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Resumo

Estudos emṕıricos têm demonstrado que muitos retornos de ativos financeiros são carac-

terizados por um comportamento assimétrico da volatilidade. Para além da assimetria,

outra propriedade importante sobre a volatilidade é o seu efeito de memória longa. Dado

que o cálculo da volatilidade é uma das peças centrais na estimação do Value-at-Risk

(VaR), estas duas propriedades podem ter um impacto na precisão das estimativas do

VaR, e modelá-las poderá ser benéfico para melhorar a precisão das estimativas. Nesta

dissertação exploramos a importância da assimetria e memória longa da volatilidade para

a estimação do VaR para vários ı́ndices de mercado. Utilizamos dois dos mais impor-

tantes modelos de volatilidade, Exponential Weighted Moving Average (EWMA) e Gen-

eralized Auto Regressive Conditional Heteroscedasticity (GARCH), e também modelos

assimétricos e de memória longa, Exponential GARCH (EGARCH) e Fractional Inte-

grated GARCH (FIGARCH). Além disso, alargamos a literatura, que é tendencialmente

focada em apenas um modelo de VaR, para quatro modelos: Parametric Normal VaR,

Parametric Skewed Generalized Student-t VaR, Volatility-Adjusted Historical VaR and

Quantile Regression VaR. A performance dos quatros modelos de VaR é avaliada através

de um backtest que recorre ao Unconditional Coverage Test e ao Berkowitz, Christoffersen

and Pelletier test. Os resultados deste estudo mostram que não existe evidência que as

estimativas produzidas por modelos que acomodam a assimetria e a memória longa da

volatilidade são mais precisos que os produzidos por modelos mais simples, sugerindo que

acomodar estas propriedades não tem um impacto direto na precisão das estimativas do

VaR.

Palavras-Chave : Value-at-Risk, Modelo de Volatilidade, Memória Longa, Assimetria,

Backtesting.

Classificação JEL: C10, G32
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Abstract

Empirical studies have revealed that many financial asset returns are characterized by an

asymmetric behavior of the volatility. Aside from asymmetry, another important stylized

fact about the volatility is its long memory effect. Given that the computation of the

volatility is one of the central pieces for the estimation of the Value-at-Risk (VaR), these

two properties could have an impact on the precision of the VaR estimates, and accounting

for them might prove beneficial to improve its’ accuracy. In this dissertation we’ll explore

the relevance of the asymmetry and long memory of the volatility on the estimation of

the VaR for various market indices. We’ll use two of the most well-known volatility mod-

els, Exponential Weighted Moving Average (EWMA) and Generalized Auto Regressive

Conditional Heteroscedasticity (GARCH), as well as asymmetric and long memory mod-

els, Exponential GARCH (EGARCH) and Fractional Integrated GARCH (FIGARCH).

Furthermore, we extend the literature, which tends to be focused on a single VaR model,

to four models: Parametric Normal VaR, Parametric Skewed Generalized Student-t VaR,

Volatility-Adjusted Historical VaR and Quantile Regression VaR. The performance of

the four VaR models will be assessed through a backtest recurring to the Unconditional

Coverage test and the Berkowitz, Christoffersen and Pelletier test. The results from this

study show no evidence that estimates produced by models that account for the asym-

metry and long memory of the volatility are more accurate than the ones produced by

simpler models, suggesting that accounting for these properties has no direct impact in

the precision of the VaR estimates.

Keywords : Value-at-Risk, Volatility Model, Long Memory, Asymmetry, Backtesting.

JEL Classification : C10, G32
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CHAPTER 1

INTRODUCTION

Risk has become an everyday topic for any finance practitioner. Managing it, is a must

for any financial institution. More than that, it has become a requirement of regulatory

entities. While it’s impossible to precisely estimate the future value of an asset, it is

possible to reasonably estimate how likely, and how much, we are expected to lose. By

doing so, we are able to prepare ourselves against bad swings and ease future negative

outcomes.

Although many sources of uncertainty exist, this dissertation will be focused on the

market risk, which arises from variations in the market prices of financial assets. To

measure the market risk, a metric capable of capturing the uncertainty associated with

fluctuations of the assets composing a portfolio is needed. The Value-at-Risk (VaR) has

become the standard market risk metric used by banks, investors, risk managers and other

finance practitioners. It can be defined as the maximum expected lost in the value of a

portfolio for a given time horizon and confidence level (Alexander, 2009). It started to

gain traction in 1994 when J.P. Morgan publicly released a standardized procedure to

compute the VaR, the RiskMetrics (Longerstaey and Spencer, 1996).

To estimate the VaR, the volatility of the returns needs to be modeled. For that, the

RiskMetrics model uses an EWMA volatility. While simple, computing the volatility re-

curring to an EWMA implies a failure in capturing some properties that could potentially

improve the accuracy of the VaR estimation. The GARCH model is another popular way

to model the volatility. Proposed by Bollerslev (1986), this model has faced various mu-

tations that add the possibility to accommodate more properties into it. Two important

properties, and those that will receive attention in this dissertation, are the asymmetric

behavior of the volatility and its long memory effect.

The asymmetric behavior of the volatility is observed in the responses that the volatil-

ity has to negative and positive shocks: negative shocks impact more the volatility than

positive shocks of the same magnitude. To account for the asymmetric behavior of the

volatility various models have been presented, but throughout this dissertation we will

work with the EGARCH model introduced by Nelson (1991).

The long memory effect of the volatility shows itself when comparing observations

distant in time. If the long memory effect is present these observations display high

correlation between them (Horta, 2015). What that means is that past occurrences still

affect the way volatility reacts to a shock today. We can accommodate the long memory

effect through a model proposed by Baillie et al. (1996), the FIGARCH model.
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Although much research exists surrounding the ability of these models to improve the

accuracy of the VaR estimates, as far as we know, these studies focus mainly on a single

VaR model for one index or market. We’ll build upon that, studying four VaR mod-

els: Parametric Normal, Parametric Skewed Generalized Student-t, Volatility-Adjusted

Historical and Quantile Regression, for various indexes of different geographies.

The volatility will be estimated through five models: two EWMA volatility models,

GARCH, EGARCH and FIGARCH. Using these, allows us to check both the asymmetry

and the long memory of the volatility, while comparing them with three benchmarks,

which in this dissertation will be the two EWMA volatility models and the GARCH

model. Including the GARCH model is also important since it’s one of the most widely

used models and the model that serves as the base for the EGARCH, FIGARCH and

EWMA.

The VaR will be computed for several indices: S&P500, DAX, FTSE and HSI. Work-

ing with these indices allows us to explore various geographies, including an emerging

economy. In addition, the advantage of using indices and not stocks or other single asset

is that an index provides a good representation of a large and diversified portfolio.

Through a backtest, using the Unconditional Coverage (UC) test (Kupiec, 1995) and

the BCP test (Berkowitz et al., 2011), we’ll assess the performance of the five volatility

models for each of the twenty model combinations and index pairs, finding out which of

them best estimates the VaR.

Our goal is to extend the current literature to a broader set of VaR models and

geographies. With that we expect to find more robust leads about the importance of

modeling the asymmetry and the long memory of the volatility to compute the VaR

estimates. If in fact modeling one of these two properties allows to compute more accurate

estimates, the choice of which model to select when computing the VaR will be eased.

The results of this study are important to researchers, since it provides an analysis over

various markets and for a big timeframe, and especially for risk managers, in the sense

that, having a better understanding on which model is able to produce the most accurate

estimates, allows the risk to be modeled more accurately, leading to a better capital

allocation.

The results of this study show that, while having good performances, the models that

account for the asymmetry and the long memory of the volatility do not dominate the

others in study, entailing that there is no evidence to affirm that accommodating these

two properties improves the accuracy of the Value-at-Risk estimation.

This dissertation is organized as follows: Section 2 reviews the most relevant literature;

Section 3 goes over the data, investigates the stationarity of the prices and returns and

analyzes the long memory property of the returns and it’s volatility; Section 4 presents all

methodology employed; Section 5 presents the results of this study; Section 6 summarizes

our findings and goes over some suggestions for future investigation.
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CHAPTER 2

LITERATURE REVIEW

The concept of market risk derives from the uncertainty concerning the future value of

an asset or a portfolio. While this uncertainty can resolve into positive results, the main

concern revolves around negative ones.

The Value-at-Risk is currently the standard metric of market risk. It is a statistical

measure of the potential loss that can be defined as the maximum expected loss in the

value of a portfolio, over a time horizon for a given confidence level (Alexander, 2009).

To compute the VaR it becomes imperative to model the volatility of the portfolio,

which can be done through complex models or simple and intuitive ones. While various

models exist, the EWMA volatility model has become one of the most cherished. One

of the main reasons for the popularity of the EWMA volatility model, aside from its

simplicity, is the fact that it’s the model used in the RiskMetrics model.

Aside from the EWMA volatility model, GARCH models are also very popular volatil-

ity models. Initially introduced by Bollerslev (1986), the original GARCH has seen various

mutations that aim to accommodate multiple properties and improve the sharpness of the

volatility estimates.

One of these properties is the asymmetric behavior of the volatility, also referred

has leverage effect. Negative shocks have a larger impact on the volatility than positive

shocks, that is, when responding to a negative shock, the volatility increases more than

it would for a positive shock of the same magnitude. In that sense, it is typical to say

that negative news have a greater impact in volatility than positive news (Campbell and

Hentschel, 1992; Christie, 1982).

There are two widely accepted explanations for the asymmetric behavior of the volatil-

ity. The first one is explored in Black (1976) and Christie (1982). These authors explained

that in a situation where the equity of a firm decreases, the firm’s debt-to-equity ratio

will obviously rise. Assuming the perspective of an equity holder, having a higher debt-

to-equity ratio, means that, in case of a bankruptcy, the investor will receive less than

it would before. Knowing this, the equity holder perceives his investment as riskier than

before. The second explanation is referred as the volatility feedback effect, it says that

if the expected return of an asset increases when that asset’s volatility rises, the asset’s

price will fall in face of a volatility rise (Kayal and Maheswaran, 2018).

A number of asymmetric GARCH volatility models started to be suggested and

two rose as the most widely used: the EGARCH, introduced by Nelson (1991), and

the Glosten-Jagannathan-Runkle-GARCH (GJR-GARCH), suggested by Glosten et al.
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(1993). Throughout this dissertation we will focus on the EGARCH model, which in-

cludes an asymmetry coefficient that allows the leverage effect to be accounted for.

To explore the impact of the volatilities’ asymmetric behavior on the Parametric

Normal 5% VaR, throughout 15 years, Brooks and Persand (2003) looked at five Southeast

Asian economies, Hong Kong, Japan, Singapore, South Korea and Thailand, as well as

the S&P500, used as a benchmark. Beyond using the five indices correspondent to each of

these economies, the authors also created an equally weighted portfolio. The objective was

to find out if modeling the volatility recurring to asymmetric models: EGARCH, Semi-

Variance, Multivariate GJR-GARCH and Multivariate EGARCH; lead to more accurate

estimates for the VaR then using symmetric models: EWMA, GARCH and Multivariate

GARCH. The performance of the various models was evaluated recurring to the Bank of

International Settlement (BIS) regulatory backtest. The results pointed to the existence of

an unconditional skewness and conditional asymmetric response of the volatility. In terms

of the VaR, the Semi-Variance models lead to more stable estimates, which is appreciated

in the light of the BIS. Another discovery was that asymmetrical models were able to

outperform symmetrical ones, which lead to inappropriate small VaR estimates.

Bucevska (2013) delved into the Macedonian Stock Exchange to test the performance

of various models, analyzing how well they were able to gauge the volatility. To do so,

the author considered various GARCH models: symmetrical (GARCH and Multivari-

ate GARCH) and asymmetrical (EGARCH, GJR-GARCH and Asymmetric Power Auto

Regressive Conditional Heteroscedasticity (APARCH)). The parameters of the GARCH

models were computed following the Berndt–Hall–Hall–Hausman algorithm and no re-

estimation was employed. The volatility, estimated by the different models, was used to

estimate the 1% and 5% VaR for a period of approximately 6 years. The accuracy of these

estimates was evaluated following Engle and Ng’s test for sign and size bias (Engle and

Ng, 1993). Looking at the results of the paper, the authors were able to detect the pres-

ence of an ARCH effect in the residuals as well as a volatility clustering effect. Regarding

the volatility models, it was found out the most adequate models, that is, the models

that lead to more accurate VaR estimates, were the EGARCH, both with the normal

and student-t distribution, and the GJR-GARCH, pointing towards the preeminence of

asymmetrical models when compared to symmetrical ones.

The same study was done for Nordic Indices, Swedish OMXS30 and Danish OMXC20,

as well as Nordic stocks, H&M, Volvo, Carlsberg and Maersk, by Berggren and Folkelid

(2015), from 2007 to 2014. The 1% and 5% Parametric Normal VaR were computed

recurring to the GARCH, ARCH, EGARCH and GJR-GARCH models, all under three

innovation distributions: normal, student-t and generalized error distribution (GED).

The parameters needed to compute the models were re-estimated every 500 trading days

and the performance of the estimates was evaluated recurring to the unconditional and

independence tests. Various results arose from this study, firstly the authors mention that

the volatility models studied underestimate the risk for the 1% VaR and overestimate it
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for the 5% VaR. For the 5% VaR, leptokurtic distributions had a slight edge, while for the

1% VaR they had a big advantage. Moreover, for the 5% VaR, while no model was found

to be clearly superior to the others, asymmetrical models appear to dominate symmetrical

ones. For the 1% VaR, the ARCH model was found to be the best (Berggren and Folkelid,

2015).

Angelidis et al. (2004) weren’t able to find a volatility model that clearly outper-

formed the rest. The authors studied a variety of GARCH models applied to various

indices, S&P500, NIKKIE, DAX, CAC and FTSE, for a period of 15 years. As mention

above, no model was able to outperformed the rest, but, recurring to the unconditional

and conditional coverage tests, the authors found a strong evidence that the EGARCH

model, under a student-t distribution, produced the most adequate VaR estimates for the

majority of the markets.

Aside from asymmetry, another important stylized fact about the volatility is its long

memory effect. A time series exhibits long memory when the present observations are

dependent on preceding distant observations. Put another way, successive observations

display a slow decay in their dependency and correlation. Looking at the financial markets,

the long memory effect means that the market reacts slowly to the data it receives daily.

This implies that shocks in the volatility are not momentaneous, they propagate through

time and have a long-lasting effect. Interestingly enough, the long memory effect wasn’t

firstly researched in the scope of economics or finance. It was firstly documented by Hurst

(1951) when studying the presence of long-range dependency on the flow of the Nile river.

Ding et al. (1993) took the findings of Hurst to the financial world and showed that

many financial returns display long memory on the volatility. Given this discovery, a

new model, one capable of accommodating the long memory effect of the volatility, was

needed. Baillie et al. (1996) introduced the FIGARCH model, a model that adds a

fractional integration to the GARCH model and allows long memory to be accounted for.

Recurring to the FIGARCH and comparing it with a GARCH model for the Para-

metric VaR, Wu and Shieh (2007) sought to understand the impact of the long memory

effect of the volatility on the long-term T-Bond interest rate futures VaR estimation, from

1977 until 2005. The authors concluded that the return series are a I(0)1 process, which

does not have a long memory characteristic, but the volatilities are a I(d)2 long memory

process, where all the estimated degrees of integration are significant and different from

0 and 1. Given this, the volatility can be characterized by a slowly mean-reverting frac-

tionally integrated process, in the case of this study, the FIGARCH model. Resorting

to Kupiec’s LR test (Kupiec, 1995), the authors understood that the FIGARCH model

outperformed the GARCH, for both the in-sample and out-of-sample VaR estimation.

Furthermore, there was strong evidence that interest rate futures exhibit long memory in

1Non-integrated (stationary) process
2Integrated non-stationary process, which can be made stationary through a series of successive differ-
ences, d
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their volatility, which points out to a potential benefit of accommodating the long memory

effect of the volatility to estimate the VaR.

With the same line of thought of Wu and Shieh (2007), Kasman (2009) studied the

long memory property of the volatility for the Turkish stock index futures market. The

author compared the performance of a FIGARCH and a GARCH model, for a period

of 3 years. Recurring to Kupiec’s LR test, the author found that the FIGARCH model

outperformed the GARCH for the sample in study.

Additional investigation has been made into the importance of the long memory effect

on the estimation of the VaR. The conclusions of these studies were harmonious and show

that accommodating the long memory of the volatility is beneficial and allows to compute

more accurate VaR estimates (So and Philip, 2006; Tang and Shieh, 2006; Bentes, 2015).

Albeit long memory being an important property, asymmetry must not be forgotten.

When comparing models that accommodate asymmetry with models that accommodate

long memory, the question on which model performs better to estimate the VaR can arise.

With this thought in mind, Yao et al. (2006) explored both properties of the volatility on

the Shanghai Stock Exchange A Share Index, from 1993 until 2003, using four different

volatility models, EWMA, GARCH, EGARCH and FIGARCH. The results were assessed

based on two tests, Kupiec’s LR test and Christoffersen LR test (Christoffersen, 1998), as

well as two Christoffersen, Hahn, and Inoue (CHI) tests (Christoffersen et al., 2001), the

CHI specification test and the CHI non-nested test. The authors revealed the both the

EGARCH and the FIGARCH models generated better VaR estimates than the EWMA

and the GARCH. According to the CHI non-nested test the models could be arranged,

from best to worst as follows: FIGARCH, EGARCH, EWMA and GARCH. These results

also imply that the asymmetric behavior of the volatility and the long memory effect are

important properties for the VaR estimation on the Shanghai Stock Exchange A Share

Index, but there was no clear winner when comparing the accommodation of the long

memory and the asymmetric behavior of the volatility to estimate the VaR.

Sethapramote et al. (2014) investigated the performance of the FIGARCH model

against numerous GARCH models, EGARCH, IGARCH and GJR-GARCH, as well as

the standard GARCH, ignoring the re-estimation of the parameters. This study was done

for the 1% VaR of the Stock Exchange of Thailand, over a period of 8 years. The authors

observed a strong evidence of long memory in the variance of the Stock Exchange of

Thailand index returns, while the mean of the stock returns were able to be characterized

by a short memory process, the same finding that Wu and Shieh (2007) made for the long-

term T-Bond interest rate futures. From Kupiec’s LR test and BIS’s regulatory backtest,

the authors found that the FIGARCH outperformed the simple GARCH model, but was

outperformed by the asymmetrical models studied.

