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Abstract

A novel approach is proposed for the NP-hard min-degree constrained mini-

mum spanning tree (md-MST). The NP-hardness of the md-MST demands that

heuristic approximations are used to tackle its intractability and thus an original

genetic algorithm strategy is described using an improvement of the Martins-

Souza heuristic to obtain a md-MST feasible solution, which is also presented.

The genetic approach combines the latter improvement with three new appro-

ximations based on different chromosome representations for trees that employ

diverse crossover operators. The genetic versions compare very favourably with

the best known results in terms of both the run time and obtaining better qual-

ity solutions. In particular, new lower bounds are established for instances with

higher dimensions.

Keywords: Combinatorial optimization, degree-constrained spanning tree,

genetic algorithm, heuristic, lower bound

1. Introduction

Let G = (V,E) be a connected weighted undirected graph, where V =

{1, . . . , n} is the set of nodes and E = {e = {i, j} : i, j ∈ V } is the set of m

edges. Positive costs, cij , are associated with each edge connecting nodes i and

∗Corresponding author
Email addresses: rps@mat.uc.pt (Rui Salgueiro), ana.almeida@iscte.pt (Ana de

Almeida), orlando@teor.fis.uc.pt (Orlando Oliveira)

Preprint submitted to European Journal of Operational Research November 7, 2016



j. For graph models, a common optimisation task involves finding a connected

acyclic subgraph that covers all the nodes of the graph: a spanning tree. In the

following, T = (V,ET ) denotes a spanning tree for G, with ET ⊆ E. degT (i)

is the degree of a node i ∈ V , i.e., the number of edges with node i as an end

point. In the following, only connected graphs are considered.

The general min-degree constrained minimum spanning tree (md-MST) is

defined as follows: given a positive integer d ∈ N, find a spanning tree T for G

with the minimal total edge cost1 such that each tree node either has a degree

of at least d, or it is a leaf node (a node with degree one). The solution tree is

called feasible or admissible and the same designation represent each one of its

nodes. Examples of feasible and unfeasible md-MST trees are given in Figures

1 for the graph G1 defined in Appendix A.
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Figure 1: Examples of md–MST problem with d = 4, i.e., a m4-MST problem for a given

graph G1 (see Appendix A). (a) Unfeasible tree ; (b) Feasible tree.

The md-MST problem was first described by Almeida et al. [1] and it was

proved to be an NP-hard problem for bn/2c > d ≥ 3 [1, 2]. In order to over-

come some of the computational difficulties encountered, Martins and Souza [3]

designed new algorithmic approaches based on variable neighbourhood search

(VNS) metaheuristics transformed for the md-MST and an enhanced version of

a second order repetitive technique (ESO) to guide the search during several

phases of the VNS method. They also presented an adaptation of a greedy

heuristic based on Kruskal’s algorithm for determining minimal spanning trees.

1 As usual, the final cost is given by
∑

e∈V ce and a tree with the minimal cost is known

as the minimum spanning tree (MST).
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Akgün and Tansel [4] considered a new set of degree-enforcing constraints and

used the Miller–Tucker–Zemlin sub-tour elimination constraints as an alterna-

tive to single or multi-commodity flow constraints for the tree-defining part of

the md–MST formulations. Martinez and Cunha [5] proposed new formulations

for the md-MST problem and presented a branch-and-cut algorithm based on

the original directed formulation, obtainning several new optimality certificates

and new best upper bounds for the md-MST. Murthy and Singh [6, 7] pub-

lished the only other known evolutionary approach by introducing Artificial Bee

Colony and Ant Colony Optimisation heuristics, both tested using Euclidean

and random instances for use with Steiner Tree problem instances.

The md-MST requires the computation of a MST with nodes that obey cer-

tain degree restrictions. The classical algorithms to construct minimal spanning

trees are Prim’s algorithm and Kruskal’s algorithm (KA). Prim’s algorithm [8]

starts with a two node tree that contains a minimal edge, and employs a greedy

search to build the tree, ensuring that an acyclic tree is obtained. Using a

heap as the underlying data structure, this algorithm has a total time bound of

O(m+ n lg n), where m is the set of edges and n is the set of nodes. KA [9, 10]

also uses a greedy technique but works with forests. Starting with the forest of

all the nodes, the algorithm iteratively chooses the cheapest edge to join two

disjoint nodes until it obtains the complete tree. This algorithm has an asymp-

totic time bound of O(m log n) (assuming that the list of edges is already sorted

by cost). The MST algorithm used in our approach is the KA. The rationale

behind this choice is due mainly to its good numerical performance with generic

dense graphs [11] but also because it can be modified easily for our algorithms.

Due to the NP-hardness of the problem, an exact algorithm is not usable

because of the inherent memory limitations. Thus, a genetic algorithm heuristic

is presented, exploring new codings for the candidate spanning trees and opera-

tors. The remainder of this paper is organised as follows. Next section begins by

summarising the method of Martins and Souza[3] for obtaining feasible spanning

trees for the md-MST, in order to explain the original computational improve-

ment - MSHOI - of the previous heuristic for generating feasible md-MST trees.
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In Section 3, a genetic-based approach to the md-MST problem is introduced,

with formulations of three different GA versions. Section 4 reports the results

of several computational experiments and the relative efficiency of the different

heuristics is discussed. Finally, Section 5 presents concluding remarks as well

as suggestions for possible directions for future research.

2. Improvement of the existing heuristic approach to the md-MST

2.1. MSH

Martins and Souza [3] presented a heuristic algorithm (MSH), which uses

a modification of Kruskal’s algorithm to build a MST, thereby ensuring the

feasibility of the spanning tree but without ensuring its optimality. It is based

on evaluating the need values in each step of the KA, i.e., the number of edges

that need to be “added” to unfeasible nodes: the nodes i where degT (i) < d.

The total number of edges in a spanning tree is n− 1. If a given candidate tree

in the forest (F ) built by KA has k edges, then n− 1− k edges are still needed

to obtain the spanning tree. An edge can be included in a tree only if the need

value is less than 2(n− 1−k) after edge inclusion; otherwise, it is not necessary

to consider this edge ever again [3]. Thus, in every intermediate step, MSH

computes the overall need value for a forest: total need(F ) =
∑
∀T∈F

need(T ),

where need(T ) =
∑
∀i :1<degT (i)<d 1. After each KA iteration, the total need

value of the forest and the individual tree need values are re-evaluated until

termination by obtaining a complete feasible tree. For each T1, T2 ∈ F that are

required to be joined, the new tree topology depends on the number of nodes

in the tree T1:

1. Size one tree (single node and zero edges): need(T1) = 1. After the

connecting edge has been added, the new tree T has this node as a leaf

node, so it is admissible for T .

