ISCTE £ UL

Lisbon University Institute

Department of Information Science and Technology

Hierarchical Evolution of Robotic

Controllers for Complex Tasks

Miguel Antonio Frade Duarte

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Science

Supervisor:
Prof. Dr. Anders Lyhne Christensen, assistant professor,
ISCTE-IUL
Co-Supervisor:

Prof. Dr. Sancho Moura Oliveira, assistant professor,
ISCTE-IUL

June 2012

http://iscte.pt/
http://dcti.iscte.pt/dcti/v0.1/index.html
http://miguelduarte.pt
http://iscte.pt/~alcen/
http://iscte.pt/~somoa/

"We can only see a short distance ahead, but we can see plenty there that needs

to be done."

Alan Turing

Resumo

A roboética evolucionaria é uma metodologia que permite que robos aprendam
a efetuar uma tarefa através da afina¢ao automaética dos seus “cérebros” (controla-
dores). Apesar do processo evolutivo ser das formas de aprendizagem mais radicais
e abertas, a sua aplicagao a tarefas de maior complexidade comportamental nao
é facil. Visto que os controladores sao habitualmente evoluidos através de simu-
lagao computacional, é incontornavel que existam diferengas entre os sensores e
atuadores reais e as suas versoes simuladas. Estas diferengas impedem que os con-
troladores evoluidos alcancem um desempenho em robos reais equivalente ao da

simulagao.

Nesta dissertacao propomos uma abordagem para ultrapassar tanto o pro-
blema da complexidade comportamental como o problema da transferéncia para
a realidade. Mostramos como um controlador pode ser evoluido para uma tarefa
complexa através da evolucao hierdrquica de comportamentos. Experimentamos

também combinar técnicas evolucionarias com comportamentos pré-programados.

Demonstramos a nossa abordagem numa tarefa em que um rob6 tem que en-
contrar e salvar um colega. O robd comeca numa sala com obstaculos e o colega
esta localizado num labirinto ligado a sala. Dividimos a tarefa de salvamento
em diferentes sub-tarefas, evoluimos controladores para cada sub-tarefa, e combi-
namos os controladores resultantes através de evolugoes adicionais. Testamos os
controladores em simulagao e comparamos o desempenho num rob6 real. O con-
trolador alcancou uma taxa de sucesso superior a 90% tanto na simula¢ao como

na realidade.

As contribuig¢oes principais do nosso estudo sao a introducao de uma meto-
dologia inovadora para a evolucao de controladores para tarefas complexas, bem

como a sua demonstragao num robo real.

Palavras-chave: Robotica Evolucionaria, Redes Neuronais, Hierarquia, Con-

troladores Robédticos.

Abstract

Evolutionary robotics is a methodology that allows for robots to learn how
perform a task by automatically fine-tuning their “brain” (controller). Evolution
is one of the most radical and open-ended forms of learning, but it has proven
difficult for tasks where complex behavior is necessary (know as the bootstrapping
problem). Controllers are usually evolved through computer simulation, and dif-
ferences between real sensors and actuators and their simulated implementations
are unavoidable. These differences prevent evolved controllers from crossing the
reality gap, that is, achieving similar performance in real robotic hardware as they

do in simulation.

In this dissertation, we propose an approach to overcome both the bootstrap-
ping problem and the reality gap. We demonstrate how a controller can be evolved
for a complex task through hierarchical evolution of behaviors. We further expe-

riment with combining evolutionary techniques and preprogrammed behaviors.

We demonstrate our approach in a task in which a robot has to find and
rescue a teammate. The robot starts in a room with obstacles and the teammate
is located in a double T-maze connected to the room. We divide the rescue task
into different sub-tasks, evolve controllers for each sub-task, and then combine
the resulting controllers in a bottom-up fashion through additional evolutionary
runs. The controller achieved a task completion rate of more than 90% both in

simulation and on real robotic hardware.

The main contributions of our study are the introduction of a novel metho-
dology for evolving controllers for complex tasks, and its demonstration on real

robotic hardware.

Keywords: Evolutionary Robotics, Artificial Neural Networks, Hierarchy, Ro-

botic Controllers.

vil

Acknowledgements

I would like to thank my advisor Professor Anders Christensen for teaching me
so much about research and evolutionary robotics, for inspiring my newfound
passion for this research field, and for his brilliant insights that greatly improved

the quality of this dissertation.

I would like to thank my co-advisor Professor Sancho Oliveira for his amazing
dedication and constant support, both on the small, everyday problems, as well

as on the big decisions.

To my family, especially my parents, Anténio and Isabel, and my sister, Mari-
ana, for their unconditional love, support, and understanding. They have always

done the possible and the impossible for me, and for that I will forever be grateful.
To my friends, for their true friendship and encouragement.

Last, but certainly not least, I want to thank my girlfriend and muse, Marga-
rida, for her love, for being there for me when I needed the most, and for being

responsible for the best years of my life.

1X

Contents

[Resumol v
[Abstract] vii
[Acknowledgements| ix
[List of Figures| xiii
[Abbreviations| XV
1__Introduction| 1
(1.1 Objectives| 5
(L2 Scentific Contributionlo 6
(L3 Structure of the Dissertationl 7
2__State of the Art] 9
.1 Classic Allo 9
2.2 Evolutionary Algorithms| 12
[2.3 Evolutionary Robotics| 13

[3 Hierarchical Composition of Controllers| 21
8.1 The Double T-Maze Taskl 22
3.2 Simulator and Robotl oo o000 24
[3.3 Methodologyl 26
[3.4 Experiments and Results| 28
B.41 Controller Architecturel 29

.41.1 Fxit Room dub-Taskl 29

3.4.1.2 Solve Double I-Maze dSub-laskl 31

B.41.3 Return to Room dSub-Taskl 34

[3.4.2 Evolving the Main Controller| 36

[3.4.3 Transfer to the Real Robotl. 39

3.0 Discussionlo 40

[4 Combining Preprogrammed Behaviors and Evolved Behavioral |
[_Control 43
4.1 Experimental Setup|. oo 45

X1

Contents

APDP a

[A E-puck Sensor Samples|

BT [off Behavior M |

[Bibliography|

Xil

57

57

59

61

List of Figures

[2.1 Shakey therobot| 10
2.2 Artificial neural network modell o000 14
[3.1 The experimental environment|. 22
8.2 Double T-mazel 23
[3.3 Thee-puckrobot| 24
[3.4 Representation of the hierarchical controller| 27
[3.5 The experimental controller|] 30
[3.6 Exit Room behavior primitive fitness graph|. 31
[3.7 ITraining mazes for navigation behavior primitives| 33
[3.8 Solve double T-maze behavior arbitrator fitness graphl. 35
[3.9 Return to Room behavior arbitrator fitness graph| 36
[3.10 Rescue behavior arbitrator fitness graph| 38
[3.11 Rescue behavior arbitrator output graph| 39
[3.12 Screenshots of the rescue task experiments| 40
4.1 Behavior arbitrator with preprogrammed behaviors| 44
4.2 Results from the preprogrammed behaviors experiment| 47
[A.1 E-puck sensor samples| 0oL o7
[B.1 Turn lett behavior primitive mazes| 59

xiil

Abbreviations

Al

ANN
CTRNN
GOFAIR
EA

ER

Artificial Intelligence (see page)

Artificial Neural Network (see page D

Continuous-Time Recurrent Neural Network (see page

Good Old Fashion Artificial Intelligence and Robotics (see page@)
Evolutionary Algorithms (see page D

Evolutionary Robotics (see page)

XV

Chapter 1

Introduction

The research field of robotics has existed for over half a century. Throughout the
decades, robots have been introduced as means of automation in manufacturing,
replacing humans in dangerous tasks, as well as leading to a substantial reduction
of costs and to mass production. Robots have the potential to become the next
revolution by moving out of factories and into the real world. Several attempts
have been made to bring the assistance of robots to our daily lives, but so far it has
proven difficult to get robots to reliably perform tasks beyond vacuuming floors
and cleaning pools. This challenge lies in finding a way to make robots perform

tasks in our complex world.

Partially fueled by the futuristic visions of Isaac Asimov and other science
fiction authors from the 1940’s onwards, it was believed that humanoid robots
would be an integral part of our life, and that their intelligence would surpass that
of our own. Producing real artificial intelligence has, however, proved a challenging
task. Humans sense an incredible amount of information. Our brains can select
what data to process, generalize past experiences, and apply existing knowledge
to new situations. Robots, on the other hand, are often very limited in terms of
sensors and actuators, and although computing power has increased substantially
over the years, we still do not know how to translate all that computational power

into the kind of intelligence that humans possess. While the vision of intelligent

Chapter 1. Introduction

humanoid robots has not (yet) come to reality, we do instead have many different

specialized robots that are extremely good at particular tasks.

One of the most popular techniques for the design of robotic controllers consists
of manually specifying every characteristic of the robot’s behavior, usually in the
form of a computer program. The behavior of a robot is the result of its interaction
with the environment: it senses its surroundings, feeds that information to a
control mechanism, and acts on its environment. It is, thus, a dynamic system,
in which every action may have an influence on the subsequent ones. Manual and
detailed specification of every characteristic of a robot’s behavior may be possible
for simple tasks and/or simple environments, but when any of these variables
starts to increase in complexity, manual specification of a suitable behavior for all

possible situations becomes infeasible.

To overcome the limitations of manual specification of robotic behavior, re-
searchers have studied the application of artificial intelligence (AI) to the decision-
making mechanisms of robots. Since the 1950’s, many Al techniques have been
applied to robotics. The first class of approaches was based on the belief that hu-
man intelligence could be reduced to symbol manipulation. As such, the robots had
a simplistic internal model of the world that they would use to decide what actions
to take. In the 1980’s, Rodney Brooks introduced the notion of behavior-based
robotics and reactive controllers. In his view, robots should not try to model the
world around them, they should simply react to sensory stimulus. In the 1990’s,
the research field of evolutionary robotics (ER) emerged when researchers started
combining robots and evolutionary algorithms (EA). EA are metaheuristic opti-
mization algorithms inspired by biological evolution. By continuously selecting
the best individuals and by applying genetic operators such as mutation and re-
combination, candidate solutions with the highest fitness reproduce and become
the basis for the next generation. In this way, the evolutionary process should

gradually produce increasingly better solutions.

ER techniques have the potential to automate the design of behavioral control

without the need for manual and detailed specification of the desired behavior [10].

Chapter 1. Introduction

The robot repeats a particular task many times while the controller is adjusted
automatically. This random variation potentially introduces new individuals that
are better at solving the task than their predecessors. Artificial neural networks
(ANN) are often used as controllers in ER because of their capacity to tolerate
noise [19] such as that introduced by imperfections in sensors and actuators. Since
artificial evolution is a process that requires many evaluations until a suitable
controller is found, such an approach would be extremely time-consuming to carry
out in real robots. As a consequence, computer simulation is widely used in
ER. This approach, however, is not without its flaws. Two main issues have
prevented ER from being widely used as an engineering tool for automatic design of
behavioral control: bootstrapping (especially when complex tasks are considered),

and the transfer of behavioral control from simulation to reality.