As the literature mention until this point shows, most authors focus their research

on a single VaR model for a single index or market. In our view, it would be beneficial

to study the impact of asymmetry and long memory of the volatility on multiple VaR
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models for various markets. As for the volatility models, some authors decide to study

only a couple of them, that either don’t compare asymmetry and long memory, or leave

out important models that could be interesting to compare with the asymmetric and long

memory models. Moreover, some literature ignores the re-estimation of the parameters

for the volatility and VaR models, which can cause over/under estimations of the VaR.

In order to expand onto the existing literature and overcome the shortcomings dis-

cussed above, we’ll study the impact of the asymmetry and long memory of the volatility

under various VaR models: Parametric (Normal and Skewed Generalized Student-t dis-

tributed), Volatility-Adjusted Historical and Quantile Regression, using five volatility

models: two EWMA models, GARCH, EGARCH and FIGARCH, for various market

indices, re-estimating all the parameters needed every trading month (21 days). This

approach will allow us to take stronger and broader conclusions about the importance

of modeling the asymmetry and long memory of the volatility to estimate the VaR and

perceive if the different volatility models work better under specific VaR models or for

any particular market. The tests selected to run the backtest are the UC test and the

BCP test. They will let us evaluate the performance of the various models and provide

information about the exceedance rate as well as the autocorrelation between the VaR

estimates. Ultimately it allows us to answer our main question: Is it possible to improve

the accuracy of the VaR estimates modeling the asymmetry and the long memory effect

of the volatility?
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CHAPTER 3

DATA, DESCRIPTIVE STATISTICS, STATIONARITY AND

LONG MEMORY

3.1. Data and Descriptive Statistics

This study examines the impact of modeling the asymmetry and long memory of the

volatility on the accuracy of the VaR for multiple indices. Given that indices are composed

of various stocks, they provide a good representation of a large and diversified portfolio.

To extend our research and be able to take broader and stronger conclusions, we analyze

the VaR of four indices of different geographies: S&P500, DAX, FTSE and HSI.

The price of each index was drawn from Yahoo Finance. We use the adjusted daily

closing prices and convert them into daily log returns, which allows us to estimate the

daily VaR in percentage points:

rt = ln

(
St

St−1

)
, (1)

where rt represents the return at time t and St represents the index price at time t.

Timewise, we work for a period of twenty years, from 2000 until 2020. To do so,

twenty-four years of data were needed, the first four are required to estimate the first

batch of parameters and allow all the study to be done out-of-sample.

Regarding R, the language in which the computations of this dissertation are imple-

mented, several packages are needed:

• Quantmod – contains the functions needed to import data from Yahoo Finance;

• Rugarch – includes the procedures to estimate the GARCH models;

• SGT – to estimate the Skewed Generalized Student-t distributed VaR;

• QuantReg – provides procedures to estimate the Quantile Regression VaR;

• Openxlsx and xlsx – allows to export the results from R to Excel;

• Moments – to compute the skewness and kurtosis;

• Urca – unit root tests for time series data.

Below, in Table 1, are the descriptive statistics for the return series. In Figure 1, we

present the plotted returns.
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Index returns Mean Median Max Min Std Skewness Kurtosis

S&P500 0,00029 0,00055 0,1096 −0, 0947 0,0110 −0, 2674 8,8534

DAX 0,00022 0,00075 0,1080 −0, 0963 0,0139 −0, 1390 4,7884

FTSE 0,00013 0,00032 0,0938 −0, 0926 0,0108 −0, 1244 6,2440

HSI 0,00025 0,00056 0,1725 −0, 1473 0,0154 −0, 1176 9,4883

Table 1. Descriptive statistic. Mean, median, maximum and minimum, standard
deviation, skewness and kurtosis of the returns for each index for the period in study,
2000 to 2020.

Figure 1. Index returns. Plotted returns of the four indices from 1990 until 2020.
Displays stationarity on the returns with volatility clustering.

As expected from financial data, all indices display excess kurtosis (kurtosis > 3) on

their returns, hence, different from a normal distribution, the unconditional distribution

of the returns will reveal fat-tails. Another interesting fact is that all index returns exhibit

a negative skewness, meaning that they are asymmetrical, skewed left, with a left tail that

is longer than the right tail.

Figure 1 shows that the returns appear to be stationary, but they show volatility

clustering. Knowing this, the variance cannot be assumed to be constant over time, and

the estimation of the volatility recurring to GARCH models appears to be an appropriate

choice.

3.2. Stationarity test

The ADF test is an augmented version of the Dickey-Fuller (DF) test . It tests the null

hypothesis that a unit root is present in a given time series, which will imply that the time

series is non-stationary, versus the alternative hypothesis that the time series is stationary.
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Under the null hypothesis, the t-statistic doesn’t follow a student-t distribution, not even

asymptotically. The critical values must be taken from an appropriate distribution of

t, which will be nonstandard and asymmetric negative, leading to smaller critical values

than those for a student-t distribution. Thus, the critical values that will be used to

decide about the stationarity of the time series will be the ones provided by Dickey and

Fuller (1979).

Different from the ADF test, the KPSS test is used to test the null hypothesis that

the given time series is stationary, against the alternative hypothesis of the existence of a

unit root, non-stationarity.

Table 2 summarizes the results obtained for both tests. It includes the p-value of each

test for the four indices, for both prices and returns.

Index Data ADF KPSS Results

S&P500
Prices −0.52 6.59** Non-stationary

Returns −65.90** 0.10 Stationary

DAX
Prices −2.35 5.37** Non-stationary

Returns −62.77** 0.05 Stationary

FTSE
Prices −2.72 4.04** Non-stationary

Returns −39.09** 0.05 Stationary

HSI
Prices −3.88 0.98** Non-stationary

Returns −43.23** 0.05 Stationary

Table 2. ADF and KPSS tests results. Allows to conclude about the stationarity
of the prices and the returns. For the ADF test the 5% and 1% critical value are −3.41
and −3.96, respectively. For the KPSS test 0.15 and 0.22, respectively. * and ** denote
the rejection of the null hypothesis at 5% and 1% significance levels, respectively.

From the results of the ADF test, the null hypothesis of the existence of a unit root

is rejected at a 1% significance level for the returns. For the prices, there is no statistical

evidence that allows us to reject the existence of a unit root. That said, the return series

can be said to be a stationary process, while the prices are non-stationary. The same

conclusion is reached through the KPSS, the null hypothesis, which says that the series

is stationary, is only rejected for the prices.

3.3. Long Memory test

Lo’s R/S is a standard test to assess the presence of long memory in time series,

particularly in stocks and indices. It’s a statistic that serves as an extension from the

original R/S statistic, proposed by Hurst (1951). Lo (1991) modified the rescale range,

constructing a test statistic that is robust to short-range dependence, and derive the

limiting distribution under short and long-range dependence.
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Table 3 presents the p-values of Lo’s R/S test for the returns and the two volatility

proxies.

Index Returns Returns2 |Returns|

S&P500 0,77009 3,4324** 5,0798**

DAX 0,61254 3,4067** 4,3558**

FTSE 0,58373 3,4767** 4,5500**

HSI 0,57195 2,6960** 3,6314**

Results Short Memory Long Memory Long Memory

Table 3. Lo’s R/S test results. Allows to conclude about the long memory of the
returns and the volatility. The volatility is accessed recurring to two proxies, Returns2

and |Returns|. The 5% and 1% critical value for the Lo’r R/S test are 1.747 and 2.098,
respectively. * and ** denote the rejection of the null hypothesis for these significance
levels.

The output, allows us to conclude that the returns do not have a long memory char-

acteristic, given that the results do not reject the null hypothesis. For the squared returns

and the absolute-valued returns, the volatility proxies, the results allow us to reject the

null for a 1% and 5% significance level. That means that the proxies are described by a

long memory process, which indicates that the FIGARCH model is a good candidate to

fit the volatility.
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CHAPTER 4

METHODOLOGY

4.1. Volatility Models

Volatility, σ, is defined as the standard deviation of the daily returns. In this dissertation

we focus on the conditional volatility of the daily returns, σt. To model this volatility five

models are used: two EWMA volatility models, GARCH, EGARCH and FIGARCH.

Each model has its own particularity. The EWMA is the model used in the Risk-

Metrics model and one of the most common and simple models. The GARCH is the

base from were various models were developed, furthermore, is one of the most popular

volatility models. The EGARCH, based on the GARCH, adds the possibility to model

the asymmetric behavior of the volatility. And lastly, the FIGARCH, also based on the

GARCH, was developed to allow the long memory of the volatility to be modeled. Us-

ing these models, we explore the relevance of modeling the asymmetric behavior of the

volatility and its long memory, through the EGARCH and FIGARCH, respectively, while

comparing them with more simple and common models, EWMA and GARCH.

Figure 2 illustrates how the estimation of the parameters is done throughout this

dissertation. Given that our attention is revolving around the out-of-sample estimation

of the conditional variance, one important step in the volatility estimation is the re-

estimation of the parameters. Given that the conditions of the financial markets change

daily it’s important to keep the parameters of the models up to date. To do so, and

knowing that the FIGARCH requires at least one thousand lags to truncate its expansion,

we use four years of historical data to estimate the parameters. The parameters are re-

estimated every trading month, twenty-one trading days, to ensure that the volatility

reflects the current state of the market.

Figure 2. Parameters re-estimation procedure. The parameters of the volatility
models are estimated using four years of historical data, and re-estimated every trading
month, 21 days, to ensure a high precision on the estimated parameters.

The next sub-chapters will introduce each of these models and present the procedures

employed to compute the conditional variance.
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4.1.1. GARCH

The GARCH model was introduced by Bollerslev (1986), it works as a generalization

of the Autoregressive Conditional Heteroskedasticity (ARCH) model, presented by the

Nobel Prize Winner Engle (1982). When compared with the ARCH model, a lower order

GARCH can have the same properties of a higher order ARCH without the need to

estimate many parameters (Bollerslev, 1986).

The GARCH model is particularly attractive since it captures volatility clustering

and exhibits excess kurtosis, properties that might improve the accuracy of the volatility

estimation for financial data. Two important features are that the GARCH is a sym-

metric model, which means that positive shocks have the same impact on the conditional

volatility as negative shocks, and that it only accommodates short-term persistence in the

volatility.

Under a GARCH(p, q) model the conditional variance can be written as:

σ2
t = ω +

q∑
i=1

αiε
2
t−1 +

p∑
q=

βjσ
2
t−1, (2)

where ω > 0, αi ⩾ 0, and βj ⩾ 0. The returns are modeled following:

rt = µ+ εt, εt ∼ N(0, σ2
t ) (3)

where µ is the is the mean value of the returns.

The p and q define the lag order of the variance of the residuals (squared errors) and

the variance of the process, respectively. For instance, for a p = 0 the process is reduced

to an ARCH(q). While various p’s and q’s can be defined, generally a GARCH(1, 1) is

enough to describe the volatility of financial data, thus being the one used in our study

Brooks (2008).

The GARCH(1, 1) conditional variance is given by:

σ2
t = ω + αε2t−1 + βσ2

t−1 (4)

All parameters are estimated by maximum likelihood. This implementation is done for

the GARCH model, but also for all the other volatility models studied in this dissertation,

which are no more than extensions or particular cases of the GARCH model.

4.1.2. EWMA

The EWMA is no more than a special case of the GARCHmodel with ω = 0 and α+β = 1.

It is one of the simplest and most used volatility models, the one used in the RiskMetrics

model, developed by Longerstaey and Spencer (1996). Instead of giving the same weight

to all observations, the most recent observations have a higher impact on the volatility.

This relation is defined by the constant denoted by λ. The larger the value of λ the less

weight that is assigned to older observations. While the choice of λ is subjective, it can

vary between 0 and 1, for example, the RiskMetrics model uses a λ of 0.94. Another
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option to define the value for λ is to fit it to the data using the maximum likelihood

function.

An advantage of this model is that it does not suffer from “ghost features”, comparing

it with models that assign the same weight to all observations through time. As time

passes older returns have a lower impact on the estimated volatility, that is, the impact

of an extreme return becomes diluted through time.

Substituting ω = 0, β = λ and α = 1−λ into Equation 4, we compute the conditional

variance recursively as:

σ2
t = (1− λ)r2t−1 + λσ2

t−1, (5)

where σ2
t is the variance computed at day t and λ is the smoothing constant.

4.1.3. EGARCH

Contrary to the GARCH model, that considers that negative and positive shocks have the

same impact on the volatility, the EGARCH model, introduced by Nelson (1991), features

an asymmetry coefficient, γ, that allows the asymmetric behavior of the volatility to be

accounted for. Various authors have found out that negative returns tend to be followed

by periods of higher volatility, in that sense, it’s typical to say that bad news impact

more the volatility than good news (Black, 1976; Christie, 1982). The γ coefficient allows

to model this dynamic. For instance, if γi < 0, the variance increases more when ϵt−1 is

negative.

Another important aspect of the EGARCH model is that the conditional variance

is computed through a logarithmic transformation, meaning that, no restrictions on the

parameters are required to ensure that the volatility is strictly higher than zero.

The EGARCH(p, q) conditional variance is computed as:

lnσ2
t = ω +

q∑
i=1

αi
|εt−i|
σt−i

+

q∑
i=1

γi
εt−i

σt−i

+

p∑
i=1

βi lnσ
2
t−i (6)

As in the GARCH model, we work under a EGARCH(1, 1), which is given by:

lnσ2
t = ω + α

|εt−1|
σt−1

+ γ
εt−1

σt−1

+ β lnσ2
t−1 (7)

4.1.4. FIGARCH

A problem related with short-memory GARCH models, like the standard GARCH and

the EGARCH, is that those models assume that shocks decay at a fast-geometric rate,

allowing only short-term persistence. To overcome this problem, Engle and Bollerslev

(1986) developed the Integrated GARCH (IGARCH), that contrary to short-memory

models, is characterized by having an infinite memory. Having an infinite memory is also

not an ideal feature since it means that shocks in the IGARCH volatility will never die

out, the initial conditions would impose hard bias on the estimations.

Baillie et al. (1996) introduced the FIGARCH, a long-memory volatility model, that,

instead of assuming an infinite memory, implies a slow hyperbolic rate of decay for the
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lagged squared innovations in the conditional variance. Starting from Equation 8, which

is the equation for a generic GARCH(p, q):

σ2
t = ω + α(L)ε2t + β(L)σ2

t , (8)

where L is the lag operator, such as α(L) =
∑m−1

i=1 αi(L) and β(L) =
∑m−1

i=1 βi(L). Re-

arranging it and letting vt = ε2t − σ2
t , the FIGARCH (p,d,q) model is given by:

ϕ(L)(1− L)dε2t = ω + [1− β(L)]vt, (9)

wherem = max{p, q} and 0 ≤ d ≤ 1 is the fractional differencing parameter that measures

the degree of long memory. The (1− L)d is obtained as:

(1− L)d =
∞∑
k=0

Γ(d + 1)

Γ(k + 1)Γ(d− k + 1)
Lk = 1−

∞∑
k=0

πkL
k, (10)

where πi =
∏

1<k≤i
k−1−d

k
. The expansion needs to be truncated to a large number, most

commonly 1000 as Baillie et al. (1996) suggest.

Setting ϕ(L) = (1 − α(L)) and (1 − L)dε2t = ε2t +
(∑1000

k=0 πkL
k
)
ε2t = ε2t + ε̄2t

(truncating the expansion to 1000 lags), where ε2t is the squared error term and ε̄2t is the

squared average error term, we obtain the conditional variance as:

σ2
t =

(
ω − ε̄2t

)
+

q∑
i=1

αi

(
ε2t−i + ε̄2t−i

)
+

p∑
i=1

βi

(
σ2
t−i + ε2t−i

)
(11)

For the FIGARCH(1, d, 1), the specification we use in this dissertation, the condi-

tional variance is computed as:

σ2
t =

(
ω − ε̄2t

)
+ α

(
ε2t−1 + ε̄2t−1

)
+ β

(
σ2
t−1 + ε2t−1

)
(12)

4.1.5. Estimating the models

To estimate the volatility, using the models presented above, we use R. With our function

vol estimation, Appendix D.2, we are able to estimate the volatility with each model. As

mentioned previously, all parameters needed to compute the volatility are estimated by

maximizing the log likelihood function.

Using the EWMA we’ll compute two sets of volatilities, the first one, following the

implementation of the RiskMetrics model, assigning the value of 0.94 to λ (named EWMA

λ = 0.94). For the second one we estimate λ fitting it to four years of past returns and

re-estimating it every trading month (referred to as EWMA), ensuring a high precision.

The initialization of both implementations is computed as σ2 = r2. A more in-depth

analysis on the difference between the two is available at Appendix A.

For the other three models in study, GARCH, EGARCH and FIGARCH, the same

process is applied. The parameters are estimated following the same principles and the

conditional variance is computed as shown in the previous sub-chapters.
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The first volatilities estimated correspond to the beginning of 1996, which gives us

four additional years, aside from the twenty in study, to be able to compute the VaR out-

of-sample. This is especially important in the EWMA volatility model since it allows to

dilute any possible problems with the initialization and arrive at a more proper estimate

for the twenty years that are studied.

4.2. Value-at-Risk Models

The Value-at-Risk is a statistical measure of expected loss and it’s currently the standard

metric to assess market risk. It can be defined as the maximum expected loss of a portfolio,

for a given significance level (α) and time horizon (h). Throughout our work we work with

α= 1%, 2.5% and 5%, which means that we are 99%, 97.5% and 95%, respectively, sure

that a loss in our portfolio will not exceed the estimate VaR. As for the time horizon, we

estimate 1-day VaRs (h = 1) which allows us to disregard the discounting effect without

creating major interferences on the results.

Formally, the 100α% h-day VaR (V aRh,α) is minus the α quantile of the h-day dis-

counted return distribution. It is a statistic that is related with the following probability:

P (X < xα) = α (13)

The quantile α of the distribution, xα, can then be obtained as:

xα = F−1(α), (14)

where, F−1 represents the inverse of the distribution function.

