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Introduction

One of the most promising technologies to form the next generation of compact particle

accelerators is plasma acceleration. Plasmas have the ability to sustain waves with electric fields

that can be three orders of magnitude higher than those in radio frequency (RF) cavities.

The ultimate goal of plasma-based acceleration is to produce relativistic, high quality elec-

tron and positron bunches for scientific and societal applications. The recent progress has been

tremendous but improving beam quality still remains as a grand-challenge in the field.

The fundamental aspects and properties of these accelerators are accessible through simpli-

fied analytical models, but the self-consistent dynamics of the laser in the plasma can only be

captured by numerical simulations. Search for optimised parameters to improve beam quality

can be based on systematic parameter scans. However, because numerical calculations can be

very computationally intensive, it is important to investigate more efficient techniques to scan

over the entire parameter range currently available. In this work, we propose a machine learning

approach to optimize this search based on genetic algorithms.

Recent experiments have employed genetic algorithms to control plasma based accelerators

[1]. Here, instead, we will employ this technique to control the outputs and optimise plasma-

based accelerators in particle-in-cell (PIC) simulations. We implemented a genetic algorithm in

ZPIC, a fully relativistic PIC educational code[2]. The genetic algorithm is fully automated: it

receives an initial set of input parameters, launches several simulations in parallel using MPI,

and ends automatically once given convergence criteria are reached. The algorithm can thus

take full advantage of large-scale super-computers. We present results from 1D simulations.

We focus on plasmas with non-uniform density and lasers with variable longitudinal envelope

profiles.

Setup

The optimizing function will be chosen from what is considered to be a good beam, which

depends on the purpose for which the beam will be used. Some characteristics of the beam, like

the mean energy of the particles, its energy spread and number of particles are likely to differ
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Figure 1: Depiction of the genetic algorithm. The fittest elements can produce offspring, some-
thing that is denied to the remaining individuals. This will produce a next generation which will
be fitter.

between a beam used for medical purposes or one for particle collision.

The results that are presented throughout this paper come from a laser plasma interaction that

is expected to be used for x-ray production [3]. A laser hits the plasma and then accelerates

a short electron beam, that can be later used for ultrafast electron diffraction with a sub-10 fs

resolution, which is smaller than all other technologies. The repetition rate for these cases (kHz)

causes the energy of the laser to be of the order of mJ. For the 1D case, the energy of the laser is

of that order if we consider the spot size to be similar to [3]. The laser frequency is also 2 times

higher than the plasma frequency.

Genetic algorithms

Genetic algorithms consist on the evaluation of the function we want to optimize in a genera-

tion, which represents a set of individuals, each one being a different input. The individuals that

get a better score are mutated, which means that the set of inputs is slightly modified. The next

generation will consist only on individuals that are mutations from the best scoring individuals.

The low scoring individuals are discarded (figure 1).

In this work, the optimization was made by changing both the laser envelope (figure 2 left)

and the electron density profile in the plasma (figure 2 middle). We also explored the possibility

to introduce a chirp in the laser(figure 2 right). Since it is unfeasible to have complete control on

the density profile, the optimization was done on the size and slope of a ramp, whose objective

was to promote self-injection in the beam. In the 2D runs that will follow, Zernike polynomials

will be used to change the wavefront and the contributions of each polynomial will be optimized.

Example of a complete result - 1D optimization with chirp

In this case the function used to optimize was l = 〈E〉/(σE−α)n1/2, where <E> is the mean

energy of the beam, σE is the energy spread of the beam and n is the number of particles in

the beam. This variable was taken during the simulation at the time <E> was the largest. The

simulation was stopped as soon as the laser energy dropped to a certain fraction of the initial
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Figure 2: Input variables considered: Left - Envelope of the laser (before multiplication by
cos(kx)). The envelope is normalized to its maximum value. Cubic spline interpolation is made
between points. The mutation includes variations (examples in red) in the relative height of
each point except for those at the beginning and at end of the laser, which are kept to 0. Middle
- density profile for the 1D case. The optimization of the profile is done via changing length
and slope of the ramp (changing coordinates (x,n(x)) of red point). The quantity n0 was taken
from [3] as the maximum density attainable by the experiment. Right - Example of a chirp in
an electric field (start is where the laser begins and ω the local frequency at x (k1 is the variable
to be optimized)

Figure 3: Example of the evolution of three main parameters of the beam, from left to right:
mean energy, energy spread (%), l.

laser energy. The laser energy was kept constant throughout the optimization. A particle was

selected as part of the beam if its energy was above a certain threshold, defined by the user.

We found that having α = 0 would produce an optimized beam that would get really high

scores just for having a small σE compared to the remaining individuals, even if its mean energy

and number of particles were subpar. The factor α was then introduced to control the relative

importance of the energy spread in our simulations.

The code was run for 200 generations with 200 individuals each. For each generation, the

best individual (the one with the largest luminosity) was taken and the evolution of some final

quantities and of the envelope was plotted (figures 3 and 5, respectively).

The algorithm did improve the optimizaiton quantity l. In fact, the energy spread is smaller

than the one obtained in [3]. However, the mean energy decreased, even though relativistic

electrons were still produced. The envelope (figure 5) is fairly similar to what is shown in [3],

being split into 2. However, 2D runs are necessary in order to further compare these results.
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Figure 4: Evolution of the chirp (k1 in figure 2, right) , ramp final x and final density (coordinates
of red point in figure 2, middle
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Figure 5: Evolution of the laser envelope. The effective length of the laser is smaller than the
maximum length defined by the user (9 c/ωp)

Conclusions

In this paper we show beam optimization using genetic algorithms. The optimization vari-

able l takes into account the most important characteristics of the electron beams, such as the

mean energy and energy spread. The code is ready to be applied in some other plasma physics

problems. The results suggest that a fine control over the laser longitudinal profile allows for the

creation of multiple sets of electron beams, with varying mean energy, spread and number of

particles, which means that a single compact machine should be able to produce electron beams

adapted to each necessity, which shows flexibility of this technology. we are now developing a

two-dimensional optimization with ZPIC that will allow for more quantitative predictions.
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