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Resumo

Os códigos TCH possuem várias propriedades que nos permitem usá-los efi-
cientemente em diversas aplicações. Uma delas é a estimação de canal e nesta
dissertação é estudado o desempenho dos códigos TCH em estimação de canal
num sistema OFDM, tendo em conta as comunicações Machine-Type. Resulta-
dos que ilustram a taxa de erro de bit foram obtidos através de simulações que
permitem avaliar o impacto de usar diferentes técnicas de pilotos, nomeadamente
multiplexados e implícitos, diferentes valores de potência para os pilotos e difer-
entes modulações, QPSK e 64-QAM. Também é feita a comparação entre os pilotos
TCH e pilotos convencionais. Os resultados mostram que os pilotos TCH tem um
desempenho muito positivo e confiável, dentro dos parâmetros testados.

Também é efetuado o estudo de sincronização e estimação de canal conjunta
usando métodos esparsos como o OMP, o `1-regularized e o Iterative Reweighted
`1. Os códigos TCH são comparados com outros tipos de sequências, tais como as
sequências Zadoff-Chu e os códigos pseudo-aleatórios. São consideradas variações
no tamanho dos pilotos, no comprimento do canal e no tamanho da janela de
observação para perceber quais são os seus efeitos no desempenho. Os resultados
demonstram que os códigos TCH podem ser utilizados com sucesso em estimação
de canal e sincronização conjunta e conseguem aguentar condições adversas de sim-
ulação melhor que os outros pilotos utilizados. Também é provado que compressed
sensing pode ser utilizado com sucesso em sincronização e estimação conjunta, que
é uma área onde o seu uso ainda não foi explorado aprofundadamente.

Palavras-chave: códigos TCH, estimação de canal, pilotos multiplexados,
pilotos implícitos, compressed sensing, recuperação de sinais esparsos.
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Abstract

TCH codes possess several properties that allow us to use them efficiently in
various applications. One of these applications is channel estimation and, in this
dissertation, it is studied the performance of TCH codes to estimate the channel in
an Orthogonal Frequency Division Multiplexing system, regarding Machine-Type
Communications. Bit error rate performance results were obtained by executing
simulations that allowed the evaluation of the impact of using two different pilot
techniques, such as data multiplexed and implicit pilots, different pilot power levels
and different modulations, QPSK and 64-QAM. Pilots based on TCH codes are
also compared with other conventional pilots. Results show that TCH codes have
a very positive and reliable performance.

Joint timing synchronization and channel estimation is also performed us-
ing different sparse based approaches, such as Orthogonal Matching Pursuit, `1-
regularized and Iterative Reweighted `1. TCH codes are compared against different
sequence types, namely Zadoff-Chu sequences and pseudorandom codewords, and
variations in the pilot size, the channel length and the observation window size are
executed in order to understand their effects. Results ultimately illustrate that
TCH codes can be effectively used in joint channel estimation and synchronization,
managing to withstand worst simulation conditions better than its counterparts.
It is also proven that compressed sensing can successfully be utilized in joint syn-
chronization and channel estimation, an area where its use has not been very
explored.

Keywords: TCH codes, channel estimation, data multiplexed pilots, implicit
pilots, compressed sensing, sparse signal recovery.
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Ŝk,l Data estimate

T Delay

T0 Number of zeros before channel effective response

tOFDM OFDM block index

tTCH Correcting capacity of TCH codes

T̂0 Number of zeros before channel effective response estimate

W Length of FIR filter

W Weighting matrix

Wq Diagonal matrix for an iteration q

xxiii



List of Symbols

wqi Weight for the ith element

xk kth data symbol

X Transmitted sequence

Xk,l Transmitted sequence in the kth subcarrier of the lth OFDM block

y Received signal

yt Received signal with delay

y(t) Observation over time

Z Toeplitz matrix

xxiv



Chapter 1

Introduction

This chapter aims to explain the context and the motivation behind the work

developed for this dissertation, as well as to present the objectives proposed to its

development. An overview of the remainder of the document is provided.

1.1 Motivation and Context

The necessity of developing a code scheme that could have a solid encoding gain,

a simpler implementation compared to existing schemes and allowed decoding

with a better performance permitted the creation of TCH codes. These codes

are error correcting codes whose name originated from the people who created

them: M. Tomlinson, F. Cercas and C. Hughes [1]. The codes have the following

characteristics:

• Ideal rigid sizes for properties;

• Solid error correcting performance (oriented to transmitting short and sen-

sitive information);

• Simple decoding based on the Fast Fourier Transform (FFT);

• Excellent correlation performance.
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These features allow us to efficiently use TCH codes in various applications based

on digital transmission systems, such as error correction, carrier synchronism [2],

coding [3] [4], channel and phase estimation or spread spectrum systems. The

excellent correlation properties of the TCH codes is the most important feature

for this thesis since the main goal is to perform and study channel estimation.

Machine-Type Communications (MTC) is a type of communication that allows

intelligent machines to produce, process and exchange information directly with

each other, with little to no human intervention [5]. The rapid expansion of the

Internet of Things (IoT) and with the increase of devices with embedded systems

in the market justifies the focus of this study in this type of communication. In

the very near future, communications between machines will be dominant since

it is expected that, by 2019, over 600 million cellular MTC connections will be

implemented worldwide [6]. This means that a wide variety of services will be

provided like updating billboards in the Marketing area, synchronizing and raising

the efficiency in Industrial production lines or, in the Transportation area, an

autonomous vehicle may be able to provide information regarding its current status

and the different systems in an automobile might communicate between them in

order to offer the best experience to its passengers. MTC will be extremely useful

to perform well defined and repetitive tasks not suitable to human beings, given

our limited attention span.

The main motivation is to understand if TCH codes are suited to perform

channel estimation and also if they are appropriate to use in MTC, which will

most likely dominate the future of communications, making it a pertinent type of

communication to study. Channel estimation will be crucial in order to obtain a

highly viable connection. If we understand the behavior of the channel then we

are able to send the signal with less distortion, boosting its capacity and viability.

2
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1.2 Objectives and Investigation Questions

This dissertation is focused on channel estimation using TCH codes in order to

understand the performance of these codes when used with this objective. Channel

estimation is studied regarding Machine-Type Communications.

The channels are modulated with Orthogonal Frequency-Division Multiplexing

(OFDM) and the study present in this dissertation will mainly allow to verify

the performance and viability of TCH codes in a type of communication that is

in rapid ascension, as mentioned in the “Motivation and Context” section. The

performance of channel estimation with TCH codes is obtained via simulations

using MATLAB and they are compared with performances of other codes in order

to understand how TCH codes keep up with codes already used for this purpose.

Different techniques regarding the types of pilots used are also considered with

the objective of observing its effect in the performance of TCH codes. Another

objective proposed was to write and publish scientific articles related to this thesis,

focused mainly on performing accurate and efficient channel estimation using TCH

codes and comparing them with different codes.

The dissertation will try to obtain answers to certain questions, for example:

• What is the efficiency of TCH codes when used to estimate the channel and

the phase in Machine-Type Communications?

• Will TCH codes be able to perform better than previous codes already es-

tablished?

• Will it be possible to maintain a simpler implementation when compared

with traditional error correcting codes?

1.3 Dissertation layout

This dissertation is organized as follows. Chapter 1 provides a brief introduction,

including the motivation of this dissertation and objectives proposed to obtain

3



Chapter 1. Introduction

with its work. Chapter 2 contains the theoretical research of the areas of study

pertinent to this dissertation, including related work and theoretical explanations.

Chapter 3 explains the work that was done to perform an efficient channel estima-

tion using TCH codes and displays its results. Chapter 4 presents and analyses

the results obtained from joint channel estimation and synchronization. Finally,

Chapter 5 concludes the dissertation where the results from previous chapters are

summarized, pertinent conclusions are displayed and comments regarding possible

future work in this field are also presented.

There is a desire to contribute, regarding the lines of work referenced in this

section, in order to continue the work that has been developed and open new doors

to future endeavors for TCH codes.
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Chapter 2

Fundamental Concepts

This chapter is a literature review of the concepts needed to perform this dis-

sertation. It includes related work and a theoritical explanation of the areas of

study.

2.1 TCH Codes

The TCH codes were first demonstrated in [1] through random search with the

use of computers. This search allowed to prove the existence of non-linear and

non-systematic codes with length nTCH , where:

n = 2m, m ∈ N (2.1)

These codes are defined by a conglomerate of Base Polynomials Pi(x), have a

number of data bits named kTCH and a correcting capacity tTCH , which can all be

described in the following equations:

TCH(nTCH , kTCH) =
h∑
i=1

Pi(x) (2.2)

kTCH = m+ log2 h+ 1 (2.3)
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Pi(x) 6= Pj(x
r) mod nTCH i 6= j ∀ tTCH ∈ N (2.4)

The error correcting capacity of the TCH codes, tTCH , depends on their minimum

distance, dmin, between the polynomials:

dTCHmin ≥ 2tTCH + 1 (2.5)

dTCHmin ≤ Hd[Pi(x), {Pj(xr)} mod nTCH
] ≤ nTCH − dTCHmin (2.6)

with Hd standing for Hamming distance between any two polynomials.

In order to generate codes useful to practical applications it was necessary to

find an analytical method, well cemented in the coding theory, instead of using

the random search previously used. So, TCH codes are built by using the Basic

TCH Base Polynomials (also known as B-TCH Polynomials) P (x) of degree nTCH .

Equation (2.7) contains the values p, which is a prime number, and ai, which is

defined by the finite field theory:

P (x) =

(
p−1

2

)
−1∑

i=0

aix
Ki , ai ∈ GF (q), q = pk, k ∈ N (2.7)

where the exponents Ki satisfy Equation (2.8):

aKi = 1 + a2i+1, i = 0, 1, ...,
p− 1

2
− 1 (2.8)

and p is a prime number with:

p = nTCH + 1 = 2m + 1 (2.9)

Fermat numbers are prime numbers that obey a certain condition, expressed in

the following equation:

Fi = 22i + 1, i ∈ N (2.10)

As of now, there are only five numbers that obey this rule and they are pre-

sented in Table 2.1:
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i p nTCH
0 3 2
1 5 4
2 17 16
3 257 256
4 65537 65536

Table 2.1: Fermat numbers for generating TCH codes [7]

This means that it is only possible to generate five pure TCH Polynomials,

which correspond to the B-TCH Polynomials mentioned above. There is the pos-

sibility of building similar TCH codes that can be extended to other lengths but

that comes with the cost of losing the properties and the ideal structure that the

B-TCH Polynomials possess.

TCH codes originated by B-TCH polynomials have both good cross and auto-

correlation, with the latter assuming always one of these three values: nTCH , the

value of the code polynomial, 0 and −4. This translates into a great advantage for

higher sized TCH codes, such as TCH codes length nTCH ≥ 256. For higher nTCH

values, the sequences tend to get closer to a Dirac impulse, as depicted in Figure

2.1, showing an auto-correlation function of a B-TCH Polynomial of length 256,

with offsets from −128 to 127, so that the peak is displayed in the center.

Figure 2.1: Auto-correlation of a B-TCH Polynomial with n = 256.
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In [7], the TCH codes have been used to build a decoder in a simple receiver

implementation. It is based in a group of correlators and each of them can be used

to compare the received word with 2nTCH words from the code. In a TCH(n, k)

code, the total number of code words is 2k = 2nTCHh which means that it can be

used h correlators to verify the maximum likelihood. By comparing the outputs of

the correlators, it is possible to pick the sequence which corresponds to the higher

correlation.

Figure 2.2: TCH Receiver’s structure [7].

The correlators from Figure 1 can be replaced by two FFT’s, a complex mul-

tiplication and an IFFT. This way, the real part and the imaginary part are pro-

cessed, which allows to compare the received word with two TCH sequences simul-

taneously in both parts. The receiver efficiency doubles and the processing times

decrease to half with this implementation.
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Figure 2.3: Simple TCH decoder of maximum likelihood [7].

Studies regarding synchronization and channel and noise estimation have been

made in [8] and [9] with the latter using these codes in MIMO systems.

2.2 Channel Estimation

Channel estimation allows the studying of the effects of fading, scattering or at-

tenuation in the channel. The definition of channel comprises everything between

the transmitter and the receiver, including where the signal is being transmitted,

like open space or cables. It is crucial in order to achieve high data rates and

reliability. This means that the process of channel estimation characterizes the

physical channel via mathematical models of what is really happening.

The two main estimation methods used are the Least-Square (LS) estimation

[10], utilized when the channel and noise distributions are unknown, and the Min-

imum Mean-Square-Error (MMSE) estimation which improves the LS estimation

[11], used when the previous parameters are known. The advantage of LS estima-

tion lies in its simplicity because even without any knowledge of the parameters of

the channel, the LS estimators are calculated with very low complexity. Nonethe-

less, it suffers from a high Mean Squared Error (MSE) which means that LS

estimation is mainly used to perform an initial channel estimation which is then

complemented by utilizing other methods. MMSE has a better performance when

compared to the LS method but the matrix inversions required in this method
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make it a highly complex method, meaning it is computationally very heavy. Lin-

ear Minimum Mean-Square-Error (LMMSE) [12] [13] can be a solution since this

method does not use matrix inversions and it has a lower MSE value than MMSE.

