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Abstract 

Humans need to interact socially with others and the environment. These interactions 

lead to complex systems that elude naïve and casuistic tools for understand these 

explanations. One way is to search for mechanisms and patterns of behavior in our 

activities. In this thesis, we focused on players’ interactions in team sports performance 

and how using complex systems tools, notably complex networks theory and tools, can 

contribute to Performance Analysis. We began by exploring Network Theory, 

specifically Social Network Analysis (SNA), first applied to Volleyball (experimental 

study) and then on soccer (2014 World Cup). The achievements with SNA proved 

limited in relevant scenarios (e.g., dynamics of networks on n-ary interactions) and we 

moved to other theories and tools from complex networks in order to tap into the 

dynamics on/off networks. In our state-of-the-art and review paper we took an 

important step to move from SNA to Complex Networks Analysis theories and tools, 

such as Hypernetworks Theory and their structural Multilevel analysis. The method 

paper explored the Multilevel Hypernetworks Approach to Performance Analysis in 

soccer matches (English Premier League 2010-11) considering n-ary cooperation and 

competition interactions between sets of players in different levels of analysis. We 

presented at an international conference the mathematical formalisms that can express 

the players’ relationships and the statistical distributions of the occurrence of the sets 

and their ranks, identifying power law statistical distributions regularities and design 

(found in some particular exceptions), influenced by coaches’ pre-match arrangement 

and soccer rules. 

 

Keywords: Complex Systems; Social Networks Analysis; Multilevel Hypernetworks 

Approach; Performance Analysis; Team Sports; Soccer. 
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Resumo 

Os	 humanos	 necessitam	 interagir	 socialmente	 com	 os	 outros	 e	 com	 o	

envolvimento.	 Essas	 interações	 estão	 na	 origem	 de	 sistemas	 complexos	 cujo	

entendimento	não	é	 captado	através	de	 ferramentas	 ingénuas	e	 casuísticas.	Uma	

forma	 será	 procurar	 mecanismos	 e	 padrões	 de	 comportamento	 nas	 atividades.	

Nesta	tese,	o	foco	centra-se	na	utilização	de	ferramentas	dos	sistemas	complexos,	

particularmente	 no	 contributo	 da	 teoria	 e	 ferramentas	 de	 redes	 complexas,	 na	

Análise	 do	 Desempenho	 Desportivo	 baseado	 nas	 interações	 dos	 jogadores	 de	

equipas	desportivas.	Começámos	por	explorar	a	Teoria	das	Redes,	especificamente	

a	 Análise	 de	Redes	 Sociais	 (ARS)	 no	Voleibol	 (estudo	 experimental)	 e	 depois	 no	

futebol	 (Campeonato	 do	 Mundo	 de	 2014).	 As	 aplicações	 da	 ARS	 mostraram-se	

limitadas	 (por	 exemplo,	na	dinâmica	das	 redes	 em	 interações	n-árias)	 o	que	nos	

trouxe	a	outras	teorias	e	ferramentas	das	redes	complexas.	No	capítulo	do	estado-

da-arte	 e	 artigo	 de	 revisão	 publicado,	 abordámos	 as	 vantagens	 de	 utilização	 de	

outras	 teorias	 e	 ferramentas,	 como	a	 análise	Multinível	 e	Teoria	das	Híperredes.	

No	 artigo	 de	métodos,	 apresentámos	 a	 Abordagem	 de	 Híperredes	 Multinível	 na	

Análise	 do	 Desempenho	 em	 jogos	 de	 futebol	 (Premier	 League	 Inglesa	 2010-11)	

considerando	 as	 interações	 de	 cooperação	 e	 competição	 nos	 conjuntos	 de	

jogadores,	 em	 diferentes	 níveis	 de	 análise.	 Numa	 conferência	 internacional,	

apresentámos	os	 formalismos	matemáticos	que	podem	expressar	as	relações	dos	

jogadores	e	as	distribuições	estatísticas	da	ocorrência	dos	conjuntos	e	a	sua	ordem,	

identificando	 regularidades	 de	 distribuições	 estatísticas	 de	 power	 law	 e	 design	

(encontrado	 nalgumas	 exceções	 estatísticas	 específicas),	 promovidas	 pelos	

treinadores	na	preparação	dos	jogos	e	constrangidas	pelas	regras	do	futebol.	

 

Palavras chave: Sistemas Complexos; Análise Social de Redes; Abordagem de 

Híperredes Multinível; Análise do Desempenho Desportivo; Equipas Desportivas; 

Futebol. 
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1 General Introduction 

 

 The PhD realm is the study of sports performance analysis (PA) under the lens 

of complex systems studies. This PhD choice was due to difficulties of PA in sports 

using mainly Sports Sciences Approaches (notational analysis and motion analysis in 

Biomechanics focusing on individual performance). In this context what this thesis put 

forward is to tackle the large amount of data produced by the advances in technology 

using complex systems tools like: different levels of analysis (micro-meso-macro); 

hypernetworks (n-ary interactions between more than 2 players/actions) and 

multidisciplinary approaches (and team), allowing to overcome some limitations of 

more traditional approaches producing useful contributes to team sports researchers and 

practitioners. 

 The understanding of complex systems sciences it’s a whole new paradigm that 

leads us to explore new frameworks and tools in a specific and relatively closed context 

like sports. Our voyage through this process began with the Doctoral Program Director 

advice to use the networks approach to study sports performance. Before having 

supervisors, I had produced an empirical study via the final report of the curricular year 

applying Social Network Analysis (SNA) and producing data from the Olympic 

volleyball women’s final in London’s Olympics Games and also volleyball matches 

from Physical Education level classes. In this first approach with SNA, I used NODE 

XL (plugin from Excel) and it was surprisingly promising allowing the production of 

volleyball networks with their corresponding metrics and present its results to some 

pairs (doctoral and master students in sports sciences at SpertLab in FMH-UL). In the 

next academic year I had presented an update of the study, with a comparison to 

previous Olympic women’s volleyball final, in a workshop in the same context to some 

doctoral and masters students’ pairs. 

 The next step was to invite two supervisors with different background and 

forming a multidisciplinary scientific team, combining networks and sports 

performance analysis. Our choice was in ISCTE-IUL and IT with Professor Rui Lopes 

(networks specialist) and FMH-UL with Professor Duarte Araújo (PA specialist). Our 

first task together was the thesis plan, accepted in 2013 march. This was the first 



 

	 2 

complex (emergent) behavior of this multidisciplinary team, where each one’s role 

began to be defined. From here, every paper or work produced involved the specific 

knowledge of all members of the team. 

 The next significant step was during Soccer World Championship 2014 in Rio-

Brazil, where we had accepted an invitation of a daily national paper (Journal “O 

Público”) to produce scientific commentary of the National Team matches based on a 

social network analysis, and published it in the next day paper and online editions. We 

had the additional participation of two master students: José Pedro Silva and Carlos 

Silva, to produce data from the events. Our method first steps consisted (see Figure 2.) 

on: i) with a specific software to register online (through television emission of each 

match) the interactions between players (ball flow passes) and players’ actions (e.g. 

kick to goal, turn over); ii) the data produced was sent every 15 minutes to the 

production of output csv files; then we convert the csv files into xlsx files and use it on 

NODE XL (a plugin from EXCEL) and produce the networks graphs of each 15 

minutes, half of the matches and the entire matches, and then commented through 

networks graphs; Afterword’s a final version was produced and sent to Journal 

“Público”  in order to be published (see figure 1.).  
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Figure 1. EUA-Portugal à lupa: pouco ataque pelo centro e pouca precisão no remate. 

Lisbon: Jornal Público Online. 2014 (Araújo, Lopes, Ramos, Silva, & Silva, 2014). 

https://www.publico.pt/2014/06/23/desporto/noticia/euaportugal-a-lupa-pouco-ataque-

pelo-meio-e-pouca-precisao-no-remate-1660182. Accessed 21 Jun 2019. 

When Portugal was eliminated in the group phase, the Journal invited us to follow some 

major candidates to winning the world championship. The method and results were later 

presented in scientific meetings and workshops on performance analysis with networks 

approach (see publications/conferences items X, XI, XII and XIII). 

  

Figure 2. Collecting data in a state machine (one for each team): two “steady” states 

(NIP or IP) and intermediate states (registering events [TO – turn over and D-PB – loss 

of the ball] and players [Pi]) that lead to state changes (actions like ball pass [Pp, Pi] or 

shot to goal). 

 The experience of presenting the method and results to coaches and investigators 

and listening to their criticism about the limited interest of the results have nudged us to 

search for a more holistic and dynamical approach to sports teams as complex systems. 

At this time, we began to produce a state-of-the-art paper on networks in PA and 

published it in Sports Medicine (Ramos, Lopes, & Araújo, 2017) (found in Section 3.1). 

In this paper, we have reviewed social network analysis (SNA) in the PA context and 

exposed some common pitfalls related to the direct and not sufficiently grounded use of 

some SNA metrics in the case of team sports competitions. We have also discussed that 

this approach to PA was focusing on the dynamics on the networks and not on the more 

interesting dynamics of the networks. In this paper is putted forward the proposal that an 

appropriate way of addresses this latter issue can be achieved through complex dynamic 

networks concepts, notably: bipartite (multilayer) and temporal networks. 
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 Consequently we found a possible answer to some of SNA’s shortcomings by 

using multilevel hypernetworks.  

 The first known study in sport contexts introducing structural analysis with more 

than two interactions (based on Atkin, 1972)) and considering competition interactions, 

was only in 1980 (Gould & Gatrell, 1980). This paper from Gould and Gatrell (1980) 

however, had small relevance due to the reduced number of citations. With a gap of 

almost 30 years, we could see some applications of hypernetworks in PA in robotic 

soccer matches by Jeffrey Johnson’s (Johnson & Iravani, 2007) . In the current thesis 

work, multilevel hypernetworks approach (MHA) to soccer matches is based on real 

world soccer players’ positional data from eleven matches of the English Premier 

League in the season of 2010-2011, obtained from the former Prozone (currently 

STATS). We produced and published a paper (Ramos, Lopes, Marques, & Araújo, 

2017a) describing this work in Frontiers in Psychology (open access) special number 

(found in Section 3.2). This paper focus is different from Johnson’s works, given we 

had: i) established a non-parametric criteria for forming the sets of players based on 

their interpersonal distance (closest player); ii) identified and analyzed the most 

frequent simplices and where they occurred (in the match field); iii) identified local 

dominance (in terms of the numbers of players from each team) and the players’ moves 

to achieve this dominance, and iv) a multilevel analysis of the dynamics of the simplices 

of simplices formed in some specific events. Our next studies with MHA evolved 

through a more detailed analysis of the structures and dynamics of each level of 

analysis, which allowed the identification of the simplices and the players’ that 

constitute them. The results from these advances were presented at the International 

Congress of Complex Systems in Sports (Barcelona) and the resulting extended abstract 

was published in the book of abstracts by Frontiers (Ramos, Lopes, Marques, & Araújo, 

2017b) (see Section 3.3). The mathematical formalisms of the simplices was also 

matured, allowing the representation of the structure and dynamics of the simplices, 

introducing the ball carrier representation and the relative position of the players’ 

regarding the goal. This step was also presented in a national scientific symposium 

(publications/conferences - XVI). 

 It is worth mentioning that the regular participation in this type of national 

symposiums where this approach was presented led to a significant interest on it by the 

community. Notably, the work developed by Ribeiro and colleagues (Ribeiro et al., 
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2019) overcame one of our data limitations (ball positioning) and is an important 

contribution to our line of investigation regarding MHA. In this co-authored paper we 

could propose some advances of MHA, specifically our contribution to the paper was in 

the hypernetworks mathematical formalisms that included more detailed information of 

player actions on disaggregation and aggregation of simplices and regarding the ball 

possession.  

 In the final stage of this PhD journey, we observed very interesting statistical 

results when analyzing the simplices' set occurrence distribution. These distributions 

obtained from ten soccer matches revealed, on one hand, well known models and 

empirical laws, such as the Zipf-Mandelbrot law (ZM), and on the other hand, the 

possible impact of design, i.e. match strategy, on the simplices' set statistical 

distribution. Soccer teams’ match strategy is designed like all complex social systems 

through purpose (e.g. the simplices goal-keeper and goal) and intentionality (e.g. the 

simplices left defender and right attacker from opposite teams). The analysis of the 

goodness of fit of the ZM model through the chi square validity test revealed that in all 

ten matches’ analyzed there were “exceptions”, i.e. outliers to the model. These were 

found typically in the two to five most frequent simplices and after looking at their 

composition this appeared as an expression of complex social systems’ design. A paper 

was submitted to Scientific Reports – Nature presenting these findings, that are at the 

core of the realm and contribution of this thesis.  

 Finally, we have prepared a paper were those last achievements in simplices 

formalisms are applied to critical events like goal scoring opportunities (GSO). In this 

paper we explore the dynamics of the simplices forming and disaggregation, some 

seconds before GSO. We use inertia concepts to explain how the players’ moves are 

producing the expansion or contraction of the simplice’s area and therefore contributing 

to the disaggregation or sustentation of the simplex.  

1.1 Complexity Sciences in team sports performance 
 Complexity sciences’ approach to team sports performance via complexity 

sciences tools like network theory implies that team sports have systemic properties and 

therefore exhibits complexity (Juarrero, 2010).  

 A common criteria for identifying a system as complex is that it must have their 

parts interconnected or interwoven  (Bar-Yam, 1997). Therefore, complex physical or 
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social structure will not emerge in a weakly interdependent or even independent parts 

(Juarrero, 2010).  In this way, one system can increase their complexity by either 

increasing the number of their parts (structure) and, or increasing their interactions 

(functionally) (Bar-Yam, 2004). Thus, this feature is associated to unexpected or 

unpredictable emergence of the system (Johnson, 2013; Johnson & Iravani, 2007). 

Usually in sports settings the number of parts are equivalent and predefined, therefore, a 

greater complexity depends on the interactions between sub-systems (teams) members, 

which in sports context results in more unpredictable teams (Bar-Yam, 2003).  

 One the other hand another significant feature is that, most of the behaviors of 

complex systems emerge from the adaptability to the changing environments/constraints 

(e.g., players fatigue, position in the field, score changes, players substitutions) 

(Balague, Torrents, Hristovski, Davids, & Araújo, 2013; Johnson & Iravani, 2007). This 

adaptive property to the continuously changing constraints promotes the emergence of 

new forms of behavior (creative or innovative) that were not imposed or previously 

designed (Balague et al., 2013). According to Bar-Yam (2003), when one player or 

team has a more diverse set of offensive plays (s)he, or team becomes more 

unpredictable for the defenders, which results in additional loss of energy for those.  

 In sports settings the observed complex systems exhibits structurally and 

functionally heterogeneous components (players) that interacts in different spatio-

temporal scales and with varying intensities (Balague et al., 2013). Scalability is 

referred as a central element of complexity science, once many complex systems are 

organized on multiple levels and exhibiting the same dynamics across levels (Juarrero, 

2010). This means that with the right tools we can access the current state of the system, 

e.g. at the macro-level (the level of the whole system) and understand its dynamics 

produced by the interaction of the elements at lower levels of the system (Johnson, 

Fortune, & Bromley, 2017). Thus, we can understand that complex systems have many 

sub-systems that can be described in several levels of organization, varying from 

physical and social multilevel subsystems, with their own intra-level and inter-level 

bottom-up and top-down dynamics (Johnson, 2013). For Johnson (2013) it still lacks a 

formalism that represents multilevel dynamics  (Systems of Systems of Systems) and it 

remains an obstacle to scientific progress. 

 The analysis of the different levels in social processes like team sports 

competitions is typically that of: the microlevel corresponds to individuals (e.g. teams 
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players); the mesolevel represents the structures (e.g. different teams and, or sets of 

players); and the macrolevel represents the dynamics of the whole system (e.g. specific 

events like goal scoring opportunities) (Johnson et al., 2017; Ramos, Lopes, et al., 

2017a). 

 The correlations between different levels of scale are one of the reasons behind 

the order that emerges in complex systems, and, at each level, the organization of 

phenomena has not a preferred scale or dimension. Therefore, the morphogenesis that 

evolves through levels of scale can not be explained by the exponential nor the Normal 

distribution (Komulainen, 2004; Salingaros & West, 1999). When considering these 

scaling phenomena, one way of begin to understand it is to apply “The Least Effort 

Hypothesis” that described the minimization of the efforts of speaker and hearer 

proposed by Zipf (Piantadosi, 2014; Zipf, 1949). This has a result the of speaker’s 

tendency to use a few words; and the tendency of hearer to demand a specific word. 

This hypothesis is the basis for one type of power scaling distributions in complex 

systems. This type of power law is related to discrete distributions and describes well 

different phenomena like frequency of words, firm sizes, city sizes (Piantadosi, 2014), 

and the goals scored by players in different championships (Malacarne & Mendes, 

2000). When applying it to sports like soccer, we pose the research question if 

cooperation and competition interactions would promote such a distributions, in the sets 

of players (proximity positioning) in the entire matches. 

 One complex social systems feature that is not the result of emergence is the 

influence of design. For Johnson (2013), when the systems are created by human’s, they 

reveal some artificiality due to the need of achieving some specific outcomes (Alexiou, 

Johnson, & Zamenopoulos, 2009; Johnson, 2013). This artificiality is related with the 

idea that not everything is emergent and adaptive, but in some part also predefined and 

designed to happen. Sports coaches’ need to explore all those constraints in order to 

maximize the productivity of their athletes and teams. This means that there are 

strategies (predefined purpose and intentions on cooperative and competitive 

interactions) that constrains players’ moves during the matches. For a better 

understanding, besides goalkeepers “attraction” to their goals (considering goals also 

one interacting part of the system), we could find some sets of players (typically one 

defense and the closer attacker) that are closer to each other for a large amount of time 

or moments.   
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 In summary, the approach of complex systems to team sports performance 

identifies several features like: the systems’ many heterogeneous parts; its dynamics 

emerging from interactions of autonomous agents; the unexpected or unpredictable 

nature of emergence; multiple subsystem dependencies; self-organization into new 

structures and behaviors; adaptation to changing environments; co-evolving 

subsystems; multilevel dynamics; statistical systems regularities (ZM like); 

unrepeatable experiments and design (Balague et al., 2013; Johnson, 2013; Juarrero, 

2010). 

  The continuous interest from coaches and athletes in better understanding the 

dynamics of the team performance during the competition and implementing training 

plans that increases team performance, has motivated investigators from all areas to 

pursue to find better tools and theoretical frameworks that better explains collective 

behavior in team sports as complex systems (Balague et al., 2013; Zhu et al., 2009).  

 The systematic research on those theoretical frameworks and tools has been 

influenced from complexity sciences and evolved from three main approaches: 

coordination dynamics (which studies how changing constraints influences behavioral 

pattern formation and what principles and laws explains it); ecological dynamics (where 

the relevant level of analysis and explanation is the performer-environment system) 

(Duarte Araújo & Bourbousson, 2016); and, network theory and tools (networks of 

players interacting in a cooperative and competitive way, exchanging tokens - typically  

a ball, and moving in a limited space and time (Balague et al., 2013; Ramos, Lopes, & 

Araújo, 2017). The later overtake the heavy jargon and complex research methods and 

emerged as a useful and appropriate tool due to its visual communication power 

(Balague et al., 2013; Fewell, Armbruster, Ingraham, Petersen, & Waters, 2012; 

Glöckner, Heinen, Johnson, & Raab, 2012; Johnson & Iravani, 2007; Juarrero, 2010). 

 In the next chapter we analyze how complex systems approaches influenced PA 

in sports.  

1.2 Complexity Approach to Performance analysis 
 Performance analysis has emerged in the last decade as a sub-discipline of sport 

sciences. Despite its success, that began with biomechanics and notational analysis in 

describing the performance trends of players and teams notably their strengths and 

weaknesses (Vilar, Araújo, Davids, & Button, 2012), it has been pointed out that there 
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is some reductionism on their functional utility in some specific performance situations 

(in several sports). These are pointed out by omitting references to “who” and “why” 

(Vilar et al., 2012), and also for considering single observations independently of the 

previous ones, which implies considering teams and individuals in isolation (Bartlett, 

Button, Robins, Dutt-Mazumder, & Kennedy, 2012; McGarry, 2009), or the limitation 

about the understanding and enhancement on application by the coaches and athletes 

(Glazier, 2010).  

 Considering these limitations and criticisms, one of the main challenges for 

performance analysts it is on identifying the possible common patterns in games that 

best explain the overall performance of teams (Dutt-Mazumder, Button, Robins, & 

Bartlett, 2011; Glazier, 2010). It has been pointed out that only by considering them as 

complex non-linear dynamical systems it is possible to move towards examining player 

and team interactions (Bartlett et al., 2012; McGarry, 2009). The coordination dynamics 

between players and teams in competition is usually analyzed between two entities (e.g. 

two players or two teams coordination patterns):  

 i whether the dyad is between opposing team members (attacker-defender) 

trying to maintain (defender) their symmetry;  

 ii. or to break it (attacker) in order to accomplish their goal, like promoting free-

up space if in attacking phase, or tie-up space if in defensive sub-phase (Araujo, Davids, 

Bennett, Button, & Chapman, 2004; McGarry, Anderson, Wallace, Hughes, & Franks, 

2002; Reilly, Cabri, & Araújo, 2005; Williams & Hodges, 2004). This search for 

coordination is also found between team members, whether in offensive or defensive 

phase, increasing complexity due to the addition of further intentional and informational 

constraints, in mutually related spatial and temporal aspects of interacting movements. 

However this approach is still failing in providing enough and accurate information 

about the performance context, helping practitioners in their intervention (Araujo, 

Correia, & Davids, 2012). According to Hughes and Franks (2008) the tactical 

evaluation of the athletes and teams performance has dependency on their opponents, 

meaning either the dyadic attacker-defender (Araujo et al., 2004; McGarry et al., 2002; 

Reilly et al., 2005; Williams & Hodges, 2004) or team attacking vs. team defending 

collective behaviors. One of the approaches that has been proposed for studying these 

relations is Social Network Analysis (SNA) (Clemente, Couceiro, Martins, & Mendes, 

2014, 2015; Clemente, Martins, Kalamaras, Wong, & Mendes, 2015; Duarte et al., 
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2012; Duch, Waitzman, & Amaral, 2010; Dutt-Mazumder et al., 2011; Grund, 2012; 

Passos et al., 2011; Ramos, Lopes, & Araújo, 2017). Its potential lies not only in its 

visualization properties but mainly because it analyzed the dyads, i.e. pairs of actors  

rather than a monad (a singleton actor). This is in concordance with several 

investigators (Brandes, Freeman, & Wagner, 2012; Grund, 2012) when they argue that 

the focus of team performance must be not on individual team members but rather on 

the dyads between team members (the orchestration of interactions and their 

interactions). Some of the studies using this approach have already made some advances 

through qualitative and quantitative study of the relation between the structural 

properties, like network centrality (high centrality values associated to less efficient 

team performances) and density (high intensity in network associated to better team 

performances) of interactions between team members and the performance outcomes 

(Balkundi & Kilduff, 2006; Grund, 2012; Katz, Lazer, Arrow, & Contractor, 2004).  