As the VaR represents the maximum loss that won’t be exceeded for a certain α, it

corresponds to the α quantile of the h-day return distribution:

V aRh,α = −F−1(α) (15)

Replacing the previous equation onto Equation 14:

V aRh,α = −xα (16)

In the previous chapter we explored the choice of a volatility model, but another

important step to estimate the VaR is to choose the VaR model. These models tend

to be divided by the way they model the return’s distribution. In this dissertation four

models are studied: Parametric Normal and Parametric Skewed Generalized Student-t

VaR, Volatility-Adjusted Historical VaR and Quantile Regression VaR.

4.2.1. Parametric VaR

The Parametric VaR assumes a parametric distribution, in our case Normal or Skewed

Generalized Student-t, for the return’s distribution of the portfolio. While a big advantage

of this model is the analytical tractability, in the sense that we only need to estimate

the distribution parameters, this model imposes a parametric distribution that can be

unrealistic.
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4.2.1.1. Normally distributed

We start under the assumption that the returns of our portfolio are normally distributed,

Xh ∼ N(µh, σ
2
h), where are µh and σ2

h are the estimates for the mean and variance,

respectively.

Starting from Equation 16 and applying the equivariance of quantiles to positive

transformations3, Koenker and Bassett Jr (1978), the 100α%h-day Parametric Normal

VaR, is given as:

V aRh,α = −ϕ−1(α)× σh − µh (17)

where ϕ−1(α) is the standard normal α quantile.

As Alexander (2009) suggests, we use a µh equal to zero. This makes the computation

of the VaR easier and only has big impacts in the value when the risk horizon is higher

than one month. Furthermore, there are no sufficiently accurate ways to estimate the

value of µh, so adding another estimation to the process would only increase the compu-

tation complexity. With this simplification, the 100α% h-day Parametric Normal VaR is

computed recurring to the normal var function, Appendix D.3, as:

V aRh,α = −ϕ−1(α)× σh (18)

4.2.1.2. Skewed Generalized Student-t distributed

It is known that financial returns don’t typically follow a normal distribution, they have

a leptokurtic distribution, with fat-tails. Thus, fitting the returns under a normal distri-

bution, will most likely lead to underestimated VaRs for low significance levels.

The Skewed generalized student-t distribution (Theodossiou, 1998) is a generalization

of the Student-t distribution that allows asymmetry and extra flexibility in the shape of

the tail and central regions.

Through the equivariance of quantiles to positive transformations, the 100α% h-day

Parametric SGSt VaR is :

V aRh,α = −T−1
0,1,λ,p,q(α)× σh − µh, (19)

where T−1
0,1,λ,p,q(α) is the quantile of the standard SGSt distribution.

As it’s possible to see on Equation 19, to compute the SGSt VaR we need to estimate

three parameters: λ that determines the skewness, p that controls the shape of the central

region and lastly q that controls the shape of the tail. These are estimated resorting

to the sgt fit function, maximizing the likelihood function, Appendix D.4, through the

Maximum Likelihood method available in the sgt package and based on a sample of four

historical trading years, just like in the volatility estimation. Moreover, to ensure that

the parameters reflect the current state of the market, this function re-estimates the

parameters every trading month.

3Qg(X)(α) = g(QX(α)), where QX(α) denotes the α quantile of a random X variable which follows a
distribution F , and g(x) is an increasing function of x
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Finally, with the parameters estimated, the Parametric SGSt VaR is computed using

the sgt var function, Appendix D.5.

4.2.2. Volatility-Adjusted Historical VaR

Contrary to the Parametric VaR, the Historical VaR lets the data speak freely. Instead

of assuming a parametric distribution, it uses the empirical distribution of the returns.

Formally, the historical 100α% h-day VaR is simply the α quantile of the empirical

h-day distribution of the returns. Knowing this, computing the historical VaR is a triv-

ial task: we choose a sample size (n), compute the h-day returns of the portfolio over

the sample period, compute the empirical h-day return distribution from those returns

(keeping the portfolio weights constant) and find the α quantile that we want to study.

The choice of the sample size is a very important step to compute the Historical

VaR. Different sample sizes come with trade-offs, a larger sample will increase the preci-

sion of the empirical distribution, however, the more data we use the less the historical

distribution reflects the current market conditions.

A problem that arises on the simple historical VaR is that the same weight is assigned

to all observations, which will most likely have a negative impact in the VaR estimation.

To overcome this problem, Duffie and Pan (1997) and Hull and White (1998) proposed a

methodology that adjusts the volatility of the returns to better reflect the current volatil-

ity, instead of the historical volatility. The same weight is assigned to every observation,

but the series of returns is adjusted with the series of volatility estimates σ̂t and today’s

volatility σ̂T :

r̂t =
σ̂T

σ̂t

rt, (20)

where σ̂t represents the volatility estimate for day t computed at the end of day t − 1.

If we are interested in adjusting rt we have to wait until the end of day t, but by then,

we already know σt+1. Therefore, we can improve the volatility adjustment even more by

doing the following:

r̂t =
σ̂T+1

σ̂t+1

rt (21)

With the adjusted returns, we can compute the Volatility-Adjusted Historical VaR.

At least, to compute the VaR for α=1% we need 100 daily observations. In our case, we

chose to use a sample of two years (504 observations), a large enough sample size to have

a good precision of the empirical distribution while allowing the data to be as recent as

possible, ensuring that the historical distribution reflects at its best the current market

conditions. This is done with the historical var function, Appendix D.6, which deals with

both the returns adjustment and the VaR computation.

4.2.3. Quantile Regression VaR

Given that the V aRα is defined as minus the α-quantile of the return distribution, the

VaR estimates can be obtained from a quantile regression of the portfolio returns onto

some explanatory variables. Assuming that r represents the returns of the portfolio, the
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VaR can be estimated as:

V aRα = −qr,α = −
(
âi + b̂xi

)
(22)

In our study, to compute the Quantile Regression VaR, we chose to use one of the simplest

specifications, and one of the most attractive, which is the following:

rt = bi × σt + εt, (23)

where σt is the date t volatility estimate for the portfolio returns computed using one of

the four volatility models studied in our work and b is the coefficient related with the

explanatory variable.

The parameters are estimated maximizing the likelihood function, recurring to the

function quantile fit, Appendix D.7. Like in the past cases, to assure that the coefficients

are up to date, they are re-estimated every trading month. While this estimation is

based on a historical sample of two trading years and it’s based on historical data, the

estimation of the VaR is done recurring to the current values of the explanatory variables,

the volatility in our case, which guarantees that the VaR reflects the current conditions

of the market, much like in the Volatility-Adjusted Historical VaR.

Applying the Equation 22 to our specification, and recurring to the quantile var func-

tion, Appendix D.8, the VaR is estimated as:

VaRα,t = −b̂× σt (24)

4.3. Evaluating the performance of VaR models

Our objective is to evaluate the performance of the volatility forecasting techniques, and

compare the performance of the various VaR models, estimated using these volatility

models. To do so, a backtest composed of two test will be used. The two tests are

the Unconditional Coverage (UC) test (Kupiec, 1995) and the BCP test (Berkowitz et al.,

2011). The first one is a likelihood test that evaluates the exceedance rate of the estimates,

while the second one is a Ljung-Box, which tests for autocorrelation.

From the exceedance rate viewpoint, a well specified VaR model is expected to match

the number of exceedances for the chosen significance level. If the observed number of

exceedances is much higher, or lower, than the expected value, the model can be said to be

badly specified. For instance, for a daily VaR run through a year, and for a significance

level of 99%, we expect to have 0.01 × 252 = 2.52 exceedances per trading year. Big

deviations from this value will implied the rejection that the model is well specified.

Looking at the autocorrelation, it is ideal to avoid exceedance clustering. An ex-

ceedance clustering indicates that a model is not fast enough to adapt to the changes

in the market conditions, which implies that the VaR is being under or overestimated,

depending on the evolution of the market’s volatility. Moreover, when VaR exceedances

are clustered, some statistical tests, that don’t account for autocorrelation, might show

good performances, when the risk is being wrongly estimated.
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Nevertheless, the most important feature of a model is the exceedance rate, so the

preferred source of decision is the UC test. The BCP test is used as a complement to

provide more insights on the performance of the models and to compare models that

perform similarly according to the UC test.

Both tests are performed for the full period of twenty years, but also for smaller

intervals of four years. This analysis allows us to evaluate the performance of the models

from a global viewpoint, but also explore if periods of higher stress, for instance the Great

Recession, are better estimated by a particular model. In any case, the tests for the full

period are more reliable and less volatile, so those should be preferred.

The two tests are computed through the backtest function, Appendix D.9, which

includes procedures to compute both the exceedances and the autocorrelation for one set

of VaR estimates. More details about each test are presented in the next sub-chapters.

4.3.1. Unconditional Coverage test

The UC test is a likelihood ratio test introduced by Kupiec (1995). This test is based on

an indicator function that relates with the number of exceedances (N):

Iα,t+1 =

 1, if rt+1 < V aR1,α,t

0, otherwise

(25)

The null and the alternative hypothesis are defined as follows:

H0 : πobs = πexp = α

H1 : πobs ̸= πexp,
(26)

where πobs is the observed exceedance rate and πexp is the expected exceedance rate. The

test statistic is:

LRuc =
πn1
exp (1− πexp)

n0

πn1
obs (1− πobs)

n0 , (27)

where n1 is the observed number of exceedances and n0 is the number of days without

exceedances. Under the null hypothesis the test statistic follows a qui-squared distribution

with one degree of freedom:

− 2 ln (LRuc) ∼ X2
1 (28)

If the null hypothesis is not rejected, the model is assumed to be well specified, that

is, the number of expected exceedances is close enough, or equal, to the observed number

of exceedances, for the given significance level.

Table 4 displays the acceptance regions for a significance level of 1%, for a sample size

of one, four and twenty years. The acceptance regions are presented both in number of

exceedances and exceedance rate.
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Acceptance Region 1 Year 4 Years 20 Years

Exceedance Nº 0 ≤ N ≤ 7 2 ≤ N ≤ 18 32 ≤ N ≤ 69

Exceedance Rate (%) [0 ; 2.78] [0.19 ; 1.79] [0.64 ; 1.37]

Table 4. UC test acceptance regions. Acceptance region for the 1% significance
level backtest, including the interval of exceedances and exceedance rates. If a model
presents exceedances outside the presented intervals, the null hypothesis of the UC test
is rejected and we conclude that the model is a bad fit to estimate the VaR of the index.

As mentioned before, the backtest will be performed for the full period of twenty

years, but also for sub-periods of four years. As Table 2 shows, backtesting the estimates

for sub-periods of four years, instead of one year, increases the probability of rejecting the

null hypothesis, rising the degree of exigency of the acceptance region.

The backtest function includes the procedures to compute the UC test, it provides all

the information needed: n, n1, n0, πobs, test statistic and p-value.

Because we are working with various models and for various indices, there is a lot of

information to work with. To keep the information concise and organized, in a way that

is easier to manage, we created the function uctest table, Appendix D.10. This function

creates a table that contains the p-values for all the models and time intervals in analysis.

This way the evaluation of the performance of the various models becomes much easier

and simple.

4.3.2. BCP test

The BCP test, (Berkowitz et al., 2011), checks for the first K autocorrelations of ex-

ceedances. It’s a test that allows to evaluate exceedance clustering. If the VaR model is

well specified, the exceedances are independent, meaning that it’s impossible to predict

when the next exceedance will occur.

The test hypothesis is defined as follows:

H0 : ρ̂k = 0,∀k ∈ {1, . . . , K}

H1 : ∃k ∈ {1, . . . , K} s.t. ρ̂k ̸= 0
(29)

And the test statistic is:

BCP (K) = T (T + 2)
K∑
k=1

ρ̂2k
T − k

, (30)

where ρ̂2k is the lag k sample autocorrelation, K is the maximum autocorrelation lag

considered and T is the sample size. Under the null hypothesis, the test statistic follows

a chi-squared distribution, with K degrees of freedom:

BCP (K) ∼ X2
k (31)

The choice of the parameter K is up to the user. A larger K helps detecting non-

independence in higher-order lags, but a smaller K increases the power of the test, given

the degrees of freedom are reduced. In this study we start with a K = 1 and go up to a
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K = 5, this way we are able to explore non-independence up to the lag 5 without losing

much power on the test.

Like for the UC test, the backtest function is able to compute the BCP test. This

function creates the autocorrelation matrix needed to evaluate the autocorrelation of the

exceedances and computes the various test statistics and p-values. Since we work with a

K up to 5, each model will have five different p-values for each time interval. Resorting

to the function bcptest table, Appendix D.11, we organize all p-values for the five Ks for

all models and time intervals in study, which eases the assessment of the autocorrelation

in the exceedances.
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CHAPTER 5

BACKTEST

In this section we present the backtest, or validation, of the estimates produced by the

various models for each of the four indices. The choice of the models, VaR and volatility,

the estimation technique and the sample size are some source of uncertainty that can

highly impact the accuracy of the VaR estimates. Therefore, choosing the most adequate

combination of models will improve the accuracy of the estimated VaR.

Two tests are used for the backtest, the UC and the BCP test up to five lags. As

explained in the methodology, the test that will weigh more in our decision is the UC

test, given that the exceedance rate is the most important feature of a model. The BCP

test will provide more insight and allow us to compare models that have suitable UC test

values. It will only be computed for models that pass the UC test, because it’s highly

influenced by the number of exceedances, having too many exceedances might cause the

model to be accepted by the BCP, when it fails the UC test.

Some model could perform well for the full period in study, 2000 until 2020, but

perform rather poorly in specific sub-intervals. To better understand the consistency of

the results for each model throughout the years, together with the backtest for the full

period, we perform both tests for sub-periods of four years.

A model that yields p-values higher than 5% is accepted by the UC and the BCP test,

a p-value smaller than 5% corresponds to a rejection of the null hypothesis. For the UC

test, a large p-value implies the model has an exceedance rate that is close to the expected

exceedance rate, meaning that it captures well the VaR of the index. For p-values higher

or equal than 5% the periods are in the green zone and lower than 5% in the red zone. A

model that presents mostly green zone periods can be said to be the most ideal model,

since it performs well throughout the years.

5.1. Backtest – 1% Significance Level

In Table 5 below, we present the summary of the backtest for the four indices which

includes the UC test p-values as well as the exceedance rates, for the full period and a

significance level of 1%. The values in bold denote a model that is within the green zone,

a model that is accepted by the UC test.

All models accepted by the UC test, the ones with a p-value higher than or equal to

5%, for the full period, will be further analyzed. These model should provide the most

accurate VaR estimates and thus are the most important to investigate.
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Model

S&P500 DAX FTSE HSI

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Parametric Normal - GARCH 2.35% 0.00% 1.92% 0.00% 2.17% 0.00% 1.87% 0.00%

Parametric Normal - EGARCH 2.72% 0.00% 2.50% 0.00% 2.45% 0.00% 1.89% 0.00%

Parametric Normal - FIGARCH 2.17% 0.00% 1.78% 0.00% 2.13% 0.00% 1.94% 0.00%

Parametric Normal - EWMA 2.31% 0.00% 1.98% 0.00% 2.39% 0.00% 2.02% 0.00%

Parametric Normal - EWMA λ = 0.94 2.13% 0.00% 2.06% 0.00% 2.35% 0.00% 1.98% 0.00%

Parametric SGSt - GARCH 1.17% 23,07% 0.83% 21,82% 1.32% 2.88% 0.99% 93,55%

Parametric SGSt - EGARCH 1.47% 0.17% 1.15% 29,67% 1.58% 0.01% 1.03% 83,63%

Parametric SGSt - FIGARCH 1.19% 18,27% 0.71% 3.12% 1.26% 7,28% 1.01% 94,95%

Parametric SGSt - EWMA 1.19% 18,27% 0.73% 4.57% 1.30% 3.98% 1.01% 94,95%

Parametric SGSt - EWMA λ = 0.94 1.13% 35,33% 0.67% 1.34% 1.16% 26,00% 1.11% 44,09%

Historical - GARCH 1.23% 11,00% 0.91% 52,27% 1.06% 66,03% 1.07% 62,38%

Historical - EGARCH 1.09% 51,27% 1.03% 82,73% 1.10% 47,35% 0.93% 60,32%

Historical - FIGARCH 1.17% 23,07% 0.95% 72,67% 1.14% 32,18% 1.11% 44,09%

Historical - EWMA 0.99% 96,49% 1.11% 44,03% 1.00% 98,64% 1.03% 83,63%

Historical - EWMA λ = 0.94 0.91% 53,54% 1.11% 44,03% 1.02% 87,38% 1.07% 62,38%

Quantile Regression - GARCH 1.49% 0.11% 1.37% 1.29% 1.40% 0.70% 1.44% 0.37%

Quantile Regression - EGARCH 1.37% 1.22% 1.39% 0.90% 1.44% 0.32% 1.34% 2.42%

Quantile Regression - FIGARCH 1.35% 1.74% 1.37% 1.29% 1.36% 1.45% 1.50% 0.10%

Quantile Regression - EWMA 1.39% 0.84% 1.45% 0.28% 1.40% 0.70% 1.32% 3.37%

Quantile Regression - EWMA λ = 0.94 1.39% 0.84% 1.55% 0.03% 1.30% 3.98% 1.32% 3.37%

Table 5. Summary of the backtest. For each index we present the exceedance rate
and the p-value of the UC test. The values in bold denote the model combinations that
were accepted under the UC test, that is, with a p-value higher than 5%. This table
includes the results of the backtest done for the global period in study, 2000-2020.

From Table 5 some facts already come in clear for the four indices. Neither the

Parametric Normal VaR nor the Quantile Regression VaR work for any index at a signif-

icance level of 1%, no matter the volatility model employed. From this fact we already

know that the Volatility-Adjusted Historical and the Parametric SGSt are surely the most

appropriate when looking at the four indices globally.

5.1.1. S&P500

As mentioned in the summary of the backtest, the individual analysis for each index will

only cover the models that have been accepted by the UC test. Table 6 below, presents

these models for the S&P500. The values in bold indicate the periods that are within

the green zone, a model that is accepted by the test. This connotation will be used in all

tables, throughout the analysis of the four indices.