In [14], optimal choices of training sequences are investigated regarding multiple

transmission antennas and single receive antennas based on LS and MMSE esti-

mators. Pilot Symbol Aided Modulation (PSAM) and MMSE training schemes

with orthogonal training are considered in [15].

The most popular way of performing channel estimation consists in using pilots

or training sequences. These pilots are carriers with no kind of information, they

just carry something (a symbol, for example) that allows us to recognize them and

serve as a reference point.

2.2.1 Pilot Symbol Aided Modulation

The pilot symbols used in channel estimation are regularly multiplexed with data

in both time and frequency domains [16] [17] [18] and this technique is called Pilot

Symbol Aided Modulation (PSAM). In this method, the transmitter inserts known

symbols periodically, which means there is no change in pulse shape or peak-to-

average-power ratio (PAPR). The receiver is able to estimate the amplitude and

phase rotations by interpolating the channel measurements provided by the pilot

symbols, aiding the compensation of phase shifting and fading. Figure 2.4 shows

the frame structure for an OFDM transmission using PSAM where it is possible

to observe an OFDM system with N carriers. The pilot symbols are multiplexed

with the data and transmitted with a frequency-domain spacing of ∆NF and a

time-domain spacing of ∆NT .
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Figure 2.4: Frame Structure for an OFDM transmission using PSAM where
D represents a data symbol and P represents a pilot symbol [19].

The following steps are applied by the receiver in order to obtain the channel

response estimates [19]:

1. For each pilot symbol, the channel estimate between the transmitter and the

receiver is calculated as follows:

H̃k,l =

(
SPilotk,l

)∗
∣∣∣SPilotk,l

∣∣∣2 Rk,l (2.11)

where SPilotk,l represents a pilot symbol transmitted in the kth subcarrier of

the lth OFDM block and Rk,l is the received sequence in the antenna, which

can be expressed as:

Rk,l = Sk,lHk,l + Nk,l (2.12)

with Sk,l being the transmitted symbol in the kth subcarrier of the lth OFDM

block, Hk,l representing the overall channel frequency response between the

transmitter and the receiver for the kth frequency of the lth time block and

with the channel noise sample being depicted by Nk,l.

2. We can get channel estimates for the same subcarrier k that do not carry a

pilot symbol and are in time-domain positions, l, by applying a finite impulse
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response (FIR) filter with length W :

Ĥk,l+tOFDM
=

bW
2
c∑

bj=−W−1
2
c

hjtOFDM
H̃k,l+j·∆NT

(2.13)

with tOFDM symbolizing the OFDM block index relative to the last one

carrying a pilot and hjtOFDM
representing the interpolation coefficients of the

estimation filter.

3. The data estimates originated after the first estimation can be used as pilots

for channel refinement and the following equation shows how to compute the

respective channel estimates:

(
Ĥk,l

)(q)

=
Rk,l

(
Ŝk,l
)(q−1)∗

∣∣∣∣(Ŝk,l)(q−1)
∣∣∣∣2 (2.14)

where q represents an iteration.

2.2.2 Implicit Pilots

The use of the PSAM approach has the problem of originating an inefficient band-

width use. To contradict this problem, a different method consisting in using

implicit (also called embedded or superimposed) pilots was proposed in [20] and

[21]. In this approach, the pilot symbols are superimposed over the data, increasing

the pilots’ density without sacrificing system capacity. However, the superimposed

pilots need to spend more power on the pilot sequence and the levels of mutual

interference between the data and the pilots can be high which leads into degrad-

ing the performance. Figure 2.5 illustrates a similar scheme as Figure 2.4, only

this time it represents how the superimposed pilots are transmitted in an OFDM

system.
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Figure 2.5: Frame Structure for an OFDM transmission using implicit pilots
where D represents a data symbol and P represents a pilot symbol [22].

The transmitted and received sequences are expressed in Equations (2.15) and

(2.16), respectively:

Xk,l = Sk,l + SPilotk,l (2.15)

Rk,l = Xk,lHk,l + Nk,l (2.16)

and the receiver applies the following steps to obtain the channel response esti-

mates in the frequency-domain:

1. The data symbol estimates are removed from the pilots:

(
R̃k,l

)(q)

= Rk,l −
(
Ŝk,l
)(q−1) (

Ĥk,l

)(q−1)

(2.17)

where
(
Ŝk,l
)(q−1)

and
(
Ĥk,l

)(q−1)

represent the data and the channel re-

sponse estimates from the previous iteration, respectively. This means that

this step can only be applied after the first iteration so in the first iteration

we define: (
R̃k,l

)(1)

= R̃k,l (2.18)
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2. By utilizing a mean with lengthW , the frequency channel response estimates

can be expressed as follows:

(
Ĥk,l

)(q)

=
1

W

l+dW
2
e−1∑

l′=−bW
2
c

(
R̃k,l′

)(q−1)

SPilotk,l′
(2.19)

3. As shown in the data multiplexed pilots method, the data estimates orig-

inated after the first estimation can also be utilized as pilots for channel

refinement.

2.3 Orthogonal Frequency-Division Multiplexing

Orthogonal Frequency-Division Multiplexing (OFDM) is a form of multicarrier

modulation and its signal is formed by a number of modulated carriers spaced

very closely to each other. In [23], the authors presented the first OFDM paper

and the authors of [24] proposed the use of Discrete Fourier Transform (DFT)

for modulation, demodulation and guard interval, which allowed an easier imple-

mentation of OFDM models. A study was conducted in [25] regarding the use of

this technology in high speed modems, portable digital communications and high

intensity recording software. It also introduced the use of cyclic prefixes. Some

of the most recent advances presented in [26] and [27] show how OFDM trans-

missions through portable communications channels can attenuate the problem of

multipath propagation. OFDM has also been included in commercial use due to

the developments in technology that have lowered the cost of signal processing

[28], [29] and [30].

In conventional multicarrier modulations, when signals are transmitted closely

to one another they must have a space between them in order that the receiver

can separate them by applying a filter and there must be a guard band between

them. In OFDM modulation, the sidebands from each carrier overlap but they can

still be received without interference because they are orthogonal to each other.

This orthogonality allows a frequency selective channel to be converted into a
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non-frequency selective one [31]. Figure 2.6 shows a comparison between the

OFDM spectrum and the FDMA spectrum where we can see that OFDM has the

advantage of being able to save bandwidth, allowing a more efficient use of the

available spectrum for transmission.

Figure 2.6: Comparison of OFDM spectrum with FDMA Spectrum [32].

Besides this ability to save bandwidth, OFDM modulation has a number of

advantages, such as:

• The data transmitted on an OFDM signal is spread across its carriers, re-

ducing the data rate and, consequentially, lowering the interference from

reflections;

• It reduces the effect of intersymbol interference (ISI) with the help of guard

intervals and cyclic prefixes;

• It can successfully and easily adapt to unfavorable channel conditions with-

out complex time-domain equalization;

• OFDM brings robustness to transmissions in multipath fading channels;

• It has low sensitivity to time synchronization errors;

• The FFT can be easily and efficiently implemented which can reduce the

computation complexity.
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Despite the rather large number of advantages, OFDM also has its downsides:

• The use of cyclic prefixes reduces efficiency of the system;

• It is highly vulnerable to frequency synchronization problems;

• High PAPR requires linear transmitter circuitry which suffers from poor

power efficiency.

2.3.1 Mathematical description of OFDM

An OFDM signal consists of N orthogonal subcarriers modulated by N parallel

data streams and each of the baseband subcarriers can be expressed as:

φk(t) = ej2πfkt (2.20)

where fk represents the frequency of the kth subcarrier. An OFDM baseband

symbol that does not possess a cyclic prefix multiplexes N modulated subcarriers:

s(t) =
1√
N

N−1∑
k=0

xkφk(t), 0 < t < NT (2.21)

with xk as the kth data symbol and NT representing the OFDM symbol’s length.

The subcarrier frequencies are expressed as fk and they are equally spaced:

fk =
k√
NT

(2.22)

making subcarriers orthogonal, as described in Equation (2.20), with 0 < t < NT .

The signal depicted in Equation (2.21) separates the data symbols in frequency by

overlapping the subcarriers and this is why OFDM modulation uses the available

spectrum in such an efficient way.

The signal from Equation (2.21) can be received by utilizing a bank of un-

matched filters but, in practice, an alternative demodulation is employed. If we
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ignore problems like dispersion and noise, T -spaced in-phase and quadrature sam-

pling of the OFDM symbol generates:

s(nT ) =
1√
N

N−1∑
k=0

xke
j2π nK

N , 0 ≤ n ≤ N − 1 (2.23)

which is the Inverse Discrete Fourier Transform (IDFT) of xk. This means that

the sampled data is demodulated by using a DFT which is one of main properties

of OFDM that was proposed in [24], referred earlier in this section.

2.3.2 Cyclic Prefix

The transmission of the signal from Equation (2.21) over a dispersive channel can

bring two different problems. One of them is the interference caused by succes-

sive OFDM symbols when they are transmitted in a series, known as intersymbol

interference. The other problem is when channel dispersion or multipath channel

variation destroys the orthogonality between subcarriers, causing intercarrier inter-

ference (ICI). To solve both problems, the concept of cyclic prefix was introduced

[25].

Figure 2.7: Cyclic Prefix representation [33].

Figure 2.7 shows that the process consists in copying the last part of an OFDM

symbol and inserting it in the beginning, between consecutive OFDM symbols.

The cyclic prefix has a duration ∆CP and increases the duration of the OFDM
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signal, resulting in:

s(T ) =
1√
N

N−1∑
k=0

xke
j2πfkt, −∆CP ≤ t ≤ NT (2.24)

and the duration ∆CP must be larger than the propagation of the delay to com-

pletely eliminate the ISI. But the benefits of eliminating both ISI and ICI come

with a cost. More energy is necessary to transmit the signal and this energy re-

quirement depends on the cyclic prefix size (if it is larger then more energy is

necessary). The loss of signal-to-noise ratio due to the cyclic prefix is given by:

εloss =
NT

NT + ∆CP

(2.25)

2.4 Machine-Type Communications

Machine-Type Communications or Machine to Machine (M2M) communications

are automated communications that allow devices to communicate with each other

directly or by using a dedicated server, with little or without help of humans and

this communication can occur via wired systems or wirelessly. Figure 2.8 illustrates

how devices communicate with each other. MTC is known for having a simple

implementation, for being cheap and for having a low energy consumption and the

main purpose is to make devices enough self-sufficient so they can initiate functions

based on the network information. M2M can be used in various applications and

some of them are included in Table 2.2.

Functions Applications Requirements

Metering Power, gas or water metering Massive number of MTC devices
and high coverage

Tracking Flight radars or asset tracking High mobility and low
power consumption

Security Surveillance systems High security and reliability
and low latency

Paying Vending machines High security

Table 2.2: Examples of MTC functions and applications [5]
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Figure 2.8: MTC device communication modes: (a) MTC devices communi-
cate directly with each other, (b) MTC devices communicate with MTC server
inside the operator network, (c) MTC devices communicate with MTC server

outside the operator network.

This type of communication is supported by various network technologies [5]

where point-to-point and multi-hop networks like ad hoc or mesh networks have

been used to provide an internet connection to the devices (Internet of Things)

[34]. The protocol IEEE 802.15.x provides applications to Personal Area Networks

(PAN) [35] and in [36], the 802.11ah protocol supports low-power transmissions

with a wider coverage range in Wi-Fi networks. In [37], it is shown how a LTE

network can be influenced by MTC and it is concluded that an increasing MTC

traffic load does not have an impact on priority services, though it is possible to

observe performance degradation for file transfer services.
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2.4.1 Features of MTC

In the 3GPP Release 11 [38], various features of M2M were presented and some

of the most important are compiled below:

• MTC services can be used by several different devices connected to the same

network;

• The transmissions are small which means that devices send small data pack-

ets that only include the necessary information;

• If the same message needs to be transmitted to various MTC devices, they

can all be managed as a group;

• Time slots are allocated to the transmission and reception of data;

• The devices may send priority messages (can be used as an alarm, for exam-

ple);

• Transmission can be delayed by the device by sensing high levels of traffic

in the network;

• It is possible to restrict the movement of the devices to a certain predefined

location;

• MTC devices can be triggered via their location information;

• Monitoring can be implemented if a MTC application needs to monitor the

devices.

2.4.2 Cellular Networks in MTC

Cellular networks like UMTS or LTE are extremely suited to this type of commu-

nication and are usually utilized in the network domain of M2M applications. Cel-

lular networks [39] allow to utilize its vast geographically coverage area, meaning

that operators can provide services like high bandwidth, high mobility and robust
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security all over the world. Technologies like femtocell can be used to provide

quality of service (QoS) information for important applications (health [40] or

security, for example).

Figure 2.9 depicts a generic MTC architecture defined by 3GPP [41] that

rests in three primary components: MTC device domain, network domain and

MTC application domain. The first component refers to all M2M devices in a

network that collect and transmit data to other devices in the same network or to

a server. The network domain provides communication between MTC devices and

also MTC servers, when applicable. Lastly, the MTC application domain consists

of MTC servers that serve as destination for the data collected and transmitted by

the MTC devices inside the same network. These servers are usually managed by

mobile network operators or third party service providers [38]. MTC servers are

also responsible of providing users with an interface to access the assigned MTC

applications.

