

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-08-02

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Reis, J. (2022). Shapes: Seeing and doing with shape grammars. In Rocha, A., Bordel, B., Penalvo, F.
G., and Goncalves, R. (Ed.), 2022 17th Iberian Conference on Information Systems and Technologies
(CISTI). Madrid: IEEE.

Further information on publisher's website:
10.23919/CISTI54924.2022.9820025

Publisher's copyright statement:
This is the peer reviewed version of the following article: Reis, J. (2022). Shapes: Seeing and doing
with shape grammars. In Rocha, A., Bordel, B., Penalvo, F. G., and Goncalves, R. (Ed.), 2022 17th
Iberian Conference on Information Systems and Technologies (CISTI). Madrid: IEEE., which has been
published in final form at https://dx.doi.org/10.23919/CISTI54924.2022.9820025. This article may
be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for
self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.23919/CISTI54924.2022.9820025

Shapes: Seeing and Doing
with Shape Grammars

Joaquim Reis

Instituto Universitário de Lisboa (ISCTE-IUL)

ISTAR-Iscte

Lisboa, Portugal

joaquim.reis@iscte-iul.pt

Abstract — This paper describes the visual interface of a

configurable and extensible system to support generic work with

shape grammars. Shape grammars allow the implementation of

computational mechanisms to analyze and synthesize designs of

visual languages and have been used to represent the knowledge

behind the creative work of architects, designers and artists. This

kind of grammars is inherently visual. The system described, a

kind of universal machine for shape grammars, allows users to

build their own shape grammars and experiment with them. It

has been the focus of our past work, it mixes technological and

artistic aspects and it has a specific computational architecture

which includes a symbolic and a visual interface. The latter one is

the subject of this paper.

Keywords –Shape Grammars; Rule-Based Systems; Creativity.

I. SHAPE GRAMMARS, AN INTRODUCTION

We start by introducing the theme, and saying what shape
grammars are, in the present section. A brief summary of the
research is presented in section II, which is followed by a short
description of our past work, focused in the GSG (Generic
Shape Grammars) system, in section III. The following three
sections describe components of the visual interface of GSG,
related namely shapes, rules, and grammars. We finish with a
concluding section which also addresses future work.

Shape grammars were introduced by George Stiny and
James Gips in the 1970s [1] and have been a topic of research
since then. The focus this research is, in a few words, in
representing and applying knowledge about languages of
design basically through the use of concepts from formal
grammars and rule-based/production systems [2] [3],
essentially to give support to creative activities of designers,
architects and artists.

Basically, a shape grammar is composed of (1) a set of
basic shapes (the shape alphabet), (2) a set of rules, and (3) a
special shape, the initial shape, used to trigger rule application.

The mechanics of rule application and shape generation is

as follows. In a rule, A→B, the left side, or antecedent, A, and

the right side, or consequent, B, are shapes. A rule, when
applied, substitutes the shape of the right side of the rule for the
shape of the left side. Applicable rules may recursively be
applied to a shape, until there are no more applicable rules or
some termination condition holds. A shape computation, or
shape derivation, is a sequence of shapes in which each shape,
except for the initial shape, is generated from the previous by

the application of a rule of the shape grammar. A rule A→B is

applicable to a shape, or design, or composition, C, if there is a
similarity geometric transformation T which, when applied to
shape A makes A a part of C, i.e., a transformation T such that
T(A) ≤ C, where ≤ denotes the sub-shape relation. Application
of the rule results in a new design, C’, that is computed
subtracting from C the result of applying the transformation T
to A, and then adding to C the result of applying T to B, i.e.,
the resultant design will be C’ = (C – T(A)) + T(B), where +
and – denote the shape sum and shape difference (or
subtraction) operations. Details of the + and – operations, as
well as the ≤ relation, which are part of the so-called algebras
of design [4], are outside of the scope of this paper, but an
introduction and simple examples can be found in [5] (in
section 2). It remains to say that, using operations on shapes
from a special kind of algebras called algebras of maximal
shapes, the computational mechanism used to match the left
side of a rule with parts of the composition can be made to
detect and accommodate embedded emergent shapes, i.e.,
shapes that were not explicitly included there, and this feature
is, from an artistic perspective, very much appreciated.