Out of the twenty combinations of models studied, nine passed the test. These nine

only include Parametric SGSt and Volatility-Adjusted Historical models. Looking at the

p-values for the global period, two Volatility-Adjusted Historical models arise immediately

as the most trustworthy, those computed using the EWMA and EWMA λ= 0.94 volatility,

the first with a p-value of 93.49%, showing the largest margin in the UC test, and the
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Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Parametric SGSt - GARCH 1.17% 23.07% 0.90% 73.47% 1.19% 55.30% 1.59% 8.49% 0.60% 16.42% 1.59% 8.30%

Parametric SGSt - FIGARCH 1.19% 18.27% 0.90% 73.47% 0.89% 73.00% 1.49% 14.74% 0.99% 98.48% 1.81% 4.53%

Parametric SGSt - EWMA 1.19% 18.27% 0.90% 30.64% 0.89% 14.55% 1.49% 72.53% 0.99% 37.27% 1.71% 8.30%

Parametric SGSt - EWMA λ = 0.94 1.19% 35.33% 0.70% 30.64% 1.49% 55.30% 0.89% 72.53% 1.29% 37.27% 1.59% 8.30%

Historical - GARCH 1.23% 11.00% 0.90% 73.47% 1.89% 1.17% 1.29% 37.81% 0.99% 98.48% 1.09% 76.92%

Historical - EGARCH 1.09% 51.27% 0.80% 50.04% 1.99% 0.55% 0.99% 97.72% 0.80% 49.84% 0.89% 73.24%

Historical - FIGARCH 1.17% 23.07% 0.90% 73.47% 1.80% 4.57% 1.59% 8.49% 0.89% 73.24% 0.80% 49.84%

Historical - EWMA 0.99% 96.49% 0.90% 73.47% 1.19% 55.30% 1.19% 55.73% 0.89% 73.24% 0.80% 49.84%

Historial - EWMA λ = 0.94 0.91% 53.55% 0.70% 30.64% 1.09% 77.16% 0.99% 97.72% 1.09% 76.92% 0.70% 30.50%

Table 6. S&P500 - UC test results. We display the exceedance rate and the p-value
of the UC test of all model combinations that were accepted by the UC test for the global
period. The values in bold denote the combinations of models that are accepted for each
sub-period.

last with 53.55%. Regarding the sub-periods these two combinations also come out as the

best models, passing the test for all sub-periods.

Table 7 shows a summary of the BCP test results. It presents the lag that corresponds

to the lowest p-value of the BCP test.

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - GARCH 2 0.00% 3 0.04% 4 0.00% 2 0.00% 1 0.00% 1 0.00%

Parametric SGSt - FIGARCH 1 0.00% 4 0.09% 4 0.00% 2 0.00% 1 0.00% 1 0.00%

Parametric SGSt - EWMA 1 0.00% 5 63.82% 4 0.01% 3 0.09% 1 0.00% 1 0.00%

Parametric SGSt - EWMA λ = 0.94 1 0.00% 5 63.82% 5 0.09% 3 0.09% 1 0.00% 1 0.00%

Historical - GARCH 1 0.00% 5 53.88% 5 0.09% 2 0.00% 1 0.00% 1 0.00%

Historical - EGARCH 2 0.00% 5 58.75% 4 0.00% 2 0.00% 2 0.00% 1 0.00%

Historical - FIGARCH 1 0.00% 3 0.04% 5 1.34% 2 0.00% 1 0.00% 1 0.00%

Historical - EWMA 5 0.97% 5 53.89% 5 38.95% 5 1.53% 4 0.09% 1 0.02%

Historial - EWMA λ = 0.94 2 0.00% 5 63.82% 5 47.07% 5 0.30% 5 0.00% 5 0.00%

Table 7. S&P500 - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

It’s possible to understand that all models perform badly, not passing the BCP test

for the global period. Like in the UC test, the Volatility-Adjusted Historical EWMA and

EWMA λ = 0.94 have a slight advantage, being the only two that pass the BCP test for

two sub-periods.

Given all the analysis above, for the S&P500, during the period in study, the best com-

bination of models to estimate the VaR is the Volatility-Adjusted Historical EWMA, since

it presents a higher level of confidence than the Volatility-Adjusted Historical EWMA λ

= 0.94 on the UC test.

5.1.2. DAX

As Table 8 below displays, seven models comply with the acceptance criteria of the UC

test. Again, these seven models only include Parametric SGSt and Volatility-Adjusted

Historical models. Between these two classes of models, the Volatility-Adjusted Historical

models disclose more confidence when compared with the Parametric SGSt.
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Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Parametric SGSt - GARCH 0.83% 21.82% 0.70% 31.94% 0.59% 15.47% 1.47% 15.91% 0.69% 30.22% 0.70% 30.64%

Parametric SGSt - EGARCH 1.15% 29.67% 0.60% 17.33% 0.88% 70.69% 2.06% 0.29% 1.09% 77.41% 1.09% 76.67%

Historical - GARCH 0.91% 52.27% 0.70% 31.94% 0.98% 95.72% 1.08% 80.61% 0.60% 16.25% 1.19% 54.86%

Historical - EGARCH 1.03% 82.73% 0.90% 75.60% 1.08% 79.63% 1.18% 58.38% 0.79% 49.46% 1.19% 54.86%

Historical - FIGARCH 0.95% 72.67% 0.70% 31.94% 1.08% 79.63% 1.08% 80.61% 0.69% 30.22% 1.19% 54.86%

Historical - EWMA 1.11% 44.03% 0.80% 51.81% 1.47% 15.51% 1.18% 58.38% 0.89% 72.77% 1.19% 54.86%

Historial - EWMA λ = 0.94 1.11% 44.03% 0.90% 75.60% 1.47% 15.51% 0.98% 94.72% 0.99% 97.98% 1.19% 54.86%

Table 8. DAX - UC test results. We display the exceedance rate and the p-value of
the UC test of all model combinations that were accepted by the UC test for the global
period. The values in bold denote the combinations of models that are accepted for each
sub-period.

Looking at the global period, the model that outputs the largest p-value is the

Volatility-Adjusted Historical EGARCH, 82.73%, followed by the Volatility-Adjusted His-

torical FIGARCH and GARCH, 72.67% and 52.27%, respectively. For the sub-periods, all

Volatility-Adjusted Historical models and the Parametric SGSt - GARCH perform well,

having all sub-periods in the green area.

Table 9 shows the results of the BCP test for the DAX. From it, we understand that

all models fail the BCP test for the global period. This is largely due to the sub-periods

of 2002 to 2004, 2008 to 2012 and 2016 to 2020, where almost all models fail the BCP

test.

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - GARCH 2 0.00% 1 0.00% 5 67.04% 2 0.00% 5 61.76% 5 61.71%

Parametric SGSt - EGARCH 2 0.00% 1 0.00% 5 52.20% 2 0.00% 5 0.77% 2 0.00%

Historical - GARCH 2 0.00% 3 0.00% 5 0.00% 2 0.00% 5 66.90% 5 1.11%

Historical - EGARCH 2 0.00% 4 0.00% 5 0.02% 2 0.00% 5 56.79% 5 1.55%

Historical - FIGARCH 2 0.00% 3 0.00% 5 0.02% 2 0.00% 5 61.76% 5 1.11%

Historical - EWMA 5 3.45% 5 56.56% 5 1.17% 5 1.46% 5 52.02% 5 0.09%

Historial - EWMA λ = 0.94 5 0.67% 5 0.09% 5 1.17% 5 0.28% 5 47.44% 5 0.09%

Table 9. DAX - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

For the DAX, the combination of models that better estimates the VaR is the Volatility-

Adjusted Historical EGARCH. It produces good results on the UC test, with more con-

fidence than the other models.
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5.1.3. FTSE

Table 10 displays the UC test results for the FTSE.

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Parametric SGSt - FIGARCH 1.26% 7.28% 1.42% 21.26% 1.51% 13.27% 1.30% 36.56% 1.30% 36.04% 0.79% 49.07%

Parametric SGSt - EWMA λ = 0.94 1.16% 26.00% 1.01% 96.43% 1.31% 34.99% 0.80% 50.62% 1.50% 13.81% 1.19% 55.95%

Historical - GARCH 1.06% 66.03% 1.01% 96.43% 1.21% 52.26% 0.50% 7.76% 1.50% 13.81% 1.09% 77.90%

Historical - EGARCH 1.10% 47.35% 1.12% 72.02% 1.41% 22.15% 0.50% 7.76% 1.20% 53.56% 1.29% 37.99%

Historical - FIGARCH 1.14% 32.18% 1.12% 72.02% 1.41% 22.15% 0.70% 31.07% 1.30% 36.04% 1.19% 55.95%

Historical - EWMA 1.00% 98.64% 1.01% 96.43% 1.01% 98.22% 0.90% 74.17% 1.10% 75.20% 0.99% 97.47%

Historial - EWMA λ = 0.94 1.02% 87.38% 1.01% 96.43% 1.21% 52.26% 0.70% 31.07% 1.00% 99.75% 1.19% 55.95%

Table 10. FTSE - UC test results. We display the exceedance rate and the p-value
of the UC test of all model combinations that were accepted by the UC test for the global
period. The values in bold denote the combinations of models that are accepted for each
sub-period.

For the global period, seven models are in the green zone. Like the two previous

indices, these seven are only Parametric SGSt and Volatility-Adjusted Historical VaR

models. The models that achieved the best results on the UC test, are the Volatility-

Adjusted Historical EWMA and the Volatility-Adjusted Historical EWMA λ = 0.94,

98.64% and 87.38%, respectively, followed by the Volatility-Adjusted Historical GARCH

with 66.03%. Looking at the sub-periods, all models achieve positive results, having all

sub-periods in the green zone.

In Table 11 we have the results of FTSE’s BCP test. We can see that all models stay

in the red zone of the BCP test, for the global period and most of the sub-periods.

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - FIGARCH 1 0.00% 4 0.00% 3 0.00% 2 0.00% 5 0.03% 1 0.02%

Parametric SGSt - EWMA λ = 0.94 1 0.00% 4 0.00% 4 0.00% 5 56.68% 3 0.00% 5 1.53%

Historical - GARCH 1 0.00% 4 0.00% 3 0.00% 2 0.00% 3 0.00% 1 0.00%

Historical - EGARCH 1 0.00% 3 0.00% 3 0.00% 5 72.11% 5 0.01% 1 0.00%

Historical - FIGARCH 1 0.00% 4 0.00% 3 0.00% 5 0.00% 1 0.00% 1 0.00%

Historical - EWMA 5 1.01% 5 0.34% 5 0.33% 5 0.09% 5 0.80% 5 47.49%

Historial - EWMA λ = 0.94 5 1.25% 5 0.34% 5 1.61% 1 0.00% 1 0.00% 5 39.02%

Table 11. FTSE - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

Due to its’ performance on the UC test, and given that all models have similar per-

formances on the BCP test, the Volatility-Adjusted Historical EWMA should be the best

combination to estimate the VaR for the FTSE between 2000 and 2020.
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5.1.4. HSI

In Table 12 we present the results of the UC test for the HSI index.

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Exc.

Rate
UC

Parametric SGSt - GARCH 0.99% 93.55% 0.64% 22.78% 1.82% 3.63% 0.62% 19.38% 0.82% 55.47% 1.12% 70.55%

Parametric SGSt - EGARCH 1.03% 83.63% 0.74% 40.29% 1.84% 1.84% 0.72% 35.13% 0.72% 34.66% 1.12% 70.55%

Parametric SGSt - FIGARCH 1.01% 94.95% 0.53% 11.06% 1.73% 3.63% 1.03% 93.61% 0.72% 34.66% 1.02% 94.90%

Parametric SGSt - EWMA 1.01% 94.95% 0.95% 88.47% 1.22% 49.50% 0.62% 19.38% 1.23% 49.08% 1.02% 94.90%

Parametric SGSt - EWMA λ = 0.94 1.11% 44.09% 1.06% 85.60% 1.22% 49.50% 0.82% 56.10% 1.12% 70.07% 1.33% 32.79%

Historical - GARCH 1.07% 62.38% 0.64% 22.78% 1.84% 1.84% 0.92% 80.68% 0.92% 79.94% 1.02% 94.90%

Historical - EGARCH 0.93% 60.32% 1.06% 85.60% 1.22% 49.50% 0.82% 56.10% 0.82% 55.47% 0.71% 34.35%

Historical - FIGARCH 1.11% 44.09% 0.85% 62.86% 1.63% 6.82% 1.23% 48.46% 0.82% 55.47% 1.02% 94.90%

Historical - EWMA 1.03% 83.63% 0.95% 88.47% 1.02% 94.90% 0.82% 56.10% 1.12% 70.07% 1.22% 49.50%

Historial - EWMA λ = 0.94 1.07% 62.38% 1.06% 85.60% 0.82% 55.06% 1.44% 19.91% 1.12% 70.07% 0.92% 79.45%

Table 12. HSI - UC test results. We display the exceedance rate and the p-value of
the UC test of all model combinations that were accepted by the UC test for the global
period. The values in bold denote the combinations of models that are accepted for each
sub-period.

The HSI was the index in which more models performed adequately, out of the twenty

in study, half of them are in the green area for the global period, some with outstanding p-

values on the UC test. From these ten we’d like to highlight the Parametric SGSt GARCH,

FIGARCH and EWMA, which achieved p-values of 93.55%, 94.95% and 94.95%.

From all the models that passed the UC test, six did it for all periods, Parametric

SGSt EWMA and EWMA λ = 0.94 and all Volatility-Adjusted Historicals except the

GARCH.

Table 13 presents the results for the BCP test.

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - GARCH 3 0.00% 1 0.00% 3 0.00% 2 0.00% 2 0.00% 3 0.00%

Parametric SGSt - EGARCH 3 0.00% 1 0.00% 3 0.00% 1 0.00% 5 61.22% 5 0.87%

Parametric SGSt - FIGARCH 3 0.00% 5 73.60% 3 0.00% 2 0.01% 2 0.00% 5 0.00%

Parametric SGSt - EWMA 5 0.83% 5 52.57% 5 0.11% 2 0.00% 5 1.71% 5 42.72%

Parametric SGSt - EWMA λ = 0.94 5 3.19% 5 47.81% 5 0.11% 4 0.00% 5 42.37% 5 0.19%

Historical - GARCH 4 0.00% 5 68.09% 5 0.00% 4 0.01% 4 0.00% 5 0.35%

Historical - EGARCH 3 0.00% 5 0.44% 3 0.00% 2 0.02% 2 0.02% 3 0.00%

Historical - FIGARCH 5 0.00% 5 57.54% 5 0.00% 5 1.72% 2 0.02% 5 0.35%

Historical - EWMA 5 1.03% 5 52.57% 5 0.35% 2 0.02% 5 0.87% 5 38.28%

Historial - EWMA λ = 0.94 5 1.58% 5 47.81% 5 56.23% 5 0.73% 5 87.00% 5 10.00%

Table 13. HSI - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

The results of the BCP test were not satisfactory, all models failed the BCP test for

the global period. Looking at the sub-periods of the BCP test, all models have similar

performances, passing it at maximum for two sub-periods.

Given both tests results, the Volatility-Adjusted Historical EWMA should be the best

combination to estimate the VaR of the HSI.
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5.2. Backtest – 2.5% and 5% Significance Levels

Following the same analysis done for the 1% significance level, the performance of the

various models was assessed for each index for both a 2.5% and 5% significance level. The

complete results are available at Appendix B and Appendix C.

Table 14 summarizes the findings about the best model for each index.

Index
Significance Levels

2.5% 5%

S&P500 Historical - EWMA Historical - EWMA λ = 0.94

DAX Historical - EGARCH Historical - EWMA λ = 0.94

FTSE Historical - GARCH Historical - EWMA

HSI Historical - EWMA Historical - FIGARCH

Table 14. Backtest results summary for the 2.5% and 5% significance level.
Highlighting the best combination of models for each index and significance level.

Between these results and the ones presented in the previous sub-sections, no signif-

icant differences were found. While some models that weren’t previously accepted were

accepted, some Parametric Normals and Quantile Regression VaR models, the confidence

levels provided by these was still inferior than the other models. For the BCP test, the

results remained unchanged, all models failed the test for the global period.

5.3. Backtesting Conclusions

In Table 15 below, we present the models that output the best estimates, when combining

the results from the UC test and the BCP test.

Index
Significance Levels

1% 2.5% 5%

S&P500 Historical - EWMA λ = 0.94 Historical - EWMA Historical - EWMA λ = 0.94

DAX Historical - EGARCH Historical - EGARCH Historical - EWMA λ = 0.94

FTSE Historical - EWMA Historical - GARCH Historical - EWMA

HSI Historical - EWMA λ = 0.94 Historical - EWMA Historical - FIGARCH

Table 15. Backtest results summary for all significance levels studied. High-
lighting the best combination of models for each index and significance level.

According to the results of the BCP test, we have some indication of possible prob-

lems regarding the independence property of the exceedances, which causes all models to

perform poorly under periods of high turbulence, leading to autocorrelated exceedances

and clustering.

Contrary to what was expected, there was no dominance of the asymmetric and long

memory volatility models, which means that accounting for these two properties is not

an obvious decision to achieve better VaR estimates. Moreover, both EWMA volatility
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models, appeared as the best models for most of the indices. Out of twelve possibilities,

eight times the best combination of models involved an EWMA volatility.

In Table 16 we present the number of rejections that each model received, by the UC

test, for the global period in analysis and for the 4 indices.

Model
Nº of Rejections

1% 2.5% 5% Total

Parametric Normal - GARCH 4 3 1 8

Parametric Normal - EGARCH 4 4 3 11

Parametric Normal - FIGARCH 4 4 0 8

Parametric Normal - EWMA 4 4 4 12

Parametric Normal - EWMA λ = 0.94 4 4 4 12

Parametric SGSt - GARCH 1 1 2 4

Parametric SGSt - EGARCH 2 3 3 8

Parametric SGSt - FIGARCH 1 0 2 3

Parametric SGSt - EWMA 2 2 4 8

Parametric SGSt - EWMA λ = 0.94 1 1 4 6

Historical - GARCH 0 0 0 0

Historical - EGARCH 0 0 0 0

Historical - FIGARCH 0 0 0 0

Historical - EWMA 0 0 0 0

Historical - EWMA λ = 0.94 0 0 0 0

Quantile Regression - GARCH 4 3 1 8

Quantile Regression - EGARCH 4 2 3 9

Quantile Regression - FIGARCH 4 3 3 10

Quantile Regression - EWMA 4 3 1 8

Quantile Regression - EWMA λ = 0.94 4 3 0 7

Table 16. Number of rejections by model combination. Highlights the number
of rejections that each model combination received on the global period of the UC test.
The model combinations with the lowest number of total rejections are the ones that
better estimate the VaR.

