

5.5.  Volatility Adjusted Historical Simulation 

Although Historical Simulation has several up sides compared to parametric Value-at-Risk, its 

shortcomings incentivised new approaches trying to overcome them, amongst which the 

Volatility Adjusted Historical Simulation VaR model. 

Seeking to transform clustered and autocorrelated financial time series into i.i.d. returns, Hull 

& White (1998) modelled volatility changes over time through EWMA and GARCH processes, 

which they then used to smooth the series of returns, and extract α-quantiles from that returns 

series. This variant of Historical Simulation is denominated in this dissertation as Volatility 

Adjusted Historical Simulation. 

Furthermore, an empirical study conducted by Pagan & Schwert (1990) suggest that the 

exponential GARCH– or EGARCH (1, 1) – tends to capture volatility dynamics more 

efficiently than the GARCH model, for it regards the relation between volatility and past 

financial returns as being asymmetric. Therefore, instead of EWMA or GARCH processes, this 

dissertation resorts to the EGARCH (1, 1) methodology with normal gaussian innovation 
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process. This volatility model was firstly introduced by Nelson (1991), and is stated below as 

described by Pagan & Schwert (1990) 

ln (𝜎𝑡
2) = 𝛼0 +∑𝛽𝑗 ∙ ln(𝜎𝑡−𝑗

2 ) +∑𝛼𝑘 ∙ [𝜃 ∙ 𝜓𝑡−𝑘 + 𝛾 ∙ (|𝜓𝑡−𝑘| − (
2

𝜋
)

1
2
)]

𝑝

𝑘=1

𝑞

𝑗=1

          (46) 

Where 𝜓𝑡 =
𝑢𝑡

𝜎𝑡
 and 𝑢~𝑁(0, 𝜎𝑡

2), while the EGARCH parameters 𝛽, 𝛼, and 𝛾 are calculated 

through maximum likelihood. 

Afterwards, instead of attributing different weights to the returns, the volatility estimates of the 

return series are adjusted so that the whole sample reflects current market conditions.  

𝑟𝑡,𝑗
∗ =

𝜎𝑇,𝑗

𝜎𝑡,𝑗
∙ 𝑟𝑡,𝑗 (47) 

Where 𝑟𝑡,𝑗 is the realized return in the market at day t, 𝜎𝑇,𝑗 represents the volatility estimate for 

day T – the most recent day in the sample – and 𝜎𝑡,𝑗 stands for the volatility estimate at time t, 

which is prior to or coincidental with day T. 

Once the steps above are fulfilled, Value-at-Risk can be computed by extracting the α-quantile 

of the smoothed portfolio returns 𝑅∗ ∈ {𝑟𝑡,𝑗
∗ , 𝑟𝑡−1,𝑗

∗ , … , 𝑟𝑡−𝑇,𝑗
∗ }, just like in the simple Historical 

Simulation. 

On the one hand, empirically, Vol. Adj. Historical Simulation is shown to improve VaR 

forecasts according to Pritsker (2006), who concludes that this method overcomes the non-

responsiveness of traditional Historical Simulation to changes in volatility. On the other hand, 

the same author highlights two flaws in this methodology: the first one regards to non-proper 

modelling of the time-varying correlations between returns; and the second one concerns to the 

same trade-off inherent to the choice of the data window’s length described in the previous 

sub-section. 

In conclusion, although Vol. Adj. Historical Simulation makes assumptions when estimating 

the volatility series used to smooth the sample returns, it does not parametrize the returns’ 

distribution, thus belonging to the semi-parametric models’ category.  
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5.6.   Saddle-Point Application to Non-Parametric Distributions 

Since Wong has developed the Saddle-point backtest, he has extensively tested it empirically. 

For instance, the author applies it to the EUR/USD exchange market in Wong (2009), and to 

several market indices in Wong et al (2012). However, at every point in the analyses, the risk 

models considered were fully parametric. Furthermore, to the best knowledge of the author of 

this dissertation, to this date, no author has published any article applying Wong’s Saddle-point 

backtest to non-parametric risk models. This way, given how widespread non-parametric 

models are among financial institutions, this dissertation fills an important gap in the Saddle-

point analysis.  

According to Wong (2008), a non-normal distribution assumed by the risk model may be 

transformed into a normal distribution by applying equation (31), where the empirical returns 

are homogenised into percentiles through the risk model’s CDF, and then normalized through 

the inverse normal CDF. Following this reasoning, the same transformation may be performed 

for non-parametric risk models if, instead of some parametric distribution’s CDF, one takes 

into account the empirical cumulative distribution of the sample and then, similarly to equation 

(31), transform the empirical non-parametric quantile into a standard normally-distributed 

variable. 

Further ahead, sections 6.2.4 and 6.2.5 provide a detailed description of how to apply the 

previous procedure to the non- and semi-parametric risk models employed in this dissertation. 
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6. Data and Methodology 

Now that both the risk models and backtests have been specified and theoretically discussed in 

the previous sections, it is time to apply them empirically to the financial markets, in order to 

assess how well these behave in different circumstances. 

6.1.  Data description 

With that goal in mind, this dissertation applied all five risk models to ten distinct market 

indices, each one representing either some economic activity sector or a determined country or 

region of the globe: 

• NIKKEI225, the Japanese Market Index that includes the 225 main companies in the 

Tokyo Stock Exchange; 

• S&P500, the USA Market Index that includes the 500 main companies in the New York 

Stock Exchange; 

• FTSE100, the British Market Index that includes the 100 main companies in the London 

Stock Exchange; 

• MSCI World Index, a broad global equity index that represents large and mid-cap 

equity performance across 23 developed markets countries, covering approximately 

85% of the free float-adjusted market capitalization in each country; 

• DAX30, the German Market Index that includes the 30 main companies in the Frankfurt 

Stock Exchange; 

• S&P/TSX60, the Canadian Market Index that includes the 60 main companies in the 

Toronto Stock Exchange; 

• Dow Jones, the USA Industrial Index that includes the 30 main companies operating in 

the Industry sector in the New York Stock Exchange; 

• NASDAQ, the USA Technological Index that includes the 100 main companies 

operating in the Technology sector in the United States of America; 

• AEX, the Dutch Market Index that includes the 25 main companies in the Amsterdam 

Stock Exchange; 
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• HSI, the Hang Seng Market Index that includes the 50 main companies in the Hong 

Kong Stock Exchange. 