It has proven difficult for evolution to find controllers that are able to solve
complex tasks. Since all the initial controllers fail at solving the task, they receive
an equally low fitness. It is, thus, not trivial to define a fitness function that
will allow a smooth progression through the fitness landscape towards the desired

solution. This is known as the bootstrapping problem.

Numerous studies have demonstrated that it is possible to evolve robotic con-
trol systems capable of solving tasks in surprisingly simple and elegant ways [29].
To date, relatively simple tasks have been solved using ER techniques, such as ob-
stacle avoidance, gait learning, phototaxis, and foraging [26]; but as Mouret and

13

Doncieux write: “... [the evolutionary process| hides many unsuccessful attempts
to evolve complex behaviors by only rewarding the performance of the global be-
havior. The bootstrap problem is often viewed as the main cause of this difficulty,
and consequently as one of the main challenges of evolutionary robotics: if the
objective is so hard that all the individuals in the first generation perform equally
poorly, evolution cannot start and no functioning controllers will be found”. The

bootstrapping problem is the reason that there have been no reports of successful

evolution of control systems for complex tasks.

Chapter 1. Introduction

Another problem lies in the use of evolutionary techniques for real robotic hard-
ware. Simulations are simplified versions of reality and there may be differences
in the sensors, in the actuators, and in the physics. This means that controllers
may evolve to rely on aspects in the simulated world that are different or may not
exist at all in the real world. The controllers may therefore fail to complete the

task executed on real robotic hardware.

We present a novel approach to the evolution of behavioral control and study
how to overcome bootstrap issues and how to allow for successful transfer of con-
trol evolved in simulation to real robotic hardware. We experiment with giving
evolution access to previously learned behaviors and to preprogrammed behaviors
that have been tested on real robotic hardware. Behavioral control for complex
tasks may therefore be learned in an incremental and hierarchical manner where

the successful transfer to real hardware will be ensured at each increment.

Several different incremental approaches have been studied as a means to over-
come the bootstrapping problem and to enable the evolution of behaviors for
complex tasks. In incremental evolution, the initial random population starts in
a simple version of the environment to avoid bootstrapping issues. The complex-
ity of the environment is then progressively increased as the population improves
(see for instance [12] [6]). Alternatively, the goal task can be decomposed into
a number of sub-tasks that are then learned in an incremental manner (see for
instance [16], 8, 6]). While a single ANN controller is sometimes trained in each
sub-task sequentially (such as in [0 [16]), different modules can also be trained
to solve different sub-tasks (see [§] for an example). The approach presented in
this dissertation falls in the latter category: we recursively decompose the goal
task into sub-tasks and train different ANN-based controllers to solve the sub-
tasks. The controllers for the sub-tasks are then combined though an additional

evolutionary step into a single controller for the goal task.

We use a task in which a robot must rescue a teammate. Our rescue task
requires several behaviors typically associated with ER [26] such as exploration,

obstacle avoidance, memory, delayed response, and the capacity to navigate safely

Chapter 1. Introduction

through corridors: (i) an e-puck robot must first find its way out of a room with
obstacles, (ii) the robot must then solve a double T-maze [4] in which two light
flashes in the beginning of the maze instruct the robot on the location of the team-
mate, and finally (iii) the robot must guide its teammate safely to the room. We
evolve behaviors in simulation and evaluate their performance on a real robot. We
also experiment with giving evolution access to preprogrammed behaviors. While
there are several studies on incremental evolution of behavioral control for au-
tonomous robots, the study presented in this dissertation is novel in four respects:
(i) sub-tasks are solved by one or more sub-controllers, that are either prepro-
grammed behaviors or continuous time recurrent neural networks that are evolved
independently, (ii) we introduce the concept of derived fitness functions during
composition for sequential tasks, (iii) we give evolution access to preprogrammed
behaviors, and (iv) we demonstrate a fully evolved controller solving a complex

task on real robotic hardware.

1.1 Objectives

The main objective of the proposed research is to evolve robotic controllers for
complex tasks that can be successfully transferred to real robotic hardware. This
is done by hierarchically composing evolved controllers: once behavioral control to
solve a given task has been evolved (or preprogrammed), that behavior becomes a
previously-learned behavior, which can be used by evolution in future increments.
Behavioral control for a complex goal task may thus be learned in an incremental
manner if it can be divided into sub-tasks that can be learned independently.
The transfer from simulation to real robotic hardware can be conducted in an
incremental manner as behavior primitives and sub-controllers are evolved. This
allows the designer to address issues related to transferability immediately and

locally in the controller hierarchy.

In summary, the objectives are:

e to evolve robotic controllers for complex tasks;

Chapter 1. Introduction

e to ensure the correct transfer of the evolved controllers to real robotic hard-

ware.

A key objective of this dissertation is to show that the proposed approach
works in real robotic hardware. For real robot experiments, we use the open

source e-puck robotic platform [25].

1.2 Scientific Contribution

This dissertation presents the following contributions:

e reviews existing approaches to overcoming the complexity and reality gap

problems;

e introduces a novel methodology for evolving and transferring controllers for

complex tasks;

e demonstrates the successful application of the methodology both in simulation-

based experiments and on real robotic hardware;

e extends and improves on the open source simulation platform and neuroevo-

lution framework JBotEvolver.

The work conducted in this dissertation has resulted in four publications:

e M. Duarte, A. L. Christensen, S. Oliveira (2011), “Towards Artificial Evo-
lution of Complex Behavior Observed in Insect Colonies”. Proceedings of
the Portuguese Conference on Artificial Intelligence, 2011, Lisbon. Lecture

Notes in Artificial Intelligence. Springer-Verlag, Berlin, Germany, pages 153-
167.

e M. Duarte, S. Oliveira, A. L. Christensen (2012), “Automatic synthesis of

controllers for real robots based on preprogramed behaviors”. Proceedings

Chapter 1. Introduction

of the 12th International Conference on Adaptive Behavior, 2012, Odense.
Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Germany,

pages 249-258.

e M. Duarte, S. Oliveira, A. L. Christensen (2012), “Structured Composition
of Evolved Robotic Controllers.” Proceedings of the 5th International Work-
shop on Evolutionary and Reinforcement Learning for Autonomous Robot

Systems, 2012, Montpellier, in press.

e M. Duarte, S. Oliveira, A. L. Christensen (2012), “Hierarchical Evolution
of Robotic Controllers for Complex Tasks.” Proceedings of the IEEE Con-
ference on Development and Learning, and Epigenetic Robotics, 2012, San

Diego. IEEE Press, Piscataway, NJ, in press.

1.3 Structure of the Dissertation

In Chapter [2| we review some of the milestones in robotics research and provide a
more in-depth view over the field of evolutionary robotics. In Chapter[3] we present
our hierarchical methodology, discuss the details of our experimental setup, and
analyze the obtained results. In Chapter [d, we experiment with giving evolution
access to preprogrammed behaviors for fine sensory-motor tasks. Finally, in Chap-
ter [5 we discuss the results and different ways in which this methodology can be

further studied.

Chapter 2

State of the Art

While robots are common in manufacturing and industrial environments, it has
proven challenging to create robotic controllers that allow robots to perform tasks
in our complex world. In this chapter, we review the various approaches that have
been studied for the problem of creating robotic controllers. In Section [2.1 we
start with a broad historical view of the field of robotics and artificial intelligence.
In Section [2.2] we focus on the evolutionary techniques used in our experiments.
Finally, in Section [2.3] we discuss the main challenges faced by researchers in the
field of evolutionary robotics, what solutions have been proposed, and how our

approach differs.

2.1 Classic Al

Research in artificial intelligence and robotics took its first steps in the 1940’s
and 1950’s with an emphasis on approaches that are now sometimes referred to as
GOFAIR, Good Old Fashion Artificial Intelligence and Robotics. The approaches
are based on the assumption that many aspects of intelligence can be achieved
by the manipulation of symbols, an assumption defined as the “physical symbol
systems hypothesis” by Allen Newell and Herbert Simon [27]. One of the most
famous works that emerged from this line of thought was Shakey the robot [28]

Chapter 2. State of the Art

(see Figure7 the first general-purpose mobile robot to be able to reason about
its own actions. Shakey was a logical, goal-based agent, and it experienced a
limited world. Its world model was composed of a number of rooms connected by
corridors, with doors, light switches and objects available for the robot to interact
with. Shakey’s actions involved traveling from one location to another, pushing
movable objects around, opening and closing the doors, climbing up and down

from rigid objects, and turning the light switches on and off.

TELEVISION,
CAMERA |

FIGURE 2.1: Shakey the robot (adapted from [I13]).

GOFAIR remained the dominant paradigm until the introduction of behavior-
based robotics in the 1980’s. Many researchers started to doubt that high-level
symbol manipulation alone could produce intelligent behavior and moved to behavior-
based robotics. The concept of behavior-based robotics, which was introduced by
Rodney Brooks, rejects GOFAIR’s assumption that a robot should have an inter-
nal representation of the world and is based upon the idea of providing the robot
with a collection of simple basic behaviors [I]. These behaviors are programmed
into the robot’s controller and provide a mapping between inputs and outputs.
The robot senses the surrounding environment through sensors, such as proximity

sensors, cameras and microphones, and takes action by using actuators, such as

10

Chapter 2. State of the Art

wheels, grippers or speakers. The interaction between the robot and the environ-
ment determines its global behavior. The controller of the robot is responsible for
deciding which behavior is more suitable at a particular situation, and can be com-
posed of competitive or cooperative methods. If the controller uses a competitive
method, the various behaviors compete with one another in an attempt to find the
most suitable action for a particular moment. If the controller uses a cooperative
method, several different behaviors can contribute to the action performed by the
robot. The decision is based on the sensor readings, the current action of the
robot and, in some cases, an internal state. Behavior-based controllers are usually
designed by a trial and error process, in which the designer updates existing be-
haviors or creates new ones in an iterative approach. The designer accomplishes
the breakdown of the desired behavior into simple behaviors based on intuition.
After making a change, the designer has to permit the robot to act within the

environment to observe the robot’s performance.

Rodney Brooks, one of the pioneers in the field of behavior-based robotics,
created the subsumption architecture in the 1980’s [5]. The subsumption architec-
ture is characterized by the decomposition of complex behavior into many simple
behavior modules, which are in turn organized into layers. The layers are stacked
and ordered in terms of behavioral priority and represent the goals of the agent:
the behaviors in the bottom layers stand for simpler goals, such as obstacle avoid-
ance, and have a higher priority than the ones on the higher layers, which are
increasingly abstract. Layers are built on top of previous ones. They are allowed
to examine and inject data into the internal interfaces of previous layers. Such a
system allows an experimenter to have a functional controller from early stages
that can easily be extended by adding higher layers. Since high-level layers can
only interfere with the robot’s behavior by actively suppressing the outputs of the
lower level layers, the global controller will still produce a sensible result even if
the top layers fail to produce results in time. The solution proposed by Brooks

has to be carefully hand designed.