From a global perspective, five combinations of models largely outperform the rest

when looking solely at the number of rejections. These were the Volatility-Adjusted His-

torical models, which were always accepted, for all indices and significance levels. What

can be deduced from this is that, for a risk manager that pretends to use a singular imple-

mentation for various portfolios, recurring to one of these combinations should increase
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the probability of the estimates being accepted by the UC test, hence being a good fit to

predict the VaR.

Looking only at the VaR models, the one with the worst performance was the Para-

metric Normal. Each model could be rejected up to 80 times, 20 times for each sig-

nificance level, and the Parametric Normal model accumulated 51 rejections. Closely

following it, was the Quantile Regression, that racked up 42 rejections. The Parametric

SGSt has less rejections, 29 in total. By far, the best model is the Volatility-Adjusted

Historical, 0 rejections. Given this, it’s obvious that there’s a clear advantage of using

the Volatility-Adjusted Historical model to estimate the VaR, when paired with good

performing volatility models.

Table 17 provides the mean of the VaR estimates for each model, and the global

average for each significance level. The values in bold indicate the models that were

accepted by the UC test.

Comparing the four indices, we have two pairs with similar results, the first being the

S&P500 and the FTSE, and the other the DAX and the HSI. The second pair has higher

VaR averages, which implies that those indices are riskier and more volatile.

As we can see, the average that only accounts for accepted models, those that have

a p-value higher than 5% on the UC test, is always higher than the global average.

Knowing this, we can conclude that the models that are rejected by the UC test tend to

underestimate the Value-at-Risk. We can see it clearly for the Parametric Normal models

at the 1% backtest, which always have the mean of its’ VaR estimates way smaller than

the global average.

We can also observe that, amongst the models that have been accepted by the UC

test at a 1% significance level, the ones that were chosen as the best to estimate the

VaR for each index, have smaller means than the global average. This is an advantage

to investors, having a smaller VaR implies that less money is needed to cover for market

risk. When looking at the 2.5% and 5% averages, the best models have slightly higher

means than the average of all accepted models.
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Mean Value-at-Risk

Model
S&P500 DAX FTSE HSI

1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5%

Parametric Normal - GARCH 2.47% 2.08% 1.75% 3.13% 2.64% 2.21% 2.47% 2.08% 1.75% 3.22% 2.71% 2.27%

Parametric Normal - EGARCH 2.27% 1.92% 1.61% 2.91% 2.45% 2.06% 2.31% 1.94% 1.63% 3.10% 2.61% 2.19%

Parametric Normal - FIGARCH 2.47% 2.08% 1.75% 3.22% 2.71% 2.28% 2.50% 2.11% 1.77% 3.18% 2.68% 2.25%

Parametric Normal - EWMA 2.36% 1.99% 1.67% 3.00% 2.53% 2.12% 2.35% 1.98% 1.66% 2.99% 2.52% 2.11%

Parametric Normal - EWMA λ = 0.94 2.39% 2.01% 1.69% 3.02% 2.55% 2.14% 2.37% 2.00% 1.68% 3.01% 2.53% 2.12%

Parametric SGSt - GARCH 3.02% 2.25% 1.71% 3.81% 2.89% 2.22% 2.93% 2.20% 1.69% 3.87% 2.90% 2.22%

Parametric SGSt - EGARCH 2.77% 2.07% 1.57% 3.54% 2.69% 2.07% 2.73% 2.06% 1.58% 3.72% 2.79% 2.14%

Parametric SGSt - FIGARCH 3.01% 2.25% 1.71% 3.92% 2.97% 2.28% 2.96% 2.23% 1.71% 3.82% 2.87% 2.19%

Parametric SGSt - EWMA 2.88% 2.15% 1.63% 3.65% 2.77% 2.13% 2.78% 2.09% 1.61% 3.59% 2.70% 2.06%

Parametric SGSt - EWMA λ = 0.94 2.92% 2.18% 1.65% 3.68% 2.79% 2.14% 2.81% 2.12% 1.62% 3.62% 2.72% 2.07%

Historical - GARCH 3.24% 2.50% 1.90% 3.98% 2.95% 2.38% 3.25% 2.53% 1.89% 3.77% 3.04% 2.33%

Historical - EGARCH 3.14% 2.43% 1.87% 3.72% 2.96% 2.31% 3.15% 2.45% 1.86% 3.72% 2.98% 2.31%

Historical - FIGARCH 3.22% 2.46% 1.89% 3.89% 2.98% 2.40% 3.30% 2.51% 1.91% 3.79% 3.03% 2.32%

Historical - EWMA 3.09% 2.41% 1.85% 3.43% 2.89% 2.39% 2.93% 2.41% 1.88% 3.61% 2.89% 2.27%

Historical - EWMA λ = 0.94 3.11% 2.39% 1.84% 3.45% 2.90% 2.38% 2.94% 2.41% 1.88% 3.63% 2.86% 2.26%

Quantile Regression - GARCH 3.03% 2.33% 1.82% 3.58% 2.81% 2.30% 3.02% 2.36% 1.82% 3.58% 2.85% 2.23%

Quantile Regression - EGARCH 2.99% 2.31% 1.80% 3.53% 2.81% 2.26% 2.96% 2.32% 1.79% 3.57% 2.83% 2.24%

Quantile Regression - FIGARCH 3.01% 2.30% 1.80% 3.59% 2.81% 2.30% 3.08% 2.34% 1.83% 3.60% 2.86% 2.22%

Quantile Regression - EWMA 2.76% 2.23% 1.77% 3.26% 2.81% 2.29% 2.80% 2.25% 1.80% 3.48% 2.75% 2.19%

Quantile Regression - EWMA λ = 0.94 2.77% 2.21% 1.78% 3.28% 2.82% 2.29% 2.83% 2.26% 1.81% 3.51% 2.71% 2.19%

Global average (only accepted models) 3.07% 2.36% 1.81% 3.69% 2.88% 2.34% 3.05% 2.42% 1.84% 3.71% 2.86% 2.24%

Global Average 2.85% 2.23% 1.75% 3.48% 2.79% 2.25% 2.82% 2.23% 1.76% 3.52% 2.79% 2.21%

Table 17. Mean of the Value-at-Risk estimates. We display the average value of the VaR estimate of each model combination. We also
present two global averages. The first one only includes models that were accepted by the UC test for the global period and the second one
include all models. The values in bold indicate the models that were accepted by the UC test for the global period in study.
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CHAPTER 6

CONCLUSION

In this study, we explored if the Value-at-Risk estimation could be improved by accounting

for the asymmetric behavior of the volatility and its’ long memory. If these two properties

are important to estimate the VaR, using models that accommodate them, would output

better estimates than other simpler models.

Before delving into the estimation of the VaR, from a sample of twenty years of four

market indices, S&P500, DAX, FTSE and HSI, we analyzed the stationarity of the prices

and returns, concluding that the prices were not stationary but the returns were. We

also examined if long memory was present in the returns and in the volatility, using the

squared returns and absolute-valued returns as proxies, and discovered that, while there

was no evidence of long memory on the returns of the indices, for the proxies there was

an indication that they were described by a long memory process.

The estimates for the VaR were computed using five volatility models, EGARCH and

FIGARCH, that accommodate asymmetry and long memory, respectively, GARCH and

two EWMA models. Moreover, to further strengthen our results, we also resorted to four

VaR models, Parametric Normal and Skewed Generalized Student-t, Volatility-Adjusted

Historical, and Quantile Regression, which gives us a total of twenty batches of estimates

for each index. Each of these batches were backtested with the UC and the BCP test.

Looking at the VaR models, there was a striking difference between them. The Para-

metric Normal model and Quantile Regression VaR weren’t able to perform satisfactorily

for the backtest of 1% significance level, never being accepted by the UC test. While not

performing as bad as the previous two, the Parametric SGSt fell short in comparison with

the Volatility-Adjusted Historical, which was the one with the best results, always being

found to be the best performing model.

On the volatility we found no dominance of the asymmetric and long memory models.

Moreover, from the models that were deemed to be the ones with the best performances,

it was found that, eight times out of twelve, an EWMA volatility model performed better

than the other models studied.

One important aspect of the results is that, while not dominating the other models,

the EGARCH and the FIGARCH, used to compute the Volatility-Adjusted Historical

VaR, were accepted by the UC test for all indices and significance levels. This implies

that, globally, these two models are very well rounded and have an adequate performance,

but, once again, this was not exclusive to the asymmetric and long memory models since

the Volatility-Adjusted Historical GARCH, EWMA and EWMA λ = 0.94 also achieved

this feat.
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All in all, this study revealed that resorting to more complex volatility models, specif-

ically ones that accommodate the asymmetric behavior of the volatility and its’ long

memory, is not strictly better than using a simple model like the EWMA volatility. There

is no evidence to affirm that modeling these two properties allows to produce better esti-

mates for the Value-at-Risk. While for some indices and significance levels, the EGARCH

and FIGARCH have better performances than the others, that could be due to a selection

bias, since when looking at global results there is no proof of dominance by neither of

these.

For future research on this subject, it would be interesting to extend the analysis

to other types of financial assets: bonds, options, commodities, exchange rates, etc. In

addition, adding a model that accommodates both asymmetry and long memory together

would be an important improvement to the study, some models we recommend are the

Fractionally Integrated Asymmetric Power Auto Regressive Conditional Heteroscedastic-

ity (FIAPARCH) and the Fractionally Integrated Exponential Generalized Autoregressive

Conditional Heteroskedastic (FIEGARCH).

36



References

Alexander, C. (2009). Market risk analysis, value at risk models, volume 4. John Wiley

& Sons.

Angelidis, T., Benos, A., and Degiannakis, S. (2004). The use of garch models in var

estimation. Statistical methodology, 1(1-2):105–128.

Baillie, R. T., Bollerslev, T., and Mikkelsen, H. O. (1996). Fractionally integrated general-

ized autoregressive conditional heteroskedasticity. Journal of econometrics, 74(1):3–30.

Bentes, S. R. (2015). Forecasting volatility in gold returns under the garch, igarch and fi-

garch frameworks: New evidence. Physica A: Statistical Mechanics and its Applications,

438:355–364.

Berggren, E. and Folkelid, F. (2015). Which garch model is best for value-at-risk? (Bach-

elors thesis, Uppsala universitet).

Berkowitz, J., Christoffersen, P., and Pelletier, D. (2011). Evaluating value-at-risk models

with desk-level data. Management Science, 57(12):2213–2227.

Black, F. (1976). Studies of stock market volatility changes. page 177–181.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal

of econometrics, 31(3):307–327.

Brooks, C. (2008). Introductory econometrics for finance. Cambridge university press.

Brooks, C. and Persand, G. (2003). The effect of asymmetries on stock index return

value-at-risk estimates. The Journal of Risk Finance.

Bucevska, V. (2013). An empirical evaluation of garch models in value-at-risk estimation:

Evidence from the macedonian stock exchange. Business Systems Research: Inter-

national journal of the Society for Advancing Innovation and Research in Economy,

4(1):49–64.

Campbell, J. Y. and Hentschel, L. (1992). No news is good news: An asymmetric model

of changing volatility in stock returns. Journal of financial Economics, 31(3):281–318.

Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage

and interest rate effects. Journal of financial Economics, 10(4):407–432.

Christoffersen, P., Hahn, J., and Inoue, A. (2001). Testing and comparing value-at-risk

measures. Journal of empirical finance, 8(3):325–342.

Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review,

pages 841–862.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregres-

sive time series with a unit root. Journal of the American statistical association,

74(366a):427–431.

37



Ding, Z., Granger, C. W., and Engle, R. F. (1993). A long memory property of stock

market returns and a new model. Journal of empirical finance, 1(1):83–106.

Duffie, D. and Pan, J. (1997). An overview of value at risk. Journal of derivatives,

4(3):7–49.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom inflation. Econometrica: Journal of the econometric society,

pages 987–1007.

Engle, R. F. and Bollerslev, T. (1986). Modelling the persistence of conditional variances.

Econometric reviews, 5(1):1–50.

Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility.

The journal of finance, 48(5):1749–1778.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the

expected value and the volatility of the nominal excess return on stocks. The journal

of finance, 48(5):1779–1801.

Horta, P. J. d. B. (2015). The impact of the 2008 and 2010 financial crises on international

stock markets: contagion and long memory. (Doctoral dissertation, ISCTE - Instituto

Universitario de Lisboa).

Hull, J. and White, A. (1998). Incorporating volatility updating into the historical simu-

lation method for value-at-risk. Journal of risk, 1(1):5–19.

Hurst, H. (1951). Long term story capacities of reservoirs. Transactions of the American

Society of Civil Engineers, 116:770–779.

Kasman, A. (2009). Estimating value-at-risk for the turkish stock index futures in the

presence of long memory volatility. Central Bank Review, 9(1):1.

Kayal, P. and Maheswaran, S. (2018). Leverage effect and volatility asymmetry. In

International Conference on Economics and Finance, pages 131–150. Springer.

Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of

the Econometric Society, pages 33–50.

Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models.

The J. of Derivatives, 3(2).

Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica: Journal of

the Econometric Society, pages 1279–1313.

Longerstaey, J. and Spencer, M. (1996). Riskmetricstm—technical document. Morgan

Guaranty Trust Company of New York: New York, 51:54.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.

Econometrica: Journal of the Econometric Society, pages 347–370.

Sethapramote, Y., Prukumpai, S., and Kanyamee, T. (2014). Evaluation of value-at-

risk estimation using long memory volatility models: Evidence from stock exchange of

thailand. Available at SSRN 2396531.

38



So, M. K. and Philip, L. (2006). Empirical analysis of garch models in value at risk estima-

tion. Journal of International Financial Markets, Institutions and Money, 16(2):180–

197.

Tang, T.-L. and Shieh, S.-J. (2006). Long memory in stock index futures markets: A

value-at-risk approach. Physica A: Statistical Mechanics and its Applications, 366:437–

448.

Theodossiou, P. (1998). Financial data and the skewed generalized t distribution. Man-

agement Science, 44(12-part-1):1650–1661.

Wu, P.-T. and Shieh, S.-J. (2007). Value-at-risk analysis for long-term interest rate fu-

tures: Fat-tail and long memory in return innovations. Journal of Empirical Finance,

14(2):248–259.

Yao, J., Li, Z.-F., and Ng, K. W. (2006). Model risk in var estimation: An empirical study.

International Journal of Information Technology & Decision Making, 5(03):503–512.

39





Appendices

41





Appendix A - EWMA Volatility Estimation

As mentioned in this dissertation, the EWMA volatility is computed recurring to two

methodologies. The first, and the most simple, we assume the value for parameter λ.

Following the implementation of the RiskMetrics model, we assign the value of 0.94 and

keep it constant for all the years in study. The second, we estimate the λ fitting it to

four years of past returns, maximizing the likelihood function, and re-estimating it every

trading month, ensuring a high precision. Neither of the two methodologies is strictly

better than the other, the simpler implementation ignores the data and assumes a fixed

parameter, but the second one, where we fit the parameter, introduces estimation errors

and more complexity, which can cause deviations from the real value.

The results for the λ estimates are summarized in Table 18 below. As we can see,

while the value of the estimated λ various throughout the years, and for the four indices,

the global average is pretty similar for all of them. Another important observation is

that the average of the estimated λ remains close to the fixed value suggested by the

RiskMetrics model, 0.94. What this indicates is that, while some benefits might appear

from fitting the parameter, assuming the fixed value of 0.94 is also a viable option. This

is proven by the results of our study, since for some indices the EWMA model with a

fixed λ of 0.94 outperformed the one with the estimated λ.
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Date
Estimated Lambda

S&P500 DAX FTSE HSI

01/01/2000 0,976 0,955 0,978 0,940

22/01/2000 0,976 0,955 0,978 0,934

12/02/2000 0,977 0,954 0,976 0,935

(...)

01/01/2005 0,942 0,919 0,941 0,958

22/01/2005 0,934 0,923 0,931 0,954

12/02/2005 0,933 0,918 0,931 0,958

(...)

01/01/2010 0,954 0,933 0,926 0,977

22/01/2010 0,953 0,936 0,925 0,975

12/02/2010 0,954 0,936 0,927 0,973

(...)

01/01/2015 0,928 0,934 0,925 0,953

22/01/2015 0,941 0,933 0,922 0,959

12/02/2015 0,937 0,934 0,917 0,961

(...)

01/01/2020 0,923 0,943 0,898 0,959

22/01/2020 0,916 0,937 0,905 0,958

12/02/2020 0,918 0,928 0,903 0,958

(...)