Moreover, the empirical analysis was performed throughout 20 years of financial data from 

January 1st, 1998 until December 31st, 2017. However, it was necessary to obtain data prior to 

1998 in order to apply a proper rolling window for the computation of the risk models. 

Therefore, the total length of data that has been collected from the Bloomberg Platform for 

each of the market indices specified above, was 8870 days, from January 2nd, 1984 to December 

31st, 2017.  

The length of data chosen to carry out the analysis is believed to allow an efficient assessment 

of the actual performance of the Saddle-point backtest and the traditional framework, since it 

covers high volatility periods and extreme events, as well as calm moments with no abrupt 

market movements.  

 

Figure 2: Time Frame 

This figure illustrates the length of the financial data used throughout the empirical analysis, as well as 

how has the data been divided in order to compute the VaR figures according to the different risk 

models. Rolling Windows 1 and 2 have 2000 and 1653 observations, respectively. 

 

 

As shown in figure 2, although the analysis is put forward for the 20-year time period 

between 1998 and 2018, it has also been necessary to use two rolling windows, whose 

applicability will be further detailed in the next sub-section. 

6.2.  Methodology 

This dissertation had its entire practical application carried out using Microsoft Excel and 

RStudio software, which includes the computation of both the risk models and backtesting 

methodologies. 

First of all, given that the scope of this dissertation is to evaluate the Saddle-point backtest in 

opposition to the traditional backtesting framework, it only makes sense to compare it directly 

to Kupiec’s Unconditional Coverage test, and not to Christoffersen’s Independence and 

1998 20181984

Period of the AnalysisRolling Window 2 Rolling Window 1

1990
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Conditional Coverage tests. As pointed out in section 3, similarly to Wong’s Saddle-point 

backtest, Kupiec’s test centres its analysis on the risk coverage showed by the VaR model, 

whereas Christoffersen’s backtests consider the independence of the exceedances, hence 

belonging to a different class of backtests.   

Nevertheless, although the Saddle-point backtest assesses the performance of a VaR model 

based on its risk coverage – just as Kupiec’s test does – these backtests differ significantly 

since the former accounts for the exceedance size, while the latter considers solely its 

frequency. Consequently, the goal of the current analysis is to put both tests against each other 

in several markets and under different economical environments.  

In this sense, the analysis put forward by this dissertation follows the approach detailed in the 

remainder of this section. 

First of all, the financial returns have been computed equally across all market indices and VaR 

methodologies, i.e. arithmetically calculating the returns from the adjusted (to dividends) 

closing prices – 𝑃𝑖 –, as shown by the equation below. 

𝑟𝑛 =
𝑃𝑛 − 𝑃𝑛−1
𝑃𝑛−1

 (48) 

Furthermore, the Saddle-point backtest requires the standardization of the market returns and 

the respective VaR figures, implying the computation of the mean and standard deviation 

parameters for every risk model. Hence, this dissertation has computed both parameters using 

a rolling window of 2000 days prior to January 1st, 1998, staring on May 3rd, 1990. This rolling 

window is specified in Figure 2 as “Rolling Window1”. What’s more, the standardization is 

carried out both for the arithmetic returns and VaR figures, respectively, as follows: 

𝑧𝑡 =
𝑟𝑡 − 𝜇𝑡
𝜎𝑡

;     𝑉𝑎𝑅𝑡
∗ =

𝑉𝑎𝑅𝑡 − 𝜇𝑡
𝜎𝑡

 (49) 

Moreover, in order to apply the Saddle-point backtest, these measures go through the 

normalization process described in equation (31). However, the procedure for the computation 

of the TR-statistic is different between parametric and non-parametric risk models. 

On the one hand, when applying Wong’s test to parametric risk models, the Tail-Risk-of-VaR 

is computed by, firstly, subtracting each standardized risk measure by the homologous 
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standardized return every time an exceedance occurs – 𝑀𝑖𝑛(𝑉𝑎𝑅𝑡
∗ − 𝑧𝑡; 0)  –, and then 

calculate its average as equation (16) indicates. On the other hand, if the Saddle-point backtest 

is to be applied to non-parametric risk models, there is no need to standardize the VaR figures. 

As explained in sections 5.4. and 5.5., Historical Simulation and Vol. Adj. Historical 

Simulation VaR forecasts are computed through the 1% empirical quantile. Therefore, given 

that the Saddle-point backtest assumes that the market follows a standard normal distribution, 

one may simply use the 1% standard normal quantile for every day in the test sample for the 

computation of the TR-statistic – 𝑀𝑖𝑛(Փ−1(0.01) − 𝑧𝑡; 0).  

The corresponding p-value of the test is obtained through Microsoft Excel’s tool ‘Solver’, as 

explained in further detail in sub-section 6.2.6. 

Additionally, the traditional backtests have all been carried out in Microsoft Excel. In fact, 

these were performed almost exactly as they have been described throughout section 3, except 

for the cases where the number of exceedances registered during the year were zero. In these 

situations, the Unconditional Coverage backtest cannot be applied exactly as theoretically 

stated by Kupiec (1995), which thwarts the empirical analysis. Therefore, instead of zero, 

whenever such occurrence comes across, it is considered a marginal value very close to zero 

for the exceedances – 0.0000001 – in order to overcome this obstacle. This way, for a 260-day 

sample (more or less a working year), Kupiec’s test ends up rejecting, at the 95% confidence 

level, models showing zero exceedances during the test period. 

 Hereinafter, one by one, each sub-section is going to briefly describe the practical application 

of all five risk models chosen to incorporate the empirical analysis at this dissertation, whose 

theoretical details can be found in section 5.  

Finally, the last sub-section focuses on the Saddle-point’s p-value calculation. 

6.2.1. RiskMetrics application  

Rewinding to its theoretical explanation, the RiskMetrics model required the computation of 

two parameters: mean and standard deviation. Moreover, the standard deviation follows an 

Exponentially Weighted Moving Average process, with lambda parameter fixed at 0.94 – for 

more details, see section 5.1. This way, all the computations have been performed in Microsoft 

Excel, using Rolling Window 1 to estimate the (normal gaussian) distribution’s parameters. 
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In addition, VaR figures have been estimated according to the RiskMetrics methodology 

through Microsoft Excel, using the process and formulas described in section 5.1. 