 However, in what way may in Social Networks perspective lead to greater 

performance, especially in team processes, is still unclear (Duch et al., 2010), remaining 

the uncertainty on how individual strengths and roles (including “superstars”) are 

combined for optimal results. Typically, this approach considers static network structure 

that is obtained via the aggregation of all the interactions (passes) that occurred in an 

entire match (Ramos, Lopes, & Araújo, 2017). This may lead not only to concealment 

of important concepts such as attacking play but also to metrics that may be misleading 

(Ramos, Lopes, & Araújo, 2017). A notable example is metrics based on `shortest 

paths´ over the aggregated network, that occur in two scenarios: i) pass interactions 

form a walk and not necessarily a path; ii) interactions between players in a match do 

not follow this principle but may be better described by geographic networks and 

random walks (Ramos, Lopes, & Araújo, 2017).  

 In our review (state-of-the-art) published paper (Ramos, Lopes, & Araújo, 2017) 

(found in section 3.1.), we identify and tackle some of the pointed limitations from the 

use of Social Networks Analysis. At the first, we point out that most of the approaches 

are based on the dynamics on the network, which focuses on flows across the network 

structure, e.g. ball passes between players. On the other hand, the dynamics of the 

network are concerned with changes in the network structure itself, e.g. how the 

players’ positions can provide information on a possible pass or player action. In the 

former case, the processes within the network are lost by representing only the “ball 
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flux” as static flip books, where node position remains constant but edges cumulate over 

time, and therefore the researcher or practitioner obtains only cumulative snapshots of 

the network as a function of time (Moody, McFarland, & Bender-Demoll, 2005; Ramos, 

Lopes, & Araújo, 2017).  

 We have also referred that the dynamic relations in team sports games have 

other basic dimensions, in addition to passes, that have not yet been fully captured in 

sports settings, notably: i) relational space (i.e. interactions considered in a geographical 

space); ii) their time structure (i.e., rate change, order or sequence, or simultaneity of 

interactions); and iii) their relations with the different types of nodes involved (i.e. 

colleagues or adversaries), thus considering both cooperation and competition 

interactions (Moody et al., 2005; Ramos, Lopes, & Araújo, 2017). Thus, network 

dynamics analyses may explain how and why disequilibrium situations such as scoring 

opportunities occur. PA experts point out this and other research questions that remain 

unclear, like exploring ways of exhibiting the dynamic interrelations between tactics 

adopted by the different types of athletes and teams within the same competition (game 

sub-phases) and through the diversity of outcomes (Hughes & Franks, 2008).  

 In that paper we put forward the proposal of using bipartite networks to identify 

nodes representing players and technical actions in different layers that can be extended 

hierarchically. Technical actions (level n events) can be linked in another bipartite 

network to level n+1 events corresponding to higher-level concepts. This multilayer 

approach can be extended to all other relevant types of interactions. Either for 

cooperative (e.g., between players of the same team in order to create a scoring 

opportunity) or competitive interactions (e.g., between players of different teams 

competing for ball possession) and that may be captured and analyzed via multilevel 

hypernetworks.  In addiction and supporting our proposal, according to Boccaletti and 

colleagues (2014), multilevel networks represented a major advance in many areas of 

science since as they describe systems that are interconnected through different 

categories of connections (e.g. relationship: teammate vs. opponent; activity: increasing 

vs. diminishing interpersonal distance; category: attacker vs. midfielder) and therefore 

can be represented in multiple layers, including networks of networks (e.g. interactions 

between teams). A third contribution from the paper is the use of hypernetwork for 

representing interactions and relations in the sport match, as, a hyperedge can connect 

more than two nodes, thus directly representing n-ary interactions occurring among 
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small sets of nodes, !! ,… ,!!  (Boccaletti et al., 2014; Criado, Romance, & Vela-Pérez, 

2010; Johnson, 2006, 2008, 2013, 2016; Ramos, Lopes, et al., 2017a). This 

generalization provided by hypernetworks enables the representation of cooperative and 

competitive interactions that occur during the game and that involve an arbitrary 

number of players (either teammates or opponents). 

 A seminal approach to the use of complex systems tools in soccer analysis via 

multi-dimensional analysis was published by Gould and Gatrell (Gould & Gatrell, 

1980). Here they have used a structure analysis based on polyhedral dynamics (Atkin, 

1972; Atkin, 1974; Atkin, Hartston, & Witten, 1976; Atkin & Witten, 1975) and 

considering the cooperation interactions through passing the ball and the competition 

interactions regarding the stealing of the ball. This paper introduced several ideas that 

we have developed and extended in our work. Notably: defining n-ary sets of players, 

connected through passing or stealing interactions; having goals as pseudo-players; and 

finally considering the more stable structure (backcloth) and the more dynamical 

interactions inside those structures (traffic).  

 The interest in PA has also expanded to Artificial Intelligence (AI), namely in 

Robot soccer which confirms the relevance of PA as a scientific area. AI scientists 

involved in robot soccer have set a long-term goal in order to promote investigation in 

this field, and that is that: by the year of 2050, a humanoid robotics team should be 

capable, according to FIFA rules, to defeat the world champion human team in a soccer 

match (Kitano, Asada, Kuniyoshi, Noda, & Osawa, 1997). We can identify some 

common subjects (related to investigations in human soccer) that are addressed in the 

existing literature of AI regarding the investigation of PA in robotic soccer, notably: 

goal-scoring behaviors through cooperation interactions (either pre-designed or adapted 

in robotic soccer) (Almeida, Abreu, Lau, & Reis, 2012); comparing robotic soccer 

matches with human ones (actions, tactics, statistics) (Abreu et al., 2012); develop a 

more precise and controlled kicking (Barrett, Genter, Hester, Quinlan, & Stone, 2010); 

motion analysis (Abreu, Moura, Silva, Reis, & Garganta, 2012); and, the game strategy 

description and prediction of ball motion (Martinovic et al., 2010). The relevance of 

these studies consists on the efforts made by AI in incorporating various technologies 

and achieving innumerous technical breakthroughs (Kitano et al., 1997). Some are 

relevant for human soccer PA, namely those that allows the development of automatic 

PA systems. By incorporating the big data provided by the cartesian coordinates of 
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players’ and ball, the related motion analysis systems require complex algorithms (e.g. 

multiagents collaboration, strategy acquisition, real-time reasoning and planning 

(Kitano et al., 1997)) that are being developed and tested by researchers of AI in simple 

simulated environments like “RoboCup” (Abreu et al., 2012; Martinovic et al., 2010).  

  The idea of artificiality is present in complex social systems, like soccer 

matches, when the team coaches design the strategy for the match, constraining the 

intentions and decisions of the players for the match. This idea adjusts perfectly in the 

studies of PA using AI in robotic soccer, considering that the human design is also 

present in the two phases of preparation for a robot soccer match. The offline phase, 

where the main goal is to detect opponent play patterns (in previous matches) and pre-

define the strategy to neutralize them. The online phase is to adapt the team strategy 

regarding the analysis of the opponent behavior during the match (Almeida et al., 2012). 

However, there are still significant differences between human soccer and robotic 

soccer (Abreu et al., 2012).  

  Therefore, our research questions for this thesis are: 

What are the main factors that influence sports team effectiveness and performance? 

What are the structural and dynamical properties in cooperative (synergetic) and 

competitive interactions that most influence their performance outcomes? 

Is complex networks approach and its related tools able to identify, in different levels of 

analysis, the structure and the dynamics of the cooperative and competitive interactions 

in team sport complex systems, considering the results, the classifications and the match 

time? 

Are the results obtained from complex network analysis useful in training/preparing 

situations? What are the structural properties that can help transmitting ecological 

validity from training to competition? 

What are the relevant types of interactions for the analysis of the structure and dynamics 

of the cooperative and competitive interactions between team players? 
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1.3 Thesis structure 

This document follows the “three papers” model and in its structured in four main 

chapters. In chapter one – Introduction, we put forward the thesis and provide a general 

introduction, the theoretical mainframe and the empirical context of the thesis realm. 

Chapter two – State-of-the-art, is dedicated to exploring the literature on the 

multidisciplinary approach used. Namely, it describes complexity sciences studies usage 

of complex networks theory and performance analysis in sports. In the third chapter are 

presented the four papers that correspond the core of the thesis. For each paper is 

described it context and summary, followed by the paper itself (in a verbatim copy). 

There is, one review paper on network theory in sports; one paper focusing on using 

Multilevel Hypernetworks Theory (MHT); one conference paper/extended abstract on 

empirical results from MHT and its implications on practice; and finally, one paper 

where is described how soccer matches present complex systems features like:  

i. Zipf-Mandelbrot regularities of the empirical data, on cooperation and 

competition interactions within soccer opposing teams; 

ii. Design as a complex social systems emergent feature in some particular sets of 

players formed through spatial positioning.  

The last chapter discusses what are these thesis’ work main contributions, practical 

implications and applications, limitations and suggestions for future works.   
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2 State-of-the-art on Performance Analysis, Complex 

Networks and Complexity  

 Contemporary organizations adopted teams as their basic unit of work (Balkundi 

& Kilduff, 2006), which explains why teams have such prevalence on organizations. 

Therefore, team performance became so important that for almost the last three decades 

had evolved and matured as a science. The knowledge produced by this science, has 

implications on managing teams, groups, crews and collectives, and given evidence-

based principles, guidelines, tools, methodologies and specifications applied to many 

domains (Salas et al., 2010).  

2.1 Performance Analysis in Team Sports 
 Team sports are one clear example where participation cannot be separated from 

the intention to improve performance, and that’s one domain where managing teams or 

groups has been largely studied (Hughes & Franks, 2008). 

 In sport sciences the improvement on performance studies focused mainly on 

how coaches and athletes could better analyze the performance (Hughes & Franks, 

2008) and influence a better feedback on the knowledge of the results (KR) or 

performance (KP).  This resulted in the emergence of an independent sub-discipline of 

sport science, known as performance analysis (Glazier, 2010), which main goal is to 

provide accurate and augmented information to coaches and athletes for the future 

improvement of team performance (Vilar et al., 2012). 

 The management of team performance has evolved from inaccurate and 

unreliable subjective observations from coaches, due to limitations of memory, 

problems of highlighting, and other observational difficulties. Despite these limitations, 

feedback (FB) and KR provide relevant benefits, notably the evolution obtained by 

providing FB with the use of video analysis and other computer-aided technologies 

resulted specially in high performance athletes. On the other hand, the need to define 

and identify the critical elements of performance to other levels of athletes became 

difficult when the challenges due to the complexity of the systems to be observed were 

such that the real-time notation was not practically feasible (only with slow motion and 

replay was possible to overcome some of those difficulties). Since the early stages, 

factors for performance of sport teams have include the management of information 
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complexity, addressing the reliability and validity of data and exploiting artificial 

intelligence approaches and methods for its processing (Hughes & Franks, 2008; 

Hughes & Bartlett, 2002). 

2.1.1 Traditional sub-disciplines in performance analysis 

 Investigators on biomechanical and notational analysis1 became the main 

producers of investigation in this area, developing theoretical models based on 

performance indicators, with the extensive use of video analysis and technology, 

creating systematic techniques of observation for coaches and athletes to benefit of a 

more precise feedback (Hughes & Franks, 2008).  

 Sport biomechanists have concentrated their studies on sports that involve 

mostly closed skills because of the importance of movement technique, like in 

acrobatic, athletic and cyclic sports. Typically, the performance parameters are angles 

of attack and release of critical movement techniques (Hughes and Bartlett, 2002). 

Therefore this analysis has focused mainly on isolated individual closed skills even in 

the few examples where it has been applied to team sports such as cricket (Bartlett, 

Stockill, Elliott, & Burnett, 1996), in soccer (Lees & Nolan, 1998) and in rugby or 

racquet sports (Hughes & Bartlett, 2002).  

 On the other hand, notational analysts had been focusing on general match 

indicators, tactical indicators and technical indicators that are more related to 

interactions between players and the movements and behaviors of individual team 

members (Hughes & Bartlett, 2002). The performance indicators parameters for sport 

biomechanists, are in notational analysis used to access the performance of an 

individual, a team or elements of a team (Hughes & Franks, 2008). The interest in the 

methods of notational analysis, both from practitioners and investigators, is due to its 

successful description of performance tendencies of players and teams, namely their 

strengths and weaknesses in some specific situations, using scoring indicators (e.g. 

goals, baskets, winning shots, errors, ratios of winners to errors and goals to shots); and 

performance indicators like action frequencies of players and teams (e.g. turnovers, 

                                                
1	“Notational	analysis	is	a	method	of	recording	and	analyzing	dynamic	and	complex	situations	such	as	
field	games”	(Hughes	&	Franks,	2008,	pp.181).	
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tackles, passes/ball possession, etc.) that are usually associated to successful 

performance (Vilar et al., 2012). 

 Although these methods provided useful information for the practitioners in the 

form of performance indicators (or parameters) some limitations became emerged 

regarding their functional utility (Duarte et al., 2012; Glazier, 2010; Vilar et al., 2012), 

also some criticisms once it is not clear how much these variables significantly enhance 

team performance or benefits coaches, athletes and teams (Glazier, 2010).  In the same 

lines Hughes and Franks (2008) had previously pointed out the need for the tactical 

evaluation of the athlete performance to also represent their dependency on opponents; 

namely, that research should explore ways of exhibiting the dynamic interrelations 

between tactics adopted by the different types of athletes within the same competition. 

 The generally accepted conceptualization that is common to sport biomechanics 

and notational analysis is that they are measuring and describing the same emergent 

pattern formation but at different scales of analysis, resulting in a fragmented 

application and in a lack of explanatory power (Dutt-Mazumder et al., 2011; Glazier, 

2010). The reasons for this fragmentation and consequently their descriptive rather than 

explanatory outcomes, is on the lack of a theoretical framework that can integrate them 

hopefully with others sub-disciplines of sport science that are concerned with enhancing 

performance, like physiology, psychology and motor control (Dutt-Mazumder et al., 

2011; Glazier, 2010). Another aspect that should be considered is that research on 

performance analysis is far from the accurate prediction of human motor performance in 

a given task at a given time, due to the complex, non-linear, interactions between, not 

only the many independent component parts of the human movement system but also, 

all the different levels of the system considering also their surrounding environment and 

the specificity of the tasks undertaken (Glazier, 2010). 

2.1.2 Dynamical Systems Theory in Performance Analysis 

 According Glazier (2010) and Dutt-Mazumder and colleagues (2011) the 

unifying theoretical framework that has the power to integrate the referred sub-

disciplines of sport science is dynamical systems theory (DST). However the technical 

jargon of this approach can be discouraging for practitioners starting with the many 

degrees of freedom which are the many independent parts that are free to vary over 
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space and time; continuing with complex systems that are typically open systems 

operating under conditions far from equilibrium, meaning they interact with the 

environment and are in a constant state of flux due to changes in internal and external 

energy flows; and, having also an enormous potential for disorder which implies to be 

able to exploit these energy flows and the surrounding constraints to form orderly and 

stable relationships among the many degrees of freedom at different levels of the system. 

Other concepts are for instance, the idea that attractor states, meaning functional 

coordinative states emerging spontaneously in a physical self-organizing processes 

rather than being pre-planned (top-down) by an executive intelligent that controls 

everything, and once assembled (this functional coordinative states) the many 

independent parts operate autonomously and searching for self-regulation provoked by 

internal or external perturbation, in order to preserve the system output and therefore 

being functionally coupled with the task (Glazier, 2010).  

Synergetic Strategy 

 For (Glazier, 2010) the difficulties concerning the technical jargon and its 

impairment to an effective contribution to practical contribution has been mainly 

referred in the use of the synergetic strategy. This is a research strategy commonly used 

by human movement scientists to study pattern formation in complex neurobiological 

systems. The initial works on synergetic in neurobiological systems by (Haken, 1983) 

were in search of what could move the system through its many different coordinative 

states. That is, what order parameter (Kelso, 1995) or collective variables define stable 

and reproducible relationships among different degrees of freedom and control 

parameters (Kelso, 1995). Therefore, in this type of systems, relative phase has been the 

(only) order parameter (Michaels & Beek, 1995) and oscillatory frequency the 

important control parameter (Haken, Kelso, & Bunz, 1985; Kelso, 1984; Kelso, 1995). 

Consequently, the main goal of synergetic strategy is the identification of control 

parameters, manipulate them, and observe the changes that are produced in order 

parameters and other non-linear phenomena (Glazier, 2010). The empirical analysis of 

intra-individual coordination (Kelso & Jeka, 1992; Kelso, Buchanan, & Wallace, 1991) 

and inter-individual coordination (Schmidt, Carello, & Turvey, 1990; Schmidt, O'Brien, 

& Sysko, 1999) are the most successful applications of this strategy (Glazier, 2010), 

although initially outside sports contexts. The synergetic approach provided relevant 
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contributions in sports, published by Riley and colleagues (Riley, Richardson, 

Shockley, & Ramenzoni, 2011) and also from Araújo and Davids (Araújo & Davids, 

2016) where teams and athletes are seen as co-evolving subsystems that self-organize 

into new structures and behaviors, i.e., they form team synergies (Ramos, Lopes, et al., 

2017a). For Araújo and Davids (2016) when the degrees of freedom of the different 

individuals co-regulate each other in order to complete a specific task, we can observe 

the emergence of collective synergetic behaviors. When one player in a sports team 

influences other team members behaviors this is one important team synergy feature 

(Araújo & Davids, 2016). The identification and measurement of synergies in a sports 

team can be done through some key system properties, such as: dimensional 

compression; reciprocal compensation; interpersonal linkages and degeneracy (Araújo 

& Davids, 2016). Dimensional compression refers to the ability of reducing degrees of 

freedom in the entire team system synergy due to the coupling of the independent 

degrees of freedom (Araújo & Davids, 2016). Reciprocal compensation is observed 

when one of the team members decreases is productivity (e.g. due to fatigue or an 

injury) and other team members adjust their contributions in order to achieve the teams’ 

common task (Araújo & Davids, 2016). Interpersonal linkages refer to the individual 

player contribution to a team task, namely through its unique and specific characteristics 

(Araújo & Davids, 2016). Regarding degeneracy in the sports context, one player can 

use different motor behavior without compromising the whole team function, which is 

also observed from the team perspective when players adaptively interact continuously 

to accomplish a shared goal (Araújo & Davids, 2016). Considering that mainly 

cooperative interactions are considered in synergies, hypernetworks could contribute as 

a valuable tool to analyze these collective behaviors based on n-ary relations between 

team members and adding the competitive interactions too (Araújo & Davids, 2016).  

Ecological Dynamics 

 In the sport and human movement related literature, there are references to what 

is called the ‘constraints based’ approach (Araújo, Davids, & Hristovski, 2006; Davids, 

2008; Davids & Araújo, 2010) proposing it as an alternative approach in performance 

analysis. According to this approach, the explanation on pattern formation in 

neurobiological systems emerges from physical and informational constraints that 

coalesce to shape coordinative states on the system, and influence competing and 
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cooperating interactions (Glazier, 2010). Despite initial focus were, in single-agent 

neurobiological systems helping to explain emergent pattern formation, meaning intra-

personal coordination; it has been helping to clarify the emergent pattern formation in 

multi-agent neurobiological systems, meaning inter-personal coordination (Glazier, 

2010).  

 Extending this approach, several investigators (Araújo et al., 2006; Davids & 

Araújo, 2010; Vilar et al., 2012) explored a combination of DST with ideas from 

ecological psychology in order to evolve from the constraints based approach, which is 

clearly explained by (Kugler & Turvey, 1987) in their book: “Ecological Science, in its 

broadest sense, is a multidisciplinary approach to the study of living systems, their 

environments and the reciprocity that as evolved between the two” and therefore 

Ecological Psychology is “…the study of information transactions between living 

systems and their environments, especially as they pertain to perceiving situations of 

significance to planning and executing of purposes activated in an environment.".  This 

way Vilar and colleagues (2012) were trying to better understand how the adaptive 

behaviors of players are constrained by the information available in the performance 

environment, and therefore have proposed ecological dynamics for the study of team 

games. This approach recognizes the inherent adaptive flexibility in achieving 

successful performance outcomes at two levels of athletes (degeneracy of 

neurobiological systems) and of sports teams (social neurobiological systems); thus 

explaining how from different movements (motor equivalence) or tactical patterns may 

emerge the same successful performance outcomes. Ecological dynamics had already 

provided powerful theoretical explanation of behaviors in those complex 

neurobiological systems (Araújo et al., 2006; Davids & Araújo, 2010), mainly on 

performer-environment relations. Mainly, through the functional patterns of coordinated 

behavior that emerge from the process of self-organization of those performers 

interactions with each other under the specific constraints, whether they’re task or 

environmental constraints. The coordination between performers, expressed through the 

interactions between players and the information provided by the performance 

environment constrains the emergence of stable patterns; or their variability (expressed 

by the loss of coordination); and may even lead to emergence of new patterns of 

coordination that result from symmetry-breaking in organizational states. Emergence 

and variability of coordination patterns are chief concerns for investigators of sport 
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sciences and coaches in team performance analyses (Vilar et al., 2012). These studies of 

team performance have analyzed mainly the emergent patterns of coordination in 

attacker-defender subsystems, like one (attacker) vs. one (defender) or two vs. one 

situations, in order to capture system organization and its changes over time through the 

identification of collective variables (Vilar et al., 2012). The already referred relative 

phase (Michaels & Beek, 1995) has confirmed its potential for a collective variable as 

shown in a study from (Bourbousson, Seve, & McGarry, 2010) in basketball, where the 

dynamics of relative phase between dyadic system performers allowed the quantitative 

expression of coordination processes.  

 When one considers the relative positioning of an attacker with the ball and a 

marking defender near the goal area, basket or final line, a very common one versus one 

sub-phase in invasive team ball games, it and can be referred to as and studied as a dyad 

(Duarte et al., 2004; McGarry et al., 2002). The dyad formed by attacker and defender, 

plus the proximity to offensive goal, comprises a system. The aim of the attacker is to 

perturb and ultimately to ‘brake’ the stability of this system. The defender tries to 

matches the movements of his opponent, keeping in position between the attacker and 

the goal, in order to maintain stability in the symmetry of the system (Duarte et al., 

2004).  

 Ecological dynamics is therefore concerned with the influence of the spatial 

properties in field games, such as the proximity to the finalization targets or to 

opponents and how these might constrain the coordination in dyadic systems (Correia, 

Araujo, Craig, & Passos, 2011; Correia et al., 2012; Vilar et al., 2012). These types of 

studies are typically conducted with the use of video analysis and technology applied to 

performance analysis.  

 The use of positional data used by coordination dynamics studies highlighted 

two another candidates of collective variables (Bartlett et al., 2012): team centroid and 

stretch index (Frencken, Lemmink, Delleman, & Visscher, 2011). The former represents 

the team’s position, calculated from the mean of the players positions (Frencken et al., 

2011); and the later is a measure for the dispersion or spread of the team, calculated 

using the average distance of the players to the team centroid (Bourbousson et al., 

2010). According to Bartlett and colleagues (2012) these measures did not reveal to be 

sensitive enough to be associated to critical events (scorings or turn-overs), pointing out 
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alternatively some ideas on multi-dimensional coordination for the use of networks 

(artificial neural networks, more specifically self-organizing maps).  