2. Size two tree (two nodes and one edge): need(T1) = d − 1. For the new

tree T , at least one of the two connecting nodes in T1 or T2 becomes an

internal node, and thus there is a d− 2 need.
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3. Other cases:

need(T1) =


∑

∀i :1<degT (i)<d

d− degT (i) if sum not null

1 otherwise

If the sum is null and this is not the final tree, it is necessary to add one

edge to connect with another.

2.2. MSHOI - Computatinal improvement of the MSH

As described previously, the MSH’s requirement to compute all of the need

tree values at each iteration fundamentally determines the complexity of the

algorithm. However, the overall efficiency can be improved by modifying the

algorithm so it evaluates only each new need value iteratively based on the

previous values. We refer to this improvement as the MSHOI heuristic.

It should be noted that at each step k of the MSH, a pair of trees in the

forest Fk, T1 and T2, are joined to form a larger tree T . Therefore, the new total

need of the forest can be evaluated only by using the knowledge of T1 and T2

(which are removed from the forest) and the new tree T . Since now we also use

the another tree T2 besides the T1, there’s a total of six possible cases (excluding

symmetry) to be considered.

Case 1 + 1: Trees T1 and T2 both have size one. Tree T will have two nodes of

degree 1 and one edge, and thus need(T ) = d − 1. The new forest Fk+1 has a

total need of:

total need(Fk+1) = total need(Fk)− 2 + (d− 1) = total need(Fk) + d− 3 .

Case 1 + 2 and Case 2 + 1: Assume that T1 has size one and that T2 has size

two, and need = d − 1. Then, need(T ) = d − 2 since T will have one degree 2

node, and thus it is unfeasible.

T1

need(T1) = 1

T2

n1

need(T2) = d− 1

T

n1

need(T ) = d− 2
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The total need changes to

total need(Fk+1) = total need(Fk)− 1− (d− 1) + (d− 2) = total need(Fk)− 2 .

Case 2 + 2: Trees T1 and T2 both have size two. Then, two of the nodes of T

will have degree 2, and need(T ) = 2(d− 2). Thus,

total need(Fk+1) = total need(Fk)− 2(d− 1) + 2(d− 2) = total need(Fk)− 2 .

The last two cases imply exactly the same change in the total need so they can

be aggregated. All of the previous cases yield a new tree T with unfeasible

nodes.

The resulting tree may become feasible when we combine a tree with size

three or more with another. This is a special case, so a new variable is intro-

duced, inadmTi , to represent the sum of needs for the nodes of a tree Ti. After

joining T1 with T2, if the number of needs for T is zero but it is not a complete

tree (has less than |V | nodes), then the need of T will be 1; otherwise, it will

be equal to new inadm, where new inadm is calculated in the following way.

Case 1 + 3 and 3 + 1: Consider T1 of size one joining T2 of size 3 or greater.

Then, need(T ) = need(T2). However, three different situations may occur de-

pending on the node n1 of T2 used for joining:

1. If degT2
(n1) = 1, then it becomes an unfeasible node by increasing its

degree and the new unfeasibility is new inadm = inadmT2
+ d− 2;

T1 T2

n1

need(T2) = 0

T

n1

need(T ) = d− 2

2. In the case where the degree of n1 is less than d, the general unfeasibility

is reduced by 1 to become new inadm = inadmT2
− 1;
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T1 T2

n1

degT2(n1) < d

T

n1

degT2(n1) increased by 1

3. If the degree of n1 is greater than or equal to d, the unfeasibility value

does not change: new inadm = inadmT2 .

T1 T2

n1

degT2(n1) ≥ d

T

n1

degT (n1) > d

Case 2 + 3 and 3 + 2: Consider tree T1 of size 2 and need = d − 1, which

is joined with a (bigger) tree T2. The degree of the node in T used for the

connection increases by 2, so it will contribute with d−2 to the new unfeasibility.

Again, the node n1 to which T1 will be connected influences the feasibility of

the new joint tree.

1. If n1 had degree 1, the new unfeasibility is new inadm = inadmT2 + 2×

(d− 2).

2. If the degree is less than d, the unfeasibility is reduced by 1 and increased

by d− 2 or new inadm = inadmT2 + d− 3.

3. If the degree was greater than or equal to d, the node is already feasible

and so the change in unfeasibility is increased by d − 2 compared with

joining with T1, i.e., new inadm = inadmT2 + d− 2.

Case 3 + 3: Two trees of size greater than 2 are joined. In this case, the sum

of needs will be calculated separately for each. For T1 and depending on the

node n1 to which T2 is connected, we have the same possibilities described

in (4) when changing inadmT2 for inadmT1 . The new unfeasibility for T2,

new inadmT2 , is calculated in a similar manner and for the new tree T , we

have, new inadm = new inadmT1
+ new inadmT2

.
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Determining the new total need (after joining trees T1 and T2) employs the

same iterative procedure,

total need = total need− need(T1)− need(T2) + need(T ) , (1)

thereby proving the following new result.

Theorem 1. For each iteration of the MSH algorithm where 2 sub-trees, T1

and T2, are joined into a new tree T , the new total need is equal to subtracting

the previous total need value of the associated needs for T1 and T2 plus the need

of the new tree T .

This implementation results in a few code decision instructions, which are in-

dependent of the size of the graph being processed. Consequently, this improve-

ment does not require additional usage of resources and the general algorithmic

complexity remains the same as that of the original MSH algorithm.

The genetic algorithm approach needs to insure that feasible trees are gene-

rated for a successful evolution phase. Therefore, in the following, the improved

MSHOI method is used for spanning tree construction.

3. GAs for the md–MST

The proposed approach relies on genetic algorithm (GA) metaheuristics,

which are used to investigate a large number of different types of optimisation

problems. This class of algorithms is inspired by the Darwinian process of

evolution by natural selection [12, 13]. A GA aims to mimic the evolutionary

process of species by starting with an initial population of randomly generated

candidate solutions, where each individual is represented by a chromosome (its

genotype) and each step (or iteration) involves the evolution of the population of

candidates guided by a fitness function. This type of heuristic approach is used

in the combinatorial optimisation of NP-hard problems [14], where the fitness

function is usually referred to as the cost function. The evaluation of the cost

function is performed based on the phenotypes, i.e., the individual chromosomes

in the population, which is also known as the search space.
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The same basic evolutionary strategy is used for all of the genetic variants

described in the following, i.e., the classical GA using a predefined number of

generations as the stopping criterion.