6.2.2. Student-t VaR application 

According to its theoretical explanation, the student-t model underlines the computation of 

three parameters: mean, standard deviation and degrees of freedom. Besides that, the standard 

deviation is set as an Exponentially Weighted Moving Average process, with lambda parameter 

fixed at 0.94 – for more details, see section 5.1. Therefore, although most of the computations 

have been performed in Microsoft Excel, the number of degrees of freedom had to be computed 

for every day in the sample through Maximum Likelihood using RStudio software 2 . In 

addition, every parameter of the distribution was calculated considering Rolling Window 1 

described in Figure 2. 

Finally, every step of VaR calculation through the student-t quantile was performed in 

Microsoft Excel, relying on the process and formulas described in section 5.2. 

6.2.3. Skewed-Student VaR application 

In line with its theoretical explanation, the skewed-student model takes the computation of four 

parameters: mean, standard deviation, degrees of freedom and skewness. On top of that, the 

standard deviation is set as an Exponentially Weighted Moving Average process, with lambda 

parameter fixed at 0.94 – for more details, see section 5.1. Thus, the mean and standard 

deviation have been calculated in Microsoft Excel using Rolling Window 1, while the degrees 

of freedom and skewness parameters had to be computed using RStudio software3, since its 

estimation through Maximum Likelihood is too computationally intensive to be carried out by 

Microsoft Excel. What’s more, these last two parameters have also been estimated using 

Rolling Window 1. 

In turn, VaR calculation through the skewed quantile was carried out solely in Microsoft Excel 

using the process and formulas described in section 5.3. 

                                                        
2 The R codes used for the computation of the degrees of freedom are made available by this author on 
request. 
3 The R codes used for the computation of the degrees of freedom and skewness parameters are made 
available by this author on request. 
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6.2.4. Historical Simulation application 

In accordance with its theoretical explanation, the Historical Simulation model does not require 

any parameter estimation. However, the standardization needed to perform Wong’s test implies 

the calculation of the mean and standard deviation, which have been carried out using Rolling 

Window 1. Furthermore, both the empirical quantile function and empirical CDF have been 

computed in Microsoft Excel as follows: 

• The empirical quantile function is available at Microsoft Excel under the name 

“quantile”; 

• The empirical CDF of a series of financial returns can be obtained through a simple 

two-step operation: first, count the number of days in the sample whose return was 

higher than or equal to the most recent return; and second, divide this number by the 

total days in the sample – in this case it has been considered a sample of 2000 

observations. 

However, by computing the cumulative distribution function as described above, there may 

occur some situations in which the CDF returns a value of 0% or 100%, thus preventing the 

transformation to the normal distribution, since the 0%- and 100%-quantile of the normal 

distribution returns a value of −∞ and ∞, respectively. Therefore, in order to overcome this 

obstacle, when such cases come across it is summed up or subtracted a marginal value from 

the CDF – considering 0.0000001% instead of 0% and substituting 100% for 99.99999% – so 

that the transformation could be performed.  

All in all, even though the previous procedure may change the true results of the extreme edges 

in the tails of the distribution, it is the only way to apply Wong’s test to non-parametric models. 

Moreover, Historical Simulation VaR has been computed in Microsoft Excel following the 

process described in section 5.4.  

6.2.5. Volatility Adjusted Historical Simulation application 

As pointed out during its theoretical overview, Volatility Adjusted Historical Simulation 

adjusts the realized returns to current volatility trends using, for that matter, a volatility 

generating process – in this dissertation it has been chosen an EGARCH (1,1) with normal 

innovation process. Hence, in order to compute daily volatility estimates through this method, 
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this dissertation resorted to RStudio software4. Additionally, this VaR methodology requires 

volatility estimates for the entire sample used to apply the risk models, which in this case starts 

2000 days before the analysis period, on May 3rd, 1990. This way, there has been employed 

Rolling Window 2 – which is illustrated in Figure 2 –, a 1653-day length rolling window, 

starting on January 2nd, 1984, so that the EGARCH volatility estimates could be accurately 

computed for every day in the sample.  

What’s more, every calculation besides the EGARCH volatility estimates have been carried 

out in Microsoft Excel and, as to the CDF calculation, the procedure is exactly the same as the 

one for the Historical Simulation model. 

Finally, VaR estimates have been produced by following every step detailed throughout section 

5.5. 

6.2.6. Capital Risk Charge 

Additionally, in order to improve the comparative analysis of the risk models and backtests 

carried out by this dissertation, it has been calculated the daily Capital Risk Charge figures as 

detailed by Basel II Agreements, for every risk model and across all market indices. To do so, 

BCBS’s Traffic Light backtest has been performed exactly as stated in sub-section 3.1.1., using 

a 250-day sample. This way, these Capital Risk Charges have been computed for every year of 

the sample analysis except 1998. 

6.2.7. Saddle-point p-value application 

In contrast to the traditional backtests that follow a Chi-square distribution for its p-value 

calculation, the Saddle-point’s p-value requires more complicated steps in order to be 

determined, all of which are explained in detail in sub-section 4.2.2. In that sub-section, it has 

been suggested that the condition stated by equation (26) must be satisfied in order to apply the 

Lugannani & Rice (1980) formula. However, there is no exact solution for the equation, only 

close approximations.  

Therefore, this dissertation used the ‘Solver’ tool in Microsoft Excel to minimize the condition 

stated below, subject to upper and lower boundaries of the equation. 

                                                        
4 The R codes used for the computation of the volatility estimates through EGARCH (1, 1) model with 
normal innovations, are made available by this author on request.  
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|𝐾′(𝜛) − 𝑥̅| (50) 

Where |∙| represents the absolute value and, after a “trial and error” process, 𝜛 was found 

to belong to the interval [−3.9; 35.15].  

Overall, by minimizing equation (50), subject to 𝜛’s upper and lower boundaries, one gets the 

optimal 𝜛  parameter that ultimately allows the computation of the Saddle-point p-value 

through equation (27). 
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7. Empirical Analysis 

After applying all five risk models described in section 5 to ten market indices, the 

corresponding backtesting results have been summarized in Tables 3-7 in the Appendix.  

For instance, Table 3 summarizes the UC and Saddle-point tests’ results for the RiskMetrics 

model, in the form of p-values. Moreover, it is considered three different lengths for the test 

sample: twenty 1-year tests, four 5-year tests and one 20-year test. Likewise, Tables 4-7 display 

the same information for the remaining risk models. 

Moreover, Table 2 not only allows to assess the rejection behaviour of both backtesting 

procedures carried out in this dissertation, but also provides an outlook on the yearly 

performance of each risk model according to both backtests, just as described below. 