 Other studies have revealed how the interaction occurs during the entire 

competition, reinforcing the need for renovation from notational analysis methods 

(Duarte et al., 2012). Moreover, methods based on DST, like ecological dynamics 

showed that the coordination dynamics expressed by movement patterns in team sports 

present nonlinear self-organizing features like: system degeneracy, nonlinearity or 

contextual dependency (Dutt-Mazumder et al., 2011; Glazier, 2010; Pedro Passos, 

Araújo, & Davids, 2012). These studies suggest that self-organization is a functional 

mechanism that can explain the emergence of interpersonal coordination tendencies 

within intra-team interactions. However, these prevalent strategies and approaches to 

the study of team performance are still falling short in providing enough and accurate 

information about the performance context which is why sports scientists need to 

rethinking their research strategies (Duarte et al., 2012). 

 According to Dutt-Mazumder and colleagues (2011) there are mainly two 

approaches to study sport games as dynamical systems: the application of analytical 

tools of nonequilibrium thermodynamics, and modeling the dynamics of human 

movement through the formulation of synergetic and nonlinear equations. As described 

in this section the latter has received much more attention and has been applied in sports 

contexts, such as: soccer, badminton, basketball, boxing, rugby union, squash and 

tennis. In this context it was possible to successfully equate the fluctuations of the 

systems behavior constrained by the constant perturbations from environment (Dutt-

Mazumder et al., 2011). There are however limitations and practical disadvantages in 

using equations to address (relative phase, dyadic relationships) perturbations as they 

limited to weak nonlinearities (Beek & Beek, 1988). In order to tackle these limitations 

Dutt-Mazumder and colleagues (2011) have proposed graphical methods, complex 

social networks to overcome the difficulty to understand these types of studies and 

promote a more effective use from practitioners (coaches, athletes). This proposal, has 

also been followed by several other investigators (Duch et al., 2010; Grund, 2012; 

Passos et al., 2011; Vilar et al., 2012). 

2.2 Complex Network Theory in Team Sports Performance 

 The simplest working definition of a network is probably: “collection of vertices 

joined by edges” (Newman, 2010). Even with this very simple definition one can 
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identify a multitude of domains where network science as shown its usefulness in 

representing real-world structures like: communication network (computers), social 

networks (people), information network (World Wide Web), and, biological networks 

(nature) (Easley & Kleinberg, 2010; Newman, 2003). Given this variety, vertices and 

edges can represent different objects in different domains and even be referred to 

differently, for example in computer science these are known as nodes and links, or in 

physics sites and bonds, and in sociology actors and ties (Newman, 2010).  

 Social network theory is supported by the assumption that seemingly 

autonomous individuals and organizations are embedded in social relations and 

interactions (Borgatti, Mehra, Brass, & Labianca, 2009). Therefore, social networks are 

social structures with people (called actors), or groups of people, which are related by 

some form of social interaction (Brandes et al., 2012; Newman, 2010), such as: 

interdependency (e.g. dyadic interactions between team players and opponents), 

friendship, kinship, common interest, beliefs relationships, acquaintance, prestige.  

 Therefore when we consider the study of social relationships under the lens of 

network theory, we say that we are using Social Network Analysis (SNA), particularly if 

networks are considered explanatory variables and not dependent variables (Brandes et 

al., 2012). This complexity tool had gained significant relevance in anthropology, 

biology, communication studies, economics, geography, information science, 

organizational studies, social psychology, and sociolinguistics. 

 The network approach to the study of small groups as received a great contribute 

from (Berkowitz & Wellman, 1988) through the identification of five fundamental 

principles that provide some underlying intellectual unity to the network approach and 

that confirms some more recent suggestions and studies under dynamical systems 

theory framework. These five points are presented as follows: 

i. When studying the web of relationships in which people are embedded we will 

managed to predict better their behavior instead of examining their drives, 

attitudes, or demographic characteristics. In this way the relationships are 

themselves constraints to people’s behavior.  

ii. The focus of analysis should be on the dyadic units, rather than on the units per 

si or their intrinsic characteristics.  
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iii. Consider how the interdependence among units is assumed, and therefore 

analytic methods must not assume the independence of the behaviors.  

iv. Consider that the interactions (flow of information or resources) between two 

people depend not only on them but also on each relationship with the rest of the 

group. This reinforces the assumption that for understanding a social system 

more is required than just the sum of the dyadic ties.  

v. The group existence and formation is dynamical and not perfectly bounded. This 

means that there are overlapping networks generally having crosscutting 

relationships to a multitude of groups.  

 In team sports there has also a growing interest in network studies, considering 

that both competition and training settings offer an extraordinary opportunity for the 

study of this phenomena using theses tools as interactions between team members are 

on display for a large number of events (Duch et al., 2010). 

 For Duch and colleagues (2010) the team processes that lead to greater 

performance are still unclear, specifying that there are no clear and definitive answers to 

how individual strengths and roles (including that of “superstars”) are combined for 

optimal results. According to the same authors, the players’ true impact on the team’s 

performance is hidden in the plays of the team. In this study a directed network of ‘‘ball 

flow’’ among the players of a team is used in order to capture the influence of a given 

player on a match. On the experience of using social network analysis the authors 

considered it a powerful instrument in order to demonstrate that typical network metrics 

(such as flow centrality, defined later section 3.1.2) provide an objective quantification 

of individual and team performance. 

 Similarly to Duch and colleagues (2010), in many studies in sports context that 

use SNA the interaction types that are considered depend on the ball flow. Typical 

examples of this interaction occur from the exchange of the ball, between team 

members, or from their interception from the opponent team players. Therefore, the 

direction of the interactions (e.g., ball passes) matters and are represented in network 

science as directed edges, and the network in which they are embedded is referred to as 

a directed network or directed graph (or even digraph) (Easley & Kleinberg, 2010; 

Newman, 2010). Figure 3 is the graphical representation of a directed network in which 

the direction of the edge arrows is associated with the ball flow during a volleyball 
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match. The network is obtained by the aggregation of all passes during the match and 

the edges width and nodes radius is defined by different network metrics. 

 
Figure 3. Example of a directed network of the Olympic Volleyball Women Final, 2012 

(Source: author, 2012) 

 In the sports context one can also identify relations between players that do not 

have a direction, one such example in sports context is considering the goals as pseudo-

players in interaction with the players (e.g. mainly the goalkeepers).  

 If the relation between actors is characterized by symmetry (undirected 

networks) or asymmetry (directed networks) in the network is important for a great 

number of real-world structures like financial, transportation, and as we are seeing, 

social interactions (Easley & Kleinberg, 2010). 

 Considering the cardinality of the interactions between a pair of nodes, networks 

can be simple  - simple networks or simple graph - in the sense they have at the most 

one edge between any pair of vertices, or with multiedges an therefore called a 

multigraph (Newman, 2010). In the latter, the edges’ cardinality can also be represented 

as having a strength, weight (e.g. number of passes between a pair of players, as in 

figure 3) or value (normally a real number), which means the amount of 

interactions/data flowing between the vertices that are linked together (Newman, 2010). 

However, weighted networks do not necessarily result from multigraphs, as the weights 

do not necessarily interaction cardinality, e.g. different distances between cities could 

be represented by weighted networks, but not necessarily by a multigraph. 

 Two common metrics that are used to characterize the network are its size 

(number of edges) and order (number of vertices). An important relation between these 

two is obtained if we consider the number of edges – network size - (number of passes 
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or actions with the ball) over the number of edges that could exist in the network, we’ll 

have the density of the network (Guillaume & Latapy, 2006), representing the intensity 

of interactions in the social network. 

 Grund (2012) has focused on the growing interest and evidence in team 

structural properties of interactions between team members associated to performance 

outcomes (Balkundi & Kilduff, 2006; Katz et al., 2004), and find out that the analysis 

focus on team performance must not be on individual team members but on the dyad 

between team members (the orchestration of interactions and their interactions). So the 

interactions pattern differences between teams, matters for the explanation of their 

different rates of success and performance. In his work (Grund, 2012) found that there 

exists a positive effect on sports team performance from the level of interaction between 

the team members (network intensity - density), i.e., increases in passing rates are 

associated to increases in team performance. On the other hand, network centralization 

lead to a decrease in team performance, i.e., the team has more difficulties in 

performing well when the team production process is centralized.  And this explains 

why the access to resources and their successful mobilization in tasks that require the 

involvement of different individuals are facilitated by the relationship between team 

members. 

2.2.1 Connectivity and paths 

 Considering the interactions between people, it is important to consider not only 

the immediate and direct connectivity between dyads but also the set of interactions in 

which they are connected. That is, how nodes can be connected or not via a sequence of 

links. 

 In this context, one finds the concept of walk which is a sequence of vertices in 

which each consecutive pair is connected by an edge (Easley & Kleinberg, 2010). Two 

subsets of walks are also defined: that of trail where edges cannot be repeated and path 

where neither edges nor vertices can be repeated (which is not common in team sports). 

One particular case of a trail are cycles that are represented by a “ring” structure, 

repeating only the first and the last nodes (Easley & Kleinberg, 2010); (Newman, 2010).  

 The most relevant metric over paths is their length. This is on unweighted graphs 

obtained by counting the number of edges in the path. On the other hand, on weighted 
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graphs this is typically obtained by summing the weights of the edges along the path. A 

related concept is that of shortest path or geodesic path, that represents the path 

between two vertices for which there is no other path in the network that is shorter than 

that path. The length of the shortest path, is the geodesic distance or shortest distance 

that represents the shortest network distance between those two vertices (Newman, 

2010).  

 Paths are not common in sports (see Ramos, Lopes, & Araújo, 2017), therefore 

models such as random walks (a walk that takes random steps across the network) may 

represent better the events during a team sport match, such as ball passing (Newman, 

2010). Both concepts of length and random walks can be enlightening if associated to 

performance outcomes, once there is some debate (from practitioners) about its relation 

to the means to score goals, whether if is preferred the use of ‘longer passing’ in soccer 

or ‘direct play’ rather than for ‘possession play’ (Vilar et al., 2012). This presumed 

correspondence remains unclear because of a lack of a theoretical understanding (Vilar 

et al., 2012). 

2.2.2 Nodes’ Centrality 

 A large volume of research on network theory has been devoted to the centrality 

concept (Newman, 2010), which in sports context, means to try to answer questions 

like: “which are the most important or central actors (players) in a network (team)?”. 

 The simplest measure of centrality is the degree of a vertex (also called degree 

centrality), and obviously is applied to the vertex (player) and is defined by the number 

of edges (interactions) connected to it (Newman, 2010). This metric for vertex degree is 

applied typically to undirected networks; although, as previously mentioned, team ball 

sports have been studied mostly looking at the “ball flux” (e.g., ball passes) which are 

directed networks and therefore vertices (players) have two degrees: the in-degree (the 

number of ingoing passes to that player, or interceptions made) and the out-degree (the 

number of the outgoing passes or interactions conceded) (Newman, 2010). 

 The centrality analysis can also be conducted by another metric in cases when a 

connection to a popular individual is more important than a connection to a loner. The 

Eigenvector Centrality metric takes into consideration not only how many connections a 

vertex has (i.e., its degree), but also the degree of the vertices that he is connecting to 
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(Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006; Easley & Kleinberg, 2010; 

Newman, 2010). Typically one of the questions asked, which can be cleared out by the 

use of this measure, is: “Which node in this network would prove most crucial to the 

network’s interactions if she/he was removed?” (Newman, 2003). 

 Another commonly used concept and metric for centrality is Betweenness 

centrality (Boccaletti et al., 2006; Easley & Kleinberg, 2010; Girvan, 2002; Newman, 

2003, 2010) and it is obtained by counting the geodesic paths between vertices that run 

along each vertex in the network. As previously mentioned the node degree can give 

some insight about the importance or popularity of someone in the network. Although 

this metric does not take into account the “bridging” function that can be performed by 

an actor that is connecting other popular or important roles in a social network. If this 

(connecting) person were removed from the network, those other important nodes 

would be disconnected from each other. A node that has an important bridging role can 

be identified by having high Betweenness Centrality. On the other hand, if some node 

were removed from the network, and everyone would still be connected to everyone 

else and their shortest path would not even be altered than that player as Betweenness 

Centrality of 0. In short, vertices that are included in many of the shortest paths between 

other vertices have a higher Betweenness Centrality than those that are not included. 

This centrality measure can also be viewed, as a measure of network resilience, 

indicating how much effect on path length the removal of a vertex will have. For 

Newman (2003), networks vary in their level of resilience according to such vertex 

removal.  

 On the other hand, how close each person is from others in the network can be 

accessed by another metric for centrality called closeness (Boccaletti et al., 2006; 

Newman, 2010), which is the inverse of the average distance from all other persons. 

Considering that information flowed through edges in the network, some people would 

be able to contact all the other people in only a few steps, while others may require 

many steps. Unlike other centrality metrics, a lower Closeness Centrality score indicates 

a more central (i.e., important) position in the network, which corresponds to the lowest 

Closeness Centrality measure, suggesting that she/he may be in a good position to 

spread information/influence through the network efficiently.  
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2.2.3 Group formation: cliques and clusters  

 To a better understanding on what clustering is, we first must understand other 

relevant properties of the networks like transitivity, which “in the language of social 

networks, means that the friend of your friend is likely also to be your friend” 

(Newman, 2003, p.183). This closure of a triangle of relationships, accordingly Easley 

and Kleinberg (2010) is called triadic closure, and the presence of a heightened number 

of triangles in the network is the transitivity of the network, which can be quantified by 

defining the clustering coefficient. We can say in a simple way that the Clustering 

Coefficient measures how connected a vertex’s neighbors are to one another. Therefore, 

clustering coefficient measures the triangles density in a network. The term reciprocity 

is often measured in directed social networks, to obtain the probability that two vertices 

point each other (Newman, 2003). 

 On local clustering, the authors (Guillaume & Latapy, 2006) refers that all real-

world complex networks exhibit a high clustering and it appears to be independent of 

the size of the network. 

 Therefore we’re talking about a network area that concerns groups of vertices, 

like cliques or plexes (used for discovering groups within groups) and cores. This is an 

evolving area since in the last decade and there’s been a enormous increase in research 

on social networks and small groups (Katz et al., 2004). Therefore and from the network 

theory perspective in the social network literature, a group could be defined in two 

different ways. First, as a structural feature of a network, which means that within some 

population there are emergent subsets (cliques) of fully connected (or almost) nodes 

(Katz et al., 2004). One problem related to the identification of this cliques is the 

required criteria of cutoff values, but Freeman (1992) applied the idea of strong and 

weak ties to distinguish those subgroups. Second, a group is externally categorized or 

bounded like players in a team, students in a class, or a corporation. 

2.2.4 Network models: small-world and power-laws 

 The research on graph theory focused not only in graphs but also on classes of 

graphs, creating what is known as theoretical network models. Most of the theoretical 

models are random and created through stochastic processes (Rocha, 2011). The formal 

proposal that popularized random models is due to Erdös and Rényi (Erdös & Rényi, 
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1959) and the ER model differs from others based on fact that the vertices are connected 

to a fixed number of other vertices or with a fixed probability. The ER model was 

developed after Solominoff and Rapoport (1951) works on random networks 

(Solomonoff & Rapoport, 1951).  However the properties of these random structures are 

not representative of empirical ones (Rocha, 2011) and other models have been created 

after that.  

 One such phenomenon is called the small-world effect (Boccaletti et al., 2006; 

Easley & Kleinberg, 2010; Watts, 2003) that reflects the idea that the world is small and 

everyone is somehow connected to each other. This idea came from the six degrees of 

separation, famously expressed by a phrase of a play from John Guare, referring to 

Jeffrey Travers and Stanley Milgrams letter experiment (Travers & Milgram, 1977), 

with that title (Easley & Kleinberg, 2010, pp.35): “I read somewhere that everybody on 

this planet is separated by only six other people. Six degrees of separation between us 

and everyone else on this planet.” Watts and Strogatz developed the small-world model 

(WS model) to represent the many closed triads, but also very short paths, which is 

found in many real-world random networks that reveals the referred small-world effect 

(Easley & Kleinberg, 2010; Watts, 2003). The scope for this model is associated to 

large networks, in which nodes can be linked through only a few links (i.e., small 

geodesic paths) and their applicability to small groups was not yet empirical 

demonstrated. 

 On the other hand, in team sports context, Passos and colleagues (2011) founded 

something similar to the small-world effect in the interactions of small units of system 

agents that originated their interest. These authors consider that few vertices (players in 

games sub-phases) maintain connection through a path of few links, and this is like 

interactions of small units of team players with opposite team players in sub-phases 

competitions. In their study in team sports (Passos et al., 2011) could confirm the 

usefulness of the small-world network concept in capturing pattern formation dynamics.  

 Passos and colleagues (2011) also pointed out that the preferential attachment 

property could reveal some important information about the mode of control that is 

adopted in different team game performance contexts. Meaning that, if one team 

exhibits a fixed pattern of specific preferential attachment between few players, it 

becomes predictable and therefore the other team can perturb the preferential 

interactions between those players. The preferential attachment is ‘‘the rich get richer’’ 
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paradigm, because the most connected vertices have higher probability of receiving new 

vertices (Easley & Kleinberg, 2010). Barabási and Albert (1999) showed that many real 

systems are characterized by an uneven distribution and their network model (AB 

model, scale-free networks) uses the “preferential attachment” principle as an 

explanation for the power law degree distribution. This is, characterized by vertices 

being highly connected while others have few connections. In this kind of networks 

there are vertices that are linked to a large amount of the edges of the network, and thus 

called hubs. 

 About the distance between two vertices (the number of edges on a shortest path 

between these vertices) we’ve already referred the property of social networks the “six 

degrees of separation”, that helped to understand the low average found in this real-

world complex networks (Guillaume & Latapy, 2006).  

 Returning to Guillaume and Latapy (2006) proposed model and to the 

unexpected results on the degree distribution that follows a power law, this means that 

there’s a significant number of vertices with high degree and the other majority have a 

small degree. In their study both the WS model and the AB model were introduced to 

model generic behavior of complex networks, failing  (both) in producing graphs having 

each of the three properties we cited. The WS model gives a possible explanation for 

the high clustering of complex networks that is the locality of the links and the AB 

explained the power law distribution with the preferential attachment principle. 

Therefore justifying the new model proposed. 

 This work had been clarified in some of the directions that can be taken, given 

that the model haven’t been tested on directed and weighted graphs (those that exists in 

team sports performance studies with SNA), and also revealing some weakness on the 

definition of cliques.  

2.2.5 Bipartite networks and hypernetworks 

 When an edge join more than two vertices at a time, like in family ties, that edge 

is called a hyperegde and the corresponding network a hypergraph (Fig.2) or a 

hypernetwork (Johnson, 2013; Ramos, Lopes, et al., 2017a).  

 In sociology this networks are called affiliation networks and they can also be 

represented as a bipartite network (Fig.3). This two-mode network (also called this way 
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in sociology literature) represents two kinds of vertices that are not connected among 

equals, just between the other types of vertices. A example is to consider a network of 

players that participates in one team game, and the bipartite network that represent it, 

has this two types of vertices: players and the technical skills that each have done, 

connecting only by an edge each player to the each skill that have done (Newman, 

2010).  

 In a different context than team sports performance, but with some interest to it, 

in a study on bipartite graphs (Guillaume & Latapy, 2006) showed how all complex 

networks may be described as bipartite structures, presenting a model that can be tested 

for any kind of real-world complex network. In their studies they pointed out a model 

where some properties are common to all complex networks. These properties are: the 

low density of the network, the average distance between vertices, the high clustering 

and the power law degree distribution. 

 

 

Fig.4 Sample of hypergraph, with X = {v1, v2, v3, v4, v5, v6, v7} and E = {e1, e2, e3, 

e3} = {{v1,v2,v3}, {v2,v3}, {v3,v5,v6}, {v4}}. Taken from: 

http://en.wikipedia.org/wiki/Hypergraph 

 

 

Fig.5 Example of a simple bipartite graph. Taken from: 

http://upload.wikimedia.org/wikipedia/commons/e/e8/Simple-bipartite-graph.svg 
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 One interesting feature that results from the projection of the bipartite network in 

the two one-mode projections, one for each group of vertices, is a cluster of vertices that 

are all connected to each other, which means a clique (in network jargon) (Newman, 

2010).  

2.2.6 From origins to the state-of-the-art in SNA 

 We have seen how SNA as been applied in some studies in PA, and it may be 

interesting now go back a little to its origins and understand some of its evolution. 

 In short, the origins of the field of social networks are related to sociologists 

who have the longest tradition in quantitative and empirical work in this field. It can be 

found remote literature from the end of nineteenth century, but the real foundation of 

the field is attributed to psychiatrist Jacob Moreno (Newman, 2010), a Romanian 

immigrant to America, who started is interest in the dynamics of social interactions 

within groups of people, in the late 1930s. This researcher seeded the origins of 

sociometry, through what he called human interaction sociograms published in his book 

“Who Shall Survive?” (Newman, 2010). Social scientists were easily persuaded because 

once one draws a picture of a network it’s easy to see and are also sociological 

interesting.  

  

Figure 6: Friendships between schoolchildren. Hand-drawn image of a social network, 

taken from the work of Moreno, depicts friendship patterns between boys (triangles) 

and girls (circles) in a class of schoolchildren in the 1930s (Newman, 2010, pp 37).  

 The most common method for determining the structure of social networks is the 

direct questioning of the people. However archival records are another important 

technique, like the one made in the 1030s (“Southern Women Study”, Davis, 1941), in 
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the US, through newspapers data about the appearance of 18 women in 14 social events  

(Newman, 2010). These women would be considered connected if they appeared in the 

same event, creating an affiliation network or a bipartite graph. 

 The powerful properties of networks have since Moreno and Davis et al. works 

created such a development and interest that had been applied to a large variety of 

different issues and problems. Direct questioning or questionnaires were helped by the 

use of computers and the use of online survey tools, until than studies were limited to a 

few tens or sometimes hundreds of respondents. 

 These social sciences applications began in the 1950s, when in sociology and 

anthropology the quantitative methods were being more applied and this mathematical 

language of graph theory were also helpful in understanding the data from those studies 

at that time (Newman et al., 2006). Similarly at this time, the propagation of 

information and diseases were being seeing as graphs by mathematicians (Newman et 

al., 2006). Some heritage resulted from this both areas of interest, for social network 

analysis, and from the social sciences came most of the terminology used, like: path 

lengths, actor centrality, cliques, connected components in matters like status, influence, 

cohesiveness, social roles and identities in social networks (Newman et al., 2006), and 

also became a practical tool for the analysis of empirical data. On the other hand, and 

from the mathematicians applications, it was more the behavioral characteristics like the 

estimation of the size of an epidemic or even the possibility of global information 

transmission, that were brought by the structural properties of networks (mainly 

connectedness). The stochastic property of objects associated to graphs, though in terms 

of probability distributions, is also another heritage of that time, and accordingly 

Newman and colleagues (2006) with great deal of interest. 