Algorithm 1 Genetic Algorithm

Initial population random generated using the MSHOI;

Sort individuals based on their fitness value;

Choose K with the best fitness as the first evolutionary population;

repeat

Select the parental mating pool for reproduction (MP );

Crossover: use the MP to choose two parents for reproduction to obtain

a child;

Mutation: decide on the gene mutation for each child;

Selection: select individuals to form the next evolutionary population.

until termination criterion is satisfied.

In this genetic approach, selection is mostly elitist. Thus, the selection

mechanism retains 50% of the elements with the greatest fitness from the previ-

ous evolutionary population and replaces the least fit 50% with the best children

of the new offspring. The general reproductive plan of the evolutionary algo-

rithm, i.e, the evolution strategy after crossover is the (µ+ µ)-ES [15].

Chromosome mutations are controlled by a random function where there is

only a low probability of a mutation occurring.

3.1. Fitness function

To evaluate the fitness of a tree, the most obvious choice would be a linear

combination of the cost of the tree T and a measurement of its unfeasibility as

a penalty function. The latter can be defined by adding the difference between

any unfeasible node’s degree and the desired value d, cna(T ). For each candidate

tree T , both costs would then be combined to obtain a fitness function by using

the parameter α in a convex combination: α
∑

e∈ET
ce + (1−α)cna(T ). Initially,
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α can be set at 0.9 and decreased gradually, thereby forcing infeasible solutions

to be rejected increasingly. However, intensive computational tests have shown

that the GA versions using this fitness function seldom find admissible trees for

values of d above 8 or 9. In order to obtain an effective GA approach, we decided

to use the MSHOI heuristic (Section 2.2) so that admissible tree candidate

solutions (chromosomes) are always build. Therefore, the fitness function needs

no penalty evaluation and is simply taken as the total edge cost of the tree,

F (T ) =
∑
e∈ET

ce

3.2. Chromosome representations and operators

Based on a thorough investigation of previous studies, we only found two

suitable chromosome representations for trees. The first proposes the use of

Prüfer numbers, where according to the constructive demonstration of Cay-

ley’s formula discovered by Prüfer [16], every such number represents a different

spanning tree. Nevertheless, despite its general use, it was argued [17] that this

is a poor choice for the implementation of GAs because small changes in the

chromosome might cause large differences in the corresponding spanning tree.

The second was suggested by Raidl and Julstrom[18] who used a completely dif-

ferent representation based on the vector of node weights introduced by Palmer

and Kershenbaum [19]. In the following, we describe three different encodings

of candidate spanning tree structures with two original representations.

3.2.1. Version gen0 - Using node weights

The authors of [18] suggest the use of a vector based on the weights of

the nodes since it can influence the performance of Kruskal’s algorithm. The

vector is initialised randomly with weights wi, ∀i ∈ V . When MSHOI is used to

generate a feasible tree, the wi and wj values of each of the edge’s {i, j} extreme

nodes will be temporarily added to the current costs of the edge weights:

c′ij = cij + wi + wj .

10



To improve efficiency, the edges must be kept in an ordered list. The edges then

need to be re-sorted for each candidate solution. A bucket sort2 linear sorting

algorithm is used due to the unusual number of orderings required and because

the range of the weights of the edges (known a priori) is limited.

For each generation, the reproduction operator alternates between uniform

crossover, where each weight is copied randomly either from the father or the

mother, and blending with extrapolation. In the latter process, the weight

wchild of the new chromosome (child) is obtained by the linear combination of

the parents’ weights as: wchild = β ∗ wdad + (1 − β) ∗ wmom, −0.5 ≤ β < 1.5.

Next, each element of the chromosome can be mutated according to a given

mutation probability parameter by the addition or subtraction of a random

amount relative to the respective weight.

3.2.2. Version gen1 - Using the leaf set

A different chromosome representation involves using a set of randomly se-

lected leaves. In this case, an array of bits is used to represent the edges in the

set. For this version, we need to modify KA in order to avoid choosing edges

whose leaves are already joined in the tree. However, not using these might

prevent the construction of a spanning tree for non-complete graphs. To over-

come this problem, the algorithm goes through the edges again, but without

excluding any this time. This phase is never used in a complete graph because

all of the leaf nodes are connected to central nodes.

In general, it should be noted that this representation will not guarantee the

depiction of all the possible existing trees. For instance, if we consider a graph

with eight nodes where the first six are leaves (Figure 2), we need to find a tree

with the minimum internal vertex degree d = 3. KA is a greedy strategy, so it

always chooses the edges with lower costs to connect leaves to internal nodes,

but this will generate a non-admissible solution for the m3-MST problem. For

the graph G2, KA will build a tree where five of the leaves are connected to one

2The bucket sort is a similar algorithm to the radix sort[20].
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Figure 2: Example: Graph G2

internal node of the tree and the remaining internal nodes will be connected

with only one leaf, and thus it has an unfeasible degree of 2. However, all of the

solutions generated are admissible trees because we use the MSHOI to build the

trees.

The gen1 version uses uniform crossover, where each bit is copied at random

either from the father or the mother. Before adding the child to the population,

mutations are applied with a low probability by flipping bits in the chromosome.

3.2.3. Version gen2 - Using the Edge set

This version represents the chromosome by storing the set of edges in the

tree as an array of bits.

When we generate a random set, the probability of hitting a spanning tree

is low. In fact, for a complete graph with n nodes and m edges, there are

2m = 2n
2−n/2 possible sets of edges. However, only n(n−2) are spanning trees.

For instance, in a complete graph with 25 nodes, only 2523 out of 2300 possible

sets represent a spanning tree (only one out of 1.43E + 58). Again, KA is

employed to overcome this drawback. When a randomly generated set that

does not represent a spanning tree, a second phase occurs where KA is repeated

but considering all of the edges this time. Unlike the previous version, even for

complete graphs this version generally needs to use the second phase to complete

the tree.

For gen2 version, reproduction and mutation are alternated between genera-

tions. Uniform crossover is used for each even generation, whereas for the odd

generations, every individual in the population except the best is subjected to
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mutations with a low probability. The mutations are implemented by flipping

bits in the chromosome.

4. Computational tests

For comparison with the works of Martinez and Cunha [5] and Martins and

Souza [3], the experiments were performed using exactly the same instances

as the test-bed. In particular, the three classes of instances, CRD, SYM, and

ALM classes, are classic benchmark instances for testing the performance of

algorithms for the degree-constrained problem [e.g. 21, 22]. For the weights

of the edges, the CRD class uses the Euclidean distance between n randomly

generated points within a square. The instances used have 30, 50, 70, and 100

nodes. The SYM class can be defined in a similar manner, except the points are

generated in a Euclidean space with higher dimension. In this study, we used

30, 50, and 70 nodes. The ALM class represents larger dimension problems with

100, 200, 300, 400, and 500 nodes. These nodes are evenly distributed points

in a grid measuring 480 × 640 and the weights of the edges are the truncated

Euclidean distances between the points.