This all seems like Artificial Intelligence knowledge
representation rules applied to visual (i.e., with shapes)
grammars to support some kind of creativity. In fact, shape
grammars are related to design languages as phrase grammars
[6] are related to symbolic/textual languages. Both can be
considered production systems, where replacement rules can
recursively, and incrementally, generate phrases of a language.
But note that although shape grammars may exhibit (shape)
emergence, a feature that production systems typically don’t
have.

II. A SUMMARY OF SHAPE GRAMMAR RESEARCH

In very brief words, the research area of shape grammars
has been focused in conceptual and theoretical aspects, as in [7]
[4] [8], in analysis, i.e., the development of specific shape
grammars of languages of design extracted from corpuses of
designs in architecture, product design or painting, as in [9]
[10] [11], and in synthesis, i.e., building specific shape
grammars to define original languages of designs, as in [12]
[13] [14]. Other research threads include the development of
algorithms for shape manipulation and rule matching and
application processes, as in [15] [16] [17], and appropriate
interfaces and generic and reusable shape grammar interpreters,
as in [18] [19] [20], including didactical purposes.

More recent research consists mainly on refinements on
previous approaches as well as a diversification of the

application, see [21] [22] [23], for instance, and see also the
review in [24].

III. PREVIOUS WORK RELATED TO GSG

Our exploratory work preceding the GSG system can be
seen in [25] [26] [27], but the central ideas were described in
[28] [29] [5]. As is referred in [28] [29], to support the creative
activity of different kinds of users (students, designers,
architects, artists) in interacting with the generic reusable shape
grammar interpreter, which is the underlying core of the
system, the interface, in particular the visual interface, is an
important component of the GSG computational architecture,
shown in Figure 1.

Figure 1. The GSG computational architecture.

Here we can see that the visual interface is a part of the
interface layer of the system, together with the symbolic/API
(programmatic) interface. A third kind of interface, the
textual/file interface, not shown, is also available. A notable
point in GSG is that all shape grammar objects, i.e., shapes,
rules, and grammars, that come to existence in the system
environment may have an independent representation in three
formats: the symbolic (through programmatic objects), the
visual (through graphical windows) and the textual (with an
appropriate text/file external representation) format.

In subsequent work about the usability of interfaces of
shape grammar computational systems, see [30] [31], we have
devised a set of requirements that can be used either to evaluate
interfaces of existing shape grammar systems, or as a set of
good rules to follow in the implementation of new ones. The
requirements can be slightly different as users are either
students/beginners in the field of shape grammars, or architect,
designer or artist specialists, or have further additional
expertise in programming, but, for simplicity, let us think we
assume the student/beginner perspective and have didactical
purposes. The requirements include the following minimal set
of features, or abilities, of the visual interface:

1. Creation of grammar shapes;
2. Creation of grammar rules;
3. Grammar rule application;
4. Manipulation (e.g., edition) of obtained shapes;
5. Alterations (e.g., edition) to grammar shapes and rules.

All these tasks can be performed through either the
symbolic/API, or the visual interface. In the following three

sections we show how they can be performed using the visual
GSG interface.

IV. BUILDING AND EDITING SHAPES

Building and editing shapes through the visual interface of
GSG is done using the shape editor/viewer. This program
component can be invoked either through the main GSG
grammar system, or it can function independently. Each
individual shape can be built and manipulated using an
individual shape editor/viewer document window. As an
example, this is shown in Figure 2, where a shape containing
two basic shapes, a rectangle and a line, viewed in the
graphical area of the window, is being shown for edition.

At the bottom center of the shape document window a list
panel lists the basic shapes present in the shape, a rectangle and
a line, in the case, in textual format (the same format of the
textual/file interface). At the bottom left, text slots may show
data related to a basic shape when one is selected. These can
also be used to create new basic shapes textually, as these slots
are, in fact, text input panes. Selection of basic shapes can be
made either graphically, by pointing with the mouse pointer on
the shape graphical area, or by pointing on the element of the
list panel associated with the basic shape.

As seen in Figure 2 and, in detail, in Figure 3 a), the top
right side of the shape document window has a series of
display and control elements that allow the creation of new
basic shapes, with options for the associated properties, like
“color”, “fill”, “dash”, “thickness”, as well as changing,
transforming, and deleting existing ones.