11

Chapter 2. State of the Art

By using behavior-based methodologies, roboticists were successful at design-
ing and implementing robotic behaviors for real hardware, but the manual pro-
gramming of the controllers proved a bottleneck both in terms of behavioral com-
plexity and in terms of development effort needed. In order to circumvent this
problem, researchers have experimented with evolutionary computation as a means

of automatic controller design.

2.2 Evolutionary Algorithms

Evolution is an optimization process that can often lead, as Darwin wrote, to
“organs of extreme perfection” |7]. By randomly varying the individuals and ap-
plying the principles of natural selection using computer simulation, it is possible
to shape the behavior of a population over many generations. EA are a search
heuristic that generally rely on a population of contending individuals to solve a
particular problem. An individual in a population usually corresponds to a can-
didate solution to a given problem. The individuals compete for survival and for
the right to reproduce, which generates a new population. This concept is bor-
rowed from nature, in which the survival of the fittest is a key component for the
evolution of different species. Thus, the idea of iterated variation and selection
that is common to evolutionary processes is modeled in an algorithm and used to

iteratively improve the quality of solutions.

An EA are typically characterized by five elements: (i) representation for the
solution, (ii) variation operators, (iii) fitness criterion, (iv) selection method, and
(v) initialization. The representation for the solution is the genetic description
of each individual. Like the genome in living organisms, the chosen representa-
tion describes the entirety of an individual’s hereditary information. In order to
diversify the genome pool of the population, a variation operator is applied to a
selected subsection of the existing individuals. These operations have also been
inspired from biology, with mutation and cross-over of the simulated genomes.

It is necessary to choose which individuals should survive and populate the next

12

Chapter 2. State of the Art

generation. This is done by using a fitness criteria (or performance index). The
designer of the experiment should decide which goals should be accomplished,
and a numerical value is attributed to each genome after testing, indicating how
well it performed. To populate the next generation, several selection methods can
be used. One example is taking the individuals with the highest fitness score of
the current generation and applying the variation operators to populate the next
generation. The initialization of an EA can be completely at random, or it can
incorporate human or other expertise about solutions that may perform better

than others.

The use of EA can be traced back to the 1950’s and 1960’s. The first ex-
periments were conducted on John von Neumann’s computer in Princeton and
originated what is now called artificial life. One of the first programs to use EA
was developed in 1953 by Nils Barricelli [2]. It featured an environment composed
by cells, forming a grid. Numbers resided in the cells and could migrate to neigh-
boring cells based on a predefined set of rules. If there were a collision between two
numbers on the same cell, they would compete for survival. Barricelli found that
even with very simple rules for propagating throughout the environment, certain
numeric patterns would evolve. Some of these patterns could only persist in the

presence of other patterns.

2.3 Evolutionary Robotics

Evolutionary robotics emerged as a field in the beginning of the 1990’s [30]. It
is distinguished from other fields of research by the use of EA in the synthesis
of controllers for robots. Numerous studies followed which demonstrated robots
with evolved control systems solving basic tasks in surprisingly simple and elegant
ways. However, only relatively simple tasks have been solved using evolutionary
robotics such as obstacle avoidance, gait learning, phototaxis, foraging, and other

searching tasks [26].

13

Chapter 2. State of the Art

The use of ANNS as controllers is widespread in evolutionary robotics. An ANN
is a mathematical or computational model inspired by the structure and functional
aspects of biological neural networks. It is composed by an interconnected group
of artificial neurons and processes information using a connectionist approach to
computation (see Figure . An ANN is typically defined by three types of
parameters: (i) the interconnection pattern between different layers of neurons,
(ii) the activation function that converts a neuron’s weighted input to its output

activation, and (iii) the method for updating the parameters of the network.

Output neurons

Hidden neurons

Input neurons

FIGURE 2.2: An example of an artificial neural network. This particular exam-
ple has a hidden layer with fully connected neurons.

By using an evolutionary approach, the parameters of the neural network (such
as the interconnection weights, the number of neurons or their activation thresh-
old function) are changed from one generation to the next. This allows for the
self-organization of the controller, in contrast with the traditional approaches of
behavior-based robotics in which the designer had to program the robots’ behav-
iors by hand. There are many justifications for the use of artificial neural networks
in robotics [29]. Neural networks offer a continuous, smooth search space, which
means that gradual changes of the parameters that define it will often correspond
to gradual changes of its behavior. They provide various levels of evolutionary
granularity, allowing the designer to decide where to apply artificial evolution: on

the lowest level specification of the networks, such as the connection strengths, or

14

Chapter 2. State of the Art

to higher levels, such as the coordination of predefined modules composed of pre-
defined sub-networks. The straightforward mapping between sensors and motors
make ANNs especially interesting for robots. They can accommodate analog input
signals and provide either continuous or discrete motor outputs, depending on the
transfer function chosen. Robustness to noise is another factor. Since their units
are based upon a sum of several weighted signals, oscillations in the individual
values of these signals usually do not have a drastic effect on the behavior of the
robot, which is a very useful property for physical robots with noisy sensors. It has
also been claimed that “ Neural networks can be a biologically plausible metaphor

of mechanisms that support adaptive behavior” [29).

Continuous-time recurrent neural networks (CTRNN) [3] are a type of artificial
neural networks that are composed by an input layer, used to feed robot sensor
data into the network, a fully interconnected hidden layer, and an output layer,
which is connected to the actuators of the robot. The hidden layer is able to
provide the network with short-term memory: since the neurons of the hidden
layer are interconnected, they can maintain state from one computation cycle to
the next, which can be useful for a robot interacting in a dynamic environment.
In [33], Tuci et al. demonstrate how a Khepera robot using a CTRNN can make
decisions influenced by the passage of time. In their experiments, a light source
and a circular band surrounding it composed the environment. The objective of
the task was for the robot to get close to the light source while avoiding to cross
the band. The robot had to distinguish between two versions of the environment:
in the first version, an opening in the circular band allowed the robot to cross over
to the light source, but in the second version, the band completely surrounded the
objective. Their results showed that the robot was able to differentiate between
the setups by “feeling” how much time it had spent circling around the band [33].
Duarte et al. [9] experimented with the evolution of insect-like behavior in robots
using a CTRNN as the controller. The task consisted of a foraging scenario, in
which several robots had to forage prey. After finding a prey, the robots needed
to carry it to a central nest, spending energy in the process. In order to regain

energy and avoid death, the robots had to rest in the nest before returning to the

15

Chapter 2. State of the Art

foraging task. The authors were able to evolve colonies that displayed multiple
complex macroscopic behaviors observed in insect colonies, such as task allocation,

synchronization, and communication.

Soon after the research into evolutionary robotics began, two main challenges
became clear, namely, (i) that the number of evaluations required meant that
simulation had to be used extensively, and (ii) that it often is non-trivial to ensure
successful transfer of behavior evolved in simulation to real robots (known as the
reality gap). In [23], three complementary approaches to cross the reality gap were
proposed: “(a) an accurate model of a particular robot-environment dynamics can
be built by sampling the real world through the sensors and the actuators of the
robot; (b) the performance gap between the obtained behaviors in simulated and real
environments may be significantly reduced by introducing a ’conservative’ form of
noise; (c¢) if a decrease in performance is observed when the system is transferred
to a real environment, successful and robust results can be obtained by continuing
the evolutionary process in the real environment for a few generations.” The use of
samples from real robots and a conservative form of noise has become widespread.
In 1997, Jakobi [I8] even advocated the use of minimal simulations in which the
simulator would only implement the specific features of the real world that the
experimenter deemed necessary for a robot to complete its task. In order to
use the minimal simulation approach, however, the experimenter needs to have
a priori knowledge of all the relevant features that a robot will encounter during

task-execution.

In order to address the bootstrapping problem, several approaches of incremen-
tal evolution of robotic controllers have been proposed. The approaches fall into
three different categories: (i) incremental evolution where controllers are evolved
with a fitness function that is gradually increased in complexity; (ii) goal task
decomposition in which a single ANN is trained sequentially on different sub-
tasks; (iii) goal task decomposition in which hierarchical controllers are composed
of different sub-controllers evolved for different sub-tasks along with one or more

arbitrators that delegate control.

16

Chapter 2. State of the Art

A methodology belonging to the first category, namely in which controllers
are evolved with a fitness function that is gradually increased in complexity, was
proposed by Gomez and Miikkulainen [12]. They used a prey-capture task for
their study. First, a simple behavior was evolved to solve a simplified version of the
global task, in which the prey does not move. Gradually, by repeatedly increasing
the prey’s speed, they evolved a more general and complex behavior that was able
to solve the prey-capture task. The controllers that they obtained through the
incremental approach were more efficient and displayed a more general behavior
than controllers evolved non-incrementally. They also found that the incremental

approach helped to bootstrap evolution.

Harvey et al. [16] proposed an approach that falls in the second category,
namely where a single ANN is trained sequentially on different sub-tasks. The
authors describe how they evolved a controller to robustly perform simple visu-
ally guided tasks. They incrementally evolved the controller starting with a “big
target”, then a “small target”, and finally to a “moving target”. The controller was
evolved in few generations and it performed well on real robotic hardware. Chris-
tensen and Dorigo [6] compared two different incremental evolutionary approaches,
to evolve a controller for a swarm of connected robots that had to perform photo-
taxis while avoiding holes. They found no benefits in using neither an incremental
approach where the controllers were trained on different sub-tasks sequentially
nor an incremental increase in environmental complexity over a non-incremental

approach for their highly integrated task.

There are several examples of studies on incremental evolution that fall in
the third category, namely in which the global controller is composed of different
sub-controllers that have been trained on different sub-tasks. Moioli et al. used
a homeostatic-inspired GasNet to control a robot [24]. They used two different
sub-controllers, one for obstacle avoidance and one for phototaxis, that were in-
hibited or activated by the production and secretion of virtual hormones. The
authors evolved a controller that was able to select the appropriate sub-controller

depending on internal stimulus and external stimulus.

17

Chapter 2. State of the Art

Lee [22] proposed an approach in which different sub-behaviors were evolved
for different sub-tasks and then combined hierarchically through genetic program-
ming. Behavior arbitrators would decide when each sub-behavior was active. The
approach was studied in a task where a robot had to search for a box in an
arena and then push it towards a light source. By evolving different reactive sub-
behaviors such as “circle box”, “push box” and “explore”, the author managed to
synthesize a robotic controller that solved the task. The author claims that his
controllers were transferable to a real robot, but only some of the sub-controllers
were tested on real hardware. Larsen et al. [2I] extended Lee’s work by using
reactive neural networks for the sub-controllers and for the arbitrators instead of
evolved programs. However, the chosen goal task used by both Lee and Larsen is

relatively simple and the scalability of their respective approaches to more complex

tasks was never tested.