Murthy and Singh [7] use different test sets, namely Euclidean instances for

Euclidean Steiner tree problem available from http://people.brunel.ac.uk/

~mastjjb/jeb/info.html. These consist of randomly distributed points in a

unit square considered as nodes of a complete graph, whose edge weights are

the Euclidean distances among them.

The minimum bound on the node degree restriction d used as a control

parameter depends on the size and of the instances, with values ranging from 3

to 20. All the graphs were complete, and thus m = n2 − n.

4.1. Parameters: study and evaluation

The behavior of any GA is affected by various parameters associated with

the genetic operators. Those with major effects on the performance comprise

the population size (both the original and evolved population sizes), number of

13
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generations, and mutation rate. The first two parameters are crucial because

their product is an important measure of the computational efficiency of a GA,

and factors such as genetic diversity can be obtained using specifically devised

strategies for the crossover and mutation operators. The optimal values are

unknown for the md-MST, so we must rely entirely on empirical tests3. After

trial-and-error experiments, it was clear that the best mutation rate value was

3% (although the difference was not significant for 1% or 2%), which agreed

with previous studies.

We studied the number of generations and population sizes and their rela-

tionship. However, the major difficulty involved is that the algorithm is not

deterministic, so the results obtained from each run depend on the pseudo-

random generator employed. To determine whether changing a parameter is

beneficial for the GA, a statistical criterion must be used to infer the actual

significance of differences in performance. We considered two random variables,

X1 and X2, to represent the costs of the spanning trees obtained after executing

the two versions of the algorithm compared. Given two samples of each, n1 and

n2, with dimensions greater than4 30, where X̄1, X̄2 and the corrected standard

deviations are Ŝ1 and Ŝ2, respectively:

|X̄1 − X̄2| − 1, 65

√
Ŝ2
1

n1
+
Ŝ2
2

n2
. (2)

If (2) returns a negative value, the difference between the two means is not

statistically significant at a level of significance equal to 5% [24].

After several experiments based on evaluations using the significance crite-

rion (2), we decided to generate an initial random population twice the size

of the evolutionary population. It should be noted that the number of gener-

ations required to obtain the best average value did not vary significantly as

the population size increased. Although this increase continually improved the

3Another possibility, which we did not explore, is to use online or offline automatic para-

meter tuning methods such as the F-Race method (see [23]).
4 Note that 30 represents the theoretical value above which the validity of the test is proved

[24].
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quality of the results, only slight changes occur when the population exceeds a

thousand (Figure 3). The improvement was no longer significant so the number
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Figure 3: CRD70-2, a 70-node graph instance using d = 10.

of generations required to obtain the best result did not vary greatly with the

size of the evolutionary population.

Unlike the size of the evolutionary population, the initial population dimen-

sion did not have any significant effects on the final values obtained.

4.2. Comparisons of algorithms’ performance

To evaluate the true effectiveness of the various versions of the GAs, their

results were compared with the best published previously. Complete comparison

tables can be found in Appendices B and C. The genetic algorithm results are

compared with results presented by the authors using the same benchmark graph

instances (CRD, SYM and ALM), namely Martinez and Cunha (BC) [5] and

Martins and Souza (VNS) [3]. Albeit not sharing the same benchmark instance

set, GA results are also compared with the ones reported by Murthy and Singh

[7], being at the moment the only other known evolutionary approach.

Akgün and Tansel ([4]) also presented comparative results for their meth-

ods over some the benchmark instances. However, having only used some of

the smaller instances that only improved the run times previously reported by

Almeida et al.[1], the results are not effective for use this comparison. More-

over, this potential partial advantage is lost when compared with the fastest
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results included in [5]. Thus, we will not include Akgün and Tansel results in

our analysis.

Table 1: Summary of the performance comparisons: GA approach versus Martins-Souza’s

final results (VNS) and Martinez-Cunha (BC).

Genetic x VNS Genetic x BC

Problems #Instances Better Equal Worse Better Equal Worse

CRD 30-100 30 14 14 2 4 23 3

SYM 30-70 24 9 15 - - 19 5

ALM 100-500 36 36 - - 23 2 11

Total 90 59 29 2 27 44 19

4.2.1. Genetic versions versus other heuristics

On most occasions, some version of the GA obtained better (or at least equal)

results than the best produced by the VNS heuristics of Martins and Souza [3].

The summary in Table 1 shows that the GA approach obtained better values in

66% of the tests and in only two cases with worse results. The BC heuristics of

Martinez and Cunha [5] achieved generally lower values than the previous VNS

in terms of the final lower bounds obtained, but the new GA versions are still

competitive. In fact, comparing only with BC results, although the percentage

of better solutions declined to 30%, the GA approach obtained exactly the same

values for 70% of the remaining instances, and presented higher values on only

19 occasions.

In the tables in Appendix B, it is shown that the best value found by the

genetic versions has better than all of the best VNS values, with only two

exceptions: CRD-2 and CRD-3 using d = 5 (Appendix B, Table 7). The GA

strategy is always better than VNS with the hardest instances, the ALM class

(Appendix B, Table 7). In terms of the gap values, VNS−min GA
VNS , the genetic

algorithms achieved an average value of 8, 17% over all ALM results. In fact, the

differences between the final GA values and VNS approaches were significant in

terms of the new lower values obtained by GA (Appendix B). Over all test set
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Table 2: BC and VNS best values versus minimum GA versions value performance evaluation

- ALM 500 nodes instances.

Instance d VNS BC min GA gap VNS gap BC

ALM500-1 5 14626 13328 12334 18.58% 8.06%

ALM500-2 5 14039 12990 12405 13.17% 4.72%

ALM500-3 5 13521 12997 11730 15.27% 10.80%

ALM500-1 10 19342 17652 17415 11.07% 1.36%

ALM500-2 10 18138 17891 17653 2.75% 1.35%

ALM500-3 10 18269 18644 16539 10.46% 12.73%

ALM500-1 20 24999 24508 22346 11.87% 9.68%

ALM500-2 20 24823 24900 22285 11.39% 11.73%

ALM500-3 20 25468 25064 22643 12.48% 10.69%

instances, the average gap for VNS versus best GA value is 5, 59%.