Figure 2. A shape in the GSG shape editor/viewer.

Different two-dimensional basic shapes can be created, as
shown in Figure 3 b), where the “draw/select” option pane is
open. Besides points, lines (straight line segments), rectangles,
circles and other plane figures, the choices include the
possibility of user defined and pre-built/loaded from an image
file basic shapes (the “basic-shape” and “include-shape”
options, respectively). At the present stage of GSG, for the
purpose of accommodating shape emergency ability, the most
important basic shapes are limited to lines and points.

Options for controlling certain features of the graphical
area, as “snap” and visibility of “axis” grids and “labels”,
“direction lines” and “intersection points”, are also available,

a) b) c)

Figure 3. a) Controls, b) Selectors, c) Actions.

a) b) c)

Figure 4. a) File menu, b) Edit menu, c) Context menu.

as seen on Figure 3 a). Actions like geometric transformation
(translation, rotation, uniform scaling and sequences of these)
can be defined for the shape and applied to a selected basic
shape, see the action option pane in Figure 3 c). At the top,
checkboxes for the options to make the shape “read-only”
(immutable) and to use the “maximal” algebra operations are
also available.

In the menu bar, the “File” menu option, as seen in Figure 4
a), has different options for opening and saving shapes from/to
files, including loading other shapes into the present shape, as
well as loading and saving certain shape related definitions,
like user defined shapes and geometric transformations. The
“Edit” option, see Figure 4 b), displays editing options for any
selected basic shape, some of which are duplicated in the
context menu that can be made to appear on a selected basic
shape, as depicted in Figure 4 c).

At the top of the shape editor/viewer window, a text slot
may display a record of the “ancestors” of the shape, i.e., the
shapes from which the present shape has been derived (if there
are any), and others show the x and y coordinate values of the
extremes and center of the shape at its the present state.

V. BUILDING AND EDITING RULES

Building and editing rules is done using the rule
editor/viewer, a program component that can be invoked either
through the main GSG grammar system, or can function
independently. Each individual rule can be built and
manipulated using an individual rule editor/viewer document
window. A rule has the left, or pre-condition, side and the right,
or consequent, side, and both are shapes and are displayed in
the respective graphical window area. See Figure 5, where an
example rule is being shown for edition, with a rectangle in the
left side and, in the right side, an equal rectangle and a circle in
a certain position related to it. This rule will have one possible

application instance to each and any rectangle in the
composition that can be found similar to the one in its left side.
Similar means that it can be made equal, or, as we say, can
match, when transformed through a geometric similarity
transform (i.e., a combination of translation and/or rotation
and/or uniform scaling). And if this rule, being applicable, is
applied, the application results in the circle, transformed with
the same transform combination used to match the left side,
being added to the composition.

Figure 5. A rule in the GSG rule editor/viewer.

Most of the window display and control elements for each
side of a rule in the rule editor/viewer window are similar to
the ones in the shape editor/viewer window. The menu and the
controls in the central area are shared by each side of the rule,
and certain options and actions associated to them will apply
either to the left, or to the right side depending on the selection
of one of the two radio buttons, labelled “left” and “right”.

Finally, in the central area, there is a set of checkboxes to
allow for the control of the matching process. They control if
scaling, rotation and translation (horizontal and vertical
mirroring checkboxes are present but not used at this stage) are
allowed in the matching process, and also if matching takes
into account equality of the values of “fill”, “dash”, “thickness”
and “color” properties between the shape of the left side and
the composition.

VI. BUILDING, EDITING AND EXECUTING GRAMMARS

Building and manipulating grammars, controlling the
execution of instances of shape and rule editor/viewer as well
as executing grammars through rule application to shapes is
done using the main GSG grammar system, see Figure 6.

Figure 6. The main GSG grammar system window.

Figure 9. Application modes of selected rule to selected shape.

a) b) c)

Figure 7. a) File menu, b) Shape menu, c) Rule menu.

In Figure 6, the first three list panels on the left list all the
shape, rule and grammar file names in the working directory. A
grammar was opened, the one with the name selected in the
grammar list panel, and its shapes and rules were automatically
loaded and are listed in the fourth and fifth list panel. This was
made with the “Open selected grammar” option of the “File”
menu, in which different options for creating and saving
grammars are also available, see Figure 7 a).