 Therefore, the evolution of networks stepped into:  

i) The concern with empirical work and theoretical questions, focusing on the properties 

of real-world networks;  

ii) How dynamical feature evolve through time; 

iii) Considering networks as a framework where distributed dynamical systems are built 

upon, and not only topological objects. 

 In summary, traditional theories of networks did not pay much attention to the 

structure of naturally occurring networks, especially to networks arising in the real 
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world, concerning more with artificial constructs; on the other hand SNA, tends to be 

more descriptive rather than constructive, because of its strongly empirical feature, 

avoiding modeling and preferring simply the description of the properties of the 

collected data (Newman et al., 2006).  

 Additionally, the static features of the networks, considered both in graph theory 

and SNA are not adequate (Albert-Laszlo & Reka, 1999) and it has been clearly shown 

that networks evolve over time (Watts, 2003). Furthermore, most of the social networks 

are in fact, the product of dynamical processes that constantly add or remove edges or 

vertices, and consequently evolving dependently from the role of the participants and 

their emergent pattern of behavior (Newman et al., 2006). 

 Also, the traditional approaches to networks overlooked and oversimplified the 

relationship between the structural properties and the behavior of the networks 

(Newman et al., 2006). On the other way, some significant amount of more recent work 

(Duarte et al., 2012; Duch et al., 2010; Grund, 2012), approached with a dynamical 

systems view, representing dynamical entities by the vertices of the graph with their 

own rules of behavior, and the couplings between the entities represented by the edges, 

finding not only topological properties, but also dynamical properties (Newman et al., 

2006).  

 In this thesis work, we have started from this point (SNA), and moved to a 

complex networks approach, as described in previous section 2.2.5. The following 

chapters describe, via a set of core papers, our contribution in applying complex 

systems approach to PA in team sports context.  
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3 Core Papers 

3.1 What’s next in Complex Networks? Capturing the concept of 

attacking play in invasive team sports 

3.1.1 Context and summary 

 In this review article, we propose a novel approach to team sports performance 

centered on sport concepts, namely that of an attacking play. Network theory and tools 

including temporal and bipartite or multilayered networks were used to capture this 

concept. We aimed to leverage the understanding of the structure and dynamics of 

invasive sports teams related to their performance.  

 We start, in section 2.1, by discussing how SNA has been commonly used to 

address team structure and dynamics in invasive team sports performance. Typically 

this means aggregating all the passes between players in a single directed network for 

which measures are taken and related to success indicators (e.g. reaching a competition 

stage, goals scored) (Duch et al., 2010; Fewell et al., 2012; Grund, 2012; Travassos et 

al., 2016). In section 2.2, we describe temporal bipartite networks in depth and the way 

they may overcome the shortcomings often found when applying SNA to PA. We 

analyze the attacking play concept introducing nodes that represent other players’ 

actions, instead of passes. The chief contribution is that these nodes are part of a 

bipartite network, which allows us to retain the key concept of attacking play during 

network analysis and relate it to its possible outcomes. In section 2.3, a set of questions 

that are commonly found in the literature are placed as illustrative examples of how our 

suggestions can be used in match analysis in a way distinct from previous studies.  

Although we do not address directly either players’ position or the interaction between 

both teams, we present, in sections 2.4 and 3, guidelines for future studies in this 

direction.  

 We put forward eight questions directly related to team performance to discuss 

how common pitfalls in the use of network tools for capturing sports concepts can be 

avoided.  

 We propose that temporal and bipartite networks could be an alternative 

approach for representing the interactions between players during a game. Using the 
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flexible time structure of temporal networks it is possible to capture the sequence of 

passes in an attacking play, which is one of the main concepts of team collective 

behavior. We have highlighted how temporal bipartite network representation 

empowers existing metrics for capturing sports fundamental concepts (e.g. style of play) 

with greater adequacy. Moreover, we suggest that methods combining spatial and 

hypernetworks (Johnson & Iravani, 2007) with temporal networks represent a 

promising direction for future research, as they allow the analysis of dynamics of the 

network. These complex networks could integrate concepts such as how time changes 

the structure of the network, as well as the players’ technical resources and their 

positioning relative to the position of other players (team-mates or adversaries). 

 Finally, we propose that, at this stage of knowledge, it may be advantageous to 

build up from fundamental sport concepts toward complex network theory and tools, 

and not the other way around.  
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Key Points 

Network theory can contribute to performance analysis in invasive team sports by 

describing the complex and dynamic features of interaction between players. 

 

Complex networks, notably temporal and bipartite networks, can capture the concept of 

attacking play by including play actions and their temporal sequence. 

 

Typical questions on the team interaction properties can be answered by applying, 

possibly at different scales, wellknown bipartite network metrics, yielding different 

results from usual social network analysis. 

 
Abstract 

The evolution of performance analysis (PA) within sports sciences is tied to 

technology development and practitioner demands. However, how individual and 

collective patterns self-organize and interact in invasive team sports remains 

elusive. Social network analysis (SNA) has been recently proposed to resolve some 

aspects of this problem, and has proven successful in capturing collective features 

resulting from the interactions between team members as well as a powerful 

communication tool. Despite these advances, some fundamental team sports 
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concepts such as an attacking play have not been properly captured by the more 

common applications of SNA to team sports performance. In this review article, we 

propose a novel approach to team sports performance centered on sport concepts, 

namely that of an attacking play. Network theory and tools including temporal and 

bipartite or multilayered networks were used to capture this concept. We put 

forward eight questions directly related to team performance to discuss how 

common pitfalls in the use of network tools for capturing sports concepts can be 

avoided. Some answers are advanced in an attempt to be more precise in the 

description of team dynamics and to uncover other metrics directly applied to sport 

concepts, such as structure and dynamics of attacking plays. Finally, we propose 

that, at this stage of knowledge, it may be advantageous to build up from 

fundamental sport concepts toward complex network theory and tools, and not the 

other way around.  

 

1. Introduction 

The evolution of performance analysis (PA) as a sub-discipline of sports sciences has 

seen significant advances in team sports. Technological progress has had an important 

role in this process, which is reflected in the availability of more data and with better 

accuracy and higher precision (1). The data processing phase of PA has also evolved 

from a mostly descriptive and qualitative approach to a quantitative and complex 

software-based analysis. PA approaches began with biomechanics and notational 

analysis, which were centered on individuals and their positions, actions and time (2-4). 

Notational analysis is based on the quantification of critical events through frequency 

counting followed by qualitative and quantitative feedback analysis. First, the 

performance indicators for the evaluation are determined (mainly on-the-ball actions of 

players), then the detail level is selected manually or computationally, and finally 

extensive flowcharts are created for the analyzed performance indicators (4). This 

quantification of critical events follows a sequential formula (player → position → 

action → time) normally associated with success (3-5). The biomechanics approach 

mainly entails individual fine-grain analysis and even when it is applied to team sports, 

it focuses on individual technique performance (3). This method has been mostly used 

in the context of closed sports techniques, particularly in performance environments (3). 

Aspects such as the non-linear interactions between the many independent parts of 
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emergent movement patterns, or the interactions between players or even between 

teams, clearly show that theoretical guidance is essential for understanding complex 

adaptive sociobiological systems like team sports (2). A single event such as an injury 

at the microscopic level in a soccer player can have a large-scale impact on his/her 

performance, and an even greater effect on the team’s structure and team’s performance 

(micro-macro relatedness). A comprehensive PA therefore requires interdisciplinary 

approaches complementing biomechanics and notational analysis. Several authors (2, 6-

8) believe that dynamical systems theory (DST) gathers the necessary theoretical 

framework conditions for PA because it takes into account the stability, variability and 

transitions among interaction states, including at different levels of analysis, and 

compares them with specific outcomes. Indeed, self-organization explains how order 

emerges from the interaction of different components; for instance, how an individual 

performance results from the interaction of the player’s body segments, or how team 

performance results from the interaction of individual team players (9).  

Following such innovative approaches, the next logical step in PA is to address complex 

issues such as the relationship between team structure and dynamics, as well as the 

types of team interactions and their interdependency within and between teams (1-3, 5, 

10, 11). In particular, it is important to understand how players’ actions can disrupt the 

equilibrium of the other team or create scoring opportunities. Dutt-Mazumder and 

colleagues (6) proposed more visual methods to overcome the complexity of these 

issues and to encourage practitioners (coaches, athletes) to use these approaches. In a 

similar way, sports scientists have utilized social network analysis (SNA) (5, 12-15); 

notably, the communicative power that network visualization offers for new insights 

into network structures (16).  

Concerning the dynamic features and their study, in network theory, two different types 

of dynamics are usually considered: dynamics on the network and dynamics of the 

network (17). Dynamics on the network focuses on flows across the network structure, 

e.g. ball passes between players. On the other hand, dynamics of the network are 

concerned with changes in the network structure itself, e.g. how the players’ positions 

can provide information on a possible pass or player action. In the current review, we 

focus on the first type of network dynamics. Successful applications of dynamic 

network visualization in the literature mostly represent the “ball flux” in static flip 

books, where node position remains constant but edges cumulate over time, and 

therefore the researcher obtains cumulative snapshots of the network as a function of 
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time (18). Typically SNA applied to PA uses only the ‘last snapshot’, that is, the 

network resulting from the aggregate of all the interactions occurring during the entire 

match; focusing on the structure and not so much on the dynamics. We believe that this 

impairs not only the study of relevant dynamic features of the team, but also conceals 

import concepts such as that of an attacking play. Dynamic relations in team sports 

games have other basic dimensions, in addition to passes, that have not yet been fully 

captured in sports settings: i) relational space (i.e. interactions considered in a 

geographical space); ii) their time structure (i.e., rate change, order or sequence, or 

simultaneity of interactions); and iii) their relations with types of nodes (i.e. colleagues 

or adversaries), meaning cooperation or competition interactions (18), as discussed in 

the next section. This is a possible approach for handling complex adaptive systems 

including team sports analyses in competition. Thus, network dynamics analyses may 

explain how and why disequilibrium situations such as scoring opportunities occur.   

 In this review we aimed to leverage the understanding of the structure and dynamics of 

invasive sports teams related to their performance. In particular, we focused on the 

interactions between players in the same team (ball passes), their actions during the 

attacking phase (e.g. ball recovery, shot at goal), and the temporal structure of both. We 

did not address directly either the players’ position or the interactions between both 

teams.  We start, in section 2.1, by discussing how SNA has been commonly used to 

address team structure and dynamics in invasive team sports performance. Typically 

this means aggregating all the passes between players in a single directed network for 

which measures are taken and related to success indicators (e.g. reaching a competition 

stage, goals scored) (12, 14, 15, 19). In section 2.2, we describe temporal bipartite 

networks in depth and the way they may overcome the shortcomings often found when 

applying SNA to PA. We analyse the attacking play concept introducing nodes that 

represent other players’ actions, instead of passes. The chief contribution is that these 

nodes are part of a bipartite network, which allows us to retain the key concept of 

attacking play during network analysis and relate it to its possible outcomes. In 

addition, by applying temporal networks, dynamic aspects of the team process can be 

captured, namely the time structure of the different attacking plays. Both concepts, 

bipartite and temporal networks, can be extended hierarchically, enabling performance 

analysis within different event and time scales.  In section 2.3, a set of questions that are 

commonly found in the literature are placed as illustrative examples of how our 

suggestions can be used in match analysis in a way distinct from previous studies.  
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Although we do not address directly either players’ position or the interaction between 

both teams, we present, in sections 2.4 and 3, guidelines for future studies in this 

direction. Notably, in order to use spatio-temporal structure and dynamics of both teams 

(represented by players’ positions) in the analysis of the team and players’ actions, the 

temporal structure of such actions must be adequately represented. Temporal networks 

can provide such representation. On the other hand, the outcomes of these dynamic 

interactions are naturally represented by different layers in bipartite networks. 

 

2. Network Theory and Tools in Performance Analysis 

2.1 Why use Network Analysis for Performance Analysis?   

Has PA succeeded in understanding the processes, such as structure and dynamics, 

leading to improved performance? In this article we have raised some questions and 

problems that currently challenge the research in the field. Specifically, we ask what is 

the importance of a player in the structure and dynamics of the team/network, besides 

providing individual performance indicators? And who is the most connected player 

(i.e. playmaker) regarding his/her number of colleagues and interactions? Finally, what 

team sub-units, such as pairs or triangles of players, have the strongest influence on 

team performance? These and other questions, in particular those addressing team 

structure and dynamics, can be investigated using networks theory and tools such as 

SNA. However, we do not aim and it would not be possible to comprehensively review 

the applications of SNA to team sports performance. Instead, we will discuss the 

limitations of SNA for explaining team performance and how they may be overcome. In 

our view, until these issues are fully resolved SNA will be insufficient for clearly 

describing and explaining the dynamic nature of the processes associated with team 

performance. We propose the adoption of multilayer networks, in particular, of bipartite 

and temporal networks, to overcome some of the limitations of SNA. To achieve this 

aim, we present solutions from network theory for accurately representing dynamics 

and suggest alternative metrics that we find more adequate for explaining sport teams 

performance. 

The definition of network is a “collection of vertices joined by edges”, which can 

represent the pattern of connections between different objects (20). Thus, social 

networks are structures with persons or sometimes groups of persons (actors) who are 
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related by some form of social interaction (ties) (20, 21). In team sports settings, we can 

consider the actors as the players, and the ties as the interactions between players. Team 

goals are achieved if each individual’s effort is coordinated with those of the other 

team-mates through dynamic interactions, i.e., a complex network is considered rather 

than the simple summation of the individual performances (2, 5, 19, 22, 23). To address 

these team sports characteristics, we focus on eight questions that relate directly to team 

performance and network metrics. 

Technical terminology and heavy jargon from complex systems approaches can be 

overcome by using network visual representations, which are powerful and versatile 

tools widely used to describe dynamical systems (5, 6, 12, 16, 18, 24, 25). Typically, in 

SNA applied to sport matches, the nodes represent team players and the links between 

nodes correspond to the interaction between those players (19), specifically “ball 

passing”2. This relationship is characterized by a transport action (i.e. a token - ball - is 

passed between players) and a directionality (i.e. for each interaction there is a sender 

and a receiver), which combined make a directed network (i.e. the links have a 

direction).  

The two most commonly used systems for representing a network are matrices3 

(adjacency or incidence) and graphics. While matrices are particularly relevant and 

useful for the development of formal methods and computational processes, graphics 

have an extraordinary communicative power. Notably, through the effective use of 

network graph visualization features, such as the nodes’ and edges’ position, size and 

colour, particular properties of the network, i.e., the importance of a player or frequency 

of an interaction, can be highlighted and perceived intuitively without requiring a 

specialized knowledge of network theory. For example, to identify the number of passes 

                                                
2 Analyzing only at ball passing restricts the analysis of team performance to the attacking phase. In the 
current article, we do not attempt to directly resolve this limitation. 
3 An adjacency matrix, A, is a square matrix, with rows and columns representing nodes (e.g., players) 
with entry !!" of A taking value 1 if there is a link between node i and node j; and 0 otherwise. Different 
types of networks lead to different matrix structures: undirected graphs are represented in symmetric 
adjacency matrices, the fact that the link between nodes i and j has no directionality is expressed in 
equality !!" = !!"; in directed graphs (or digraphs) the links between nodes have a directionality; a link 
from node i to node j  is expressed by entry !!" taking value 1 independently of the value of  !!". In this 
paper the links represent actions by the players (e.g., making a pass) and are thus directed leading to 
digraphs.. In what are called weighted graphs, the entries of the matrix can take other values !!", called 
weights, that are nor restricted to 0 or 1. The value taken by entry !!" reflects the intensity or strength of 
that link. 
In an incidence matrix, E, rows represent nodes and columns represent links. The entry !!" takes value 1 
if the link j is incident on nodes i and j; 0 otherwise. In directed networks values -1 and 1 are used to 
distinguish link origin and destination. 
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by each player, instead of summing matrix values, the performance analyst can simply 

observe the size of the nodes (to identify the most connected player) or the weight of the 

edges that represent the number of passes between two players (identifying the dyadic 

that interacted more). This intuitive characteristic of network graphs and the non-

specialized skills required from the reader are being explored by generalist newspapers 

in articles devoted to soccer match analysis. Figure 1 uses one of these generalist 

newspaper examples to illustrate some of the features mentioned above (26). 

 

 
Figure 1: Pass interactions in the Germany vs. Argentina match for the 2014 FIFA 
World Cup (26).  Each circle represents a player in his relative position; the radius and 
colour of each circle represents the number of players that player interacts with and his 
pass precision (red more precision and yellow less precision), respectively; and the 
arrows represent the direction of the passes between players; the width and shade of 
each arrow represents the number of interactions (passes) between players (lighter 
arrows indicate less passes, darker arrows indicate more passes). The numbers in 
brackets represent the minutes played by the player (e.g., -120’, played 120 minutes) or 
the moment in the match when the player started to play (e.g., +88’, golo 113’, entered 
in the match at minute 88 and scored a goal at minute 113). 
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2.2 From static, single-layered networks to temporal bipartite networks. 

Graphs as illustrated in Figure 1 present features associated with nodes and links that 

are cumulative (i.e. they aggregate all the interactions that have occurred during the 

match) but not the relevant events in the match such as goals and gaining/losing ball 

possession, which are not usually represented in these analyses. However, although 

global metrics can be obtained in this type of network representation (e.g. which player 

does more passes), the fundamental concept of attacking play is not apparent. An 

attacking play is defined as the tactical situation when one team is in possession of the 

ball moving towards the opponent’s goal (e.g., Lucchesi [(27)]). To visualize an 

attacking play it is essential to include in the network other types of nodes to illustrate 

the beginning and end of the attacking play, such as gaining/losing ball possession, 

gaining a free-kick, and scoring a goal. However, adding these nodes to graphs in a 

simplistic manner not only breaks the semantic homogeneity of nodes and links, which 

do not always correspond to passes between players, but also changes the metric values 

of the network. We propose that multilayer networks can bring an important 

contribution to the understanding of team attacking dynamics, specifically, through the 

combination of temporal and bipartite networks.  

Typically, the formalization of a temporal network starts with the definition of M time 

snapshots for the entire duration of the game, T, with equal interval ! = ! !, and the N 

nodes of interest. The next step is the aggregation of all the interactions that occur in the 

time interval (or time snapshot) t, between  (! − 1)! and !" where t = 1, …, M (28). 

Fixing a value for ! not only raises the problem of allocating it an appropriate value but 

also does not guarantee that the concept of play is accurately represented. We suggest 

that each interval in the temporal network should correspond to the duration of an 

attacking play. The definition of the beginning and end of each of these intervals is 

therefore defined by the beginning and end of an attacking play, typically corresponding 

to those instants when ball possession has been won or lost. Formally, time snapshot !!, 
corresponding to the ith attacking play, is defined by the time interval bound by instant 

!!", where the team gained ball possession and instant !!" where possession was lost.  

The introduction of these new nodes to temporal networks takes us to the second 

element of our proposal: bipartite networks. In bipartite networks, also known as two-

mode networks, two different types or classes of vertices are considered, and nodes of 

the same type cannot be connected directly. Consequently, the links are always incident 
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on nodes of different types. A possible application of the bipartite network model could 

consider as the two node classes i) the set of players; and ii) the set of technical skills or 

play actions performed by the players. The application of the temporal and bipartite 

network concepts in combination is illustrated in Figure 2.  

 

 
Figure 2: Multilayer representation of three attacking plays in a bipartite (two-mode) 
network. GK goalkeeper, LD/RD left/right defender, MF midfielder, CF center forward, 
BR/BL ball recovery/loss, P pass, SG shot at goal. The first number represents the 
number of the play and the second, the order of the event. 

 

Therefore, the use of any kind of team performance representative nodes (e.g. shot at 

goal) allows a direct way to relate PA metrics and network-based metrics associated 

with the attacking play structure. For example, the in-degree metric for the shot at goal 

node provides directly the number of shots at goal. On the other hand, the average 

length of the walks leading to this node provides the average number of passes until a 

shot at goal is made and thus can provide an hint about the team’s attacking style of 

play. 

An interesting feature that results from projecting the bipartite network into the two 

one-mode projections is illustrated in Figure 3. 
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Figure 3: Projection of the multilayer graph in two single-layer graphs. GK goalkeeper, 
LD/RD left/right defender, MF midfielder, CF center forward, BR/BL ball 
recovery/loss, P pass, SG shot at goal. The first number represents the number of the 
play and the second, the order of the event. The thickened arrow in attacking play 2 
represents the aggregation of events/passes from LD to RD. 

 

These two projections focus on different aspects of the team performance and uncover 

important limitations of traditional network match presentations. The events projection 

reveals the pass path between gaining and losing ball possession. The players’ 

projection in Figure 4 shows the interactions between players (passes) in a similar way 

to the network in Figure 1. 

It is worth highlighting the network concepts that emerge from both projections: i) in 

the events projection the result is always a path (no node is visited more than once); ii) 

in the players projection the result is a walk, where a node can be visited more than 

once (right defender [RD] in the example represented in figure 4). Moreover, team 

characteristics can be observed including a cluster of vertices that are all connected to 

each other and are known as a ‘clique’ in network jargon (e.g. cluster formed between 

left defender [LD], RD and Midfielder [MF] in figure 4) (20). In the events and players 

projections one can perform an aggregation operation as shown in Figure 4 (aggregation 

of a play showing a shot at goal). 
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Figure 4: Temporal aggregation of events and player projections. GK goalkeeper, 
LD/RD left/right defender, MF midfielder, CF center forward, BR/BL ball 
recovery/loss, P pass, SG shot at goal. The first number represents the number of the 
play, and the second represents the order of the event. The thickened arrow represents 
the aggregation of events/passes from LD to RD and from RD to MF. 

 

In addition, some filtering can also be applied to the aggregation process, for instance, 

to consider only the attacking plays that ended in a ‘shot at goal’ event, as represented 

in Figure 4. The projections in Figure 4 clearly show that the concepts of ‘path’ and 

‘walk’(29) are of great relevance, as they uncover another distinctive aspect between 

team sports and other networks, specifically, how each node establishes the outbound 

link when a token (i.e. a ball in team sports such as soccer) is received. Typically in an 

invasive team sports match, the trajectory along the network nodes does not follow the 

shortest path nor even a path where neither nodes or links are repeated (obtained over 

the full aggregation graph), as is often assumed in sports sciences (15, 30-32). However, 

as illustrated by Figure 3 (attacking play 1), in many networks the trajectory can be a 

trail (where links cannot be repeated) or a walk (nodes and links can be repeated with 

no restrictions), and is not deterministic. This fundamental difference has a very strong 

impact in many networks metrics, centrality in particular, as discussed in sections 2.3.2. 

and 2.3.3.. 