In this dissertation, we propose and study a novel and structured approach
to the engineering of control systems in which we hierarchically divide the con-
troller into simpler sub-controllers. Each sub-controller is responsible for solving
part of the task. Our approach shares similarities with Lee’s [22] and Larsen et
al.’s [21] approaches in that controllers are evolved and composed hierarchically
based on task decomposition. However, as we demonstrate in this dissertation,
our approach scales to complex tasks because (i) we use non-reactive controllers,
and (ii) during the composition of sub-controllers into larger and more complex
controllers, the fitness function for the composed task can be derived directly from
the decomposition. We also demonstrate transfer of behavioral control from sim-
ulation to real robotic hardware without a significant loss of performance, and we

discuss the benefits of transferring controllers incrementally.

We furthermore experiment with mixing evolution with preprogrammed con-
trollers, which can be helpful for tasks in which fine sensory-motor behavior is
required. In previous studies, there have been reports of ad-hoc use of artificially
evolved controllers for partial behaviors in otherwise preprogrammed control sys-

tems: in [14], for instance, a neural network was handed the control whenever

18

Chapter 2. State of the Art

a robot needed to grasp another robot, but the control was otherwise prepro-
grammed. The approach studied in this dissertation is different. We allow for a
structured integration of learned and preprogrammed behavior in a hierarchical

and incremental manner.

19

Chapter 3

Hierarchical Composition of

Controllers

The purpose of our research is to evolve robotic controllers for complex tasks,
and to ensure their transferability to real robotic hardware. While it is possible to
evolve robotic controllers for simple, well-defined tasks, increasing task complexity
proves to be a challenge both in terms of bootstrapping and in terms of ensuring
transferability of the evolved controllers to real robotic hardware. Our approach
consists of dividing the task into simpler sub-tasks and evolving simpler controllers
to solve each sub-task. The controllers are then composed hierarchically through

additional evolutionary runs.

For our experiments, we use a task in which a robot must rescue a teammate.
Our rescue task requires several behaviors typically associated with ER [26] such
as exploration, obstacle avoidance, memory, delayed response, and the capacity to
navigate safely through corridors: (i) a robot must first find its way out of a room
with obstacles, (ii) the robot must then solve a double T-maze [4], and finally
(iii) the robot must guide its teammate safely to the room. We evolve controllers

in simulation and evaluate their performance on a real robot.

The environment is composed of a room, in which the robot starts, and a double

T-maze (see Figure[3.1). A number of obstacles are located in the room. The room

21

Chapter 3. Hierarchical Composition of Controllers

Firstrow __,.
of lights

Obstacle

120 cm

FIGURE 3.1: The environment is composed of a room with obstacles and a

double T-maze. The room is rectangular and its size can vary between 100 cm

and 120 cm. The double T-maze has a total size of 200 cm x 200 cm. The two

rows with the lights are located in the central maze corridor. The activation of
these two rows of lights indicates the location of a teammate.

has a single exit that leads to the start of a double T-maze. In order to find its
teammate, the robot should exit the room and navigate to the correct branch of
the maze. Two rows of flashing lights in the main corridor of the maze give the
robot information regarding the location of the teammate. Upon navigating to
the correct branch of the maze, the robot must guide its teammate back to the

room.

3.1 The Double T-Maze Task

We use a double T-maze task [4] as part of our experiment. An example of a
double T-maze can be seen in Fig. [3.2l The T-maze contains three T-junctions.
At the start of each experiment, the robot is placed in the “Start zone” and must
navigate towards the first junction. On its way, it passes two rows of lights. In

each row, one of the lights is activated. The activated light flashes as the robot

22

Chapter 3. Hierarchical Composition of Controllers

passes by. The activated light in the first row informs the robot on to which side
it must turn in the first T-junction it encounters, while the activated light in the
second row informs the robot to which side it must turn in the second T-junction
that it encounters. If L1 and R2 are activated, for instance, the robot must make
a left turn in the first T-junction and a right turn in the second T-junction so that

it reaches exit LR (see Fig. [3.2), and so on.

Lz\J \J R2 L
Ll\J \J R1
@ -- Start zone

FIGURE 3.2: A double T-maze. A robot is placed in the start zone and must
navigate to one of the four exits depending on which lights flash as the robot
passes by.

Variations of the T-maze task have been used extensively in studies of learn-
ing and motivation in animals, neuroscience, and robotics (see [31, B32], 18] for
examples). In robotics, T-mazes have been used to study different neural net-
work models such as diffusing gas networks [17], the online learning capability of
continuous time recurrent neural networks [4], and the evolution of transferable
controllers [18, 20]. However, in the studies where controllers were tested on real
hardware, only a single T-maze was used and the mazes were relatively small with
respect to the robot. In our experiment, the robot must first find the exit of a

room before it is able to solve the double T-maze.

23

Chapter 3. Hierarchical Composition of Controllers

3.2 Simulator and Robot

We use JBotEvolver for offline evolution of behavioral control. JBotEvolver is an
open source, multirobot simulation platform, and neuroevolution framework. The
simulator is written in Java and implements 2D differential drive kinematics. Eval-
uations of controllers can be distributed across multiple computers and different
evolutionary runs can be conducted in parallel. The simulator can be downloaded

from: http://sourceforge.net/projects/jbotevolver.

For our real robot experiments, we used an e-puck [25]. The e-puck is a small
circular (diameter of 75 mm) differential drive mobile robotic platform designed for
educational use (see Figure . The e-puck’s set of actuators is composed of two
wheels, that enable the robot to move at speeds of up to 13 cm/s, a loudspeaker,
and a ring of 8 LEDs which can be switched on/off individually. The e-puck is
equipped with several sensors: (i) 8 infrared proximity sensors which are able
to detect nearby obstacles and changes in light conditions, (ii) 3 microphones
(one positioned on each side of the robot, and one towards the front), (iii) a color
camera, and (iv) a 3D accelerometer. Additionally, our e-puck robots are equipped
with a range & bearing board [15] which allows them to communicate with one

another.

F1GURE 3.3: The e-puck is a differential drive robot with a diameter of 75 mm

and is equipped with a variety of sensors and actuators, such as a color camera,

infrared proximity sensors, a loudspeaker, 3 microphones, and two wheels. Our

e-pucks are also equipped with a range & bearing board that allows for inter-
robot communication.

24

http://sourceforge.net/projects/jbotevolver

Chapter 3. Hierarchical Composition of Controllers

We use four of the e-puck’s eight infrared proximity sensors: the two front sen-
sors and the two lateral sensors. We collected samples (as advocated in [23]) from
the sensors on a real e-puck robot in order to model them in JBotEvolver. Each
sensor was sampled for 10 seconds (at a rate of 10 samples/second) at distances
to the maze wall ranging from 0 cm to 12 ecm. We collected samples at increments
of 0.5 cm for distances between 0 cm and 2 ¢m, and at increments of 1 cm for

distances between 2 cm and 12 cm. The sampled sensor readings can be seen in

Appendix [A]

To model the infrared sensors in the simulation, we used a ray-casting tech-
nique: a certain number of rays are cast from the sensor at different angles, from
—5 to 5, where « is the sensor’s opening angle. Based on experimental data from
the robot, we used an « value of 90° and a total of 7 rays per sensor. The dis-
tances at which each ray detected an obstacle are averaged and a lookup table is
used to estimate what the real value of the sensor would be. Afterwards, noise
is added to the sensor readings. The amount of noise is based on the standard
deviation of the real sensor readings. The sensor readings are converted back to a
distance, based on a fixed lookup table, which is composed by the average values
of all sampled sensors at each distance. The distance is then normalized to the
maximum distance (12 cm) in order to be fed to the network with a value between

0 and 1. We furthermore added a 5% offset noise to the sensor’s value.

The e-puck’s proximity infrared sensors can also measure the level of ambient
light. In this study, we use ambient light readings from the two lateral proximity
sensors to detect light flashes in the double T-maze sub-task. When a light flash is
detected, the activation of one of the two dedicated neurons is set to 1 depending
on the side from which the light flash is detected. The input neuron stays active
with a value of 1 for 15 simulation cycles (equivalent to 1.5 seconds) to indicate
that a flash has been detected. We also included a boolean “near robot” sensor that
lets the robot know if there is any other robot within 15 cm. For this sensor, we
use readings from the range & bearing board. In simulation, we added Gaussian
noise (5%) to the wheel speeds in each control cycle. The robot’s speed was limited
to 10 cm/s.

25

Chapter 3. Hierarchical Composition of Controllers

If the control code does not fit within the e-puck’s limited memory (8 kB), it
is necessary to run the control code off-board. When the control code is executed
off-board, the e-puck starts each control cycle by transmitting its sensory readings
to a workstation via Bluetooth. The workstation then executes the controller,
and sends back the output of the controller (wheel speeds) to the robot. We use
off-board execution of control code in the real robot experiments conducted in
this chapter, and on-board execution of control code in the real robot experiments

conducted in Chapter [4]

For this dissertation, the simulator was extended to include several new fea-

tures:

e the e-puck’s infrared sensors were modeled and added to the library of sen-

SOTS;

e a hierarchical controller model was implemented to accommodate our method-

ology;

e preprogrammed behaviors can now be added to a controller as a behavior

primitive;

e it is possible to remotely control an e-puck robot via Bluetooth (support for

different robots can be easily added);

e several extensions to the simulator’s graphical user interface have been de-

veloped to facilitate the analysis of results.

3.3 Methodology

The controller has a hierarchical architecture and it is composed of several ANNs
(see Figure [3.4). Each network is either a behavior arbitrator or a behavior prim-
itive. These terms were used in [22] to denote similar controller components. A
behavior primitive network is usually at the bottom of the controller hierarchy and
directly controls the actuators of the robot, such as the wheels. If it is relatively

26

Chapter 3. Hierarchical Composition of Controllers

easy to find an appropriate fitness function for a given task, a behavior primitive
(a single ANN) is evolved to solve the task. An appropriate fitness function is one
that (i) allows evolution to bootstrap, (ii) evolves a controller that is able to solve
the task consistently and efficiently, and (iii) evolves a controllers that transfers
well to real robotic hardware. In case an appropriate fitness function cannot be
found for a task, the task is recursively divided into sub-tasks until appropriate

fitness functions have been found for each sub-task.

Behavior
Arbitrator
Behavior Behavior
Primitive Arbitrator
Behavior Behavior
Primitive Primitive

FIGURE 3.4: A representation of the hierarchical controller. A behavior ar-

bitrator network delegates the control of the robot to one or more of its sub-

controllers. A behavior primitive network can control the actuators of the robots
directly.

Controllers evolved for sub-tasks are combined through the evolution of a be-
havior arbitrator. A behavior arbitrator receives either all or a subset of the robot’s
sensory inputs, and it is responsible for delegating control to one or more of its
sub-controllers. Each behavior arbitrator can have a different sub-controller acti-
vator. The sub-controller activator activates one or more sub-controllers based on
the outputs of the ANN in the behavior arbitrator. The behavior arbitrators used
in this study have one output neuron for each of their immediate sub-controllers.
The sub-controller activator we use activates the sub-controller for which the cor-
responding output neuron of the arbitrator has the highest activation. The state
of a sub-controller is reset whenever it gets deactivated. Alternative sub-controller
activators could be used, such as activators that allow for multiple sub-controllers

to be active at the same time, or activators that do not change the state of their

27

Chapter 3. Hierarchical Composition of Controllers

sub-controllers. Parallel activation of different sub-controllers could, for instance,

allow a robot to communicate at the same time as it executes motor behaviors.