Total Average 0,937 0,934 0,931 0,946

Table 18. Estimated lambdas. Lambdas estimate for the four indices throughout
the years and global average value.
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Appendix B - UC and BCP test results for 2.5% sig-

nificance level

B.1. UC test

In this section we present the results for the UC test. We include all model combinations,

accepted and rejected, and the respective p-values. The value in bold highlight accepted

model combinations. The model combinations are presented according to a key, following

Table 19 below.
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Key Model

1 Parametric Normal - GARCH

2 Parametric Normal - EGARCH

3 Parametric Normal - FIGARCH

4 Parametric Normal - EWMA

5 Parametric Normal - EWMA λ = 0,94

6 Parametric SGSt - GARCH

7 Parametric SGSt - EGARCH

8 Parametric SGSt - FIGARCH

9 Parametric SGSt - EWMA

10 Parametric SGSt - EWMA λ = 0,94

11 Historical - GARCH

12 Historical - EGARCH

13 Historical - FIGARCH

14 Historical - EWMA

15 Historical - EWMA λ = 0,94

16 Quantile Regression - GARCH

17 Quantile Regression - EGARCH

18 Quantile Regression - FIGARCH

19 Quantile Regression - EWMA

20 Quantile Regression - EWMA λ = 0,94

Table 19. Keys for the UC test. To improve the readability of the UC test tables,
we present the models following keys. Each key corresponds to a model studied.
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B.1.1. S&P500

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 0.00% 0.00% 0.00% 0.00% 0.00% 12.78% 0.00% 10.76% 2.72% 10.76% 36.20% 77.18% 51.80% 53.71% 53.71% 0.39% 1.08% 0.13% 4.15% 1.38%

01/01/2000 01/01/2004 18.24% 33.90% 97.98% 18.24% 18.24% 86.04% 66.32% 28.32% 56.83% 70.81% 81.89% 97.98% 81.89% 81.89% 81.89% 44.46% 86.04% 44.46% 56.83% 56.83%

01/01/2004 01/01/2008 18.59% 2.55% 9.06% 2.55% 3.99% 97.18% 25.62% 57.53% 18.59% 18.59% 6.09% 3.99% 3.99% 25.62% 25.62% 0.97% 2.55% 0.34% 3.99% 3.99%

01/01/2008 01/01/2012 0.00% 0.00% 0.00% 0.00% 0.00% 1.64% 0.00% 0.60% 13.41% 45.70% 50.63% 27.46% 80.34% 18.97% 27.46% 26.06% 87.64% 9.26% 87.64% 34.96%

01/01/2012 01/01/2016 25.40% 3.94% 3.94% 0.19% 0.33% 86.44% 97.58% 44.77% 18.41% 25.40% 86.44% 65.96% 86.44% 97.58% 51.58% 34.16% 8.96% 44.77% 34.16% 25.40%

01/01/2016 01/01/2020 34.16% 0.01% 25.40% 8.96% 13.01% 57.18% 0.96% 71.19% 86.44% 97.58% 44.77% 97.58% 65.96% 28.11% 51.58% 34.16% 18.41% 34.16% 44.77% 44.77%

Table 20. S&P500 - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight
model combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 19).

B.1.2. DAX

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 0.00% 0.00% 0.03% 0.00% 0.00% 93.72% 0.02% 26.65% 29.14% 29.14% 86.61% 99.10% 45.90% 84.76% 91.91% 0.57% 5.48% 0.93% 13.61% 13.61%

01/01/2000 01/01/2004 23.28% 0.28% 67.41% 11.71% 5.32% 54.83% 53.72% 30.34% 30.34% 21.17% 41.62% 21.17% 21.17% 54.83% 85.42% 23.28% 69.61% 82.46% 85.42% 85.42%

01/01/2004 01/01/2008 90.84% 2.93% 75.41% 10.12% 6.86% 25.80% 61.07% 25.80% 93.18% 90.84% 93.18% 77.27% 48.15% 90.84% 93.18% 61.07% 27.88% 75.41% 37.14% 48.23%

01/01/2008 01/01/2012 0.00% 0.00% 0.04% 0.00% 0.00% 4.78% 0.00% 91.59% 10.57% 15.14% 38.26% 21.15% 21.15% 38.26% 62.51% 7.19% 10.57% 1.21% 7.19% 3.09%

01/01/2012 01/01/2016 13.28% 4.04% 13.28% 0.59% 0.99% 80.72% 45.39% 80.72% 9.16% 13.28% 50.95% 38.32% 19.13% 27.67% 50.95% 34.69% 87.24% 25.84% 71.96% 71.96%

01/01/2016 01/01/2020 5.94% 3.89% 3.89% 0.94% 1.55% 97.98% 56.83% 97.98% 97.98% 70.81% 33.90% 33.90% 86.04% 86.04% 86.04% 8.86% 8.86% 12.87% 70.81% 86.04%

Table 21. DAX - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight
model combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 19).
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B.1.3. FTSE

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 0.01% 0.00% 0.01% 0.00% 0.00% 4.91% 0.00% 20.27% 0.02% 0.81% 90.63% 73.60% 76.57% 80.59% 73.60% 1.03% 0.48% 0.21% 1.31% 4.00%

01/01/2000 01/01/2004 0.40% 0.40% 1.89% 0.40% 1.15% 4.68% 4.68% 7.10% 29.10% 38.78% 73.36% 32.70% 58.20% 58.20% 44.51% 21.27% 50.35% 21.27% 29.10% 63.68%

01/01/2004 01/01/2008 40.83% 0.77% 5.12% 0.26% 2.09% 66.28% 30.82% 81.26% 16.24% 30.82% 11.34% 40.83% 40.83% 30.82% 30.82% 0.77% 1.29% 0.45% 7.72% 11.34%

01/01/2008 01/01/2012 0.90% 0.00% 2.38% 0.05% 0.53% 1.48% 0.00% 24.54% 0.53% 12.47% 13.34% 67.41% 67.41% 52.87% 83.06% 84.85% 84.85% 69.67% 55.79% 33.11%

01/01/2012 01/01/2016 2.28% 8.27% 1.41% 0.16% 0.50% 42.62% 32.34% 42.62% 3.59% 5.52% 68.54% 99.60% 68.54% 83.65% 99.60% 17.22% 3.59% 8.27% 42.62% 42.62%

01/01/2016 01/01/2020 79.95% 9.37% 64.53% 2.66% 6.31% 12.38% 72.72% 18.80% 35.23% 58.58% 95.98% 79.95% 72.72% 50.32% 37.79% 88.04% 46.01% 58.58% 19.12% 46.01%

Table 22. FTSE - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight
model combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 19).

B.1.4. HSI

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 6.51% 0.03% 0.52% 0.00% 0.00% 81.18% 54.76% 67.43% 29.36% 29.36% 82.49% 88.33% 61.71% 81.18% 43.44% 18.78% 7.89% 6.51% 2.27% 2.84%

01/01/2000 01/01/2004 5.49% 73.59% 58.08% 37.27% 14.08% 5.49% 32.11% 32.11% 90.00% 62.24% 58.08% 58.08% 58.08% 73.59% 77.25% 93.37% 62.24% 27.68% 20.01% 27.68%

01/01/2004 01/01/2008 2.77% 0.11% 0.62% 0.11% 0.36% 4.33% 1.05% 4.33% 20.12% 37.07% 14.25% 14.25% 20.12% 37.07% 37.07% 6.61% 4.33% 4.33% 6.61% 9.83%

01/01/2008 01/01/2012 59.65% 46.74% 26.51% 9.29% 26.51% 74.15% 62.04% 89.84% 93.85% 77.59% 77.59% 25.17% 93.85% 59.65% 35.67% 59.65% 77.59% 19.19% 19.19% 19.19%

01/01/2012 01/01/2016 13.96% 9.61% 13.96% 13.96% 19.74% 60.98% 92.63% 76.42% 60.74% 75.33% 16.61% 92.63% 6.50% 46.92% 46.92% 92.63% 60.74% 46.92% 76.42% 92.63%

01/01/2016 01/01/2020 14.25% 1.05% 20.12% 1.05% 0.36% 76.12% 91.88% 91.82% 48.37% 37.07% 91.88% 61.47% 91.82% 91.88% 76.12% 61.47% 27.67% 76.12% 37.07% 37.07%

Table 23. HSI - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight model
combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 19).
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B.2. BCP test

In this section we display a summary of the BCP test results for the four indices. It

presents the lag that corresponds to the lowest p-value of the BCP test.

B.2.1. S&P500

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - GARCH 2 0.00% 2 0.00% 4 0.00% 2 0.00% 5 0.03% 4 0.00%

Parametric SGSt - FIGARCH 2 0.00% 1 0.00% 4 0.00% 2 0.00% 2 0.00% 3 0.00%

Parametric SGSt - EWMA λ = 0,94 4 0.00% 5 0.18% 5 0.01% 4 0.01% 5 0.48% 4 0.00%

Historical - GARCH 2 0.00% 4 0.00% 4 0.10% 2 0.00% 2 0.00% 4 0.00%

Historical - EGARCH 4 0.00% 5 2.17% 5 0.36% 2 0.00% 2 0.00% 4 0.00%

Historical - FIGARCH 2 0.00% 3 0.00% 5 0.20% 2 0.00% 2 0.00% 4 0.00%

Historical - EWMA 4 0.00% 4 0.03% 5 0.02% 5 0.09% 5 2.48% 4 0.00%

Historical - EWMA λ = 0.94 4 0.00% 4 0.03% 5 3.38% 4 0.00% 5 0.75% 4 0.00%

Table 24. S&P500 - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

B.2.2. DAX

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - GARCH 2 0.00% 2 0.00% 3 0.01% 5 0.00% 5 11.46% 5 0.01%

Parametric SGSt - FIGARCH 1 0.00% 1 0.00% 3 0.00% 2 0.00% 5 1.50% 5 0.06%

Parametric SGSt - EWMA 2 0.00% 5 0.22% 5 0.54% 2 0.00% 5 2.29% 5 0.06%

Parametric SGSt - EWMA λ = 0.94 2 0.00% 5 0.04% 4 0.04% 2 0.00% 5 9.09% 5 0.24%

Historical - GARCH 2 0.00% 3 0.00% 5 0.43% 5 0.00% 5 10.06% 2 0.00%

Historical - EGARCH 3 0.00% 4 0.00% 5 1.68% 5 0.20% 5 0.03% 3 0.00%

Historical - FIGARCH 2 0.00% 3 0.00% 5 0.06% 2 0.00% 5 6.06% 5 0.05%

Historical - EWMA 2 0.00% 5 0.79% 5 4.36% 4 0.00% 5 7.54% 5 0.22%

Historical - EWMA λ = 0.94 2 0.00% 5 0.06% 5 0.08% 3 0.00% 5 9.07% 5 1.03%

Quantile Regression - EGARCH 2 0.00% 5 0.02% 5 0.23% 5 0.06% 4 0.00% 2 0.00%

Quantile Regression - EWMA 2 0.00% 5 0.33% 4 4.63% 2 0.00% 5 6.17% 5 5.37%

Quantile Regression - EWMA Lambda 0,94 2 0.00% 5 0.06% 5 0.30% 2 0.00% 5 6.17% 5 1.03%

Table 25. DAX - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.
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B.2.3. FTSE

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric SGSt - FIGARCH 1 0.00% 2 0.00% 4 0.02% 3 0.00% 1 0.00% 1 0.00%

Historical - GARCH 1 0.00% 3 0.00% 5 0.00% 1 0.00% 3 0.00% 1 0.00%

Historical - EGARCH 1 0.00% 3 0.00% 2 0.00% 2 0.00% 3 0.00% 5 0.00%

Historical - FIGARCH 1 0.00% 2 0.00% 5 0.04% 1 0.00% 3 0.00% 3 0.00%

Historical - EWMA 4 0.00% 5 0.00% 5 5.10% 4 0.01% 3 0.00% 5 0.06%

Historical - EWMA λ = 0.94 4 0.00% 2 0.00% 5 5.10% 4 0.01% 5 0.02% 5 0.03%

Table 26. FTSE - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

B.2.4. HSI

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric Normal - GARCH 3 0.00% 5 1.18% 3 0.00% 4 0.00% 4 0.78% 5 1.23%

Parametric SGSt - GARCH 3 0.00% 5 1.18% 3 0.00% 4 0.00% 5 0.85% 5 0.16%

Parametric SGSt - EGARCH 3 0.00% 5 6.29% 3 0.00% 5 0.08% 5 11.54% 5 0.08%

Parametric SGSt - FIGARCH 3 0.00% 4 0.00% 3 0.00% 5 0.00% 5 11.12% 5 0.03%

Parametric SGSt - EWMA 3 0.00% 5 1.57% 3 0.00% 5 17.72% 5 4.53% 5 0.50%

Parametric SGSt - EWMA λ = 0.94 5 1.11% 5 7.68% 5 0.00% 5 13.84% 5 3.64% 5 9.76%

Historical - GARCH 3 0.00% 5 9.27% 3 0.00% 5 11.09% 5 0.08% 5 0.08%

Historical - EGARCH 3 0.00% 5 9.29% 3 0.00% 5 0.18% 5 11.54% 4 0.00%

Historical - FIGARCH 3 0.00% 3 0.00% 3 0.00% 1 0.00% 5 2.34% 5 0.03%

Historical - EWMA 3 0.00% 5 10.06% 3 0.00% 5 6.95% 5 0.55% 5 0.05%

Historical - EWMA λ = 0.94 5 4.21% 5 30.40% 5 0.00% 5 31.18% 5 0.55% 5 11.93%

Quantile Regression - GARCH 3 0.00% 5 0.30% 3 0.00% 2 0.00% 5 1.66% 5 0.30%

Quantile Regression - EGARCH 3 0.00% 5 1.14% 3 0.00% 1 0.00% 5 2.98% 3 0.00%

Quantile Regression - FIGARCH 3 0.00% 5 0.10% 3 0.00% 3 0.00% 5 0.55% 4 0.04%

Table 27. HSI - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.
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Appendix C - UC and BCP test results for 5% signif-

icance level

C.1. UC Test

In this section we present the results for the UC test. We include all model combinations,

accepted and rejected, and the respective p-values. The value in bold highlight accepted

model combinations. The model combinations are presented according to a key, following

Table 28 below.
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Key Model

1 Parametric Normal - GARCH

2 Parametric Normal - EGARCH

3 Parametric Normal - FIGARCH

4 Parametric Normal - EWMA

5 Parametric Normal - EWMA λ = 0,94

6 Parametric SGSt - GARCH

7 Parametric SGSt - EGARCH

8 Parametric SGSt - FIGARCH

9 Parametric SGSt - EWMA

10 Parametric SGSt - EWMA λ = 0,94

11 Historical - GARCH

12 Historical - EGARCH

13 Historical - FIGARCH

14 Historical - EWMA

15 Historical - EWMA λ = 0,94

16 Quantile Regression - GARCH

17 Quantile Regression - EGARCH

18 Quantile Regression - FIGARCH

19 Quantile Regression - EWMA

20 Quantile Regression - EWMA λ = 0,94

Table 28. Keys for the UC test. To improve the readability of the UC test tables,
we present the models following keys. Each key corresponds to a model studied.
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C.1.1. S&P500

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 38.82% 0.02% 19.14% 0.42% 2.11% 10.50% 0.00% 2.48% 0.04% 0.42% 92.01% 54.34% 97.68% 76.79% 92.01% 17.08% 3.39% 2.48% 5.31% 10.50%

01/01/2000 01/01/2004 97.11% 80.11% 43.95% 69.31% 80.11% 80.11% 41.34% 97.11% 33.84% 21.72% 63.46% 53.29% 43.95% 28.25% 35.58% 85.59% 74.29% 59.16% 69.31% 80.11%

01/01/2004 01/01/2008 84.46% 27.96% 42.19% 27.96% 27.96% 95.96% 27.96% 27.96% 34.59% 34.59% 3.04% 1.52% 2.16% 13.55% 10.35% 1.05% 0.48% 0.21% 1.52% 1.05%

01/01/2008 01/01/2012 0.09% 0.00% 0.14% 0.33% 0.50% 0.06% 0.00% 0.06% 0.14% 1.10% 34.13% 15.88% 51.43% 93.68% 93.68% 94.81% 72.13% 94.81% 94.81% 61.20%

01/01/2012 01/01/2016 96.54% 91.95% 50.27% 7.66% 13.36% 69.85% 27.63% 27.63% 4.15% 7.66% 85.02% 96.54% 52.82% 85.02% 85.02% 34.22% 22.00% 17.27% 59.67% 59.67%

01/01/2016 01/01/2020 16.51% 22.00% 21.71% 91.95% 52.82% 52.82% 10.19% 43.54% 50.27% 85.02% 35.22% 41.77% 73.75% 27.93% 35.22% 73.75% 22.00% 96.54% 34.22% 73.75%

Table 29. S&P500 - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight
model combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 28).

C.1.2. DAX

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 4.42% 0.00% 16.56% 0.00% 0.00% 4.42% 0.02% 28.42% 0.00% 0.00% 71.13% 41.38% 49.03% 59.21% 91.01% 3.80% 0.59% 2.02% 10.15% 16.56%

01/01/2000 01/01/2004 6.48% 2.45% 37.64% 1.73% 2.45% 8.70% 11.52% 45.68% 3.44% 2.45% 90.72% 86.20% 57.59% 47.84% 68.12% 86.20% 54.67% 75.07% 90.72% 75.07%

01/01/2004 01/01/2008 67.90% 15.62% 47.85% 38.50% 46.56% 47.85% 31.39% 39.10% 46.56% 46.56% 46.56% 86.90% 46.56% 98.28% 65.35% 31.39% 15.62% 25.23% 31.39% 38.50%

01/01/2008 01/01/2012 0.30% 0.00% 1.42% 0.30% 0.98% 0.05% 0.00% 0.67% 0.13% 0.30% 48.37% 26.48% 21.06% 78.07% 57.51% 3.96% 5.42% 3.96% 12.76% 16.51%

01/01/2012 01/01/2016 93.10% 81.80% 72.67% 13.75% 13.75% 93.10% 95.38% 61.94% 13.75% 13.75% 51.89% 93.10% 61.94% 72.67% 83.90% 81.80% 42.62% 93.10% 70.93% 95.38%

01/01/2016 01/01/2020 85.59% 80.11% 49.80% 1.45% 2.08% 74.29% 85.59% 91.38% 5.58% 10.03% 91.38% 80.11% 59.16% 63.46% 85.59% 27.31% 17.03% 13.17% 41.34% 59.16%

Table 30. DAX - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight
model combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 28).
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C.1.3. FTSE

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 11.54% 0.00% 11.54% 0.00% 0.01% 0.58% 0.00% 0.22% 0.00% 0.00% 97.93% 76.57% 76.57% 91.73% 77.44% 10.16% 1.20% 3.79% 3.24% 5.89%

01/01/2000 01/01/2004 12.99% 1.40% 33.75% 1.40% 3.96% 21.56% 2.84% 41.31% 2.00% 7.39% 43.06% 84.87% 62.59% 59.30% 84.87% 91.87% 69.57% 49.85% 41.31% 69.57%

01/01/2004 01/01/2008 92.44% 6.16% 84.48% 14.39% 44.35% 62.93% 2.31% 44.35% 3.25% 8.29% 14.39% 29.53% 6.16% 62.93% 53.20% 11.00% 0.51% 3.25% 23.58% 29.53%

01/01/2008 01/01/2012 0.28% 0.00% 1.36% 0.43% 0.94% 0.00% 0.00% 0.00% 0.00% 0.00% 87.29% 87.29% 75.93% 89.65% 89.65% 20.90% 48.41% 26.34% 7.17% 12.60%

01/01/2012 01/01/2016 66.10% 31.64% 47.04% 0.59% 0.59% 66.10% 38.85% 25.40% 0.26% 0.40% 47.04% 76.75% 47.04% 99.42% 89.00% 9.13% 15.67% 15.67% 38.85% 25.40%

01/01/2016 01/01/2020 11.63% 94.24% 33.77% 72.02% 61.71% 11.63% 94.24% 33.77% 72.02% 61.71% 15.68% 71.60% 20.68% 33.77% 26.70% 26.70% 82.93% 41.89% 94.25% 94.25%

Table 31. FTSE - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight
model combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 28).