 

2.3 Using temporal bipartite networks: some illustrative questions. 

2.3.1. Question 1: who is the most interactive player?  

The activity level of a player in his/her interaction with other team-mates can be 

captured by the node degree4 of a vertex in a given graph, in which case only the 

                                                
4 Degree of a vertex !, hence !!,  is given by the number of nodes that are directly connected with the 
focal node;  
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adjacencies of the node/player are considered; this is therefore a local analysis of node 

centrality. In sports settings, the node centrality is the most widely used network metric 

(12-15, 19, 33) and it is typically based on ball flow. Given the directed nature of the 

interaction, the degree centrality is divided into two categories: in-degree, which 

measures the number of players who pass the ball to the focal player, and out-degree, 

which measures the number of players to whom the focal player passes the ball to. As 

centrality is focused on each individual player and his/her participation in the team ball 

passing activity, it can be represented for the duration of the entire game in simple 

graphs (Figure 1). The approach proposed in this article (section 2.4) extends the reach 

of this metric in two ways: i) by defining different time spans for the aggregation 

process, the activity of each player can be measured for time intervals other than the 

entire match; ii) when appropriate filtering is applied to the aggregation process, 

centrality can be applied to the player’s activity in attacking plays of certain 

characteristics (e.g. plays that lead to a shot at goal event). 

 

2.3.2. Question 2: which players have an intermediary role? 

Betweenness5 is a widely used centrality metric that could provide an answer to the 

important question of which players play an intermediary role. Betweenness analyzes 

the global structure of the network, notably the fraction of shortest paths corresponding 

to each node, and it shows potential for accurately representing how much each player 

contributes as an intermediary between other players. However, this metric is typically 

based on the shortest path between any two nodes computed over the graph resulting 

from the aggregation of all the interactions in the match (17). In these conditions the 

metric is not directly supported by any fundamental concept of an attacking play and 

this is, in our view, a strong limitation. Indeed, in team ball sports the ball flow does not 

                                                                                                                                          

!"#$%&'($)!"#$"" !! = degree !! = !!"
!

!
 

where ! is the focal node, ! represents all other nodes, ! is the total number of nodes, and ! is the 
adjacency matrix, in which cell !!" is defined as 1 if node ! is connected to node !, and 0 otherwise. 
	
5 Betweenness centrality expresses the degree in which one node lies on the shortest path between two 
other nodes;  

!"#$%&'($)!"#$""%%"&& !! = !"#$""%%"&&! =
!!"(!)
!!"

 

where !!" is the number of shortest paths between vertices s and t, and !!"(!) is the number of those paths 
that pass through vertex !. 
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necessarily follow the shortest paths over the aggregation graph; instead players 

projections reveal mostly walks (with relevant levels of randomness) and not paths, 

similarly to most flows in other networks (34). In addition, the paths that lead to 

specific events (e.g. shot at goal) may have a more direct impact on team performance 

than the connectivity between players per se (19). Moreover, how such connectivity is 

directed in specific events can also affect team performance (12). Nevertheless, these 

limitations of betweeness can be overcome by counting the fraction of walks leading to 

a certain event in which the focal player is involved, rather than considering the shortest 

paths between players (12). Freeman and colleagues (16) proposed a metric based on 

the idea of maximum flow, flow centrality, whereby different paths can be used for the 

same purpose and which has been applied to basketball research by Fewell and 

colleagues (19). Newman’s random-walk betweenness considers all paths between 

nodes including those that are not optimal, although more weight is given to the shortest 

paths (34). Bonacich (35) refers to power centrality, a metric based on the assumption 

that centrality is related to power and as such an individual’s status is a function of the 

statuses of his/her connections. 

 

2.3.3. Question 3: how central is a player? 

Comparing players in terms of the number of passes achieved can reveal important 

individual characteristics of a player’s performance and also the soccer team’s style of 

play. Closeness6 is a measure of centrality that considers the length of the shortest paths 

between the focal node and all the other nodes. We propose that this metric should be 

used as follows: passing path projections convey length (measured by the absolute 

frequency of passes) and duration of each play. The latter can be used directly to 

identify the team’s style of play (see Passos et al. [1]). Moreover, by analyzing passing 

path projections (see Figure 3) one can capture the distance (also measured by the 

absolute frequency of passes) between the focus player and an event of interest, which 

can be utilized for example to identify which players contribute directly to shooting at 

goal or assisting other players. Alternatively, Noh and Rieger’s (36) random-walk 

centrality metric describes the average speed at which messages are transmitted from 
                                                
6 Closeness centrality  for each node, !!, is the inverse sum of the shortest distance, !"#$%&'((!, !)  to all 
other nodes, j, from the focal node, i,  or how long the information takes to spread from a given node to 
others. 

!"#$%&%$$!"#$%&'($) !! = !"#$%&&%$$! ! =  !"#$%&'((!, !)!
!!!

!!
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one node to another in random walks  (37). This is similar to the closeness 

centrality metric except that it considers the length of a random walk rather than 

the shortest path. 

 

2.3.4. Question 4: how does each player contribute to the performance of others?  

A player can contribute to the team’s performance directly (e.g. goals scored) and 

indirectly by assisting the performance of team-mates (e.g. assistances/passes). 

Eigenvector centrality7 (38) can be used to assess the contribution of each player to the 

team’s performance. Similar to closeness, eigenvector centrality considers the global 

structure of the network (29) but assumes unrestricted walks, rather than paths, 

emanating from a node. Thus, this measure counts the number of walks of all lengths, 

weighted inversely by length, and as a result it can determine how each node affects all 

its neighbours at a given moment (29). Alternatively, Bonacich (35) argues that the 

concept of centrality should be more general due to its positive relationship with power 

(39). This way Bonacich (35) proposes a power centrality metric related to power and 

hence the individual or node’s status is dependent on the status of its connections. The 

power is therefore attributed to the nodes/players in the negotiation of any single play 

with their team-mates, and it results from the players’ efficacy to resolve previous 

moves. Moreover, this metric can be complemented by pre-defining weights for 

relevant events in the graph, for instance, ball loss with a negative weight and scoring a 

goal with the highest positive value. These weights can then be propagated to other 

nodes/players, similarly to the eigenvector centrality measure. 

 

2.3.5. Question 5: are there “hot” nodes in the team? 

During a play situation, players tend to search for the team-mate who can typically offer 

more solutions to the problems of the game (40). This preference could be measured by 

identifying those players who connect more often with the ‘powerful’ ones. Passos and 

                                                
7 Eigenvector centrality, takes into consideration not only how many connections a vertex has (i.e., its 
degree), but also the degree of the vertices that it is connecting to. Each vertex ! is assigned a weight 
!! > 0, which is defined to be proportional to the sum of the weights of all vertices that point to 
!: !! = !!! !!"!!!  for some ! >  0, or in matrix form 

!" =  !", 
where ! is the (asymmetric) adjacency matrix of the graph, whose elements are !!", and ! is the vector 
whose elements are the !!, and ! is a constant (the eigenvalue). 
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colleagues (13) suggested that identifying these preferential attachments8 could lead to 

the ‘decision-makers’ of each team. Grund (14) has provided some innovations in this 

regard by assessing team ball flow with a traditional binary system (pass =1, no pass = 

0) but also by considering centralities based on node strength and ties weight. The 

author focused on network structure (41-44) thus confirming that increased interaction 

intensity (density) leads to increased team performance (measured by the absolute 

frequency of goals scored), and increased centralization of interactions leads to 

decreased team performance. Given the intrinsic temporal nature of the graphs 

describing a match, we suggest that preferential attachments could be assessed by 

determining if those players with the highest node degree are more likely to be selected 

in the next attacking plays. By applying appropriate algorithms to the aggregation 

process, it is possible to obtain distinct metrics for different attacking play outcomes, 

and therefore to determine whether the preferential attachment process is related to 

those outcomes. 

 

2.3.6. Question 6: are there players promoting clusters in the team? 

Fewell and colleagues (19) assessed basketball team dynamics through degree 

centrality, clustering, entropy, and flow centrality, in order to uncover the play 

strategies of the 2010 National Basketball Association play-offs. In a group of 

nodes/players, it is possible to identify the players who are mutually highly connected 

and those who are less so. Such highly-connected groups are called clusters. The local 

clustering coefficient9, !!! , can be used to measure this connectivity property (property 

                                                
8 Preferential attachments, also known as cumulative advantage or ‘rich-get-richer paradigm’. 
This property means that every new vertex probability (!!) to connect the existing vertices is higher for 
those who have already a large number of connections (connectivity !!). For example, in a given team 
sports with ball, when a player attracts more interactions from the game’s beginning, his/her connectivity 
will increase at a higher rate when compared to his/her team-mates as the game is played (network 
grows). Therefore, starting with a small number (!!) of players interacting at the beginning of the game, 
at every time step that a new player !(≤ !!) interacts with ! different team-mates already active in the 
game, for preferential attachment, there is a probability !! !! = !!

!!!
 that the new player ! will interact 

with a certain team-mate, depending on the connectivity !!  of the latter. 
9 The local clustering coefficient (!!!) for player ! is defined by the proportion of actual 
edges/interactions (!!) between the !! ≥ 2 common neighbors of a vertex/player ! and the number of 
possible edges between them. 

 !!! = !!!
!!(!!!!)

 

The local clustering coefficient over the aggregate of all plays (Figure 4) takes the following values: 

!!!" = 0, !!!" = 1, !!!" = 1,  !!!" =
2
3 , !!!" = 1 
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known as transitivity in social networks) by capturing the probability of cooperation 

between players as a function of their mutual acquaintances/interactions. It can also be 

said that a triadic closure is formed around the focal node, i.e. “if two people in a social 

network have a friend in common, then there is an increased likelihood that they will 

become friends themselves at some point in the future” (45, 46). However, when 

looking for the most relevant players in the formation of clusters, applying the local 

clustering coefficient to graphs representing an entire match (Figure 1) restricts its 

usefulness, as the passes (i.e. links) between players considered in the cluster formation 

may have occurred in different attacking plays, and possibly with a long temporal gap 

between them. Such is the case for the clique RD-MF-CF in Figure 4, showing an 

aggregation projection of a play that culminated with a shot at the goal. Given the 

attacking play granularity of bipartite and temporal networks (see Figure 3), only 

clusters formed within the same attacking play can be identified with certainty (e.g. in 

Figure 3, only the clique RD-LD-MF is identified). Taking advantage of the temporal 

structuring provided by attacking players’ we can define a play local clustering 

coefficient10, !!!,!, computed for each attacking play and an aggregation local clustering 

coefficient11, !!!∗, averaging the former over a set of !! attacking plays (!! to !!) that 

compose aggregation !. The aggregation interval is thus not limited to the complete 

match aggregation and can be defined by events from a higher layer (e.g., all the 

attacking plays until a goal is scored). 

                                                                                                                                          
GK goalkeeper, LD/RD left/right defender, MF midfielder, CF center forward 
10 The !!!play local clustering coefficient (!!!) for player ! in the !!!attacking is defined in a similar 
manner to the local clustering coefficient but takes into account only the players’ projection network 
formed in the  !!!attacking play.  
The 2!" play local clustering coefficient, !!!,!, (Figure 3) takes the following values: 

!!!",! = 0,  !!!",! = 1,  !!!",! = !
!, !!!",! = 1, !!!",! = 0 

GK goalkeeper, LD/RD left/right defender, MF midfielder, CF center forward 
11 The ! aggregation local clustering coefficient (!!!,!∗ ) for player ! is defined by the average of the local 
cluster coefficients for player ! over the !! (!! to !!) attacking plays that compose the ! aggregation. 

!!!,!∗ = 1
!!

!!!,!,
!!

!!!1
 

The aggregate play local clustering coefficient, for the k aggregate composed of attacking plays 1 and 2, 
has the following values for each of the players: 

!!!"#∗ = 0,  !!!",!∗ = 1
2
0 + 1 = 1

2
,  !!!",!∗ = 1

2
0 + 1

2
= 1

4
, !!!",!∗ = 1

2
, !!!",!∗ = 0 

GK goalkeeper, LD/RD left/right defender, MF midfielder, CF center forward 
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2.4 What is still to be done? The dynamics of a network and multilayer 

networks. 

Although the questions we have addressed thus far could be answered through static 

networks12 or by looking at the flows between nodes, our next questions require the 

analysis of changes in the network structure. In typical team interactions representations 

(described in section 2.2), only the interactions (flows) between players are considered 

for building the network. There is therefore a superposition between the flows on the 

network and the definition of the network structure that must be taken into account 

when considering the applicability of SNA metrics. However, these relationships occur 

throughout a certain time span, and these important time changes must also be 

considered.  

The proposal in section 2.2 of using bipartite networks to identify nodes representing 

players and technical actions in different layers can be extended hierarchically. 

Technical actions (level n events) can be linked in another bipartite network to level 

n+1 events corresponding to higher-level concepts, as illustrated in Figure 5. 

 

 
Figure 5: Hierarchical events represented through multilayer networks. KO kick off, TO 
turn over, GS goal scored, GC goal conceded, BR/BL ball recovery/loss, P pass, SG 
shot at goal. The first number represents the number of the play, the second number 
represents the order of the event. Similar metrics to the previously proposed can still be 
applied, although naturally corresponding to different concepts. For example, the 
concept of walk length applied to the n and n+1 level relationships reveals the number 
of attacking plays till a goal is scored. 

 

2.4.1. Question 7: how does a player influence the team structure? 

It is relevant to ask how player behaviors other than passing influence the overall 

network of interactions in the team. According to Barzel and Barabási (47), behavior 

                                                
12 We define as static network the static structure resulting from the aggregation over a time interval (e.g., 
the entire match) of all the observable edges (e.g., passes) within that interval. 
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prediction in a complex system requires a quantitative description of the system’s 

structure and dynamics. The dynamics of a network considers various phenomena, 

including self-organization, that promote changes in the topology of the network (25), 

however, this metric has not yet been applied to sports sciences. The study of the 

dynamical interplay between the players’s state and the topology of the network is 

recent and mostly theoretical (25, 48-51). Indeed, few theorizations have been 

corroborated by empirical results (25, 52). Interestingly, one of these studies (40) 

revealed an unexpected time dependence in network centrality (dynamic centrality) 

indicating that well-connected nodes can quickly become weakly-connected or even 

disconnected (25). Moreover, dynamic centrality expressed in adaptive networks 

(dynamic scale-free [DSF] networks) emerges from a reinforcement rule whereby each 

node considers only the importance or popularity of its neighbours (25). These 

surprising results reinforce the need for further studies, especially in sports settings. 

Guillaume and Latapy (53) proposed another relevant approach to team sports 

performance showing how all complex networks may be described as bipartite 

structures, or alternatively via hypernetworks. The authors introduced a model that can 

be tested for any type of real-world complex network. Moreover, these bipartite 

networks can be used to represent relations that are not dyadic (i.e. they involve more 

than two actors). Non-dyadic relations among players, such as geographical proximity 

in the pitch, can describe other dimensions of the players’ actions during the game and 

these descriptions can be used to understand the dynamics of the network of passes, in 

particular, by explaining why certain spatial team configurations lead to specific pass 

paths. 

 

2.4.2. Question 8: how does the adversary team constrain the team’s interactions and 

structure? 

The manner and extent to which the opposing team constrains a team’s interactions and 

structure is a much more complex question, as it considers the influence of the 

adversary team (individuals and structure) on the interactions between team individuals 

as well as on the team’s structure. Some of the PA existing studies focus on the 

interplay between attackers and defenders and are therefore based on dyadic interactions 

between players, sub-units or teams. Typically, such studies associate these interactions 

with the players’ spatial organization, which is computed from the surface area in so-
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called centroids (23, 54, 55) or Voronoi diagrams13 (56). However, in network theory, 

spatial networks represent the nodes and edges based on their interactions in an 

Euclidean space. Using these metrics, research on social networks and space has 

identified ordering principles such as homophily states (57-59) and focus constraint (59, 

60). Notably, while homophily depends on non-structural features such as connections 

fostered by status or interests (e.g. dyadic attacker-defender interactions in team ball 

sports), focus constraints are dependent on geographical proximity, enabling face-to-

face interactions (59). 

 

3. Conclusions 

In this article, we reviewed how PA emerged as a sub-discipline of sports sciences by 

building on notational analysis and biomechanics approaches and with further 

contributions from DST. Additionally, we discussed what new directions, tools and 

potential methods network theory and complex networks can further contribute to PA. 

Early studies with network methodologies in team ball sports mainly considered the 

dynamics on networks through ball flow, which represent the interactions between 

players of the same team, or actions to score. 

However, these studies did not consider the dynamics of networks, assuming teams to 

be static structures, whereby players retain the same performance level throughout the 

entire game, independent of the constraints imposed by team adversaries and the 

players’ positioning. Moreover, the players’ skills and technical actions as well as the 

evolution of the interactions between players over time were also not considered. 

Finally, this static network structure is obtained via the aggregation of all the 

interactions (passes) that occurred in an entire match. This may lead not only to 

concealment of important concepts such as attacking play but also to metrics that may 

be misleading. A notable example is metrics based on `shortest paths´ over the 

aggregated network, that occur in two scenarios: i) pass interactions form a walk and 

not necessarily a path; ii) interactions between players in a match do not follow this 

principle but may be better described by geographic networks and random walks (34). 

We propose that temporal and bipartite networks could be an alternative approach for 

representing the interactions between players during a game. Using the flexible time 

                                                
13 Voronoi diagrams are geometric constructions that represent the nearest geographical region of a 
player, a sub-set of a team, or even a team. 
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structure of temporal networks it is possible to capture the sequence of passes in an 

attacking play, which is one of the main concepts of team collective behaviour. We 

have highlighted how temporal bipartite network representation empowers existing 

metrics for capturing sports fundamental concepts (e.g. style of play) with greater 

adequacy. Moreover,  we suggest that methods combining spatial and hypernetworks 

(61) with temporal networks represent a promising direction for future research, as they 

allow the analysis of dynamics of the network. These complex networks could integrate 

concepts such as how time changes the structure of the network, as well as the players’ 

technical resources and their positioning relative to the position of other players (team-

mates or adversaries). 
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3.2 Hypernetworks Reveal Compound Variables That Capture 

Cooperative and Competitive Interactions in a Soccer Match 

3.2.1 Context and summary 

 This study aims to overcome SNA limitations by using hypernetworks to 

describe illustrative cases of team behavior dynamics at various other levels of analyses. 

Hypernetworks simultaneously access cooperative and competitive interactions between 

teammates and opponents across space and time during a match. Moreover, 

hypernetworks are not limited to dyadic relations, which are typically represented by 

edges in other types of networks. In a hypernetwork, n-ary relations (with n>2) and 

their properties are represented with hyperedges connecting more than two players 

simultaneously (the so-called simplex – plural, simplices). Simplices can capture the 

interactions of sets of players that may include an arbitrary number of teammates and 

opponents. In this qualitative study, we first used the mathematical formalisms of 

hypernetworks to represent a multilevel team behavior dynamics, including micro 

(interactions between players), meso (dynamics of a given critical event, e.g., an attack 

interaction) and macro (interactions between sets of players) levels. Second, we 

investigated different features that could potentially explain the occurrence of critical 

events, such as aggregation or disaggregation of simplices relative to goal proximity. 

Finally, we applied hypernetworks analysis to soccer games from the English premier 

league (season 2010-2011) by using two-dimensional player displacement coordinates 

obtained with a multiple-camera match analysis system provided by STATS (formerly 

Prozone).  

 We have extended the approach by Johnson & Iravani (2007) by introducing 

compound variables, e.g. local dominance, which capture the structure and dynamics of 

cooperative and competitive interactions. 

 The aim of this study was therefore to operationalize a method addressing 

different levels of hypernetworks on soccer matches. 

 The results show that:  
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 i) At micro level the most frequently occurring simplices configuration by 

decreasing order of frequency are: 1vs.1, 2vs.1 and 1vs.2, 2vs.2, and finally, 3vs.1 and 

1vs.3. However, these simplices show differences in their distribution on the pitch, and 

this is particularly evident for unbalanced simplices such as 2vs.1, 1vs.2, 3vs.1 and 

1vs.3. These differential distributions are consistent with the match result (wins vs. 

losses) and the opponent team’s strength; 

 ii) At meso level, the dynamics of simplices transformations near the goal 

depends on significant changes in the players’ speed and direction, to improve their 

positioning to score or to unbalance the situation. 

 iii) At macro level, simplices are connected to one another, forming “simplices 

of simplices” including the goalkeeper and the goal.  

 These results may significantly contribute to improve training and playing 

strategies and therefore to validate qualitatively that hypernetworks and related 

compound variables can capture and be used in the analysis of the cooperative and 

competitive interactions between players and sets of players’ in soccer matches. 
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The combination of sports sciences theorization and social networks analysis (SNA)

has offered useful new insights for addressing team behavior. However, SNA typically

represents the dynamics of team behavior during a match in dyadic interactions and in

a single cumulative snapshot. This study aims to overcome these limitations by using

hypernetworks to describe illustrative cases of team behavior dynamics at various other

levels of analyses. Hypernetworks simultaneously access cooperative and competitive

interactions between teammates and opponents across space and time during a

match. Moreover, hypernetworks are not limited to dyadic relations, which are typically

represented by edges in other types of networks. In a hypernetwork, n-ary relations

(with n > 2) and their properties are represented with hyperedges connecting more

than two players simultaneously (the so-called simplex—plural, simplices). Simplices

can capture the interactions of sets of players that may include an arbitrary number

of teammates and opponents. In this qualitative study, we first used the mathematical

formalisms of hypernetworks to represent a multilevel team behavior dynamics, including

micro (interactions between players), meso (dynamics of a given critical event, e.g., an

attack interaction), and macro (interactions between sets of players) levels. Second, we

investigated different features that could potentially explain the occurrence of critical

events, such as, aggregation or disaggregation of simplices relative to goal proximity.

Finally, we applied hypernetworks analysis to soccer games from the English premier

league (season 2010–2011) by using two-dimensional player displacement coordinates

obtained with a multiple-camera match analysis system provided by STATS (formerly

Prozone). Our results show that (i) at micro level the most frequently occurring simplices

configuration is 1vs.1 (one attacker vs. one defender); (ii) at meso level, the dynamics of

simplices transformations near the goal depends on significant changes in the players’

speed and direction; (iii) at macro level, simplices are connected to one another, forming

“simplices of simplices” including the goalkeeper and the goal. These results validate

qualitatively that hypernetworks and related compound variables can capture and be

used in the analysis of the cooperative and competitive interactions between players

and sets of players in soccer matches.
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INTRODUCTION

Coaches, players, and scientists have long tried to understand
team behavior dynamics during a game, aiming to develop
interventions and training plans that may increase team
performance (Araújo and Davids, 2016; Passos et al., 2017).
Broadly speaking, research in performance analysis in team
sports searches for variables describing game dynamics that are:
(i) useful and accessible to coaches and athletes; (ii) obtained
automatically or semi-automatically from game observation;
and (iii) related to team outputs, such as, match results. For
finding such variables it is necessary to capture the multi-leveled
dynamics emerging from differential interactions between many
heterogeneous parts (e.g., players), while considering potential
adaptations to changing environments. In this way, teams and
athletes can be seen as co-evolving subsystems that self-organize
into new structures and behaviors (Johnson, 2013), i.e., they form
team synergies (Araújo and Davids, 2016). Such team synergies
emerge from physical and informational constraints (Schmidt
et al., 1998, 2011). Importantly players are perceptually linked
mainly by informational constraints, since physical links among
them are very rare (e.g., when forming a wall of players; Riley
et al., 2011). Several studies have analyzed the coupling among
performers based on interpersonal distance measures (Passos
et al., 2011; Fonseca et al., 2013; Rio et al., 2014), with a higher
emphasis on the distance between a player and the immediate
opponent (e.g., Headrick et al., 2012). In the present study, we
extend this player-immediate opponent distance to the closest
player (opponent or not).