If the fitness function for the evolution of a behavior arbitrator is difficult
to define, it can be derived based on the task decomposition. The derived fitness
function is constructed to reward the arbitrator for activating a sub-controller that
is suitable for the current sub-task, rather than for solving the global task. The
use of derived fitness functions in the composition step circumvents the otherwise
increase in fitness function complexity as the tasks considered become increasingly

complex.

The topology of each network in the hierarchy (such as the number of in-
put neurons, the number of hidden neurons, and the number output neurons)
is completely independent from one another. The basic behavior primitives are
evolved first. The behavior primitive are then combined though the evolution of
a behavior arbitrator. The resulting controller can then be combined with other
controllers through additional evolutionary steps to create a hierarchy of increas-
ingly more complex behavioral control. Each time a new sub-controller (either a
behavior primitive or a composed controller) has been evolved, its performance on
real robotic hardware can be evaluated. The experimenter can thus address issues

related transferability incrementally as the control system is being synthesized.

3.4 Experiments and Results

In our experiments, a robot must rescue a teammate that is located in a particular
branch of a maze. The robot must find the teammate and guide it to safety. To test
the controller on real robotic hardware, we built a double T-maze [4] with a size
of 200 cm x 200 cm (see Figure . In the real maze, a Lego Mindstorms NXT
brick controlled the flashing lights. The brick was connected to four ultrasonic
sensors that detected when the robot passed by. Lights were turned on by the
1st and 3rd ultrasonic sensor and turned off by the 2nd and 4th ultrasonic sensor.

The brick controlled the state of the lights using two motors.

28

Chapter 3. Hierarchical Composition of Controllers

3.4.1 Controller Architecture

The rescue task is relatively complex, especially given the limited amount of sen-
sory information available to the robot, and it would be difficult to find an appro-
priate fitness function that allows evolution to bootstrap. We therefore divided
the rescue task into three sub-tasks: (i) exit the room, (ii) solve the double T-maze
to find the teammate, and (iii) return to the room, guiding the teammate. Several
controllers are evolved to solve each of the sub-tasks. A hierarchical controller
is then given access to each of the previously learned controllers and evolved to
complete the full rescue task. The structure of the controller for the complete

rescue task can be seen in Figure |3.5]

For each evolutionary run, we used a simple generational evolutionary algo-
rithm with a population size of 100 genomes. The fitness score of each genome
was averaged over 50 samples with varying initial conditions, such as the robot’s
starting position and orientation. After the fitness of all genomes had been sam-
pled, the 5 highest scoring individuals were copied to the next generation. 19
copies of each genome were made and for each gene there was a 10% chance that
a Gaussian offset with a mean of 0 and a standard deviation of 1 was applied. All
the ANNs in the behavior primitives and in the behavior arbitrators were time-
continuous recurrent neural networks [3] with one hidden layer of fully connected
neurons. A controller’s genome encoded both the weights of the network and the

decay constants of the neurons.

3.4.1.1 Exit Room Sub-Task

The first part of the rescue task was an exploration and obstacle avoidance task
in which the robot must find a narrow exit leading to the maze. The room was
rectangular with a size that varied between 100 cm and 120 cm. We placed either
2 or 3 obstacles in the room depending on its size. Each obstacle was rectangular
with side lengths ranging randomly from 5 cm to 20 cm. The location of the room

exit was also randomized in each trial.

29

Chapter 3. Hierarchical Composition of Controllers

Main

Behavior Arbitrator

L M

Exit Room Solve Maze Return to Room

Behavior Primitive Behavior Arbitrator Behavior Arbitrator

e

Follow Wall Turn Left Turn Right

Behavior Primitive Behavior Primitive Behavior Primitive

FIGURE 3.5: The controller used in our experiments is composed of 3 behavior
arbitrators and 4 behavior primitives.

We found that an ANN with 4 input neurons, 10 hidden neurons, and 2 output
neurons (a genome with a total of 182 floating point alleles) could solve the task.
Each of the input neurons was connected to an infrared proximity sensor, and
the output neurons controlled the speed of the robot’s wheels. The robot was
randomly oriented and positioned near the center of the room at the beginning of
each sample and the it was evaluated differently if it succeeded or failed to find

the exit of the room within the allotted time (100 seconds), according to fi:

5 C=c if exit was found

p=g e e (3.)
=54 if exit was not found

where C' is the maximum number of cycles (100 seconds x 10 cycles/second =
1000 cycles), ¢ is the number of cycles spent, D is the distance from the center of
the room to its exit, and d is the closest point to the exit that the robot reached.
Since the value for finding the exit varies between 5.0 and 6.0 (depending on how

long it takes to complete the task), the expected maximum fitness of a controller

should be 5.5.

The “exit room” controllers were evolved until the 500th generation and each

sample was evaluated for 1000 control cycles, in a total of 10 evolutionary runs.

30

Chapter 3. Hierarchical Composition of Controllers

Afterwards, we conducted a post-evaluation of the best controllers of each evolu-
tionary run in a total of 100 samples each. The controllers achieved an average
solve rate of 52%, with a solve rate of 96% in the best evolutionary run. The best
performing controller starts by moving away from the center of the room until it
senses a wall, which it then follows clockwise until the room exit is found. 3 of the
10 evolutionary runs produced consistent results, finding the exit of the room in
over 90% of the samples. The remaining runs did not produce successful behav-
iors: the robots would spin/circle around, sometimes finding the exit by chance
and often crashing into one of the walls or into an obstacle. The fitness graph for
the best controller at each generation and the average values of all 10 evolutionary

runs for the exit room sub-task can be seen in Figure |3.6

6

Fitness

best controller
| controllers avlerage

|
0 100 200 300 400 500
Generation

FIGURE 3.6: Fitness graph with the average fitness values of each of the highest
scoring controllers of all 10 evolutionary runs, and the fitness values from the
best controller at each generation for the exit room sub-task.

3.4.1.2 Solve Double T-Maze Sub-Task

In the second sub-task, the robot had to solve a double T-maze in order to find

the teammate that had to be rescued. The robot was evaluated according to fs:

31

Chapter 3. Hierarchical Composition of Controllers

1+ CC? < if navigated to destination
Jo= % if crashed or chose wrong path (3.2)
0 if time expires

where C' is the maximum number of cycles, ¢ is the spent number of cycles, D is
the total distance from the start of the maze to the the robot’s destination, and
d is the final distance from the robot to its destination. The maximum allotted

time was 1000 cycles (equivalent to 100 seconds).

We experimented with using a single ANN to solve this sub-task. The ANN was
composed of 6 input neurons, 10 hidden neurons, and 2 output neurons (a genome
with a total of 202 floating point alleles). The input neurons were connected to the
4 proximity sensors and the 2 light sensors. The output neurons directly controlled

the speed of the wheels.

We conducted 10 evolutionary runs, each lasting 1000 generations. The con-
trollers were post-evaluated and the fitness of every controller was sampled 100
times for each of the 4 possible light configurations. The evolved controllers had
an average solve rate of only 40%. The best controller had a solve rate of 83%,
with just 3 other controllers were able to correctly solve the T-maze in more than

50% of the samples.

Since we could not obtain controllers that could solve the task consistently, we
followed our methodology and further divided the solve maze sub-task into three
different sub-tasks: “follow wall”, “turn left” and “turn right”, for which appropriate
fitness functions could easily be specified. The behavior primitive network for
each of these three sub-tasks had 4 input neurons, 3 hidden neurons, and 2 output
neurons (a genome with a total of 35 floating point alleles). The input neurons
were connected to the infrared proximity sensors and the outputs controlled the
speed of the wheels. The three behavior primitives were evolved in corridors of
various lengths. The environment for the “turn” controllers was also composed of

either left or right turns, depending on the controller (see Figure . We used 9

32

Chapter 3. Hierarchical Composition of Controllers

O O ©

(a) Left turn (b) Corridor (c) Right turn

FIGURE 3.7: Examples of some of the mazes used to evolve the behavior prim-
itives “follow wall”, “turn left” and “turn right”. The filled circles represent the
start zone and the filled squares represent the destination.

different mazes for the “turn left” and “turn right” controllers (see Appendix ,

and 1 maze composed of a single corridor for the “follow wall” controllers.

A total of 10 evolutionary runs were simulated for each of the basic behaviors
(“follow wall”, “turn left” and “turn right”). The evolutionary process lasted 100
generations, and the best controller from each evolutionary run were then sampled
100 times in order to evaluate the controller’s solve rate. The best “turn left”
controllers from each evolutionary run achieved an average solve rate of 59%, with
a solve rate of 100% for the controller that obtained the highest fitness; the “turn
right” controllers achieved an average solve rate of 64%, with a solve rate of 100%
for the controller that obtained the highest fitness; and the “follow wall” controllers
achieved an average solve rate of 98%, with a solve rate of 100% for the controller
that obtained the highest fitness. The best controllers for the basic behaviors
achieved a performance of 100% in relatively few generations and the majority
of the evolutionary runs converged towards the optimal solve rate. The “turn”
controllers from some evolutionary runs did not generalize their solution to the 9
different types of mazes that we used. This brought down the average solve rate
for these controllers to lower levels (59% in the turn left controllers and 64% in

the turn right controllers).

We then evolved a behavior arbitrator with the three best behavior primitives

33

Chapter 3. Hierarchical Composition of Controllers

as sub-controllers. The behavior arbitrator network had 6 input neurons, 10 hidden
neurons, and 3 output neurons (a genome with a total of 213 floating point alleles).
The inputs were connected to the 4 infrared proximity sensors and the 2 light
sensors. A sub-controller activator chooses between the correct behavior primitives
based on the activation levels of the output neurons. At the beginning of each trial,
the robot was placed at the start of the double T-maze and had to navigate to
the correct branch based on the activations of the lights that were placed on the
first corridor (see Figure . For instance, if the left light of the first row and the
right light of the second row were activated, the robot should turn left at the first
junction and right at the second junction. The fitness awarded was based on f,
and the sample was terminated if the robot collided into a wall or if it navigated

to a wrong branch of the maze.

The evolution process lasted until the 1000th generation, in a total of 10 evo-
lutionary runs. After conducting the post-evaluation, the controllers achieved an
average solve rate of 93%, with a solve rate of 99.5% for the highest performing
controller. The fitness graph for the best controller at each generation and the
average values of all 10 evolutionary runs for the solve maze sub-task can be seen
in Figure [3.8 The subdivision of the controller resulted in a significantly bet-
ter solve rate (Mann-Whitney U, p < 0.01) when compared with the single ANN
approach.