C.1.4. HSI

Backtest Period Models

Begining End 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Global 47.39% 50.46% 85.35% 0.25% 0.46% 78.27% 11.66% 38.88% 0.03% 0.03% 63.70% 85.35% 93.71% 83.35% 78.27% 13.22% 18.91% 5.10% 14.95% 11.66%

01/01/2000 01/01/2004 1.62% 5.67% 20.73% 32.04% 32.04% 8.14% 62.90% 97.62% 2.45% 4.82% 52.45% 34.40% 90.52% 97.62% 78.93% 67.86% 67.86% 39.52% 25.58% 15.58%

01/01/2004 01/01/2008 47.06% 19.93% 19.93% 3.54% 8.97% 25.25% 19.93% 19.93% 4.89% 4.89% 2.52% 6.67% 25.25% 77.08% 77.08% 1.77% 2.52% 4.89% 66.32% 88.38%

01/01/2008 01/01/2012 85.48% 63.64% 74.27% 6.12% 11.00% 44.79% 11.00% 23.72% 1.59% 1.59% 24.22% 10.09% 91.20% 97.07% 63.64% 68.34% 31.01% 63.64% 23.72% 14.42%

01/01/2012 01/01/2016 46.49% 87.22% 37.72% 30.81% 19.40% 66.75% 98.83% 77.91% 37.98% 30.81% 77.91% 77.91% 23.37% 46.49% 46.49% 98.83% 75.96% 77.91% 77.91% 66.75%

01/01/2016 01/01/2020 66.32% 19.93% 100.00% 47.06% 47.06% 47.06% 31.53% 76.79% 66.32% 47.06% 47.06% 66.32% 88.38% 38.80% 77.08% 38.80% 38.80% 19.93% 47.06% 38.80%

Table 32. HSI - UC test results. Displays the p-values for all model combinations, accepted and rejected. The values in bold highlight model
combination that are accepted by the UC test. Each key, 1 through 20, corresponds to a model (see Table 28).
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C.2. BCP test

In this section we display a summary of the BCP test results for the four indices. It

presents the lag that corresponds to the lowest p-value of the BCP test.

C.2.1. S&P500

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric Normal - GARCH 2 0.00% 4 0.01% 2 0.00% 4 0.00% 4 0.01% 4 0.00%

Parametric Normal - FIGARCH 2 0.00% 3 0.00% 3 0.00% 4 0.00% 5 0.00% 1 0.00%

Parametric SGSt - GARCH 2 0.00% 5 0.01% 2 0.00% 4 0.00% 4 0.00% 3 0.00%

Historical - GARCH 2 0.00% 3 0.00% 5 0.83% 4 0.00% 5 0.08% 1 0.00%

Historical - EGARCH 1 0.00% 4 0.00% 5 0.01% 2 0.00% 5 0.03% 1 0.00%

Historical - FIGARCH 2 0.00% 3 0.00% 5 0.97% 5 0.00% 2 0.00% 2 0.00%

Historical - EWMA 4 0.00% 5 11.03% 5 3.52% 5 0.14% 5 1.24% 5 0.00%

Historical - EWMA λ = 0.94 4 0.00% 5 12.40% 5 2.46% 5 0.14% 5 0.25% 4 0.00%

Quantile Regression - GARCH 1 0.00% 3 0.00% 5 0.01% 4 0.00% 5 0.01% 5 0.00%

Quantile Regression - EWMA 4 0.00% 5 11.28% 5 2.59% 5 0.46% 5 0.32% 4 0.00%

Quantile Regression - EWMA Lambda 0,94 4 0.00% 5 12.46% 5 1.09% 5 0.04% 5 0.38% 4 0.00%

Table 33. S&P500 - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

C.2.2. DAX

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric Normal - FIGARCH 1 0.00% 4 0.00% 5 0.15% 3 0.00% 5 0.03% 5 0.01%

Parametric SGSt - FIGARCH 1 0.00% 4 0.00% 5 3.51% 3 0.00% 5 0.01% 2 0.00%

Historical - GARCH 1 0.00% 4 0.00% 3 0.00% 5 0.01% 3 0.00% 5 0.00%

Historical - EGARCH 1 0.00% 3 0.00% 5 0.01% 2 0.00% 5 0.01% 5 0.02%

Historical - FIGARCH 5 0.00% 5 0.01% 3 0.00% 5 0.02% 5 0.05% 3 0.00%

Historical - EWMA 1 0.00% 3 0.00% 5 0.01% 4 0.00% 5 0.00% 5 0.46%

Historical - EWMA λ = 0.94 2 0.00% 5 0.68% 5 0.39% 4 0.00% 5 0.33% 5 4.88%

Quantile Regression - EWMA 1 0.00% 5 0.00% 5 0.53% 2 0.00% 5 0.06% 5 2.18%

Quantile Regression - EWMA Lambda 0,94 2 0.00% 4 0.00% 6 0.08% 2 0.00% 5 0.12% 5 0.39%

Table 34. DAX - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

55



C.2.3. FTSE

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric Normal - GARCH 1 0.00% 2 0.00% 4 0.00% 2 0.00% 3 0.00% 5 0.02%

Parametric Normal - FIGARCH 1 0.00% 1 0.00% 5 0.00% 1 0.00% 3 0.00% 3 0.00%

Historical - GARCH 1 0.00% 3 0.00% 5 0.15% 4 0.00% 3 0.00% 5 0.01%

Historical - EGARCH 1 0.00% 1 0.00% 5 0.90% 4 0.00% 5 0.01% 1 0.00%

Historical - FIGARCH 1 0.00% 4 0.00% 5 0.02% 1 0.00% 3 0.00% 1 0.00%

Historical - EWMA 5 0.20% 5 0.41% 5 13.96% 5 1.36% 5 2.56% 5 0.38%

Historical - EWMA λ = 0.94 5 0.00% 5 0.10% 5 37.92% 5 0.02% 5 1.88% 3 0.00%

Quantile Regression - GARCH 1 0.00% 2 0.00% 5 0.01% 5 0.01% 3 0.00% 1 0.00%

Quantile Regression - EWMA Lambda 0,94 1 0.00% 5 0.02% 5 20.77% 5 0.02% 5 0.04% 1 0.00%

Table 35. FTSE - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.

C.2.4. HSI

Model

Backtest Period

Global 2000-2004 2004 - 2008 2008 - 2012 2012 - 2016 2016-2020

Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP Lag BCP

Parametric Normal - GARCH 3 0.00% 5 0.77% 3 0.00% 1 0.00% 5 19.92% 5 9.56%

Parametric Normal - EGARCH 3 0.00% 5 3.98% 3 0.00% 2 0.00% 5 2.82% 5 2.31%

Parametric Normal - FIGARCH 3 0.00% 5 13.56% 3 0.00% 1 0.00% 5 7.04% 5 3.83%

Parametric SGSt - GARCH 3 0.00% 5 2.08% 3 0.00% 3 0.00% 5 11.75% 5 3.94%

Parametric SGSt - EGARCH 3 0.00% 5 0.08% 3 0.00% 1 0.00% 5 2.34% 5 1.24%

Parametric SGSt - FIGARCH 3 0.00% 5 0.61% 3 0.00% 2 0.00% 5 12.45% 5 2.61%

Historical - GARCH 3 0.00% 5 0.79% 4 0.00% 4 0.00% 5 6.74% 5 0.80%

Historical - EGARCH 3 0.00% 5 0.16% 3 0.00% 2 0.00% 5 3.30% 5 0.22%

Historical - FIGARCH 3 0.00% 5 0.33% 3 0.00% 4 0.00% 5 6.68% 5 4.30%

Historical - EWMA 5 0.02% 5 0.01% 3 0.00% 5 21.75% 5 4.90% 5 0.06%

Historical - EWMA λ = 0.94 5 0.01% 5 0.04% 3 0.00% 5 22.20% 5 4.90% 5 0.01%

Quantile Regression - GARCH 3 0.00% 5 0.46% 3 0.00% 5 0.00% 5 6.79% 5 5.67%

Quantile Regression - EGARCH 3 0.00% 5 1.17% 3 0.00% 5 0.00% 5 2.18% 5 5.58%

Quantile Regression - FIGARCH 3 0.00% 5 0.31% 4 0.00% 4 0.00% 5 10.74% 5 5.41%

Quantile Regression - EWMA 3 0.00% 5 0.47% 3 0.00% 5 0.35% 5 8.04% 5 0.03%

Quantile Regression - EWMA Lambda 0,94 3 0.00% 5 0.50% 3 0.00% 5 0.39% 5 2.78% 5 0.03%

Table 36. S&P500 - BCP test results. For each sub-period we present the lag that
corresponds to the lowest p-value of the BCP test, and the respective p-value. Values in
bold highlight model combinations that passed the BCP test for the specific sub-period.
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Appendix D - Source Code

D.1. Required Packages

############# REQUIRED PACKAGES #############
#install.packages(’rugarch)
#install.packages(’tidyquant ’)
#install.packages(’openxlsx ’)
#install.packages(’sgt ’)
#install.packages(’fGarch ’)
#install.packages(’quantreg ’)
#install.packages(’qrcm ’)
#install.packages(’xlsx ’)
#install.packages(’moments ’)
#install.packages(’urca ’)
setwd("D:/Faculdade/Thesis/Code")
library(rugarch)
library(quantmod)
library(openxlsx)
library(sgt)
library(quantreg)
library(xlsx)
library(moments)
library(urca)

############# FUNCTIONS #############

D.2. Function - Volatility estimation

#Function to estimate the volatility estimating the parameters
#Arguments: returns (data.frame), vol_model (" sGarch", "eGarch", "fiGarch" or "ewma"),
reestimation_int (int)

vol_estimation <- function(returns , vol_model , reestimation_int){

one_year <- 252
len <- length(returns)
scope <- c(1:(len -one_year*4))
std <- c(1:(len -one_year*4))

if (vol_model == "ewma"){
vol_model <- "sGARCH"
lambda_ewma <<- matrix(data = -1, nrow = 1, ncol = 1)
spec = ugarchspec(variance.model = list(model = vol_model ,
garchOrder = c(1, 1)), distribution.model = "sstd",
fixed.pars = list(omega =0))

counter <- 0
for (x in scope){
if(counter %% reestimation_int == 0){
control <- 1
first <- counter +1
last <- counter+one_year*4-1
fit = ugarchfit(data = returns[first:last], spec = spec , solver ="hybrid")
lambda_ewma <<- rbind(lambda_ewma , c(coef(fit)["beta1"]))
control <- control + 1
}
counter <- counter +1
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}
vol_model <- "ewma"
}else{
spec = ugarchspec(variance.model = list(model = vol_model , garchOrder = c(1, 1)),
distribution.model = "sstd")

counter <- 0
for (x in scope){
if(counter %% reestimation_int == 0){
control <- 1
first <- counter +1
last <- counter+one_year*4-1
fit = ugarchfit(data = returns[first:last], spec = spec , solver ="hybrid")
forc1 = ugarchforecast(fit , n.ahead=reestimation_int)
std[x] <- sigma(forc1)[ control]
control <- control + 1
}else{
std[x] <- sigma(forc1)[ control]
control <- control + 1
}
counter <- counter +1
}
}

if (vol_model == "ewma"){
lambda_ewma <<- lambda_ewma[-1,]
lambda_ewma <<- data.frame(lambda_ewma)
std <- ewma(returns , lambda_ewma , reestimation_int)
}

df <- data.frame(std)
rownames(df) <- index(returns [( length(returns)-length(std )+1): length(returns )])
#std_df <- subset(x = df, subset = index(df) > which(rownames(df) >= "1996 -01 -01"))
std_df <- subset(x = df , subset = rownames(df) >= "1996 -01 -01")
return(std_df)
}

#Internal function to estimate the ewma for a given lamba
#Arguments: returns (data.frame), lambda (int)
ewma <- function(returns , lambda_ewma , reestimation_int){

one_year <- 252
returns <- returns [(one_year*4): length(returns )]

variance <- c(1:( length(returns )-1))
std <- c(1:( length(returns )-1))
counter <- 1
control <- 1
while (counter <= (length(returns ) -1)){
if ((counter -1) %% reestimation_int == 0){
lambda <- lambda_ewma[control ,]
control <- control +1
}
if (counter == 1){
variance[counter] = returns[counter ]^2
}else{
variance[counter] = (1-lambda)*returns[counter ]^2+ lambda*variance[counter -1]
}
std[counter] = sqrt(variance[counter ])
counter <- counter +1
}
return (std)
}

D.3. Function - Parametric Normal VaR

#Function to compute the Parametric Normal VaR
#Arguments: standard deviation (data.frame), alpha (int)
normal_var <- function(std , alpha ){
var <- qnorm(1-alpha)*std
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var_df <- subset(x = var , subset = rownames(var) >= "2000 -01 -01" &
rownames(var) < "2020 -01 -01")

colnames(var_df) <- "var"
return(var_df)
}

D.4. Function - Parametric SGSt VaR Fit

#Function to estimate the parameters of the Paramatric Generalized Skewed Student t VaR
#Arguments: returns (data.frame), reestimation_int (int)
sgt_fit <- function(rt , reestimation_int){

one_year <- 252
len <- length(rt)
scope <- c(1:(len -one_year*4))

lambda_vec <- c(1:(len -one_year*4))
p_vec <- c(1:(len -one_year*4))
q_vec <- c(1:(len -one_year*4))
par = list(mu = 0, sigma = 2, lambda = 0, p = 2, q = 12)

counter <- 0
for (x in scope){
if (counter %% reestimation_int == 0){
first <- counter + 1
last <- counter+one_year*4-1
rt_to_estimate <- rt[first:last]
X.f <- X ~ rt_to_estimate
if (counter == 0){
par_new <- sgt.mle(X.f, start = par)
par_old <- par_new
}else{
par_old <- par_new
par_new <- sgt.mle(X.f, start = par)
}
}
if (par_new$estimate [4]*par_new$estimate [5] <= 2){
lambda_vec[x] <- par_old$estimate [3]
p_vec[x] <- par_old$estimate [4]
q_vec[x] <- par_old$estimate [5]
counter <- counter + 1
}else{
lambda_vec[x] <- par_new$estimate [3]
p_vec[x] <- par_new$estimate [4]
q_vec[x] <- par_new$estimate [5]
counter <- counter + 1
}

}
parameters <- data.frame(lambda_vec , p_vec , q_vec)

rownames(parameters) <- index(rt[( length(rt)-length(parameters [ ,1])+1): length(rt)])
#parameters_df <- subset(x = parameters , subset = index(parameters)
> which(rownames(parameters) >= "1996 -01 -01"))

parameters_df <- subset(x = parameters , subset = rownames(parameters) >= "1996 -01 -01")
return(parameters_df)
}

D.5. Function - Parametric SGSt VaR

#Function to compute the Paramatric Generalized Skewed Student t VaR
#Arguments: standard deviation (data.frame), parameters (data.frame), alpha (int)
sgt_var <- function(std , par , alpha){

var <- std*0
colnames(var) <- "var"
control <- c(1: length(std [,1]))

for (x in control ){
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var[x,1] <- -qsgt(alpha , mu = 0, sigma = std[x,1], lambda = par[x,1],
p = par[x,2], q = par[x,3])

}

var_df <- data.frame(var)
var_df <- subset(x = var_df , subset = rownames(var_df) >= "2000 -01 -01"
& rownames(var_df) < "2020 -01 -01")

return (var_df)
}

D.6. Function - Historical VaR

#Function to compute the Historical VaR
#Arguments: returns (data.frame), standard deviation (data.frame),
interval (int), alpha (int)

historical_var <- function(rt , std , interval , alpha){

rt_df <- data.frame(rt)
std_df <- data.frame(std)

range_rt <- min(which(rownames(rt_df) >= "2000 -01 -01")) - interval
range_std <- min(which(rownames(std_df) >= "2000 -01 -01")) - interval

rt_df <- subset(x = rt_df, subset = index(rt_df) >= range_rt)
std_df <- subset(x = std_df , subset = index(std_df) >= range_std)

rt_adj <- rt_df/std_df

var_len <- nrow(rt_df) - min(which(rownames(rt_df) >= "2000 -01 -01")) + 1
var <- c(1:( var_len -1))

std_df <- subset(x = std_df , subset = rownames(std_df) >= "2000 -01 -01")

for (x in var){
var[x] <- -quantile(rt_adj[x:( interval+x-1),1], alpha , type = 3)*std_df[x+1,1]
}

var <- data.frame(var)
rt_df_names <- subset(x = rt_df, subset = rownames(rt_df) >= "2000 -01 -01"
& rownames(rt_df) < "2020 -01 -01")

rownames(var) <- rownames(rt_df_names)
return(var)
}

D.7. Function - Quantile Regression VaR Fit

#Function to estimate the parameters of the Quantile Regression VaR
#Arguments: returns (data.frame), standard deviation (data.frame),
interval (int), reestimation inverval (int), alpha (int)

quantile_fit <- function (rt, std , interval , reestimation_int , q_quantile ){

rt_df <- data.frame(rt)
std_df <- data.frame(std)

range_rt <- min(which(rownames(rt_df) >= "2000 -01 -03")) - interval
range_std <- min(which(rownames(std_df) >= "2000 -01 -03")) - interval

rt_df <- subset(x = rt_df, subset = index(rt_df) >= range_rt)
std_df <- subset(x = std_df , subset = index(std_df) >= range_std)

rt_df_names <- subset(x = rt_df, subset = rownames(rt_df) >= "2000 -01 -01")

a <- c(1: nrow(rt_df_names))

counter <- 0
for (x in a){
if (counter %% reestimation_int == 0){
temp <- rq(rt_df[x:( interval+counter ),1] ~ 0 + std_df[x:( interval+counter),1],
tau = q_quantile)
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a[x] <- temp$coefficients [1]
}else{
a[x] <- temp$coefficients [1]
}
counter <- counter + 1
}
pars <- data.frame(a)
rownames(pars) <- rownames(rt_df_names)
colnames(pars) <- "pars"
return (pars)
}