These interactions, based on informational and physical
constraints have been studied by network theorical approaches,
like social network analysis (SNA). SNA is a powerful tool
to capture and study interpersonal relations in team sports
(Araújo and Davids, 2016); however, this method can only be
used for representing binary (2-ary) relations (Johnson, 2006;
Criado et al., 2010; Boccaletti et al., 2014). The most common
graphical representations of SNA depict players as nodes in fixed
positions in the pitch (the field of the match), with edges between
them representing the cumulative “ball flux,” i.e., ball passes,
over time (Duch et al., 2010; Fewell et al., 2012; Grund, 2012;
Clemente et al., 2015; Araújo and Davids, 2016; Travassos et al.,
2016). This is a fundamental limitation of typical SNA in sport
context, as it restricts its application to the attacking phase of
team dynamics. Typically, all other relevant types of interactions,
either cooperative or competitive, are not considered. In this
study, we investigate how cooperative (e.g., between players of
the same team in order to create a scoring opportunity) and
competitive interactions (e.g., between players of different teams
competing for ball possession) may be captured and analyzed
via multilevel hypernetworks. On the one hand, according to
Boccaletti et al. (2014), multilevel networks constitutes the new
frontier in many areas of science since it describes systems that
are interconnected through different categories of connections
(e.g. relationship: teammate vs. opponent; activity: increasing
vs. diminishing interpersonal distance; category: attacker vs.
midfielder) that can be represented in multiple layers, including
networks of networks (e.g., interactions between teams). On the

other hand, in a hypernetwork, a hyperedge can connect more
than two nodes, thus directly representing n-ary interactions
occurring among small sets of nodes, ⟨pi, . . . , pj⟩ (Johnson,
2006, 2008, 2013, 2016; Criado et al., 2010; Boccaletti et al.,
2014). This generalization provided by hypernetworks enables
the representation of cooperative and competitive interactions
that occur during the game and that involve an arbitrary number
of players (teammates or opponents).

In the present study, we have extended the approach by
Johnson and Iravani (2007) by introducing compound variables,
e.g., local dominance, which capture the structure and dynamics
of cooperative and competitive interactions in the following
ways:

i. By considering the domain specificity of soccer matches to
tag the sets of players formed (e.g., 2 vs. 1 corresponds to a set
with two attackers and one defender) as these tags describe
local dominance (Duarte et al., 2012);

ii. By including the spatiotemporal occurrence of the different
sets of players by counting their frequency and location;

iii. By analyzing and relating the dynamics of the sets
with players velocity in specific events (goal scoring
opportunities);

iv. By studying, for the same events of interest, the formation
and dynamics of higher level simplices; notably, the relations
between simplices of simplices.

The present approach is applied to a set of matches in order
to investigate how the proposed compound variables can be
useful on characterizing the behavior of players and teams at
different levels and the relationships between these levels and
match context, e.g., team local dominance and current match
result.

As a first step in this approach, it is necessary, at each
level of analysis, to identify the meaningful relations for the
match dynamics, and represent them using different criteria for
selecting the players in each set (i.e., connected by a hyperedge;
Johnson, 2008, 2016). According to Passos and colleagues the
analysis of the interpersonal distances is adequate for complex
systems modeling (Passos et al., 2011). As we are interested in
cooperative and competitive behavior in the pitch, geographical
proximity between players (Headrick et al., 2012) can capture
whether an interaction between players exists or not (e.g.,
functional couplings). Also, in the investigation of the relation
between higher (macro) level of analysis and players’ individual
actions (micro), it is important to consider the velocity of each
player, as well as the velocity of the set of players, represented by
the set’s geometric center and obtained through the computation
of each players’ velocity. For example if such set is expected
to maintain its structure or if it is about to split when a
player’s velocity vector is moving away from the other players.
Operationally, we have defined that a player does interact with
his closest player; this interaction is cooperative when that
closest player is a teammate, and competitive when it is an
opponent. Thus, time and space are highlighted in the present
approach using hypernetworks because it uses geographical
proximity criteria, and also because it captures temporal changes,
by considering the players’ geographical positions over time
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(t1, t2, ..., tn). The compound variables adopted in this study
reflect and capture this space and temporal features, e.g., local
dominance and the dynamics, i.e., changes on, players’ sets.

In Figure 1, we show an example of a set of nodes identified
at Level N: two attacking players (a1 and a2,), a defender (d1), a
goalkeeper (d0), and a goal (Ga). These nodes are connected by
two hyperedges at Level N+ 1, corresponding to sets ⟨a1, a2, d1⟩
and ⟨d0,Ga⟩ in one time frame, and ⟨a1, d1⟩ and ⟨a2, d0,Ga⟩ on
the next.

For a more complete description of the system’s dynamics,
each tuple identified in the hypernetwork can be extended by an
element, R, that describes the relationships in the set (Johnson,
2013). Each of these extended sets is called a simplex (Johnson
and Iravani, 2007; Johnson, 2013). For example, R is the path
to understand why the sets ⟨a1, a2, d1⟩ and ⟨d0,Ga⟩ on one
frame lead to the sets and ⟨a1, d1⟩ and ⟨a2, d0,Ga⟩ on the next.
When a player observes the game searching for the best action
possibilities offered by the other players’ positioning, the entire
configuration of team-mates and opponents has to be perceived.
Such sets of players, either in 1vs.1, 2vs.1, or 2vs.2, or any other
set, may be related to one another, regarding the players’ general
configuration. Thus, when one player decides to move, the entire
configuration is affected. Johnson and Iravani (2007) propose
naming the “2 attackers vs. 1 defender” structure, the defenders’
dilemma, since the defenders can opt to tackle the ball or intercept
the pass between attackers. In a similar situation involving the
goalkeeper, the goalkeepers’ dilemma, the options are moving

to the right or left of the goal, or moving toward the attacker
leaving the goal behind. The goal can therefore be considered
as a constraint that attracts the opponents and instigates the
defenders to position as if it were an opponent. For this reason,
we have included goals in the definition of simplices, because they
show similarities to an “attacking player” (e.g., in the goalkeepers
dilemma).

In this study, we propose several compound variables to
describe the players’ cooperative and competitive behavior
dynamics during a soccer match. The simplest of these variables
depicts the dominant interactions in each set, and is expressed by
two values representing the number of attacking and defending
players, for example, 2 vs. 1 corresponds to a set with two
attackers and one defender. In Figure 1, the two dominant
relationships are R1 = (2 vs.1) and R2 = (0 vs.1), and the
corresponding simplices are σ1 = ⟨a1, a2, d1; (2 vs.1)⟩ and σ2 =

⟨d0,Ga; (0 vs.1)⟩. The behavior of a team during a match can
then be described by other compound variables that characterize
the relative frequencies of the aforementioned relationships. For
example, the minimal structure (simplex) of players’ interactions
occurring more frequently in a match can be assessed.

At higher complexity levels, the hypernetwork can represent
the interactions between related simplices, or simplices of
simplices (see Figure 1, Level N + 3; Johnson, 2006, 2013;
Johnson and Iravani, 2007). In what regards the study of
dynamics: less dynamic structures (e.g., number of players,
players’ roles, etc.) are called backcloth, and higher rate changes

FIGURE 1 | Multilevel hypernetwork representation (from bottom to top). Each level corresponds to a different abstraction level (Level N, players in the pitch; Level

N + 1, proximity-based simplices; Level N + 2, local dominance relation; Level N + 3, dynamic analysis via simplices of simplices). Also represented, the

displacement in a soccer game of 2 sequential time frames (from the left to the right hand side) (Adapted from Johnson and Iravani, 2007).
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(e.g., players positioning in relation to opponents, teammates
and the goal or the ball) are called traffic (Johnson, 2013) and
represent dynamics within the backcloth. Thus, one important
feature of hypernetwork analysis in the sports context is the
representation of players’ moves, across time and space, and
between structured sets (i.e., from one simplex to another).
As shown in Figure 1, this multilevel approach allowed us to
capture the number of players and their moves and the players
in the match-day squad (Level N), the coordinated sets of players
along the match (Level N + 1), the local advantage of one team
over the other (e.g., numerical dominance; Level N + 2), and
the relationship between the sets (Level N + 3). Moreover, by
using this approach different compound variables, e.g., local
dominance, may explain distinctive aspects of the competitive
and cooperative behavior of players and teams.

In this study we put forward the hypothesis that
hypernetworks and compound variables over these
hypernetworks can capture relevant features of soccer team
dynamics during a match. We validate qualitatively this
hypothesis by applying the proposed method to a set of matches
of a focal team within different contexts and by analysis the
results thus obtained. The aim of this study was therefore
to operationalize a method addressing different levels of
hypernetworks on soccer matches and by providing a study case
for tackling the following questions:

i. At Level N: Has the backcloth (players) changed during the
match, as expressed by events such as, substitutions, sent-offs
and injuries? Typical notational analyses answer this question
directly.

ii. At Level N + 1: What are the most frequently occurring
simplices in soccer matches? A histogram with the relative
frequencies of occurrence of every type of simplices (e.g.,
1vs.1, 2vs.1...) can be computed.

iii. At Level N + 1: Are there any differences in simplices’
structure and occurrence between home or away matches for
Team A? A heat map (2D spatial frequency map) for each of
the relationships can be computed to show their location in
the pitch.

iv. At Level N + 1: Are there any changes in simplices structure
and field position as the match score changes? Instead of
considering the entire match, the heat maps can address
specific periods of the match. These periods are bounded by
relevant match events, e.g., a goal being scored.

v. At Level N + 2: What are the dynamics of the simplices’
interactions near the goal, immediately before the score
changed? Instead of examining the results for the entire
match, or for given periods, it is possible to perform a
frame-by-frame analysis to assess which simplices formed
and how they changed, and also to identify the players who
contributed to those changes.

vi. At Level N + 3: Is there any interaction between simplices
leading to the emergence of new team configurations that, in
turn, can lead to scoring a goal? To answer this question, it is
necessary to evaluate how the different simplices relate to one
another, how they aggregate into higher-level simplices, and
how they recombine into different simplices.

METHODS AND MATERIALS

Five matches were analyzed from a pool of 11 matches of
the English Premier League season 2010–2011 provided by
STATS (formally Prozone). This data set was selected because it
contained no errors, such as, missing or duplicated positioning
data, and because the backcloths were equivalent (i.e., there were
no differences between teams regarding the number of players
due to sent-offs or injuries without substitutions). Participants
included all the players in the field from Team A (our focal
team), and the players from five teams playing against team
A (teams B, C, D, E, and F). The matches included three
home matches, against teams B, C, and D, and two away
matches, against teams E and F. The players’ substitutions
were considered but not analyzed in detail in this study (i.e.,
data for both initial squad and substitutes are used but the
implications of substitutions in the backcloth are not taken into
consideration).

Matches and their score were: TeamA vs. Team B (1–0); Team
A vs. Team C (1–0); Team A vs. Team D (1–0); Team E vs. Team
A (2–1) and Team F vs. TeamA (0–0). The details for each match
are presented in Table 1.

For each match, raw data consisted of two-dimensional player
displacement coordinates provided by STATS. These data were
obtained by a multiple-camera match analysis system whereby
the movements of the 22 players during the match were recorded
with eight cameras positioned at the top of the stadium. The
frames were processed at 10 Hz through an automated system
that synchronized the video files. The effective playing area
was 80m wide and 120m long, including the out-of-bound
locations such as, set-plays. A computer procedure for computing
the simplices’ hyperedges set with the proximity criterion was
implemented using GNU Octave version 4.2.0 and applied to
each frame. This criterion has the advantage of being non-
parametric; the corresponding pseudo-code for this algorithm is
provided in Figure A1.

Each simplex was represented graphically by the convex hull
computation (the minimum convex area containing all players
in the simplex) and included the velocity of each player (vector
velocity considering the instant t-1 and t), as well as the velocity
of the geometric center of the simplices.

To represent the field positioning of the different types of
simplices, we used heat maps for the frequency of simplices
occurrence. This type of graphical representation allowed us to
capture the most frequent type of simplices for each time period,
as well as their geographical position in the field.

TABLE 1 | Matches’ details indicating the result and changes in the team

structure due to sent-offs, substitutions, or injuries (without substitution).

Matches A vs. B A vs. C A vs. D E vs. A F vs. A

Results 1–0 1–0 1–0 2–1 0–0

Substitutions 3–3 3–3 3–3 3–3 2–2

Sent-offs 0–0 0–0 0–0 0–0 1–1

Injuries (without substitution) 0–0 0–0 0–0 0–0 0–0
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For analyzing specific time points, we represented simplices
(Level N + 2, Figures 5, 6) with two different colors: for players
in team A, vertices are in red, for players in team B, vertices are in
green. For the higher-level simplices in level N+ 3, Figure 6, the
blue o symbol represents the geometric center of the simplices.
Such representation facilitates the simultaneous identification of
players in both teams and the type of simplices in level N + 3.
Moreover, we also represented the proportion (local dominance
or balance) of each type of simplices in level N + 2, as well as
the type of relation that exists between the simplices, or simplices
of simplices in any instant of time at level N + 3. The velocity of
the simplices and players were also included, thus allowing for the
evaluation of simplices consistency, for example, transformations
such as, when a player entered or moved away from a given
simplice, or when all players moved simultaneously to the same
position, could be detected.

RESULTS

Our results revealed how the matches’ hypernetworks are
characterized from Level N to Level N+ 3.

We analyzed the structure at Level N of the five matches. As
expected, we found 11 players in each team, with some players
being substituted but with no sent-offs (with the exception
of match F vs. A) or injuries occurring after there were no
substitutions left (hence the total number of players remained
constant). At this level of analysis, individual player statistics
and heat maps of their positioning during the match are usually
performed. However, as this type of performance analysis is
widespread in sport (for a review see Passos et al., 2017), and
given that the focus of this paper is on team behavior, we do not
present such results here.

We computed the relative frequencies of the simplices
structures at LevelN+ 1 for players in both teams (Figure 2). The
most frequently occurring simplices structures in the 5 matches:
1vs.1; 2vs.1; 1vs.2; 2vs.2; 3vs.1; 1vs.3. These results reveal that
the most frequently occurring simplices structures are similar in
everymatch. Around 25% of the simplex structures corresponded
to 1vs.1, independently of the type of match (home or away) or
its final result. The second most frequently occurring simplices
structures were 2vs.1 and 1vs.2 (around 10%), followed by 2vs.2
(around 6%), and finally by 3vs.1 and 1vs.3 (around 3%). Among
other simplices structures, we could also often find interactions
between the goalkeeper and the goal, as identified in 0vs.1 or 1vs.0
structures (around 11%). However, these simplices structures do
not reveal a social interaction (i.e., cooperation or competition)
and are therefore not compared to other structures.

By computing the frequencies for the “local dominance tag”
compound variable it is possible to investigate for each game the
most frequent cooperation and competition interactions sets.

Level N+ 1 describes the geographical distribution in the pitch
of themost frequently occurring simplices structures, as shown in
heat maps (Figure 3).

Figure 3 shows that although 1vs.1 is the most frequently
occurring simplex tag in every match, the location in the
pitch where it can more often be found varies between
matches. Simplices, 2vs.1, indicating simultaneous cooperation
and competition, occurs mostly in the mid-field, and simplices
1vs.2 occurs mostly in the opponent side of the field.

By identifying the relevant events in a match, such as, changes
in the score, at Level N + 1 we can capture changes in collective
behavior across time. Figure 4 shows the results of this analysis
in heat maps corresponding to different sections of the E vs. A
match (final result 2–1). For example, these heat maps reveal that

FIGURE 2 | Histogram for the most frequently occurring simplices structures in the 5 matches: 1vs.1; 2vs.1; 1vs.2; 2vs.2; 3vs.1; 1vs.3. The matches (and score)

were: Team A vs. team B (1–0); Team A vs. Team C (1–0); Team A vs. Team D (1–0); Team E vs. Team A (2–1); and Team F vs. Team A (0–0).
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FIGURE 3 | Heat maps for field position of the most frequent simplices structures during the matches (when Team A, playing at home, attacks are represented from

left to right). The color gradient from red to blue represents the frequency of simplices in that location (from most frequent, red, to not occurring, dark blue).

the team with the lowest score shows a tendency for a decrease in
frequency of 2vs.2 near its own goal. Moreover, the next most
frequently occurring simplices, 3vs.1 and 1vs.3, can be found
more often close to the goal of the wining team.

Level N + 2 captures simplices dynamics, for example, before
changes in the score. Here we present an analysis of the simplices
having their geographical center closer to the goal. To answer
the question “what creates an opportunity for the attackers to
score?” simplices reveal how the defenders’ local dominance is
broken by the attackers. Figure 5 shows an example of local
dominance, in which team A (playing at home against B) scores
in a counter-attack sub-phase. The play was analyzed in a set of
consecutive frames (at 1 Hz) that captured the simplices nearer
the goal of interest. A velocity vector computed using consecutive
frames was associated to each player to show aggregation or
disaggregation, as a player moved toward or away from the
simplices geometric center.

The example in Figure 5 shows that, in the frames before
a goal is scored, some attacking players (e.g., 6, 7, and 10)
increase their speed to place themselves in a better position
either to create an invitation for a successful pass or to create a
scoring opportunity. On the other hand, defensive players try to
maintain or reduce interpersonal distance (e.g., 16, 19, and 22).
This is aligned with other studies (Fonseca et al., 2013) where
it was observed that attackers tried to increase the interpersonal
distance while the defenders tried to reduce it. The consequence
of these moves can be captured by simplices’ configuration. This
is more evident if a player stays in the same simplex or moves
to another simplex. Changes in players’ velocity leads to break

(disaggregate) or maintain (aggregate) the simplex’s integrity
when they move away or toward the simplex geometric center,
respectively.

Level N + 3 indicates how simplices interact between them,
thereby creating higher-order simplices. These simplices form by
aggregation of Level N + 1 simplices based on the proximity
criterion of their geographical centers (Figure 6). To uncover the
changes in simplex structures leading to goal scoring, higher-
order simplices (Figure 6, purple polygons) were analyzed for the
frames where significant changes occurred in the Level N + 3
structures (simplices of simplices).

The example of Level N + 3 analysis in Figure 6 also reveals
the connections between players before a goal was scored. The
simplex formed by the goalkeeper and the goal is connected with
other simplices, as the goalkeeper tries to align with the closest
simplice while maintaining the link with the goal. Figure 6 also
shows how the simplices furthest from the goal are connected
with simplices more directly involved in the attacking phase (i.e.,
closest to the goal). Other information that can be extracted from
Level N+ 3 is how fast changes in the link with the goal can occur,
and which simplices are “disconnected,” for example, on one side
of the field.

DISCUSSION

The different levels of analysis of a hypernetwork can capture
various degrees of team behavior dynamics, from player, to
simplices, and to interactions between simplices across space and
time.
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FIGURE 4 | Heat maps for the field position of the different simplices structures (visiting team A attacks from the right to the left hand-side). Each column corresponds

to a temporal section of the match bound by a score change. The color gradient from red to blue represents the frequency of simplices in that location (from most

frequent, red, to not occurring, dark blue).

At Level N + 1, we could identify the types of simplices
occurring more often in a match, independently of their score or
context (home or away). The most frequently occurring simplex
was 1vs.1, followed by 1vs.0 and 0vs.1. The latter represents
the link between the goalkeeper and the goal. Also occurring
frequently were simplices with an unbalanced number of players,
2vs.1 and 1vs.2 (∼10%), followed by the 2vs.2 simplices (∼6%),
and finally by the 3vs.1 and 1vs.3 simplices (∼3%).

Important interpretations can be inferred from the simplices
at Level N + 1 when space and time, or contextual variables
(home or away match) are considered. For example, team
A won three home matches (all with score 1–0) but tied
(score 0–0) or lost (score 2–1) in away games. The 1vs.1
simplices tend to occur in the mid-field and on the right
of the attacking direction of team A (Figure 3). However, in
the match lost against team E, 1vs.1 simplices were more
dispersed and toward the left side of the pitch. Another
frequently occurring simplex with a balanced number of
players was 2vs.2, for both teams (Figure 3). Interestingly, these
simplices also had a unique distribution in the match lost
against team E, as they occurred more toward the center of
the pitch and the opponent middle field. Additionally, these
structures differed from match to match, showing the emergent

properties of complex adaptive systems, specifically the context
dependency (opponents and scoring evolution; Araújo and
Davids, 2016).

Concerning simplices with an unbalanced number of players,
2vs.1 occurred more often in the center of the pitch and in
the opponent middle field (similarly to 2vs.2 in the match lost
against team E). The 1vs.2 simplices were also detected more
often in the middle fields. Simplices 3vs.1 were distributed in
the center of Team A’s middle field, however, in the match
against team E, they were more distant from their own goal (in
the middle field). In the opposite way, in the matches against
teams B and F, there were some notable occurrences of 3vs.1
simplices near team’s A goal. Moreover, in these matches, 1vs.3
occurred near the center but more toward team A’s middle field,
suggesting that team B and F “forced” team A players away from
their goal.

The results obtained considered both geographical placement
and context dependency, and showed that the use of simplices
formation captured match properties, such as, local dominance.
These properties emerge in each match event resulting from
the local interaction between players of both teams. Multilevel
hypernetworks proved to be a useful method in answering
to chief problems such as, the relation among micro (e.g.,
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FIGURE 5 | Simplices in a sequence of nine frames (58′23′′ to 58′31′′) leading

to a goal by Team A. Visiting players are attacking from right to left

(represented in green), while home players are attacking from left to right

(represented in red, including the opponents’ goal). A simplex is represented

by the polygon (or a line when there are only two players) defining the convex

hull (or envelope) that links the nodes (players or goal). A velocity vector for

each player is also presented.

players’ positions), meso (e.g., local dominance), and macro
levels (e.g., match result). Moreover, the use of hypernetworks
allows that the analysis can consider more than the typical (in
SNA) 2-ary relations between players. These contributions fulfill
previous gaps in interpersonal coordination research (Passos
et al., 2016).

The analysis of the dynamics of simplices interactions at Level
N + 2 revealed abrupt changes in the speed and direction of
player vectors near the goal. These changes showed a tendency
to be associated with transformations in simplex structure, for
example, when an attacker passed through the defenders to score,
or when a player disconnected from one simplex to interact with
another (to balance or unbalance the simplex). The example in
Figure 5 analyzed a change in the score that resulted from a ball
lost by team B in team A’s middle field that led to a successful
counter attack (with a goal scored). This event was characterized
by transformations in the simplices’ structure occurring within
the short duration of the counter attack (9 s, from 58′23′′ to
58′31′′). Next we present the set of simplices (σ ) and their
evolution for these 9 s leading to a goal being scored by Team
A (at 58′31′′). Simplices containing the player who scored the
goal are identified with (S). Simplices containing the goal are
identified with (G).