3.4.1.3 Return to Room Sub-Task

The final sub-task consisted of the robot returning to the initial room, guiding
its teammate. For this sub-task, we reused the behavior primitives previously
evolved for maze navigation (“follow wall”, “turn left” and “turn right”) and we
evolved a new behavior arbitrator. The behavior arbitrator network was trained
in the double T-maze with the robot starting in one of the four branches of the
maze (chosen at random in the beginning of each trial). The behavior arbitrator
had 4 input neurons, 10 hidden neurons, and 3 output neurons (a genome with

a total of 193 floating point alleles). The input neurons were connected to the

34

Chapter 3. Hierarchical Composition of Controllers

Fitness

04— 7

02 -
best controller
| contro}lers average “;°°-

| | | | |
0
0 100 200 300 400 500 600 700 800 900 1000
Generation

FIGURE 3.8: Fitness graph with the average fitness values of each of the highest
scoring controllers of all 10 evolutionary runs, and the fitness values from the
best controller at each generation for the solve double T-maze sub-task.

robot’s infrared proximity sensors. A sub-controller activator used the activation
level of the 3 output neurons to decide which behavior primitive should be active

at any given moment.

The teammate being rescued continuously emitted a signal while waiting for
the main robot. We used the e-puck range & bearing extension board to determine
the distance between the two robots. When the distance between the robots was
less than 15 cm, the “near robot” sensor’s reading was set to 1. Since this was a
task in which the robot had to navigate correctly through the maze, we used the
same fitness function, fs, as in the solve double T-maze sub-task described in the
previous section. The only difference was the objective: the robot was evaluated

based on its distance to initial room, not the distance to the teammate.

We conducted a total of 10 evolutionary runs until the 500th generation for
the “return to room” behavior. The controllers achieved an average solve rate of
90%, with a solve rate of 99% for the highest performing controller. 8 of the 10

controllers converged to the optimal solution within 150 generations. The graph

35

Chapter 3. Hierarchical Composition of Controllers

of the best controller’s fitness at each generation and the average fitness of all 10

controllers can be seen in Figure 3.9

2

2 1 |
=
0.5 |
best controller
controllers av?rage ------
0 L | |
0 100 200 300 400 .

Generation

FIGURE 3.9: Fitness graph with the average fitness values of each of the highest
scoring controllers of all 10 evolutionary runs, and the fitness values from the
best controller at each generation for the return to room sub-task.

3.4.2 Evolving the Main Controller

For the composed task, we evolved a behavior arbitrator with the best controllers
for the exit room, the solve maze, and the return to room sub-tasks as sub-
controllers. The sub-controller activator decided which of the sub-controllers was

active at any given time.

The robot had to first find the entrance to the double T-maze, then navigate
the maze in order to find its teammate, and finally return to the room, guide
its teammate. The behavior arbitrator for the complete rescue task had 5 input
neurons, 10 hidden neurons, and 3 output neurons (a genome with a total of 193
floating point alleles). The inputs were connected to the 4 infrared proximity sen-
sors and to a boolean “near robot” sensor, which indicated if there was a teammate

within 15 cm (based on readings from the range & bearing board).

36

Chapter 3. Hierarchical Composition of Controllers

We evolved the controller with a derived fitness function, f3, that rewards
the selection of the right behaviors for the current sub-task. The controller was
awarded a fitness value between 0 and 1 for each sub-task (for a maximum of 3
for all sub-tasks), depending on the amount of time that it selected the correct

behavior. f3 is defined as follows:

N C—-c
Z = 4+ ——— if the task was completed
— T, C
f3= (3.3)
Al
Z Ts if the task was not completed

\ s=1

where the sum is over all the sub-tasks (in this study, N = 3 subtasks), T} is
the number of simulation cycles that the controller has spent in sub-task s, ¢, is
the number of cycles in which the controller chose the correct sub-controller for
sub-task s, C' is the maximum number of cycles, and ¢ is the spent number of

cycles.

We ran 10 evolutionary runs until the 1000th generation for the rescue task.
The fitness of each genome was sampled 20 times and the average fitness was
computed. Each sample lasted a maximum of 2000 control cycles (equivalent to
200 seconds). The 10 resulting controllers achieved an average solve rate for the
composed task of 85%, after a post-evaluation with 400 samples. 6 controllers
achieved the maximum fitness in under 150 generations, with 80 being the lowest
number of generations (see Figure . The 4 remaining controllers achieved the
maximum fitness between 250 and 600 generations. The fitness graph for the best
controller at each generation and the average values of all 10 evolutionary runs for

the rescue task can be seen in Figure [3.10]

We analyzed how the main controller managed to solve each part of the com-
posed task. On the “exit room” task, all 10 controllers averaged a solve rate of
91%. All the controllers successfully learned that they should activate the exit

room behavior primitive in the first part of the composed task.

37

Chapter 3. Hierarchical Composition of Controllers

Fitness

best controller
contro]lers average "7

| | | | | |
0

0 100 200 300 400 500 600 700 800 900 1000
Generation

F1GURE 3.10: Fitness graph with the average fitness values of each of the highest
scoring controllers of all 10 evolutionary runs, and the fitness values from the
best controller at each generation for the rescue task.

After exiting the room, the controller should activate the “solve maze” behavior
in order to find the robot’s teammate. An important detail is that once the
controller selects this behavior, it should not switch to another one until it reaches
the end of the maze: switching resets the state of the selected sub-controller,
meaning that the “solve maze” behavior arbitrator would forget which light flashes
it previously sensed. The average solve rate dropped from 91% to 88%, which

means that 3% of all the samples failed at solving the maze sub-task.

Upon finding the teammate, the robot should return to the initial room, com-
pleting the rescue task. This should be done by activating the return behavior at
the end of the maze. The 10 controllers achieved an average solve rate of 85%,
with a solve rate of 93% for the highest performing controller. An example of the
decision process of the best performing controller can be seen in Figure The
analyzed controller distinguished the transition between each sub-task and acti-
vated the output neuron of the correct behavior, while suppressing the remaining

output neurons.

38

Chapter 3. Hierarchical Composition of Controllers

I I I I I
L Return to room sub—controller neuron |
1.2 Solve maze sub—controller neuron ------
Exit room sub—controller neuron =~ = -
1F----~
| B
|
g 038 '| —
S I
> |
2 06t | .
= |
© |
o i
0.4 - ot Do .
" ‘ "’:,'
PR !
02 - i : -
' :
. B A
0 AL 1 | | [RAT SN NS L Py
0 100 200 300 400 500 600 700 800

Simulation cycle

Fi1GURE 3.11: Values from the output neurons of the rescue behavior arbitrator.

The output with the highest activation value determines which sub-controller is

active. It is possible to see the clear distinction in the chosen sub-controller by
the behavior arbitrator as it moves from one sub-task to the next.

3.4.3 Transfer to the Real Robot

After evaluating all the different evolutionary runs, the best performing controller
from the simulation was tested on a real e-puck. The robot had to solve the
composed task: find the exit of the initial room, navigate the double T-maze to
the correct branch, and return to the room. We used a room with a size of 120 cm
x 100 cm for our real robot experiments. Three identical obstacles with side
lengths of 17.5 cm and 11 cm were placed in the room as shown in Figure [3.1]
We sampled the controllers 6 times for each light combination, for a total of 24
samples. Since the purpose of these experiments was to test the transferability of
the evolved controller, the teammate was not used and the near-robot sensor was

remotely triggered if the robot reached the correct maze branch.

The controller solved the composed task on the real robot in 22 out of 24
samples (a solve rate of 92%). It consistently chose the correct sub-network at

each point of the task, and only failed in the return to room behavior twice.

39

Chapter 3. Hierarchical Composition of Controllers

(c) Finding the teammate (d) Returning to the room

FIGURE 3.12: A series of screenshots a real robot experiment in which the
teammate robot follows the main robot back to the initial room.

We ran additional proof-of-concept experiments in which we include a team-
mate that was preprogrammed to follow the main robot back to the initial room.
Videos of these experiments can be found in http://miguelduarte.pt/media/

msc_thesis.htmll A series of screenshots from one of the videos can be seen in

Figure [3.12

3.5 Discussion

In this experiment, we demonstrated how controllers can be composed in a hi-
erarchical fashion to allow for the evolution of behavioral control for a complex

task.

We started by decomposing the goal task into sub-tasks until a controller for
each sub-task could easily be evolved. We showed that previously learned sub-
controllers can be reused in different parts of the hierarchical controller. After we

had obtained controllers for each of the three sub-tasks, exit room, solve maze,

40

http://miguelduarte.pt/media/msc_thesis.html
http://miguelduarte.pt/media/msc_thesis.html

Chapter 3. Hierarchical Composition of Controllers

and return to room, we combined them in an additional evolutionary step. When
we combined the sub-controllers, we used a derived fitness function that rewarded
controllers for activating the sub-controller corresponding to the current sub-task

rather than for solving the global task.

For the main behavior arbitrator we used a fitness function directly derived
from the immediate decomposition, that is, a fitness function that rewards a con-
troller for activating an appropriate sub-controller given the current situational
context. During evolution, an arbitrator (an ANN) was rewarded for (i) activating
the exit room sub-controller while the robot was in the room, (ii) the solve sub-
controllers while the robot was in the maze, and (iii) the return to room behavior
after the teammate had been located. In this way, we avoid that the complex-
ity of the fitness function increases with the task complexity as sub-behaviors are

combined.

Our approach overcomes a number of fundamental issues in evolutionary robots.
Often the experimenter has to go through a tedious trial and error process in or-
der to design a suitable fitness function for the task at hand. In our approach, we
recursively divide tasks into sub-tasks until a simple fitness function can easily be

specified.

The transfer of behavioral control from simulation to a real robot is usually a
hit or miss because a controller for the goal task is completely evolved in simulation
before it is tested on real hardware. In our approach, the transfer from simulation
to real robotic hardware can be conducted in an incremental manner as behavior
primitives and sub-controllers are evolved. This allows the designer to address

issues related to transferability immediately and locally in the controller hierarchy:.

The applicability of our approach depends on if the task for which a controller
is sought can be broken down into reasonably independent sub-tasks. For highly
integrated tasks where it is unclear if or how the goal task can be divided into
sub-tasks [6], our approach may not be directly applicable. However, in cases
where a controller for an indivisible sub-task cannot be evolved, either because a
good fitness function cannot be found or because evolved solutions do not transfer

41

Chapter 3. Hierarchical Composition of Controllers

well, the evolved control may be combined with preprogrammed behaviors. Such
preprogrammed controllers could be fine-tuned to work correctly both on the sim-
ulation and on real robotic hardware. They would also be beneficial for tasks
where fine sensory-motor behaviors are required, since such behaviors might be

difficult to evolve and transfer. We further explore this idea in the next chapter.

42

Chapter 4

Combining Preprogrammed

Behaviors and Evolved Behavioral

Control

Evolution of complex, transferrable behavior may not be feasible for some tasks
if only evolved controllers are considered. Behavioral control that requires fine
sensory-motor coordination has proven challenging to transfer successfully from
simulation to real robots using evolutionary techniques. There have been examples
in literature where researchers have combined evolved control and preprogrammed
control, but it has been done in an ad-hoc manner. In [I4], for instance, a neural
network was handed the control whenever a robot needed to grasp another robot,
but the control was otherwise preprogrammed. Our approach, on the other hand,
allows for a structured integration of learned and preprogrammed behavior in a

hierarchical and incremental manner.