Also, as seen in Figure 7 b) and c), both the “Shape” and
the “Rule” menu include options to create new shapes and
rules, which invoke the shape and the rule editor/viewer,
respectively, to include and exclude shapes and rules in/from
the present grammar, and also, in the case of the “Shape” menu
only, some operations on whole shapes.

Figure 8. Grammar menu.

The last, and very important, is the “Grammar” menu. This
has an option to find which rules of the present grammar are, at
any moment, applicable to a selected shape, taken as the initial
shape, an option to apply to a selected shape a selected
(applicable) rule, and an option to automatically apply rules in
a depth first strategy and viewing the resulting shapes (other
different strategies are being developed).

For reasons of space we will only show an example of the
second option mentioned above. In Figure 8 we are about to
apply a selected rule, the same in Figure 5, to a selected shape,
the same in Figure 2, generating a copy of the original shape.
The application modes, or instances, of the rule to the shape are
just two, in this example, i.e., the rule has two possible
matching instances, with 0 and 180 rotation degrees and the
appropriate translation and scaling transforms. This is shown in
Figure 9, both textually, in the list panel at the bottom part of
the main GSG grammar system window, and graphically, in
the original shape (which will be automatically open) by the
two phantom circle shapes at the right and left of the rectangle.

Figure 10. Shape resulting from rule application.

If we take the first choice mentioned (the one associated to
the 0 rotation degrees), by double clicking on the
corresponding option in the list panel, we have, as a result, the
new automatically generated shape in Figure 10, shown in a
newly automatically opened shape editor/viewer window.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described the visual interface of GSG, a
generic shape grammar system that allows users to build their
own shape grammars, experiment with them, and test and
refine them. The options taken in the implementation of in the
interface of this program were guided by a set of requirements,
found necessary, for this kind of systems, in past work we
made. The GSG visual interface was built using the CAPI
graphics component of the LispWorks® IDE system.

In the future, we plan to refine and expand the system,
including working on components at its core, in particular
related to the implementation of maximal algebras and ability
to recognize shape emergence. But this is, in fact an already
work in process.

ACKNOWLEDGMENT

This work was undertaken at ISTAR-Information Sciences
and Technologies and Architecture Research Center from
ISCTE-Instituto Universitário de Lisboa (University Institute
of Lisbon), Portugal, and it was partially funded by the
Portuguese Foundation for Science and Technology (Project
"FCT UIDB/04466/2020").

REFERENCES

[1] G. Stiny e J. Gips, “Shape Grammars and the Generative

Specification of Painting and Sculpture,” Information

Processing, pp. 71, 1460-1465, 1972.

[2] G. Stiny, “Introduction to Shape and Shape Grammars,”

Environment and Planning B, pp. 7(3), 343-351, 1980.

[3] G. Stiny, Shape: Talking about Seeing and Doing,

Cambridge, Massachusetts, USA: MIT Press, 2006.

[4] G. Stiny, “The algebras of design,” Research in

Engineering Design, pp. 2(3) 171-181, 1991.

[5] J. Reis, “Crossing Lines in GSG,” em ISDOC 2014,

Proceedings of the International Conference on

Information Systems and Design of Communication, pp.

105-112., Lisboa, Portugal, 2014.

[6] N. Chomsky, Syntactic Structures., London: Mouton and

Co., 1957.

[7] G. Stiny, “What is a Design?,” Environment and

Planning B, pp. 17, 97–103, 1990.

[8] T. Knight, “Computing with Emergence,” , Environment

and Planning B, pp. 30, 125-155, 2003.

[9] G. Stiny e W. J. Mitchell, “The Palladian Grammar,”

Environment and Planning B, pp. 5, 5-18, 1978.

[10] G. Koning e J. Eisenberg, “The Language of the Prairie:

Frank Lloyd Wright’s Prairie Houses,” Environment and

Planning B, pp. 8, 295-323, 1981.

[11] J. P. Duarte, “Towards the Mass Customization of

Housing: The Grammar of Siza's Houses at Malagueira,”

Environment and Planning B, pp. 32, 347-380, 2005.