Comparing only BC and GA results, for the hardest ALM class the average

gap value for the better GA results is 4, 52% as detailed in Appendix B. Table 1

shows that 27 new lower bounds were established. It should be noticed that the

new GA’s lower values are particularly relevant for the hardest of the instances,

the 500 nodes ALM instances (Table 2).

Overall, for the benchmark test set, the GA strategy presents itself as an

effective heuristic approach for the md-MST problem, and the more so over the

hardest of the instances of the set.

In relation with the works of Murthy and Singh [7], Table 3 is self-explanatory:

for the hardest of the fixed Euclidean instances used by these authors, both gen1

and gen2 always perform better. The genetic version gen0 was not tested since

is was designed to work specifically with integer weights and these instances use

reals. The GA versions achieved an average gap of 11, 5% and 10, 5% better

performance than ABC and ACO heuristics, respectively (AppendixB, Table

5).
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Table 3: GA versus ACO and ABC ([7]) for the hardest Euclidean Instances (best and average

results for each instance).

ABC ACO gen1 gen2

Name d Best Avg. Best Avg. Best Avg. Best Avg.

E250.1 3 15.92 16.08 15.59 15.70 13.077 13.243 12.456 12.762

E250.2 3 15.65 15.85 15.35 15.57 12.852 13.015 12.603 12.865

E250.3 3 15.56 15.72 15.39 15.48 12.854 12.973 12.428 12.760

E250.4 3 15.95 16.09 15.72 15.91 12.788 13.046 12.860 13.021

E250.5 3 15.82 15.95 15.49 15.64 12.895 13.065 12.746 12.888

E250.1 5 19.22 19.59 18.54 19.05 16.454 16.672 16.658 17.254

E250.2 5 19.05 19.29 18.69 19.03 15.552 15.836 16.047 16.355

E250.3 5 18.29 19.10 18.54 18.74 17.087 17.375 15.364 15.735

E250.4 5 19.20 19.73 19.10 19.37 15.940 16.342 16.227 16.642

E250.5 5 18.77 19.23 18.81 19.03 15.882 16.081 16.220 16.449

E250.1 10 24.05 25.23 24.11 24.66 23.359 23.827 23.812 24.222

E250.2 10 24.81 25.49 24.91 25.16 22.303 22.674 22.656 24.094

E250.3 10 24.13 24.88 23.87 24.20 21.755 22.210 22.413 22.933

E250.4 10 25.08 25.69 24.36 25.11 22.745 24.309 23.172 24.016

E250.5 10 24.14 25.06 24.57 25.02 22.494 23.485 23.272 23.682

4.2.2. Run times for the GA versions

This section presents an analysis of the time performance of the GA. The

reported times are average run times over 64 runs for each of the GA versions,

evolving over 3000 generations with a population size of 3000.

The computer used has an Intel Q9550 processor (Core2 2.83 GHz quadruple

core) and 4 GB RAM, so slightly slower than the systems used in the works used

for comparison [3, 5, 7]. The RAM capacity was of no consequence because the

instance’s dimensions were rather small and we never needed to use more than a

small amount of the overall capacity. Therefore, the results of the performance

test are directly comparable with those presented in previous studies.

The running times of the GA versions performance is quite stable for any

instance and any number of nodes (Appendix C) when compared to the run

times presented by Martins and Souza and Martinez and Cunha [3, 5]. Table 4
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Table 4: Run times (seconds) for the genetic versions on CRD and SYM instances (graphs

with n = 50 nodes).

Instance d gen0 gen1 gen2 Instance d gen0 gen1 gen2

CRD50-1 3 43.0 24.4 16.5 SYM50-1 3 42.8 14.9 16.3

CRD50-1 5 44.8 15.2 16.5 SYM50-1 5 40.7 13.7 17.1

CRD50-1 10 45.4 12.7 16.4 SYM50-2 3 43.7 12.5 16.3

CRD50-2 5 42.7 17.5 16.3 SYM50-2 5 40.8 8.1 17.3

CRD50-2 3 47.0 16.6 16.4 SYM50-3 3 42.9 13.6 16.3

CRD50-2 10 45.4 18.0 16.6 SYM50-3 5 43.8 12.9 16.1

helps the visualisation of the stability of the time performance for the genetic

approach, and the same behaviour was observed in all of the CRD, SYM, and

ALM classes. Note that gen0 was the slowest of the three versions. In general,

for n ≤ 100, gen2 requires less than half the time needed by gen0 and gen1

is slightly faster than gen2, with only a few exceptions. Excluding gen0, the

genetic versions are not affected by the different classes of instances and there

is no direct relationship between the run time and increasing d.
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Figure 4: Comparison of the average run times for the GAs over the ALM class instances

using d = 10 for increasing number of nodes.

In contrast, increasing the number of nodes has a direct effect on the run time
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for any of the genetic versions (Figure 4), which proves that the number of nodes

has impact on the run times while maintaining the relative time performance of

the three GA versions. Complete graphs were always used so m = O(n2) and

the results presented are the worst case example. This explains the higher times

required by gen0 because it re-sorts the list of edge weights for each candidate

solution (the Bucket Sort algorithm is linear according to the number of edges

sorted).

4.2.3. Run times: comparisons with other results

The run times of the GAs depend on the size of the population, the number

of generations, and the number of tests for each instance. When these were kept

constant, we have shown that the run times were also a function of the number

of nodes n.

Martins and Souza [3] present run times that vary greatly, which is particu-

larly obvious for the smaller instances. For example, for CRD with n ∈ {30, 50},

VNS requires times that range from only a few seconds to almost 12 minutes.

For the same class but with n ∈ {70, 100}, the time ranges from less than 5

minutes to almost 2 hours. For the ALM class, the reported times range from a

few thousand to several thousand seconds. These run times do not follow clear

patterns of variation relative to the instance dimension or parameters, so it is

not possible to directly compare the time required by both approaches. For

instance, in the case of ALM300-1 using d = 10, Martins and Souza obtained

the best solution with a value of 13899 using almost 4 hours. By contrast, the

best result found by the GAs with a smaller cost value of 13701 takes about 23

minutes.

Martinez and Cunha report shorter run times for BC [5] with the simplest of

the instances in the test data set, but GA performed better for the all remaining

instances, i.e., medium to large size and denser graphs (Appendix C). Especially

for the larger and harder of the ALM instances class, GA always outperforms

BC both in quality as in time, where BC achieves the maximum tolerate iter-

ation time set by the authors. In short, the new GAs generally obtain quality
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competitive results in much shorter run times compared with both the VNS and

the BC heuristics.