Figure 2.9: MTC’s generic architecture [41].
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2.5 Joint Synchronization and Channel Estimation

Fast and accurate timing synchronization is very important to enable reliable

communications in modern wireless systems and has a fundamental role within the

context of extreme low-latency MTC, with an example present in [42] where the

authors propose a network architecture that absorbs MTC traffic via femtocells.

Additionally, accurate channel estimation is crucial in order to enable coherent

data detection. Typically, both problems are often handled separately, as seen in

[43] and [44] regarding frequency and timing synchronization for OFDM systems

and also seen in [45] and [46] where optimal training sequences and channel

estimation for wireless OFDM systems were studied, respectively.

Despite the fact that timing synchronization and channel estimation are usu-

ally treated separately, there have been a few attempts to address both of these

processes’ problems together by using a joint approach.

In [47], the authors proposed a simple algorithm to perform joint synchro-

nization and channel estimation algorithm based on Maximum Likelihood (ML)

estimation and Generalized Akaike Information Criterion information (GAIC) for

the IEEE 801.11 WLAN standard. This algorithm is iterative, allowing the re-

finement of timing estimates while channel estimation is performed. The channel

impulse response will contain leading and tailing zeros if the initial timing esti-

mate obtained is less than the true timing. If the zeros can be estimated then the

number of unknown channel coefficients will decrease, leading to a more accurate

channel estimation. Results showed the performance is close to the curve depict-

ing exact knowledge of the transmission channel, allowing a simple approach to

timing synchronization and channel estimation. [48] also proposed to perform

joint timing and frequency synchronization and channel estimation using an ML

approach, this time based on a sliding observation vector using a repetitive signal.

The objective was to avoid mismatch between results from different individual

tasks, so that the problem of errors from one task does not affect the other one.
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The work developed in [49] shows the performance of an algorithm based on

the shift delay characteristic of the synchronization sequence revealed in the chan-

nel estimation process. This characteristic allows to jointly optimize the correct

symbol timing offset (STO) with channel estimation via the MMSE criterion. The

paper shows that the proposed method reinforces the performance of fine timing

synchronization and mean channel estimation error of OFDM systems, allowing

nearly ideal STO acquisition accuracy and almost ideal channel impulse response

(CIR) MSE performance. The authors of [50] also utilized MMSE to perform

channel estimation in tandem with timing synchronization and introduced the no-

tion of effective power delay profile (PDP), encompassing the channel PDP and

the probability density function (PDF) of timing synchronization.

More recently, a joint timing and frequency synchronization algorithm was

proposed where only one training symbol composed of conjugated symmetric se-

quence is utilized in a coherent optical orthogonal frequency-division multiplexing

(CO-OFDM) system [51]. The timing estimation of this algorithm has the advan-

tage of being robust to poor optical signal-to-noise ratio (OSNR) and chromatic

dispersion (CD). The results prove the feasibility and the effectiveness of the pro-

posed algorithm, showing good optical noise and chromatic dispersion tolerance

compared with other well established synchronization algorithms and also shows

that the frequency estimation error of this algorithm is small.

2.6 Compressed Sensing

Compressed sensing (CS), also known as compressive sensing or compressive sam-

pling, is a signal processing technique that allows to efficiently reconstruct a signal

with fewer samples than the sampling theory requires but only if there is knowl-

edge regarding the sparsity of that same signal [52] [53]. Conventionally, one has

to sample a signal at a sampling rate equal to or greater than the Nyquist sam-

pling rate so that the signal is completely recovered. However, in applications like

imaging, sensor networks or high-speed analog-to-digital compression, the signals
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are often sparse meaning that many of its elements are zeros. When sampling an

image, for example, only a small fraction of wavelet coefficients may be significant

in order to recover the original image while the rest of coefficients are disposed of

in various compression algorithms. This process can be wasteful regarding sensing

and sampling resources. One of the fundamental theorems of linear algebra says

there must be as many equations as there are unknowns, meaning it is not possible

to reconstruct a signal from an incomplete set of measurements. But if some of

those unknowns are zeros, then it is possible to rebuild the signal and that is what

compressed sensing does. It uses the sparsity of a signal in order to make possible

the use of a smaller number of measurements to recover the original signal very

accurately.

2.6.1 Orthogonal Matching Pursuit

One of the most used reconstruction algorithms is a greedy strategy known as

orthogonal matching pursuit (OMP) [54] [55]. Greedy algorithms are iterative

signal recovery algorithms capable of calculating the support of the signal and

making the locally optimal choice at each iteration, building up to an approxima-

tion until the criterion is fulfilled. While not optimally stable, they tend to be

extremely fast.

It is an improvement on matching pursuit (MP) but the principle is very simi-

lar. In each iteration, an element is chosen from the dictionary elements that best

approximates the residual. However, instead of taking the scalar product of the

residual and the new dictionary element to get the coefficient weight, the original

function is fitted to every dictionary elements that have already been selected by

projecting the function orthogonally onto all dictionary atoms that have been se-

lected so far, hence the use of the term orthogonal. This leads to better results

than MP with the cost of being computationally heavier.

The work presented in [56] proves that OMP can be used in CS since it

shows that OMP successfully reconstructed a sparse signal. Algorithm 1 shows
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the application of OMP in CS presented in this paper, where Φ represents a

measurement matrix, sv is a measurement vector, ks depicts the sparsity level of a

signal a, â is the estimate of a, Λk defines a set that contains the positions of the

non-zero elements of â, pk is an approximation of sv and r represents the residual

where:

r = sv − pk (2.26)

Algorithm 1 Orthogonal Matching Pursuit [56]
Input: Φ, sv, ks
1: r(0) ← sv
2: Λ(0) ← ∅
3: for i = 1, ..., ks do
4: λ(i) ← arg maxj=1,...,n |〈r(i−1),Φj〉| // This step is where the

algorithm spends most of
its running time

5: Λ(i) ← Λ(i−1) ∪ λ(i)

6: Φ(i) ←
[
Φ(i−1)Φλ(i)

]
7: a(i) ← arg minâ

∥∥sv −Φ(i)â
∥∥

2
// LS estimation

8: p(i) ← Φ(i)a(i)

9: r(i) ← sv − p(i)

10: end for
11: â← a(k)

Output: â, Λ(k), p(k), r(k)

OMP does not always offer the same guarantees as a Basis Pursuit algorithm,

as seen in [56], but it has the advantage of having a much faster runtime.

2.6.2 `1-Minimization

`1-minimization is a Basis Pursuit approach that allows to reconstruct sparse sig-

nals. Basis Pursuit was firstly presented in [57] where it was described as an

approach that uses convex optimization to find signal representations in over-

complete dictionaries. By solving Equation (2.27), it is possible to obtain the

decomposition of a signal which minimizes the `1-norm of the coefficient:

min ||a||1 subject to Φa = sv (2.27)
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where a is a N × 1 signal, sv is a M × 1 measurements vector, Φ is a M × N

measurement matrix and M < N . Φ is given and fixed in advance and it does not

depend on the signal.

This approach allows to exactly recover the signal if it is sparse or accurately

recover the signal if it is approximately sparse which means that, as long as a

signal is sufficiently sparse and the measurement matrix satisfies some conditions

independent of the signal, the `1-minimization will succeed, as proven in [58] and

[59].

In [60], the `1-uncertainty principle was proved . Considering an observation

over time:

y(t) = f(t) + n(t), t ∈ R (2.28)

where n(t) is an impulsive noise term supported on a sparse set T and f(t) is

bandlimited and given as:

f ∈ B(Ω) :=
{
f : f̂(ω) = 0 for |ω| > Ω

}
(2.29)

It was observed that by following Equation (2.30) to recover f :

min
∥∥∥y − f̂∥∥∥

`1(R)
subject to f̂ ∈ B(Ω) (2.30)

it is then possible to exactly recover the signal for whatever values of noise and

f̂ ∈ B(Ω), with the condition that |T ||Ω| ≤ π
2
.

`1-minimization has several advantages over other CS algorithms, with the

most important being that this method provides uniform guarantees, meaning all

sparse signals can be reconstructed. This algorithm is also stable and can handle

noise and non-exactness inherent to sparse signals. The major drawback is the

speed of the process since it relies on linear programming, which has a polynomial

runtime.
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2.6.3 Iterative Reweighted `1-Minimization

Despite the good results shown by `1-minimization regarding the recovery sparse

signals from incomplete measurements, a similar method known as iterative reweighted

`1 minimization was proposed in [61]. The main differences between both meth-

ods are that this algorithm does not use prior information and, at each step, the

`1 optimization is reweighted using the estimates of the signal obtained in the last

minimization step. Algorithm 2 was presented in this paper, where wqi , i = 1, ..., n

represents the weights for the ith element ai of a in the qth iteration of the iterative

reweighted `1-minimization algorithm and Wq is the diagonal matrix.

Algorithm 2 Iterative Reweighted `1 Minimization [61]
1: Set q = 0 and wqi = 1, i = 1, ..., n.
2: Solve the algorithm problem:

aq = arg min
∥∥Wqa

∥∥
1

subject to Φa = sv (2.31)

3: With ε′ representing a tunable positive number, update the weights for each
value of i:

wq+1
i =

1∣∣aqi ∣∣+ ε′
(2.32)

4: Terminate on convergence or when q reaches the maximum number of itera-
tions, qmax. Otherwise, increment q and return to step 2.

Results from [61] showed that the iterative reweighted `1-minimization al-

gorithm outperforms the standard method, with this algorithm enhancing the

sparsity threshold of certain signals, such as sparse signals with Gaussian entries.

However, this algorithm fails to improve the sparsity thresholds when the non-zero

elements of a signal are flat and it is even more computationally heavy than its

standard counterpart. The overall good results of this method pushed the devel-

opment of more tests that confirmed that the performance was, indeed, very good

and encouraged other researchers to build similar approaches that managed to

achieve results at the same level and even better, as seen in [62] and [63].
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2.6.4 Applications of CS

CS is a method that can be utilized in various applications from different areas.

Health is one of those areas, where different CS algorithms have been developed

for magnetic resonance imaging (MRI) purposes [64]. MRI is a process that takes

a long time to perform so there is an interest in reducing the time needed to collect

measurements without decreasing the quality of the image. MR images are sparse

in their pixel representation which makes CS a pertinent approach in this area.

CS has also been utilized in comparative DNA Microarray [65].

A conventional radar system transmits a pulse and then uses a matched filter

to correlate the received signal with the transmitted pulse. The receiver uses a

pulse compression system in tandem with an analog-to-digital converter to process

the signal. This approach is difficult and expensive, so CS was used to discretize

the time-frequency plane into a grid [66]. If the number of targets is small then

the grid will be sparsely occupied and the target scene can be recovered [67].

Channel estimation is another application where CS has been utilized quite

often [68]. In [69], the number of pilots required was reduced due to the authors

performing a channel estimation technique based on CS for multicarrier systems,

exploiting the delay-Doppler sparsity.

Recently, CS has been used several times in wireless communications, as seen

in [70]. CS is explored in this dissertation for joint timing synchronization and

channel estimation.
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Efficient Channel Estimation Using

TCH Codes

This chapter focuses on the study of the performance of channel estimation using

data multiplexed pilots and implicit pilots based on TCH codes. Results obtained

through simulations are also illustrated, paired with the corresponding interpre-

tation and comments.

3.1 System Characterization

3.1.1 Structure of the Transmitter

The transmitter chain depicted in Figure 3.1 is inspired by the works of [22] and

it combines QAM constellations with an OFDM transmission that can use data

multiplexed or implicit pilots. Each data stream is encoded with turbo codes,

interleaved and mapped. The pilot symbols are added to the modulated data

symbols and, lastly, the resulting sequence is converted to the time domain by

using an IDFT.
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Figure 3.1: Structure of the transmitter chain.

3.1.2 Data Multiplexed and Implicit Pilots’ Frame Struc-

tures

Figure 3.2 illustrates the frame structure considered for an OFDM system with

N carriers using data multiplexed pilots, where only the first column of the pilot

grid contains pilot symbols and the first column of the data grid is empty.

Figure 3.2: Frame structure used for an OFDM transmission containing data
multiplexed pilots where C represents a pilot symbol and S represents a data

symbol.

Figure 3.3 depicts a frame structure similar to the one shown in Figure 3.2 but

this time implicit pilots are used. Now, it is possible to verify that all positions
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in both grids are filled since the pilots are superimposed over the data. The grids

from both frame structures are built by using an OFDM time block spacing in the

time domain. The transmitted sequences are described as follows:

X = S + C, (3.1)

where S describes an N × 1 vector where the elements are complex valued mod-

ulated symbols drawn from an M -sized complex valued constellation and C is an

N × 1 vector that corresponds to C = DFT{c} which is the DFT of a TCH

codeword. In order to take advantage of the good auto-correlation properties of

the TCH codes, we utilize the DFT of these codes. The objective of using these

auto-correlation properties is mainly for time synchronization purposes.

Figure 3.3: Frame structure used for an OFDM transmission containing im-
plicit pilots where C represents a pilot symbol and S represents a data symbol.