 

Table 2: Backtests’ frequency of rejection 

This table includes (by descending order) the following items: the frequency with which a risk model 

has not been rejected by any of the tests (row 1); how often has one test rejected a given risk model 

when the other has not (rows 2 and 3); the number of occasions where both backtests have rejected a 

risk model, but one of them has rejected it at a greater confidence level (rows 4 and 5); and, finally, 

how many times have the p-values of both tests been the same (last row).5 

 

 

 

 

 

In this sense, this section will be split into two parts: the first one includes the analysis of 

Wong’s Saddle-point backtest in contrast to Kupiec’s Unconditional Coverage test; and the 

second part provides an overview on the general performance of the risk models. 

 

                                                        
5 These items represent 1-year sample test analysis. 
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7.1.  Backtesting Analysis 

As the scope of this dissertation is to analyse the performance of Wong’s Saddle-point backtest 

in contrast to Kupiec’s Unconditional Coverage test, this sub-section explores the results 

obtained from the empirical parsing carried out as described in section 6.  

First of all, it is a note-worthy mention that, as Table 2 indicates, from all 1-year sample test 

results obtained throughout the empirical analysis, both backtests have unanimously accepted 

a risk model about half of the times. In fact, from the entire 1-year analysis – which totals 1000 

test results – only 182 times have these backtests differed from each other when it came to a 

rejection decision. Amongst these occasions, there were 67 times where Kupiec’s test decided 

to reject a risk model against Wong’s backtest verdict, while the inverse situation was 

registered 115 times.  

Figures 3 and 4 in the Appendix illustrate the exceedances that took place over the year of 2014 

in the British and Canadian markets, respectively. While the former considers the Skewed-

Student VaR model, the latter refers to the Student-t VaR model. These figures depict two 

similar situations, taking place in two different markets and considering two different risk 

models. As observed, both situations have registered plenty exceedances during one single 

year, having both risk models failed to predict market risk more than 3% of the times during 

that length of time, which is more than 3 times the expected coverage rate. Therefore, Kupiec’s 

test has rejected the risk model at the 99% confidence level in both situations, given that it 

bases its backtesting results solely on the coverage rate. However, Wong’s Saddle-point 

considers the sizes of the exceedances as the main object for risk model assessment, which are 

shown in Figures 3 and 4 to be quite small. Hence, even though there are several exceedances 

in the sample, Wong’s test ended up accepting the VaR model in both cases.  

On the other hand, Figures 5 and 6 in the Appendix display inverse situations to the previous 

ones. Figure 5 depicts the exceedances that occurred throughout 2011 in the Japanese market, 

considering Student-t VaR model, whereas Figure 6 summarizes the exceedances taking place 

during the year of 2000 in the Hong Kong market, considering RiskMetrics model. As pointed 

out by these Figures, in both cases the VaR has been breached four times in a year, which 

corresponds to a 1.54% exceedance rate. Given the features of Unconditional Coverage test, it 

comes as no surprise that it accepts the risk model in either case. In contrast, Wong’s backtest 

is shown to reject the VaR model in both situations, for the sizes of the exceedances are pretty 
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large. Although there are only a few of them, the exceedances in these cases have enough 

dimension to lead to the rejection of the risk model according to the Saddle-point methodology.  

Additionally, based on Tables 3-7 in the Appendix, 5-year sample testing results show that 

backtesting results present similar findings for parametric risk models to the ones stated in 

Table 2. Albeit there can be cited some cases where backtests’ resolutions differed, the bottom 

line is that UC and Saddle-point seldom present opposite results across market indices for every 

parametric VaR model. The exception, however, lies on non- and semi-parametric risk models, 

whose test results are summarized in the bottom rows of Tables 6 and 7, respectively.  

According to the empirical results for the simple Historical Simulation model displayed in 

Table 6, during overall calmer periods such as 2003-2007 and 2013-2017, Kupiec and Wong’s 

backtesting results tend to diverge considerably, whereas for periods of financial distress, e. g. 

1998-2002 and 2008-2012, these two backtests present similar conclusions with regard to the 

feasibility of this non-parametric model. 

The previous finding is supported by theoretical proof, for Kupiec’s test rejects risk models for 

having too few exceedances in the sample, contrarily to Wong’s Saddle-point backtest, in 

which the fewer and smaller the exceedances – provided that there are exceedances in the 

sample – the likelier it is for the test to accept the risk model. Thus, because Historical 

Simulation is very responsive to large shifts in the market – as detailed in section 5.4. –, its 

VaR figures tend to suffer sharp and long-lasting rises when an extreme loss occurs. 

Consequently, these Historical Simulation VaR figures are bound to remain quite large for long 

periods of time after the shock, especially if the rolling window used to calculate VaR is large 

– which is definitely the case of this empirical analysis. Therefore, when the markets go through 

turmoil periods, the number and size of the exceedances are expected to rise as a consequence 

of the financial distress, leading to a likely rejection of the risk model by the Unconditional 

Coverage and Saddle-point backtests. But when the markets cool down, VaR forecasts tend to 

become too conservative in comparison to the realized returns, resulting almost certainly in 

very low exceedance rate – i. e. the relative number of exceedances in the sample – and, ergo, 

in the rejection of the risk model by the UC test for being too conservative. In turn, the Saddle-

point backtest returns the opposite feedback, due to its inability to reject a risk model for having 

too few exceedances – provided that there are exceedances in the sample, and that these are not 

too large.    
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The situation discussed above illustrates one of the main differences between the traditional 

backtesting framework and the Saddle-point backtest. On the one hand, at the eyes of the 

regulatory entity, whose only concern is to ensure that financial institutions are properly 

protected against adverse scenarios, Wong’s backtest is seen as a preferred methodology to be 

employed. On the other hand, commercial banks and other financial institutions see in Capital 

Requirements an opportunity cost imposed by the BCBS, making its minimization one of their 

main goals. For this reason, financial institutions may regard traditional backtests as a 

preferential choice due to its rejection properties.  

Nevertheless, even though commercial banks continuously seek the minimization of the 

Capital Risk Charges established by Basel II Agreements, these should also consider their 

exposure to extreme events. There is a generalized belief that Capital Requirements are so 

conservative that banks are not usually worried that it could be surpassed at any time, for it sets 

a “security bar” extremely high – see equation (1). However, as Figures 7-10 in the Appendix 

point out, there could be times when Capital Requirements are not large enough to prevent the 

financial institution from going bankrupt. 

Figures 7-10 in display each of these situations through a graph, containing all year’s realized 

returns, VaR figures and Capital Risk Charge numbers. In addition, below each graph there is 

a small table with the p-values of Kupiec and Wong’s tests, for all three test samples length – 

1, 5 and 20 years. 