In relation with the evolutionary approach of Murthy and Singh, namely the

ABC and ACO heuristics, the GA versions average times for the parameters used

are always worse than the former: the best averaged times of the GA is around

6, 5% worst then the ABC, and around 3% worst than the ACO averaged times

(Appendix C, Table 10). Nevertheless, the quality of the GA results is much

better (Table 3).

5. Conclusions

In this study, we proposed a new algorithmic approach for the approxima-

tion of the NP-hard md-MST problem presenting three novel genetic algorithm

approaches. An improvement for an existing heuristic procedure for the ob-

tention of feasible md-MST trees (MSHOI) was also described. The results

obtained with the new algorithms are quite promising, with computationally

consistent run times as the instance dimension increases, unlike previously pub-

lished direct benchmarking approaches. For these benchmarks, the GA versions

achieved lower cost values for over 30% of the instances with competitive and

consistent run times. In particular, for the higher instances dimensions, 27 new

lower bounds were found, thereby demonstrating that the GA versions provide

effective and time efficient solutions to the md-MST problem. Furthermore,

when compared with the other known evolutionary approach, using an Artifi-

cial Bee Colony and a Ant Colony Optimization heuristics, although more time

consuming, the quality of the present GA approach is far superior.

However, some questions remain for future research. First, as usual, the GAs

could be made more efficient by enforcing greater genetic diversity in the popu-

lation throughout the evolutionary phase. This could be achieved by measuring

the difference between each solution and the best obtained to date and using this

difference to favour more diverse solutions. Naturally, it is difficult to design a

difference function that is both useful and fast. Second, on several occasions, we
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found that an optimal parameter or strategy could not be selected because the

performance depended on the instance of the problem tested. It might be inter-

esting to implement an approach that runs diverse genetic strategies with the

option of dynamically adjusting the genetic operators and parameters. Finally,

we would like to perform exhaustive testing of this novel GA approach using a

more comprehensive data set, ranging from smaller to harder larger dimensional

instances and including non Euclidean ones, to facilitate a better evaluation of

its empirical computational efficiency.
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Appendix A

Let G1 = (V,E), where V = {1, 2, 3, . . . , 12} is the graph.

8
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46 11
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9
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Figure 5: Graph G1.

The associated edge costs are given by the adjacency matrix C, as follows.

C =



– 1 1 5 26 – 10 10 – – – 48

1 – 28 – 67 – 6 – 2 26 – –

1 28 – – – 40 – 38 – – 57 –

5 – – – 34 12 – – 11 26 2 –

26 67 – 34 – – 102 – 1 – – –

– – 40 12 – – 65 30 – 53 – –

10 6 – – 102 65 – – 110 – – –

10 – 38 – – 30 – – 54 – – 67

– 2 – 11 1 – 110 – – – – 6

– 26 – 26 – 53 54 – – – 45 –

– – 57 2 – – – – – 45 – 90

48 – – – – – – 67 6 – 90 –



(3)

25



Appendix B: Genetic Algorithms Strategy Quality Performance Evaluation

Comparison of the minimum of objective function values obtained by the GA approaches (gen0, gen1, and gen2), min GA,

with the lower bounds of VNS [3] and BC [5] heuristics, and the best values of ACO and ABC heuristics [7]. Also shown are

the gap differences X−min GA
min GA , where min GA stands for the minimum value obtained between the genetic algorithm versions

and X is the heuristics value in comparison (VNS, BC, ABC, or ACO).

Table 5: Comparison of gen1 and gen2 with ACO and ABC heuristics [7] for the 250 nodes Euclidean instances.

ABC ACO gen1 gen2 gap ABC gap ACO

Name d Best Avg. Best Avg Best Avg. Best Avg.

E250.1 3 15.92 16.08 15.59 15.70 13.08 13.24 12.46 12.76 27,77% 25,12%

E250.2 3 15.65 15.85 15.35 15.57 12.85 13.02 12.61 12.87 24,11% 21,73%

E250.3 3 15.56 15.72 15.39 15.48 12.85 12.97 12.43 12.76 25,18% 23,81%

E250.4 3 15.95 16.09 15.72 15.91 12.79 13.05 12.86 13.02 24,71% 22,91%

E250.5 3 15.82 15.95 15.49 15.64 12.9 13.07 12.75 12.89 24,08% 21,49%

E250.1 5 19.22 19.59 18.54 19.05 16.45 16.67 16.66 17.25 16,84% 12,71%

E250.2 5 19.05 19.29 18.69 19.03 15.55 15.84 16.05 16.36 22,51% 20,19%

E250.3 5 18.29 19.10 18.54 18.74 17.09 17.38 15.36 15.74 19,08% 20,70%

E250.4 5 19.20 19.73 19.10 19.37 15.94 16.34 16.23 16.64 20,45% 19,82%

E250.5 5 18.77 19.23 18.81 19.03 15.88 16.08 16.22 16.45 18,20% 18,45%

E250.1 10 24.05 25.23 24.11 24.66 23.36 23.83 23.81 24.22 2,95% 3,21%

E250.2 10 24.81 25.49 24.91 25.16 22.30 22.67 22.66 24.09 11,26% 11,70%

E250.3 10 24.13 24.88 23.87 24.20 21.76 22.21 22.413 22.93 10,89% 9,70%

E250.4 10 25.08 25.69 24.36 25.11 22.75 24.31 23.17 24.02 10,24% 7,08%

E250.5 10 24.14 25.06 24.57 25.02 22.49 23.49 23.27 23.68 7,34% 9,25%
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Table 6: BC and VNS versus GA: performance evaluation - ALM class.
Instance n d VNS BC min GA gap VNS gap BC Instance n d VNS BC min GA gap VNS gap BC