D.8. Function - Quantile Regression VaR

#Function to compute the Qunatile Regression VaR
#Arguments: standard deviation (data.frame), returns (data.frame),
quantile_Var <- function (std , par){

std_df <- data.frame(std)
std_df <- subset(x = std_df , subset = rownames(std_df) >= "2000 -01 -01")
var <- -(par [1]*std_df)
var <- subset(x = var , subset = rownames(var) < "2020 -01 -01")
colnames(var) <- "var"
return (var)
}

D.9. Function - Backtest

#Function for the UC and BCP test for a single time interval
#Arguments: returns (data.frame), var (data.frame), starting date (int),
ending date (int), test ("uc" or "bcp")

backtest <- function(rt, var , d1, d2, test){

rt_df <- data.frame(rt)
rt_df <- subset(x = rt_df, subset = rownames(rt_df) < "2020 -01 -01")
var_df <- data.frame(var)

var_df <- subset(x = var_df , subset = rownames(var_df) >= d1)
var_df <- subset(x = var_df , subset = rownames(var_df) <= d2)
rt_df <- subset(x = rt_df, subset = rownames(rt_df) >= d1)
rt_df <- subset(x = rt_df, subset = rownames(rt_df) <= d2)

# Exceedance
exceedance <- c(1:( length(rt_df[ ,1])))
i <- 1
while (i <= length(rt_df[ ,1])) {
if (rt_df[,1][i] < (var_df[i,1]* -1)){
exceedance[i] <- 1
}else{
exceedance[i] <- 0
}
i <- i+1
}

# n
n <- nrow(rt_df)

### UC TEST
if (test == "uc"){

# n1
seq <- c(1:n)
n1 <- 0
for (i in seq){
n1 <- n1+exceedance[i]
}

#n0
n0 <- n - n1
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#PI_Obs
pi_obs <- n1/n

#pi_exp
pi_exp <- 0.01

#test -stat
if (n1 > 0){
test_stat = -2*(n1*(log(pi_exp)-log(pi_obs ))+n0*(log(1-pi_exp)-log(1-pi_obs )))
}else{
test_stat = -2*n*log(1-pi_exp)
}

p_value <- pchisq(test_stat , df=1, lower.tail=FALSE)

ret <- data.frame(n, n1 , n0 , pi_obs , test_stat , p_value)

return (ret)

### BCP test
}else{

sig_lvl <- 0.01
exc_sig_lvl <- exceedance -sig_lvl

#Autocorrelation matrix
autocorrelation <- data.frame(matrix(0, nrow = 1, ncol = 5));
colnames(autocorrelation) <- c("lag1", "lag2", "lag3", "lag4", "lag5")

lags <- c(1:5)
for (i in lags){
if (any((exc_sig_lvl [1:( length(exc_sig_lvl)-i)] ==
exc_sig_lvl [(1+i): length(exc_sig_lvl )]) == FALSE )){

autocorrelation[i] <- cor(exc_sig_lvl [1:( length(exc_sig_lvl)-i)],
exc_sig_lvl [(1+i): length(exc_sig_lvl )])

if (is.na(autocorrelation[i])){
autocorrelation[i] <- 1
}
}else{
autocorrelation[i] <- 1
}
}

ret <- data.frame(matrix(0, nrow = 2, ncol = 5)); colnames(ret)
<- c("lag1", "lag2", "lag3", "lag4", "lag5"); rownames(ret) <- c("test -stat", "p-value")

#test -stat
for (i in c(1: ncol(ret ))){
if (i == 1){
ret[1,i] <- n*(n+2)*autocorrelation[i]^2/(n-i)
}else{
ret[1,i] <- ret[1,i-1] + n*(n+2)*autocorrelation[i]^2/(n-i)
}
}

#p-value
for (i in c(1: ncol(ret ))){
ret[2,i] <- pchisq(ret[1,i], df=1, lower.tail=FALSE)
}
}
return(ret)
}

D.10. Function - UC test Table

#Function that creates a table with the p-values for the global period
and two year intervals ,
outputs PI_Obs if Exceedances == TRUE

#Arguments: returns (data.frame), vars (data.frame), exceedances (logical constant)
uctest_table <- function(rt, vars , exceedances ){
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if (missing(exceedances )){
exceedances = FALSE
}

dates <- c("2000 -01 -03", "2004 -01 -03", "2008 -01 -03", "2012 -01 -03",
"2016 -01 -03", "2020 -01 -03")

m <- data.frame(matrix(0, nrow = (length(dates)), ncol = ncol(vars )))
rownames(m) <- c("Global", "2000 -01 -03␣~␣2004 -01 -03", "2004 -01 -03␣~␣2008 -01 -03",
"2008 -01 -03␣~␣2012 -01 -03", "2012 -01 -03␣~␣2016 -01 -03",

"20016 -01 -03␣~␣2020 -01 -03")
colnames(m) <- colnames(vars)
first <- 0

for (i in c(1: nrow(m))){

if (first == 0){
d1 <- "2000 -01 -01"
d2 <- "2020 -01 -05"
first <- 1
}else{
d1 <- dates[i-1]
d2 <- dates[i]
}

# Table with the decisions UC TEST
for (x in c(1: ncol(m))){
temp <- backtest(rt, vars[x], d1, d2, "uc")
if (exceedances ){
m[i,x] <- temp [4]*100
}else{
m[i,x] <- temp [6]
}
}
}
return(m)
}

D.11. Function - BCP test Table

#Function that creates a table with the p-values for the global period
and two year intervals

#Arguments: returns (data.frame), vars (data.frame)
bcptest_table <- function(rt , vars){

dates <- c("2000 -01 -03", "2004 -01 -03", "2008 -01 -03", "2012 -01 -03", "2016 -01 -03",
"2020 -01 -03")

m <- data.frame(matrix(0, nrow = (length(dates)), ncol = 5))
rownames(m) <- c("Global", "2000 -01 -03␣~␣2004 -01 -03", "2004 -01 -03␣~␣2008 -01 -03",
"2008 -01 -03␣~␣2012 -01 -03", "2012 -01 -03␣~␣2016 -01 -03",

"20016 -01 -03␣~␣2020 -01 -03")
colnames(m) <- c("lag1","lag2","lag3","lag4","lag5")
ret <- vector("list", 16)

for (x in c(1: ncol(vars ))){
first <- 0

for (i in c(1: nrow(m))){
if (first == 0){
d1 <- "2000 -01 -01"
d2 <- "2020 -01 -05"
first <- 1
}else{
d1 <- dates[i-1]
d2 <- dates[i]
}

temp <- backtest(rt, vars[x], d1, d2, "bcp")

for (z in c(1: ncol(m))){
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m[i,z] <- temp[2,z]
}
}
ret[[x]] <- m
}
return(ret)
}

D.12. Function - Lo R/S statistic test

#Function to compute the Lo R/s statistic test
#Arguments: x (data.frame), q (vector), alpha (optional)
#Significance level: 0.05, 0.1
#Critical value: 1.747 , 1.62
#Made by Christoph Helwig - https://stat.ethz.ch/pipermail/r-help/2001- June/013425. html
#References: Lo (1991) , Long -term Memory in Stock Market Prices , Econometrica 59, 1279 - -1313
rs_test <- function(x, q, alpha ){
xbar <- mean(x)
N <- length(x)
r <- max(cumsum(x-xbar)) - min(cumsum(x-xbar))
covariance <- NULL
for (i in 1:q){
covariance <- c(covariance , sum((x[1:(N-i)]-xbar)*(x[(1+i):N]-xbar )))
}
if (q > 0)
s <- sum((x-xbar )^2)/N + sum ((1 -(1:q)/(q+1))*covariance)*2/N
else
s <- sum((x-xbar )^2)/N
rs <- r/(sqrt(s)*sqrt(N))
method <- "R/S␣Test␣for␣Long␣Memory"
names(rs) <- "R/S␣Statistic"
names(q) <- "Bandwidth␣q"
structure(list(statistic = rs , parameter = q, method = method ,
data.name=deparse(substitute(x))), class="htest")

}

D.13. Runnable Code

############# RUN #############

counter <- 1
index_vec = c(’GSPC’, ’DAX’, ’FTSE’, ’HSI’)
start.time <- Sys.time()

while (counter <= 4){

start <- ’1989 -12 -31’
end <- ’2020-1-3’
reestimation_int <- 21

if (index_vec[counter] == "GSPC"){
# S&P500
getSymbols("^GSPC", from = start , to = end)
GSPC <- GSPC$GSPC.Adjusted
index_rt <- na.omit(diff(log(GSPC )))
}else if (index_vec[counter] == "DAX"){
# DAX
getSymbols("^GDAXI", from = start , to = end)
GDAXI <- GDAXI$GDAXI.Adjusted
index_rt <- na.omit(diff(log(GDAXI )))
}else if (index_vec[counter] == "FTSE"){
# FTSE
getSymbols("^FTSE", from = start , to = end)
FTSE <- FTSE$FTSE.Adjusted
index_rt <- na.omit(diff(log(FTSE )))
}else{
# HSI
getSymbols("^HSI", from = start , to = end)
HSI <- HSI$HSI.Adjusted
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index_rt <- na.omit(diff(log(HSI)))
}

############# ESTIMATES #############

### Volatility
# Volatility Estimation - sGARCH , eEGARCH , fiGARCH and EWMA
std_sGARCH <- vol_estimation(index_rt , "sGARCH", reestimation_int)
std_eGARCH <- vol_estimation(index_rt , "eGARCH", reestimation_int)
std_fiGARCH <- vol_estimation(index_rt , "fiGARCH", reestimation_int)
std_ewma <- vol_estimation(index_rt , "ewma", reestimation_int)

### Value -at -Risk
# Parametric Normal VaR
var_parNorm_sGARCH <- normal_var(std_sGARCH , 0.01) ;
colnames(var_parNorm_sGARCH) <- "var_parNorm_sGARCH"

var_parNorm_eGARCH <- normal_var(std_eGARCH , 0.01) ;
colnames(var_parNorm_eGARCH) <- "var_parNorm_eGARCH"

var_parNorm_fiGARCH <- normal_var(std_fiGARCH , 0.01) ;
colnames(var_parNorm_fiGARCH) <- "var_parNorm_fiGARCH"

var_parNorm_ewma <- normal_var(std_ewma , 0.01) ;
colnames(var_parNorm_ewma) <- "var_parNorm_ewma"

# Parametric SGT VaR
sgt_parameters <- sgt_fit(index_rt , reestimation_int)
var_parSGT_sGARCH <- sgt_var(std_sGARCH , sgt_parameters , 0.01) ;
colnames(var_parSGT_sGARCH) <- "var_parSGT_sGARCH"

var_parSGT_eGARCH <- sgt_var(std_eGARCH , sgt_parameters , 0.01) ;
colnames(var_parSGT_eGARCH) <- "var_parSGT_eGARCH"

var_parSGT_fiGARCH <- sgt_var(std_fiGARCH , sgt_parameters , 0.01) ;
colnames(var_parSGT_fiGARCH) <- "var_parSGT_fiGARCH"

var_parSGT_ewma <- sgt_var(std_ewma , sgt_parameters , 0.01) ;
colnames(var_parSGT_ewma) <- "var_parSGT_ewma"

# Historical VaR
var_hist_sGARCH <- historical_var(index_rt , std_sGARCH , 500, 0.01) ;
colnames(var_hist_sGARCH) <- "var_hist_sGARCH"

var_hist_eGARCH <- historical_var(index_rt , std_eGARCH , 500, 0.01) ;
colnames(var_hist_eGARCH) <- "var_hist_eGARCH"

var_hist_fiGARCH <- historical_var(index_rt , std_fiGARCH , 500, 0.01) ;
colnames(var_hist_fiGARCH) <- "var_hist_fiGARCH"

var_hist_ewma <- historical_var(index_rt , std_ewma , 500, 0.01) ;
colnames(var_hist_ewma) <- "var_hist_ewma"

# Quantile Regression VaR
quant_parameters <- quantile_fit(index_rt , std_sGARCH , 500, reestimation_int , 0.01)
var_quant_sGARCH <- quantile_Var(std_sGARCH , quant_parameters) ;
colnames(var_quant_sGARCH) <- "var_quant_sGARCH"

quant_parameters <- quantile_fit(index_rt , std_eGARCH , 500, reestimation_int , 0.01)
var_quant_eGARCH <- quantile_Var(std_eGARCH , quant_parameters) ;
colnames(var_quant_eGARCH) <- "var_quant_eGARCH"

quant_parameters <- quantile_fit(index_rt , std_fiGARCH , 500, reestimation_int , 0.01)
var_quant_fiGARCH <- quantile_Var(std_fiGARCH , quant_parameters) ;
colnames(var_quant_fiGARCH) <- "var_quant_fiGARCH"

quant_parameters <- quantile_fit(index_rt , std_ewma , 500, reestimation_int , 0.01)
var_quant_ewma <- quantile_Var(std_ewma , quant_parameters) ;
colnames(var_quant_ewma) <- "var_quant_ewma"

save.image(file = paste(index_vec[counter], ".RData", sep = ""))
counter <- counter +1
}
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken

### Backtesting
# backtest_uc <- backtest(index_rt , var_parNorm_sGARCH , "2000 -01 -03" , "2020 -01 -03" , "uc")
# backtest_bcp <- backtest(index_rt, var_parNorm_sGARCH , "2004 -01 -03" , "2006 -01 -03" , "bcp")
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vars <- data.frame(var_parNorm_sGARCH , var_parNorm_eGARCH , var_parNorm_fiGARCH ,
var_parNorm_ewma , var_parSGT_sGARCH , var_parSGT_eGARCH ,

var_parSGT_fiGARCH , var_parSGT_ewma , var_hist_sGARCH , var_hist_eGARCH ,
var_hist_fiGARCH , var_hist_ewma , var_quant_sGARCH ,

var_quant_eGARCH , var_quant_fiGARCH , var_quant_ewma)

table_uc <- uctest_table(index_rt , vars)
table_bcp <- bcptest_table(index_rt , vars)

exceedances <- uctest_table(index_rt, vars , TRUE)

mean <- data.frame(matrix(NA ,1 ,16)) ; colnames(mean) <- colnames(vars)
counter <-1
while (counter < 17){
mean[,counter] <- mean(vars[,counter ])
counter <- counter +1
}

write.xlsx(table_uc , ’D:/Faculdade/Thesis/Code/uc_table.xlsx’)
write.xlsx(table_bcp , ’D:/Faculdade/Thesis/Code/bcp_table.xlsx’)
write.xlsx(exceedances , ’D:/Faculdade/Thesis/Code/exceedances.xlsx’)
write.xlsx(mean , ’D:/Faculdade/Thesis/Code/mean.xlsx’)

### Ploting
# Volatility Ploting
plot_std <- data.frame(c(std_ewma , std_sGARCH , std_eGARCH , std_fiGARCH ));
rownames(plot_std) <- rownames(std_ewma)

plot_std <- subset(x = plot_std , subset = rownames(plot_std) >= "2000 -01 -01")
write.xlsx(plot_std , ’D:/Faculdade/Thesis/Code/plot_std_hsi.xlsx’, sheetName="Sheet1",
col.names = TRUE , row.names = TRUE , append = FALSE , showNA = TRUE)

# Returns Ploting
write.xlsx(data.frame(index_rt), ’D:/Faculdade/Thesis/Code/plot_rt_hsi.xlsx’,
sheetName="Sheet1", col.names = TRUE , row.names = TRUE , append = FALSE , showNA = TRUE)

### Descriptive Statistics
mean <- mean(index_rt)
median <- median(index_rt)
max <- max(index_rt)
min <- min(index_rt)
sd <- sd(index_rt)
skewness <- skewness(index_rt)
kurtosis <- kurtosis(index_rt)
jarque.test(as.vector(index_rt)) ##????

des_stat_table <- data.frame(c(mean , median , max , min , sd , skewness , kurtosis ))
rownames(des_stat_table) <- c(’mean’, ’median ’, ’max’, ’min’, ’sd’, ’skewness ’, ’kurtosis ’);
colnames(des_stat_table) <- colnames(index_rt)

write.xlsx(des_stat_table , ’D:/Faculdade/Thesis/Code/table_descstat_hsi.xlsx’,
sheetName="Sheet1", col.names = TRUE , row.names = TRUE , append = FALSE , showNA = TRUE)

### Stationarity Test
# Prices
summary(ur.df(y=na.omit(HSI), lags=20, type="trend", selectlags="BIC"))
summary(ur.pp(na.omit(HSI), type="Z-tau", model="trend", lags="short"))
summary(ur.kpss(na.omit(HSI), type="tau", lags="short"))

# Returns
summary(ur.df(y=index_rt , lags=20, type="drift", selectlags="BIC"))
summary(ur.pp(index_rt , type="Z-tau", model="drift", lags="short"))
summary(ur.kpss(index_rt , type="tau", lags="short"))

### Long Memory Test
# ACF and PACF
par(mfrow=c(3,2))
# Returns
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acf(index_rt , main = "ACF␣-␣HSI␣Returns")
pacf(index_rt, main = "PACF␣-␣HSI␣Returns")
# Returns Squared - Variance Proxy 1
acf(index_rt^2, main = "ACF␣-␣HSI␣Returns ^2")
pacf(index_rt^2, main = "PACF␣-␣HSI␣Returns ^2")
# |Returns| - Variance Proxy 2
acf(abs(index_rt), main = "ACF␣-␣|HSI␣Returns|")
pacf(abs(index_rt), main = "PACF␣-␣|HSI␣Returns|")

#LO R/S Statistic Test
rs_test(index_rt, 3)
rs_test(index_rt^2, 3)
rs_test(abs(index_rt), 3)
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