3.1.3 Structure of the Receiver

As mentioned in Section 2.2.2, transmitting superimposed pilots on data creates

mutual interference between pilots and data. To reduce this interference and to

achieve reliable channel estimation and data detection, a receiver is proposed based
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on a similar approach used in [22], capable of performing these tasks via iterative

processing. The structure of the referenced receiver is presented in Figure 3.4.

Figure 3.4: Structure of the iterative receiver.

Before entering the Channel Equalization block, the pilot symbols are removed

from the sequence. Then, the sequence of equalized samples is demodulated into

bit streams which are processed to reconstruct an estimate of the transmitted

signal. To perform this reconstruction, the sequence also needs to be de-interleaved

and decoded after the demodulation. The channel decoder has two outputs where

one represents the data estimate sequences and the other represents the code

symbols’ log-likelihood ratio (LLR) estimate sequences, with the latter passing

through the decision device block. The reconstructed sequence, Ŝ, can be used to

improve the channel estimates in the next iteration.

3.1.4 Channel Estimation

If the overall channel impulse response is shorter than the NG-sized cyclic prefix,

we can describe the frequency domain received sequence as follows:

R = H(S + C) + N, (3.2)

where H is an N × N diagonal matrix that stands for the channel frequency

response and N represents an N × 1 vector of noise samples in the frequency
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domain. This model directly matches the channel estimation based on implicit

pilots method but it can also represent the data multiplexed pilots with a block of

pilot symbols by simply establishing S = 0, which can be observed in Figure 3.2.

As mentioned before, the receiver can employ an iterative approach based on

[22], meaning it is possible to obtain the frequency channel response. Each of the

following steps is executed for each iteration q:

1. Data symbol estimates are removed from pilots. The resulting sequence

becomes:

R̃
(q)

= R− Ŝ
(q−1)

Ĥ
(q−1)

, (3.3)

where Ŝ
(q−1)

and Ĥ
(q−1)

are the symbol and channel estimates from the

previous iteration. When q = 1 we simply use R̃
(1)

= R. The described step

is only applied when using superimposed pilots.

2. The channel frequency response estimates is calculated using:

H̃
(q)

= |Λ|−2ΛHR̃
(q−1)

, (3.4)

where Λ = diag(C), where diag(·) represents a diagonal matrix whose

elements are contained in the vector used as argument. |Λ| denotes the

element-wise absolute value operation and (·)H depicts the conjugate trans-

pose of a matrix/vector. After the first iteration, the estimates of data

symbols can also be used as pilots for channel estimation refinement. In

this case, it is used Λ = diag
(
Ŝ

(q−1)
)

for data multiplexed pilots and

Λ = diag
(
Ŝ

(q−1)
+ C

)
for implicit pilots.

3. The channel estimates can be augmented by assuring that the corresponding

impulse response has a duration NG. This is accomplished by utilizing:

Ĥ
(q)

= diag
(
FTFHh̃

(q)
)
, (3.5)
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where:

T =

 ING

0(N−NG)×NG

 , (3.6)

0NCF×(N−NCF ) represents a size (N − NG) × NG matrix full of zeros, while

ING
depicts an NG×NG identity matrix. The N ×N scaled discrete Fourier

transform (DFT) matrix is represented by F, such that IN = FHF, and h̃
(q)

illustrates the N × 1 vector that contains the diagonal of H̃
(q)
.

3.2 Analysis of the Results

The results presented in this section were obtained by performing Monte Carlo

simulations in MATLAB with an 8 equal power tap Rayleigh fading channel, using

256 OFDM carriers. Every graph depicts the BER performance, which represents

the number of bit errors divided by the total number of transmitted bits during a

time interval.

The graph presented in Figure 3.5 shows the results of channel estimation

using data multiplexed pilots where blocks with TCH words of length 256 were

sent along with pilots. It was used QPSK modulation and the pilot power values,

which are relatively measured to the channel data, ranged between 0 to -12 with

jumps of -3 dB. Coding was not applied and a conventional receiver was utilized,

which means there was only one receiver iteration. A perfect estimation curve is

shown for comparison purposes.

The curves that represent higher pilot power values have slightly better results,

with 0 and -3 dB having a very similar result to the perfect estimation curve until

reaching 20 dB. But after that value, for higher Es/N0 values, the curves get

further away from the perfect estimation one and all of them converge, reaching

a BER value of approximately 2 × 10−4 for a Es/N0 value of 50 dB. It is visible

that the results are not very good, which was expected since coding was not used.
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BER versus Es/N0: Data multiplexed pilots QPSK
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Figure 3.5: BER performance of channel estimation using data multiplexed
pilots based on TCH codewords and QPSK modulation, considering different

pilot power values.

BER versus Es/N0: Implicit pilots QPSK
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Figure 3.6: BER performance of channel estimation using superimposed pilots
on TCH codewords and QPSK modulation, considering different pilot power

values.
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Figure 3.6 illustrates the results of using the same parameters of the previous

simulation scenario but this time it is utilized the implicit pilots method instead

of using data multiplexed pilots. Clearly, using superimposed pilots is worse than

using data multiplexed pilots in this scenario since it is visible that none of the

curves can keep up with the perfect estimation curve. All curves stagnate at a

Es/N0 value around 30 dB and the 0 dB curve, which has the best performance

of the five curves, only reaches BER values of approximately 10−2. This bad

performance is justifiable not only for not using channel coding but also because

an iterative receiver was not applied.

In the results presented in Figures 3.7 and 3.8, the same simulation conditions

of figures 3.5 and 3.6 were used, respectively, but this time, 64QAM modulation

was used instead of QPSK modulation, in order to understand how the perfor-

mance is going to be affected when using a different, more complex modulation.

BER versus Es/N0: Data multiplexed pilots 64QAM
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Figure 3.7: BER performance of channel estimation using data multiplexed
pilots based on TCH codewords and 64QAM modulation, considering different

pilot power values.
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BER versus Es/N0: Implicit pilots 64QAM
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Figure 3.8: BER performance of channel estimation using superimposed pilots
on TCH codewords and 64QAM modulation, considering different pilot power

values.

By comparing the results from both modulations, it is possible to see that

64QAM has a poorer performance. Figure 3.7 shows a similar behavior to Figure

3.5 with 0 dB presenting a very similar performance to the perfect estimation

estimation curve until 20 dB. But this time, -3 dB starts to have a slightly better

performance at around a Es/N0 value of 35 dB. The -12 dB curve also presents a

slightly better performance after 45 dB. All of the curves depicting the different

pilot power values converge to a BER value of, approximately, 3× 10−3.

As for using implicit pilots in 64QAM modulation, it is visible that the perfor-

mance is far from ideal and it is much worse than when it was used in conjunction

with QPSK modulation. Given that the performance of channel estimation with

implicit pilots has worse results than the data multiplexed ones, it was decided to

utilize an iterative receiver. Figures 3.9 and 3.10 show the results of performing

channel estimation using implicit pilots in QPSK and 64QAM modulation, respec-

tively. The pilot power value is fixed at 0 dB and the receiver iterations value is

gradually increased from 1 to 8.
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BER versus Es/N0: Iterations QPSK 0dB
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Figure 3.9: BER performance of channel estimation using superimposed pi-
lots on TCH codewords and 64QAM modulation, considering different receiver

iteration values.

BER versus Es/N0: Iterations 64QAM 0dB
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Figure 3.10: BER performance of channel estimation using superimposed pi-
lots on TCH codewords and 64QAM modulation, considering different receiver

iteration values.
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By comparing Figure 3.9 with Figure 3.6, it can be seen that the use of an

iterative receiver has allowed to increase the performance of estimating the chan-

nel with superimposed pilots on TCH codes. The curve that represents 2 receiver

iteration not only shows better BER performance results but the curve also stag-

nates later, at around 40 dB instead of 30 db for 1 iteration. But the best results

come from employing 4 and 8 receiver iterations with both results achieving almost

equal results. By utilizing 4 receiver iterations it is also possible to get slightly

better results than the ones obtained from performing channel estimation with

data multiplexed pilots, as shown in Figure 3.5, making the use of implicit pilots

instead of data multiplexed pilots very promising.

Unfortunately, the results of Figure 3.10 do not look very good since the number

of iterations had very little impact on the performance of the system, with all of

the curves are very far away from the perfect estimation curve. This means that,

for 64QAM, it is not enough to utilize an iterative receiver and there is a need to

use channel coding in order to make implicit pilots viable.

Figure 3.11 presents again the results for channel estimation using data mul-

tiplexed pilots based on TCH codes of length 256 and the modulation is QPSK.

But this time it is also used channel coding. The channel encoders are rate 1/2

turbo codes based on two identical convolutional codes with two constituent codes

characterized by G(D) = [1 + D2 + D3)/(1 + D + D3)] [71]. At the receiver, 18

turbo decoding iterations were employed while using a conventional receiver.

By analyzing these results, it is possible to see that the curves for high values

of pilot power are very close to the curve that depicts perfect estimation, meaning

that higher pilot power values, such as 0, -3 and -6 dB, translate into better

results, as expected. For higher Es/N0 values, the curves that represent -9 and

-12 dB get progressively further away from the perfect estimation curve, resulting

in a slightly poorer performance. Nevertheless, any of the pilot power values

shown in this graph have a much better result than the ones presented in Figure

3.5, which means that using channel coding improves vastly the performance of

channel estimation.
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BER versus Es/N0: Data multiplexed pilots QPSK coding
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Figure 3.11: BER performance of channel estimation using data multiplexed
pilots based on TCH codewords, QPSK modulation and channel coding, consid-

ering different pilot power values.

Figure 3.12 shows the BER performance results for channel estimation using

also QPSK modulation but now, the estimation was performed by using super-

imposed pilots on TCH codewords. Different values regarding pilot power were

considered again and the same turbo codes used in Figure 3.11 were utilized. For

this simulation, 6 receiver iterations with 3 turbo decoding iterations each were

applied in the iterative scheme.

Once again, the performance is better for higher values of pilot power. But

this time, the curves that represent -9 and -12 dB have a larger difference from

the perfect estimation curve than the difference observed in Figure 3.11. This

results from the interference between the data symbols and the pilots, mutual

interference, meaning that higher pilot power levels are needed when performing

channel estimation with implicit pilots to obtain a good performance. Now that an

iterative receiver and channel coding are being used simultaneously, it is possible

to achieve a much better performance than the ones observed in Figures 3.6 and

3.9 and implicit pilots are now able to keep up with data multiplexed pilots.
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BER versus Es/N0: Implicit pilots QPSK coding
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Figure 3.12: BER performance of channel estimation using superimposed pi-
lots on TCH codewords, QPSK modulation and channel coding, considering

different pilot power values.

BER versus Es/N0: Iterations QPSK 0 dB coding
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Figure 3.13: BER performance of channel estimation using superimposed pi-
lots on TCH codewords, QPSK modulation and channel coding, considering

different receiver iteration values.
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The results displayed in Figure 3.13 were obtained by using the same simulation

parameters used to build Figure 3.12 but this time, the pilot power is fixed at 0

dB and the number of iterations in the receiver is gradually increased.

When the number of iterations used in the receiver is higher, the performance

is better, which is visible by comparing the simulated curves with the perfect

estimation one. Still, the difference in performance is small after we stop using a

conventional receiver and it is almost indistinguishable for the highest simulated

values of iterations, 4 and 8. This shows that the performance is not greatly

affected by increasing the number of receiver iterations after a certain value is

reached, just like it was already shown in Figure 3.9 though now that there is

channel coding, the effect of applying iterations in the receiver is not as big as it

was when there was no channel coding at all.

In Figure 3.14, it is considered the performance of channel estimation using

either data multiplexed pilots or implicit pilots and also if the data sent is based

on TCH codewords or conventional pilots.

BER versus Es/N0: Coding QPSK -4 dB
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Figure 3.14: BER performance of channel estimation utilizing QPSK modula-
tion and coding while considering different pilot approaches and based on TCH

codewords or conventional pilots.
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It was used QPSK modulation and the channel coding and receiver structures

used in Figures 3.11 and 3.12 were used to simulate the curves regarding data

multiplexed pilots and implicit pilots, respectively. Only a single value of pilot

power, -4 dB, was considered, given the results from previous graphs.

All of the simulated cases possess an almost identical and very good perfor-

mance, which is justified by observing the proximity between all of the curves and

also because no BER floor is visible. The difference between the performance of

data multiplexed pilots and implicit pilots is very small and even though data

multiplexed pilots have a slightly better performance, implicit pilots have the ad-

vantage of avoiding spectral degradation and have a more efficient bandwidth use.

Conventional pilots, labeled in Figure 3.14 as "w/o TCH", have a slightly better

performance than the ones based on TCH code words but the difference is really

small and TCH codewords have the benefit of possessing good synchronization

properties, meaning there is the possibility of performing joint channel estimation

and synchronization with TCH codes.

BER versus Es/N0: Coding 64QAM -1.75 dB
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Figure 3.15: BER performance of channel estimation utilizing 64QAM mod-
ulation and coding while considering different pilot approaches and based on

TCH codewords or conventional pilots.

43



Chapter 3. Efficient Channel Estimation Using TCH Codes

Finally, Figure 3.15 was built using the same simulation conditions of Figure

3.14 with the exception of the modulation, which this time is 64-QAM instead of

QPSK, and the pilot power, which is now a fixed value of -1.75 dB. This fixed

value is higher because amplitude modulation methods are more susceptible to

noise.