ALM100-1 100 5 5439 5363 5353 1.61% 0.19% ALM400-1 400 5 12487 10859 10811 15.50% 0.44%

ALM100-2 100 5 5207 5072 5022 3.68% 1.00% ALM400-2 400 5 13877 11001 11090 25.13% -0.80%

ALM100-3 100 5 5456 5457 5441 0.28% 0.29% ALM400-3 400 5 12379 10834 11098 11.54% -2.38%

ALM100-1 100 10 7180 7164 7164 0.22% - - ALM400-1 400 10 17309 15068 15788 9.63% -4.56%

ALM100-2 100 10 6915 6886 6886 0.42% - - ALM400-2 400 10 16595 15016 15318 8.34% -1.97%

ALM100-3 100 10 7509 7394 7443 0.89% -0.66% ALM400-3 400 10 16439 15239 15214 8.05% 0.16%

ALM200-1 200 5 7467 7072 7246 3.05% -2.40% ALM400-1 400 20 21339 22905 20000 6.70% 14.53%

ALM200-2 200 5 7680 7225 7367 4.25% -1.93% ALM400-2 400 20 21299 22772 20013 6.43% 13.79%

ALM200-3 200 5 8217 7522 7797 5.39% -3.53% ALM400-3 400 20 22049 21478 20289 8.67% 5.86%

ALM200-1 200 10 10391 9615 9595 8.30% 0.21% ALM500-1 500 5 14626 13328 12334 18.58% 8.06%

ALM200-2 200 10 10238 9847 9792 4.55% 0.56% ALM500-2 500 5 14039 12990 12405 13.17% 4.72%

ALM200-3 200 10 10533 10018 9955 5.81% 0.63% ALM500-3 500 5 13521 12997 11730 15.27% 10.80%

ALM300-1 300 5 9871 8933 9520 3.69% -6.17% ALM500-1 500 10 19342 17652 17415 11.07% 1.36%

ALM300-2 300 5 10532 9326 9276 13.54% 0.54% ALM500-2 500 10 18138 17891 17653 2.75% 1.35%

ALM300-3 300 5 10887 9501 10016 8.70% -5.14% ALM500-3 500 10 18269 18644 16539 10.46% 12.73%

ALM300-1 300 10 13899 12838 12771 8.83% 0.52% ALM500-1 500 20 24999 24508 22346 11.87% 9.68%

ALM300-2 300 10 13210 12375 12535 5.38% -1.28% ALM500-2 500 20 24823 24900 22285 11.39% 11.73%

ALM300-3 300 10 13792 13116 12715 8.47% 3.15% ALM500-3 500 20 25468 25064 22643 12.48% 10.69%
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Table 7: BC and VNS versus GA: performance evaluation - CRD and SYM classes.

Instance n d VNS BC min GA improv VNS improv BC Instance n d VNS BC min GA improv VNS improv BC

CRD30-1 30 3 4026 4026 4026 - - - - CRD70-1 70 3 6609 6516 6516 1.43% - -

CRD30-2 30 3 3793 3793 3793 - - - - CRD70-2 70 3 6621 6586 6619 0.03% -0.50%

CRD30-3 30 3 4293 4293 4293 - - - - CRD70-3 70 3 7058 7053 7053 0.07% - -

CRD30-1 30 5 5026 5026 5026 - - - - CRD70-1 70 5 8177 8144 8139 0.47% 0.06%

CRD30-2 30 5 4648 4648 4648 - - - - CRD70-2 70 5 7971 7943 7943 0.35% - -

CRD30-3 30 5 5425 5425 5425 - - - - CRD70-3 70 5 8628 8419 8419 2.48% - -

CRD50-1 50 3 5512 5512 5512 - - - - CRD70-1 70 10 11355 11235 11235 1.07% - -

CRD50-2 50 3 5813 5813 5813 - - - - CRD70-2 70 10 11395 11373 11373 0.19% - -

CRD50-3 50 3 5590 5590 5590 - - - - CRD70-3 70 10 11986 11979 11979 0.06% - -

CRD50-1 50 5 6908 6908 6908 - - - - CRD100-1 100 5 9387 9352 9283 1.12% 0.74%

CRD50-2 50 5 7238 7204 7244 -0.08% -0.55% CRD100-2 100 5 9728 9623 9587 1.47% 0.38%

CRD50-3 50 5 7277 7277 7295 -0.25% -0.25% CRD100-3 100 5 9739 9656 9653 0.89% 0.03%

CRD50-1 50 10 9633 9633 9633 - - - - CRD100-1 100 10 13006 12916 12916 0.70% - -

CRD50-2 50 10 9743 9743 9743 - - - - CRD100-2 100 10 13255 13026 13026 1.76% - -

CRD50-3 50 10 9855 9855 9855 - - - - CRD100-3 100 10 13365 13365 13365 - - - -

SYM30-1 30 3 1197 1197 1197 - - - -

SYM30-2 30 3 1435 1435 1435 - - - -

SYM30-3 30 3 1408 1408 1408 - - - -

SYM30-1 30 5 1765 1765 1765 - - - -

SYM30-2 30 5 2090 2090 2090 - - - -

SYM30-3 30 5 2008 2008 2008 - - - -

SYM50-1 50 3 1278 1278 1278 - - - - SYM70-1 70 3 1362 1360 1360 0.15% - -

SYM50-2 50 3 1178 1178 1178 - - - - SYM70-2 70 3 1471 1448 1465 0.41% -1.16%

SYM50-3 50 3 1615 1615 1615 - - - - SYM70-3 70 3 1551 1521 1534 1.11% -0.85%

SYM50-1 50 5 2054 2054 2054 - - - - SYM70-1 70 5 2240 2028 2087 7.33% -2.83%

SYM50-2 50 5 1760 1760 1760 - - - - SYM70-2 70 5 2496 2165 2293 8.85% -5.58%

SYM50-3 50 5 2525 2525 2525 - - - - SYM70-3 70 5 2242 2210 2210 1.45% - -

SYM50-1 50 10 4121 4121 4121 - - - - SYM70-1 70 10 5055 4979 4979 1.53% - -

SYM50-2 50 10 4166 4166 4166 - - - - SYM70-2 70 10 4912 4787 4887 0.51% -2.05%

SYM50-3 50 10 4979 4979 4979 - - - - SYM70-3 70 10 5098 4997 4997 2.02% - -
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Appendix C: Run times for the GA versions

Average performance times based on 64 runs of each test instance for each

genetic version: gen0, gen1, and gen2 and the respective BC [5] run times, with

the exception of the last table, were the vast majority of run times reported for

BC are maximum tolerated iteration times.

Table 8: Average run times (seconds) of the GA versions: CRD and SYM instance graphs

(n ≤ 100).