On March 15th, 2011 the Japanese market index NIKKEI225 registered a loss of 10.55%, the 

third largest loss in its history, due to the earth-quake and tsunami that stroke the country just 

two days before. As previously stated, from all three parametric risk models used in this 

empirical analysis, none has been able to produce sufficiently large Capital Risk Charge figures 

to face the post-tsunami crash loss on this day. Moreover, Figures 7, 9 and 10 display this 

occurrence – specified on the circled area in the graphs – for each of the risk models, that were 

not able to produce risk forecasts that would prepare the financial institution to such market 

loss.  

This way, it is very important that the backtesting procedure carried out by commercial banks, 

whatever it may be, has the power to reject these models, at least for the year of 2011. However, 

as one may observe in Figures 7, 9 and 10, Kupiec’s test does not reject any of the models for 

NIKKEI225 in 2011, for the exceedance rate is considered acceptable by this frequency-based 
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backtest. On the contrary, Wong’s Saddle-point backtest rejects all three models for the 

Japanese market index in 2011, with a confidence level of 99%.  

Besides the Japanese post-tsunami crash event, there has only been registered one other super-

exceedance throughout the entire empirical analysis, taking place in the German market index 

on January 21st, 2008. In this occasion, the loss observed in the market rounded 7.16%, which 

could not be covered by Student-t VaR-based Capital Risk Charge. As shown in Figure 8, this 

time the Unconditional Coverage backtest has actually been able to reject this risk model in 

2008, although not at the 1% significance level, but rather at the 5% instead. As to the Saddle-

point test, it has again rejected the risk model at the 1% significance level.  

Additionally, considering a 5 and 20-year test sample, the Saddle-point backtest has also 

managed to reject all three parametric risk models referred above, at a minimum 95% 

confidence level for the NIKKEI225 market index in 2011.  In contrast, considering the super-

exceedance of Student-t VaR model in the German market, Figure 8 suggests that Wong’s test 

failed to reject it for test samples larger than 1 year of financial data.  

Overall, Figures 7-10 in the Appendix documented empirical evidence supporting the idea that 

the Saddle-point backtest has greater power to reject inaccurate models than Kupiec’s UC test, 

given its ability to reject risk models containing super-exceedances. Nonetheless, it is 

interesting to assess whether the Saddle-point backtest would also have rejected the same risk 

models, if the test sample had contained the super-exceedance alone, i. e. if every other 

exceedance in the sample simply did not exist. In this sense, Figures 11-13 in the Appendix, 

illustrate these exact scenarios for the 2011 super-exceedances in the Japanese market for each 

of the parametric risk models, showing that only in the case of RiskMetrics – displayed in 

Figure 13 – has the Saddle-point backtest rejected the model when the super-exceedance has 

been left alone in the test sample. The same does not happen for the Student-t and Skewed-

Student VaR models. Therefore, albeit Wong’s test has rejected models containing super-

exceedances in its sample throughout this empirical analysis, it may not do so every time this 

situation comes across. In addition, the larger the test sample used to carry out backtesting 

analyses, the likelier it is for super-exceedances to go unnoticed. 

Moreover, Table 7 indicates that the conclusions drawn by the backtests for Vol. Adj. Historical 

Simulation model tend to differ for 5-year sample tests and, to some extent, even for 1-year 

sample as well. In fact, according to 1-year sample backtesting analysis summarized in Table 
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2, Wong’s test rejects this semi-parametric model 29 times without the consensus of Kupiec’s 

UC test, which is more than four times the frequency of opposite situations. At first sight, one 

might reason that, in such cases, the few exceedances recorded throughout the test sample are 

considerably large, which assumes a significant Tail-Risk-of-VaR that ultimately leads to the 

rejection of the model according to Wong’s Saddle-point test, just like the cases depicted in 

Figures 5 and 6. However, after taking a closer look to the results in Table 7, it is possible to 

identify a different motive to explain this phenomenon. Figure 14 in the Appendix displays the 

Vol. Adj. Historical Simulation exceedances recorded in 2014 for the AEX Market Index, along 

with the backtesting results – which dictated the acceptance by Kupiec’s test and a clear 

rejection by Wong’s test. In contrast to the cases illustrated by Figures 5 and 6, this figure 

shows that none of the exceedances in this situation seem to be that large. What’s more, by 

displaying the Tail-Risk-of-VaR figures computed for each of the previously mentioned 

exceedances, Figure 15 in the Appendix highlights important inconsistencies in the application 

of Wong’s test to non-parametric models. Looking at the sizes of the exceedances that took 

place on March, 3rd and on October, 2nd in Figure 14, although the latter seems to be only 

slightly larger than the former, it is expected that the Tail-Risk-of-VaR measure does not differ 

too much amongst them. Nevertheless, as verified in Figure 15, the discrepancy between the 

Tail-Risk-of-VaR in both exceedances is extremely large. 

The inconsistency underlined by Figures 14 and 15 can be explained by the process used for 

the calculation of the non- and-semi parametric CDFs. As explained in sections 6.2.4. and 

6.2.5., the calculation of VaR figures through these non- and semi-parametric models, consists 

of extracting the 1%-quantile out of a returns sample at each day, and the computation of the 

empirical CDF consists of similar procedure. This way, there are some days where the realized 

return in the market is lower or higher than any other day in the rolling window’s sample, thus 

generating empirical CDF values of 0% and 100%. In case the former situation comes across, 

the normalized return computed through equation (31) assumes a CDF value very close to 0% 

– 0.000000001% – in order to perform the Saddle-point analysis. Nonetheless, the normalized 

return in such cases is still quite small, resulting in large Tail-Risk-of-VaR.   

On the one hand, considering the simple Historical Simulation model, if the rolling window 

sample does not incorporate any big loss – which might happen during calm periods –, then the 

appearance of a slightly larger loss in the market leads to the situation described above, thus 

resulting in huge Tail-Risk-of-VaR measures without the existence of real significant empirical 
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tail size. However, as observed in Tables 2 and 6, this kind of situation does not seem to take 

place very often, given that only trice in the entire 1-year sample analysis has the Saddle-point 

backtest rejected the Historical Simulation model while Kupiec’s test accepted it. In this sense, 

there may be two motives why such situations are not usually identified by the backtesting 

analysis: first, as previously suggested, the Historical Simulation model performs so poorly in 

frequency-based backtesting analysis that it is rejected the majority of the times, allowing for 

these situations to pass unremarked in a comparative analysis between these two backtests; and 

second, even though extreme losses may occur in the market, these are not common at all, and 

if the appearance of a market loss higher than any other loss in the rolling window sample is 

already a rare event, then the appearance of loss that is only slightly larger than the worst loss 

in the sample is even rarer. 