As expected, the results show that with 64-QAM modulation we need higher

BER values than the ones obtained from the QPSK simulations. All the curves

are closer to the perfect estimation curve than the ones presented in Figure 3.14,

with the "Implicit Pilots w/TCH" showing a small detour starting around 25 dB.

But the declivity is smaller this time, which is observable in the graph.

After analyzing the results of using TCH codes for channel estimation using two

different pilot approaches, data multiplexed pilots and implicit pilots, it is possible

to conclude that both approaches are reliable. Using TCH codes for channel esti-

mation is justified based on the fact that they have very similar performance levels

when compared with conventional pilots and also because TCH codes have great

synchronization properties, meaning that it is possible to simultaneously use them

in the system for synchronization purposes, making TCH codes a better choice

for channel estimation. Regarding the modulations used, QPSK has a better per-

formance than 64-QAM but both present really good performances, showing that

TCH codes can be successfully used with both modulations. The work developed

in this chapter was utilized to write a paper that has been published [72] and is

presented in Appendix A.
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Chapter 4

Joint Timing Synchronization and

Channel Estimation Using TCH

Codes and Compressed Sensing

In this chapter the performance of TCH codes in timing synchronization is evalu-

ated as well as channel estimation using a sparse based reconstruction approach,

namely compressed sensing. Joint channel estimation and timing synchronization

problem is formulated in a form that can fit CS framework and then modified

versions of sparse reconstruction techniques are proposed that can find reliable

solutions for it. This approach allows the channel impulse response (CIR) to be

obtained simultaneously to the symbol timing offset. Through numerical simula-

tions the performance of TCH codes versus other different codes is compared.

4.1 Signal Model and Problem Formulation

For timing synchronization and channel estimation purposes, a training sequence

s = [s0 s1 ... sNc−1]T of length Nc is considered, where (.)T denotes the transpose

of a vector/matrix. This sequence is transmitted through the channel, represented

by a finite response filter h = [h0 h1 ... hL−1]T , where L is the maximum expected
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channel length and h1 ∈ C. Not all h1 are necessarily nonzero and the effective

channel length, which is unknown at the receiver, can be much smaller than L. If

the signal arrives at the receiver with an unknown delay (in samples) of T , then it

can be written as the linear convolution of the delayed training sequence and the

channel as:

yt =
L−1∑
l=0

hlst−T−l + nt, 0 ≤ t ≤Mo − 1 (4.1)

where Mo is the number of observation samples and nt represents the noise. The

received signal can be rewritten by using a matrix/vector notation:

y = Zhext + n (4.2)

where Z is an Mo ×Ns Toeplitz matrix defined as:

Z =



. . . 0 0
... s0

. . . ...
. . . ... . . . 0

0 sNc−1 s0

... 0
. . . ...

0
. . . sNc−1

0 0


(4.3)

with Ns representing the size of the search window, which is not necessarily equal

to the observation window Mo, and hext being the channel impulse response aug-

mented with several zeros, namely T0 zeros before the effective channel response

and Ns − L− T0 zeros after:

hext =

[
0 . . . 0︸ ︷︷ ︸
T0

hT 0 . . . 0︸ ︷︷ ︸
Ns − L− T0

]T
(4.4)

Using this representation and assuming the usual scenario where
∥∥∥h∥∥∥

0
≤ L

and the size of the search window is large, then
∥∥∥hext∥∥∥

0
� Ns and the channel

estimation and synchronization problem can be formulated in a form that is closely
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related to sparse signal reconstruction problems and CS framework, both expressed

in Equations 4.5 and 4.6:

min
hext

f
(
hext

)
,
∥∥∥y− Zhext

∥∥∥2

2
(4.5)

subject to max{|i− j + 1| : hexti 6= 0, hextj 6= 0} ≤ L (4.6)

where ||.||p is the `p-norm of a vector and ||.||0 is its cardinality.

4.2 Joint Timing and Channel Estimation

In order to solve Equations 4.5 and 4.6, an extensive search with combinatorial

computational complexity is required, meaning other alternative approaches that

are computational feasible for problems of practical sizes must be used. Equations

4.5 and 4.6 are related to cardinality constrained and minimization problems in CS

framework. Relaxing Equation 4.6 into the simpler constraint
∥∥∥hext∥∥∥

0
≤ L allows

the application of CS reconstruction techniques to recover hext, T0 and h. In this

section some modified versions of sparse reconstruction techniques are proposed

that can cope with the problem presented in Equations 4.5 and 4.6.

4.2.1 Constrained Length OMP

The first approach proposed is based on a greedy strategy known as OMP [56],

already referenced in section 2.6.1. The algorithm is modified in order to cope

with the problem shown in Equation 4.6. Algorithm 3 summarizes its main steps.

In each iteration one new element for the support set Ω is selected. Lines 4-7 and

11 show the proposed modifications, which limit the addition of a new candidate

position to the support of ĥ
ext

only if it does not result in the violation of Equation

4.6. The proposed algorithm allows the use of a conventional LS method or MMSE

method, in line 9, in order to compute the channel estimates ĥ
ext

Ω at the support

positions. This is required for the residual value, r.
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Algorithm 3 Constrained Length OMP
Input: y, Z, L, Ns

1: ĥ
ext

= 0, r = y, Ω = ∅, Λ = ∅, T̂0 = N − 1, tmax = 0
2: for l = 0, ..., L− 1 do
3: h̃

ext
← ZHr

4: repeat
5: tbest ← arg max

t6∈Λ

∣∣∣h̃extt

∣∣∣
6: Λ← Λ ∪ {tbest}
7: until tmax − L+ 1 ≤ tbest ≤ L− 1 + T̂0

8: Ω← Ω ∪ {tbest}
9: ĥ

ext

Ω ←
(
ZHΩZΩ

)−1 ZHΩy // LS estimation

ĥ
ext

Ω ←
(
ZHΩZΩ + 2σ2Il

)−1 ZHΩy // MMSE estimation

10: r← y− Zĥ
ext

11: tmax ← max(Ω), T̂0 ← min(Ω)
12: end for
13: ĥ← ĥ

ext

T̂0:T̂0+L−1 // small magnitude elements
are considered as 0

Output: T̂0, ĥ

4.2.2 Reweighted `1-regularized Optimization

The second approach proposed to solve the reconstruction problem follows a strat-

egy based on convex relaxation where the problem is replaced by a `1 minimization

problem, allowing the use of convex optimization techniques. These techniques are

usually applied to real valued models, which means Equation 4.2 has to be rewrit-

ten as:

ŷ = Ẑĥ
ext

+ n̂ (4.7)

with:

Ẑ =

Re{Z} −Im{Z}

Im{Z} Re{Z}

 (4.8)

ŷ =

Re{y}
Im{y}

 (4.9)

ĥ
ext

=

Re{hext}
Im{hext}

 (4.10)
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n̂ =

Re{n}
Im{n}

 (4.11)

Using the representation expressed in Equation 4.7, it is possible to estimate ĥ
ext

by minimizing the Euclidean distance and adding an `1-norm weighted regulariza-

tion term:

min
hext

1

2

∥∥∥ŷ− Ẑĥ
ext
∥∥∥2

2
+ λ

∥∥∥Wĥ
ext
∥∥∥

1
(4.12)

where λ symbolizes a positive penalizing parameter andW = diag([w0 ... w2N−1])

represents a weighting matrix. By adopting an approach similar to basis pursuit

denoising (BPDN), as seen in [73], Equation 4.12 can be rewritten as follows:

min
u, v

1

2

∥∥∥∥∥∥ŷ−
[
Ẑ −Ẑ

]u
v

∥∥∥∥∥∥
2

2

+ λ

W 0

0 W

u
v

 (4.13)

subject to u ≥ 0,v ≥ 0 (4.14)

which is a convex quadratic program. In this formulation:

ĥ
ext

= u− v (4.15)

∣∣∣ĥexti

∣∣∣ = ui + vi, i = 0, ..., 2N − 1 (4.16)

Following an idea similar to the one shown in [61], the use of a reweighting

procedure is proposed, with Algorithm 4 illustrating its steps. It consists in solving

the quadratic problem presented in Equations 4.13 and 4.14 Q times by using

weights that are defined according to the solution of the previous iteration, which

can be seen in line 5. The solution of the quadratic problem stated in line 4 can

be obtained by utilizing an interior-point method, seen in [74], [75] and [76].

Lines 9-14 are used to force the solution to be feasible, according to the maximum

channel length constraint seen in Equation 4.6. If these lines are not applied,

the algorithm will just generate a generic sparse solution. If only one iteration

is employed (Q = 1) then W is the identity matrix and the approach becomes

closely related to BPDN. As for the penalizing parameter, λ, [73] suggests the
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following choice:

λ = σ
√

2 log(Ns) (4.17)

Algorithm 4 Constrained Length `1-Regularized Optimization
Input: ŷ, Ẑ, L, Ns, ε, Q

1: ĥ
ext

= 0, Ω = ∅, T̂0 = N − 1, tmax = 0
2: wi = 1, i = 0, ..., 2Ns − 1
3: for q = 0, ..., Q− 1 do
4: Solve the quadratic problem (Equations 4.13 and 4.14) and obtain u, v
5: wi = 1

ui+vi+ε
, i = 0, ..., 2Ns − 1

6: end for
7: ĥ

ext
← u0:Ns−1 − v0:Ns−1 + i

(
uNs:2Ns−1 − vNs:2Ns−1

)
8: Λ←supp

(
ĥ
ext
)

// small magnitude elements
are considered as 0 and
supp(x) returns the set of
indices of nonzero elements
in x

9: while Λ 6= ∅ and tmax − T̂0 < L− 1

10: tbest ← arg max
t∈Λ

∣∣∣ĥextt

∣∣∣
11: if tmax − L+ 1 ≤ tbest ≤ L− 1 + T̂0 do Ω← Ω ∪ {tbest}
12: Λ← Λ\{tbest}
13: tmax ← max(Ω), T̂0 ← min(Ω)
14: end while
15: ĥ← ĥ

ext

T̂0:T̂0+L−1 // small magnitude elements
are considered as 0

Output: T̂0, ĥ

4.2.3 `2-regularized Optimization

While not so often used for obtaining sparse solutions, the reconstruction problem

can also be addressed through `2-norm regularization, as explained in [73] and

[76]. It can be expressed as follows:

min
hext

1

2

∥∥∥y− Zhext
∥∥∥2

2
+ λ

∥∥∥hext∥∥∥2

2
(4.18)
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In this case, it is easy to obtain a closed form solution, expressed in the next

Equation:

ĥ
ext

=
(
ZHZ + λINs

)−1

ZHy (4.19)

Regarding the penalizing parameter, λ, a similar value to the one used in BPDN

can be adopted, as seen in Equation 4.17. In order to constrain the final estimate

according to Equation 4.6, the procedure matching lines 8 to 15 of Algorithm 4

can be directly applied.

4.3 Analysis of the Results

In this section, the performance of the proposed sparse reconstruction based ap-

proaches is evaluated for joint timing synchronization and channel estimation us-

ing TCH codes by performing Monte Carlo simulations with an 8 equal power tap

Rayleigh fading channel. The training sequences use Zadoff-Chu sequences and

also pseudorandom codewords in order to compare the performance of TCH codes

against these two different sequence types.

The analysis is divided into four parts: firstly results that compare the effect

of using different codeword lengths, Nc, are presented. Next, the comparison

of using different channel lengths, L, is performed. Thirdly, the effects of using

an observation window that is equal to or smaller than the simulation window,

Mo ≤ Ns, is shown. Finally, the effects of using cardinality and also what happens

if polishing is not utilized will be observed.

For comparison purposes with the proposed sparse reconstruction techniques,

the matched filter (MF) and the Oracle Least Squares approaches will also be

used. MF corresponds to the use of a conventional direct correlation approach for

estimating the tap positions and respective coefficients while the latter represents

an ideal case where the exact tap positions are known (i.e. perfect synchronization

is assumed) and simple LS channel estimation is applied.
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4.3.1 Effects of Different Codeword Lengths

In this subsection, the considered training sequences have lengths of Nc = 16 and

Nc = 256. The results for Nc = 64 are presented in Appendix B. A search window

of Ns = 128 samples was used for Nc = 16, while a length of Ns = 512 samples

was adopted when Nc = 256. The maximum expected channel length is L = 10.

The observation window, Mo, employed is considered to be the best case scenario,

with Mo = Ns +Nc.

Figures 4.1 to 4.3 illustrate the channel estimation MSE performance for var-

ious sparse reconstruction methods using TCH codes, Zadoff-Chu sequences and

pseudorandom codewords, respectively. By observing these Figures, it is clear that

MF and `2-regularized have the weakest performance of all methods employed, for

both pilot sizes. As expected, simulations with Nc = 256 present much better

results than the ones where Nc = 16.
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Figure 4.1: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and different pilot size val-

ues.
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Figure 4.2: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and different pi-

lot size values.
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Figure 4.3: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and different

pilot size values.
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In Figure 4.1, it is observable that, for the most part of this simulation, `2-

regularized has the worst performance for both pilot sizes. The three sparse based

techniques have very similar performance, with a small loss for OMP when Nc =

16. Iterative Reweighted `1 achieves slightly better results than its counterparts

and for higher values of SNR, performances of sparse based approaches are identical

to the ideal Oracle Least Squares.