Combining evolved and preprogrammed control could be used in integrated
tasks for which bootstrapping and decomposition are difficult, or in tasks that are
difficult to simulate with sufficient accuracy for the evolved controller to transfer.
In this chapter, we experiment with the evolution of control systems that can take

advantage of preprogrammed behavior primitives. Using the double T-maze task,

43

Chapter 4. Combining Preprogrammed Behaviors and Evolved Behavioral Control

the chosen primitives are simple preprogrammed behaviors (follow wall, turn left,
and turn right). While the double T-maze task does not require fine sensory-motor
coordination apart from correctly navigating a maze without touching its walls,
this experiment allows us to test how evolution can be combined with prepro-

grammed behaviors.

The controller is composed of a behavior arbitrator network that can choose
between several preprogrammed behavior primitives (see Figure. Each output
neuron of the neural network corresponds to a single behavior primitive. The
primitive which has the highest activation value is executed in a winner-takes-all
approach. Some primitives can take more than one control cycle to complete,
such as turning 90° left or right. The sub-controller activator does not execute
any other behavior primitive before the previously selected behavior primitive has

completed.
Sub—controller activator
and behavior primitives
! ! !
Q Q e o o @ Output layer
/_////_/—\
A
e o o Hidden layer
~— -~
e

e\

Sensor 1 Sensor 2 Sensor 3 Sensor n

FI1GURE 4.1: Example of the behavior arbitrator with preprogrammed behavior

primitives: a continuous-time recurrent neural network [3] receives readings from

the robot’s sensors. The activation of the neurons in the output layer are fed to

the sub-controller activator, which executes one of the behavior primitives based
on the activations.

44

Chapter 4. Combining Preprogrammed Behaviors and Evolved Behavioral Control

4.1 Experimental Setup

For our experiments, we used a double T-maze task. The experimental setup
is in many ways identical to the one previously described in Section The
neural controller used in this experiment was a continuous-time recurrent neural
network [3]. The input layer of the ANN was composed of 6 neurons: one for
each of the four infrared proximity sensors, and one for each of the two light
sensors. The readings from the proximity sensors are mapped to distances and
then converted to input neuron activations (interval [0, 1]). When a light flash was
detected, the corresponding input neuron was assigned an activation value of 1.0

for a duration of 15 control cycles.

The hidden layer of the ANN was composed of 10 fully connected neurons.
The output layer of the neural network was composed of 3 neurons, one for each
of the 3 preprogrammed behavior primitives available to the network: turn left,
turn right, and follow wall. The genome of the ANN was encoded with a total of
213 floating point alleles. The sub-controller activator compares the activations
of the three output neurons and executes the behavior that corresponded to the
neuron with the highest activation. The two turn behaviors turn the robot 90°,
which takes on average 40 control cycles. During that time, the sub-controller
activator ignores the values of the output neurons in order to allow the turn to
complete before executing a new behavior. The follow wall behavior moves the
robot forward along the closest perceived wall. We limited the speed of the robot

to 10 cm/s.

We evolved controllers with a simple generational evolutionary algorithm. Each
generation was composed of 100 genomes, and each genome corresponded to an
ANN with the topology described above. The fitness of a genome was sampled
40 times and the average fitness was computed. Each sample lasted a maximum
of 1000 control cycles (equivalent to 100 seconds of simulated time). The starting
position of the robot was varied up to 5 cm to the left or to the right, and up to

10 e¢m forward or backward.

45

Chapter 4. Combining Preprogrammed Behaviors and Evolved Behavioral Control

The top 5 genomes were selected to populate the next generation using an
elitist approach. An offspring was created using mutation: for each gene there was
a 10% chance that a Gaussian offset with a mean of 0 and a standard deviation of
1 was applied. The 95 mutated offspring and the original 5 genomes constituted

the next generation. The robot was evaluated according to f:

1+ C if navigated to destination

c
f= %1 if crashed or chose wrong path (4.1)
0 if time expires

where C' is the maximum number of cycles, ¢ is the number of cycles spent, D is
the total distance from the start of the maze to the the robot’s destination, and
d is the final distance from the robot to its destination. The maximum allotted

time was 1000 cycles (equivalent to 100 seconds).

We ran an additional set of experiments in a traditional ER setup in which the
outputs of the neural network controlled the robot’s wheels directly. Aside from
the difference in the interpretation of the networks output, the experimental setup
(network topology, inputs, simulation conditions, and evolutionary parameters)

were the same as those described above.

4.2 Results

In order to experiment how preprogrammed behaviors can be mixed with evolu-
tionary techniques, we synthesized robotic controllers for a double T-maze task. In
this experiment, the values of the output neurons of the neural network activated
one of the three possible preprogrammed behaviors: follow wall, turn left 90° and

turn right 90°.

We conducted 30 evolutionary runs, each lasting 1000 generations. We con-
ducted a post-evaluation of the evolved controllers in which the fitness of every

controller was sampled 100 times for each of the 4 possible light configurations.

46

Chapter 4. Combining Preprogrammed Behaviors and Evolved Behavioral Control

In experimental setup A, the behavior arbitrator had access to preprogrammed
behavior primitives, and in experimental setup B, the controller was composed of

a single ANN. The results are summarized in Figure [1.2]

In experimental setup A, the evolved controllers had an average solve rate of
87%. A solve rate of over 95% was observed in 12 of the 30 controllers. Some of the
trials evolved controllers with good solutions as early as the 150th generation. The
solutions produced in different evolutionary runs were similar. The robots learned
how to navigate the T-maze correctly, but one of the controllers was not able to use
the information from the light flashes to consistently make the correct decisions

at the T-junctions, which caused it to navigate to the wrong maze branch.

In experimental setup B, the evolved controllers had an average solve rate of
only 42%. The best controller had a solve rate of 88%, and only 12 controllers

were able to correctly solve the T-maze in more than 50% of the samples.

1 r T

08 |- T

0.6

04

Solve rate

02

O_
A B

FIGURE 4.2: Summarized results from simulation for setup A and setup B.

When one of the controllers evolved in a traditional ER setup is able to solve
a maze, it can sometimes solve the maze faster than controllers that rely on pre-
programmed behaviors. The reason for the performance difference is that the

preprogrammed turn behaviors cause the robot to turn on the spot while a neural

47

Chapter 4. Combining Preprogrammed Behaviors and Evolved Behavioral Control

network that has direct control over the actuators can turn the robot while it

continues to move forward.

4.2.1 Transfer to Real Robotic Hardware

After the evolutionary process had finished, the 5 highest performing controllers
synthesized in setup A, and the 5 highest performing controllers synthesized in
setup B were tested on a real e-puck. Each controller was tested 16 times, 4 for

each light configuration. The results are listed in Table [4.1]

All of the 5 controllers synthesized based on preprogrammed behaviors were
able to successfully cross the reality gap and solve the real maze consistently. The
controllers synthesized in run A22 and A25 managed to solve all 16 samples. The
remaining 3 controllers sometimes navigated to an incorrect maze branch: A4 and

A13 failed 1 out of 16 samples, and A9 failed 2 out of 16 samples.

The controllers from setup B did not display as high a performance as those
synthesized in setup A. Partly, this was because their in simulation performance
was not as high as the one in experimental setup A. 4 of the 5 controllers transferred
correctly, achieving even comparable performance in reality, but the controller from

trial B19 only solved 11 out of 16 samples in the real robot experiments.

TABLE 4.1: Summary of the real robot results for the controllers of the five
highest performing evolutionary runs of experimental setup A and experimental
setup B.

Evolutionary run A22 | A9 | A25 | A13 | A4 | Average
Solve rate (Simulation) | 99% | 98% | 98% | 97% | 97% | 98%
Solve rate (Real robot) | 100% | 88% | 100% | 94% | 94% | 95%
Evolutionary run B11 | B13 | B19 | B16 | B9 | Average
Solve rate (Simulation) | 88% | 8% | 79% | 70% | 70% 79%
Solve rate (Real robot) | 100% | 100% | 56% | 75% | 75% 81%

48

Chapter 4. Combining Preprogrammed Behaviors and Evolved Behavioral Control

4.3 Discussion

We demonstrated how controllers can be synthesized by combining artificial evo-
lution with simple preprogrammed behaviors. Our results show that the proposed
approach found good solutions in fewer generations and achieved higher final fit-
ness scores (Mann-Whitney U, p < 0.01) than in a traditional ER setup in which
the neural controller has direct control over the robot’s actuators. On real robotic
hardware, the performance of the controllers synthesized with our approach was
similar to their performance in simulation. The results were also comparable with
the real robot experiments where the behavior arbitrator had access to previously

evolved behavior primitives (see Chapter |3)).

We gave neural controllers three simple preprogrammed behaviors: follow wall,
turn left, and turn right. If we had used a different set of preprogrammed behaviors,
we would potentially have seen different solutions. The solution space is defined by
the set of behaviors to which a neural controller has access and is smaller than the
solution space in a traditional ER setup in which the neural controller has direct
control over the robot’s actuators. The restricted solution space may exclude the
optimal solution(s) for a given robot and task. In our experiments, the controllers
that had direct access to the actuators were able to cut corners and continued to
move forward while turning in a T-junction. The controllers synthesized in our
approach were limited to the turn left and turn right behaviors that cause the
robot to turn 90° on the spot. Consequently, controllers that had direct access
to the robot’s actuators were sometimes able to complete the task faster than the

controllers that were restricted to a predefined set of preprogrammed behaviors.

While the use of a finite set of predefined behaviors may forestall the synthesis
of the theoretically optimal controllers, it opens a number of interesting possibil-
ities. Behaviors can be hand-optimized for a particular robot and for particular
sub-tasks. For some sub-tasks, it may be relatively easy to rely on artificial evo-
lution to find a good solution, while for others, such as those that are difficult
to simulate or transfer with sufficient accuracy, may be more easily solved by

manually programming a behavior.

49

Chapter 5

Conclusions

In this dissertation, we demonstrated how controllers can be composed in a hi-
erarchical fashion to allow for the evolution of behavioral control for a complex
task, and for the successful crossing of the reality gap. We suggest to divide the
task into two or more sub-tasks, when a fitness function that allows for the boot-
strapping of behavior cannot easily be found. In this way, controllers for complex
tasks can be synthesized in a hierarchical fashion, while at the same time, they can
benefit from evolutionary robotics techniques, namely (i) automatically synthesis
of control, and (ii) evolution’s ability to exploit the way in which the world is

perceived through the robot’s (often limited) sensors.