σ1, 58′23′′ ⟨a3, a5⟩+ σ2, 58′23′′
〈

a9, a6, a10, d24
〉

+ σ3, 58′23′′
〈

a7, d22, d16, d19, d21; (G, S)
〉

σ1, 58′24′′ ⟨a3, a5⟩+ σ2, 58′24′′
〈

a9, a6, a10, d24, a7, d22, d16,

d19, d21; (G, S)
〉

σ1, 58′25′′ ⟨a3, a5⟩+ σ2, 58′25′′
〈

a9, d24
〉

+ σ3, 58′25′′
〈

a6, a10, a7, d22, d16, d19, d21; (G, S)
〉

σ1, 58′26′′
〈

a3, a5, a9, d24
〉

+ σ2, 58′26′′
〈

a6, d22
〉

+ σ3, 58′26′′
〈

a10, a7, d16, d19, d21; (G, S)
〉

σ1, 58′27′′
〈

a3, a5, a9, d24
〉

+ σ2, 58′27′′
〈

a6, d22
〉

+ σ3, 58′27′′
〈

a10, a7, d16, d19, d21; (G, S)
〉

σ1, 58′28′′
〈

a3, a7, a9, d24; (S)
〉

+ σ2, 58′28′′
〈

a6, d22
〉

+ σ3, 58′28′′
〈

a10, d16, d19, d21; (G)
〉

σ1, 58′29′′
〈

a3, d17, d26
〉

+ σ2, 58′29′′
〈

a9, a7, d24; (S)
〉

+ σ3, 58′29′′
〈

a6, d22
〉

+ σ2, 58′29′′
〈

d21; (G)
〉

σ1, 58′30′′
〈

a3, d17, d26
〉

+ σ2, 58′30′′
〈

a9, d24
〉

+ σ3, 58′30′′
〈

a6, a7, a10,d16, d19, d22; (S)
〉

+ σ2, 58′30′′
〈

d21; (G)
〉

σ1, 58′31′′
〈

a9, d24,
〉

+ σ3, 58′31′′
〈

a6, a10,, d22
〉

+ σ2, 58′31′′
〈

a7, d16, d19, d21; (G, S)
〉

The results show that certain moves performed by the player
who scored the goal (player a7) had significant impact on
some simplices transformations, for example, at instants 58′27′′,
58′28′′, 58′29′′, 58′30′′, and goal scored. Player a10 had an
important role in promoting balance in the simplex that scored
the goal (with player a7), by maintaining defender d19 distant
from his teammate d16. Moreover, player d19 appeared to be
facing the defender’s dilemma, hesitating between defending
his opponent (player a10) and supporting his teammate (player
d16). Player d24 was also essential in the attack play leading
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FIGURE 6 | Higher-order simplices (simplices of simplices) in a sequence of five frames before team A scores a goal. Higher-order simplices are represented by the

polygon (and lines) forming the convex hull (−) that connects the geographical centers of the N + 1 simplices. See Figure 5 legend for the codes for players, their

velocity, and simplices.
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to the goal scored, as he lost the ball but kept pursuing it,
almost reaching player a7 and thereby including him into
his simplex. Finally, player a6 broke the central simplex
(containing teammate a7) by attracting a defender toward him
and hence reducing the number of players in the central middle
field.

Results showed that by considering the temporal sequence
of simplices transformations during critical events of the match
(e.g., from ball recovery to scoring a goal) the dynamics of
interaction among players is captured. Moreover, it is possible
to analyze how interactions among players led to changes in
simplices’ structures and, consequently to such critical events
(e.g., a goal scoring opportunity). Multilevel hypernetworks offer
a fine temporal grain of analysis of how the micro-meso-macro
level relationships emerge.

Level N + 3 clarified the dynamics of team behavior by
considering the entire set of simplices, including the interactions
between them (which form simplices of simplices). This level
of analysis revealed the connections of players with simplices
during a match. We found that the goal has an “anchoring effect”
toward the goalkeeper, however, this simplex also connected with
the nearer simplex (0vs.1 represents the home team and 1vs.0
the visiting team). Some simplices seemed to disconnect during
critical situations, for example, when other simplices were close
to the goal. This may be explained by an intentional reduction
in speed by the attacking players to try and maintain the nearest
defenders away from teammates (Figure 6).

This study showed that the hypernetworks’ analysis by
considering simplices of simplices reveal the degree of
connection between sub-sets of players.

CONCLUSIONS AND LIMITATIONS

We have applied multilevel hypernetworks analysis, and a set
of associated compound variables, to selected soccer matches by
using positional variables for all players involved.

The interactions between players, as well as the sets of these
interactions (simplices), were assessed based on interpersonal
distance, more specifically spatial proximity and instant speed
relational variables. Each player is therefore linked to his closest
player (or goal, for the goalkeeper) and at higher levels, simplices
are also linked to their closest simplices. The vectors representing
the players’ speed can represent the emergent moves from the
players in order to search for new interactions or escape from
others. These two “interaction variables” allowed for a deeper
analysis of the structures and coordination levels emerging from
the game.

Our results revealed a pattern in these interactions’ dynamics
that was independent of the type (home or away) and score
of the match. Specifically, in every match analyzed the most
frequently occurring simplices structures were, by decreasing
order of frequency, 1vs.1, 2vs.1 and 1vs.2, 2vs.2, and finally, 3vs.1
and 1vs.3.

However, these simplices show differences in their
distribution on the pitch, and this is particularly evident
for unbalanced simplices such as, 2vs.1, 1vs.2, 3vs.1, and

1vs.3. These differential distributions are consistent with
the match result (wins vs. losses) and the opponent team’s
strength.

We analyzed the changes in local dominance at Level N +

2 associated with critical events (e.g., score changes) and found
that dramatic speed changes can be detected in the players of
simplices directly linked to the event (goal scored). Velocity
is therefore the variable that allows players to improve their
positioning to score or to unbalance the situation.

Finally, our last and global analysis level revealed how all the
simplices were connected, but most importantly, it enabled to
permanently connect all the simplices into larger hypersimplices,
including the goal and goalkeeper simplex, and also the defenders
and attackers who were distant from the goal.

These results may significantly contribute to improve
training and playing strategies. We highlight the importance
of mastering 1vs.1 situations (with and without the ball), as
this structure occurs more frequently in all types of matches.
For example, coaches could design exercises to train players
to rapidly transform any structure into a 1vs.1 structure.
Unbalanced situations such as, 2vs.1 and 3vs.1 typically reveal
which team is dominating the match, particularly when those
structures occur on the attacking side of that team’s field.
Thus, designing training exercises that create an overload
for the attacking team may allow players to better adapt
to such situations in a match. Finally, we found that as
an attacking team moves closer to the goal, changes in
player speed become more pronounced. It is therefore likely
that encouraging such speed changes during training may
facilitate the players’ positioning inside finishing areas during a
match.

Moreover, when players are connected with other players
(in cooperation or competition) forming simplices, where the
smaller simplices are also connected with other simplices, team
coordination develops due to attunement to shared affordances
and the creation of team synergies (Araújo and Davids, 2016).
Training sessions may benefit from using the present analysis
(e.g., most frequent cooperation/competition tag sets) and
consequently design training activities that promote collective
learning among groups of players (Travassos et al., 2016).

In the context of this article the criterion, closest player, for
the formation of hyperedges was the only one used. The results
presented at different levels of analysis are therefore conditioned
and limited by this criterion. At the same time all these results
where possible with only this parsimonious criterion and without
any other assumptions.

Other limitation of the study is that there is no data about
ball positioning, nor about “ball flux” (e.g., passes between the
players). This type of interactions between players could be
included by extending the proposed method with additional
layers. In such layers, ball flux could be represented either as a link
between players’ or simplices, or alternatively as an additional
term in the relationship, R, of the simplices.

Multilevel hypernetworks is a promising framework for
soccer performance analysis that reveals important features
of cooperative and competitive interactions during attacking
plays. By considering space and time in multilevel analyses
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involving interactions between two or more players, we
can obtain a richer understanding of real-world complex
systems.
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APPENDIX

FIGURE A1 | Pseudocode for building the simplex hyperedge set.
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3.3 The Interaction Between Soccer Teams Reveal Both Design and 

Emergence: Cooperation, Competition and Zipf-Mandelbrot 

Regularity 

3.3.1 Context and summary 

To find complexity in soccer matches through the lens of interactions (MHA) resulted 

in the identification of some emergent properties of complex systems, specifically from 

complex social systems. One of these properties, are the regularities and statistical 

properties found in players’ sets established (spatial proximity between players) during 

entire matches. Complex systems empirical studies in these statistical distributions of 

number of items (e.g., words in texts, people in cities, tree patch sizes) have shown that 

these scaling properties follows empirical laws known as Zipf-Mandelbrot. Our paper 

demonstrated that the (re)occurrence of pitch location based sets of players in a soccer 

match also obeys this empirical laws. We used experimental data collected from 10 

matches of the 2010/11 English Premier League that seems to be the case for most of 

the sets of players. The other property was revealed through the exceptions (sets that 

occur significantly more than the majority of the other ones) to these ZM regularities. 

We have found that the sets that are most frequent, corresponds to two some specific 

sets arrangement, expressing the artificial feature of complex social systems known as 

Design. The first example reveals the narrow and specific purpose of the two 

goalkeepers from each team, which attract them to their goals. The second example 

identifies in some matches the effect of symmetric spatial positioning (e.g., left defender 

and right attacker from opposite teams) resulting in the significantly higher occurrence 

of some of these sets revealing pre-defined intentionality. Therefore, the coaching 

process could be seen as a design discipline when implementing strategy and teams’ 

tactics. 
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ABSTRACT

Considering soccer matches as complex systems facilitates the identification of emergent properties that result from players’

interactions. Such properties are the regularities and statistical characteristics found in players’ couplings and sets established

during the matches. Empirical studies about the statistical distributions of number of items (e.g., words in texts) have shown that

these distributions follow scaling properties according to empirical laws known as Zipf-Mandelbrot. In this paper we investigate

if the (re)occurrence of pitch location of sets of players in a soccer match also obeys to these empirical laws. From data

collected from 10 soccer matches, results indicate that it seems to be the case for most of the sets of players. Exceptions to

this are found in the sets that are most frequent and that correspond to particular types of sets (e.g., goalkeeper and goal, left

defender and right attacker from opposite teams). Rather than challenging the hypothesis of a Zipf-Mandelbrot type law for this

system, we argue that these exceptions are typical of design (a trait of human interaction with complex systems). Therefore,

these exceptions can be explained by the elements (players) configuration design, expressing match strategy, before the team

enters in such dynamical processes (the game).

Introduction
The study of complex systems has taken many approaches, a common one is to verify if a given system exhibits well known
complexity features. For instance, in social complex systems there are key features such as emergent behavior resulting
from self-organization. Self-organization is due in most cases to the interaction of the multiple parts of the system. One
interesting and extensively investigated aspect of self-organization is the emerging exchanges of information (e.g. verbal and
non-verbal communication and their statistical properties) between the people in interaction in a given system1. Typically
these communication processes are based on synergistic relations (cooperative based interactions) and also on non-cooperative
interactions such as confrontation.

In this paper we investigated how these processes and interactions are expressed in team sports. In particular, we investigated
if soccer matches express similar and hallmark features present in other complex systems. Also, we addressed the influence
of pre-defined design in the cooperative and competitive interactions between players. Notably in team sports, there is
explicit inter-dependency between players-opponents’ behavior. Often, the communication processes in soccer matches are
visually-based and expressed via players’ moves and interpersonal spatial relationships. In this self-organized behavior, one key
feature is the synchronization of players by means of being perceptually linked due to spatial proximity. The proximity-based
sets thus formed may have different dimensions, both in terms of the number of players in the set, and their constitutions,
i.e., the team that each player belongs to. Each set and its inter-relationships form what is, in the context of hypernetwork
theory, called a simplex – plural, simplices – of players, representing the n-ary spatial interactions between at least two spatially
connected players2, 3. In figure 1 it is possible to observe the simplices that are found at a particular time frame t = 00m : 10s in
a soccer match. In the present study each simplex is represented by the spatial convex hull enclosing the players in the set. One
such simplex, simplex s35, is composed of players 3, 4 and 11 from team A (blue) and players 18 and 20 from team B (red),
thus forming a 3 vs. 2 simplex3, 4. By using the temporal aggregate of the geometrical center for each simplex convex hull a
spatial histogram for that simplex can be obtained. Figures 1a and 1b illustrate two of these histograms using spatial heat maps,
respectively for simplex s1 and s35. Simplices s1 and s5 represent a special type of relationship, that between a player, the
goalkeeper, and the goal.
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Figure 1. Players’ location and simplices at frame t = 00m : 10s

(a) Simplex s35 (3vs.2) (b) Simplex s1 (B goalkeeper and goal)

This paper aims to verify if, and why, the histograms of soccer matches exhibit the scaling properties of other human
and natural phenomena, usually described by power law type models. These power laws are common signatures of chaotic
processes that are at one point self-organized, as it happens in many natural and social systems. Typical examples are found
in the context of population distribution in big cities5–7, forest fires7, forest patch sizes8, scientific citations7, 9, 10, WWW
surfing7, ecology5, 7, 11, solar flares7, economic index7, epidemics in isolated populations7, among others. An example of these
power laws is the Zipf empirical law and its generalization by Mandelbrot. In verbal communication processes such as natural
language and written texts, several studies have shown that words’ frequency of occurrence follows this particular type of
power laws. This results from the observation that texts and languages’ corpora have few words that are very frequent (e.g.
”a”, ”the”, ”I”, etc.) and many words that seldom occur. In Zipf’s empirical law model, given the item (e.g., word) frequency,
f (r), and order by their assigned rank, r in decreasing order (rank 1 is for the most frequent word; rank 2 is for the second
most frequent word, . . .11), their occurrence frequency decays linearly as the rank increases on a double logarithmic scale, as
expressed in equation 1

f (r) µ 1
ra (1)
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The generalization of this law, with a better fit to empirical data, due to Mandelbrot12 is expressed by equation 2

f (r) µ 1
(b + r)a (2)

Being a generalization, the later is also referred to as the Zipf-Mandelbrot (ZM) law.
In soccer performance features, such as the goal scoring distribution, also exhibit these statistical regularities related to

power laws. Notably, by computing the goal’s distribution in several main league soccer championships such as Brazil, England,
Italy and Spain it has been found that there are very few top-scorers and many players that score only a few goals7. The current
study focuses neither on these performance metrics nor on the individual behavior of players but rather on their relationships as
expressed by the simplices’ sets. That is, it investigates the systems’ meso-scale properties. Questions addressed at this level
typically concern processes2, 13; thus, aiming to understand what leads to a particular simplices’ set occurrence distribution14.

In the language realm several papers addressed the question if Zipf’s empirical law could not be observed in purely random
systems11, 15. These studies investigate the processes that may lead to these particular statistical distributions. In this paper we
tackled a similar question but from a different angle: the co-design expressed in the match strategy. Despite the uncertainty of
the human collective behavior, and thus the impossibility to predict the future state of complex systems, the deliberate design
of the social structures that composes the system can promote the prevalence of some specific desired behaviors4, 16–18. This
design is in most cases a collaborative or cooperative process19.

In soccer matches one can consider that the artificiality, i.e. the design expressed via strategic behaviour, of these social
complex systems is related to the specific outcomes to be achieved4, 16, 18. In team sports a very relevant aspect of the coaching
process is the implementation of the design20. What is particularly challenging in the study of soccer matches as social systems
is that the design results from both cooperative and competitive interactions17. The most frequent simplices, those that seem to
persist over the entire match, should thus be a consequence of this design, i.e., the teams’ strategy. When each team distributes
their players in the pitch (i.e., the team strategy; considering attacking, defending, midfielders, goalkeepers and left, right or in
the center of the pitch), they naturally become near to symmetric players from the other team. One such example is the right
attacker from team A vs. the left defender from team B. As these positions may be sustained most of the time in the match, this
will lead to opposing players establishing a set of one player from team A vs. one player from team B (1 vs. 1) that occurs very
frequently in the match. The formed sets may also depend on the pitch area, such as: i) the simplex set <Goalkeeper, Goal
> near the goal, corresponding to players with a very specific and narrow purpose17; ii) the defending team trying to have
numeric supremacy closer to its box (e.g., simplex s32 in figure 1)17.

The chief questions addressed in this paper, thus, refer to the simplices’ set occurrence distribution, notably: i) if well
known models and empirical laws, such as the Zipf-Mandelbrot law (ZM) fit the empirical distributions obtained from soccer
matches; and ii) the possible impact of design, i.e. match strategy, on the simplices’ set statistical distribution.

Methods

Raw data: players’ coordinates
The raw data used in this study consisted in the 22 players’ two-dimensional displacement coordinates provided by PROZONE
(now STATS) for 10 matches, five at home and five away, of a focus team (team A) in the 2010/2011 English Premier League
Season. This data was obtained via a semi-automatic tracking system based on multiple-camera analysis. In the system provided
by PROZONE the position of the 22 players during the match is estimated based on the synchronized video files from eight
cameras placed on the top of the stadium operating at a frequency of 10Hz (i.e., 10 frames per second, producing about 54000
frames per match)21. Player’s substitutions and sent-offs are also considered using ancillary descriptions of the match, e.g.,
commentary metadata.

Building of simplices’ sets and their heat maps
For each frame in the match the typical 22 players in the pitch plus the two goals are organized in sets, the simplices sets,
according to the computational procedure adopted by Ramos and colleagues3. The criteria for selecting the players (or goals)
for each set are based only in spatial proximity. In this paper the two goals are also considered in the simplices formation as
they act as special spatial references to the players, namely the goalkeepers. Figure 1 illustrates the players’ and goals’ position
in a particular time frame, were players and goals in the same simplex set are connected within their convex hull. Each simplex
is uniquely defined by its index, i and by its element set, si, such that: si = s j =) i = j. For each frame, t, St is the set of all
simplices’ sets that are found in that frame.
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ZM model, ranking and bootstrapping the simplices sets
Zipf and Mandelbrot empirical laws relate token values and their rank using, respectively, equation 1 and 2. These laws can
also be expressed by a probability density function 3.

pq ,r =
C

(b + r)a (3)

Where pq ,r is the probability density value for token with rank r under parameter set q = {a,b}. The value of C is given by
equation 4.

s

Â
r=cut

pq ,r = 1 (4)

The upper limit of the summation in 4 is s, which is the number of different simplices observed in the entire match. On the
other hand, given that in this study we also investigate the impact of design in the most frequent simplices sets we use also left
truncation in the generalization of these probability density function. Correspondingly, the summation lower limit, cut, defines
the rank used to left truncate the distribution. For example, if cut = 1 all simplices sets are considered, corresponding to the
usual case in the literature, if cut = 3 the two most frequent simplices sets are not considered.

Using a counting process, computed over the entire match, we obtain the frequencies for each simplex set, nr. These
frequencies are used to rank the simplices. This counting process is defined in equations 5 and 6

nr =
T

Â
t=1

Ir(t) (5)

where T is the number of samples in the match and Ir(t) is an indicator function given by:

Ir(t) =

(
1, sr 2 St

0, otherwise.
(6)

The total number of simplices’ counts, n is given by:

n =
s

Â
k=cut

nr (7)

where nr is obtained from equation 5 and the summation upper and lower limits are the same as in equation 4. In order to avoid
the artifacts resulting from using the same data set for both ranking and frequency value described by Piantadosi12 we used a
bootstrapping procedure similar to the one proposed also by Piantadosi12. The bootstrapping process is also used for defining
confidence intervals for the frequency values22 and for assessing the ZM law fit to the empirical data.

Fitting and validating the ZM distribution model
The analysis of these data structures related to the ZM distribution in real-life situations, implies an effective fitting procedure
and an appropriate test for the goodness of fit5. The estimation for the unknown parameters can be obtained by applying a
Maximum Likelihood Estimation (MLE).

The likelihood estimator lq for ZM is given by equation 8:

lq =
n!

ncut ! ·ncut+1! . . .ns!
·

s

’
r=cut

pnr
q ,r (8)

Taking the logarithm of lq :

Lq = ln
✓

n!
ncut ! ·ncut+1! . . .ns!

◆
+n ln(C)�a

s

Â
r=cut

(nr(r+b )) (9)

where s is the number of different simplices observed, and nr is the observed number of occurrences for simplex with rank r.
The estimation of the values for parameters a and b that minimize �Lq is performed using the numerical minimization

provided by Octave’s package optim function f minsearch via the Nelder & Mead Simplex algorithm23. Parameter C is obtained
from equation 4.

To test the validity of the model we used the c2 metric for assessing its goodness of fit24–26. Although the p� value
obtained from the c2 statistic is used to decide if the hypothesis should or not be rejected, we decided to show the c2/n value as
it does not depend on the sample size and where the ”rule of thumb” c2/n < 1 can be applied.
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Results
We present the results of the simplices formation over the entire 10 soccer matches; in particular, the following figures show
the specific results from three selected matches opposing: team A against team B (figure 2), team A against team C (figure 3)
and team A against team H (figure 4). In the figures: 2a, 3a and 4a, where we plotted the simplices’ set relative frequencies
versus the rank from the observed data. The gray area in these figures is obtained via a bootstrapping process where the limits
correspond to the 10% and 90% percentiles (as described in subsection Bootstrapping). The red and blue lines in sub-figures
2a, 3a and 4a correspond to the values obtained from the ZM model, for cut = 1 and cut = 3, with parameters C, a and b
estimated via Maximum Likelihood Estimation (MLE)5.

In sub-figures: 2b, 3b and 4b we plotted the c2/n metric for assessing the goodness of fit24–26 of the ZM model. (We opted
for plotting the c2/n instead of c2 as it is easier to identify the c2/n < 1 rule of thumb criteria for not rejecting the hypothesis.)
This metric is computed according to expressions 8 and 9 and plotted against the cut value.

Sub-figures c), d) and e) for all three cases show the simplices’ position heat maps for the 3rd to 5th most frequent occurring
simplices (i.e., we do not show the <Goalkeeper, Goal > simplices sets, as further explained in the Discussion), for the entire
corresponding matches. Finally in table 1 we present the parameter values (b , a and c2/n) of the Mandelbrot generalization for
all the 10 matches considered. These results are obtained considering two different conditions: considering all the existing
simplices (cut=1); and removing the two most occurring simplices (cut=3).

Figure 2. Team B vs. Team A
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(b) Model goodness of fit (c2/n)

(c) Simplex 25 (1vs.1) (d) Simplex 49 (1vs.1) (e) Simplex 54 (1vs.1)

The results shown for the observed data in figure 2a suggested that the frequency versus rank follows a power law (we used
as hypothesis the ZM model). The results shown in figure 2b, where c2 is used to assess the goodness of fit of the ZM model,
lead to different conclusions depending on how many simplices sets are considered. In the case where all simplices sets are
considered (cut = 1, depicted in figure 2a as a blue line) the ZM model hypothesis must be rejected. The high value for the
c2 statistic is mostly due to the most frequent simplices sets that clearly do not follow a power law as they form groups with
very similar (and high) frequencies. The results in figure 2b show that the c2 statistic decreases with the cut value and that for
cut � 3 the ZM hypothesis should not be rejected. In figure 2a we represent in the red line the ZM model which results for this
threshold (cut = 3). A notable difference between when using the ZM model for the two thresholds (cut = 1) and (cut = 3) is
found in the b parameter, that shifts from almost Zipf-like (b = 0.16978) to clearly Mandelbrot (b = 4.6029). Figures 2c to 2e
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show the spatial position heat maps for the simplices ranked 3rd to 5th in Match B vs. A. They all correspond to simplices sets
formed by one player of team A and one player from team B (i.e., 1vs.1) and that are located in very particular zones of the
pitch (along the side lines).