As for Figure 4.2, MF possesses the overall worst performance. When using

Zadoff-Chu sequences, `2-regularized can keep up with the performance of OMP,

`1-regularized and Iterative Reweighted `1, which can be observed in higher SNR

values for Nc = 256.

Regarding Figure 4.3, MF has, by far, the weakest performance when Nc = 16,

presenting a floor at around 4× 10−4 and `2-regularized has the worst results for

Nc = 256. Nonetheless, the performance of the three sparse based approaches is

almost optimal.

Comparing these three Figures, all codes have a similar performance, with

Zadoff-Chu sequences achieving slightly better results for a pilot size of 16 and

TCH codes showing that they have the best performance for a pilot size of 256,

with the worst methods, MF and `2-regularized, attaining similar results to the

overall best method, Iterative Reweighted `1.

Figures 4.4 to 4.6 analyze the synchronization performance by measuring the

total error rate detection rate of the same approaches that have been previously

used. This error is measured as the ratio of the number of incorrect tap positions

divided by Ns. MF is once again outperformed by the other methods and its

results are far from being good since the graphs illustrate high irreducible floors

for every tested scenario.

Figure 4.4 depicts that, apart from MF, `2-regularized is the worst performing

method for both pilot sizes. This happens due to the fact that `2-norm based

reconstruction tends to produce solutions that are not rigorously sparse. Iterative

Reweighted `1 achieved once again the best performance.
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Figure 4.4: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and different pilot size values.
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Figure 4.5: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and different pilot size values.
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Figure 4.6: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and different pilot size values.

It is observable in Figure 4.5 that `2-regularized and OMP have similar per-

formances for both pilot sizes and their results are the worst, excluding MF.

Nonetheless, every sparse based approach presents good results for Nc = 256,

with `1-regularized only being outperformed by Iterative Reweighted `1.

Figure 4.6 has similar results to the previous Figures. The biggest difference

is that OMP starts to have better performance than `1-regularized at around 25

dB. Yet again, `2-regularized joins MF with the worst performance while Iterative

Reweighted `1 has the best one.

Every pilot type has similar results, with pseudorandom codewords having the

slightly lowest results of them all. Zadoff-Chu sequences manage to outperform

TCH codes but only by a small difference. The graphs from this subsection showed

that TCH codes can successfully be used to perform joint channel estimation and

synchronization achieving similar results than the other methods and even being

able to outperform them in some cases.
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4.3.2 Effects of Different Channel Lengths

The results presented in this subsection illustrate that performance is affected

by varying the maximum expected channel length, L. As seen in the previous

subsection, Nc = 256 has the best performance, as expected, so the next graphs

only contain results for when Nc = 256, which means the search window is Ns =

512. Results for Nc = 16 and Nc = 64 are contained in Appendix B. The same

observation window used in subsection 4.3.2 is employed.

Figures 4.7 to 4.9 compare the effect of maximum expected channel length of 5

and 20 for MSE channel estimation performance of the different methods. L = 5

curves are illustrated as straight lines while L = 20 curves are represented by

dashed lines.

As expected, for lower values of maximum expected channel length, the perfor-

mance is better. This happens because there are less replicas of the channel when

L is lower, making channel estimation and synchronization easier to perform.
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Figure 4.7: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and different channel length

values.
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Figure 4.8: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and different

channel length values.
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Figure 4.9: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and different

channel length values.
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In general, MF and `2-regularized have the worst performance but they are still

very similar to the other three methods for lower SNR values. OMP, `1-regularized

and Iterative Reweighted `1 have almost identical results and, starting at 25 dB,

their results are almost the same as the ideal Oracle Least Squares. There is

little difference between the types of pilots, with Zadoff-Chu sequences having a

marginal advantage in terms of performance over the other two.

The next graphs, Figures 4.10 to 4.12 present the results regarding synchro-

nization. Similarly to the results exposed in Figures 4.4 to 4.6, MF has the worst

results, exhibiting high irreducible error floors in every figure except the one re-

ferring to TCH codes.

Iterative Reweighted `1 is, yet again, the overall best performing method, with

`1-regularized and OMP having slightly weakest performances, easily observable

in the graph regarding pseudorandom codes, which is weaker than TCH codes

and Zadoff-Chu sequences. The latter has a slightly better performance than

TCH codes, showing that Zadoff-Chu sequences have a small advantage over TCH

codes regarding synchronization results.
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Figure 4.10: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and different channel length values.
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Figure 4.11: Probability of incorrect multipath positions (timing) for differ-
ent approaches, considering Zadoff-Chu sequences and different channel length

values.
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Figure 4.12: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and different channel length

values.
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Performance is better when L = 5 and that is noticeable for lower values of

SNR. However, when these values are higher, the performance of L = 20 starts

to get much closer to the performance of L = 5, meaning it is viable to use the

best performing methods and any of these codes even when L = 20, which was

the maximum value tested in this dissertation.

4.3.3 Effects of Different Observation Window Sizes

In previous subsections an observation window of Mo = Ns +Nc was used, which

is considered to be the best case scenario. The following results show the effect

of reducing the observation window, Mo, in order to understand how performance

is affected. Since simulations for Nc = 256 are computationally very heavy due

to the size of the pilots and the size of the search window, the simulations were

performed only for a pilot size of 64, which means the search window has a size of

128. Only one channel length value, L = 10, was considered.

Figures 4.13 to 4.15 illustrate MSE channel estimation performance of the

different methods, for TCH codes, Zadoff-Chu sequences and pseudorandom code-

words, respectively. For these three figures, an observation window that has the

same size as the search window, Mo = Ns, was employed.

As expected, results show that the curves are no longer close to the Oracle

Least Squares curve. In any of the three graphs, MF has the worst performance

by far while the `1-regularized and Iterative Reweighted `1 approaches have the

overall best performance. In Figure 4.13, OMP and `2-regularized have similar

performances, slightly worse than the other two sparse based approaches. Figure

4.14 shows that OMP has a very similar performance to the best two approaches

and Figure 4.15 illustrates that `2-regularized has an advantage over OMP. Com-

paring these three figures, it is possible to observe that TCH codes managed to

attain better results than its counterparts.
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Figure 4.13: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and Mo = Ns.
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Figure 4.14: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and Mo = Ns.
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Figure 4.15: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and Mo =

Ns.

Figures 4.16 to 4.18 analyze the synchronization performance just like in pre-

vious subsections. The observation window utilized is also equal to the search

window.

MF is, once again, the worst performing method presenting an error floor in

every graph. In Figures 4.16 and 4.17, OMP has a better performance than `2-

regularized for higher SNR’s while the opposite happens in Figure 4.18. Iterative

Reweighted `1 has the best performance, with TCH codes getting the best results,

around 5× 10−4, while Zadoff-Chu sequences and pseudorandom codewords only

attained 4× 10−3 and 10−3, respectively.

Despite the obvious reduction in quality on performance for both channel es-

timation and synchronization, it is still possible to obtain some good results when

using the sturdier approaches, namely Iterative Reweighted `1 and `1-regularized,

that managed to be less affected by the reduction of the observation window. TCH

codes seem to be more viable than the other two methods.
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Figure 4.16: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and Mo = Ns.

0 5 10 15 20 25 30 35 40

SNR (dB)

10-3

10-2

10-1

100

T
o
ta

l 
E

rr
o
r 

D
e
te

c
ti
o
n
 R

a
te

MF

l
2
- regularized

l
1
- regularized

Iterative Reweighted l
1

OMP

Figure 4.17: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and Mo = Ns.
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Figure 4.18: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and Mo = Ns.

In Figures 4.19 to 4.24, the observation window has been reduced even further,

now being Mo = 3Ns/4, which means that the observation window is smaller

than the search window. In order to obtain acceptable results, a cyclic prefix to

attenuate the effect of decreasing the observation window is now used, with its

length being half of the pilot size. The next three graphs depict the results of

MSE channel estimation performance.

Despite using an observation window smaller than the search window, the

results are similar to when both windows had the same length. This happens

because with was utilized a cyclic prefix or else the results would have been much

worse. Comparing Figure 4.19 to Figure 4.13, OMP and `2-regularized have now a

worse performance, while the other three methods had a positive increase in their

results. OMP is now identical `2-regularized while `1-regularized’s curve is almost

equal to the one belonging to Iterative Reweighted `1.
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Figure 4.19: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and Mo = 3Ns/4.
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Figure 4.20: MSE performance for different joint timing synchronization
and channel estimation methods, considering Zadoff-Chu sequences and Mo =

3Ns/4.
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Figure 4.21: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and Mo =

3Ns/4.

As for figure 4.20, every method got slightly worse, with OMP showing the

biggest decrease in performance out of the five methods. Just like in Figure 4.19,

OMP’s performance is paired with `2-regularized while `1-regularized has almost

the same results as Iterative Reweighted `1.

Even though Figure 4.21 is very similar to 4.15, it is possible to observe that

every method got worse results with the exception of `1-regularized and Iterative

Reweighted `1. OMP is not as similar to `2-regularized as it was in other different

pilot approaches.

`1-regularized and Iterative Reweighted `1 methods seem to withstand the

decrease of the length of the observation window better than its counterparts and

TCH codes managed, once again, to outperform slightly the other two different

codes. Zadoff-Chu sequences and pseudorandom codewords showed very similar

performances between them when Mo = 3Ns/4.
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The following three figures depict the analysis of synchronization performance.

MF continues to show the worst performance of all. For Figure 4.22, perfor-

mance stayed the same for the best two approaches, `1-regularized and Iterative

Reweighted `1. OMP has lightly weaker results than `2-regularized until around

25 dB.

Figure 4.23 has the same evolution as Figure 4.22, with `1-regularized and

Iterative Reweighted `1 being able to present practically no degradation, while the

other three methods got worse. OMP was also the most affected by the reduction

of the observation window.

Figure 4.24 is actually showing a small improvement in `1-regularized and

Iterative Reweighted `1 methods. OMP is now worse than `2-regularized during

every measurement of the graph. TCH codes show a slightly better performance

than the other two sequences, being able to cope better with the window reduction.

Zadoff-Chu sequences, which used to be the most competitive sequences against

TCH codes, are now displaying the poorest results out of the three codewords.
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Figure 4.22: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and Mo = 3Ns/4.
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Figure 4.23: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and Mo = 3Ns/4.
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Figure 4.24: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and Mo = 3Ns/4.
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The last figures of this subsection display the results of simulations with an

even smaller observation window, Mo = 2Ns/3.

It is observable that, in Figures 4.25 to 4.27, channel estimation has been

greatly affected by using this observation window size. MF is by far the worst

performing one, reaching MSE values of 103 when using TCH codes.

`1-regularized and Iterative Reweighted `1 still possess the best results but

their curves have strong floors now and their performance is not very far from

OMP and `2-regularized, which means that not even the best performing methods

can withstand such a small observation window.

Figures 4.28 to 4.30 depict the synchronization results for Mo = 2Ns/3 and

further confirm that this window size is no longer viable to utilize in order to

perform joint channel estimation and synchronization. TCH codes were the pilot

types that coped better with the window reduction while `1-regularized and Iter-

ative Reweighted `1 were best sparse reconstruction methods to utilize. Further

results regarding Mo = Ns/2 are presented in Appendix B.

0 5 10 15 20 25 30 35 40

SNR (dB)

10-4

10-3

10-2

10-1

100

101

102

103

104

C
h
a
n
n
e
l 
E

s
ti
m

a
te

 M
S

E

MF

Oracle Least Squares

l
2
- regularized

l
1
- regularized

Iterative Reweighted l
1

OMP

Figure 4.25: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and Mo = 2Ns/3.
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Figure 4.26: MSE performance for different joint timing synchronization
and channel estimation methods, considering Zadoff-Chu sequences and Mo =

2Ns/3.
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Figure 4.27: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and Mo =

2Ns/3.
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Figure 4.28: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and Mo = 2Ns/3.
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Figure 4.29: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and Mo = 2Ns/3.
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Figure 4.30: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and Mo = 2Ns/3.

4.3.4 Effects of Cardinality and Polishing

Cardinality is used as a constraint that says that all tap positions should be located

inside a window with the same size of the maximum expected channel length,

L, and is is used by `2-regularized, `1-regularized and Iterative Reweighted `1.

Polishing is used by `1-regularized and Iterative Reweighted `1 and it is utilized

with the purpose of performing a final LS estimation using estimated support.

In previous subsections, cardinality was never applied, while polishing was

always utilized. In this final subsection, the effects of using simple cardinality and

not utilizing polishing are analyzed. A channel length of L = 10, with a pilot

size of NC = 64 and a simulation window of Ns = 128 samples are applied. The

observation window is Mo = Ns +Nc.
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Figure 4.31: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and using cardinality.
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Figure 4.32: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and using cardi-

nality.
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Figure 4.33: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and using

cardinality.

Figures 4.31 to 4.33 depict the channel estimation MSE performance for the

different methods while using cardinality. It is observable that the curves are far

from the Oracle Least Squares ideal curve, especially for lower SNR values, which

means that is where cardinality affects the most. MF and `2-regularized have the

overall worst performance out of all methods, notably when using TCH codes and

pseudorandom codewords. As for the other three methods, they all have very

similar performances, with Iterative Reweighted `1 having again the best results,

and starting at 30 dB, these curves get closer to the ideal curve.