On the other hand, as described in sections 5.5. and 6.2.5., the Vol. Adj. Historical Simulation 

model computes its VaR figures and CDF in a distinct way, given that instead of extracting the 

1%-quantile directly from the sample of returns, these are previously adjusted to current 

volatility estimates generated through an EGARCH process with normal innovations. 

Therefore, during calm market periods, the returns that take part of the sample are smoothed 

down by low current volatility estimates, but when the market suffers wide shifts the opposite 

effect occurs. Figure 14 in the appendix suggest that, in the beginning of 2014, the Dutch 

market index was going through a calm period, with no relevant shifts occurring for quite some 

time, for there were neither big losses taking part in the rolling window, nor high EGARCH 

volatility estimates for the market at that point. On January 24th, the market has registered a 

loss of 2.49% that, although it cannot be regarded as a huge loss, it was higher than any other 

adjusted (to current volatility) loss in the rolling window up to that point. In addition, before 

the year ended, a similar situation occurred on October 2nd, in which a 2.54% loss surpassed 

every adjusted return in the rolling window sample. What’s more, only a couple of weeks later, 

on October 15th, has a 3.46% loss taken place that, although it was higher than the previous 

exceedance-generating losses, it was not ranked below the worst adjusted return in the sample, 

due to higher volatility estimate for current volatility on that day. Hence, when calculating the 

Vol. Adj. Historical Simulation CDF for the most recent return in the market, it is not necessary 

for this return to be lower than every other return in the sample in order to have a 0% CDF 

value. As long as the volatility estimates are low enough, the adjusted returns in the sample 

decrease to a point where the realized return is lower than all the adjusted returns in the sample, 

which confirms that the volatility estimates play a decisive role in this process. 
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All in all, the lack of accuracy in measuring Tail-Risk-of-VaR for non-parametric models 

exposed above, jeopardizes the application of Wong’s Saddle-point backtest. In particular, this 

dissertation shows that this drawback gains even greater impact for the Vol. Adj. Historical 

Simulation model. In turn, although the simple Historical Simulation model shares the same 

problem, it has much smaller impact empirically.  

7.2.  Risk Models Performance 

The assessment to the performance of the parametric risk models is made through the analysis 

of both backtests, whereas given the information provided in the previous sub-section, only 

Kupiec’s test results were contemplated for the non- and semi-parametric risk models. 

First of all, after a quick glance over Tables 2-7 it is quite straightforward to suggest that, 

according to Kupiec’s Unconditional Coverage and Wong’s Saddle-point backtests, the 

Skewed-Student VaR model – whose test results are represented in Table 5 – outperforms the 

other risk models. In fact, such remark was, to some extent, already expected a priori to the 

empirical application of the risk models, for several authors, such as Wong (2009) and Wong 

et al (2012), have already documented greater accuracy for the Skewed-Student VaR model.  

What’s more, as depicted in Table 2, even though the Vol. Adj. Historical Simulation showed 

to predict market risk rather well, its forecasts seem to have come up short in comparison to 

the Skewed-Student VaR ones. 

On the other hand, conversely to the good performance of the Skewed-Student VaR, Table 3 

shows that RiskMetrics has failed both risk coverage tests in several occasions, and for almost 

every market. In fact, RiskMetrics has been rejected in every market index for the overall 20-

year sample test, from 1998 to 2018, and for almost every 5-year sample test as well. 

Additionally, Table 2 suggests that the 1-year sample test results of RiskMetrics are also 

mediocre, which confirms the conclusions drawn by Pafka & Kondor (2008), who have studied 

the performance of the RiskMetrics methodology for the 95% and 99% confidence levels, 

having found that it shows significant lack of accuracy when it comes to the latter. 

In turn, carrying out the same parsing to Table 4, Student-t VaR seems to render improved test 

results in comparison to RiskMetrics, especially for small length test samples. However, for 

the total aggregate period analysis accounting from 1998 to 2018, this risk model shows very 

similar test results to the ones of RiskMetrics, having been rejected throughout every market 

index, except by the Saddle-point backtest in the German market index DAX30. Nevertheless, 
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as one may observe in Table 2, the fact that Student-t VaR accounts for fatter tails in its 

distribution, appears to constitute a more reliable alternative to the previous parametric model, 

especially when contemplating 1-year period analysis – which is the standard test period 

stipulated by Basel II Agreement. 

Furthermore, it is relevant to highlight that Historical Simulation has not proven to constitute 

a reliable alternative to the parametric models, especially in comparison to the Student-t and 

Skewed-Student VaR models. In particular, the exceedance rates observed throughout the 

sample are quite bipolar, i. e. some years it is very low – in many occasions it is actually zero 

– whereas in other years it is quite large. From a 1-year and a 5-year sample analysis viewpoint, 

Tables 2 and 5 show that, more often than not, this VaR model does not seem to provide proper 

risk coverage. Nonetheless, considering the 20- and 5-year sample analyses illustrated in 

Tables 2-5, Historical Simulation does seem to constitute an improvement to the normally-

distributed RiskMetrics, and even to the Student-t VaR model. However, except for the 20-

year test sample, Skewed-Student VaR performs better than the non-parametric model. 

In addition, Tables 2, 6 and 7 show that Vol. Adj. Historical Simulation performs better than 

the simple Historical Simulation model for every sample length, which goes in accordance to 

other authors findings, such as Pritsker (2006), who have gathered empirical evidence 

regarding the improvement in VaR forecasting brought up by this semi-parametric model, in 

comparison to the non-parametric Historical Simulation.  

At last, throughout the entire risk analysis put forward by this dissertation, and considering the 

time period between January 1st, 1999 and December 31st, 2017, Figures 7-10 reveal that all 

three parametric VaR models have registered at least one super-exceedance in its sample, i.e. 

a day in which BCBS’s Capital Risk Charge has been exceeded by a return in the market, 

leading to a bankruptcy event, while parametric models have not. Such remark may raise a 

doubt on whether Skewed-Student VaR really does outperform both non- and semi-parametric 

risk models, given the lack of ability to prevent bankruptcy shown by the former. 
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8. Conclusions 

This dissertation’s goal was to assess the quality of Wong’s Saddle-point test in comparison to 

the traditional backtesting framework. Particularly, given that the Saddle-point is a risk 

coverage test, it has been put against Kupiec’s Unconditional Coverage, for the latter is the 

only risk coverage backtest amongst the traditional backtesting methodologies. 