We evaluated the evolved behavior on a real e-puck performing a rescue task.
The real robot managed to solve the task in 22 out of 24 experiments (solve
rate of 92%), which is similar to the robot’s performance in simulation (solve
rate of 93% in 400 experiments). We further experimented with giving evolution
access to preprogrammed behaviors. Controllers evolved faster and to a higher
degree of performance with the preprogrammed behaviors (average solve rate of
87%) when compared with a controller composed of a single ANN (average solve
rate of 42%). When we transferred the best controllers from each experimental
setup to a real robot, the controllers with access to preprogrammed behaviors
outperformed controllers composed of a single ANN (average solve rate of 95%
and 81%, respectively).

51

Chapter 5. Conclusions

The transfer of behavioral control from simulation to a real robot is usually
a hit or miss because a controller for the goal task is completely evolved in sim-
ulation before it is tested on real hardware. In our approach, the transfer from
simulation to real robotic hardware can be conducted in an incremental manner
as behavior primitives and sub-controllers are evolved. This allows the designer
to address issues related to transferability immediately and locally in the con-
troller hierarchy. By giving evolution access to preprogrammed behaviors, we can
still take advantage of the benefits of evolutionary techniques while being able to
solve fine sensory-motor tasks. Such tasks would be very difficult to evolve and to

transfer to a real robot.

The potential cost of an engineered approach, such as the approach proposed in
this dissertation, is that evolution is constrained. Surprisingly simple and elegant
solutions that the experimenter did not foresee may therefore never be discovered.
This limitation, however, is a widely accepted fact for classical controllers that
are programmed by hand. By mixing evolutionary techniques with a hierarchy
that is designed by a human, we can synthesize controllers for complex tasks more
efficiently, while still taking advantage of the benefits of artificial evolution of

controllers.

Some researchers advocate the use of implicit, behavioral, and internal fitness
functions [I1], because fitness functions with such characteristics, in theory, al-
low for solutions to emerge through an autonomous self-organization process. In
practice, however, such fitness functions, which are supposed to be redeemed from
any constraints imposed by a priori knowledge, are often the result of a series of
unsuccessful experiments. After each unsuccessful experiment, the fitness function
is modified based on the results of the experiment and based on the experiment’s
guess concerning what may be “wrong”. As a result, the fitness function used in
the final successful experiment often contains factors and values, and sometime
even entire terms that seem arbitrary. We do not dismiss the potential benefits
of implicit, behavioral, and internal fitness functions in our approach. Instead, we
suggest dividing the task into more sub-tasks, when such a fitness function cannot
easily be found.

52

Chapter 5. Conclusions

Our long-term goal is to combine the benefits of manual design of behavioral
control with the benefits of automatic synthesis though evolutionary computation
to obtain capable, efficient, and robust controllers for real robots. We think our
approach could be adapted for the evolution of controllers for multi robot sys-
tems, where the interaction between various robots makes the manual design of
control systems much more challenging. Since it may be difficult to decide how
to decompose a multi robot task into different sub-tasks in the way discussed in
this dissertation, the hierarchical approach might be adapted for these tasks. By
giving robots access to various social behaviors (such as “follow teammate”) and /or
task-oriented behaviors (such as “find red ball”), we could potentially allow for an
easier evolution of controllers. The use of preprogrammed behaviors could also
facilitate the transfer of the controllers to real robots, as shown in our experi-
ments. In many multi robot systems, communication also plays a fundamental
role. Communicative behaviors, however, are not always exclusive and can be car-
ried out in parallel with other behaviors such as those related to locomotion. We
will therefore study how to incorporate communication so that it can take place

in parallel with motor-control behaviors in the hierarchy.

53

Appendices

%)

Appendix A

E-puck Sensor Samples

4000 T T I T T
epuck 2 sensor 0
epuck 2 sensor 2
3500 epuck 2 sensor 5§ ———
epuck 2 sensor 7
3000
2500
o
=
N
- 2000
Z
=1
2
1500
1000
500
0 ———— L
0 2 4 6 8 10

distance (cm)

FIGURE A.1: E-puck sensor samples

o7

Appendix B

Turn Left Behavior Mazes

q

FIGURE B.1: For the “turn left” behavior primitives we used a total of 9 different
training mazes. For the “turn right” behavior primitive, the mazes were mirrored.

99

Bibliography

1]
2l
3]

4]

[5]

[6]

17l
8]

19]

R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA, 1998.
N. Barricelli. Esempi numerici di processi di evoluzione, 1954.

R. D. Beer and J. C. Gallagher. Evolving dynamical neural networks for
adaptive behavior. Adaptive Behavior, 1:91-122, 1992.

J. Blynel and D. Floreano. Exploring the t-maze: Evolving learning-like robot
behaviors using CTRNNSs. In Applications of Evolutionary Computing, pages
593-604. Springer, Berlin, Germany, 2003.

R. Brooks. A robust layered control system for a mobile robot. IEEE Journal
on Robotics and Automation, 2(1):14-23, March 1986.

A. L. Christensen and M. Dorigo. Evolving an integrated phototaxis and hole
avoidance behavior for a swarm-bot. In Proceedings of Tenth International
Conference on the Simulation and Synthesis of Living Systems (ALIFEX),
pages 248-254. MIT Press, Cambridge, MA, 2006.

C. Darwin. On the origin of species. New York. Appleton and Co., 1859.

R. de Nardi, J. Togelius, O. E. Holland, and S. M. Lucas. Evolution of neural
networks for helicopter control: Why modularity matters. In Proceedings of
IEEE Congress on Evolutionary Computation (CEC’06), pages 1799-1806.
IEEE Press, Piscataway, NJ, 2006.

M. Duarte, A. L. Christensen, and S. Oliveira. Towards artificial evolution

of complex behaviors observed in insect colonies. In Proceedings of the 15th

61

Bibliography

[10]

[11]

12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

62

Portuguese conference on Progress in artificial intelligence, EPIA’11, pages

153-167, Berlin, Heidelberg, 2011. Springer-Verlag.

D. Floreano and L. Keller. Evolution of adaptive behaviour in robots by

means of Darwinian selection. PLoS Biology, 8:1-8, 2010.

D. Floreano and J. Urzelai. Evolutionary robots with on-line self-organization

and behavioral fitness. Neural Networks, 13(4-5):431-443, 2000.

F. Gomez and R. Miikkulainen. Incremental evolution of complex general

behavior. Adaptive Behavior, (5):317-342, 1997.

M. W. Greenia. History of Computing: An Encyclopedia of the People and
Machines that Made Computer History. Lexikon Services, Elverta, CA, 2001.

R. Grofs, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-assembly
in swarmbots. IEFEE Trans. Robot, pages 1115-1130, 2006.

A. Gutierrez, A. Campo, M. Dorigo, D. Amor, L. Magdalena, and
F. Monasterio-Huelin. An open localization and local communication em-

bodied sensor. Sensors, 8(11):7545-7563, 2008.

. Harvey, P. Husbands, and D. Cliff. Seeing the light: artificial evolution, real
vision. In Proceedings of the Third International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 3, pages 392-401. MIT Press,
Cambridge, MA, 1994.

P. Husbands. Evolving robot behaviours with diffusing gas networks. In
Proceedigs of the 1sr European Workshop Evolutionary Robotics, EvoRobot98,
pages 71-86. Springer, Berlin, Germany, 1998.

N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis.

Adaptive Behavior, 6:325-368, 1997.

J. Kam-Chuen, C.L. Giles, and B.G. Horne. An analysis of noise in recur-
rent neural networks: convergence and generalization. IEEE Transactions on

Neural Networks, 7:1424-1438, 1996.

Bibliography

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

28]

29]

S. Koos, J.-B. Mouret, and S. Doncieux. The transferability approach: Cross-
ing the reality gap in evolutionary robotics. IEEE Transactions on Evolution-

ary Computation, 2012. In press.

T. Larsen and S.T. Hansen. Evolving composite robot behaviour - a modular
architecture. In Robot Motion and Control, 2005. RoMoCo ’05. Proceedings
of the Fifth International Workshop on, pages 271 — 276, 2005.

W.-P. Lee. Evolving complex robot behaviors. Information Sciences, 121(1-

2):1-25, 1999.

O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile robots in simulated
and real environments. Artificial Life, 2:417-434, 1996.

R. C. Moioli, P. A. Vargas, F. J. Von Zuben, and P. Husbands. Towards
the evolution of an artificial homeostatic system. In IEEE Congress on Evo-
lutionary Computation, pages 4023-4030. IEEE Press, Hong Kong, China,
2008.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Mag-
nenat, J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot
designed for education in engineering. In In Proceedings of the 9th Confer-
ence on Autonomous Robot Systems and Competitions, pages 59-65. Instituto

Politecnico de Castelo Branco, Castelo Branco, Portugal, 2009.

A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in evolu-

tionary robotics: A survey and analysis. Robotics and Autonomous Systems,

57(4):345-370, 2000.

A. Newell and H. A. Simon. Computer science as empirical inquiry: symbols

and search. Commun. ACM, 19(3):113-126, March 1976.

N. J. Nilsson. Shakey the robot. Technical Report 323, AI Center, SRI
International, 333 Ravenswood Ave., Menlo Park, CA 94025, Apr 1984.

S. Nolfi and D. Floreano. Evolutionary robotics: The biology, intelligence, and
technology of self-organizing machines. MIT Press, Cambridge, MA, 2000.
63

Bibliography

[30]

[31]

32]

[33]

64

S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomous
robots: Different approaches in evolutionary robotics. In Proceedings of the
4th International Workshop on Artificial Life, pages 190-197. MIT Press,
Cambridge, MA, 1994.

E. C. Tolman and C. H. Honzik. Introduction and removal of reward, and

maze performance in rats. University of California Publications in Psychology,

4:257-275, 1930.

A. B. L. Torta, M. A. Kramer, C. Thorn, D. J. Gibson, Y. Kubota, A. M.
Graybiel, and N. J. Kopell. Dynamic cross-frequency couplings of local
field potential oscillations in rat striatum and hippocampus during perfor-

mance of a t-maze task. Proceedings of the National Academy of Sciences,

105(51):20517-20522, 2008.

E. Tuci, V. Trianni, and M. Dorigo. ’feeling’ the flow of time through senso-
rimotor co-ordination. Connection Science, 16(4):301-324, 2004.

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Scientific Contribution
	1.3 Structure of the Dissertation

	2 State of the Art
	2.1 Classic AI
	2.2 Evolutionary Algorithms
	2.3 Evolutionary Robotics

	3 Hierarchical Composition of Controllers
	3.1 The Double T-Maze Task
	3.2 Simulator and Robot
	3.3 Methodology
	3.4 Experiments and Results
	3.4.1 Controller Architecture
	3.4.1.1 Exit Room Sub-Task
	3.4.1.2 Solve Double T-Maze Sub-Task
	3.4.1.3 Return to Room Sub-Task

	3.4.2 Evolving the Main Controller
	3.4.3 Transfer to the Real Robot

	3.5 Discussion

	4 Combining Preprogrammed Behaviors and Evolved Behavioral Control
	4.1 Experimental Setup
	4.2 Results
	4.2.1 Transfer to Real Robotic Hardware

	4.3 Discussion

	5 Conclusions
	Appendices
	A E-puck Sensor Samples
	B Turn Left Behavior Mazes
	Bibliography