Figures 4.34 to 4.36 illustrate the effect of cardinality in synchronization perfor-

mance. MF is consistently bad in all of the graphs, presenting a high irreducible

error floor. Now, it can be seen that most curves start to drop much later, at

around 25 dB, having an almost equal performance until that point. As usual,

Iterative Reweighted `1 has the best performance and Zadoff-Chu sequences have

the upper hand against its counterparts, though by a small margin.
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Figure 4.34: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and using cardinality.
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Figure 4.35: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and using cardinality.
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Figure 4.36: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and using cardinality.

The next graphs, presented in Figures 4.37 to 4.42, are the last of this section

and they show what happens when polishing is not used. The most notable differ-

ence regarding previous cases is that `1-regularized and with Iterative Reweighted

`1 are no longer the two best performing methods in terms of channel estimation,

with OMP showing better performance than these two.

By not performing a final LS estimation using estimated support, the perfor-

mance of `1-regularized and with Iterative Reweighted `1 and even MF decreased,

while the other two remained unaffected due to not possessing the option of using

polishing. But this decrease in quality is very small and is mostly only observable

for higher SNR values.

As for the type of pilots used, the most affected were the pseudorandom code-

words, which also show the weakest results. TCH codes and Zadoff-Chu sequences

have similar curves, with the latter marginally outperforming TCH codes. Zadoff-

Chu sequences were also he least affected by the lack of polishing.
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Figure 4.37: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and not using polishing.
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Figure 4.38: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and not using

polishing.
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Figure 4.39: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and not us-

ing polishing.
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Figure 4.40: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and not using polishing.
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Figure 4.41: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and not using polishing.
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Figure 4.42: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and not using polishing.
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As for the performance in synchronization, the graphs were somewhat affected

by not using polishing even though the difference is minimal. The most notable

cases are `1-regularized equaling Iterative Reweighted `1 at 40 dB in the TCH

graph and `1-regularized surpassing Iterative Reweighted `1 at 40 dB in the Zadoff-

Chu graph.

After analyzing the results presented in these different cases, it can be con-

cluded that Compressed Sensing can be successfully used in joint timing synchro-

nization and channel estimation. TCH codes with Nc = 256 have an overall better

performance in the channel estimation part, while Zadoff-Chu sequences seem to be

slightly superior for synchronization when using a perfect observation window,Mo.

When using a smaller window, TCH codes have the best performance in general,

being able to keep up with the reduction of the observation window. Regarding

the proposed methods, `1-regularized and Iterative Reweighted `1 are, without a

doubt, the best performing methods and even though they are computationally

heavier than OMP, they are the best choice since they can also withstand smaller

observation windows better.
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Chapter 5

Conclusions

This chapter sums up the work developed in this dissertation, summarizes the

obtained results and gives ideas on how this work can be continued in the future.

5.1 Conclusions

The main objective proposed for this dissertation was to study the performance of

channel estimation using TCH codes, regarding Machine-Type Communications.

At first, the focus was solely on performing channel estimation but, after success-

fully performing it, it was decided to test TCH codes on joint channel estimation

and timing synchronization using a technique that has not been very used for this

purpose, compressive sensing.

Firstly, it was performed an initial study in order to get a better understanding

of TCH codes, channel estimation with a focus on two different pilot types, data

multiplexed pilots, where the pilot symbols are multiplexed with the data, and

implicit pilots, where the pilots are superimposed over the data and are sent si-

multaneously, OFDMmodulation and Machine-Type Communications, considered

to be the future of communications between smart devices. After this study came

the implementation of TCH codes and the different types of pilots on a simulator

using MATLAB. The results obtained from the simulations displayed TCH codes
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as a successful choice to use in channel estimation with both pilot approaches and

for both modulations tested in this work. This work allowed to write and publish

a conference paper on this matter.

Given the great synchronization properties of TCH codes, joint synchronization

and channel estimation was the next step in order to test these codes. Compressed

sensing was chosen due to its good results in the channel estimation field and also

because, to the best of my knowledge, it hadn’t been used for joint synchronization

and channel estimation purposes. After studying the algorithms with best perfor-

mance, they were implemented also in MATLAB alongside TCH codes and two

other codes, Zadoff-Chu sequences and pseudorandom codewords. After testing

variations in the size of the pilots, alterations in the channel length and reducing

the observation window, the results revealed that TCH codes can be successfully

utilized to execute channel estimation and synchronization simultaneously and,

additionally, revealed that CS can be used to perform these tasks together, with

Iterative Reweighted `1 presenting the best performance both in terms of MSE of

the channel estimates and multipath timing error rate.

Ultimately, it can be concluded that TCH codes can be successfully utilized

in channel estimation, they have similar and sometimes better performance than

its counterparts and they are appropriate to use in MTC due to TCH codes per-

forming well in jopint synchronization and channel estimation, which means these

processes are executed faster which is important in MTC application related to

security, for example.

5.2 Future Work

An immediate future task is to write a letter and also papers regarding the use

of CS in joint channel estimation and synchronization. The simulations in this

dissertation could lead to the implementation of TCH codes in hardware, like a

Software Defined Radio (SDR) board, for example. The use of TCH codes in

channel estimation, synchronization and coding simultaneously could be studied.
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Appendix A

Efficient Channel Estimation Using

TCH Codes: Paper

This appendix contains a paper that was written based on the results discussed and

presented in Chapter 3 [72]. This paper was co-written with my colleague Sílvia

Catarino, Professor Francisco Cercas and Professor Nuno Souto, from ISCTE-

IUL, and professor Rui Dinis, from FCT-UNL. It has been accepted in the 8th

International Workshop on Recent Advances in Broadband Access Networks that

will take place in Munich, Germany between November 6-8.
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Abstract— In this paper, we consider the use of TCH codes to
perform channel estimation in an OFDM system, using either
data multiplexed pilots or superimposed pilots over the data.
TCH codes possess several properties that allow us to use
them efficiently in various applications which includes channel
estimation, as we address in this paper. With this objective,
several performance results were obtained through simulations
which allowed the evaluation of the impact of different pilot
power levels and modulations, as well as the comparison of
TCH against other conventional pilots. In order to cope with the
interference between pilots and data, an iterative receiver with
interference suppression was employed for the superimposed
pilots method.

Index Terms— TCH codes, channel estimation, OFDM, data
multiplexed pilots, implicit pilots.

I. INTRODUCTION

In present-day communications, there is a need to mitigate
the effects of multipath fading. This is possible by using
Orthogonal Frequency Division Multiplexing (OFDM) since
it has multicarrier modulation. The usable bandwidth in
an OFDM system is divided into orthogonal sub-channels,
allowing that a frequency selective channel to be converted
into a non-frequency selective one [1] [2] [3]. This paper
outlines a method to estimate the channel in an OFDM
system by utilizing TCH codes with data multiplexed or
implicit pilots.

TCH codes are error correcting codes first demonstrated in
[4] and they are described as having a sturdy error correcting
performance (oriented to transmit short and sensible infor-
mation), as being able to use Fast Fourier Transform (FFT) to
execute simple decoding, ideal rigid sizes and an excellent
correlation performance. All of these features grant us an
opportunity to utilize TCH codes in distinct applications
based on digital transmission systems like error correction,
spread spectrum systems or channel and phase estimation.
The admirable correlation properties of these codes is what
allows us to perform and study the channel estimation and
to use them for the first time with this objective.

The main purpose of channel estimation is to compensate
the effects of attenuation, fading and scattering suffered by
the signal in the channel and the most prominent way of
performing it consists in transmitting training sequences or
pilots that characterizes the distortion that the channel causes,
regarding attenuation and phase shift. The Least-Square (LS)

1This work was supported by Fundação para a Ciência e Tecnologia and
Instituto de Telecomunicações under project UID/EEA/50008/2013.

estimation [5] and its improvement, the Minimum Mean-
Square-Error (MMSE) estimation [6], are the two most used
methods of channel estimation. The first is used when the
distributions of channel and noise are unknown while the
latter is utilized if the previous parameters are identified.

The pilot symbols used in channel estimation are regu-
larly multiplexed with the data in both time and frequency
domains [7] [8] [9]. However, this approach may originate
an inefficient bandwidth use and to contradict this problem,
a different method consisting in using implicit pilots was
proposed in [10] and [11]. In this approach, the pilot symbols
are superimposed over the data, increasing the pilots’ density
without sacrificing system capacity, though more power has
to be spent on the pilot sequence.

The main objective of this paper, is to study the perfor-
mance of channel estimation using data multiplexed and im-
plicit pilots based on TCH codes. We analyze these methods
by comparing results that illustrate the BER performance
obtained through simulations. Following a similar approach
to the one adopted in [12], an iterative receiver capable of
performing joint detection and channel estimation is used in
order to mitigate the mutual interference in the data and in
the pilot symbols caused by the use of embedded pilots.

The paper is organized as follows. Section II portrays
TCH codes and how they are built. Secondly, in Section
III, the system characterization is presented, which contains
information about the OFDM transmission frame structures
and also the transmitter and the receiver we used. Section
IV describes the channel estimation process and the results
obtained are presented in Section V. Lastly, Section VI
contains the appropriate conclusions taking into account the
obtained results.

II. TCH CODES

TCH codes [4] [13] are a class of binary, non-systematic,
non-linear and cyclic block codes, with length n “ 2m,
where m represents any positive integer. These codes have
successfully been utilized in various applications, including
synchronization [14], coding [15][16] and Ultra-Wideband
(UWB) systems.

A TCH block code can be identified as TCHpn, k, tq,
where n represents the code length, k identifies the number
of information bits in a code word and t is its error correcting
capacity. They can be defined by Equations (1) and (2) that



illustrate a set h generator base polynomials Pipxq:

TCHpn, kq “
hÿ

i“1

Pipxq, (1)

Pipxq ‰ Pjpxrq mod n i ‰ j@t P N, (2)

The error correcting capacity of the TCH codes depends
on their minimum distance, represented by dmin in Equations
(3) and (4), between those polynomials:

dmin ě 2t` 1, (3)

dmin ď HdrPipxq, tPjpxrqu mod ns ď n´ dmin, (4)

Where Hd stands for Hamming distance. They are also
balanced and, by using Basic TCH Polynomials (B-TCH
Polynomials) of degree n, we can generate these codes:

P pxq “
p p´1

2 q´1ÿ

i“0

aix
Ki , (5)

where the exponents Ki satisfy Equation 6:

aKi “ 1` a2i`1, i “ 0, 1, ..., pp´ 1

2
q ´ 1, (6)

p is a prime number with p “ n ` 1 “ 2m ` 1. Prime
numbers that obey this condition are called Fermat numbers:

Fi “ 22
i ` 1, (7)

Only five numbers are known to obey the Fermat number
rule, which means that we can only generate pure TCH
polynomials, also designated as B-TCH Polynomials, for
code lengths n “ 2, 4, 16, 256 and 65536. Even though it is
possible to build similar TCH codes that can be extended for
other code lengths, this comes at the cost of losing the prop-
erties and also the ideal structure of the B-TCH polynomials.
TCH codes originated by B-TCH polynomials have both
good cross and auto-correlation, with the latter assuming
only three-values: n, the value of the code polynomial, 0
and ´4. This translates into a great advantage for higher
sized TCH codes, such as TCH codes length n ě 256. For
higher n values, the sequences tend to get closer to a Dirac
impulse, as depicted in Figure 1, showing an auto-correlation
function of a B-TCH Polynomial of length 256, which are
used in this paper, with offsets from ´128 to 127, so that
the peak is displayed in the center.

III. SYSTEM CHARACTERIZATION

We describe a low-pass OFDM signal in (8) where Xk

depicts the data symbols, N is the total number of sub-
carriers and the symbol length is represented by T

υptq “
N´1ÿ

k“0

Xke
2πkt
T , 0 ď t ď T, (8)

Fig. 1: Auto-correlation of a B-TCH Polynomial with
n “ 256.

There is a need to prevent intersymbol interference, so we
insert a guard interval of length Tg immediately before the
OFDM block. A cyclic prefix is transmitted during the guard
interval so that the signals in the intervals ´Tg ď t ă 0 and
T ´ Tg ď t ă T remain equal. The following equation
represents an OFDM signal with a cyclic prefix

υptq “
N´1ÿ

k“0

Xke
2πkt
T , Tg ď t ď T, (9)

A transmitter chain inspired in [12] is shown in Figure
2 and it combines QAM constellations with an OFDM
transmission that can use data multiplexed or implicit pilots.

Fig. 2: Transmitter chain.

Figure 3 shows the frame structure that we consider for
an OFDM system with N carriers using data multiplexed
pilots, where only the first column of the pilot grid contains
pilot symbols and the first column of the data grid is empty.
Figure 4 illustrates a similar frame structure but this time
implicit pilots are used. This means that all the positions
in both grids are filled since the pilots are superimposed
over the data. In both frame structures, the grids are built by
utilizing an OFDM time block spacing in the time domain.
We characterize the transmitted sequences as follows

X “ S` C, (10)

where S describes an N ˆ 1 vector where the elements
are complex valued modulated symbols drawn from an M -
sized complex valued constellation and C is an Nˆ1 vector



that corresponds to C “ DFT tcu which is the DFT of a
TCH codeword. In order to take advantage of the good auto-
correlation properties of the TCH codes, we utilize the DFT
of these codes. The objective of using these auto-correlation
properties is mainly for time synchronization purposes.