To begin with, section 2 provided a theoretical contextualization of Wong’s Saddle-point 

backtest on the broad subject of Risk Management, while sections 3 and 5 gave, respectively, 

a description of the main backtesting procedures and risk models carried out by financial 

institutions worldwide.  

In turn, section 4 introduced Wong’s Saddle-point theory as an alternative to the traditional 

frequency-based backtests, given that it accounts mainly for the size of the exceedances 

observed during the sample test period. 

At last, once section 6 specified the data used for the implementation of the models along with 

the methodology employed for the empirical application of the concepts presented on the 

previous sections, the empirical analysis, whose main results are summarized in section 7, 

could finally be performed. 

From the entire empirical analysis put forward by this dissertation, there are some interesting 

findings worth highlighting.  

First of all, the most important remark is that Wong’s Saddle-point backtest cannot be properly 

applied to non-parametric risk models, especially not to the Vol. Adj. Historical Simulation 

model. The fact that Wong’s test requires the returns to be normally distributed, causes major 

drawbacks in calculating Tail-Risk-of-VaR through empirical CDFs, which does not allow the 

application of the Saddle-point backtest to both non- and- semi-parametric risk models 

mentioned in this dissertation.  

On the one hand, for simple Historical Simulation VaR model, when the realized return at some 

day is even slightly lower (or larger) than every return in the rolling window, then Tail-Risk-

of-VaR overestimates the size of the empirical distribution’s left tail. Thus, the lower the rolling 

window’s length used for the calculation of Historical Simulation VaR figures, the more 

frequent the previous drawback becomes. 
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On the other hand, Vol. Adj. Historical Simulation tends to overestimate the size of the 

empirical distribution’s left tail whenever current volatility estimates are too small, leading to 

the shortening of the adjusted returns in the rolling window’s sample, which exalts the number 

of situations described in the previous paragraph. Therefore, the calmer the market 

environment, the higher the risk of misrepresenting the tail’s size.   

As to the performance of both backtesting techniques for parametric risk models, when 

considering long test samples, such as 20 or even 5 years, the results do not vary much between 

these two methodologies, whether during quiet market moments or through turmoil periods. 

However, for small sample backtesting the results tend to diverge in several occasions. Given 

the characteristics of both tests, their individual criteria for risk model evaluation sometimes 

leads to opposite results.  On the one hand, during years when the VaR forecasts have been 

surpassed several times by realized market returns, Kupiec’s test rejects the model, while the 

Saddle-point backtest may not reject it if the exceedances are small enough. On the other hand, 

when the exceedance rate is quite close to what is expected – in the case of this dissertation it 

is expected 1% exceedance rate – the Unconditional Coverage test confirms that the risk model 

provides proper risk coverage, whereas Wong’s test could reject it in case the exceedances are 

too large. 

Additionally, considering the results shown by Figures 7-10, one can conclude that Wong’s 

Saddle-point backtest has greater power to reject non-proper risk models, especially for small 

test samples. This way, besides practically matching, by and large, Kupiec’s test results, the 

Saddle-point seems to appear as a better alternative for backtesting parametric VaR models 

during crashes.  

From a regulatory authority’s viewpoint, such remarks suggest that Unconditional Coverage 

test should be replaced by Wong’s Saddle-point when backtesting parametric models. 

Nonetheless, the role played by the traditional backtesting framework should not be minimized, 

given that the Saddle-point does not account for the number of exceedances as effectively as 

Kupiec’s test. In fact, as pointed out by Wong (2008), the Saddle-point backtest has been 

designed to be complementary to the traditional backtesting framework, working as a size 

counterpart of the Basel II Agreement. 
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Furthermore, given the pitfalls of Wong’s Saddle-point test, the conclusions drawn regarding 

non- and semi-parametric risk model’s performance in this dissertation, consider solely 

Kupiec’s test. In this sense, there are some relevant observations to point out on this matter. 

Firstly, RiskMetrics struggles to provide accurate 1%-VaR forecasts, leading to the conclusion 

that the normal distribution does not capture financial markets’ dynamics, especially during 

turmoil periods. 

Secondly, although the other two parametric models – Student-t and Skewed-Student VaR – 

seem to get improved backtesting results, none of these has been able to prevent bankruptcy on 

the post-tsunami Japanese crash of 2011. 

What’s more, although the simple Historical Simulation managed to prevent super-

exceedances, it shows some inconsistencies regarding its risk forecasts, for these tend either to 

underestimate market risk, or to be overconservative, thus coming short in producing reliable 

risk assessment. 

Finally, the semi-parametric Vol. Adj. Historical Simulation seems to outperform every risk 

model in this dissertation, except for the Skewed-Student VaR – which shows slightly better 

test results. However, in contrast to the parametric model, the Vol. Adj. Historical Simulation 

does not register any super-exceedance anywhere throughout the entire empirical analysis. 

Overall, it is reasonable to conclude that the semi-parametric model showed a superior 

performance.  

To conclude, this dissertation confirms Wong’s framework as an important contribution to Risk 

Management, and to work quite satisfactorily as a complement to the frequency-based 

traditional backtests, but only when assessing parametric risk models. The Saddle-point 

methodology is shown in this dissertation not to be applicable to non- and semi-parametric 

VaR models.  