Instance d gen0 gen1 gen2 BC Instance d gen0 gen1 gen2 BC

CRD30-1 3 19.6 13.9 7.3 0.3 SYM30-1 3 19.2 4.7 7.6 0.2

CRD30-1 5 20.5 6.7 7.2 0.9 SYM30-1 5 19.9 5.5 7.4 0.5

CRD30-2 3 19.4 5.6 7.3 0.2 SYM30-2 3 19.1 4.9 7.6 0.1

CRD30-2 5 20.0 8.7 7.2 0.3 SYM30-2 5 20.0 7.2 7.4 0.3

CRD30-3 3 19.3 7.2 7.5 0.2 SYM30-3 3 18.8 4.6 7.8 0.0

CRD30-3 5 20.5 7.2 7.2 3.2 SYM30-3 5 19.5 11.6 7.5 0.1

CRD50-1 3 43.0 24.4 16.5 5.0 SYM50-1 3 42.8 14.9 16.3 0.7

CRD50-1 5 44.8 15.2 16.5 69.0 SYM50-1 5 40.7 13.7 17.1 5.7

CRD50-1 10 45.4 12.7 16.4 13.8 SYM50-2 3 43.7 12.5 16.3 0.7

CRD50-2 5 42.7 17.5 16.3 81.2 SYM50-2 5 40.8 8.1 17.3 1.3

CRD50-2 3 47.0 16.6 16.4 61.6 SYM50-3 3 42.9 13.6 16.3 0.2

CRD50-2 10 45.4 18.0 16.6 7.7 SYM50-3 5 43.8 12.9 16.1 10.9

CRD70-1 3 77.3 33.6 32.5 148.6 SYM70-1 3 70.1 36.6 30.7 1.9

CRD70-1 5 78.1 26.9 30.1 800.0 SYM70-1 5 73.4 18.0 30.1 7.3

CRD70-1 10 78.5 20.7 30.2 138.6 SYM70-1 10 76.6 21.2 30.1 115.9

CRD70-2 3 75.0 23.1 30.4 4785.0 SYM70-2 3 70.9 18.9 30.5 6.0

CRD70-2 5 74.9 23.8 29.8 2416.9 SYM70-2 5 73.4 17.2 30.1 5.0

CRD70-2 10 78.2 28.3 29.9 571.9 SYM70-2 10 75.7 22.6 29.8 53.0

CRD70-3 3 75.7 25.6 30.2 3859.9 SYM70-3 3 72.1 19.5 31.9 4.8

CRD70-3 5 77.1 21.2 29.8 1402.8 SYM70-3 5 73.1 21.8 30.1 31.6

CRD70-3 10 76.6 24.7 30.6 17.9 SYM70-3 10 75.6 21.5 29.7 112.9

CRD100-1 3 137.1 57.5 62.1 - ALM100-1 3 125.5 52.5 60.0 -

CRD100-1 5 140.6 47.2 60.5 10800.0 ALM100-1 5 129.5 51.2 59.3 21600.0

CRD100-1 10 131.5 51.9 59.8 5741.6 ALM100-1 10 127.6 56.3 59.4 385.4

CRD100-2 3 129.4 91.3 61.3 - ALM100-2 3 125.7 55.5 62.7 -

CRD100-2 5 146.9 68.0 61.2 10800.0 ALM100-2 5 130.8 59.1 63.4 21600.0

CRD100-2 10 133.9 49.7 59.9 669.4 ALM100-2 10 128.4 51.9 59.6 7706.1

CRD100-3 3 137.9 60.9 63.5 - ALM100-3 3 126.9 47.3 60.7 -

CRD100-3 5 144.4 63.1 60.5 10800.0 ALM100-3 5 131.8 55.8 60.5 21600.0

CRD100-3 10 134.9 42.1 60.3 1359.4 ALM100-3 10 128.8 58.4 60.5 21600.0
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Table 9: Average run times (seconds) of the GA versions: ALM instance graphs (n > 100).

Instance n d gen0 gen1 gen2 Instance n d gen0 gen1 gen2

ALM200-1 200 3 497.0 273.2 261.6 ALM300-1 300 3 1169.3 411.3 566.6

ALM200-1 200 5 527.9 219.3 251.7 ALM300-1 300 5 1193.4 438.5 564.5

ALM200-1 200 10 509.7 201.9 245.9 ALM300-1 300 10 1237.0 474.7 553.5

ALM200-2 200 3 504.9 231.3 268.8 ALM300-2 300 3 1181.5 554.0 619.2

ALM200-2 200 5 523.2 256.2 247.9 ALM300-2 300 5 1185.3 443.2 569.7

ALM200-2 200 10 509.7 182.2 247.0 ALM300-2 300 10 1224.6 445.5 573.0

ALM200-3 200 3 501.6 224.9 257.5 ALM300-3 300 3 1173.6 459.4 605.4

ALM200-3 200 5 518.7 210.2 252.4 ALM300-3 300 5 1195.9 506.0 580.6

ALM200-3 200 10 515.1 231.4 250.5 ALM300-3 300 10 1230.6 480.8 577.1

ALM400-1 400 3 2296.7 864.4 1153.0

ALM400-1 400 5 2503.2 912.3 1044.5 ALM500-1 500 5 5338.9 1652.3 1662.9

ALM400-1 400 10 2498.2 811.4 1028.9 ALM500-1 500 10 5433.9 1260.3 1997.7

ALM400-1 400 20 2526.2 701.6 1285.7 ALM500-1 500 20 5384.2 1302.1 2144.2

ALM400-2 400 3 2321.0 832.0 1035.7

ALM400-2 400 5 2374.0 906.1 1019.1 ALM500-2 500 5 5292.5 1541.0 1692.1

ALM400-2 400 10 2499.0 850.3 1022.1 ALM500-2 500 10 5444.3 1382.3 1854.3

ALM400-2 400 20 2385.2 719.9 1156.5 ALM500-2 500 20 5285.6 1184.3 1928.3

ALM400-3 400 3 2317.9 878.1 1078.5

ALM400-3 400 5 2370.4 1022.7 1030.8 ALM500-3 500 5 5257.6 594.7 1666.5

ALM400-3 400 10 2496.4 819.8 1036.8 ALM500-3 500 10 5376.9 1318.7 1735.7

ALM400-3 400 20 2354.3 787.1 1242.9 ALM500-3 500 20 5320.0 1126.2 1809.3

Table 10: Average run times (seconds) of gen1 and gen2 for the 250 nodes Euclidean instances

compared with ABC and ACO heuristics [7]

Name d ABC ACO gen1 gen2 Name d ABC ACO gen1 gen2

E250.1 3 96.81 273.51 874.13 918.83 E250.1 10 96.16 108.78 683.07 1037.82

E250.2 3 89.05 296.32 516.04 871.47 E250.2 10 105.29 107.14 613.44 982.23

E250.3 3 89.52 284.62 681.29 852.30 E250.3 10 108.72 106.63 406.26 984.35

E250.4 3 96.59 286.20 605.41 850.86 E250.4 10 104.29 102.73 710.56 1005.81

E250.5 3 103.74 272.22 817.51 789.27 E250.5 10 104.99 101.73 737.53 985.97

E250.1 5 98.34 195.69 650.40 1013.87

E250.2 5 106.52 203.36 574.67 1013.70

E250.3 5 95.35 191.98 633.26 992.89

E250.4 5 99.53 172.76 691.03 1031.76

E250.5 5 89.88 170.54 506.76 982.03
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