Fig. 3: Frame structure used for an OFDM transmission
containing data multiplexed pilots where C represents a

pilot symbol and S represents a data symbol.

Fig. 4: Frame structure used for an OFDM transmission
containing implicit pilots where C represents a pilot

symbol and S represents a data symbol.

As we mentioned in Section I, transmitting superimposed
pilots on data creates mutual interference. In order to re-
duce it, and also to attain reliable channel estimation and
data detection, we propose a receiver based on a similar
scheme [12], capable of performing these tasks via iterative
processing. The structure of the referenced receiver is shown
in Figure 5.

Firstly, the pilot symbols are removed from the sequence.
Then, they enter the Channel Equalization block and after
that, the sequences of equalized samples are demodulated
into bit streams. These bit streams are processed so that an
estimate of the transmitted signal, pS, can be reconstructed.
In the following iteration, the reconstructed sequence can be
utilized so that the channel estimates are enhanced.

IV. CHANNEL ESTIMATION

Many techniques regarding channel estimation on OFDM
systems [17] can be used, each of them with its characteris-
tics and many differences between them, like whether they

use time or frequency domain samples, the complexity of the
technique in question, performance and a priori information
utilized. The latter can be made of sub-carrier’s correlation
in the frequency or time domains and the quantity of a
priori information affects the estimation quality, so the more
information of this type there is, the better the estimation.

If the overall channel impulse response is shorter than
the NG-sized cyclic prefix, we can describe the frequency
domain received sequence as follows

R “ HpS` Cq ` N, (11)

where H is an N ˆN diagonal matrix that stands for the
channel frequency response and N represents an Nˆ1 vector
of noise samples in the frequency domain. Both S and C have
been described in equation (10). This model directly matches
the channel estimation based on implicit pilots method but,
by establishing S “ 0, the model can likewise represent the
data multiplexed pilots with a block of pilot symbols.

The receiver can employ an iterative approach based on
[12] and therefore it is possible to obtain the frequency
channel response. Each of the following steps is executed
for each iteration q:

1) Data symbol estimates are removed from pilots. The
resulting sequence becomes

rRpqq “ R´ pSpq´1qpHpq´1q
, (12)

where pSpq´1q
and pHpq´1q

are the symbol and channel
estimates from the previous iteration. When q “ 1

we simply use rRp1q “ R. The described step is only
applied when using superimposed pilots.

2) The channel frequency response estimates is calculated
using

rHpqq “ |Λ|´2ΛH rRpq´1q
, (13)

where Λ “ diagpCq, where diag(¨) represents a
diagonal matrix whose elements are contained in the
vector used as argument. |Λ| denotes the element-wise
absolute value operation and p¨qH depicts the conjugate
transpose of a matrix/vector. After the first iteration,
the estimates of data symbols can also be used as
pilots for channel estimation refinement. In this case
we use Λ “ diagppSpq´1qq for data multiplexed pilots

and Λ “ diagppSpq´1q ` Cq for implicit pilots.
3) We can augment the channel estimates by assuring that

the corresponding impulse response has a duration NG.
This is accomplished by utilizing

pHpqq “ diagpFTFHrhpqqq, (14)

where

T “
«

ING
0pN´NGqˆNG

ff
, (15)

0NCFˆpN´NCF q represents a size pN´NGqNG matrix
full of zeros, while ING depicts an NG ˆNG identity
matrix. The N ˆN scaled discrete Fourier transform



Fig. 5: Structure of the iterative receiver.

(DFT) matrix is represented by F, such that IN “
FHF, and rhpqq illustrates the Nˆ1 vector that contains
the diagonal of rHpqq.

V. RESULTS

The BER performance results of all of the graphs present
in this section were attained by performing Monte Carlo
simulations with an 8 equal power tap Rayleigh fading
channel, using 256 OFDM carriers. For Figure 6, we used
QPSK modulation and we varied the pilot power values,
which are relatively measured to the channel data, from 0
to -12 with jumps of -3 dB. We performed the channel
estimation by utilizing data multiplexed pilots and, along
with them, were sent blocks with TCH words of length 256.
The channel encoders were rate 1{2 turbo codes based on
two identical convolutional codes with two constituent codes
characterized by GpDq “ r1`D2`D3q{p1`D`D3qs[18].
18 turbo decoding iterations were applied at the receiver and
this receiver was conventional, meaning there was only one
receiver iteration. A perfect estimation curve is shown for
comparison purposes.

By analyzing these results, we verify that higher valued
pilot powers, from 0 to -6 dB, translate into better results
since the curves representing high values of pilot power are
almost adjacent to the curve that portrays perfect estimation.
For higher Es{N0 values, the performance is slightly infe-
rior, illustrated by the -9 and -12 dB curves that get further
away from the perfect estimation curve.

In Figure 7, we maintained the same simulation conditions
used in Figure 6 with the exception of two parameters:
superimposed pilots with TCH codewords were used to
perform the estimation, instead of data multiplexed pilots,
and in the receiver we applied 3 turbo decoding iterations
for each of the 6 receiver iterations in the iterative scheme.

Once again, the performance is better when the pilot power
value is higher. The curves depicting -9 and -12 dB have a
larger discrepancy from the perfect estimation curve than the
same curves observed in Figure 6 because of interference
between the data symbols and pilots, inherent to a scheme
that uses implicit pilots. These results indicate that, to obtain

BER versus Es/N0: Data multiplexed pilots QPSK
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Fig. 6: BER performance of channel estimation utilizing
QPSK modulation and data multiplexed pilots based on

TCH codes for different pilot powers.

a good performance and to compensate the interference when
using implicit pilots, it is necessary to use higher pilot power
levels.

The results displayed in Figure 8 were obtained by using
the same simulation parameters used to build Figure 7 but
this time, the pilot power is fixed at 0 dB and the number
of iterations in the receiver is gradually increased.

When the number of iterations used in the receiver is
higher, the performance is better, which is visible by com-
paring the simulated curves with the perfect estimation one.
Still, the difference in performance is small after we stop
using a conventional receiver and it is almost indistinguish-
able for the highest simulated values of iterations, 4 and
8, meaning that the performance is not affected greatly by
increasing the number of receiver iterations after a certain
value is reached.

The results presented in Figure 9 were obtained by using
either data multiplexed pilots or implicit pilots, while once
again considering QPSK modulation and also by changing



BER versus Es/N0: Implicit pilots QPSK
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Fig. 7: BER performance of channel estimation utilizing
QPSK modulation and superimposed pilots on TCH codes

for different pilot powers.
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Fig. 8: BER performance of channel estimation utilizing
QPSK modulation and superimposed pilots on TCH codes

for different receiver iteration values.

the data sent, meaning it was either based on TCH codewords
or conventional data. The channel coding and receiver struc-
tures used in Figures 6 and 7 were used to simulate the curves
that represent data multiplexed pilots and implicit pilots in
Figure 9, respectively. Based on the results demonstrated in
Figure 6 and Figure 7, we considered single pilot power
value, which is -4 dB. A curve regarding perfect estimation
is also shown for reference.

All of the simulated cases possess an almost identical
and very good performance, which is justified by observing
the proximity between all of the curves and also because
no BER floor is visible. The difference between the per-
formance of data multiplexed pilots and implicit pilots is
very small and even though data multiplexed pilots have a
better performance, we can avoid spectral degradation by

BER versus Es/N0: Coding QPSK -4 dB
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Fig. 9: BER performance of channel estimation utilizing
QPSK modulation while considering different pilot

approaches and based on TCH code words or conventional
pilots.

using implicit pilots. Conventional pilots, labeled in Figure
9 as ”w/o TCH”, have a slightly better performance than the
ones based on TCH code words but the difference is really
small and TCH codewords have the benefit of possessing
good synchronization properties.

Finally, Figure 10 was built using the same simulation
conditions of Figure 9 with the exception of the modulation,
which this time is 64-QAM instead of QPSK, and the pilot
power, which is now a fixed value of -1.75 dB.

BER versus Es/N0: Coding 64QAM -1.75 dB
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Fig. 10: BER performance of channel estimation utilizing
64-QAM modulation while considering different pilot

approaches and based on TCH code words or conventional
pilots.

The results show that with 64-QAM modulation we need
higher BER values than the ones obtained from the QPSK
simulations, as expected. Amplitude modulation methods are
more susceptible to noise and that is the reason why we used
a higher pilot power value than the one used in Figure 9.



But in this simulation, all the curves are closer to the perfect
estimation curve, with the ”Implicit Pilots w/TCH” showing
a small detour starting around 25 dB.

VI. CONCLUSIONS

After studying and analyzing the use of TCH codes for
channel estimation using two different pilot approaches, data
multiplexed pilots and implicit pilots, we conclude that both
approaches are reliable with each of them having its own
advantages which are referenced in Section V. Using TCH
codes for channel estimation is justified based on the fact
that not only they have very similar performance levels
when compared with conventional pilots but also that TCH
codes have great synchronization properties, meaning that
it is possible to simultaneously use them in the system
for synchronization purposes, making TCH codes a better
choice for channel estimation. Regarding the modulations
used, QPSK has a better performance than 64-QAM but
both present really good performances, showing that TCH
codes can be successfully used with both modulations, as
we expected.
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Appendix B

Additional Results

This appendix presents additional results that complement the results shown in

Chapter 4.

B.1 Effects of Different Codeword Lengths: Nc =

64

Figures B.1 to B.6 display the MSE performance of channel estimation and the syn-

chronization performance for Nc = 64. Results show the same trend as the graphs

presented in subsection 4.3.2: MF and `1-regularized are the worst performing

methods, Iterative Reweighted `1 has the best results, pseudorandom sequences

are the slightly poorer pilots while TCH codes and Zadoff-Chu have stronger per-

formances. Nc = 64 is the middle ground between Nc = 16 and Nc = 256, pos-

sessing a better performance than the former and is less computationally heavy

than the latter.
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Figure B.1: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and Nc = 64.
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Figure B.2: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and Nc = 64.
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Figure B.3: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords andNc = 64.
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Figure B.4: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and Nc = 64.
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Figure B.5: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and Nc = 64.
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Figure B.6: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and Nc = 64.
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B.2 Effects of Different Channel Lengths: Nc = 16

and Nc = 64

This section shows the effect of using different channel lengths, L, for different

pilot sizes. Figures B.7 to B.12 show MSE performance and total error rate for

Nc = 16 and Figures B.13 to B.18 illustrate the same but for Nc = 64. Results

from both pilot sizes show the same trend as in subsection 4.3.2. As expected,

these results are slightly worse due to using smaller pilot sizes.
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Figure B.7: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes, different channel length

values and Nc = 16.
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Figure B.8: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences, different channel

length values and Nc = 16.
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Figure B.9: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords, different

channel length values and Nc = 16.
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Figure B.10: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes, different channel length values andNc = 16.
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Figure B.11: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences, different channel length values

and Nc = 16.
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Figure B.12: Probability of incorrect multipath positions (timing) for differ-
ent approaches, considering pseudorandom codewords, different channel length

values and Nc = 16.
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Figure B.13: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes, different channel length

values and Nc = 64.
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Figure B.14: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences, different channel

length values and Nc = 64.
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Figure B.15: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords, different

channel length values and Nc = 64.
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Figure B.16: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes, different channel length values andNc = 64.
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Figure B.17: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences, different channel length values

and Nc = 64.

104



Appendix B. Additional Results

0 5 10 15 20 25 30 35 40

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

T
o
ta

l 
E

rr
o
r 

D
e
te

c
ti
o
n
 R

a
te

MF

l
2
- regularized

l
1
- regularized

Iterative Reweighted l
1

OMP

L=5

L=20

Figure B.18: Probability of incorrect multipath positions (timing) for differ-
ent approaches, considering pseudorandom codewords, different channel length

values and Nc = 64.

B.3 Effects of Different ObservationWindow Sizes:

Mo = Ns/2

This last section goes over the usage of an observation window of size Mo =

Ns/2. This was the smallest window used in this dissertation and shows how

even Iterative Reweighted `1 and `1- regularized, the two methods that showed

the best performance throughout all these simulations, cannot cope with such a

small window and present very similar results to OMP and `2- regularized.

Figures B.19 to B.21 illustrate channel estimation MSE performance while

Figures B.22 to B.24 depict synchronization performance.
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Figure B.19: MSE performance for different joint timing synchronization and
channel estimation methods, considering TCH codes and Mo = Ns/2.
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Figure B.20: MSE performance for different joint timing synchronization and
channel estimation methods, considering Zadoff-Chu sequences and Mo = Ns/2.
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Figure B.21: MSE performance for different joint timing synchronization and
channel estimation methods, considering pseudorandom codewords and Mo =

Ns/2.
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Figure B.22: Probability of incorrect multipath positions (timing) for different
approaches, considering TCH codes and Mo = Ns/2.
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Figure B.23: Probability of incorrect multipath positions (timing) for different
approaches, considering Zadoff-Chu sequences and Mo = Ns/2.
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Figure B.24: Probability of incorrect multipath positions (timing) for different
approaches, considering pseudorandom codewords and Mo = Ns/2.
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