This way, even though Wong’s test can work as a reliable size counterpart to the Basel II rules 

for parametric risk models, the fact that it is not applicable to non-parametric VaR models make 

it an incomplete test, especially bearing in mind that, according to Pérignon & Smith (2010), 

Historical Simulation is the most used VaR model amongst financial institutions.  
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Appendix 

 
Figure 3: FTSE100 – 2014 

This figure illustrates Skewed-Student VaR exceedances that occurred during 2014 in the British 

Market Index, as well as Kupiec’s UC and Wong’s Saddle-point test results for the year. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: S&P/TSX60 – 2014 

This figure illustrates Student-t VaR exceedances that occurred during 2014 in the Canadian Market 

Index, as well as Kupiec’s UC and Wong’s Saddle-point test results for the year. 
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Figure 5: NIKKEI225 – 2011 

This figure illustrates Student-t VaR exceedances that occurred during 2011 in the Japanese Market 

Index, as well as Kupiec’s UC and Wong’s Saddle-point test results for the year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Hang Seng – 2000 

This figure illustrates Student-t VaR exceedances that occurred during 2000 in the Hong Kong Market 

Index, as well as Kupiec’s UC and Wong’s Saddle-point test results for the year. 
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Figure 7: Super-exceedance NIKKEI225 - 2011 

This figure consists of two complementary components, both concerning the analysis of NIKKEI225 in 2011: firstly, a graph displaying the Realized Returns, 

RiskMetrics VaR figures and Capital Risk Charge determined in accordance to Basel II Agreements; and secondly, a small table depicting UC and Saddle-

point p-values for 2011, as well as for the 5-year period from 2008 to 2012 and the overall 20-year period between 1998 and 2017. 
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Figure 8: Super-exceedance DAX30 - 2008 

This figure consists of two complementary components, both concerning the analysis of DAX30 in 2008: firstly, a graph displaying the Realized Returns, 

Student-t VaR figures and Capital Risk Charge determined in accordance to Basel II Agreements; and secondly, a small table depicting UC and Saddle-point 

p-values for 2008, as well as for the 5-year period from 2008 to 2012 and the overall 20-year period between 1998 and 2017. 
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Figure 9: Super-exceedance NIKKEI225 – 2011   

This figure consists of two complementary components, both concerning the analysis of NIKKEI225 in 2011: firstly, a graph displaying the Realized Returns, 

Student-t VaR figures and Capital Risk Charge determined in accordance to Basel II Agreements; and secondly, a small table depicting UC and Saddle-point 

p-values for 2011, as well as for the 5-year period from 2008 to 2012 and the overall 20-year period between 1998 and 2017. 
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Figure 10: Super-exceedance NIKKEI225 - 2011 

This figure consists of two complementary components, both concerning the analysis of NIKKEI225 in 2011: firstly, a graph displaying the Realized Returns, 

Skewed-Student VaR figures and Capital Risk Charge determined according to Basel II Agreements; and secondly, a small table depicting UC and Saddle-

point p-values for 2011, as well as for the 5-year period from 2008 to 2012 and the overall 20-year period between 1998 and 2017. 
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Figure 11: Saddle-point sensitivity analysis 1 

This figure illustrates Skewed-Student VaR exceedances that occurred during 2011 in the Japanese 

Market Index. Then, one by one, from the smallest to the largest, the exceedances are taken out from 

the sample, until there is only the biggest exceedance left – the one that has surpassed Basel II Capital 

Risk Charge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Saddle-point sensitivity analysis 2 

This figure illustrates Student-t VaR exceedances that occurred during 2011 in the Japanese Market 

Index. Then, one by one, from the smallest to the largest, the exceedances are taken out from the 

sample, until there is only the biggest exceedance left – the one that has surpassed Basel II Capital 

Risk Charge. 

 

 

 

 

 

 

 

 

 

 

 



Saddle-point approach: backtesting VaR models in the presence of extreme losses | Ricardo Gouveia 

 

64 

 

Figure 13: Saddle-point sensitivity analysis 3 

This figure illustrates RiskMetrics VaR exceedances that occurred during 2011 in the Japanese 

Market Index. Then, one by one, from the smallest to the largest, the exceedances are taken out from 

the sample, until there is only the biggest exceedance left – the one that has surpassed Basel II Capital 

Risk Charge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Amsterdam Market Index – 2014 

This figure illustrates Vol. Adj. Historical Simulation VaR exceedances that occurred during 2014 in 

the Hong Kong Market Index, as well as Kupiec’s UC and Wong’s Saddle-point test results for the 

year.  
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Figure 15: Tail-Risk-of-VaR in Amsterdam Index – 2014 

This figure illustrates the Tail-Risk-of-VaR measures for the Hong Kong Market Index during 2014, 

when the risk model at use is the Vol. Adj. Historical Simulation.   
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Table 3: Backtesting Results for RiskMetrics VaR 

This table summarizes the performance of the RiskMetrics model in constructing one-day-ahead Value-at-Risk forecasts for ten different market indices, 

according to two distinct backtests: Kupiec’s Unconditional Coverage and Wong’s Saddle-point Backtest. The results displayed below regard to the 

exceedance rate (light blue coloured) and p-values of the tests, and the symbols [*; **; ***] represent the rejection of the VaR model at the 10%, 5% and 1% 

significance level, respectively. 
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Table 4: Backtesting Results for Student-t VaR 

This table summarizes the performance of the Student-t distribution model in constructing one-day-ahead Value-at-Risk forecasts for ten different market 

indices, according to two distinct backtests: Kupiec’s Unconditional Coverage and Wong’s Saddle-point Backtest. The results displayed below regard to the 

exceedance rate (light blue coloured) and p-values of the tests, and the symbols [*; **; ***] represent the rejection of the VaR model at the 10%, 5% and 1% 

significance level, respectively. 
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Table 5: Backtesting Results for Skewed-Student VaR 

This table summarizes the performance of the Skewed-Student distribution model in constructing one-day-ahead Value-at-Risk forecasts for ten different 

market indices, according to two distinct backtests: Kupiec’s Unconditional Coverage and Wong’s Saddle-point Backtest. The results displayed below regard 

to the exceedance rate (light blue coloured) and p-values of the tests, and the symbols [*; **; ***] represent the rejection of the VaR model at the 10%, 5% 

and 1% significance level, respectively. 
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Table 6: Backtesting Results for Historical Simulation VaR 

This table summarizes the performance of the Historical Simulation model in constructing one-day-ahead Value-at-Risk forecasts for ten different market 

indices, according to two distinct backtests: Kupiec’s Unconditional Coverage and Wong’s Saddle-point Backtest. The results displayed below regard to the 

exceedance rate (light blue coloured) and p-values of the tests, and the symbols [*; **; ***] represent the rejection of the VaR model at the 10%, 5% and 1% 

significance level, respectively. 
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Table 7: Backtesting Results for Volatility Adjusted Historical Simulation VaR 

This table summarizes the performance of the Vol. Adj. Historical Simulation model in constructing one-day-ahead Value-at-Risk forecasts for ten different 

market indices, according to two distinct backtests: Kupiec’s Unconditional Coverage and Wong’s Saddle-point Backtest. The results displayed below regard 

to the exceedance rate (light blue coloured) and p-values of the tests, and the symbols [*; **; ***] represent the rejection of the VaR model at the 10%, 5% 

and 1% significance level, respectively. 

 

 