[12] G. Stiny, “Kindergarten Grammars: Designing with

Froebel’s Building Gifts,” Environment and Planning B,

pp. 7, 409-462, 1980.

[13] J. Heisserman, “Generative Geometric Design,” , IEEE

Computer Graphics and Applications, pp. 14, 37-45,

1994.

[14] M. Agarwal e J. Cagan, “A Blend of Different Tastes:

The Language of Coffeemakers,” Environment and

Planning B, pp. 25, 205-226, 1998.

[15] S. C. Chase, “Shapes and Shape Grammars: From

Mathematical Model to Computer Implementation,”

Environment and Planning B, pp. 16, 215-242, 1989.

[16] R. Krishnamurti, “The Maximal Representation of a

Shape,” Environment and Planning B, pp. 19, 267-288,

1992.

[17] T. Trescak, M. Esteva e I. Rodriguez, “A shape grammar

interpreter for rectilinear forms,” Computer-Aided

Design, vol. 44 (7), pp. 657-670, 2012.

[18] M. Tapia, “A Visual Implementation of a Shape

Grammar System,” Environment and planning B, pp. 26,

59–73., 1999.

[19] M. Agarwal e J. Cagan, “On the Use of Shape Grammars

as Expert Systems for Geometry-Based Engineering

Design,” Artificial Intelligence for Engineering Design,

Analysis, and Manufacturing, pp. 14, 431-439, 2000.

[20] S. C. Chase, “A model for User Interaction in Grammar-

Based Design Systems,” Automation in Construction, pp.

11, 161–172, 2002.

[21] T. Grasl e A. Economou, “GRAPE: using graph

grammars to implement shape grammars,” em , SimAUD

'11: Proceedings of the 2011 Symposium on Simulation

for Architecture and Urban Design, Pages 21–28, April 3

- 7, 2011, Boston, Massachusetts, 2011.

[22] J. Tching, A. Paio e J. Reis, “A Shape Grammar for Self-

Built Housing,” em Proceedings of the SIGraDi 2012,

pp. 486-490., Fortaleza, Brasil, 2012.

[23] J. Tching, J. Reis e A. Paio, “Shape Grammars for

Creative Decisions in the Architectural Project,” em

CISTI 2013, Proceedings of the 8th CISTI, Vol. I, pp.

389-394., Lisboa, Portugal, 2013.

[24] S. Eloy, P. Pauwels e A. Economou, “Advances in

Implemented Shape Grammars: Solutions and

Applications,” AI EDAM, Volume 32, Special Issue 2

(May 2018): pp. 131 - 137., vol. 32, pp. 131-137, 2018.

[25] J. Reis, “Agents with Style − Multi-Agent Visual

Composition with Shape Grammars,” em Proceedings of

the Third Joint Workshop on Computational Creativity,

Aug. 2006, Riva del Garda, Italy, 2006.

[26] J. Reis, “Using Rules for Creativity in Visual

Composition,” em Proceedings of the SIGDOC 2008, pp

207-214., Lisbon, Portugal, 2008.

[27] J. Reis, “A Rule Language to Express Visual Pattern

Generation,” em Proceedings of the SIGDOC 2008, 26th

ACM Int. Conf. on Design in Communication, September

2008, Lisbon, Portugal, 2008.

[28] J. Reis, “GSG, A Tool for Knowledge-Based Visual

Creativity,” em CISTI 2013, Proceedings of the 8th

CISTI, Vol. I, pp. 358-363., Lisboa, Portugal, 2013.

[29] J. Reis, “A Shell Tool for Visual Creativity Support,” em

ISDOC 2013, Proceedings of the International

Conference on Information Systems and Design of

Communication, pp. 56-63., Lisboa, Portugal, 2013.

[30] J. Tching, J. Reis e A. Paio, “A Cognitive Walkthrough

towards an Interface Model for Shape Grammar

Implementations,” Computer Science and Information

Technology, vol. 4(3), pp. 92-119, 2016.

[31] J. Tching, J. Reis e A. Paio, “IM-sgi – an Interface Model

for Shape Grammar Implementations,” AIEDAM,

Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, pp. 33, Issue 1, February 2019, 24-

39, 2019 .