Figure 3. Team C vs. Team A
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(c) Simplex 38 (2vs.1) (d) Simplex 352 (1vs.1) (e) Simplex 1371 (1vs.1)

Figures 3a to 3e present the same results for Match Team C vs. Team A. In the results shown in figure 3b we observe the
same threshold value, cut = 3, for not rejecting the ZM model hypothesis. In the case of this match, this cut value is much
more significant as there is no substantial change in the c2 value after this threshold. This is also clear in 3a where the red line
exhibits a much better fit to the observed data after the 2nd most frequent simplex set. Again, a notable difference is found in
the b parameter when using the ZM model for the two thresholds (cut = 1) and (cut = 3), as it shifts from almost Zipf-like
(b =�0.20276) to clearly Mandelbrot (b = 43.603). Figures 3c to 3e show the spatial position heat maps for the simplices
ranked 3rd to 5th in Match C vs. A. Two of these heat maps (3d and 3e) correspond to 1vs.1 simplices along the side lines.
On the other hand, the 3rd most frequent simplex set (3e) corresponds to an unbalanced set (two players from Team C and
one player from Team A) and the spatial position of the heat map is more intense in the central zone of the pitch and close to
Team’s C goal.

Figures 4a to 4e present the same results for Match Team A vs. Team H. In the results shown in figure 4b we observe
now that the threshold value for not rejecting the ZM model hypothesis is cut = 4. This is also clear in 3a where the red line
exhibits a much better fit to the observed data after the 3rd most frequent simplex set. The notable difference for the two
previous matches is that the 3rd most frequent simplex set also stands out from all the others. Again, a notable difference in
b parameter is found when using the ZM model for the two thresholds (cut = 1) and (cut = 3), that also shifts from almost
Zipf-like (b =�0.12456) to clearly Mandelbrot (b = 10.466). Figures 4c to 4e show the spatial position heat maps for the
simplices ranked 3rd to 5th in Match A vs. H. Two of these heat maps (4c and 4d) correspond to 1vs.1 simplices along the side
lines. Figure 4c for the 3rd most frequent simplex set reinforces the relevance already mentioned for this simplex set. Figure 4e
corresponds to an unbalanced set (one player from Team A and two players from Team H) and the spatial position of the heat
map is more intense in the central zone of the pitch and close to Team’s H goal.

In the cut=1 table, the results for the b values are closer to 0, which approximates to a Zipf’s like distribution. The
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Figure 4. Team A vs. Team H
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Table 1. Mandelbrot parameter of b and a

(a) cut = 1

Match b a c2/n

B x A 0.16978 1.0808 2.7847
C x A -0.20276 0.9763 5.2315
D x A 0.09027 1.0601 3.3324
E x A 0.09536 1.0442 3.4538
F x A 0.49587 1.1060 2.3015
A x G 0.00658 1.0536 2.6180
A x H -0.12456 1.0217 3.3092
A x I -0.02822 1.0419 4.0488
A x J 0.10487 1.0427 2.0488
A x K 0.07262 1.0579 3.2862

(b) cut = 3

Match b a c2/n

B x A 4.6029 1.1532 0.9089
C x A 43.603 1.3058 0.3598
D x A 8.7968 1.1876 0.6676
E x A 12.5346 1.2009 0.5386
F x A 7.7196 1.2231 0.4570
A x G 5.5558 1.1347 0.9276
A x H 10.466 1.1576 1.1718
A x I 12.634 1.2019 0.7568
A x J 6.7537 1.1448 0.8013
A x K 8.7551 1.1851 1.0925

distribution begins to approximate a Mandelbrot distribution when we remove the two first most occurring simplices, where b
values are significantly higher.

In the three selected matches it is possible to identify that the removal of the first two most frequent simplices improves the
goodness of fit, as shown in the a) and b) figures for all cases. We can also observe that the first two simplices stand out from
all the other simplices sets, not only on the fact that they have the highest frequency values, but also that when removed from
the data set this results in significantly smaller c2 values on the goodness of fit tests24, 25. It is also interesting to note that when
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these simplices are considered, the distribution is approximately Zipf (i.e., b ⇡ 0), whilst if not considered then the Mandelbrot
generalization must be considered (i.e., b > 4.5).

These results reveal that, in the ten soccer matches analyzed, the frequency of the overwhelming majority of the simplices
that emerge obeys a complex systems’ typical distribution. This is supported by the goodness of fit tests that allows us not to
reject the null hypothesis that the simplices frequencies follow a Zipf-Mandelbrot (ZM) like distribution25.

Discussion
The results obtained in this study provided valuable insights about two questions. On the one hand, they revealed that for
most of the simplices observed in the ten soccer matches they present a statistical distribution of occurrence that is typical to
complex systems. This is supported by the goodness of fit tests on the hypotheses of Zipf-Mandelbrot (ZM) like distribution25.
Distributions that correspond to hallmarks of complex and self-organized criticality27. We could also observe that the first two
simplices stand out from all the other simplices sets, both on their frequency values, and on their impact on the ZM distribution
beta parameter (from b ⇡ 0, Zipf, to b > 4.5, Mandelbrot).

This leads us to the second question as the players involved in the two most frequent simplices, the goalkeepers, have a very
distinctive purpose (defending the goal), with specific rules, compared with the other players: i) first, these simplices sets are of
the type <Goalkeeper, Goal> and the design of the competition field is established with specific delimited areas in the pitch,
maybe because of the rule that allows goalkeepers to touch the ball with the hands in a specific area of the pitch; ii) second, this
specific role of these players produces a kind of anchoring effect of the goalkeepers to their goals, as if they are attracted to the
goal, to limit the opposing team players to connect with the goal. In this context we can observe another typical feature when
dealing with social complexity, that is, there is intentionality in the behavior of the actors in the complex social systems4, 16–18.

Notably, some of the matches (e.g. A against teams B and H), reveal other simplices that seem to be designed, preplanned
or conceived before the match, to behave differently from the others, i.e., where subsets of players are more frequently close to
each other than the others (figures 2a and 4a). This clearly shows in match B vs. A where there are mainly 1vs.1 simplices
and their typical positioning in the field (figures c), d) and e)), during the entire match, shows that they stayed connected in a
very specific area of the field. The same happens in the match A vs. H, where this also occurs for the six first more frequent
simplices.

On the other hand, when we analyzed the match C vs. A we found that, with the exception of <Goalkeeper, Goal>
simplices, there are no other simplices that stand out from the rank distribution. This is also expressed in figure b) where after
cutting the first two already analyzed <Goalkeeper, Goal> simplices, the c2 values maintain lower (less than 0.5) and stable
after this cut.

In conclusion, we have found many 1vs.1 simplices and their closer combinations 1vs.2 or 2vs.1 and also 2vs.2, that might
reflect a preformed design and strategy of the teams, but also a more rare (less frequent) large number of sets of simplices that
emerge and that reflects many interactions that are self-organized. It is interesting to note that on the one hand the frequency
distribution of simplices sets is well modeled by the ZM model, a hallmark of complex systems, with a parameter in the
range of other systems (e.g., written text, population size); and on the other hand the largest deviations from this model occurs
for the most common simplices sets, revealing design - a well identified means to deal with complexity. This latter aspect is
particularly relevant as it results not only from the traditional cooperative design19 but in this case from both cooperative and
competitive processes.
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13. Ramos, J., Lopes, R. J. & Araújo, D. What’s next in complex networks? capturing the concept of attacking play in invasive
team sports. Sports Medicine 48, 17–28 (2017).

14. Ramos, J., Lopes, R. J., Marques, P. & Araújo, D. Hypernetworks: capturing the multilayers of cooperative and competitive
interactions in soccer. In International Congress Complex Systems in Sport, 150–153 (Frontiers, 2017).

15. Wentian, L. Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE Transactions on Inf. Theory 38,
1842–1845 (1992).

16. Johnson, J. Embracing Complexity in Design, chap. Embracing design in complexity, 193–203 (Routledge, 2010).

17. Blecic, I. & Cecchini, A. Design beyond complexity: Possible futures—prediction or design?(and techniques and tools to
make it possible). Futur. 40, 537–551 (2008).

18. Johnson, J. Science and policy in designing complex futures. Futur. 40, 520 – 536 (2008).

19. Johnson, J. Complexity science in collaborative design. CoDesign 1, 223–242 (2005).

20. Rothwell, M., Davids, K. & Stone, J. Harnessing socio-cultural constraints on athlete development to create a form of life.
J. Expert. (2017).

21. STATS. Football performance analysis solutions (2018). URL https://www.stats.com/football/. Last
accessed 26 October 2018.

22. Babu, G. & Bose, A. Bootstrap confidence intervals. Stat. & Probab. Lett. 7, 151–160 (1988).

23. Nelder, J. A. & Mead, R. A simplex method for function minimization. The computer journal 7, 308–313 (1965).

24. Baker, S. & Cousins, R. D. Clarification of the use of chi-square and likelihood functions in fits to histograms. Nucl.
Instruments Methods Phys. Res. 221, 437–442 (1984).

25. Bentler, P. & Bonett, D. G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88,
588 (1980).

26. Spiess, A.-N. & Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and
biochemical research: a Monte Carlo approach. BMC pharmacology 10 (2010).

27. Schmidt, R. C. & Fitzpatrick, P. The origin of the ideas of interpersonal synchrony and synergies. Interpers. coordination
performance social systems. London: Routledge (2016).

Acknowledgements
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3.4 Hypernetworks: Capturing the Multilayers of Cooperative and 

Competitive Interactions in Soccer 

3.4.1 Context and summary 

In this study we have extended the interaction-based Multilevel Hypernetworks 

Approach (MHA) used in the previous presented paper in section 3.2 (Ramos, Lopes, et 

al., 2017a). The different, micro-meso-macro levels of analysis, allowed in each level to 

identify Backcloth (more stable structures) and Traffic (dynamics of those structures). 

Regarding Backcloth, we have proposed more complete formalisms to represent each 

simplex (set of players’), introducing the information about some aspects of the 

relationship between the players’ (local dominance). This solution tackle the 

“intermediate word problem” (Johnson, 2006) using soccer technical terminology and 

becoming more intuitive for practitioners understanding. Additionally, the statistical 

information not only on how much simplices of each type exists at every single moment 

or in the entire match, but also on what specific simplex occurred more in the entire 

match and where did it emerged in the pitch (histograms representing heat maps). This 

information, is highly relevant for the understanding of which players’ were more 

dynamic in promoting symmetry or breaking it and if the dynamics of the simplices 

reflects or not the strategic thinking of what was prepared for the match. Also, we can 

identify in each critical event, those players’ moves regarding aggregation or 

disaggregation and how did he do it (through maintaining velocity, acceleration or 

direction changes). 
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1500-210 Lisboa, Portugal 
3 CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada 

Dafundo, Portugal 
4 Instituto de Telecomunicações, Lisbon, Portugal  
5 Football Performance, City Football Services. 

 

Introduction 

Hypernetwork theory brings together the micro-meso-macro levels of analysis of 

interaction-based complex systems ( Boccaletti et al., 2014; Johnson, 2013). This study 

considers team synergies (Araújo & Davids, 2016), where teams and athletes are co-

evolving subsystems that self-organize into new structures and behaviors. The emergent 

couplings of players’ movements have been studied, considering mostly the distance 

between a player and the immediate opponent (e.g., Headrick et al., 2012), and other 

interpersonal distance measures (Fonseca et al., 2013; Passos et al., 2011). 

Such emergent interpersonal behavior of soccer teams can be captured by multilevel 

hypernetworks approach that considers and represents simultaneously the minimal 

structure unit of a match (called simplex). More stable structures are called backcloth. 

The backcloth structure that represents soccer matches is not limited to the binary 

relations (2-ary) studied successfully by social networks analysis (SNA) but can 

consider also n-ary relations with n>2.  

These simplices are most of the times composed of players from both teams (e.g. 1vs.1, 

2vs.1, 1vs.2, 2vs.2) and the goals. In a higher level of representation, it is also possible 

to represent the events associated, like the interactions between players and sets of 

players that could cause changes in the backcloth structure (aggregations and 

disaggregation of simplices).  
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The main goal of this study was to capture the dynamics of the interactions between 

team players at different scales of analysis (micro – meso - macro), either from the same 

team (cooperative) or from opponent team players (competitive). 

 

Methods 

To analyze the interactions of players, we used proximity criteria (closest player) for 

defining the set of players in each simplex. The non-parametric feature of this method 

allows for the analysis of the sets (simplices) that emerge from spatiotemporal data of 

players and form simplices of different types. 

In this study, we first used the mathematical formalisms of hypernetworks to represent a 

multilevel team behavior dynamics, including micro (interactions between players 

established through interpersonal closest distance), meso (dynamics of a given critical 

event, e.g., goal scoring opportunity) and macro levels (dynamics of emerging local 

dominance). We have applied hypernetworks analysis to soccer matches from the 

English premier league (season 2010-2011) by using two-dimensional player 

displacement coordinates obtained with a multiple-camera match analysis system 

provided by STATS (formerly Prozone).  

 

Results 

We studied different levels of analysis. At the micro level, we found:  

i. The most common minimal simplices are 1 vs. 1 (25.0%), followed by 1 vs. 

2 (10.31%), 2 vs. 1 (8.78%) and 2 vs. 2 (6.81%);  

ii. Which players were more often connected forming the same simplices (see 

Table 1). 

iii. Where did it take place (heat maps) in field game (Figure 1)?  
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!!!, !!"; 1 !". 1  

0,057 
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Table 1. Relative frequency for the top 15 simplices in the analyzed match. (e.g. 

simplex !!" = !!, !!"; 1 !". 1  was found 30.2% of the time). 

 

  

  

  

Figure 1. Heat map for simplices !!" = !!, !!"; 1 !". 1 , !!" = !!, !!"; 1 !". 1  

!!" = !!", !!"; 1 !". 1 , !!" = !!, !!"; 1 !". 1 , !!"# = !!", !!", !!"; 1 !". 2  

and !! = !!,!!", !!", !!"; 2 !". 2 . 

 

In the meso level, we identified critical events dynamics such as:  

i. Velocity of each player related to average velocity of the set; 

ii. Changes of velocity and direction to break the symmetry of the set; 

iii. Which players are central to break or maintain these symmetries. 

The dynamics of simplices transformations near the goal depended on, significant 

changes in the players’ speed and direction.  
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At macro level, we found how sets were related: 

i. Emergent behavior analysis of players to promote local dominance analysis 

in critical events (see Figure 1); 

Simplices are connected to one another, forming simplices of simplices including 

the goalkeeper and the goal. 

 

Conclusions 

The multilevel hypernetworks approach is a promising framework for soccer 

performance analysis once it captures cooperative and competitive interactions between 

players and sets of players. The spatiotemporal feature of the interactions between two 

or more players and sets of players are captured through the multilevel analyses and 

allows a richer understanding of real-world complex systems. Notably, players’ moves 

can promote local dominance, i.e., moving to different directions from their closest 

players and increasing interpersonal distance; or moving to reduce interpersonal 

distances, either from their closest (typically) opponents or colleagues (local 

dominance). The identification of the most frequent simplices of players and their 

specific interactions, regarding local dominance, during a match is specific relevant 

information not only for analyzing the matches but also for preparation for future 

matches with different opponents. 
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4 Final remarks, perspectives and future work 

 Complexity sciences tools such as network science and graph theory have 

gained since the late 1990s considerable attention, due to their simplicity and 

communicative power and generality to be applied in different fields of science. 

 In sports settings, the use of network science and theory approaches began in 

this decade (since 2010s), mostly allied to PA as sub-science from sports sciences. PA 

were at this time (1980s) in search for a more multidisciplary approaches, beginning 

this path with DST and later (2010s) with network theory. 

 The main goal of this thesis was to explore empiricaly complex networks 

approach to team performance analysis, namely in team ball sports, like soccer. This 

sports context is rich in the availability of data and tecnhology, which elects it for most 

of the studys with network science approach.  

 Our innovative contribution is based on the evolution from static networks that 

were capturing only the dynamics on the networks to MHA where it is possible to 

represent the dynamics of the networks without overlooking the underlying structures 

and non-trivial topological patterns. Paper I is such an example, exposing some 

common pitfalls from the direct use of network metrics in different complex systems. In 

this review paper, the focus is on the reductionist contributs from SNA in PA, showing 

some possible directions to obtain the dynamics of the networks, mainly through 

bipartite and multilayer networks, where hypernetworks are an example. 

 The multilevel hypernetwork approach is based mainly on Johnson works, but 

according to papers in sections 3.2 and 3.3, with innovative extensions by: introducing 

compound variables (e.g. local dominance) that captures the structure and dynamics of 

cooperative and competitive interactions, the domain specificity of the soccer matches 

(solving mostly the “word problem”); including the spatiotemporal occurrence of the 

different sets of players (location and frequency); analyzing the dynamics in specific 

levels considering critical events and improving the details of dynamics in the 

mathematical formalism; and also exploring the dynamics of the sets transformations 

(e.g. interactions between simplices of simplices). We believe that the first question that 

is put forward in this thesis work (What are the structural and dynamical properties in 

cooperative (synergetic) and competitive interactions that most influence their 

performance outcomes?), can be clarified with these contributions from our work.  
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 Considering sports as complex systems and specifically team sports, the 

potential for interaction-based situations increases, which in turn increases the 

complexity of the context in which performance is analysed. In our studies we have 

investigated some of the the most usual complexity features, like: a system with many 

heterogeneous parts; the dynamics of emergence from interactions of autonomous 

agents; unexpected or unpredictable emergence; multiple subsystem dependencies; self-

organization into new structures and behaviors; adaptation to changing environments; 

co-evolving subsystems; multilevel dynamics; unrepeatable experiments; power-law 

regularities (Balague et al., 2013; Johnson, 2013; Juarrero, 2010; Komulainen, 2004; 

Piantadosi, 2014) and design in complex social systems (Alexiou et al., 2009; Blecic, 

2008; Johnson, 2005b).  

 The search for a theoretical framework that could tackle more complexity 

related features lead us to use complex networks theories and tools, considering not 

only bipartite and temporal networks, but also multilayer networks capable of 

describing different levels of structure (from more stable ones to more dynamic ones) 

and n-ary cooperative and competitive interactions. This scalability property of 

multilevel hypernetworks, based on interpersonal distance (e.g. in section 3.2.2 and III, 

using the closest player criteria for the definition of simplices sets, which is a non-

parametric variable) allowed to represent the instant of time in the mathematical 

formalism and both, the structure (backloth) and the dynamics (traffic) of the match, 

from a micro-level of analysis (e.g. typically the units/players of the system), to a meso-

level (e.g. typically the structures/sets/teams) and a macro-level of analysis (e.g. the 

dynamics of any given event/GSO). The second proposed question, on this thesis work 

(Is the complex networks approach and its related tools able to identify, at different 

levels of analysis, the structure and the dynamics of the cooperative and competitive 

interactions in team sport complex systems, considering the results, the classifications 

and the match time?) had been, some how, answered at this point.  

 Through the analysis of the statistical distribution of the occurrence of the 

simplices in 10 soccer matches (from the 2010/2011 English Premier League Season), 

we found other interesting complexity features. These, are hallmark features present in 

other complex systems, like the scaling properties of human and natural phenomena 

usually described by power law type models. Population distribution in big cities, forest 

fires, forest patch sizes, scientific citations, WWW surfing, ecology, solar flares, 

economic index, epidemics in isolated populations, and the goal scoring distribution by 
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players in soccer are some typical examples. In our study (section 3.3), we have found 

that the Zipf empirical law and its generalization by Mandelbrot was also present in the 

systems’ meso-scale properties, like the processes that leads to a particular simplices’ 

set occurrence distribution. Therefore it revealed common signatures of chaotic 

processes that are at one point self-organized and emerge from many natural and social 

processes. On the other hand, the tests to the validity of the ZM model, revealed some 

exceptions to these power laws. The few cases of simplices whose occurrence frequency 

are so high that they did not fit into ZM model, can be explained by the possible impact 

of Design. The deliberate design that expresses preformed intentions and purpose is 

revealed through some specific simplices. The match strategy designed by coaches and 

implemented through tactics by the players, has some distinct aspects from other 

complex social systems, once it also refers to competition interactions and not only 

cooperation interactions (Johnson, 2005a). This feature is clearly identified in the 

purpose of the narrow role of the goalkeepers, due to their connection/atraction to the 

Goals and the intentionality expressed by the symmetry positions of the players that are 

opponent (e.g. right defender from one team vs. the left attacker of the other team). 

 Our findings with multilevel hypernetworks approach were promising, not only 

from research perspetive but also considering practitioners perspetive. Presenting and 

discussing our results in different congresses/symposia and completing our 

multidisciplinary research team with a researcher/practitioner from the field we have 

some feedback that lead us to explore different variables and pointing out some 

limitations, like the absence of the ball positioning. Meanwhile, we were invited to 

participate in some emerging studies on hypernetworks, precisely introducing ball 

spatial positioning. The study from Ribeiro and colleagues (2019) where we contributed 

improving the formalisms of the simplices, specifically introducing ball position, the 

players who possed it and the actions they do with it, in the according simplices 

(Ribeiro et al., 2019). Ribeiro and colleagues are investigating the movement 

synchronization of the players whitin and between teams. In this study, the authors used 

MHA to access the interactions through player-simplex synchronies (Ribeiro et al., 

2019). The third proposed question (Are the results obtained from complex network 

analysis useful in training/preparing situations? What are the structural properties that 

can help transmitting ecological validity from training to competition?), was in some 

way, also tackled, considering the two last paragraphs.  
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 One of the challenges in our current work is to represent through the simplex 

mathematical formalisms, the positioning of the players inside the simplices (related to 

Goals). In the working progress of one of our studies in preparation (see reference VI, in 

Publications) we are proposing that the proximity to the Goals from each player could 

determinate the order of his representation inside the simplex formalism. In this new 

formalism, we are introducing an index value that represents the relationships inside the 

simplices. This proposal is based in the principle of inertia and uses as reference, the 

velocity of the geometrical center of the simplices and the simplex players’ velocities, 

as for their instant contribute to aggregation or disaggregation of the simplex (see 

reference VI, in Publications). The fourth and last question proposed (What are the 

relevant types of interactions for the analysis of the structure and dynamics of the 

cooperative and competitive interactions between team players?), is starting to be 

answered in working progress that is still to come. However, some important ideas have 

been placed in order to tackle these problems. 

 Although we are very optimistic about the application and insights that can be 

provided by MHA in sports there is much ground yet to be explored, for example: 

i. The impact (in PA) of other criteria for the simplices formation (MHA), like 

relative velocity, between simplices players’ and also the ball; 

ii. Analyzing simplices aggregation and disaggregation through temporal evolution 

algorithms, which allows to identify the dynamics and evolution of networks 

clustering. 
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